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MULTIPARAMETER SINGULAR INTEGRALS ON THE
HEISENBERG GROUP: UNIFORM ESTIMATES

MARCO VITTURI AND JAMES WRIGHT

ABsTrACT. We consider a class of multiparameter singular Radon integral
operators on the Heisenberg group H! where the underlying submanifold is
the graph of a polynomial. A remarkable difference with the euclidean case,
where Heisenberg convolution is replaced by euclidean convolution, is that the
operators on the Heisenberg group are always L? bounded. This is not the
case in the euclidean setting where L2 boundedness depends on the polynomial
defining the underlying surface. Here we uncover some new, interesting phe-
nomena. For example, although the Heisenberg group operators are always L2
bounded, the bounds are not uniform in the coefficients of polynomials with
fixed degree. When we ask for which polynomials uniform L2 bounds hold, we
arrive at the same class where uniform bounds hold in the euclidean case.

1. INTRODUCTION

For the general theory of singular Radon transforms
Hyf (@) = 0(a) [ o)K@
R

where K is a singular kernel and v : R® x R¥ — R is a smooth map (¢ an ap-
propriate cut-off function), the case of translation-invariant polynomial mappings
v(x,t) = x - ®(t) has served as a model problem. Here ®(t) = (Pi(t),..., P.(t))
with polynomial components P; € R[X7,..., X}] and the translation - arises from a
nilpotent Lie group structure on R™. See [4] where the analysis of general singular
Radon transforms H., g is effectively reduced to the case y(x,t) = x - ®(t) de-
scribed above in the one-parameter setting; that is, when K is a classical Calderén-
Zygmund kernel satisfying |0°K(t)| < |t|7*~!° for all o and with appropriate
cancellation conditions imposed.

In the euclidean translation-invariant case v(z,t) = z + ®(¢) where ® is a polyno-
mial, one consequence of the powerful technique of lifting the problem to higher
dimensions where ® becomes a monomial map (see [16]) is that the proof of bound-
edness of the operator H, x = Hgo in fact proves the stronger statement that the
bound can be taken to be independent of the polynomial ®, once the degree of ®
is fixed. This is especially the case in the one-parameter setting; see [14] where the
lifting technique is developed systematically and consequences are explored.

For multiparameter singular kernels K (see Section 2 for a precise definition), the
operators H, g may or may not be L? bounded and matters depend on cancellation
conditions which arise through a subtle interaction between the mapping v and
the kernel K. In the euclidean translation-invariant setting, these cancellation

1991 Mathematics Subject Classification. 42B15, 42B20, 43A30, 43A80.
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2 M. VITTURI AND J. WRIGHT

conditions have been thoroughly investigated by Ricci and Stein in [12] (see [§]
for earlier work). In particular Theorem 5.1 in [12] gives a sufficient condition
(a cancellation condition involving both v and K) which guarantees L? (even LP)
boundedness of the associated singular integral operators. One can then check in
particular instances if these conditions are necessary.

For instance if y(z,t) = = + X(¢t) where X(¢t) = (¢, P(t)) parametrises an (n —
1)-dimensional polynomial surface with P € R[Xy,...,X,,_1], then the so-called
multiple Hilbert transform along ¥, H, x = Hpx where'

Hexfe,2) = po. [ flao—tz = PO)KW) dr,

Rn—l
is a typical example of a multiparameter singular Radon transform treated in [12]
(see also [8]). Here the multiple Hilbert transform kernel K(¢) = 1/t1 - - - t,,—1 is the
canonical multiparameter singular kernel. If P(t) = > c,t® is a real polynomial
in n — 1 variables, we define the support of P as A(P) = {« : ¢, # 0}. For any
finite A C Ng_l, let VA denote the finite dimensional subspace of real polynomials
P in n variables with A(P) C A.

The following theorem is essentially due to Ricci and Stein (see [12]).
Theorem. Fiz A C Nj~'. Then

sup [Hpillrz—r: < o0 (1)
Peva

holds if and only if for every o = (o, ..., an—1) € A, at least n — 2 of the a;’s are
even. Furthermore if a has 2 odd components, then for P(t) = t%, the individual
operator Hp i is unbounded on L2,

More precisely, the sufficiency part of this theorem follows from Theorem 5.1 in [12]
via a standard lifting procedure (effectively freeing up the monomials of P) to an
operator on a higher dimensional space of the form Hg x where

Q(t) = (Qa(t))aca(p)y andeach Qu(t) =t~
One then checks that @ and K satisfy the cancellation condition of Theorem 5.1 in

[12]. For the necessity it is a simple computation to check that if P(¢) = t* and «
has 2 odd components, then Hp x is unbounded on L? (see [5]).

This result depends very much on the multiparameter singular kernel under con-
sideration. If the multiple Hilbert transform kernel K is replaced by a different
multiparameter singular kernel, the cancellation condition in Theorem 5.1 changes.
See [22] where a projected version of Hp g is considered for a fixed polynomial P
but the multiparameter singular kernels K vary. A sharp result is established where
uniformity in K is sought for a fixed polynomial P.

In a remarkable series of papers, the translation-invariant theory of Ricci and Stein
was extended to the general non-translation-invariant setting by Stein and Street;
[17, 21, 22, 18, 19] and [23]. In this work two conditions on v are introduced, one
is a curvature condition generalising the fundamental curvature condition in [4]
and another is an algebraic condition which can be viewed as a strong cancellation
condition. When these two conditions hold, L? bounds for H, x are deduced for

1When referring to the multiple Hilbert transform singular kernel p.v.1/tq -+ - tn—1, we will use
the calligraphic notation K and respectively H for the associated operator to distinguish it from
a general singular kernel K and associated operator H.
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any multiparameter singular kernel K. These two conditions depend only on -y
and so the cancellation condition is decoupled from the particular singular kernel
under consideration. Hence the results obtained are valid for all multiparameter
singular kernels. In many cases, when uniformity in K is sought, the algebraic or
cancellation condition can be shown to be necessary. See [22] for details.

A fascinating example is given by vy(z, s,t) = z-3(s,t) where X(s,t) = (s,t, P(s,t))
parameterises the graph of a polynomial surface in R3 and - is the Heisenberg group
H' ~ R? multiplication; (x,v,2) - (u,v,w) = (z + u,y + v,z +w + 1/2(xv — yu)).
Interestingly, both conditions alluded to above are always satisfied in this case (see
Section 3 for details) and hence in particular Street’s L? theory shows that H. x
is bounded on L? for any real polynomial P. This is in sharp contrast to the
above Ricci-Stein theorem which shows that in the euclidean translation-invariant
case y(z, s,t) = x + X(s,t), L? boundedness depends on the particular polynomial
P(s,t). This extends to any real-analytic P and any multiparameter singular kernel
K - see [22] and [18]. A formal statement of the result just described is as follows.

Theorem 1.1. For any real polynomial P(s,t) (or more generally any real-analytic
P near the origin (0,0)) and multiparameter singular kernel K, consider

Hprrf(x,y,2) //f x,y,2) - (s,t, P(s,t))"1) K(s,t) dsdt (2)

where R = Raped = {(s,1) : 0 <a <|s| <b0<c<[t| <d} is any “rectangle”
but when P is real-analytic at the origin, we take b and d to be sufficiently small.
Then Hp i r s bounded on LQ(Hl). Furthermore the bounds can be taken to be
independent of the truncation R.

The arguments developed in this paper will give an alternative proof of Theorem
1.1. See also Section 3 for an extension of Theorem 1.1.

Interestingly when we seek L? bounds, uniform with respect to the polynomial P
as in the bound (1) appearing in the Ricci-Stein theorem, we come back to the
euclidean conclusion of that theorem, as we will now state. For the double Hilbert
transform kernel K(s,t) = 1/st, define

He e r (2,1, 2) /f (@9, 2) - (5,4, P(s, 1)) ™)K (s, 1) ds

where R = Ryped = {(s,t): 0 <a<|s| <b,0<c<t <d}is arectangle. Then
we are able to show the following.

