
Title Pervasive handheld computing systems

Authors O'Sullivan, Timothy

Publication date 2005

Original Citation O'Sullivan, T. 2005. Pervasive handheld computing systems. PhD
Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2005, Timothy O'Sullivan - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2024-04-23 08:15:22

Item downloaded
from

https://hdl.handle.net/10468/1134

https://hdl.handle.net/10468/1134

Pervasive Handheld Computing Systems

Dissertation submitted to the National University of Ireland, Cork

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy of Computer Science

October 2005

Timothy O' Sullivan

Department of Computer Science

University College Cork

Ireland

- i -

ABSTRACT

The technological role of handheld devices is fundamentally changing. Portable

computers were traditionally application specific. They were designed and

optimised to deliver a specific task. However, it is now commonly acknowledged

that future handheld devices need to be multi-functional and need to be capable of

executing a range of high-performance applications. This thesis has coined the

term pervasive handheld computing systems to refer to this type of mobile device.

Portable computers are faced with a number of constraints in trying to meet these

objectives. They are physically constrained by their size, their computational

power, their memory resources, their power usage, and their networking ability.

These constraints challenge pervasive handheld computing systems in achieving

their multi-functional and high-performance requirements.

This thesis proposes a two-pronged methodology to enable pervasive handheld

computing systems meet their future objectives. The methodology is a fusion of

two independent and yet complementary concepts. The first step utilises

reconfigurable technology to enhance the physical hardware resources within the

environment of a handheld device. This approach recognises that reconfigurable

computing has the potential to dynamically increase the system functionality and

versatility of a handheld device without major loss in performance. The second

step of the methodology incorporates agent-based middleware protocols to

support handheld devices to effectively manage and utilise these reconfigurable

hardware resources within their environment.

The thesis asserts the combined characteristics of reconfigurable computing and

agent technology can meet the objectives of pervasive handheld computing

systems.

- ii -

DECLARATION

This dissertation is submitted to University College Cork, in accordance with the

requirements for the degree of Doctor of Philosophy in the Faculty of Science.

The research and thesis presented in this dissertation are entirely my own work

and have not been submitted to any other university or higher education

institution, or for any other academic award in this university. Where use has been

made of other people’s work, it has been fully acknowledged and referenced.

Excerpts of this thesis have been published in journals, conference and workshop

papers, namely:

[O’ Sullivan, 6a], [O’ Sullivan, 6b], [O’ Sullivan, 6c], [O’ Sullivan, 6d], [O’

Sullivan, 6e], [O’ Sullivan, 5a], [O’ Sullivan, 5b], [O’ Sullivan, 5c], [O’ Sullivan,

5d], [O’ Sullivan, 5e], [O’ Sullivan, 4a], [O’ Sullivan, 4b], and [O’ Sullivan, 4c].

Timothy O’ Sullivan

October 2005.

- iii -

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor Dr. Richard Studdert for providing

me with the opportunity to undertake this work. His continual motivation,

guidance, and friendship throughout my studies in UCC have been tremendous. I

will be forever grateful for his encouragement and kindness.

I would also like to acknowledge all the support and time which Dr. John Herbert

provided during the course of my studies. His insight and knowledge was greatly

appreciated.

I am also extremely appreciative of the financial support provided to me through

the Boole Centre for Research in Informatics.

Finally, I would like to thank my family for their help and encouragement. Special

thanks go to Alice and Mum whose friendship and love made this thesis possible.

