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Abstract—Phase noise in the offset quadrature amplitude 

modulation (OQAM) multicarrier system results in not only 

constellation rotation but also crosstalk from the unique intrinsic 

imaginary interference (IMI). Therefore, the method for phase 

and residual frequency offset (RFO) compensation should be 

designed specifically to address this. In this paper, we exploit the 

statistical difference of the OQAM signal and the IMI, and 

propose a novel independent component analysis (ICA) based 

method for phase and RFO compensation. It is proved that the 

signal exhibits the minimal entropy with the probability 

distribution deviating from the Gaussian one the most when the 

phase is correctly compensated. Several metrics and a recursive 

algorithm are proposed to separate the signal and the IMI. 

Simulations and experiments are performed to verify the 

proposed theory and to compare the ICA method with modified 

blind phase search (M-BPS), constellation classification (CC), and 

Kalman filtering (KL). It is shown that the ICA method exhibits 

significantly better tolerance to the laser linewidth and RFO than 

CC and KL, and greatly reduces the complexity compared to 

M-BPS. Therefore, the proposed ICA method can be the most 

promising solution for phase and RFO compensation in OQAM 

multicarrier systems.  

 

Index Terms— Coherent detection, OQAM, phase noise and 

independent component analysis 

I. INTRODUCTION 

ffset quadrature amplitude modulation (OQAM) is an 

interesting format for multicarrier systems because it 

greatly relaxes the required signal spectral profile for 

subcarrier orthogonality [1-7]. In the literature, this technique 

has been widely investigated and shows advantages in various 

application scenarios, including higher spectral efficiency by 

eliminating the guard interval in coherent detection [2], reduced 

crosstalk in super-channels and radio-over fiber systems [3, 4], 

relaxed synchronization requirement in access networks [5, 6], 
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and improved performance in bandwidth-limited systems [7].  

In OQAM multicarrier systems, the real and imaginary parts 

of the signal are decoded separately and intrinsic imaginary 

interference (IMI) exists. Consequently, the channel and phase 

compensation in OQAM systems are different from those in 

conventional QAM and should be designed specifically [8-18]. 

Current research has achieved channel compensation for any 

transmission distance without any guard interval [14]. On the 

other hand, studies are still required to improve the 

performance of phase compensation in OQAM systems. In [16], 

a modified blind phase search (M-BPS) method was designed 

for the OQAM format. This method provides superior 

performance for phase compensation but requires a high 

complexity. Constellation classification (CC) and Kalman 

filtering (KL) were proposed to reduce the complexity [17, 18]. 

However, these methods show degraded tolerance to the laser 

linewidth and residual frequency offset (RFO).  

In this paper, we explore the statistical difference between 

the signal and the IMI for the first time, and propose a novel 

independent component analysis (ICA) based method for phase 

and RFO compensation. It is proved that when the phase is 

correctly compensated, the signal exhibits the minimal entropy 

with the probability distribution deviating from the Gaussian 

one the most. As the phase error increases, the signal mixes 

with the IMI and approaches a Gaussian distribution. We 

propose several metrics and a recursive algorithm to exploit this 

property and compensate the phase and RFO. Simulations and 

experiments are performed to verify the proposed theory and to 

compare the proposed ICA method with previously reported 

M-BPS, CC and KL. The results show that the ICA method 

exhibits significantly better performance than CC and KL, and 

greatly reduces the complexity compared to M-BPS. This 

makes the proposed ICA method a promising solution for phase 

and RFO compensation in OQAM multicarrier systems. 

II. PRINCIPLE 

In this section, we will firstly show how the phase noise 

influences the OQAM system, which is significantly different 

from that in conventional QAM due to the IMI. Then we briefly 

review the M-BPS, CC and KL methods. Next, we will explore 

the unique feature of the OQAM system, specifically the 

statistical difference between the signal and the IMI, and derive 

the ICA-based method to compensate the phase noise and RFO. 

Finally, the complexities of the ICA, M-BPS, CC, and KL 

methods are discussed and compared. 

Independent Component Analysis for Phase and 

Residual Frequency Offset Compensation in 

OQAM Multicarrier Systems 
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Fig. 1. Principle of the OQAM multicarrier system. 

   

Fig. 1 shows the principle of the OQAM multicarrier system. 

Assuming that ai,n is the data of the nth subcarrier in the 

frequency domain for the ith symbol. The in-phase tributary 

,

real

i na  and the quadrature tributary 
,

imag

i na  are processed 

separately at the transmitter. For the in-phase tributary, the 

phase of the nth subcarrier is set as exp(jn/2). Conversely, for 

the quadrature tributary, the phase of the nth subcarrier is set as 

exp(j(n+1)/2). The quadrature tributary is then delayed by half 

of the symbol period (defined as Ts/2) or N/2 in the discrete 

domain with respect to the in-phase tributary, where N is the 

number of subcarriers. An inverse fast Fourier transform (IFFT) 

is used to generate the time-domain signals, which then pass 

finite impulse response (FIR) filters for pulse shaping. 

Assuming that s(iN+k) is the kth sample for the ith OQAM 

symbol, it is derived that [2]: 

,

,

( ) ( )

             ( / 2 )

real

filter p k

p

imag

filter p k

p

s i N k h i N k p N s

h i N k N p N s
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=−

+

=−

 + =  + −  

+  + − −  





         (1) 

where  real

kps ,
 and imag

kps ,
 are the IFFT of 

, exp( / 2)real

p na j n  and 

, exp( ( 1) / 2)imag

p na j n + , respectively. hfilter() is the impulse 

response of the FIR filter. In the channel, the signal experiences 

different effects including transceiver response, chromatic 

dispersion (CD) and polarization mode dispersion (PMD).  

