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Abstract

Wireless sensor networks (WSNs) are prone to failures. To be robust to
failures, the network topology should provide alternative routes to the sinks
so when failures occur the routing protocol can still offer reliable delivery.
Our contribution is a solution that enables fault-tolerant WSN deployment
planning by judicious use of a minimum number of additional relays. A WSN
is robust if at least one route with an acceptable length to a sink is available
for each sensor node after the failure of any k−1 nodes. In this paper, we
define the problem for increasing WSN reliability by deploying a number of
additional relays to ensure that each sensor node in the initial design has k
length-bounded vertex-disjoint shortest paths to the sinks. To identify the
maximum k such that each node has k vertex-disjoint shortest paths, we
propose Counting-Paths and its dynamic programming variant. Then, we
introduce GRASP-ARP, a centralised offline algorithm that uses Counting-
Paths to minimise the number of deployed relays. Empirically, it deploys 35%
fewer relays with reasonable runtime compared to the closest approach. Using
network simulation, we show that GRASP-ARP’s designs offer a substantial
improvement over the original topologies, maintaining connectivity for twice
as many surviving nodes after 10% of the original nodes have failed.
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1. Introduction

In wireless sensor networks (WSNs), sensor nodes transmit their data
wirelessly over a multi-hop network to sink nodes, where data is either pro-
cessed or transmitted on through a high-speed connection. These networks
are subject to failures: the wireless devices are often unreliable, they have
limited battery life, transmissions may be blocked by changes in the envi-
ronment, and the devices may be damaged, e.g. by weather, wildlife or
human intervention. For dealing with failures, techniques for reliable routing
in WSNs such as [1, 2, 3, 4] have been proposed and are well-understood,
but to be effective these depend on a physical network topology that ensures
alternative routes to the sink are in fact available. This requires sensor net-
work deployment to be planned with an objective of ensuring some measure
of robustness in the topology, so that when failures occur routing protocols
can continue to offer reliable delivery. Our contribution is a solution that en-
ables fault-tolerant WSN deployment planning by judicious use of additional
relay nodes.

One key objective in the topology design of a WSN is to ensure some
measure of robustness. In particular, one standard criterion is to ensure
routes to the sink are available for all remaining sensor nodes after the failure
of up to k−1 nodes. This can be achieved by ensuring that every node in
the initial design has k vertex-disjoint shortest paths to the sinks: i.e. at
least k paths that share no intermediate nodes. Vertex-disjoint paths are
also required to provide multi-path routing capability for some protocols [5].
Since WSNs often have data latency requirements, there may be a limit to
the path length from sensor to sink. To ensure that sensors have sufficient
paths of the right length, it may be necessary to add a number of additional
relays, which do not sense, but only forward data from other nodes. Installing
additional relay nodes comes at a cost that includes not just the hardware
purchase but more significantly the installation and ongoing maintenance,
thus motivating solutions that minimise the number of additional relays.

The novel problem we address in this paper is that of finding a min-
imal set of relays which ensures k length-bounded vertex-disjoint shortest
paths to a sink for each sensor node. We define the single-tiered, constrained
partial fault-tolerant relay placement problem for k vertex-disjoint shortest
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paths with length constraints for WSNs with data sinks, which we call the
additional relay placement (ARP) problem. We present two centralised al-
gorithms to be run during the initial topology planning, i.e. prior to network
deployment and operation, to select the fewest locations to deploy relay nodes
to improve the reliability of the network:

1. Counting-Paths is a heuristic algorithm that identifies for each node
x, the maximum k such that x has k vertex-disjoint shortest paths.
Counting-Paths looks for k vertex-disjoint shortest paths, where the
sum of the lengths is minimal, and tries to minimise the spread between
the lengths. It is formulated as minimise

∑k
i=1 li+(lmax−lmin). k denotes

the number of disjoint paths, l is the length of a path, lmin is the shortest
length, and lmax is the longest length of the disjoint paths. We also
propose its dynamic programming variant.

2. Greedy randomised adaptive search procedure for additional relay place-
ment (GRASP-ARP) is a local search algorithm based on GRASP [6]
that uses Counting-Paths to minimise the number of relays that need
to be deployed.

We assume that we are given a pre-planned WSN with a connected finite set
of sensors and one or more sinks. We make no assumptions on the geographi-
cal or physical properties of the area in which the WSN is to be deployed, but
we assume a limited set of possible locations for relays, and a connectivity
graph, showing the set of feasible links between all nodes.

The rest of the paper is organised as follows. We define the problem
in Section 2, survey the related work in Section 3, present the proposed
Counting-Paths algorithm in Section 4 and its evaluation in Section 5. We
show that Counting-Paths runs faster than the closest comparator approaches
and is able to identify the maximum k. In addition, its dynamic programming
variant improves on the runtime. We detail GRASP-ARP in Section 6. We
demonstrate empirically in Section 7 that it finds solutions requiring 35%
fewer additional relay nodes for small values of k compared to the closest
approach from the literature. We also show that GRASP-ARP scales better,
finding solutions in reasonable time for problems with hundreds of nodes.
We then evaluate the resulting topologies for robustness in Section 8, by
simulating network operation while nodes are failing. We show that after
only a small number of failures, the new topologies are significantly more
robust than the original topologies without relays, maintaining connectivity
for up to twice as many sensor nodes. Finally, Section 9 concludes the paper.
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Parts of this work were first presented in [7].

2. Background and Problem Statement

A WSN can be modeled as a graph G = (V,E), where V is a set of
vertices and E is a set of edges. Each edge connects two vertices that are
within transmission range of each other1, and the two vertices are said to be
adjacent. A path of length t between two vertices v and w is a sequence of
vertices v=v0, v1, . . . , vt =w, such that vi and vi+1 are adjacent for each i. A
path from a vertex v to a set of vertices W is simply a path from v to any
vertex w ∈W . Two paths P and Q from v to w are vertex-disjoint if they
have no nodes in common except for v and w. Two vertices are connected if
there is a path between them. A graph is connected if every pair of vertices is
connected. A cutset is a set C⊂V such that (V −C,E↓V−C) is disconnected
(where E↓X means a set of edges restricted to those connecting only vertices
in X). A graph is k-connected if it has no cutset of size less than k. If a
graph is k-connected, every vertex has k vertex-disjoint paths to any other
vertex.

The k length-bounded vertex-disjoint shortest paths problem is described
as follows: given a graph G=(V,E) and a pair (s, t)∈V , s 6= t, find k vertex-
disjoint shortest paths connecting the pair (s, t) with bounded-length l, if
they exist.

3. Related Work

The problem of placing relay nodes for increased reliability has long been
acknowledged as a significant problem, and we summarise the existing algo-
rithms for WSNs in Table 1. A single-tiered network has a flat architecture,
where all nodes can forward packets from other nodes. A two-tiered network
is a clustered network, where sensor nodes transmit their own data directly
to a cluster head. In connectivity problems, the aim is to ensure the net-
work is connected (or k = 1), while in survivable problems, the aim is to
ensure k-connectivity for k>1. In unconstrained problems, relay nodes can
be placed anywhere, while in constrained problems, they are limited to a set
of candidate locations. Partial fault-tolerance requires k-connectivity only

1For simplicity we assume bi-directional links, but this could be easily relaxed by spec-
ifying a more complex connectivity graph.
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Table 1: Relay Placement Algorithms

Algorithms k Routing
Deployment Fault-
Locations Tolerance

Bredin et al. [8] ≥1 1-tiered unconstrained full
Pu et al. [9] ≥1 1-tiered unconstrained partial
Han et al. [10] ≥1 1-tiered unconstrained full/partial
Ahlberg et al. [11] ≥1 1-tiered unconstrained partial
Zhang et al. [12] 2 1/2-tiered unconstrained partial
Misra et al. [13] 1, 2 1-tiered constrained partial
Hao et al. [14] 2 2-tiered constrained partial
Tang et al. [15] 1, 2 2-tiered unconstrained partial
Liu et al. [16] 1, 2 2-tiered unconstrained full
Kashyap et al. [17] ≥2 2-tiered un/constrained partial
This paper ≥2 1-tiered constrained partial

between every sensor node, while full fault-tolerance requires k-connectivity
between both sensor and relay nodes. We choose to focus on single-tiered
networks as this is most common in the research literature and for published
WSN deployments. Furthermore we assume the constrained approach for
possible relay locations, which we believe is more reasonable for real-world
deployments. Finally we assume partial fault-tolerance, reflecting the fact
that relays are deployed for connectivity only and do not have a sensing role.