Theorem 1.2. Fiz A C N2. Then

sup ||HpxrlL2@)—re@y < o0 (3)
PeVa,R

holds if and only if every a = (a1, a) € A has at least one even component.
More generally, for Hp iz as in (2) where K is a general multiparameter singular

kernel K, the uniformity in (3) is equivalent to the L? uniformity of a family of
truncations® (with respect to the rectangles R) of the singular Radon transform

Rp k g(z,y) = p.o. // glx —t,y — P(s,t)) K(s,t)dsdt.
RQ

23ee Section 8 for a precise definition of the truncations.
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The operator Rp, i has not been specifically treated in the literature. It is a variant
of the operators considered in [2] and it falls within the scope of Street’s theory
[23].

The rest of the paper is organised as follows. In Section 2 we briefly illustrate
Street’s L? theory in the biparameter case that will be relevant for our discussion.
In Section 3 we present an extension of Theorem 1.1 (and Theorem 1.2 somewhat)
to a larger class of graphs, for which we establish a characterisation of the L?(H*)
boundedness. In Section 4 we use the group Fourier transform on H! to reduce the
problem to that of proving uniform L? boundedness for a class of integral operators
acting on functions of one variable. The integral kernels of these operators will
be given by a certain oscillatory integral expression involving P. In Section 5
we state and prove some oscillatory integral estimates of van der Corput type
that will be helpful throughout. Section 6 contains the bulk of the proof, whose
broad strategy consists in iteratively simplifying the phase of the aforementioned
oscillatory integral kernels by stripping terms away from its Taylor expansion while
using the estimates of Section 5 to keep the errors thus introduced under control.
Once the phase has been simplified enough, the proofs of Theorems 1.2 and 3.1 are
then concluded in the brief Sections 8 and 7, respectively. Finally, in Appendix A
we prove a technical oscillatory integral inequality that appeared in Section 5.

Notation Uniform bounds for oscillatory integrals lie at the heart of this paper.
Keeping track of constants and how they depend on the various parameters will be
important for us. For the most part, constants C appearing in inequalities A < CB
between positive quantities A and B will be absolute or uniform in that they can
be taken to be independent of the parameters of the underlying problem. We will
use A < B to denote A < CB and A ~ B to denote C'B<A<CB. If Ais
a general real or complex quantity, we write A = O(B) to denote |A| < CB and
when we want to highlight a dependency on a parameter 0, we write A = Oy(B)
or |A] <¢ B to denote |A| < CyB.

Acknowledgements We would like to thank the referee for the many helpful
suggestions which have significantly improved the paper.

2. THE WORK OF STREET [22]

In [22], Street develops the L? theory for multiparameter singular Radon transforms

k(@) = 0@ [ o) Ko

and introduces two key conditions on v; a finite-type (curvature) condition and an
algebraic (cancellation) condition. Here v : R x R¥ — R” is a smooth map sat-
isfying v(x,0) = x, ¥ an appropriate cut-off function, and K(t) is multiparameter
singular kernel which is usually supported near the origin ¢t = 0.

For our purposes it suffices to restrict our attention to the biparameter case RF =
R*1 x R¥2 and to product kernels K as introduced in [7], which underpins the theory
of singular integrals with respect to flag kernels (however our analysis extends to
treat the more general class of multiparameter singular kernels considered in [22]).

The notion of product kernel depends on the classical notion of Calderén-Zygmund
kernels in one parameter; that is, a distribution K on R which coincides with a
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smooth function away from the origin such that [0°K(t)] <, |t|~*~1! for all a
and such that the quantities | K (t)¢(Rt)dt are bounded, uniformly over all R > 0
and all smooth ¢ supported in the unit ball with ||¢||c1 < 1 (such a ¢ is called a
normalised bump function on RF).

A 2-parameter product kernel K is defined as follows. It is a distribution on
RF = RFt x RF2 which coincides with a C*> function K away from the coordi-
nate subspaces s = 0, ¢ = 0 and satisfies

1. (Differential inequalities) for every multi-index o = (a1, az) € N*1 x N*2 | there
is a constant C,, such that

01072 K (5,1)] < C | s| 7M1 Il ~halec

away from the two coordinate subspaces, and
2. (Cancellation) for any normalised bump function ¢ on R*' and any R > 0, the
distribution
qub,R(t) = . K(s,t)p(Rs) ds
1
is a classical one-parameter Calderén-Zygmund kernel on R¥? as described above.
Similarly for K7 »(s) = [ K(s,t)¢(Rt)dt.

Important for our analysis is the following characterisation of product kernels; see
Corollary 2.2.2 in [7]. For every smooth ¢ and I = (j, k) € Z?, we set ¢\/)(s,t) :=
2717kgp(2775,27F¢).

Proposition 2.1. A product kernel K can be written as

I
K =Y ¢ (4)
Iez?
(which is convergent in the sense of distributions) where each smooth ¢ is supported
in {(s,t) : 1/2 <3|, |t| < 2}, satisfies the cancellation conditions

/¢1(s,t)ds = 0 and /gf)I(s,t)dt =0 (5)

for every t and s, and the sequence {¢;} is bounded in C* norm for every k.

The two key conditions on 7 are easily formulated in the case where v can be
written as the exponential®

(@, (s,t) = exp (D sPt9X,q) (@) (6)

of a finite sum of smooth vector fields {X,, = X,}. We assign to each X,,
where a = (ay,az) € N¥1 x N*2 the formal degree d,, = (Ja1|,|az|) € N x N and
recursively we then define formal degrees for all iterated commutators such that if
d; and dy € N? are the degrees of iterated commutators X; and X, respectively,
then [X7, Xo] has degree di +d2 € NxN. Hence we view these vector fields together
with their corresponding degree (X,d). Notice that it might be the case that one
vector field has more than one degree; in this case we consider them to be distinct
objects.

We separate the original vector fields {(X,,d,)} = P UN into two types; the pure
ones (Xa,dy) € P where d, = (p,0) or d, = (0,q) and non-pure ones (X, dy) € N
where d,, = (p,¢) and both p and ¢ are nonzero. The two key conditions on ~y are

3The multiparameter exponential is to be interpreted as follows: for s,t given, define vector
field Yy ¢(x) = 3 sP19Xp g (2); then exp (3 sPtIXp ¢)(2) 1= exp(rVs,e)| _, (@)
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the following: there is a finite list {(X1,d1),..., (Xn,dn)} of iterated commutators
of pure vector fields, containing P itself and such that

1. (Finite-type condition) for all § = (01, d2) € [0, 1], we can write®
N
[0 X;,0% X = > e n0% X, (7)
=1

where cfi € C*°, uniformly in §; and
2. (Algebraic condition) for (Y,e) € N and every ¢ € [0,1]?, we can write

N
Y =Y ep’oh X, ®)
=1

where c§}5 € C*°, uniformly in 4.

Remark 1. Notice the two conditions imply that the involutive distribution gener-
ated by the collection {X,} is finitely generated (as a C'*°-module). In the one-
parameter case, this is essentially equivalent to the conditions above and the scaling
factors in 6 = §; play essentially no active réle. However, this is no longer nec-
essarily true in the multiparameter case (see [22], Section 17.7) and the uniform
behaviour in § = (41, d2) becomes crucial there.

The finite-type condition (7) is a generalisation of the curvature condition intro-
duced in [4] in the one-parameter setting and the algebraic condition (8) allows us
to control the troublesome non-pure vector fields Y € N in terms of the pure ones,
effectively transferring any needed cancellation down to the product kernel K. In
this case, under these two conditions on v, L? bounds for H, x can be derived for
any product kernel K. In more general (non-finite, that is when ~ is not exactly
of type (6)) situations, the conditions (7) and (8) need to be modified. See [22]
for details and in particular see section 3 of [22] for a discussion of the finite case
discussed above.

3. FURTHER RESULTS

The particular situation we are concerned with here is y(z, (s,t)) = z - 3(s,t)
where the product - is the Heisenberg H! group multiplication and ¥(s,t) =
(Py(s,t), Pa(s,t), P5(s,t)) parametrises a surface in H'. Let X = 9, — (y/2)0,,Y =
9y + (2/2)0, and Z = 9, be the usual basis of left-invariant vector fields on H*
such that [X,Y] = Z. Then

'7(£7 (Svt)) = Zz- Z(Svt) = exp(Pl(s,t)X + PQ(Svt)Y + P3(sat)Z)(§)a
putting us in the above finite situation if each P; is a polynomial. In this case the
finite-type condition (7) is automatically satisfied. In turns out that when the P;

are (more generally) real-analytic, the appropriately modified finite-type condition
(7) is still automatically satisfied; see [18].