- iv -

DEDICATION

To my Father and Mother for teaching me the important things in life

- v -

CONTENTS

ABSTRACT__ i

DECLARATION___ ii

ACKNOWLEDGEMENTS __ iii

DEDICATION___ iv

CONTENTS___ v

LIST OF TABLES ___ xi

LIST OF FIGURES ___ xii

LIST OF ABBREVIATIONS _____________________________________ xv

CHAPTER 1 __ 1

Introduction___ 1

1.1 INTRODUCTION ___ 1

1.2 METHODOLOGY OVERVIEW _________________________________ 4

1.3 CONTRIBUTIONS __ 5

1.4 DISSERTATION STRUCTURE __________________________________ 6

CHAPTER 2 ___ 10

Background and Related Work ____________________________________ 10

2.1 INTRODUCTION __ 10

2.2 PERVASIVE HANDHELD AXIS _______________________________ 12

2.3 HARDWARE RESOURCES WITHIN HANDHELD DEVICE ENVIRONMENTS 13

2.3.1 INTEGRAL COMPONENT PLACEMENT __________________________ 14

2.3.2 NETWORKED RESOURCE PLACEMENT _________________________ 15

2.4 MIDDLEWARE TECHNOLOGY ________________________________ 15

2.4.1 MIDDLEWARE TECHNOLOGY SUPPORTING INTEGRAL COMPONENT

 PLACEMENT ___ 16

2.4.2 MIDDLEWARE TECHNOLOGY SUPPORTING NETWORKED RESOURCE

 PLACEMENT ___ 18

2.5 MOBILE DEVICE TECHNOLOGY WITHIN TELEMEDICINE

 ENVIRONMENTS __ 23

- vi -

2.5.1 RECONFIGURABLE HARDWARE AND MOBILE MEDICAL DEVICES ____ 25

2.5.2 AGENT TECHNOLOGY AND MOBILE MEDICAL DEVICES ___________ 26

2.6 SUMMARY __ 27

CHAPTER 3 ___ 28

Reconfigurable Computing within Mobile Environments ______________ 28

3.1 INTRODUCTION __ 28

3.2 FPGA ARCHITECTURE ____________________________________ 30

3.3 RECONFIGURATION MODES_________________________________ 33

3.4 FPGA DESIGN FLOW______________________________________ 35

3.5 PARTITIONING AND SCHEDULING ISSUES_______________________ 37

3.6 RECONFIGURABLE HARDWARE DEVELOPMENT TOOLS ____________ 38

3.6.1 Hardware Synthesis Development Tools______________________ 38

3.6.1.1 VHDL ___ 39

3.6.1.2 JBITS ___ 40

3.6.1.3 Handel-C___ 41

3.6.1.4 Hardware Synthesis Appraisal ________________________ 43

3.6.2 Interface Synthesis Tools __________________________________ 44

3.6.2.1 JBits XHWIF Interface ______________________________ 44

3.6.2.2 Handel-C Device Drivers ____________________________ 45

3.7 PERFORMANCE CAPABILITIES OF RECONFIGURABLE COMPUTING____ 47

CHAPTER 4 ___ 50

Agent Middleware Empowering the Ubiquitous Computing Vision ______ 50

4.1 INTRODUCTION __ 50

4.2 AGENT CONCEPT ___ 50

4.3 MOBILE AGENT CONCEPT __________________________________ 52

4.4 MULTI-AGENT SYSTEMS ___________________________________ 53

4.5 AGENT DEVELOPMENT SYSTEMS_____________________________ 55

4.5.1 JADE AGENT DEVELOPMENT SYSTEM ________________________ 58

4.5.1.1 PERFORMANCE EVALUATION OF JADE___________________ 59

4.5.2 JADE-LEAP AGENT DEVELOPMENT SYSTEM __________________ 60

4.6 AGENT-ORIENTED ANALYSIS AND DESIGN TECHNIQUES __________ 61

4.6.1 GAIA METHODOLOGY _____________________________________ 61

- vii -

4.6.2 ADDITIONAL METHODOLOGIES ______________________________ 63

4.6.3 AGENT-BASED DESIGN PATTERNS____________________________ 64

4.7 DIFFERENTIATING AGENTS AND OBJECTS ______________________ 66

4.8 MIXED AGENT-OBJECT DESIGN TECHNIQUE____________________ 68

4.9 AGENT-BASED SOLUTIONS WITHIN MOBILE COMPUTING

 ENVIRONMENTS__ 70

CHAPTER 5 ___ 73

Context-Aware Handheld Devices within a Medical Environment _______ 73

5.1 CONTEXT AWARE COMPUTING ______________________________ 73

5.1.1 CAMMD: Context Aware Mobile Medical Devices _____________ 73

5.1.2 Evaluation ___ 80

5.1.3 Test Case Environment ___________________________________ 81

5.1.3.1 JESS 81

5.1.4 Performance Results _____________________________________ 82

5.1.5 CAMMD Appraisal ______________________________________ 86

CHAPTER 6 ___ 88

Agent Technology Exploiting Reconfigurable Resources for Handheld

Devices __ 88

6.1 INTRODUCTION __ 88

6.2 RECONFIGURABLE HARDWARE AS A NETWORKED RESOURCE ______ 88

6.2.1 Agent-Based Negotiation Protocol ___________________________ 89

6.2.1.1 Evaluation __ 94