At the receiver, the mth subcarrier is demodulated by 

multiplying the received signal with exp(-2jkm/N-jm/2) and 

passing a matched filter. The sampling point of the quadrature 

tributary is delayed by half of the symbol period with respect to 

that of the in-phase tributary. In previous works, it has been 

shown that in contrast to conventional QAM, the OQAM 

system can achieve channel compensation for any CD values 

without a guard interval (GI) or additional frequency-domain 

equalization, even when the channel memory length is much 

larger than the OQAM symbol period. This is because the 

orthogonality between the signal and the IMI is still maintained 

even when the dispersion induces different time delays and 

phases over subcarriers [14]. For example, for a 30-GBaud 

signal with 128 subcarriers, the symbol period is ~4.23 ns. 

After 1200 km of single-mode fiber (SMF), the CD-induced 

delay difference between subcarriers at the highest and lowest 

frequencies is 4.9 ns. However, if each subcarrier is sampled at 

the correct sampling point, i.e. at m in Fig. 1 (note that there is 

still an additional Ts/2 delay for the sampling points of the 

quadrature tributary), the IMI is still orthogonal to the signal. In 

practice, m can be readily obtained using a training sequence 

(TS). On the other hand, channel effects with a short memory 

length, including the transceiver response, PMD and 

CD-induced pulse broadening for each subcarrier, can be 

equalized by updating the coefficients of the matched filter 

without additional complexity. For example, the CD of 1200 

km of SMF also results in ~38.3 ps pulse broadening on the 

pulse of each subcarrier, which can be compensated by 

updating the filters at the receiver in Fig. 1. Under the above 

channel compensation, the signals (
,

real

i ma  and 
,

imag

i ma ) are 

orthogonal to the IMI (denoted as 
,

real

i mc  and 
,

imag

i mc  respectively), 

and the sampled values for the two tributaries can be written as:  

, , ,( / ) exp( ) ( )real real real

i m b s i i m i mI H m T j a j c=   +         (2-1) 

, , ,( / ) exp( ) ( )imag imag imag

i m b s i i m i mI H m T j j a c=    +        (2-2) 

where the channel effect degenerates to a constant, Hb(m/Ts), 

for each subcarrier, and exp(ji) is the phase noise. The 

desirable signals are decoded from 
,

real

i mI  and 
,

imag

i mI  as:    

, , ,Re{ ( / ) exp( ) }real real

i m equ s i est i mb H m T j I=            (3-1) 

, , ,Im{ ( / ) exp( ) }imag imag

i m equ s i est i mb H m T j I=           (3-2) 

where i,est and Hequ(m/Ts) are the compensated phase and the 

coefficient of the one-tap equalizer, respectively. Because 

Hb(m/Ts) changes slowly over time, it can be estimated by the 

TS and compensated by Hequ(m/Ts). In the following analysis, 

in order to simplify the mathematical representation, we neglect 

the term of Hb(m/Ts) in Eq. (2) and Hequ(m/Ts) in Eq. (3).  

Note that in Eq. (2) and Eq. (3), it is assumed that the channel 

response and the phase noise on the in-phase and quadrature 

tributaries are the same. This is generally valid in practical 

systems. When there is a slight difference between the two 

tributaries, the phase/channel estimation can be performed 

separately for the two tributaries. It is also noted that Eqs. (2)-(3) 

are applicable to polarization-multiplexed systems because 

phase estimation is performed after polarization demultiplexing, 

which can be readily realized via butterfly filters. 

A. Influence of the phase noise on the OQAM system 

We will show how the phase noise in Eq. (2) influences the 

performance of the OQAM system. Fig. 2 depicts 
,

real

i mI  

((a)&(c)) and 
,

imag

i mI  ((b)&(d)) as defined in Eq. (2) for a 

240-Gbit/s dual-polarization (DP) 16OQAM system, where the 

phase i is 0 ((a)&(b)) and -/6 ((c)&(d)). The optical signal to 

noise ratio (OSNR) is 25 dB. When i is 0, the desirable signals 

of 
,

real

i ma  and 
,

imag

i ma  can be obtained by extracting the real part in 

Fig. 2(a) and the imaginary part in Fig. 2(b), respectively. 

However, when i is not equal to 0, extracting the real part in 

Fig. 2(c) and the imaginary part in Fig. 2(d) results in the 

interference from the IMI. To clearly see the impact, Fig. 3 

shows the decoded signal, 
, ,

real imag

i m i mb j b+  , for different i when 

i,est is set to zero. It is seen that in contrast to conventional 
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QAM, the phase error disperses the constellation points in the 

OQAM system in addition to a phase rotation. This is because 

the Re{} and Im{} operations in Eq. (3) induce the 

interference from the IMI when i-i,est is not equal to 0.       

 
Fig. 2. 

,

real

i mI  ((a)&(c)) and 
,

imag

i mI  ((b)&(d)) in a 240-Gbit/s 16OQAM system. 

i is 0 in (a)&(b) and -/6 in (c)&(d). The OSNR is 25 dB. 

 
Fig. 3. The decoded 16OQAM signal when the phase i is (a) 0, (b) -/18, (c) 

-/12, and (d) -/6. The phase i,est is set to zero. The OSNR is 25 dB. 

B. Existing compensation methods for the OQAM system 

Because the phase noise in the OQAM system influences the 

performance differently from that in conventional QAM, phase 

compensation should be designed specifically. In the literature, 

three methods have been proposed and will be used in this 

paper for comparison. 