In the case that P;(s,t) = s and Py(s,t) = t, we see that (X, (1,0)) and (Y, (0, 1)) lie
in P. Furthermore the only vector fields lying in A/ must be of the form (Z, d) where
d = (p, q) satisfies pg # 0 and the monomial sPt? arises in the Taylor expansion of
P3(s,t). Hence for any real-analytic P, every non-pure vector field in A can be

HHere §9 = §(d1d2) .= g1 . g2,
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controlled as described in (8) and so both conditions (7) and (8) are automatically
satisfied when X(s,t) = (s,t, P(s,t)) is the graph of a real-analytic surface in H*.
This is the background discussion for Theorem 1.1.

Now let us consider a slight variant; a surface parameterised by (s, t) = (sP°,t, P(s,t))
where P is a general real-analytic function near (0,0). As mentioned above, the
corresponding finite-type condition (7) is automatically satisfied but now it is not
necessarily the case that all non-pure vector fields (Z,d’) € M can be controlled by
pure vector fields in the sense of (8). Recall that d’ = (p/,q’) where p’'q’ # 0 and
P17 arises in the series expansion of P(s,t) = > cpgsPtd. Note that if p’ > po,
then we can control (Z,d') by (Z,dy) where dy = (po,1) and (Z,dy) arises as
the commutator of the pure vector fields (X, (po,0)) and (Y, (0,1)). Therefore the
non-pure vector fields (Z,d’) which cannot be controlled in the sense of (8) must
necessarily satisfy p’ < pp and so arise from a term in

po—1
— P4a P
Py (s,t) = E g Cp,gstt? + E cp,08P.
p=0 ¢>1 p=>1

When py = 1, we have P, (s,t) = P(s,0) and so no d' = (p/,q’) with p’q’ # 0
satisfies p’ < pg = 1, bringing us back to the case where all non-pure terms can be
controlled by pure ones; that is, condition (8) is satisfied.

When po > 1 the following result is thus new.

Theorem 3.1. For any real-analytic P(s,t) near the origin (0,0) and multiparam-
eter singular kernel K, consider

Hprrf(z,y,z) /f x,y,2) - (P, t, P(s,t)) ") K(s,t)dsdt

where R = Ryped = {(s,t) : 0 < a < |s| <b,0<c<[¢] <d} lies in a small
neighbourhood of the origin (0,0). If P,, =0, then Hp i » is bounded on L*(H").

In general, the L?(H') boundedness of Hp x 1 is equivalent to the uniform L*(R?)
boundedness of a family of truncations® of the singular Radon transform

Rp,, .k 9(,y) // (x —t,y — Ppy(s,1))K(s,t) dsdt.

Furthermore when K is the double Hilbert transform kernel K(s,t) = p.v.1/st, then
Hpxr is bounded on L*(H') (uniformly in R) if and only if every vertez (p,q) of
the Newton polygon of P,, has the property that pq is even.

We recall that the Newton polygon of P,, is the convex hull of the quadrants
(p,q) +R3 in R? where (p,q) € A(P,,), the support of P,,. The role of the Newton
polygon in the theory of multiparameter singular Radon transforms first appeared
in [2].

The first part of Theorem 3.1 follows from the work of Stein and Street [22, 18] only
when pg = 1. The more general statement gives a precise structural description
of the L? boundedness properties for Hp r %z and highlights the role of Heisenberg
translations in multiparameter settings. Theorem 3.1 is a representative theorem
and exposes a new phenomenon for multiparameter convolution operators on the
Heisenberg group. More general results can be formulated and established.

53ee Section 7 for a precise definition of the truncations.
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4. INITIAL REDUCTIONS FOR THE PROOFS OF THEOREMS 1.2 AND 3.1.

We fix a product kernel K and use Proposition 2.1 to write K = )", y) as in (4)
with the smooth, compactly supported ¢; satisfying (5). We consider the operator

Tprf(z,y,z) Z/f z,y,2) - (sP°,t, P(s,t)) 1) p} () (s, t)dsdt

where F C Z? is a fixed finite subset F = {I = (j,k)}, indexing the dyadic
rectangles Ry = {(s,t) : |s| ~ 27, |t| ~ 2¥} in which ¢§I) (and hence the integral
above) is supported. In Theorem 3.1, when P is assumed to be real-analytic near
the origin, we require that the rectangles R; be located near the origin; that is, if
I = (j,k) € F, then both j and k are sufficiently negative.

In both Theorem 1.2 and Theorem 3.1, the operators we seek to bound are defined
with respect to rough truncations over rectangles R = {(s,t) : a < |s| < b,¢ <
[t| < d}. In both cases, it suffices to consider the operator Tp # defined with respect
to smooth truncations and obtain bounds uniform in F. In fact we can write

/ f((z,y,2) - (sP0,t, P(s,t)) ") K(s,t)dsdt = Tpr(z,y,2)+S

for some ﬁmte F and where S denotes a small sum of operators of the form

Tf(z,y,z2) / [/f z,y,2) - (sP°,t, P(s,t))” {thkst]dt]d‘s

a<|s|<2a keFa
9)

together with one where the s integration is over b/2 < |s| < b and others where
the roles of the s and t¢ integrations are swapped. Here F5 is a finite subset
of Z and 9, = gbgl) where I = (j1,k). For fixed a < |s| < 2a, the ker-
nel K, (t) = Y icr, ¥irk(s,t) is nonzero only if 27t ~ |s| and defines a one-
parameter Calderén-Zygmund kernel with constants controlled by |s|~!; that is,
for every >0, |0/ Ks;, (1) < |s|7Ht/7%! and the crucial cancellation condition
[ K j, (t)dt = 0 holds for every s and jj.

Now fix = as well and write g(y,z) = f(x — sP°,y, z) so that the integral in dt in
(9) can be written as

Hy(y,2) = /g(y —t,2 - Q(t) — %S"Oy)Ks,jl(t) dt
where Q(t) = P(s,t) + sxt. But [[ [Hg(y, 2z)[*dzdy = [[ |Lg(y, z)|*dzdy with

Lo(y.2) = /g<y—t,z—c2<t>> K., (t)dt,

by a simple change of variables in the z integral. By the well-established one-
parameter theory of singular Radon transforms (see for example [16]), we have
uniform L?(R?) (in fact also LP) bounds ||Hgl|l2 < C||g|l2 where C = C; is inde-
pendent of z, j; and is controlled by the Calderéon-Zygmund constant of the kernel
K j,; thus Cs < |s|~!. Furthermore C can be taken to be independent of the
coefficients of @@ when P is a polynomial. By an application of Minkowski’s inte-
gral inequality, uniform L? bounds for H imply uniform (uniform in the truncation
a < |s| < 2a and F; as well) L? bounds for T in (9), so that the term S is taken
care of.

Therefore it suffices to work with the operators Tp » and obtain bounds which are
uniform in F.
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By translation-invariance in the third variable we may assume, without loss of gen-
erality, that P(0,0) = 0. Furthermore, the structure of the Heisenberg group allows
us to make another reduction that will be very useful in the following. Rewriting
P as P(s,t) = csP® + dt + P(s,t) with 82 P(0,0) = 9,P(0,0) = 0, we see that we
can also write

f(($7y72) : (8p07t7p(s7t))_1) = f(A[A_l(l‘,%Z) : (Sm?tvp(sﬂt))_l])
where

1 00
A=1010
c d 1
is the inner automorphism of H' determined by the element (—d,c,0). Hence
ITp,7llL2—r2 = |Tp #llz2—12 and so we may assume in addition that
o P(0,0) = 90,P(0,0) = 0. (10)

This innocent looking reduction will be fundamental later on, allowing us to esti-
mate certain oscillatory integrals efficiently.

For Theorem 1.2, we take pg = 1, P a general real polynomial and F a general
finite set of pairs (j, k) as specified above; our goal is to obtain L?(H!) bounds,
uniform with respect to F and P lying in some subspace Va of real polynomials.
For Theorem 3.1 we consider general py > 1 and real-analytic P near (0,0), but we
insist that the dyadic rectangles R associated to I € F all lie in some small fixed
neighbourhood (depending on P) of the origin (0,0); no uniformity in P is sought
in our L2 bounds for the corresponding operators.