6.2.1.2 Test Case Environment______________________________ 95

6.2.1.2.1 Agent Development Environment _____________________ 96

6.2.1.2.2 Reconfigurable Hardware Development Tools ___________ 97

6.2.1.3 Performance Results ________________________________ 97

6.2.1.3.1 Simulation of Real-World Network States _______________ 97

6.2.1.3.2 Time to Process Computational Request _______________ 101

6.2.1.4 Load-Balancing Effect of Agent-Based Negotiation Protocol 106

6.2.2 Context-Based Negotiation Strategy_________________________ 107

6.2.2.1 Evaluation _______________________________________ 110

6.2.2.2 Test Case Environment_____________________________ 110

- viii -

6.2.2.2.1 Place Lab _______________________________________ 111

6.2.2.3 Performance Results _______________________________ 113

6.2.2.3.1 Simulation of Task Priority Levels____________________ 113

6.2.2.3.2 Time to Process Priority-Based Computational Request ___ 114

6.2.2.3.3 Performance Overhead _____________________________ 117

6.2.2.3.4 Future Research through Further Refinement ___________ 118

6.3 RECONFIGURABLE HARDWARE AS AN INTEGRAL HANDHELD DEVICE

 COMPONENT__ 120

6.3.2 Push-Based Configuration Management Strategy ______________ 122

6.3.2.1 Review of Push Technology for Data Dissemination______ 123

6.3.2.2 Architectural Overview ____________________________ 128

6.3.2.3 Master-Slave Design Pattern ________________________ 129

6.3.2.4 Evaluation _______________________________________ 129

6.3.2.5 Test Case Environment_____________________________ 130

6.3.2.6 Future Work _____________________________________ 131

6.3.3 Context-Aware Reconfiguration of Handheld Devices __________ 133

6.3.3.1 Architectural Overview ____________________________ 134

6.3.3.1 Evaluation _______________________________________ 135

6.3.3.2 Test Case Environment_____________________________ 136

6.3.3.3 Performance Results _______________________________ 137

6.4 Handheld Device Usage__________________________________ 140

CHAPTER 7 __ 141

Exploiting Learning and Collaboration Characteristics of Agents ______ 141

7.1 INTRODUCTION ___ 141

7.2 Learning & Adaptation Negotiation Protocol _________________ 141

7.2.1 Evaluation ___ 149

7.2.2 Test Case Environment ___________________________________ 149

7.2.3 Performance Results _____________________________________ 150

7.2.4 Future Research through Expansion of Learning Agents _________ 153

7.3 Collective Past-Experience Learning Strategy_________________ 154

7.3.1 Evaluation __ 157

7.3.2 Test Case Environment __________________________________ 157

7.3.3 Performance Results ____________________________________ 158

- ix -

7.3.4 Future Research __ 162

CHAPTER 8 __ 163

Thesis Evaluation and Conclusions________________________________ 163

8.1 INTRODUCTION ___ 163

8.2 CONTRIBUTIONS & RESULTS ______________________________ 163

8.3 FUTURE WORK ___ 166

BIBLIOGRAPHY __ 168

APPENDIX ___ 200

- x -

- xi -

LIST OF TABLES

4.1: Execution Time of Client-Server & All-Agent Models ………………..

5.1: Agent Roles and Responsibilities within CAMMD Framework ………

5.2: Overview of CAMMD Performance Evaluation Tests ………………...

5.3: Patient to Ward Distribution …………………………………………...

6.1: Agent Roles and Responsibilities within Networked Reconfigurable

 Hardware Deployment Strategies ……………………………………...

6.2: Average Quantitive Times for Agent-Based Negotiation ……………...

6.3: Example Priority Levels within Telemedicine Environment ………….

6.4: Average Quantitive Times for Context-Based Negotiation ……………

6.5: Performance Overhead of Place Lab …………………………………..

6.6: Agent Roles and Responsibilities within Integral Handheld Device

 Resource Deployment Scenarios ………………………………………

6.7: Security within Handheld Device Configuration Management ………..

6.8: Example Medical Scenario of Context-Aware Hardware

 Reconfiguration of Handheld Device ………………………………….

7.1: Agent Roles and Responsibilities within Learning and Adaptation

 Negotiation Protocol …………………………………………………...

