

Title	The signature of fine scale local adaptation in Atlantic salmon revealed from common garden experiments in nature
Authors	O'Toole, Ciar;Reed, Thomas E.;Bailie, Deborah;Bradley, Caroline;Cotter, Deirdre;Coughlan, Jamie P.;Cross, Thomas F.;Dillane, Eileen;McEvoy, Sarah;Ó Maoiléidigh, Niall;Prodöhl, Paulo A.;Rogan, Ger;McGinnity, Philip
Publication date	2015-07-24
Original Citation	O'Toole, C. L., Reed, T. E., Bailie, D., Bradley, C., Cotter, D., Coughlan, J., Cross, T., Dillane, E., McEvoy, S., Ó Maoiléidigh, N., Prodöhl, P., Rogan, G. and McGinnity, P. (2015) 'The signature of fine scale local adaptation in Atlantic salmon revealed from common garden experiments in nature', Evolutionary Applications, 8(9), pp. 881-900. doi:10.1111/eva.12299
Type of publication	Article (peer-reviewed)
Link to publisher's version	10.1111/eva.12299
Rights	© 2015, the Authors. Evolutionary Applications published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited https://creativecommons.org/licenses/ by/4.0/
Download date	2024-12-26 12:08:09
Item downloaded from	https://hdl.handle.net/10468/5707

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Appendix I: Broodstock details

Sample Code	BF_1	BF_2	BF_3	BF_4	BF_5	BF_6	E	3F_7	BF_8	BF_9	BF_11	BF_12	BF_14	BF_13
Date Stripped					22/12	/2008						14/1/200		
Fork length (cm)	60.0	77.2	59.2	73.2	57.5	63.1	6	60.4	63.5	57.7	64.5	81.0	56.3	74.0
Sea age	1SW	2SW	1SW	2SW	1SW	1SW	1	SW	2SW	1SW	2SW	2SW	1SW	2SW
TOTAL n(eggs) per hen	3352	3844	3123	3379	1047*	4026	2	2696	1738*	2474	3659	5053	3602	6931
Total n(eggs) stripped	3063	3610	2800	3033	970	3444	2	2569	1461	2333	3400	4472	3534	6714
n(eggs) crossed with Burrishoole male	1547	1807	1400	1533	508	1711	1	325	722	1160	1800	2336	1867	3381
n(eggs) crossed with Owenmore male	1516	1803	1400	1500	462	1733	1	244	739	1173	1600	2136	1667	3333
n(eggs) retained in cavity	289	234	323	346	77	582		127	277	141	259	581	68	217
Volume of 200 eyed eggs (mls)	47.5	61.0	45.0	56.5	39.0	45.0	2	46.5	46.0	37.5	45.0	44.0	42.0	42.0
Local (Burrishoole) Males														
Sample code	BM_2	BM_3	BM_5	BM_4	BM_7	BM_8	BI	M_11	BM_12	BM_13	BM_14	BM_10		
Date stripped*	22/1	12 and 29/	12/08			:	22/12/20	08			29/12	14/01/200)9	
Fork length (cm)	60.4	61.0	63.4	60.8	62.5	55.8	6	60.3	54.8	52.8	61.5	62.5		
Sea age	1SW	1SW	1SW	1SW	1SW	1SW	1	SW	1SW	1SW	1SW	1SW		
Foreign (Owenmore) Females														
Sample code	OF_1	OF_2	OF_3	OF_4	OF_5	OF_6	c)F_7	OF_8	OF_9	OF_10	OF_11	OF_12	OF_13
Date stripped				2	2/12/2008						29/12/2008			14/01/20
Fork length (cm)	70.2	64.5	62.4	70.5	68	64.5	7	77.8	60.4	61	64.9	62	60	64.5
Age	2SW	1SW	1SW	2SW	2SW	1SW	2	2SW	1SW	1SW	1SW	1SW	1SW	1SW
Total n(eggs) per hen	4096	4634	4270	4134	3443	3829	7	650	3905	3279	4644	3047	3796	4173
Total n(eggs) stripped	3904	4377	4155	3719	3254	3571	7	'386	3700	3078	4427	2879	3621	4133
n(eggs) crossed with Owenmore male	1904	2333	2064	1756	1618	1863	3	3719	1791	1615	2291	1521	1884	2089
n(eggs) crossed with Burrishoole male	2000	2044	2091	1963	1636	1708	З	8667	1909	1463	2136	1358	1737	2044
n(eggs) retained in cavity	192	257	115	415	189	258	:	264	205	201	217	168	175	40
volume of 200eggs (mls)	54.0	45.0	44.0	54.0	55.0	44.5	Ę	54.0	44.0	41.0	44.0	53.0	38.0	45.0
Foreign (Owenmore) Males														
Sample code	OM_1	OM_2	OM_3	OM_4	OM_5	OM_6	OM_7	OM_8	OM_9	OM_10	OM_11	OM_12	OM_13	OM_14
Date stripped				2	2/12/2008						29/12	2/2008		14/01/20
									1	1				
Fork length (cm)	64.6	68.5	64.0	73.1	58.0	68.2	66.8	61.0	67.0	74.0	84.5	65.1	62.2	76.0