 The first method is called M-BPS [16]. Its principle is similar 

to BPS in conventional QAM and the main difference is that the 

signal constellation used to search the optimal phase is 

, ,

real imag

i m i mb j b+   obtained by Eq. (3). The optimal i,est in the 

equation is the one that can achieve the minimal Euclidean 

distance to the desired constellation. This method achieves 

superior performance provided that the number of tested phases 

is sufficient. However, it requires a high complexity and is 

generally used as the benchmark for performance comparison. 

 The second method is called CC [17]. Taking 16OQAM in 

Fig. 2(d) as an example, this method firstly makes pre-decisions 

to classify the samples in the constellation to four signal levels. 

Then a linear function is implemented to fit the samples for 

each signal level, and the estimated phase is tan-1(the slope of 

the linear fitting function). This method reduces the complexity. 

However, it is sensitive to the pre-decision errors and exhibits 

reduced tolerance to the laser linewidth and RFO. 

 The last one is called KL [18]. Its principle is similar to the 

KL method in conventional QAM but the wise decision (WD) 

should be adapted to the OQAM signal. It has been shown in 

[18] that this method exhibits better performance under small 

laser linewidths due to its capability to compensate both phase 

and amplitude noise. However, as shown in [18] and will be 

shown later, this method exhibits poor tolerance to the laser 

linewidth and RFO due to the WD errors.            

C. The proposed ICA-based method 

In this subsection, we will exploit the statistical property of 

the signal and the IMI to compensate the phase. From Fig. 2, it 

is shown that the constellations of 
,

real

i mI  and 
,

imag

i mI  are similar 

except for a /2 phase rotation. Therefore, without the loss of 

generality, we discuss the phase estimation as follows only 

based on 
,

real

i mI . From Eq. (2), it is derived that 

, ,

, ,

cos( ) sin( )Re{ }

sin( ) cos( )Im{ }

real real

i ii m i m

real real

i ii m i m

I a

I c

 

 

   − 
=     

    

         (4) 

Note that we have neglected the term Hb(m/Ts) in Eq. (2) 

because it can be well compensated by Hequ(m/Ts). Firstly, we 

would like to indicate that the variances of 
,

real

i ma  and 
,

real

i mc  are 

similar. This can be readily proved by numerically calculating 

the variances of the signal and the IMI in Fig. 2. In fact, if their 

variances are different, i in Eq. (4) can be estimated by a 

simpler method called principal component analysis (PCA). 

However, if their variances are the same, PCA cannot recover 

,

real

i ma  and 
,

real

i mc  from the received 
,

real

i mI  and ICA that can 

separate independent signals from their combinations [19-21] is 

proposed to solve the problem. In the following, we assume the 

variances of 
,

real

i ma  and 
,

real

i mc are 2. Fig. 4 shows the probability 

density function (PDF) of the real and imaginary parts of 
,

real

i mI . 

The PDF is calculated using 54000 samples. It is seen that when 

i is 0, that is Re{
,

real

i mI }=
,

real

i ma  and Im{
,

real

i mI }=
,

real

i mc , their 

statistical difference is the most significant. Specifically, the 

PDF of 
,

real

i ma  concentrates on four points, deviating from the 

Gaussian distribution the most, while that of 
,

real

i mc  is close to a 

Gaussian one. In theory, the IMI is the combination of the 

crosstalk from multiple symbols of adjacent subcarriers as well 

as the other quadrature of the same subcarrier. From the central 

limit theorem, the IMI approaches a Gaussian distribution. On 

the other hand, as i deviates from zero, Re{
,

real

i mI } approaches 

a Gaussian distribution as well and the statistical difference 

between the real and imaginary parts reduces.  
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Fig. 4. The PDF of the real ((a), (c), (e)) and imaginary ((b), (d), (f)) parts of 

,

real

i mI  in a 240-Gbit/s 16OQAM system. i is (a)&(b) 0, (c)&(d) -/12 and 

(e)&(f) -/6. The PDF is calculated using 54000 samples. The OSNR is 25 dB.  

 

In Appendix I, we analyze the above phenomenon from the 

information theory and prove that when the PDF of   

,

, , ,

,

Re{ }
cos( ) sin( )

Im{ }

real

i mreal

i m i est i est real

i m

I
b

I
 

 
 = −   

 

    (5) 

deviates from the Gaussian one the most or the entropy H(
,

real

i mb ) 

is minimized, the i,est is the desired phase and 
,

real

i mb =
,

real

i ma . 

 In theory, a metric to evaluate how far a distribution is from 

the Gaussian distribution is the kurtosis [19]: 

4

4 / 3Kur  = −                            (6) 

where 4 is the four-order moment. Kur is zero for the Gaussian 

distribution, and is the most negative for the distribution when 

there is no phase error, as shown in Fig. 4(a).  

Because  is a constant regardless of i,est, we can minimize 

4 of 
,

real

i mb  to obtain the desirable phase i,est in Eq. (5). 

However, this metric does not give a high sensitivity to the 

change of the PDF profile and consequently the phase error 

i-i,est. In this paper, we propose a general metric x to 

estimate the phase, where x is an even number no less than 4. 

Fig. 5(a) shows x versus i-i,est for different x values. x is 

obtained by calculating the high-order moments of 
,

real

i mb . It is 

seen that the value of x is minimal at i,est=i for all x values. 

The curve with a larger x value is steeper at i-i,est=0, implying 

that it is easier to identify the point of i-i,est=0 using a larger x. 