7.2: Potential Reasons for Poor Bid Estimation by Adaptive Servers ……...

7.3: Tolerance Level Percentage Ratings …………………………………...

68

78

83

84

91

103

107

115

117

125

131

134

143

147

149

- xii -

LIST OF FIGURES

2.1: Pervasive Handheld Axis for Mobile Computing Systems ……………

2.2: Block Diagram of Internet Reconfigurable Logic System …………….

2.3: Block Diagram of the PAVE Framework ……………………………...

2.4: Block Diagram of the RARE Framework ……………………………...

3.1: FPGA Internal (Island-Style) Architecture …………………………….

3.2: Example of Look-up Table Flexibility ………………………………...

3.3: Xilinx Virtex Device CLB Slice ……………………………………….

3.4: Architectural Flow Diagrams of Reconfiguration Modes ……………..

3.5: Design Flow Methodology for Pervasive Handheld Computing

 Systems ………………………………………………………………...

3.6: Abstraction Levels ……………………………………………………..

3.7: JBits API Functionality ………………………………………………...

3.8: Traditional Static Hardware Design using Jbits ……………………….

3.9: Handel-C Design Flow ………………………………………………...

3.10: JBits XHWIF Interface Deployment …………………………………

3.11: Handel-C Device Driver Deployment ………………………………..

4.1: Generic Agent Model …………………………………………………..

4.2: State Transition Diagram of Agent Life Cycle ………………………...

4.3: Agent Management Reference Model …………………………………

4.4: Gaia Concepts ………………………………………………………….

4.5: Performance Overhead of Implementation Models ……………………

5.1: Network Activity within CAMMD Configuration Management

 Operation ……………………………………………………………….

5.2: CAMMD Agent Infrastructure ………………………………………...

5.3: CAMMD Prototype Screenshots ………………………………………

12

21

22

23

29

31

32

34

35

39

40

41

42

45

46

51

52

54

61

69

75

77

80

- xiii -

5.4: A Jess rule which cross-references appointment times with the current

 time …………………………………………………………………….

5.5: CAMMD Physical Constraint Tests …………………………………...

5.6: CAMMD Usability / Interaction Tests ………………………………...

6.1: Agent Architecture Implementing Agent Negotiation Protocol ……….

6.2: Medical Prototype Screenshots Implementing Agent-Based

 Negotiation Protocol …………………………………………………...

6.3: System Architecture for Agent-Based Negotiation Protocol …………..

6.4: Celoxica RC200 Development Board ………………………………….

6.5: Load Distribution Scenarios Simulating Real-World Network States ...

6.6: Effect of Probability Distribution Scenarios on Generation of Task

 Queues ………………………………………………………………….

6.7: Time to Service a Computational Request …………………………….

6.8: Agent Negotiation Protocol Load Balancing Scenario ………………...

6.9: Agent Architecture Implementing Context-Based Negotiation Protocol

6.10: Adaptive Server Queue Example within Context-Based Negotiation

 Strategy ……………………………………………………………….

6.11: System Architecture for Context-Based Negotiation Protocol ……….

6.12: Place Lab Usage Model ………………………………………………

6.13: Priority-Based Distribution Scenario for Task Assignment ………….

6.14: Time to Process Computational Requests Using Context-Aware

 Negotiation Protocol ………………………………………………….

6.15: Job Positioning within Adaptive Server Queue of Tasks Using

 Context-Based Negotiation Protocol …………………………………

6.16: Context-Based Negotiation Protocol within Enhanced Telemedicine

 Scenario ……………………………………………………………….

6.17: Agent Architecture Implementing Push-Based Configuration

 Management Strategy ……………………………………………….

6.18: Master-Slave Behavioural Pattern ……………………………………

6.19: Mobile Medical Device System Architecture ………………………..

82

84

86

90

94

95

96

99

100

105

106

108

109

111

112

113

114

115

118

128

129

130

- xiv -

6.20: Agent Architecture Implementing Context-Aware Reconfiguration

 Protocol ……………………………………………………………….

6.21: Context-Aware Reconfigurable System Architectural Framework …..

6.22: Context-Aware Reconfiguration Protocol Screenshot ………………..

6.23: Usability and Interaction Test Results ………………………………..

7.1: Pseudo-Intelligent Learning & Adaptation Technique ………………...