Bredin et al. [8] develop k-connectivity-repair by finding a minimum-
weight vertex k-connected subgraph from a weighted complete graph, adding
edges in increasing weight and for each edge, deploying k relays every trans-
mission range distance and k−1 relays at endpoints of the edge. Partial
k-connectivity-repair by Pu et al. [9] is similar to k-connectivity-repair [8],
but only places one relay every transmission range distance and none at end-
points. Connectivity-first [10] finds a minimum k-connected spanning graph
from a weighted complete graph by adding edges that have the highest contri-
bution to connectivity and the least weight. Redundant router placement [11]
uses the Ford-Fulkerson method to count the number of paths from sensor
to sink. If the number of available paths is not sufficient, the algorithm
adds paths by placing relays on straight lines between sensors and the sink,
starting with the furthest sensor from the sink. Zhang et al. [12] study
the single-tiered and two-tiered fault-tolerant relay placement problem. The
single-tiered one constructs a complete graph, finds a 2-connected spanning
subgraph and steinerises the edges. The steinerisation process calculates
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edges’ weight by dividing the Euclidean distance of any two vertices by the
relay’s transmission radius. For each edge, a number of relays is deployed
along the straight line. The two-tiered approach finds the fewest relays as
cluster heads, connects them using the Steiner minimum tree and duplicates
each relay found. Misra et al. [13] propose connected and survivable relay
node placement. Both connected and survivable assign a weight to each edge
equal to the number of candidate relays the edge is incident with. Con-
nected relay node placement computes a low weight connected subgraph,
while survivable relay node placement computes a low weight 2-connected
subgraph. Relays are then deployed at the candidate locations that appear
in the subgraph.

2-connected relay node double cover [14] selects a relay that can cover
as many sensors, which are not covered by two relays, as possible. Then, it
selects some relays that ensure two disjoint paths for the previously selected
relay. Connected relay node single cover and 2-connected relay node double
cover [15] divide the region into cells, find possible positions to deploy relays,
find a solution to cover (k=1) or double cover (k=2) sensors in each cell using
exhaustive search, then add extra relays if needed. Liu et al. [16] develop
minimum relay-node placement for 1 and 2-connectivity. Minimum relay-
node placement for 1-connectivity finds the fewest relays that can cover all
sensors and connects them using the Steiner minimum tree, while minimum
relay-node placement for 2-connectivity adds three relays in the transmission
range’s circle of each relay found in minimum relay-node placement for 1-
connectivity. Kashyap et al. [17] propose k-vertex connectivity, where from
a complete graph of cluster heads, it assigns edge weights, finds a minimum
cost vertex k-connected spanning subgraph, and deploys relays along the
subgraph’s edges.

All of the algorithms cited find k-connectivity for WSNs without sinks.
Unlike our algorithm, the published algorithms do not place any constraints
on the path lengths. The closest problem definition to ours is Misra et
al.’s [13], but it can only establish up to 2-connected networks. Other works
with similar objectives to ours include Bredin et al. [8], Pu et al. [9], Han et
al. [10] and Ahlberg et al. [11], although they are for unconstrained deploy-
ment locations. Bredin et al.’s [8] considers full fault-tolerant relay node
placement. This was then modified by Pu et al. [9] for partial fault-tolerance
after noting that there is no need to ensure multiple paths for the relays.
The simulation results in Han et al.’s work [10] show that Bredin et al.’s [8]
is more efficient for partial fault-tolerance, while Han et al.’s [10] is more
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efficient for full fault-tolerance in terms of the number of additional relays.
Therefore, among all existing algorithms, we infer that the most relevant
one to our work is Pu et al.’s [9], except that it assumes unconstrained re-
lay locations and has no limit on path length. The unconstrained problem
can be easily converted into the constrained problem by introducing a set of
candidate locations.

Offline algorithms to discover k vertex-disjoint shortest paths in existing
networks are well studied in the literature. Torrieri [5] calculates a set of
vertex-disjoint paths in polynomial time. Bhandari [18] proposes k runs of a
modified Dijkstra algorithm, each of which requires O(|V |2) time, to find k
vertex-disjoint shortest paths between a source and a sink. There is a close
relation between k-connectivity and maximum flow problems. Maximum
flow algorithms, such as Ford-Fulkerson [19], are used to find edge-disjoint
paths [20], and thus need to be extended with a vertex-splitting technique
as used by Bhandari [18]. Edge-disjoint paths share no edges, but are less
robust than vertex-disjoint paths, and so we restrict our discussion to the
latter. Since we are only interested in vertex-disjoint shortest paths, we
will use the term disjoint paths throughout this paper, unless we need to
differentiate from edge-disjoint paths.

The greedy randomized adaptive search procedure (GRASP) [21, 6, 22]
is a metaheuristic which captures good features of pure greedy algorithms
and random construction procedures. It is an iterative process. In each
iteration, it consists of two phases: the construction phase and the local
search phase. The construction phase builds a feasible solution as a good
starting solution for the local search phase. The probabilistic component of
a GRASP is characterised by randomly choosing one of the best possible
candidates, instead of the overall best one. Since the solution produced
by the construction phase is not necessarily the local optimum, the local
search phase is utilised to improve it. A local search algorithm works in an
iterative fashion by replacing the current solution by a better one from the
neighborhood of the current solution. It terminates when no better solution
is found. Martins et al. [23] use GRASP to solve the Steiner tree problem
in graphs (SPG). SPG is similar to the relay placement problem, in that it
must select from a set of candidate nodes in order to connect a number of
designated terminals, although its aim is to find a minimal spanning tree
rather than a forest with vertex-disjoint paths.
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4. Counting-Paths

We first describe Counting-Paths, which is a variant of Bhandari’s algo-
rithm [18] with boosting over split vertices to spread the path lengths. Since
Counting-Paths is heuristic, it does not always guarantee finding the smallest
sum of lengths. Counting-Paths utilises the Ford-Fulkerson [19] maximum
flow algorithm to find the disjoint paths. In each of its iterations, Counting-
Paths finds the shortest path from a source node to a sink using the breadth
first search technique. Without graph modification, Ford-Fulkerson can only
discover edge-disjoint paths [20] because if the capacity of all edges is one
unit, Ford-Fulkerson’s paths will not share a common edge, but may share
common vertices. Therefore, before finding the second shortest path, we
modify the original graph by using the vertex-splitting technique as is used
by Bhandari [18]. Vertex-splitting along the paths that have been discovered
can exclude all possible paths that intersect them. To count the number
of disjoint paths for all nodes, we propose a dynamic programming variant
of Counting-Paths, where we start counting from sensor nodes closer to the
sink. This scheme speeds up the counting process for the entire network.

We will discuss the problem of finding disjoint paths by firstly presenting
the basic Counting-Paths algorithm to solve the single source – single sink
problem. In this problem, we check whether or not a node has k disjoint
paths to a sink. Then, we will present the dynamic programming variant of
Counting-Paths to solve the multiple sources – single sink problem. After
that, we will discuss the variations of the algorithm for cases with multiple
sinks.