Although the value of x is minimal at i,est=i in theory, a 

finite number of samples has to be used in practice to estimate 

x. In this case, the minimal point does not always occur at 

i,est=i, resulting in estimation errors. Fig. 5(b) shows the 

variance of the estimation error versus the number of samples 

for different x values. In the figure, we use 200 sets of samples 

with the number of samples in each set varying from 20 to 500. 

In each set, we calculate the x versus i-i,est  curve similar to 

Fig. 5(a) and find the i-i,est that gives the minimal x. Then we 

calculate the variance of i-i,est based on the 200 sets of 

samples. It is clear from Fig. 5(b) that x=4 results in a large 

variance. The use of x=6 significantly reduces the variance. The 

curves for x=8 and x=10 are similar. Note that the variance may 

not fully reflect the bit error rate (BER) performance. As 

described later, x=6 is sufficient for 16OQAM to achieve the 

saturated BER performance. A larger x may bring performance 

benefit for higher format levels, which are more sensitive to the 

phase noise. However, an algorithm should be used in practice 

to recursively search the minimal point of x. It is found that a 

larger x value may induce instability during the convergence of 

the algorithm for large linewidths and RFOs. Therefore, the 

optimal x should be the minimal one that achieves the saturated 

performance. Note that a larger x does not increase the 

complexity as will be discussed later.   

 
Fig. 5. (a) log10(x) versus i-i,est for different x values. x is normalized such 

that the minimal value is zero for all x; (b) Variance of the estimation error 
versus the number of samples for different x values. 
 

A recursive algorithm is proposed to obtain the desirable 

i,est by adaptively searching the minimal x. Assume that 

ri=[ri,1, ri,2…ri,P] are the samples used to estimate the phase i,est. 

In practice, ri include the samples of both 
,

real

k mI  and -j
,

imag

k mI , 

where k=…i-1, i, i+1… and m=1…N. That is, ri consist of the 

samples of all subcarriers and the symbols around the ith symbol. 

For example, when the subcarriers of the (i-1)-th, the i-th, and 

the (i+1)-th symbols are used to estimate i,est, P=6N. Note that 
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in contrast to conventional QAM, the available number of 

samples for phase estimation is doubled in OQAM systems 

because both 
,

real

k mI  and -j
,

imag

k mI  can be used. It is also noted that 

although Re{ri} and Im{ri} have the same variance 2 in 

principle, normalization of Re{ri} and Im{ri} can eliminate 

statistical discrepancy when P is small. This normalization 

however may not be necessary for a large P (>100). The phase 

is obtained recursively by: 

Re{ }

Im{ }

i

i i

i

 
=   

 

r
b W

r
                              (7-1)        

, ,

1

, , , ,

1

{ }

[Re{ } Im{ }]

x

i
i new i old

i

P
x

i old i k i k i k

k

E

b r r
P



 −

=


= − 



= −  

b
W W

W

W

  (7-2) 

, , ,/i new i new i new=W W W           (7-3) 

where Wi=[cos(i,est) -sin(i,est)] is the compensation vector; 
x

ib  is the x-th power of ib ;  is a step size to be optimized;   

is the norm of the vector. Eq. (7-2) describes the recursive 

process. As will be shown later, 2~3 iterations are sufficient to 

achieve the optimal performance. In Eq. (7-2), the (x-1)-th 

power of ib  should be calculated for the estimation. This can 

be realized by employing a look-up table as described later so 

that the complexity of this step is independent of the value of x.  

D. Complexity of different phase compensation methods 

In this subsection, we will compare the complexity of the 

proposed ICA method with that of M-BPS, CC and KL. In 

contrast to conventional QAM, the phase ambiguity in the 

OQAM system is  instead of /2. This problem can be solved 

by comparing the estimated phases between adjacent symbols. 

The complexity here excludes the correction of phase 

ambiguity because it is applied to all methods and does not 

influence the comparison. It is also noted that the calculated 

complexity is based on a multicarrier symbol consisting of all 

subcarriers in that symbol. Finally, without the loss of 

generality, we use 16OQAM in the analysis. 

In the ICA method, Eq. (7-1) requires 2P real multiplications 

and P real adders. 1

,

x

i kb − in Eq. (7-2) can be obtained as follows: 

because the variance of bi,k is 2, we quantize bi,k in the range of 

[-2 2] and build up a look-up table that maps the quantized 

bi,k to 1

,

x

i kb − . It will be shown later that a 3-bit resolution is 

sufficient to obtain the optimal performance. The complexity of 

the quantization is PQICA comparisons, where QICA is the bit 

resolution. Based on this, the total complexity of Eq. (7-2) is 

PQICA comparisons, 2P+2 real multiplications and 2P real 

additions. Finally, the normalization in Eq. (7-3) requires 5 real 

multiplications and 1 real addition. Eq. (7) is iterated for 

convergence. The total complexity is U(4P+7) real 

multiplications, U(3P+1) real additions and UPQICA 

comparisons, where U is the number of iterations. 

In M-BPS [16], we firstly calculate the complexity for each 

tested phase, exp(-jp/B), where B is the number of tested 

phases and p=0…B-1. The samples firstly multiply the phase to 

obtain Re{
,

real

k mI exp(-jp/B)}+jIm{
,

imag

k mI exp(-jp/B)}. Note 

that 
,

real

k mI  and 
,

imag

k mI  are combined in M-BPS and so the number 

of averaging is P/2 instead of P. The above step requires 

P/2(2+2) =2P real multiplications and P/2(1+1) =P real 

additions. The obtained signals are then compared with 

16QAM constellation to make pre-decisions. This step requires 

P/22log2(4)=2P comparisons. The distances between P/2 

complex samples and their decisions are then calculated and 

summed. This requires P/22=P real multiplications and 

P/24-1=2P-1 real additions. The above process is repeated for 

B tested phases, resulting in B times of complexity. Finally, B-1 

comparisons are needed to find the optimal phase. Therefore, 

the total complexity is 3PB real multiplications, 3PB-B real 

additions and (2P+1)B-1 comparisons. 