In analysing Tpr we take an oscillatory integral approach. Viewing Tprf =
f*m L as a Heisenberg convolution operator, one can deduce via the group Fourier
transform on H!, that

|Tp 7| L2 @) L2 @) ~ §u£||81>3,f||L2(R)—>L2(R)
S

where

Sproly) = Z/mf(k,y,t)g(t) dt =Y Sprg(y)
Ier’R IeF
and

m[(}\7y7t) _ /ezm')\(%(y+t)sP0+P(y—t,s)) (b(jl)(&y _ t) ds.
R
See Ch. XII, §6.3 of [16] for an expression for the Fourier transform on H!.

Remark 2. Here we must caution the reader that the above reduction to a multiplier

question on H!' does not come for free. Indeed, £ above is a distribution and
there is no a priori reason for it to have a well-behaved group Fourier transform.
However, with a little care one can verify that the above reduction is indeed justified.
For details, see for example [6] where an analogous one-parameter singular Radon
transform is considered.

If P(y—t,s) =3, ,50Cpq(y —t)7sP, then since P(0,0) = 0 and condition (10)
holds, we can write P(y —t,s) = ¢(s) +1o(y — ) + >_ 51 ¥p(y — t)s” where
0(s) =D cposs Yoy —1) =D coqly—1)7 and ¢y —1t) = cpqly —1)°
p=1 q>2 g>1

so that ¢,(0) = 0 for all p > 0 (and ¥{(0) = 0). Importantly we have ¢,, 0 = 0 (by

(10)).
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We can write the phase 1 (y+1)s?° + P(y—t, s) of my as ys? +P(y—t,s) where the
difference between P(y—t, s) and P(y—t,s) is that the coefficient c,, 1 in 1, (y—1)
is changed to c¢p,,1 — 1/2. This change does not affect P,, and so in the proofs of
either Theorems 1.2 or 3.1 we may assume, without loss of generality, that

mi(\y,t) = / 2w+ Pw=19) (D (5 4 — ) ds. (11)
R

Clearly bounds on the oscillatory integral » ;. »mr(),y,t) will play a central role
in our analysis. General estimates for oscillatory integrals will be detailed in the
next section but for now we highlight a couple of generalisations (estimates (12)
and (13) below which are proved in Section 5.1) of an important, well-known oscil-
latory integral bound due to Stein and Wainger [20] which states that for any real
polynomial @ € R]s], we have

. d
€2W1Q(‘9)j‘ < Oy
a<|s|<b §

where Cy depends only on the degree d of @ and is otherwise independent of the
coefficients of @) as well as of a and b. A proof from a modern perspective is given
in [16] and this perspective can be used to prove the stronger bound

i d
Z'nk ) < Cq4 where ne(Q) = /I } £2miQ(s) 45 (12)

S
kes

and S is any set of integers and Cy can be taken to be independent of S. A proof
of (12) is given in Section 5.1 and is contained in the first part of the proof of the
following bound.

In our context, we need to show that for any subset 7' C F,

Z |mI(/\ayat)| <C
IeF

ly — 1| (13)

holds when either (i) P is a general real polynomial and C' = Cy depends only on
the degree d of P (and in particular does not depend on the subset F' C Z2, )\,
y, t and the coefficients of P) or (ii) P is real-analytic near (0,0) and F indexes
dyadic rectangles R located near the origin; that is, the pairs I = (j, k) range over
integers j < —jo and k < —ko where jy and kg are large, fixed positive integers
depending on our real-analytic function P. In this case, the constant C is allowed
to depend on P and in particular it will depend on the truncation parameters jo, ko
but it does not depend on A, y,t or the cardinality of F'.

In Section 5.1 we will establish the estimate (13) in both cases but until then, we
assume that it holds.

4.1. Hilbert integral reduction. We assume that (13) holds. Choose x € C5°(R)
supported in {|y| ~ 1} and such that if x,(y) := x(27"y), we have } _, x,(y) =1
for y # 0. We decompose
Spr9W) = D xeW)Spr9y) = S'a(y) + S*g(y)
reZIeF
where
S'9y) == > xe@Spioly) and  S%g(y) = > x5 9W)

(r,1)eg? (r,])eg?
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and
G' = {(r,]) €Z x F:I=(j,k) satisfies r < k+ Cp}
for some large, fixed Cy > 0. The set G? is defined similarly but with the condition
k < r—Cp. The significance of this is that when (r, I) € G? we have 2% ~ |y —t| <
ly[ ~2".
Hence
Sl < [[ 2 hewmiwol] oold
(r,1)eg?t

where the sum over (r, I) € G! is supported in {(y,) : d|y| < |y —t|} for some small
d > 0, depending on our choice of Cy. Using (13), we have

1
S'g() < C Ot = / K(y.8)lg(t)] dt.
Slyl<ly—t] \?J—t\

The integral operator with kernel K is of Hilbert integral type (the kernel is ho-
mogeneous of degree —1 and K(1,t)|t|~!/? is integrable over R) and hence S* is
uniformly bounded on L?(R) (uniform in )\, F and the coefficients of P in the
polynomial case). See [15], page 271.

For S2, write S%g(y) = Y, S%g(y) where
S2oy) = > xWSproly /K (.t
I:(r,1)€G?

For |y| ~ 27, we have [t| = [t —y +y| ~ |y| ~ 2" if |y —t| ~ 2F and k < r — (.
Hence supp(K,) C {(y,%) : |y|,|t| ~ 2"} and so

15%0pa e = |30 82
T

by (almost) orthogonality. Therefore the proofs of both Theorem 1.2 and Theorem
3.1 reduce to understanding when the operators S? are uniformly bounded on L?.

2
T o e (14)

5. OSCILLATORY INTEGRAL ESTIMATES

Many oscillatory estimates rely on van der Corput’s lemma which we now state.

van der Corput’s Lemma. For any k > 2, there exists a constant Cy such that

b
/eQTri)\qS(s)dS’ < Ck‘)\|_1/k

holds for any real-valued ¢ € C*[a,b] such that |¢™)(s)| > 1 for s € [a,b]. The
result holds for k =1 if in addition we assume that ¢’ is monotone on [a,b].

For a proof, see [16].

Let Q(s) = Alys?® + P(y —t, s)] be the phase appearing in each
mr(\y,t) = /Re%iQ(s)Z_j_k(m@_js,2_k(y —t))ds =: 27*T;

where I = (j,k) and

T = Tinyik = /62’”@<S> 279®(277s) ds (15)
R
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is supported in {(y,t,k) : |y—t| ~ 2k}. Here ®(s) = ¢r(s,27%(y —1t)) is supported
in |s| ~ 1 and has bounded C* norms, uniformly in the parameters y,¢, I and k.
Hence [m;(A,y,t)] < |Z;| 27% xjy—t/~2r and so to bound Y, [mr(X,y, )], it suffices
to fix k and obtain uniform bounds for the sums } . |Z;| over j. To do this, we will
use van der Corput’s lemma.

Our first application is a proof of (13).

5.1. Proof of the generalised Stein-Wainger bound (13). Let Q(s) = A[ysP°+
P(y —t, s)] be the phase appearing in each m; and for each k € Z, set F|, = {j €
Z:1=(j,k)€ F'}. It suffices to show that for every k € Z,

Z ‘mI(Avyvt” S 2_ICX\7;—t|r\a2’C (16)
I:jeF;

since (13) follows by summing these estimates over k € Z. As observed above, this
is equivalent to showing
Yol St

JEF,,
where

I; = / ™R 27Ip(2795) ds = / Qi) o(s) ds
R R

and Q;(s) == Q(275).

We start with the case when P is a polynomial where we seek bounds which are
uniform in the coefficients of P, the subset ' C F, and the parameters A,y and .
For the case when P is real-analytic at (0,0), we will reduce the estimate (13) to
the polynomial case.