4.1. Single Source – Single Sink Problem

In finding k disjoint paths for the single source – single sink problem,
given a graph G=(V,E), we check if a source s∈V has k disjoint paths to a
destination t∈V , t 6=s, by finding the k disjoint paths from s to t, where we
try to minimise

∑k
i=1 li+(lmax−lmin). k denotes the number of disjoint paths,

l is the length of a path, lmin is the shortest length, and lmax is the longest
length of the disjoint paths. If k=∞, we find all possible disjoint paths from
s to t.

Counting-Paths uses the Ford-Fulkerson method, which is iterative. It
starts by giving an initial flow of value zero. Then at each iteration, the flow
value is increased by finding an augmenting path from the source to the sink
along which we can send more flow. A path P has a cost attribute, denoted
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as cost(P ). The cost of pushing a flow along an edge is defined as one unit of
cost to send one unit of flow from a vertex to one of its adjacent vertices. A
path cost is the total amount of cost to push each flow along each edge on a
path. The cost is subtracted with a flow if the direction of the path is opposite
to the direction of the flow. Given a flow network and a flow, the residual
network consists of edges that can admit more flow. Formally, if we have a
flow network G with a source and a sink, the residual network Gres is the
network with residual capacity capacityres(v, w)=capacity(v, w)−flow(v, w).

A flow network is a directed graph, where each edge has a capacity. In our
scenario for k disjoint paths, the WSN topology is an undirected graph and
the total capacity of each edge is one. Therefore, we need a slight modification
of Ford-Fulkerson to work with our specific network requirements. We also
utilise vertex-splitting [19] as is used in Bhandari’s algorithm [18] to exclude
all possible paths that intersect the previously discovered paths. Because we
use the vertex-splitting technique, we modify breadth first search to boost
over split vertices to account for the extra path lengths. This modification
will be explained later in the algorithm.

Algorithm 1: Counting-Paths
Input: G, s, t, k
Output: Pi, ∀i=1,. . ., k

1 for i←1 to k do
2 if i>1 then
3 Split vertices on the shortest paths except s and t;
4 Modify the residual network Gres;
5 Replace external edges connected to the vertices on the shortest paths

except s and t;
6 end
7 if there exists a path Pi from s to t in Gres then
8 Push flow along Pi towards t;
9 end

10 if i>1 then
11 Remove overlapping edges;
12 end
13 end
14 return Pi, ∀i=1,. . ., k;

We present the basic Counting-Paths algorithm in Algorithm 1 to solve
the k disjoint paths for the single source – single sink problem. Counting-
Paths is a combination of Ford-Fulkerson with breadth first search and the
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vertex-splitting technique. It takes as input a graph G, a source s, a desti-
nation t, and the number of disjoint paths sought k. The details are given
below and an example to illustrate the steps when we explain the algorithm
is shown in Figure 1.

Suppose we have an input network as depicted in Figure 1(a) and want
to find two disjoint paths from the source s to the sink t. An undirected edge
(v, w) in the residual network shows that a directed edge may exist either
from v to w or from w to v with the total capacity of one. For example,
the first augmenting path is P1 = {s, a, c, t} as shown in Figure 1(a). The
flow is pushed from s to t along P1 as shown in Figure 1(b). We follow
the pseudocode in Algorithm 1 to find the second disjoint path as described
below.

4.1.1. Split Vertices

This step explains line 3 in Algorithm 1. Each vertex on the shortest
paths in the residual network Gres, except the source s and the sink t, is split
into two vertices, namely the original vertex and the primed vertex. The
two vertices are joined by a directed edge of zero capacity and directed from
the primed vertex to the original vertex. This is illustrated in Figure 1(c).
Vertices a and c are split into vertices a and a′, c and c′, respectively. We
draw directed edges of zero capacity from a′ to a and from c′ to c. Details
for other edges will be given in the following steps.

4.1.2. Modify Residual Network

This step explains line 4 in Algorithm 1. Recall that the residual network
Gres is the network with residual capacity and the total capacity of each edge
in our scenario is one. Therefore, for each edge (v, w) on the shortest paths,
we have two cases:
If v is not the source vertex:
capacityres(v

′, w)=capacity(v, w)−flow(v, w)
capacityres(w, v

′)=capacity(v, w)−capacityres(v
′, w)

If v is the source vertex:
capacityres(v, w)=capacity(v, w)−flow(v, w)
capacityres(w, v)=capacity(v, w)−capacityres(v, w)

In our example, capacityres(s, a), capacityres(a
′, c) and capacityres(c

′, t) in the
residual network in Figure 1(c) are zero. However, for the clarity of the
drawing purposes, the directed edges with zero capacity are not shown in the
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figure, except from the primed vertices to the original vertices. Moreover,
capacityres(a, s), capacityres(c, a

′) and capacityres(t, c
′) are all one.

4.1.3. Replace External Edges

This step explains line 5 in Algorithm 1. We replace external edges con-
nected to the vertices on the shortest paths with two oppositely directed
edges of the same capacity, and connected to the two split-vertices. External
directed edges terminate on the original vertices, while they originate from
the primed vertices. In the residual network in Figure 1(c), we replace exter-
nal edges connecting to vertices a and c, i.e. (e, a), (d, a) and (b, c). Then,
we draw directed edges of capacity one to the original vertices, i.e. from e
to a, d to a, and b to c. We also draw the opposite directed edges from the
primed vertices, i.e. from a′ to e, a′ to d, and c′ to b. Note that other edges
in the residual network, which are neither on the shortest path nor incident
to the vertices on the shortest path, are left unmodified.

4.1.4. Find an Augmenting Path

This step explains how we find the shortest path in line 7 of the algorithm.
In each iteration, we find an augmenting path from s to t that has the lowest
path cost using breadth first search. Recall that the path cost, denoted as
cost(P ), is the total amount of cost to push each flow along each edge on
the path in the residual network Gres. The cost of the path is one for each
edge which has no flow in it or -1 if we go against the flow. We add a little
modification to breadth first search by giving advantage moves to the vertices
on the previously discovered shortest paths, i.e. the split vertices. It means,
when we discover a split vertex, we do not put it in the breadth first search’s
queue but examine it directly. This modification is aimed to tackle longer
paths that are caused by overlapping edges. In our example in Figure 1,
there are two possible augmenting paths in the second iteration. They are
P2 = {s, b, c, a′, d, t} and P3 = {s, e, f, g, t}. cost(P2) = 3 because (c, a′) has
an opposite flow direction in Figure 1(b), while cost(P3) = 4. Therefore, we
take P2 as the next augmenting path because it has the lowest path cost as
shown in bold edges in Figure 1(c).

4.1.5. Push Flow

This steps explains line 8 in Algorithm 1. If an augmenting path P exists,
we merge the primed vertices with their original vertices and push the flow
along P from s to t. Thus, for each edge (v, w) on P , we have:
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flow(v, w)←flow(v, w) + 1
flow(w, v)←−flow(v, w)

Figure 1(d) shows the new flow after we push the flow along P2 ={s, b, c, a, d, t}.
Note that flow(a, c) and flow(c, a) are now zero.

4.1.6. Remove Overlapping Edges

This steps explains line 11 in Algorithm 1. We remove the overlapping
edges of the discovered paths to obtain the disjoint paths. This can be done
by crossing over the two paths. If we have two paths, say P1 ={v1, v2, v3, v4}
and P2 = {v5, v3, v2, v6}, the common edge is (v2, v3) or (v3, v2). When we
cross over the two paths, the results are P1 ={v1, v2, v6} and P2 ={v5, v3, v4}.
We have P1 ={s, a, c, t} in Figure 1(a) and P2 ={s, b, c, a, d, t} in Figure 1(c).
These two paths share a common edge. i.e. (a, c) or (c, a). After removing
the overlapping edge, the results as shown by the flow in Figure 1(d) are
P1 ={s, a, d, t} and P2 ={s, b, c, t}. The length of both paths is three.