In the CC method, we calculate the complexity based on the 

principle in [17]. Pre-decision is firstly made for constellation 

classification. For the number of samples P, the complexity of 

the pre-decision (Eq. (10) in [17]) is (P+1) real multiplications, 

2P real additions and 2P comparators. The pre-decided 

symbols are then used for linear curve fitting (Eq. (8) in [17]) 

and the complexity of this step is (3+2P+7) real multiplications 

and (5P-2) real additions. Finally, a look-up table is used to 

calculate the tan-1() of the slope (Eq. (9) in [17]) and the signal 

quantization requires Qcc comparisons, where Qcc is the bit 

resolution. Therefore, the total complexity is (3P+11) real 

multiplications, (7P-2) real additions and 2P+Qcc comparators. 

Note that this complexity is different from that in [17] because 

that work is based on OQAM superchannels and uses a sliding 

window to estimate the phase of each symbol in each subcarrier 

separately while this work is based on electronic multi-carriers 

and estimates the phase of all subcarriers simultaneously. 

Finally, we calculate the complexity of the KL method by 

following the algorithm in Table 1 of [18], with the block 

diagram depicted in Fig. 1(b) of [18]. Assuming that 1 complex 

multiplication requires 4 real multiplications and 2 real 

additions, the complexity for the WD decisions and two phase 

rotations before and after the WD decisions in Fig. 1(b) of [18] 

is 8P real multiplications, 4P real additions and 2P comparators. 

The complexity of the Kalman gain is 12P real multiplications 

and 7P real additions. The complexity to update the phase is 8P 

real multiplications and 8P real additions. Finally, by re-using 

the results in the last step, updating the correlation matrix 

requires 4 real multiplications and 3 real additions. Therefore, 

the total complexity is 28P+4 real multiplications, 19P+3 real 

additions and 2P comparators. 

Table 1. Complexity of different compensation methods 

 Multiplications Additions Comparators 

Proposed ICA U(4P+7) U(3P+1) UPQICA 

M-BPS 3PB 3PB-B (2P+1)B-1 

CC 3P+11 7P-2 2P+Qcc 

KL 28P+4 19P+3 2P 

 

Table 1 summarizes the complexity of different methods. In 

the table, U is the number of iterations in the ICA method. As 

will be shown later, U of 2 or 3 is sufficient to achieve the 
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optimal performance. In this paper, U=3 is used in all 

simulations and experiments. QICA is the bit resolution of the 

look-up table. It is found that QICA=3 can give the saturated 

performance. B is the number of test phases in M-BPS and is set 

as 32 to obtain similar performance as the ICA method. Finally, 

QCC is the bit resolution of the look-up table in the CC method. 

Fig. 6 shows the required number of multiplications versus P 

for different methods. U=3 and B=32. It is observed that the CC 

method exhibits the least complexity. However, as will be 

shown, the performance of this method is poorer than that of the 

ICA and M-BPS methods. The proposed ICA method has less 

complexity than the KL and M-BPS methods. It also exhibits a 

better tolerance to the laser linewidth and RFO than the KL 

method. Finally, the complexity of M-BPS is highest. 

 
Fig. 6. Required number of multiplications versus P for different methods. 

III. SIMULATION SETUP AND RESULTS 

 
Fig. 7. Simulation model 

 

We firstly simulated a coherent 16OQAM multi-carrier 

system to verify the proposed theory. Four methods were 

compared: M-BPS, CC, KL and the proposed ICA method. All 

methods were based on the same simulation parameters.  

Fig. 7 depicts the simulation setup. The FFT size was 128 or 

64, in which 3/4 subcarriers were modulated with data. The 

signal format was 16OQAM and the pulse shaping filter created 

a square-root-raised-cosine (SRRC) spectral profile with a 

roll-off factor of 0.5. The memory length of the FIR filters for 

pulse shaping was 4, which was sufficient to achieve optimal 

performance for the targeted spectral profile [2]. A training 

sequence (TS) was added before the payload for channel 

estimation. The sampling rate of the arbitrary waveform 

generator (AWG) was 40 GS/s. The sinc roll-off of the DACs 

was compensated in the digital domain. The response of the 

AWG was assumed to be a 5rd-order Gaussian filter with the 

3-dB bandwidth equal to half of the sampling rate. The 

electronic signals were then amplified and modulated a CW 

light using a dual-polarization (DP) I/Q modulator. The total 

line rate was 240 Gbit/s. The laser linewidth varied for 

investigation. We did not add optical fibers in the simulation 

and focused on the phase noise. The effect of fiber transmission 

does not influence the conclusions and will be characterized in 

the experiment. At the receiver, a variable optical attenuator 

(VOA) was used to adjust the OSNR. The optical signal was 

amplified by an Erbium-doped fiber amplifier (EDFA), filtered 

by an optical filter with 40-GHz bandwidth, and detected by a 

coherent receiver. The bandwidth of the balanced photodiode 

(PD) was 40 GHz. The electrical signals were sampled by a 

40-GS/s real-time scope. The decoding of the signal was the 

same as described in Section II, where the channel was 

estimated using the TS. The number of simulated bits was 1.28 

million and the BER was obtained via direct error counting. 