In the polynomial case, our phase Q(s) = szl epsP is a polynomial (without loss
of generality we may suppose that @ has no constant term) and hence Q;(s) =
Zp>1 ep2pj sP. A simple equivalence of norms argument shows that there exists a
cqg > 0, depending only on the degree d of @, such that for all j there exists ¢; with

1 < ¢; < d for which |Q$"")(s)] > 43,5, ep|2” holds on the support of ®. An

£

application of van der Corput’s lemma now shows that |Z;| < C4(A;)~/% where

Aj=351 le,|2P7. Using (5),

[atras = [ onts2tw-nyas = o
R R
one also has

|Z;| = ‘/[ezin(s) - 1}@(8)6[3‘ < Aj andso |Z;] S 1rnin(Aj,A;1/d)7

R

which allows us to sum in j to see >, [Z;| Sa 1, as desired.
Next we consider the real-analytic case so that the pairs I = (j, k) in F range over
integers j < —jo and k < —ko where jy and kg are large, fixed positive integers

depending on our real-analytic function P. In this case, as said above, we will
reduce matters to the polynomial case.
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Recall our notation where we write P(y —t,s) = ¢(s) + > 50 ¥p(y — t)s? and
P(s) = >_,51 cpost. For |y —t| ~ 2% <1, we have |¢,(y — t)| Sp 2F. Write

iy, 1) = ‘/ (2SO 4o+, (9)] 91 (2T 5) s
R

where Wy +(s) =3 5, ¥p(y —t)sP. Hence |00V, +(s)| Sp,p 2% for every p > 0 and
in particular, |02®, ,(s)| <p.p 1.

First we consider the case that there exists a p; > pg such that c,, o # 0. Hence
lo®1)(s)| 2p 1 for |s| < 1 and so

|05 lys™ + @(s) + Uy ()] 2 1.

This puts us in a position to apply van der Corput’s lemma, which together with a
simple integration by parts argument allows us to conclude |Z;| < 277|\|7}/P1 and
S0 D iesy |Zil S 1 where Sy = {j : 27 > |\|='/P1}. For j ¢ S, we compare the
integral Z; to the integral

17, = / (2RO + ()41 ()] 9 (2T ) dis
R

where ¢(s) = Y0 Yep08” and Wy 4 (s) = oo “4p,(y — t)sP. Note that the differ-
ence of the phases in Z; and I7; is at most C|)\sp1| and so

IZ; - 1T, < A2,

implying > ¢q, |Z; — ZZ;| S 1. We can appeal to our analysis of (13) when the
phase is polynomial to conclude } .. |ZZ;[ < 1 and hence (16) holds in this case.

Finally we consider the case ¢(s) = ZKFO ¢p,08P; that is, there is no p; > po such
that ¢,, o # 0 (remember ¢,, o = 0 by (10)). In this case we may suppose that there

is a p; > po such that |1, (y —t)| ~ |y —t|* for some £, > 1 and d}(e)( 0) = 0 for all
p > p1 and all £ < £,. Indeed, either 1, = 0 for all p > pg and we are back in the
polynomial case, or not; in this second case, if we let ¢, := min{¢ : I(,Z)(O) # 0},
we see that it suffices to take ¢, := min,s,, ¢, and p; a value that realises such
minimum.

Thus in particular

O [ys™® + () + Uyu(s)] = cly — 1) +O((y — )" s)
and therefore |9P1 [ysPo + ¢(s) + U, 4(s)]| = 2% for |s| < 1 and |y —t| ~ 2*. Hence
by van der Corput’s lemma, |Z;| < 277[|A|2%%]71/P1 implying that Djesy LIS 1
where S := {j : 27 > (|]\|2F)"1/P1}. For j ¢ S}, we compare the integral Z; to
the integral

177, = / (2SO +o () + 4.1 ()] 9 (2T ) dis
R
where again ¥, ;(s) = oo ! —t)sP as above. Note that the difference of the
phases in Z; and Z77; is at most C|)\2Z*k5?’1| and so
|Z; — IZZ;| < |A2%F2m,

implying ngsg |Z; —ZZ7Z;| < 1. Once again we can appeal to our analysis of (13)
when the phase is polynomial to conclude ngzsg |ZZZ;| < 1 and hence (16) holds
in this case as well. This completes the proof of (13) in all cases.
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5.2. Another useful bound for oscillatory integrals. A nontrivial application
of van der Corput’s lemma gives the following useful uniform bound for oscillatory
integrals with polynomial phases.

Proposition 5.3. For any Q(s) = ijl h;s? € R[s] and 1 < j < d, we have

B
‘/ 2miQ(s) gq| < Cd‘hjl—l/dBl—j/d.
B/2

This is a simple variant of Theorem 3.1 in [8]. We have the following simple con-
sequence for our multipliers m(\,y,t) = 27*Z; when the phase Q(s) = A(ysP® +
Ply—t,s)) = Zp<d hpsP is a polynomial: for every 1 <p <d

- —1/d
IZi| Sa [[hp|27] 7, (17)
where we recall the definition of Z; in (15). We will use this estimate in the proof
of Theorem 1.2 where P is a polynomial. For Theorem 3.1, when P is assumed to
be real-analytic near (0,0), we will need the following two variants of (17).

Consider again the phase

Q(s) = AMys” + P(y —t,s)) = A [yspo + Z cpos? + Z Yp(y — t)sp}
p>1 p=0
in my(\,y,t) = 27*Z;. The coefficient of sP° is hy,, = A(y + ¥p, (y — t)), again,
since the coefficient ¢p,,0 = 0 as per (10). This is important since it allows us to
determine the size of h,,. In fact, for pairs (r,I) € G? arising in the definition of
S2 we have |y —t| ~ 28 < 2" ~ |y| in the support of Z; = 27%m()\,y,t) and so

T

|hpo | ~ |27 since 1, (y — t) = Op(2F). In this case, we have

1Zj] S [l [2707]7° ~ [|A|272707) 7 (18)
for some € > 0.
Next we consider an estimate with respect to the coefficient h, = A(cp.0+9p(y—1))

of sP in the phase Q(s) for other values of p. In our arguments, this case will only
arise in the simpler situation when the phase @ is truncated to either

A [(ys”0 + Z cpost + Z Yp(y — t)s”}

p>1 1<p<po
or
A[(Zcp,osu 3 wp(y—t)sp}
p>1 1<p<po

which is still not quite the case of a polynomial. For any 1 < p < py with ¢, # 0,
we have for some £, > 1, |1, (y — t)| ~ 2% when |y —t| ~ 2*. Hence the coefficient
of hy = A(cpo + 1, (y —t)) satisfies |h,| > 2%F since 2% < 1. In this situation, we
have

€

1z Spp [pl277]7° S [IA25P27] 7 (19)

for some € > 0.

The proof of (18) is fairly simple and we present this case now. The proof of (19) is
an elaboration on a proof of Proposition 5.3 and we have decided to give the proof
in an appendix to the paper.

To prove (18) we begin as in the real-analytic case for (16) by initially assuming
there exists a p; > po such that c,, o # 0. Hence |pP0)(s)| ~ |s|Pr7P0 for |s| < 1
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and so if |s| < |y|Y/P1=P0) or |y|l/(P1=Po) < |s| (that is, 27 £ 27/(P1=Po)) e see
that

QW (s) = [A(poly +¢®(s) +O2")] Z IM[lyl = C2*] Z Myl ~ Iy,

since 2¥ < 2" ~ |y|. Hence by van der Corput’s lemma, we have |Z;| <p 27|, |71/
implying (18) with e = 1/po.

When 27 ~ 27/(P1=P0) we consider the p;-th derivative of Q: note that |(P1)(s)| ~p
1 for |s| « 1. Therefore we have

Q) ()| = M@ (s) + 0(2")] Z ||
since 2¥ < 1. Hence van der Corput’s lemma implies
L1 e 2NV = (AR U (fhy [2009) 1,
implying (18) with e = 1/p;.

Finally we consider the case that for all p; > py we have c,, ¢ = 0 in which case
¢Po)(s) = 0 since we also have c,, = 0. Therefore as before,

QP ()| = A(poly + 02N 2 INI[lyl = C2"] Z IAllyl ~ Iy

since 2F < 2" ~ |y|. Hence by van der Corput’s lemma, we have |Z;| <p (|hy, |2P07)~1/Po
implying (18) with € = 1/pg. This completes the proof of (18) in all cases.

6. THE PROOF OF THEOREMS 1.2 AND 3.1 — THE MAIN STEPS

In both Theorems 1.2 and 3.1, we need to establish uniform (in r) L? bounds for
the operators

Sta0) = Y ()Shaaly) where Shrg) = [ mihp. (0t
I:(r,I1)€G?

and

mr(\,y,t) = /CQWiA(ySPO+P(y_t’s)) ¢(II)(S7y—t) ds.
R

See (14). Here
G* = {(r,I) €Z x F: 1= (j,k) satisfies k <r — Cp}

for some large, fixed Cy > 0. Recall that we write

Py —t,s) = ¢(s) + ) _tply —1)s” = p(s) + oy — 1) + Y vply — t)s”

p=>0 pEP

where each ¢,(0) =0 and P :={p > 1: v, #0}.