7.2: Tolerance Levels Screenshot within Learning and Adaptation

 Negotiation Protocol …………………………………………………...

7.3: Bid Adjustment Pseudo-Code ………………………………………….

7.4: Adaptive Server Reliability Scenarios …………………………………

7.5: Bid Adjustment Scenarios for Adaptive Server Scenarios

 Under-Estimating & Over-Estimating Bids ……………………………

7.6: Collective Past-Experience Learning Strategy ………………………...

7.7: Handheld Device Bid Adjustment Records Example ………………….

7.8: Initial Simulation Performance Results ………………………………..

7.9: Reinforcement Characteristic of Collective Past-Experience Learning

 Strategy ………………………………………………………………...

7.10: Second Simulation Performance Results ……………………………..

7.11: Enlightenment Characteristic of Collective Past-Experience Learning

 Strategy ……………………………………………………………….

135

136

138

138

145

148

150

151

152

154

155

159

160

161

161

- xv -

LIST OF ABBREVIATIONS

ACL

AES

AOAD

AOSE

API

ASIC

AUML

BDI

CAMMD

CLB

CLIPS

DES

DICOM

DLL

DRIP

EDIF

EJB

FIPA

FIPA-ACL

FPGA

GPS

GSM

HDL

IDEA

Agent Communication Language

Advanced Encryption Standard

Agent-Oriented Analysis and Design

Agent-Oriented Software Engineering

Application Program Interface

Application Specific Integrated Circuit

Agent Unified Modelling Language

Belief, Desire, Intention

Context-Aware Mobile Medical Devices

Configurable Logic Block

C Language Integrated Production System

Data Encryption Standard

Digital Imaging and Communications in Medicine

Dynamic Link Libraries

Dynamically Reconfigurable Image Processor

Electronic Database Interchange Format

Enterprise Java Bean

Foundation for Intelligent Physical Agents

FIPA - Agent Communication Language

Field Programmable Gate Array

Global Positioning System

Global System for Mobile Communication

Hardware Description Language

International Data Encryption Algorithm

- xvi -

IOB

IRL

JADE

JADE-LEAP

JADEX

JESS

JNI

J2EE

J2ME

J2SE

KQML

MAC

MASB

MASE

Mbps

Ms

OMT

PAVE

PEP

QoS

RARE

RMI

RSA

RTL

SDR

SMS

Input-Output Block

Internet Reconfigurable Logic

Java Agent Development Environment

JADE-Lightweight Extensible Agent Platform

Jade eXtension

Java Expert System Shell

Java Native Interface

Java 2 Enterprise Edition

Java 2 Micro Edition

Java 2 Standard Edition

Knowledge Query and Manipulation Language

Media Access Control

Multi-Agent Scenario-Based

Multiagent Systems Engineering

Megabits per second

Millisecond

Object Modelling Technique

PLD API VxWorks Embedded

Packet Exchange Platform

Quality of Service

Remote Adaptive computing Resource Environment

Remote Method Invocation

Rivest, Shamir, and Adelman

Register Transfer Level

Software Defined Radio

Short Messaging System

- xvii -

TCP / IP

UML

USB

VHDL

VHSIC

WAP

Wi-Fi

XHWIF

XML

XNF

XSL

Transmission Control Protocol / Internet Protocol

Unified Modelling Language

Universal Serial Bus

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

Wireless Application Protocol

Wireless Fidelity

Xilinx HardWare InterFace

eXtensible Markup Language

Xilinx Native Files

Extensible Stylesheet Language

- xviii -

- 1 -

CHAPTER 1

Introduction

1.1 Introduction

The technological role of handheld devices is fundamentally changing. Portable

computers were traditionally application specific. They were designed and

optimised to deliver a specific task. However, it is now commonly acknowledged

that future handheld devices need to be multi-functional and need to be capable of

executing a range of high-performance applications [Fleischmann, 99].

This technological shift in handheld device usage is occurring within a number of

computing environments. Forthcoming generations of mobile devices within the

telecommunications market are expected to execute multiple tasks concurrently

[Mignolet, 02]. These tasks will include audio streaming, video

encoding/decoding and graphical processing.