4.1.7. Analysis of Counting-Paths

Complexity of Counting-Paths: Counting-Paths, which uses Ford-
Fulkerson with breadth first search, has lower time complexity than the al-
gorithms proposed by Torrieri [5] and Bhandari [18]. Breadth first search
has O(|E|) time, which is slightly better than Bhandari’s and Torrieri’s algo-
rithms that are based on Dijkstra O(|V |2) time. The time complexity of the
Ford-Fulkerson algorithm is O(|E|f), where f is the maximum flow in the
graph. When we want to find k disjoint paths, the time complexity becomes
O(|E|k).

Correctness of Counting-Paths: We prove the correctness of Counting-
Paths by comparing it to the Ford-Fulkerson algorithm. We first show that
both vertex-splitting and external edge replacement in the residual graph do
not change the problem for breadth first search. A vertex v on the previously
discovered shortest path is split into two vertices v and v′. When v is split,
the zero-length directed edge from v′ to v enables breadth first search to in-
clude all possibilities of augmenting paths passing through v. Note that we
call an edge that is not on the discovered shortest path but incident to v as
an external edge. If the degree of v is two, v has no external edges because
the two neighbours of v must also be on the discovered shortest path. If the
degree of v>2, v may be adjacent to one or more vertices that are not on the
shortest path. Suppose there is a vertex w that is not on the shortest path
and adjacent to v. In order for breadth first search to include all possibili-
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ties of augmenting paths from v to w and from w to v, the external edge is
replaced with two directed edges from v′ to w and from w to v, respectively.
Since the vertex-splitting and the external edge replacement do not change
things for the breadth first search part, if there are currently k−1 paths
in the collection of the disjoint paths, breadth first search will find the last
remaining augmenting path because breadth first search is complete. This
means that if there is a solution, breadth first search will find it regardless
of the kind of graph.

Secondly, we show that in each of its iterations, Counting-Paths finds
disjoint paths. The Counting-Paths algorithm allows the edges of the new
discovered shortest path to overlap with the previously found shortest paths.
If there are some overlapping edges, Counting-Paths merges and reconstructs
the paths by removing the overlapping edges that results in disjoint paths
with no common edges and vertices, except the source and the destination.
Since at the end of each iteration it produces disjoint paths, it stops when
the number of disjoint paths is m. When Counting-Paths terminates, m is
the maximum set of disjoint paths and there are no augmenting paths from
the source to the destination remaining.

4.2. Multiple Sources – Single Sink Problem

The dynamic programming implementation of Counting-Paths is moti-
vated by the fact that multi-hop WSNs are often characterised by many-to-
one (convergecast) traffic patterns. If we must execute Counting-Paths for
each node in the network, the overall time complexity increases toO(|V ||E|k).
However, if we do not need to know the routing paths during the deployment
process, it is not necessary for us to discover the actual paths, but only the
paths to neighbours that have k disjoint paths. This local information is used
by nodes to forward their data to the nearest neighbours and the neighbours
will decide where to forward them further.

In finding k disjoint paths for the multiple sources – single sink problem,
given a graph G=(V,E), we check if a source s∈V has k disjoint paths to a
destination t∈V , t 6= s, by finding the k disjoint paths, if they exist, from s
to t or from s to any vertex v∈V that has k disjoint paths. Below, we prove
the result that justifies our dynamic programming approach.

Lemma 1. Let v be a vertex which has vertex-disjoint paths to a subset W
of k vertices none of which have a cutset of size <k. Then v has no cutset
of size <k.
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Proof. Suppose v does have a cutset, C, of size < k. A set of size < k can
break at most k−1 of the paths from v to W . Let w ∈W be any of the
vertices whose paths from v are not broken by C, and so v is still connected
to w. But w must be connected to the destination t, since w has no cutset
of size <k. Therefore v is still connected to t. Therefore C is not a cutset
for v. Contradiction.

As a corollary, if a vertex v has vertex-disjoint paths to k vertices, each
of which has k vertex-disjoint paths to the sink, then v must also have k
vertex-disjoint paths to the sink.

Algorithm 2: Counting-Paths-DP
Input: G,S, t, k
Output: Pi,j , ∀i=1,. . ., |S|, ∀j=1,. . ., k

1 T←{t};
2 for i←1 to |S| do
3 for j←1 to k do
4 if j>1 then
5 Split vertices on the shortest paths except si∈S and r∈T ;
6 Modify the residual network Gres;
7 Replace external edges connected to the vertices on the shortest paths

except si∈S and r∈T ;
8 end
9 if there exists a path Pi,j from si∈S to r∈T in Gres then

10 Push flow along Pi,j towards r;
11 end
12 if j>1 then
13 Remove overlapping edges;
14 end
15 end
16 if si∈S has k disjoint paths then
17 T←T∪{si};
18 end
19 end
20 return Pi, ∀i=1,. . ., k;

In our dynamic programming approach, we start by finding the k disjoint
paths from vertices closer to the sink. For each vertex, if we can find disjoint
paths to k vertices that have k disjoint paths, we do not need to find the
k disjoint paths to the sink and we can proceed to the next vertex. The
algorithm for the dynamic programming variant is given in Algorithm 2. It
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takes as input a graph G, a set S of source vertices, a destination t, and the
number of disjoint paths sought k. T represents a collection of destination
vertices, which are the sink and the vertices which have k disjoint paths to
the sink. Note that line 3 to 15 are similar to Algorithm 1, but the shortest
path may terminate at any vertices in T .

In the multiple sources – single sink problem, we vary the heuristic tech-
niques to pick which vertex is examined first:

1. Order vertices by distance from sink, breaking ties by smallest ID.

2. Order vertices by distance from sink, breaking ties by highest degree
then smallest ID.

3. Order vertices by distance from sink, breaking ties by most processed
neighbours then smallest ID.

4. Dynamically order vertices by most processed neighbours, breaking ties
by distance from sink then smallest ID.

We will evaluate these four heuristic techniques in the performance of the
dynamic programming variant of Counting-Paths later in Section 5.2.

4.3. Single Source – Multiple Sinks and Multiple Sources – Multiple Sinks
Problems

Two other variations of our problems are the single source – multiple sinks
and multiple sources – multiple sinks problems. In these multiple sink cases,
a well-known approach is to add a supersink as an imaginary vertex that has
connection to the original sinks. By doing this, we reduce the problem of
single source – multiple sinks to the problem of single source – single sink,
while the problem of multiple sources – multiple sinks is simplified to the
problem of multiple sources – single sink.

When there are many sinks, we have two cases, based on where the disjoint
paths must terminate: different-sinks and any-sinks. The different-sinks
problem is where the k disjoint paths must terminate at k different sinks
to guarantee reliability of the network. The any-sinks problem is the case
where the k disjoint paths may terminate at any sinks. In the different-sinks
problem, for each connection from an original sink t to the supersink t′, we
set capacity(t, t′) = 1, so the edge can be used at most once. However, for
the any-sinks problem, we set capacity(t, t′) = k, so the paths can traverse
some original sinks more than once, but at most k times before reaching the
supersink.
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5. Evaluation of Counting-Paths

In this section, we implement and evaluate all algorithms’ performance
in C++. Later in Section 8, we use a network simulator to evaluate network
operations. All experiments are carried out on a 2.40 GHz Intel Core2 Duo
CPU with 4 GB of RAM. Our simulation results are based on the mean value
of 20 different randomly generated network deployments, enough to achieve
a 95% confidence in the standard error interval, which are shown as error
bars in the results. We do not show error bars in line graphs and graphs
with logarithmic scale to improve readability of the graphs. Our network
consists of up to 100 nodes deployed within randomly perturbed grids of a
two-dimensional area, where a node is placed in a unit grid square of 8 m ×
8 m and the coordinates are perturbed. We generate 5 × 5, 7 × 7 and 10
× 10 grid squares to deploy 25, 49 and 100 nodes, respectively. All nodes
use the same transmission range, i.e. 10 metres, which is realistic for 0 dBm
transmission power in indoor environments [24].