The plan of the proof is to use the oscillatory integral estimates discussed in Section
5 to bound the errors introduced when removing certain terms from the phase of
my. We will keep removing terms from the phase whenever possible until we have
reduced matters to (euclidean convolution) operators that are well-known already.
These will be either (variable kernel) oscillatory singular integral operators a la
Ricci-Stein [13] or the singular Radon transforms mentioned in the statements of
Theorems 1.2 and 3.1.
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6.1. The exceptional set £. For both theorems, we will need to avoid an excep-
tional set £ of bad values of £ which we will make more and more explicit as we
proceed. For Theorem 1.2, the cardinality #& <; 1 will be bounded uniformly in
F and the coefficients of P. For Theorem 3.1, the cardinality #& <p 1 will depend
on P (and hence on the truncation parameters jo, ko) but is otherwise independent

of #F.

We split

S29w) = > xeSPgw)+ D xeW)SP19w) = S209(y) + SPlg(y)
IeFo.r TeFLr
where FO7 = {I = (j,k) : (r,1) € G*,k ¢ £} and F>" involves the bad values
k € £ We use (16) with 7/ = F1" to bound

B OEDD / [ s )] le@ldy S 32 / 19(v)| dy

kee?  jeFlr ke€ ly—t|~2*

and so ||S?Y|pepe S #E < 1, leaving us with S29 which avoids the bad values
kek.

To ease the notation, we rewrite S2° as S? with the understanding that the sum
defining S? is taken over I = (j,k) € F®" and so k ¢ &.

For each term 1, (y —t) with p, € P arising in the phase of my, our strategy is to
reduce the analysis of S to S2* = 3, 0. X+ (y)Sp; where

Spialy) = /Rm’}(/\,y,t) g(t)dt

and
mi(\,y,t) = / TN OFE sy 00 6D (5 — t)ds;  (20)
R
that is, we plan to remove the term ¢, (y —t)sP* from the phase of m;.

Our estimates are naturally expressed in terms of certain key quantities associated
to the size of those 1, (y —t) with p, € P. For Theorem 3.1, when P is assumed
to be real-analytic near (0,0), we can find an £, > 1 such that |, (y —t)| ~ c.2%F
when |y —t| ~ 28 < 1. This simply follows from the fact that v, (0) = 0 and
by, # 0. For Theorem 1.2 the 1, (y — t) are general polynomials and |y — t| ~ 2*
can be of any size (k € Z can take any value). Here we will appeal to a result
in [1] which shows that outwith finitely many values of k (depending only on the
degree of P), there exists an £, > 1 such that indeed |1, (y — t)| ~ 2% when
ly — t| ~ 2F.

Given a nonzero polynomial Q(t) € R[t], a basic result in [1] gives us a decom-
position R = S U G where S = UJ can be written as a disjoint union of O(1)
(with constant only depending on the degree of @) intervals such that on each J,
|Q(t)| ~ cs|t|* for some £; € N. Furthermore if Q(0) = 0, then £; > 1 for all J.
Finally each interval comprising G = R\ S is a dyadic interval of the form [4, C'A]
where C < 1.

As above, we write our polynomial P as P(s,t) = ¢(s) + > 5 ¥p(t)s” where each
¥, € R[t] satisfies ¢,(0) = 0. We apply the decomposition in [1]| to each 1, with
p € P (so that i, # 0) to conclude that there is an exceptional set B of O4(1)
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values of k where Z \ B = UM_, S,, decomposes into O4(1) sets such that for each
p € P and n, there is an ¢, = ¢, , > 1 and ¢, = ¢, , > 0 with the property that

[Up(y —1)] ~ ¢, 2% whenever |y —t| ~2" and k€ S,. (21)

We incorporate the set B into £ so that I = (j,k) € FO" implies k € S,, for some
n and (21) holds for every 1, with p € P.

6.2. Key quantities and the first step. The key quantities A, (k) = A, rr(k)
are defined as

Ao 26k
Ap* (k) T (|)\|2r)p*/p0
where, in the case of Theorem 1.2, ¢, = ¢,, and ¢, = ¢, appear in (21). One
important estimate where these quantities arise occurs in the following bound for
the differences Dy := .. FOr [mr — m3] (which avoids the exceptional values of
keég),
1Dkl S Ap. (k) 27" Xy (22)

for some ¢, > 0. We prove this bound below.

For Theorem 1.2, the implicit constant in the estimate (22) will be uniform; it
will depend only on the degree of P and can be taken to be independent of the
coefficients of P as well as the set F. For Theorem 3.1 the implicit constant will
depend on P.

To prove (22), we split (recall the definition of mj in (20))
Dy = Z[m[—mﬂ + Z[m;—mﬂ =: D; + Dj
JjeI JjEJ2
where J; U Jy = {j: I = (j,k) € FO} and
Jio= {j:I=(j,k) € FO and 27 < (]\2")"V/P A, (k)7

for some o > 0 to be chosen later. For j € J;, we use that the difference in
the phases of m; and m} is at most C|\|c,2%%2P+J (the constant C' being abso-
lute/uniform) to conclude that |D}| <

D dmr—mil S 27 xypear Me25F Y270 S AL (R)S 27 g
JEJ1 j€J1

where €, = 1 — op, > 0 and we have chosen o < 1/p,; this shows that (22) holds
for Dj.

For D, we treat m; and mj separately, bounding [Dj| < 37, |my|+3,c ., [mjl.
Recall that

imy| = 27k;‘/e27‘ri>\(y6‘p0+¢(8)+zp21wp(y_t)sp)27j@(27js) ds‘.
R
We will apply (17) and (18) to
Qs) = My + Yy — )™ + (s) + 3 wply — )s”]

PFPo

with respect to the coefficient h,, := A(y + 9, (y —t)) of s?°. Very importantly, we
have reduced (see (10)) to the case where the coefficient ¢, in ¢(s) = 32 5, ¢pos?
is zero! N
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If v, (y — t) = 0, then hy,, = Ay and if ¢, (y —t) #Z 0, then for k ¢ £, we have
Ve (y — )| ~ co2F for some £y > 1 when |y — | ~ 2¥. Hence there are only O(1)
values of k& where the bound |h,,| ~ [Ay| ~ |A|2" does not hold. We add these
values to the expectional set £. Hence (17) and (18) imply

Imr| < [IA272709] 7 27y, ean

for some ¢y > 0. The same argument shows that |m7}| satisfies this estimate as well.
Summing over j € J, establishes (22) for D? and hence Dj,.

6.3. An interlude — some analysis specific to Theorem 3.1. For Theorem
3.1 (in which case both j,k < 0 for I = (j,k) € F), we claim that when p. > po,
the above differences D, also satisfy

1Dk <p Ap. (k)7 275X, (23)

where €, = po/(p« —po) > 0. This, together with (22), will allow us to remove all
terms 1, (y — t)s? with p > pg from the phase of m;.

The proof of (23) is straightforward. We again use that the difference in the phases
of my and m} is at most C|\|2¢%2P+7 (the constant C' being absolute/uniform) to
conclude that |Dy| <

> mu=mil Se 222 27y e S A2 g
§:I=(j,k)€FO" 3=0

However for I = (j,k) € FOr we have k < 0 and k < r and hence it can be verified

that
(\)\|2T)p*/p0 } po/(P+—po)

|)\|2l*k
Therefore |A\[2% < A, (k)= and so (23) follows.

A2k < a2t < |

Note that when k& < 0 and I = (j, k) € F®" (and so k < r), we have
Ao (k) = cg29F27" < 2727 <« 1.

Putting (22) and (23) together, we see that in the situation of Theorem 3.1 and
when p, > pg, the differences satisfy

|Di| Sp min(A,, (k), Ap, (k)_l)e* 2_kX\y—t|~2k
for some €, > 0. This allows us to sum over k£ and conclude that

I1S7 = 82"\l p2sre Sy min(Ay, (k), Ay, ()7 <p 1,
k

reducing matters to bounding S%*, uniformly in r - in other words, we have safely
removed term ), (y —t)sP* from the phase.