The medical community constitutes another computing environment which is

experimenting with incorporating handheld device technology into healthcare

systems. This specialised field has recognised that greater levels of patient care

can be achieved through mobile computing [Kroll, 02]. Enabling nomadic

healthcare professionals with access to efficient medical tools at locations of their

choice enhances their productivity levels and improves the accuracy of their

patient diagnosis [Ancona, 01]. Essentially, multi-functional and high-

performance portable computers allow the medical community exploit the

capabilities of ubiquitous computing.

This ubiquitous vision of “everywhere, anytime” computing is a primary driving

force behind the changing technological role of handheld devices [Weiser, 93].

- 2 -

The primary concept within ubiquitous computing
1
 research is that the computer

disappears and computing services are made available to users throughout their

physical environment [Weiser, 91]. Handheld devices are a key component in

realising these ubiquitous computing environments.

Whereas today’s notebook computers and personal digital assistants are self-

contained, tomorrow’s networked mobile computers will act as access points to

greater computing infrastructures [Smit, 02]. These mobile computers will also be

capable of supporting a wide range of multimedia-based functionality [Smit, 01].

This thesis has coined the term pervasive handheld computing systems to refer to

this type of mobile device.

The technological challenges raised by the vision of ubiquitous computing

environments create serious performance and versatility issues for pervasive

handheld computing systems. These portable computers will be multi-functional

and capable of executing a broad range of compute intensive applications. These

handheld devices will employ a sophisticated middleware framework to facilitate

effective inter-communication and management structures.

Handheld devices are faced with a number of constraints in trying to meet these

objectives. They are physically constrained by their size, their computational

power, their memory resources, their power usage, and their networking ability.

These constraints challenge pervasive handheld computing systems in achieving

their multi-functional, high-performance requirements and jeopardise their role

within the ubiquitous computing vision.

Clearly, this changing technological role of handheld devices means the scope of

functionality and versatility required by pervasive handheld computing systems is

expanding. The consequence of this progression is the need for more proficient

design and deployment methodologies to help address the technological

challenges ahead.

1
 Also known as Pervasive or Ambient Computing

- 3 -

The methodologies currently employed by researchers can generally be

categorised into two distinct groupings:

• Enhancement of Hardware Resources within a Handheld Device

Environment

This approach seeks to improve the performance and versatility of

pervasive handheld computing systems by seeking to enhance the quality

of hardware resources within the environment of a mobile device. These

resources are either available as an integral component of a handheld

device or are accessible as a networked resource within a distributed

environment. Examples of research attempting to enhance integral

hardware components within a portable computer can be seen in

[Mignolet, 03], [Smit, 01], and [Guccione, 02]. Examples of research

focusing on enhancing hardware resources within a distributed network

are [Doss, 99], [Smith King, 01], and [Gaj, 03].

• Enhancement of Middleware Solutions for Handheld Computing

This approach focuses on pervasive handheld computing systems resolving

ubiquitous computing challenges by developing sophisticated middleware

infrastructures. These middleware frameworks are designed to operate

within mobile computing environments. They seek to enhance

performance and versatility of portable computers by providing them with

adept inter-communication capabilities. These middleware frameworks

allow handheld devices to engage in efficient exchange of information and

data with other distributed entities within a network environment. This

facilitates effective management of network resources.

A sophisticated middleware is also perceived as a crucial aspect in

constructing contextually-aware handheld devices. Portable computers

with contextual capabilities are able to monitor their environment and are

able to adapt to changes within it. This allows for comprehensive

management and utilisation of hardware resources within handheld device

environments. Examples of research focusing on developing middleware

solutions within handheld computing environments can be found in

[Chalmers, 98], [Edmonds, 01], and [Capra, 02].

- 4 -

This thesis stresses the need to combine both methodologies to create a uniform

approach. The thesis argues that the challenges posed by the ubiquitous

computing vision would be better resolved with this combined strategy.

This two-pronged approach places an equal emphasis upon the need for high-

performance hardware resources within handheld device environments and upon a

sophisticated middleware to enable effective management of these

aforementioned resources.

The thesis argues that this methodology constitutes a more coherent approach to

meeting the objectives of pervasive handheld computing systems.

1.2 Methodology Overview

The proposed methodology is a fusion of two independent and yet complementary

concepts. The first step focuses upon utilising reconfigurable technology to

enhance the physical hardware resources within the environment of a handheld

device. The key feature of reconfigurable computing is its ability to perform

computations in hardware to increase performance, whilst retaining much of the

flexibility of a software solution [Compton, 02].