We compared the performance of the basic and the dynamic program-
ming variant of Counting-Paths to the Modified Dijkstra algorithm by Bhan-
dari [18] and two algorithms proposed by Torrieri [5], namely Fast Pathfind-
ing and Maximum Paths. We followed the three algorithms detailed in [18]
and [5], implemented them and then verified the results by using the exam-
ples in the papers.

Bhandari’s algorithm [18] requires two runs of a modified Dijkstra algo-
rithm to find two disjoint paths between a source and a sink. Dijkstra’s
algorithm is slightly modified to handle negative directed edges. The main
idea is to exclude all possible paths between the source and the sink that
intersect with the first shortest path found during the search for the second
shortest path. Exclusion of such path is achieved by vertex-splitting along
the first shortest path found. Bhandari’s algorithm begins by finding the first
shortest path for a pair of vertices under consideration using the modified
Dijkstra algorithm. The graph is then modified by:

1. replacing edges on the shortest path by negative directed edges toward
the source,

2. splitting vertices on the shortest path, joining them by zero weighted
directed edges toward the source, and

3. replacing edges connected to vertices on the shortest path by two op-
positely directed edges of the original weight.
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After that, the modified Dijkstra algorithm is run again on the modified
graph. The original graph is then restored and the overlapping edges of the
two paths found are removed to obtain a pair of disjoint paths. For the k
disjoint paths problem, where k > 2, the algorithm is performed iteratively
to obtain more disjoint paths in a given network graph, provided such paths
exist.

Torrieri’s algorithms [5] calculate a set of short disjoint paths, which
do not exceed the longest acceptable path length, between a source and
a sink. In each iteration, the algorithms select the shortest path, remove
the intermediate vertices in the path from further use by zeroing the rows
and the columns of the intermediate vertices in the adjacency matrix and
then select the next shortest path using only the remaining vertices. Fast
Pathfinding is the simplest approximate algorithm, which executes only the
first step in the construction of the optimal set. In this algorithm, if two
or more remaining paths of length l are the shortest, one of them is chosen
arbitrarily. Maximum Paths executes the first two steps in the construction
of the optimal set. That is, if two or more remaining paths of length l are
the shortest and they exclude the fewest other paths of length l, then one of
the remaining paths is chosen arbitrarily.

In the simulation, we compared the efficiency and the accuracy of Counting-
Paths against the three algorithms in terms of the number of table lookups,
runtime, storage capacity and the average number of disjoint paths found
per node.

5.1. Single Source – Single Sink Problem

In each topology, the location of the sink is fixed at the top-left corner
of the network and the location of the source is at the bottom-right corner,
so as to maximise the distance between them. By the simulation of single
source – single sink, we evaluate how many disjoint paths each algorithm can
find, so we set k=∞.

Figure 2 shows that Counting-Paths and Modified Dijkstra are more effi-
cient than Fast Pathfinding and Maximum Paths in terms of the total num-
bers of table lookups. The numbers of table lookups for the two algorithms
by Torrieri increase significantly when the number of nodes increases, be-
cause they try to find all possible combinations of paths. The results also
show that Counting-Paths has fewer table lookups compared to Modified Di-
jkstra, because in the worst case, breadth first search has lower complexity,
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Figure 2: Number of table lookups versus number of sensor nodes for single source – single
sink

Table 2: Disjoint Paths Algorithms’ Runtime for Single Source – Single Sink

Algorithms
Runtime (sec)

25-node 49-node 100-node
Counting-Paths 0.000313 0.001156 0.004609
Modified Dijkstra 0.000337 0.001212 0.004976
Fast Pathfinding 0.001140 0.002938 0.013624
Maximum Paths 8.001600 11.829600 16.473550
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i.e. O(|E|) time, than Dijkstra’s O(|V |2) time [25]. These results correspond
to the runtime reported in Table 2.
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Figure 3: Storage capacity versus number of sensor nodes for single source – single sink

We compare the storage capacities in Figure 3. Counting-Paths uses
more storage than Modified Dijkstra because it has to maintain the residual
network and the flow network for the Ford-Fulkerson algorithm, as well as
a queue for breadth first search. Maximum Paths uses more storage than
Fast Pathfinding because it stores all possible combinations of paths in each
iteration, whereas Fast Pathfinding only stores sets of nodes to construct the
paths.

Figure 4 shows that Counting-Paths and Modified Dijkstra discover more
disjoint paths than Fast Pathfinding and Maximum Paths. This happens
because the first two algorithms allow overlapping edges, which will then
be removed, and paths reconstruction. However, in Fast Pathfinding and
Maximum Paths, once a path is selected, the intermediate nodes are removed
from further search.

The relationship between the average number of disjoint paths found and
the path length in 100-node networks is presented in Figure 5. We compare
Counting-Paths and Modified Dijkstra’s results, especially for path lengths
14 to 16. There is high variation due to different topologies although there
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Figure 4: Number of disjoint paths versus number of sensor nodes for single source – single
sink
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Figure 5: Number of disjoint paths versus path length for single source – single sink
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is a tendency for Modified Dijkstra to discover more shorter paths and more
longer paths, while Counting-Paths tries to minimise the length difference
between the shortest path and other alternative paths.

5.2. Multiple Sources – Single Sink Problem

Our main aim of this section is to evaluate the dynamic programming
(DP) variant of Counting-Paths by varying heuristic techniques to select
which node is examined first as detailed in Section 4.2 and to compare them
to the basic Counting-Paths. Since Counting-Paths is marginally faster and
finds better results compared to Modified Dijkstra, as shown in the evaluation
of single source – single sink, we do not evaluate Modified Dijkstra in this
section. For the multiple sources – single sink problem, the location of the
sink is still at the top-left corner of the network, while all sensor nodes are
the source nodes. We want to find whether all nodes in the network have
two disjoint paths, so we set k=2.
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Figure 6: Number of table lookups versus number of sensor nodes for multiple sources –
single sink

Figure 6 and Table 3 show the number of table lookups and the algo-
rithms’ runtime, respectively. Without dynamic programming, the number of
table lookups is not influenced by which node is selected first, so we only use
the ordering of smallest ID heuristic for the basic Counting-Paths. Dynamic

22



Table 3: Disjoint Paths Algorithms’ Runtime for Multiple Sources – Single Sink

Algorithms
Runtime (sec)

25-node 49-node 100-node
Counting-Paths-DP-Dynamic Most Proc Neigh 0.000515 0.003626 0.027218
Counting-Paths-DP-Most Proc Neigh 0.000476 0.003299 0.023007
Counting-Paths-DP-Highest Degree 0.000588 0.003531 0.025343
Counting-Paths-DP-Smallest ID 0.000563 0.003485 0.025336
Counting-Paths-Smallest ID 0.001258 0.008171 0.062727
Fast Pathfinding 0.015026 0.070181 0.577030
Maximum Paths 125.522800 373.737500 1010.415550

programming reduces the runtime by at least 50% over the basic Counting-
Paths. Out of the individual heuristic to select which node is examined first,
the heuristic by most processed neighbours is the most effective one giving
10% improvement over the next best heuristic.

We show the storage capacity and the average number of disjoint paths
found per node in Figure 7 and 8, respectively. We only present the results for
Counting-Paths using one bar for each group because the different variants
record the same value. We observe that these two figures have similar trends
with the single source – single sink cases in Figure 3 and 4.

6. GRASP-ARP

GRASP-ARP is a local search algorithm to deploy additional relays for
ensuring the existence of k disjoint paths in WSNs with sinks. Each iteration
consists of construction phase and local search phase. The construction phase
randomly selects relays from a set of candidate locations to guarantee the
existence of k disjoint paths from every sensor node to the sink(s). The local
search phase tries to minimise the number of selected relays by replacing them
with a better set from the neighbourhood. GRASP-ARP requires repeated
counting of the number of disjoint paths, for which we use either Counting-
Paths or its dynamic programming variant. With the basic Counting-Paths,
GRASP-ARP ensures a length constraint by rejecting solutions in the local
search phase that do not meet the constraint. On the other hand, it runs
faster with the dynamic programming variant.