* These Local females had already shed a fraction of their eggs prior to stripping and hence fewer eggs were stripped; these females are excluded when comparing fecundities (see below).

Statistical tests for body size, egg size and fecundity differences among broodstock groups:

ANOVA analysis showed that Local and Foreign dams did not differ significantly in fork-length L_F ($F_{1,23} = 0.37$, P = 0.55), controlling for the fact that 2SW dams were bigger than 1SW dams ($F_{1,23} = 56.4$, P < 0.001). The L_F difference between 2SW and 1SW dams was not significantly different for Local versus Foreign fish (origin river × sea age interaction: $F_{1,23} = 4.05$, P = 0.06). Eyed egg volume was larger for 2SW dams ($F_{1,23} = 18.54$, P < 0.001) but no different for Local versus Foreign dams ($F_{1,23} = 0.61$, P = 0.44), nor was there a significant interaction between origin river and sea age ($F_{1,23} = 0.67$, P = 0.42). Foreign females in this sample did not produce any more eggs per kg of body mass compared to Local females ($F_{1,21} = 0.15$, P = 0.70), controlling for the fact that 1SW dams produced slightly more (~398) eggs per kg of body mass than 2SW dams ($F_{1,21} = 5.11$, P = 0.03). Overall fecundity (total number of eggs per hen) was not different between Local and Foreign dams ($F_{1,21} = 0.74$, P = 0.40) and that between 1SW and 2SW dams was marginally non-significant ($F_{1,22} = 3.46$, P = 0.08). Foreign 1SW sires ($F_{1,12} = 28.61$, P < 0.001). There were no 2SW Local sires.

Mating scheme and eyed-eggs planted to river (or retained in hatchery for ranching) per full-sib family: The two families produced by OF_13 exhibited anomalously low alevin survival in the hatchery and were excluded in the calculations of expected ranched smolts per group.

	BF_ 1	BF_ 11	BF_ 12	BF_ 13	BF_ 14	BF_ 2	BF_ 3	BF_ 4	BF_ 5	BF_ 6	BF_ 7	BF_ 8	BF_ 9	OF_ 1	OF_ 10	OF_ 11	OF_ 12	OF_ 13	OF_ 2	OF_ 3	OF_ 4	OF_ 5	OF_ 6	OF_ 7	OF_ 8	OF_ 9
BM_10				1285 (1047)														1260 (0)								
BM_11										1302 (321)													1000 (0)			
BM_12												631 (0)										1019 (0)				
BM_13													1089 (0)	1037 (528)												
BM_14					1250 (166)								(-)	()	1285 (675)											
BM_2			1272 (722)		(100)			1054 (102)							(070)										1000 (0)	710 (0)
BM_3		1333 (314)	(, 22)					(102)	451 (0)							926 (130)				1000 (571)					(0)	(0)
BM_4		(314)				1066 (0)			(0)							(130)			1023 (0)	(371)						
BM_5	1276 (166)					(0)											1000 (285)		(0)							
BM_7	(100)						1022 (204)										(285)							1020 (510)		
BM_8							(204)				609										1000			(510)		
OM_1									380		(174)										(520)		1000			
OM_10		1255							(0)							975							(0)			
OM_11		(1162)	1304													(0)										896
OM_12			(129)														974									(44)
OM_13					1250										1255		(0)									
OM_14				1285	(152)										(190)			1000								
OM_2				(880)									1027					(0)				1035				
OM_3							720						(0)								1020	(0)				
OM_4							(0)					609								1000	(0)					
OM_5											826	(0)							1023	(524)						
- OM_6	1020										(0)								(0)					1020		
OM_7	(285)							1018						1056										(1019)		
OM_8								(120)		1318				(592)											1000	
OM_9						1300 (306)				(309)															(409)	