We can now apply this argument iteratively, comparing S>* to S?** where the
phase in S2** has both 1, and 1,,, removed and p.,p.. > po. Notice though
that the same argument above also allows us to remove an entire tail

U, (y —t,5) = Z Yp(y —t)sP for some p1 > po.
pP>p1
In fact we may suppose that there is a p; > po such that |1, (y —t)| ~p |y — t|**
for some ¢; > 1 and 7,/)1(,@)(0) = 0 for all p > p; and all £ < ¢;. Otherwise ¢, =0
for all p > po and so by, = 0. Hence |thy, (y — t, )| ~ c1](y — t)1s71| for some ¢;
and so0 9, (y — t,5) can be treated in the same way as 1, (y — t)s”* and thus be
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removed from the phase. The above iteration then removes the remaining terms
with pg < p. < p1.

Hence for Theorem 3.1, the uniform (in r) L? boundedness of S? is equivalent to
the uniform (in r) L? boundedness of

Hg(y) = xoly) S / pr(\ . ) g(t) dt

IeFo.r

where

Pyt = /R 2T+ 0y gy a0 6D (g 0 gy s

Note that Pp,(s,t) = ¢(s) + X g<p<p, ¥p(t)s? is precisely the function featuring in
the statement of Theorem 3.1.

6.4. Back to the common analysis of Theorems 1.2 and 3.1. To unify the
notation somewhat, we will designate as #, both the operator

So(y) = ) 3 / mi(0 ) g(t) dt

IeFo,r

when we refer to Theorem 1.2 and the operator H,. in the previous section defined
with p; instead of m; when we refer to Theorem 3.1. Furthermore we relabel p; as
my so that when we refer to Theorem 3.1,

mi(\y,t) = / T 0y pg Ve (D) D (5 g — 1) ds
R

and when we refer to Theorem 1.2,
mi(A,y,t) = / PTAWITETE0 Vo(0D) 6D) (5 4y — 1) dis.
R

Of course the functions in the phase of mj are real-analytic for Theorem 3.1 and
they are polynomials for Theorem 1.2.

We split the operator H, = H. + H? where

Hog(y) = xo(y) > [ mi(N\y.t)g(t)dt,
IeF)T
with
FY ={I=(j,k) e FO" : ke K;} and K; = {k: A,(k) <1,forall p e P}.

The operator H2 is defined similarly where the k sum with I € F5'" is taken over
the complementary set Ky where at least one p € P satisfies A, (k) > 1.

For H!, we proceed as in Section 6.2, using (22) to bound the difference H} — H1*
where H!* is defined the same as H! except with m; replaced by m} — see (20)
(of course for Theorem 3.1, we need to adjust appropriately the phase in m} — we
also note that the difference bound (22) still holds for m; — m7 in the context of
Theorem 3.1). Hence (22) implies that

1M1y = HE esre S0, Ap(b)™ < 1.

keEK;
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Proceeding iteratively, we see that the uniform boundedness of H} is reduced to
the uniform boundedness of

LTg(y) = Xr(y) Z /TI<)\,y7t) 627ri)\¢0(y—t)g(t)dt
IeF)" R

where
Ay t) = / TN 61D (5,4 — 1) ds.
R

We note that L,.g(y) = x,(y) [ K (y,y — t)e2 " o=t g(¢) dt where

Ko(yy—t) = Y 27"KP(y,27* @y —1)
ke K,

and
Kﬁk) (y7 7_) — Z e2m>\(yspo+cp(s))2—j¢l(2—js, 7_) ds
jiI=(ikyeFor U E

Hence K, is a variable Calderén-Zygmund kernel on R; that is,
/Kr(y,T) dr = 0 forally, and |0:K, (y,7)| S |71 foralll, (24)
R

uniformly in 7 and y. This follows from an simple variant of (13); more precisely,
one sees that (16) remains true with ¢; replaced by any derivative OF ¢ (s, t).

This puts us in a position to appeal to a theorem of Ricci and Stein in [13] on
uniform L? bounds for oscillatory singular integral operators

Thg(y) = / K(y —t)e™¥ W= g(t) dt.
R

When 1y is a polynomial (which is the case for Theorem 1.2), Ricci and Stein
establish L? bounds which are uniform in A, the Calderén-Zgymund kernel K and
the coefficients of 1. In [9], Pan extended this result to real-analytic phases v (the
case for Theorem 3.1). Although their results are stated and proved for classical
Calderén-Zygmund kernels, an examination of their arguments shows that the same
results hold for variable Calderon-Zygmund kernels described above in (24). At the
heart of their argument is a 737 argument applied to dyadic pieces of the operator.
Fortunately the order of the composition is immaterial (in fact they chose the order
TXTy) but for our variable Calderén-Zygmund kernel K, above, it is important to
take the order ThTY so that the variable y in the first argument of K. (y,y —t)
does not interact with the integration defining the kernels of the various T\T’s.
We leave the details to the reader. This completes the analysis for the H!; they
define uniformly bounded L? operators.

For H2, our goal will be to establish uniform L? bounds for the difference H2 — T7.
where T is defined exactly the same as H2 except that ms(),y,t) is replaced by

ery—1) = /R MNP 20 (=07 6D (g o 4y
for Theorem 1.2 and

ef(My—t) = / e2mIAN@()+ 0 <papy Yr(U—1)s") ¢(II)(3a y—t)ds
R

for Theorem 3.1. That is, for H2 we plan to remove the term ys?® from the phase
this time. Note that the phase in the first integral is precisely the original P(s, y—t).
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It is a simple matter to see that uniform boundedness of the family {7} is equivalent
to the uniform boundedness of the euclidean translation-invariant family {7} where

Tg(y) = Krxg(y) and K.(1) = > er(\7);
IeFy"

thus 7, is the same at T”

m

without the x,(y) factor in front.

In fact from the pointwise bound |77 g(y)| < |T;.9(y)|, one direction is clear. Suppose
now that the family {7} is uniformly bounded in L? and decompose an L?(RR)
function g = ), g, so that the support of g,(t) := g¢(¢2" + t) is contained in
{|t| ~ 27}. Since for I = (j,k) € Fo", k < r, we see that if |y — t| ~ 2¥ and
|t| ~ 27, then |y| ~ 2" and so

Trge(y +027) = Toge(y) = xrW)Trge(y) = T, Ge(y)-

Therefore, by almost disjointness of the supports,

ITegllZe S D0 1Trgel7 = D ITGel e < D Ngelze = D llgelza = llgle.
£ £ £

)4

The difference H2 — T/ is
(42 = T90) = xe0) [ 3 s ) = esOy — 0] g0
R IeFyT
and so we concentrate on bounding the difference
D = Z [ml—el] = Z Z [’ITL[*@]] = Z Dk
IeFYT €Kz ji=(j,k)eFD" keKs
We split Ky = UpeP K, , where
K2,p = {k S KQ : Ap(k) Z Aﬂ(k), Vp’ € P}

so that when k € K ,, we have A,(k) > 1 (by definition of K5). This gives a
corresponding splitting of H} — T = 3° (M7 — T), where the summation over

I=(j,k) € Fy" is restricted to k € Ky .

We claim that for k& € K ,,
1Dkl Sp Ap(k) ™% 275 Xy (25)
for some €, > 0. If this is the case, then we have
I(HE = T)pll2sre Sp Z Ap(k)™ 7 <1
kEKz,p

and so summing over p € P gives the desired uniform bound for H2 — 7.