We consider WSNs where the vertices are partitioned into sensors (T ),
relays (R) and sinks (S), so in the graph representation V = T ∪R∪S. We
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Figure 7: Storage capacity versus number of sensor nodes for multiple sources – single
sink
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Figure 8: Number of disjoint paths versus number of sensor nodes for multiple sources –
single sink
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define a WSN to be (k, l)-sink-connected if and only if for every vertex v∈T ,
there are k disjoint paths from v to S of length ≤ l.

We can now define the additional relay placement problem: given a graph
G= (T ∪A∪S,E), where A is a set of candidate locations to deploy relays,
find a minimal subset R⊆A such that H=(T∪R∪S,E↓T∪R∪S) is (k, l)-sink-
connected.

For our algorithm, we introduce some secondary definitions. kv is the
number of length-bounded disjoint paths a sensor v has. X⊆T is the set of
sensors with kx<k, ∀x∈X. Y ⊆T is the set of sensors with ky≥ k,∀y∈Y ,
and such that y is on a path of a sensor x∈X to a sink or a vertex with at
least k disjoint paths. Z⊆T is a set of sensors with kz≥k,∀z∈Z, such that
z does not appear on a path of a sensor x∈X to a sink or a vertex with k
disjoint paths. To determine the sets X, Y , and Z, we use Counting-Paths
to find k disjoint paths from all sensors to sinks. Then, for each sensor, we
count how many disjoint paths satisfy the length restriction lmax.

An example to illustrate the details of GRASP-ARP is shown in Figure 9.
Suppose we have a network as depicted in Figure 9(a) and want to find 3
disjoint paths from every sensor in the set of sensors T = {a, b, c, d, e, f, g}
to the sink S = {s}, where the maximum path length l = 4. After running
Counting-Paths, we identify X={f, g} because f and g only have 2 disjoint
paths, Y = {a, c, d, e} because they appear in the disjoint paths of f and g,
and Z={b} because b does not appear in the disjoint paths of f or g.

6.1. Construction Phase

The first step in any GRASP algorithm is to construct an initial solution.
Given an original graph G = (T ∪A∪S,E), where T = X ∪Y ∪Z, firstly
we find a graph G′ = (V ′, E ′), where V ′ = X∪Z∪S and E ′ = {(v, w) | v ∈
X,w ∈ Z ∪ S,∃srp(v, w)}. srp(v, w) denotes the shortest relay path from
v to w in the original graph G = (T ∪A∪S,E) in terms of cost c, where
all intermediate vertices in the path are candidate relays. The edge’s cost
c′(v, w) =srp(v, w) is associated with each edge (v, w)∈E ′. The edge’s cost
c′(v, w) is calculated as the number of candidate relays in the shortest relay
path srp(v, w). In Figure 9(b), given the set of candidate locations to deploy
relays A={r0, r1, r2, r3}, we show edges in E ′ by using dashed lines and their
costs are c′(f, b)=2, c′(f, s)=3, c′(g, b)=1, c′(g, s)=2.

After that, we find a minimum forest F of G′ such that for each v ∈X,
we select k−kv least cost edges to w ∈ Z∪S. Then, we replace the edges
in F with the edges in the shortest relay paths in the original graph G
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Figure 9: An example of GRASP-ARP execution for k= 3 and l= 4. (a) is a network of
sensors T = {a, b, c, d, e, f, g} and a sink S = {s}, (b) shows a set of candidate locations
to deploy relays A= {r0, r1, r2, r3}, (c) is a solution produced by the construction phase
where a set of relay R= {r2, r3} is selected, and (d) is a solution produced by the local
search phase where R={r1}.
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and save this set of paths P . We add randomisation to the initial solution
by building a restricted candidate list with all edges (v, w) ∈ E ′ such that
c′(v, w)≤ c′min +α(c′max−c′min), where 0≤ α≤ 1. c′min and c′max denote the
least and the largest costs among all unselected edges, respectively. Then,
k−kv edges are selected at random from the list. As shown in Figure 9(c),
(f, b) ∈ E ′ is selected for f and (g, b) ∈ E ′ is selected for g. Therefore, the
solution produced by the construction phase is the relay set R={r2, r3}.

6.2. Node-based Local Search

The next stage in a GRASP algorithm is to explore the neighbourhood
of the initial solution, looking for lower cost solutions. Let R be the set of
relays in the current forest F and Rused(P ) denotes the number of relays used
in the current set of paths P . We explore the neighbourhood of the current
solution by either adding a new relay r ∈ A\R into R, or by eliminating
a relay t ∈ R from R. In each iteration of the local search, the evaluation
of elimination moves is performed only if there are no improving insertion
moves. In our example, the solution produced by the local search phase is
the relay set R={r1} as shown in Figure 9(d).

6.3. Algorithm Description

The pseudocode for GRASP-ARP is given in Algorithm 3. It takes as
input the original graph G=(V,E), the set S of sinks, the set A of candidate
relays, the set X of sensors with kx<k, the set Z of sensors with kz≥k but
do not appear on any discovered paths, the number of disjoint paths sought
k, the restricted candidate list parameter α (0 ≤ α ≤ 1), and the number
of iterations (max iterations). Graph G′ = (V ′, E ′) is computed in line 2.
The procedure is repeated max iterations times. In each iteration, a greedy
randomised solution for a minimum forest F of G′ is constructed in line 4.
Let R be the set of relays in the current forest F , P be the set of paths, and
Rused(P ) be the number of relays used in P .

The local search starts with the initialisation in line 8. The loop from line
9 to 14 searches for the best insertion move. In line 10, we count the number
of disjoint paths from each sensor x∈X, defined by the insertion of vertex r
into the current set of relays. Let Pnew be its new set of paths. In line 11, we
check if this new solution Pnew improves the current best solution. Solution
updates are made in line 12. When all insertion moves have been evaluated,
we check in line 15 if an improving solution has been found and update the
solution in line 16. Then, the local search continues. If no improving solution
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Algorithm 3: GRASP-ARP
Input: G, S, A, X, Z, k, α, max iterations
Output: R∗, P ∗

1 best value←∞;
2 Compute G′=(V ′, E′) and c′(v, w), ∀(v, w)∈E′;
3 for i←1 to max iterations do /* Construction phase */
4 Find F of G′=(V ′, E′) with R and P as the result;
5 repeat
6 repeat
7 insertion← false; elimination← false;
8 best set←R; best number←Rused(P ); /* Insertion moves */
9 foreach r∈A\R do

10 Counting-Paths ∀x∈X from F+r, result in Pnew;
11 if Rused(Pnew)< best number then
12 best set←R∪{r}; best number←Rused(Pnew);
13 end
14 end
15 if best number<Rused(P ) then
16 R←R∪{r}; F←F+r; P←Pnew; Rused(P )←Rused(Pnew);
17 insertion← true;
18 end
19 until insertion = false ;
20 best set←R; best number←Rused(P ); /* Elimination moves */
21 foreach t∈R do
22 Counting-Paths ∀x∈X from F−t, result in Pnew;
23 if Rused(Pnew)< best number then
24 best set←R\{t}; best number←Rused(Pnew);
25 end
26 end
27 if best number<Rused(P ) then
28 R←R\{t}; F←F−t; P←Pnew; Rused(P )←Rused(Pnew);
29 elimination← true;
30 end
31 until elimination = false ;
32 if Rused(P )< best value then /* Best solution update */
33 R∗←R; P ∗←P ; best value←Rused(P );
34 end
35 end
36 return R∗, P ∗;
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is found from the insertion moves, the elimination moves from line 21 to 26
are evaluated. These moves are similar to the insertion moves, except they
are defined by the elimination of node t from the current set of relay nodes.
If, at the end of the local search, we found a better solution compared to the
best solution, updates are made in line 33. The best set R∗ of relays and the
best set P ∗ of paths are returned in line 36.