 
Fig. 8. BER versus (a) laser linewidth and (b) RFO between the transmitter 
laser and the LO at 100-kHz linewidth. The FFT size is 128.  

 

Fig. 8(a) shows the BER versus the laser linewidth for 

different methods, where the linewidth is used for both the 

transmitter laser and the LO. The FFT size is 128 and the 

OSNR is 22 dB. The number of samples for estimation, P, is 

optimized for all methods. In ICA, the number of iterations and 

x in Eq. (7) are 3 and 6, respectively. The parameter  is 

optimized. In M-BPS, the number of tested phases, B, is 32. In 

KL, the measurement parameters are optimized. It is seen from 

Fig. 8(a) that M-BPS exhibits the best tolerance to the laser 

linewidth. The proposed ICA method shows slightly degraded 

performance compared to M-BPS. In contrast, the KL and CC 

methods are less tolerant to the laser linewidth. This can be 

attributed to the pre-decision in CC and the WD in KL. For 

larger linewidths, pre-decision or WD may cause errors which 

are fed back to the phase estimation of the next symbol and 
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result in performance instability. It is found that when the laser 

linewidth is larger than 200 kHz, the errors accumulate and the 

performance of these two methods is degraded significantly. In 

addition, the performance of the CC method is also unstable 

when i is close to 0 or . CC estimates the slope of the linear 

fitting curves (see Fig. 2) and uses tan-1() to obtain the phase. 

However, this slope would become infinite when i is close to 0 

or  (CC needs to rotate the phase by /2 and tan(0+/2) is 

infinite), around which the estimation is far from accurate. 

Therefore, the CC method is sensitive to not only the phase 

noise but also the absolute value of the phase. Fig. 8(b) shows 

the BER versus the RFO at 100-kHz linewidth. Similar to Fig. 

8(a), M-BPS exhibits the best performance. The ICA method 

significantly reduces the complexity at the expense of slightly 

degraded performance. It is also seen that although the CC 

method shows better performance than the KL method in Fig. 

7(a), it exhibits a poorer tolerance to the RFO. This is because 

the absolute phase is linearly proportional to the RFO, which 

easily moves the CC method into the unstable operation region.      

 
Fig. 9. Performance versus (a) laser linewidth (b) RFO between the transmitter 

laser and the LO at 100-kHz linewidth. The FFT size is 128.  

 

Fig. 9 shows the performance versus (a) the laser linewidth 

and (b) the RFO for the ICA method and M-BPS with different 

numbers of tested phases. The OSNR is 22 dB. The number of 

samples for phase estimation is optimized for both methods. In 

ICA, the number of iterations and x in Eq. (7) are 3 and 6, 

respectively. The parameter  is optimized. It is seen that 

decreasing B in M-BPS reduces the estimation accuracy and 

consequently degrades the performance. When compared to the 

ICA method, M-BPS with B of 16 shows moderate penalties for 

small linewidths and RFOs while significant penalties are 

observed for M-BPS with B of 8. Therefore, M-BPS with B of 

32 is used in this paper. Note that a large B results in higher 

complexity and the ICA method exhibits much less complexity 

than M-BPS with B of 32, as shown in Fig. 6. 

 
Fig. 10. Performance versus (a) laser linewidth and (b) RFO between the 

transmitter laser and the LO at 100-kHz linewidth. The FFT size is 128.  

 

As shown in Fig. 5, a larger number of x in the ICA method 

results in reduced estimation errors. Fig. 10 depicts the BER 

performance versus the laser linewidth and the RFO for the 

ICA method with different x values. The number of iterations is 

3 and the parameter  in Eq. (7-2) is optimized. It is seen that 6 

indeed gives a better performance than 4 due to a smaller 

variance of estimation error, as shown in Fig. 5(b). However, 

the BER performance is no longer improved by further 

increasing x. Note that the results in Fig. 5(b) do not consider 

the algorithm of Eq. (7) to recursively search the minimal point. 

Although 8 can provide a smaller variance of estimation error, 

it may result in the instability of convergence for large 

linewidths and RFOs, as shown in Fig. 10. Consequently, 6 is 

an optimal metric to balance the accuracy and the convergence. 

Note that this conclusion is based on 16OQAM. For higher 

format levels such as 64OQAM, 8 or higher-order moments 

may bring benefits because these formats are more sensitive to 

the phase noise and require smaller variances of estimation 

error to eliminate performance penalty.  

The complexity of the proposed ICA method depends on the 

number of iterations in the algorithm and the resolution of the 

look-up table, as shown in Table 1. Fig. 11 shows the 

performance versus the number of iterations for 6. It is seen 

that when the impairment is moderate (circles), 1 iteration is 

sufficient. Even when the impairments are severe (triangles and 
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squares), 2~3 iterations can still achieve the optimal 

performance. Fig. 12 depicts the performance versus the 

resolution of the look-up table to calculate 1

,

x

i kb − . It is shown that 

3 bits are sufficient to achieve the optimal performance. These 

results confirm that the ICA method can indeed achieve the 

desirable performance with low implementation complexity. 

 
Fig. 11. Performance versus the number of iterations in the ICA method. 

 
Fig. 12. log10(BER) versus the resolution in the ICA method. 
 

We further investigate the cases using the FFT size of 64. 