To prove (25), we fix p and k € K5, and split
D = Z[ml —ey] + Z[m;—ef] = D} + D}
jen JET2
into two parts; here J; = {j : 20 < (|A\[2")"1/Po A, (k)= } for some o, > 0 and Jo
is the complementary range.
For Di, we use the difference in the phases of m; and e; to see that

Imi(A,y,t) —er(y =) S [yl ~ |A[2727P
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and so

DL S N2 [ 2] 270, gz S A% 270, e
Jj€J1

establishing (25) for D}.. For Di we treat the terms m; and e separately, bounding
DR < Xjes Imul+ e, lerl-

We will apply both (17) and (19) to each m; and e; separately. The phase in m; is

A [yspo + Z cpos? + Z Up(y — t)sp}
p>1 p=0

for Theorem 1.2, whereas for Theorem 3.1 the sum Zggl p(y —t)sP is truncated.
The phase in e; is the same except the term ysP° is not present. They both have
the sP coefficient h, := A(cp.0 + ¥p(y — t)) unless p = 1 and we are in the setting
of Theorem 1.2. Setting this case aside for the moment, we apply (17) and (19) to
each mr and e; with respect to this common coefficient h,. Since for some ¢, > 1,
[Yp(y — )| ~ c,2%F when |y — t| ~ 2F, we see that there are only O(1) values of
k where the bound |h,| ~ |Ac,2%% does not hold. We add these values to the
expectional set £. Hence in this case, (17) and (19) imply

Imal,ler] S [[Alep2 27917 27 x oo (26)

for some ¢g > 0.

If in the context of Theorem 1.2 (so that po = 1 and hence the coefficient ¢ ¢ in
©(s) is zero) we are considering the case p = 1, observe that the coefficient of s
for my, which is hy = Ay + ¢1(y — t)), is different from the coefficient of s for ey,
h1 = M1 (y —t). However in both cases, except for a few values of k (which we toss
into &), we have |h;| > |\|c12% and so the estimate (26) holds in this case as well
if one chooses o7 so that 0 < o7 < 1.

Summing the estimates (26) over j € Jo establishes (25) for D and hence Dy.
This shows that the uniform L? boundedness of #,. is equivalent to the uniform L?
boundedness of T;,.

Putting everything together, we see that the L? boundedness of the original con-
volution operator Tp 7 on the Heisenberg group H! is equivalent to the uniform in
r (and \) L? boundedness of the euclidean convolution operators T,. Recall the
definition of the operators 7T;. differs depending on whether we are in the context of
Theorem 1.2 or Theorem 3.1. In the context of Theorem 1.2, the multiplier for 7).

is
/ K (t)e*mmtdt = / / AP0 6D (5. 1) dsdt
R .. J JR2
IeFY

and so the uniform L? boundedness of the T is equivalent to showing that the
above sum of integrals is bounded uniformly in the parameters r, A and 7.
In the context of Theorem 3.1, the multiplier for T, is

KXn) = /R Koemra = Y [ /R BT g0 (5, 1) dt

IeFdT

and uniform boundedness is equivalent to showing that f(?(n) is uniformly bounded
in r, A and 7.
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7. THE CONCLUSION OF THE PROOF OF THEOREM 3.1

Consider the following truncations of the multiparameter singular Radon transform
Rp, Kk (from the statement of Theorem 3.1):

Rp, . f(z.9) / J(@ =ty = Poo(s,0)) Ko (s, D)dsdt

Z ¢(I) s,t)

IeFYT

where

is a truncation of the product kernel K. The multiplier M,.(n,\) of Rp, K, is

PO

precisely equal to I/(E(n) above.

Thus the L?(H') boundedness of Tp, = is equivalent to the uniform L?*(R?) bounded-
ness of the truncations Rp, r, as stated in Theorem 3.1. When K (s,t) = K(s,t) =
1/st is the double Hilbert transform kernel, the operator Rp, k and its general-
isations have been thoroughly investigated in several papers; see for example, [3],
[2], [10] and [11]. In [3] it is shown that Rp, x is bounded on L? if and only if
every vertex of the Newton diagram of P,, has at least one even component. It is
straightforward to check that the same conclusion holds for the truncated operators
Rp _«.

Po>

This completes the proof of Theorem 3.1.

8. THE CONCLUSION OF THE PROOF OF THEOREM 1.2

Consider the following truncations of the multiparameter singular Radon transform
Rp i (from the statement of Theorem 1.2):

R f(z,y) = //R Pz =ty — Pls, 1)) Ko (s, t)dsdt

Z ¢(I) s,t)

IeFY™

where

is a truncation of the product kernel K. The multiplier M, (n, A) of Rp k, is pre-
cisely equal to the multiplier of T); that is,

Z // 27rz(nt+>\Pst ¢I)(S t)dsdt

FOT‘

Thus the uniform L?(H') boundedness of Tpr (where we seek uniformity over
P € VA and the truncations F) is equivalent to the uniform L?(R?) boundedness
of Rp , where uniformity in r is also required. This is the main statement in
Theorem 1.2. When K(s,t) = K(s,t) = 1/st is the double Hilbert transform
kernel, we can apply Theorem 5.1 from [12] exactly as we did for the Ricci-Stein
theorem from the Introduction to conclude that

sup sup [|[Rpk.[lz2®e)sr2@e) < 00
r PeVa
if and only if every oo = (a1, 2) € A has at least one even component. The only if

part of the statement is an easy computation of the multiplier M,.(\,n) associated
to a single monomial P(s,t) = s/t* where both j and k are odd (see [5]).
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This completes the proof of Theorem 1.2.

AppPENDIX A. PROOF OF (19)

In this appendix we give a proof of the oscillatory integral estimate (19). Recall
I, = /ezmQ(S) 277 P(277s) ds
R
where @ is either

A [yspo + Z cpos’ + Z Up(y — t)sp}

p>1 1<p<po
or
Ao+ 3wy -ns?].
p>1 1<p<po

For ease in notation, we will assume @ is the latter. When considering the former
instead, without loss of generality one may assume there exists an cp, o # 0 for some
p > po; otherwise, we would be in the polynomial case where we can appeal to (17).

Let p, < --- < p; enumerate the values of 1 < p < pg such that v, # 0. In this
case, for each 1 < r < n, there is an £, > 1 such that |¢,, (y —t)| ~ 2“* whenever
ly — t| ~ 2%, Hence h, := A(cp, 0 + ¥y, (y — t)) satisfies |h,| > [A[2F whenever
ly —t| ~ 2% < 1 and with this notation, (19) reads

Izl S [Ihp 127777 5 [IA2 eI ] (27)

for every 1 < r < pg — 1 and for some ¢, > 0.

We fix an 1 < L < pg and establish (27) with » = L. First of all, we have
[y, (y —t)sPr| ~ 26-F2Pri and thus let us name these quantities 0,.(k, j) 1= 2¢-+2pPrJ;
they will be used to control the contribution of each term of ) to some derivative
of @ itself.

We introduce a sequence of small parameters 0 < 01 € d < -+ K 01 < 1
depending on P, which will be chosen later, and define for each 1 < r < L sets

U, .= {] : 91(k7.7) < 619L(kaj)7

er—l(kyj) < 5r—19L(k7j)7
and

0,.(k,j) > 5r9L(k,j)}-

Notice that for U; the first conditions are vacuous and we ouly stipulate 6 (k,j) >
0101, (k, ), and for Uy, the last condition is vacuous and we only stipulate 04(k, j) <
0s0r(k,j) for all s = 1,...,L — 1. It is immediate to see that these sets form a
partition of the set of all possible j’s.

Suppose that j € U, for some 1 < r < L. We examine the p,-th derivative of Q:

T

, pi! —pn Ps! “pr petl
QP (s) =\ i (y — t)sP TP 4 ¢, 8P TPr £ O(sPPrt
(5) {;(pi—m! oy —1) T ( )
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where p, > p, is the first exponent such that c,, o # 0. Noting |s| ~ 2/ < 1 and
j € U,., the contribution of the mixed terms with ¢ < r is at most

Cp Y 6i(k, )27 < Cp(b1 + ...+ 6,1)01(k, )27,
i<r
while the contribution of the mixed term with i = ris ~ 0,.(k, 7)27P7 > 6,07 (k, )27+,

By choosing the constants J; to be sufficiently small (depending on P) and decreas-
ing fast enough we have then

\Z T = 0 2 0k, )2
when j € U,.

As for the contribution of the remaining terms, we have |c,|sP*~Pr ~ 2P==Pr)i If
61 (k,7) # 2P+1 we have then |Q")(s)| > |\|0(k, )27/, implying that
. 3 _ =1 - . —1 -
L £ (N6 (k,3)27) P = (A6 (k)

by van der Corput’s lemma. Hence (27) holds in this case.
Otherwise, in the case 2P/ ~ 6 (k, j), we have the bound |Q®+)(s)| > 1 since every
20k <« 1. Another application of van der Corput’s lemma shows

Z1 S (29IN) 7P~ (N6 (k,5)
This completes the proof of (27).
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