7. Evaluation of GRASP-ARP

The sensor nodes are deployed in randomly perturbed grids, where a
sensor node is placed in a unit grid square of 8 m × 8 m and the coordinates
are perturbed. In order to get sparse networks (average degree 2-3), we
generate more grid points than the number of nodes. For example, we use 6
× 6, 8 × 8 and 11 × 11 grid squares to randomly deploy 25, 49 and 100 nodes,
respectively. Candidate relays are also distributed in a grid area, where a
candidate occupies a unit grid square of 6m × 6m. For 25-node, 49-node and
100-node topologies, we use 49, 100 and 196 candidate relays, respectively.
Both sensor and relay nodes use the same transmission range, i.e. 10 metres.
The maximum path length (lmax) is set to 10 for 25-node, 15 for 49-node and
20 for 100-node networks.

We compared the performance of GRASP-ARP to partial k-connectivity-
repair (K-CONN-REPAIR for short) proposed by Pu et al. [9]. We followed
the algorithm detailed in [9]. It firstly computes a weighted complete graph,
where the weight of an edge is one less than the Euclidean distance between
a pair of sensors. The edge’s weight represents the number of additional
relays required to connect two sensors by a straight path. After that, this al-
gorithm finds an approximate minimum-weight vertex k-connected subgraph
by repeatedly adding edges in increasing order of weight until the subgraph is
k-connected. If the subgraph is already k-connected, it repeatedly attempts
to remove edges in decreasing order of weight, but putting the edge back if it
is important for k-connectivity. Finally, it places one relay along each edge
every one unit distance.

We also made two necessary modifications for this algorithm to work in
constrained deployment locations, where relays can only be placed at can-
didate locations. The original K-CONN-REPAIR deploys relays along a
straight line between two sensor nodes. Therefore, our first modification
is to place relay nodes in candidate locations along the shortest relay path
between two sensor nodes. When all relay nodes are deployed, we add our
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second modification by trying to remove relays one by one by still preserv-
ing the node k-connectivity. The connectivity is checked using a maximum
network-flow-based checking algorithm [26] as is used in [27].

In the simulation, we compared the effectiveness and efficiency of GRASP-
ARP against K-CONN-REPAIR in terms of the number of additional relays
needed and the runtime.

7.1. Multiple Sources – Single Sink Problem

We choose the sink at the top-left corner or in the centre of the network,
while all sensor nodes are the source nodes. In this simulation, we want to
create networks with 2-connectivity and 3-connectivity, so we use k= 2 and
k = 3. We simulate GRASP-ARP using the dynamic programming (DP)
variant and the basic Counting-Paths algorithm. For the dynamic program-
ming variant, we use the dynamic ordering of most processed neighbours as
the heuristic technique to pick which sensor node is examined first, because
it has been shown as one of the best heuristics in the evaluation of Counting-
Paths section. For the basic Counting-Paths algorithm, we use the ordering
by smallest ID to select nodes, because the performance of the algorithm is
not influenced by which node is selected first.

Figure 10 shows the number of additional relays needed for k = 2 and
k=3 for the case where the sink location is at the top-left corner of 25-node
networks, while Figure 11 shows the results for the case where the sink is
in the centre of the networks. GRASP-ARP finds nearly the same number
of additional relays compared to K-CONN-REPAIR when the position of
the sink is in the corner of the network and k= 3. However, it needs fewer
relays for k = 2 because K-CONN-REPAIR deploys excessive relays for k-
connectivity for each pair of nodes. When the position of the sink is in
the centre of the network, GRASP-ARP outperforms K-CONN-REPAIR for
both k=2 and k=3 because the sink has higher connectivity in that position.
The results also show why more than one iteration is needed for the local
search. For the case k = 2 and k = 3 in Figure 10, and k = 2 in Figure 11,
max iteration = 1 shows poorer results compared to max iteration = 100.
However, in these three cases, max iteration = 10 is sufficient.

Table 4 shows the algorithms’ runtime, where for small networks, GRASP-
ARP takes longer compared to K-CONN-REPAIR especially for k=3. This
happens because GRASP-ARP repeatedly executes the Counting-Paths al-
gorithm during the local search phase to find disjoint paths. GRASP-ARP
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Figure 10: Number of additional relay nodes needed versus number of disjoint paths
required for multiple sources – single corner sink in 25-node networks
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Figure 11: Number of additional relay nodes needed versus number of disjoint paths
required for multiple sources – single centre sink in 25-node networks

31



Table 4: Additional Relay Placement Algorithms’ Runtime for Multiple Sources – Single
Sink in 25-Node Networks

Algorithms
Runtime (sec)
k=2 k=3

K-CONN-REPAIR 6.2891 7.4930
Sink at the corner
GRASP-ARP-DP-MaxIter=1 5.6796 11.0656
GRASP-ARP-DP-MaxIter=10 24.3469 36.8148
GRASP-ARP-DP-MaxIter=100 185.0354 291.5102
GRASP-ARP-MaxIter=1 9.7672 19.2712
GRASP-ARP-MaxIter=10 39.4860 59.1335
GRASP-ARP-MaxIter=100 331.5993 459.0313
Sink at the centre
GRASP-ARP-DP-MaxIter=1 3.4163 8.5166
GRASP-ARP-DP-MaxIter=10 9.7031 20.8140
GRASP-ARP-DP-MaxIter=100 73.1475 144.7258
GRASP-ARP-MaxIter=1 5.6696 14.2375
GRASP-ARP-MaxIter=10 16.7616 34.3545
GRASP-ARP-MaxIter=100 129.4321 239.1384

Table 5: Additional Relay Placement Algorithms’ Runtime for Multiple Sources – Single
Sink

Algorithms
Runtime (sec)

25-node 49-node 100-node
K-CONN-REPAIR 6.2891 254.7343 10,003.8000
GRASP-ARP-DP 24.3469 421.2829 7,897.9650
GRASP-ARP 39.4860 619.3118 13,964.9400

with the dynamic programming variant of Counting-Paths (GRASP-ARP-
DP) is faster than with the basic Counting-Paths (GRASP-ARP) because
the dynamic programming has lower complexity.

We extend our simulation to larger networks up to 100 nodes. Figure 12
depicts the number of additional relay nodes needed for 25, 49 and 100-node
networks. In this simulation, we use k = 2 and set the sink position at the
top-left corner of the network. We use max iteration = 10 for GRASP-ARP
because this number of iteration produces similar results to 100 iterations
as shown in Figure 10 and 11. In all sizes of networks, GRASP-ARP out-
performs K-CONN-REPAIR with fewer relay nodes. The variations in the
graph are caused by different topologies. The algorithms’ runtime is pre-
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Figure 12: Number of additional relay nodes needed versus number of sensor nodes for
multiple sources – single corner sink

sented in Table 5, where we show that GRASP-ARP-DP is faster for bigger
problems, i.e. 100-node networks, and so it appears to scale better.

7.2. Multiple Sources – Multiple Sinks Problem

We use the same simulation settings as in the multiple sources – sin-
gle sink cases. However, in this simulation, we have four sinks deployed at
the top-left, top-right, bottom-left and bottom-right corners of the network,
while all sensor nodes are the source nodes. We simulate GRASP-ARP using
the dynamic programming variant and the basic Counting-Paths algorithm.
Recall that in the multiple sink problem, there are two cases where the dis-
joint paths terminate at: different-sinks and any-sinks. The different-sinks
problem is where the paths must terminate at k different sinks, while the
any-sinks problem is the case where the paths may terminate at any sinks.