Under a fixed sampling rate, a smaller number of the FFT size 

results in a short symbol period and consequently improved 

tolerance to the laser linewidth and the RFO. Fig. 13 shows the 

BER performance of different compensation methods. The 

OSNR is 22 dB. The number of samples for estimation is 

optimized for all methods. In ICA, the number of iteration and x 

in Eq. (7) are 3 and 6, respectively. In M-BPS, the number of 

tested phases, B, is 32. In KL, the measurement parameters are 

optimized. Fig. 13 implies that similar conclusions can be 

drawn for the FFT size of 64. The proposed ICA method 

exhibits significantly better performance than the CC and KL 

methods, and greatly reduces the complexity at the expense of 

slightly degraded performance compared to M-BPS. It is also 

seen that in contrast to Fig. 8(b), the CC method shows much 

poorer RFO tolerance than KL in Fig. 13(b). As described in 

Fig. 8, the performance of the CC method also depends on the 

absolute phase values, specifically the phases when the slope of 

the linear fitting curve become infinite. Because the absolute 

phase rotation is linearly proportional to the RFO, the tolerance 

of the CC method to the RFO does not increases as the FFT size 

decreases. This is in contrast to the KL method, in which the 

tolerance is nearly doubled by using the FFT size of 64. 

 
Fig. 13. BER versus (a) laser linewidth and (b) RFO between the transmitter 

laser and the LO at 100-kHz linewidth. The FFT size is 64. 

 
Fig. 14. Performance versus (a) laser linewidth and (b) RFO between the 
transmitter laser and the LO at 100-kHz linewidth. The FFT size is 64.  
 

10
0

10
1

10
2

10
3

-5

-4

-3

-2

0 5 10 15 20 25 30 35
-5

-4

-3

-2

lo
g

1
0
(B

E
R

) 

Laser linewidth (kHz) 

Residual frequency offset (MHz) 

(a) 

(b) 

ICA, 6 

M-BPS, B=32 
CC 
KL 

ICA, 6 

M-BPS, B=32 

CC 
KL 

lo
g

1
0
(B

E
R

) 

0 5 10 15 20 25 30 35
-5

-4

-3

-2

10
0

10
1

10
2

10
3

-5

-4

-3

-2

lo
g

1
0
(B

E
R

) 

Laser linewidth (kHz) 

Residual frequency offset (MHz) 

(a) 

(b) 

ICA, 6 

ICA, 4 

ICA, 8 

lo
g

1
0
(B

E
R

) 

ICA, 6 

ICA, 4 

ICA, 8 

1 2 3 4 5 6 7 8
-5

-4

-3

-2

lo
g

1
0
(B

E
R

) 

Number of iterations 

100-kHz linewidth, 0-MHz RFO 

500-kHz linewidth, 0-MHz RFO 
100-kHz linewidth, 8-MHz RFO 

  

2 4 6 8 10
-5

-4

-3

-2

lo
g

1
0
(B

E
R

) 

Resolution of the look-up table (bits) 

100-kHz linewidth, 0-MHz RFO 
500-kHz linewidth, 0-MHz RFO 

100-kHz linewidth, 8-MHz RFO 

  

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 17,2020 at 14:37:21 UTC from IEEE Xplore.  Restrictions apply. 



0733-8724 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2020.2983413, Journal of
Lightwave Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

Fig. 14 shows the performance versus the laser linewidth and 

the RFO for the ICA method with different x values when the 

FFT size is 64. The number of iterations is 3 and the parameter 

 in Eq. (7-2) is optimized. We can obtain the same conclusions 

as those in Fig. 10. 4 results in a large estimation error while 

the performance becomes unstable for large RFOs by using 8. 

6 achieves the best performance for 16OQAM by balancing 

the accuracy and the convergence. 

IV. EXPERIMENTAL SETUP AND RESULTS 

 
Fig. 15. Experimental setup 
 

Experiments were then performed to verify the proposed 

ICA method. Fig. 15 shows the experimental setup. The FFT 

size was 128, of which 102 subcarriers were modulated with 

16QAM data. The FIR filter created a SRRC signal pulse with a 

roll-off factor of 0.5. The OQAM multicarrier sequence began 

with a start-of-frame symbol for symbol synchronization and a 

TS was used for channel estimation. The generated signal was 

downloaded to an AWG with a 12-GS/s sampling rate. The 

signal baud rate was 12102/128=9.6 GBaud. 

The laser linewidth was <100 kHz. The electronic signal was 

fed into an I/Q modulator with the peak-to-peak driving swing 

of 0.5V. The optical signal was amplified by an EDFA and sent 

into a recirculating loop. The fiber length in the loop was 60 km 

with a loss of ~14 dB. An EDFA was used in the loop to 

compensate the fiber loss and a 0.8-nm optical filter was 

employed to suppress the optical noise. At the receiver, the 

optical signal was pre-amplified, filtered by an optical filter 

with a 3-dB bandwidth of 0.64 nm, and detected by a 40-GHz 

coherent receiver. The powers of the optical signal and the LO 

were ~0 dBm and ~10 dBm, respectively. A variable optical 

attenuator was added before the pre-amplifier to control the 

OSNR. The detected signals were captured using a 50-GS/s 

real-time oscilloscope. The total number of measured 16QAM 

symbols was ~300,000. 

Because the lasers in the experiment had fixed linewidth, we 

could not measure the tolerance to the laser linewidth. However, 

the RFO can be adjusted at the receiver via DSP. Fig. 16 shows 

the BER performance versus the RFO at back-to-back for 

different methods. It is confirmed that the proposed ICA 

method exhibits only slightly degraded performance compared 

to the M-BPS method. Note that the ICA method requires much 

lower complexity than M-BPS. On the other hand, the CC and 

KL methods show much poorer tolerance to the RFO compared 

to the ICA and M-BPS methods. 