Figure 13 shows the number of relay nodes required for k= 2 and k= 3
in 25-node networks. GRASP-ARP results shown here are the simulation
results with max iteration = 10. The results show that GRASP-ARP in the
multiple sources – multiple sinks scenario outperforms K-CONN-REPAIR
with at least 50% fewer additional relays. This happens because GRASP-
ARP only finds k disjoint paths to the dedicated sinks, either different
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sinks or any sinks. On the other hand, K-CONN-REPAIR must provide
k-connectivity for an entire network. The results also show that the different-
sinks case requires more relays than the any-sinks case because disjoint paths
must be established to different sinks.

Figure 14 shows the simulation results when we extend the simulations
to larger networks. We use k= 2 and max iteration = 10 for GRASP-ARP.
In all network’s sizes, GRASP-ARP outperforms K-CONN-REPAIR with
fewer additional relay nodes. For 100-node networks, GRASP-ARP deploys
35% fewer relays. The algorithms’ runtime is presented in Table 6.
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Figure 13: Number of additional relay nodes needed versus number of disjoint paths
required for multiple sources – multiple sinks in 25-node networks

8. Network Performance Evaluation

We evaluate the robustness of the topologies in the network simulator ns-
2 [28] by killing nodes at random. Ns-2 is a discrete-event network simulator
widely used for WSN and other network simulations. We take the resulting
topologies generated by GRASP-ARP and deploy sensor nodes, relay nodes
and sinks according to the deployment plans. We compare GRASP-ARP’s
designs to the original topologies, i.e. topologies without relays, in terms of
network connectivity. Network connectivity is the percentage of live source

34



25 49 100
0

1

2

3

4

5

6

7

8

9

10

Number of sensor nodes

N
um

be
r 

of
 a

dd
iti

on
al

 r
el

ay
 n

od
es

K−CONN−REPAIR
GRASP−ARP−AnySinks−DP
GRASP−ARP−AnySinks
GRASP−ARP−DiffSinks−DP
GRASP−ARP−DiffSinks

Figure 14: Number of additional relay nodes needed versus number of sensor nodes for
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Table 6: Additional Relay Placement Algorithms’ Runtime for Multiple Sources – Multiple
Sinks

Algorithms
Runtime (sec)

25-node 49-node 100-node
k=2 k=3 k=2 k=3 k=2 k=3

K-CONN-REPAIR 6.2891 7.4930 254.7343 269.1470 10,003.8000 11,151.0500
GRASP-ARP-AnySinks-DP 1.7844 10.9984 37.7884 1,127.0680 517.3695 18,417.0190
GRASP-ARP-AnySinks 2.5180 16.5088 55.3843 1,755.4586 735.7915 28,789.0951
GRASP-ARP-DiffSinks-DP 1.6351 11.0267 31.3648 1,061.5627 426.6710 19,943.2187
GRASP-ARP-DiffSinks 2.3828 18.8875 51.4437 2,370.4857 822.0718 49,819.2537
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nodes that are still connected to the sink through multi-hop communication.
Our parameters used in ns-2 simulation are based on Tmote sky hardware [29]
for 10-metre transmission range.

In each experiment, we simulate a multi-hop data gathering using ER-
MAC [30, 31] with its forward-to-parent routing mechanism. We choose
ER-MAC because of its ability to adapt to traffic and topology changes. In
the simulation, all sensor nodes are the source nodes that generate packets
with a fixed traffic load, i.e. 0.1 packets/node/sec. They also forward other
nodes’ packets toward the sink. Relay nodes do not generate packets, but
only forward them, and are used from the start of the simulation. We do not
assume that the relay nodes are more robust than the sensor nodes, so they
too may fail during the simulation period. During the simulation, we increase
the number of dead nodes gradually by killing one node, either a sensor node
or a relay node, in each time step. The simulation results presented are based
on the average of five topologies that are simulated five times each.

8.1. Network Topologies with One Sink

We simulate the original topologies, which are 100-node networks, and
their resulting topologies generated by GRASP-ARP with the dynamic pro-
gramming variant of Counting-Paths for k= 2. In all topologies, the sink is
located at the top-left corner of the networks. In each experiment, we simu-
late a data gathering for 6,000 seconds and kill one node every 1,000 seconds,
start from the 1, 000th second. Figure 15 shows the ns-2 simulation results,
where one failure causes both the original and GRASP-ARP topologies to
lose around 2% of network connectivity. As the number of failures increases,
the GRASP-ARP topologies improve over the original topology, maintaining
77% connectivity after 5 failures, while the original topology has dropped
below 45%.

We then simulate a different set of 100-node topologies, and compare the
topologies after failures for a connectivity value of k = 3. The results are
shown in Figure 16. The trend is similar to that for k=2, with the GRASP-
ARP topologies maintaining connectivity of 80% after 5 failures, while the
original topology is again below 50%. The performance gap widens as we
increase the failures, with GRASP-ARP maintaining 62% connectivity after
10 failures while the original topology has dropped to 30%.
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Figure 15: Network connectivity with ER-MAC where a node dies every 1,000 seconds for
the case of multiple sources – single sink where k=2

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Number of failed nodes

N
et

w
or

k 
co

nn
ec

tiv
ity

 (
%

)

Original Topo.
GRASP−ARP Topo.

Figure 16: Network connectivity with ER-MAC where a node dies every 1,000 seconds for
the case of multiple sources – single sink where k=3
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8.2. Network Topologies with Four Sinks

In the simulations with four sinks, we compare the original topologies,
which are 100-node networks, and their resulting topologies for k=2 gener-
ated by GRASP-ARP with the dynamic programming variant of Counting-
Paths for the any-sinks cases. In all simulated topologies, we fix the locations
to place the four sinks at the top-left, top-right, bottom-left, and bottom-
right corners of the networks. In this experiment, we simulate data gathering
for 3,000 seconds only, because the period of one data gathering cycle in net-
works with many sinks is shorter than in the single sink problem. We increase
the number of dead nodes by killing one node every 250 seconds. Figure 17
shows that when the networks have multiple sinks, the topologies of GRASP-
ARP achieve 20% higher network connectivity than the original topologies
after the failure of 11 nodes. From this simulation set, we can infer that
having many deployed sinks increases the robustness and scalability of the
networks. We show this in the experiment by higher network connectivity
compared to the single sink scenario.

Finally we extend the ns-2 simulations using a different set of 100-node
topologies, and consider a connectivity value of k=3. The results are shown
in Figure 18. After 20 failures, the connectivity of the original topology has
dropped to 41%, while the GRASP-ARP topologies maintain connectivity of
61%.

9. Conclusion

Ensuring that WSNs are robust to failures requires that the physical net-
work topology will offer alternative routes to the sink. This requires sensor
network deployment to be planned with an objective of ensuring some mea-
sure of robustness in the topology, so that when failures do occur routing
protocols can continue to offer reliable delivery. Our contribution is a solu-
tion that enables fault-tolerant WSN deployment planning by judicious use
of additional relay nodes. We define the problem for increasing WSN relia-
bility by deploying a number of additional relays to ensure that each sensor
node in the initial design has k disjoint paths with a length constraint to the
sinks. We present two offline algorithms to be run during the initial topology
planning to solve this problem. Counting-Paths counts the number of dis-
joint paths from each sensor node to the sinks and finds the k disjoint paths.
GRASP-ARP is a local search algorithm to deploy a minimum number of ad-
ditional relays at the possible candidate locations. We also adapt a version
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Figure 17: Network connectivity with ER-MAC where a node dies every 250 seconds for
the case of multiple sources – four sinks where k=2
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Figure 18: Network connectivity with ER-MAC where a node dies every 250 seconds for
the case of multiple sources – four sinks where k=3
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of the closest approach from the literature for comparison. Our simulation
results show that our solution requires fewer relay nodes for larger prob-
lems than the competitor, and that different variants of our algorithm are
significantly faster, allowing us to tackle larger problems. We also evaluate
the robustness of the designs against node failures in simulation, where we
demonstrate that the GRASP-ARP’s topologies can provide robust delivery.
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