 
Fig. 16. Performance versus RFO at 16-dB OSNR and 0 km for different 

methods. In ICA, the number of iterations and x are 3 and 6, respectively. The 

parameter  is optimized. In M-BPS, the number of tested phases, B, is 32. In 

KL, the measurement parameters are optimized. 

 
Fig. 17. Performance versus RFO at 16-dB OSNR and 0 km.  

 
Fig. 18. Performance versus RFO for different x in the ICA method.  

 

 In Fig. 16, B is set as 32 in the M-BPS method. In order to 

investigate the influence of the number of tested phases, Fig. 17 

depicts the BER performance versus the RFO for the ICA 

method and M-BPS with different B. In ICA, the number of 

iterations and x are 3 and 6, respectively. The parameter  is 

optimized. It is seen that the performance degrades as B reduces. 

When compared to the ICA method, M-BPS with B of 16 

shows a moderate penalty for RFO values less than 4 MHz. 

When B is reduced to 8, significant performance degradation is 

observed. B of 32 avoids the penalty for small RFOs while 
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exhibiting better tolerance for large RFOs. However, its 

complexity is much higher than that of the ICA method.  

Fig. 18 shows the BER performance versus the RFO for the 

proposed ICA method with different x values. The number of 

iterations is 3 and the parameter  in Eq. (7-2) is optimized. 

Similar to the simulation result, 4 shows a poorer performance 

than 6 because it results in a larger variance of estimation error 

as shown in Fig. 5(b). On the other hand, 8 can achieve a 

similar performance as 6 for small RFO values, but it is not 

stable for large RFO values. Consequently, as the RFO 

increases, the performance is degraded more rapidly. 6 can 

achieve a balance between the accuracy and the convergence, 

and thus exhibits the best tolerance to the RFO. 

 
Fig. 19. Performance versus the number of iterations in the ICA method. 

 
Fig. 20. Performance versus the resolution in the ICA method. 

 

Fig. 19 shows the performance versus the number of 

iterations in the ICA method. It is seen that the optimal 

performance can be obtained by using 1~3 iterations depending 

on the amount of impairments. Fig. 20 depicts the performance 

versus the resolution of the look-up table to calculate 
1

,

x

i kb −
. It is 

confirmed that 3 bits are sufficient to achieve the optimal 

performance under all investigated RFO values. This confirms 

that the ICA method is able to achieve lower complexity than 

M-BPS at the expense of slightly degraded performance. 

All results above are based on the back-to-back case at 16-dB 

OSNR. In order to further verify the theory, we compare the 

performance of different methods for a different OSNR value 

as shown in Fig. 21, and for different transmission distances as 

depicted in Fig. 22. It is seen that in all cases, the proposed ICA 

method exhibits significantly better performance than the CC 

and KL methods, and only slightly degraded tolerance to the 

RFO compared to the M-BPS method. Therefore, the 

advantages of this method are valid in difference scenarios 

regardless of the OSNR values and distances. This makes the 

proposed method a promising solution for phase and RFO 

compensation in OQAM multicarrier systems.   

 
Fig. 21. Performance versus RFO at 14-dB OSNR and 0 km. 

 
Fig. 22. Performance versus RFO at (a) 600 km and (b) 1200 km. The OSNRs 
in both figures are ~16 dB. 

V. CONCLUSIONS 
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IMI for the first time. We theoretically prove that the signal 
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increases. We propose several metrics and a recursive 

algorithm for the ICA method to separate the signal and the IMI. 

Both simulations and experiments are performed to verify the 

proposed theory. It is shown that the proposed ICA method 

exhibits significantly better performance compared to the CC 

and KL methods and greatly reduces the complexity compared 

to the M-BPS method. This makes the ICA method the most 

promising solution for phase and RFO compensation in OQAM 

multicarrier systems. 

APPENDIX I: 

We will prove that the entropy of 
,

real

i mb  in Eq. (5) is 

minimized when the phase is correctly compensated. We 

consider the joint probability of Re{
,

real

i mI } and Im{
,

real

i mI }. It is 

clear that this joint probability does not change with i. 

Therefore, the entropy H(Re{
,

real

i mI }, Im{
,

real

i mI }) is the same 

regardless of i. It is also noted that when i is zero, 
,

real

i ma  and 

,

real

i mc  are independent. Therefore, we have: 

, , , ,

, , , ,

(Re{ }, Im{ }) ( ) ( )

   = (Re{ }) (Im{ }) (Re{ }, Im{ })

real real real real

i m i m i m i m

real real real real

i m i m i m i m

H I I H a H c

H I H I I I I

= +

+ −

 (8) 

where I(Re{
,

real

i mI }, Im{
,

real

i mI }) is the mutual information of 

Re{
,

real

i mI } and Im{
,

real

i mI } and is no less than zero. On the other 

hand, because the variances of  
,

real

i ma  and 
,

real

i mc are 2, from Eq. 

(4), it is readily calculated that the variances of Re{
,

real

i mI } and 

Im{
,

real

i mI } are also 2. Given the fixed variance, it is well 

known that the Gaussian distribution gives the maximal 

entropy. Because 
,

real

i mc  is Gaussian distributed, 

H(
,

real

i mc )H(Im{
,

real

i mI }). On the other hand, I(Re{
,

real

i mI }, 

Im{
,

real

i mI })0. Therefore, we can get H(
,

real

i ma )H(Re{
,

real

i mI }) 

for any i. In order to enable 
,

real

i mb =
,

real

i ma , H(
,

real

i mb ) is 

minimized or the PDF of 
,

real

i mb deviates from the Gaussian 

distribution the most.    
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