The methodology integrates reconfigurable hardware into the environment of a

handheld device i.e. both into the physical device and into surrounding adaptive

servers. This approach recognises that reconfigurable computing has the potential

to dynamically increase the system functionality and versatility of a handheld

device without major loss in performance.

The second step of the proposed methodology seeks to incorporate sophisticated

middleware protocols to support handheld devices to effectively manage and

utilise reconfigurable hardware resources within their environment. Agent

technology is the mobile computing middleware employed [Wooldridge, 97].

- 5 -

Agents operating within physical components in a distributed network can be

engineered with adept decision-making capability. This characteristic facilitates

intelligent and proactive utilisation of reconfigurable hardware-based resources.

Agents are particularly well-suited to wireless networks as they are efficient in

their use of bandwidth and they can deal with intermittent network connections.

Additionally, an agent can effectively represent, communicate and work towards a

user’s preferences and interests. Crucially, the agent concept provides a high-level

of abstraction that is favourable towards the development of complex distributed

heterogeneous systems.

The thesis asserts the combined characteristics of reconfigurable computing and

agent technology can meet the goals of pervasive handheld computing systems.

Their combination represents a uniform and coherent approach to addressing the

fundamental challenges of ubiquitous computing.

The proposed methodology incorporates reconfigurable hardware as an integral

component within a handheld device and as an external resource within its

distributed environment. The methodology employs an agent-based middleware to

empower handheld devices to effectively utilise these reconfigurable resources.

1.3 Contributions

This dissertation makes a number of research contributions within the field of

pervasive handheld computing systems. The major contribution of this work is the

development of agent-based middleware protocols which support handheld

devices in exploiting reconfigurable resources within their environment.

These middleware protocols are categorised into two groupings according to

reconfigurable hardware placement, namely:

• Employing reconfigurable hardware as a networked resource

• Employing reconfigurable hardware as an integral handheld device

component

- 6 -

This work also contributes to the field of agent research for pervasive handheld

computing systems by presenting a mixed agent-object design methodology.

Additionally, the thesis establishes two middleware frameworks targeted towards

agent-based mobile computing environments. These frameworks promote the

learning, adaptive, and collaborative nature of agent-based systems. The

middleware frameworks also highlight the valuable contribution agent technology

can make within pervasive handheld computing systems.

1.4 Dissertation Structure

The thesis is structured as follows:

• Chapter Two reviews relevant research within the context of this thesis.

This includes a detailed examination of the concept of personal mobile

computing. The fundamental challenges and identifying characteristics of

this research paradigm are outlined.

An overview of the pervasive handheld axis conceptual model is

presented. This model conveys those elements considered crucial in the

construction of pervasive handheld computing systems. An examination of

related research which focuses upon enhancing the hardware resources

and middleware technology elements of the Pervasive Handheld Axis is

given.

As the prototype systems constructed within the context of this thesis are

targeted towards medical environments, a detailed assessment of the role

of mobile device technology within telemedicine is also presented.

• Chapter Three explores the field of reconfigurable computing within the

context of mobile computing environments. Reconfigurable technology is

the enabling hardware proposed within pervasive handheld computing

systems.

The chapter consists of a short history of the origins of reconfigurable

computing as well a detailed overview of its technological components.

The software tools required to effectively construct and deploy

reconfigurable hardware-based solutions are investigated.

- 7 -

An appraisal of the performance capabilities of reconfigurable hardware in

comparison with software-based solutions with special emphasis placed

upon applications within the medical field is presented.

The chapter concludes with an examination of related research which has

utilised reconfigurable logic either as an integral handheld device

component or as a resource within a networked environment.

• Chapter Four is concerned with the concept of agent-based computing.

Agents are the proposed middleware solution within pervasive handheld

computing systems. This chapter clearly defines the agent concept and

identifies the unique characteristics associated with agent-based software

engineering.

An overview of agent-based development systems is presented. This

includes a detailed examination of the agent frameworks employed within

the medical-based prototype systems within this thesis. Agent-oriented

analysis and design techniques are also explored.

The chapter also contains an appraisal of the important differences

between the concepts of agent-oriented and object-oriented programming.

Encapsulating these differences is the proposed mixed agent-object design

technique which was conceived to improve performance of agent-based

systems [O’ Sullivan, 06e].

Additionally, an examination of related work primarily exploring agent-

based middleware solutions deployed within mobile computing

environments is outlined.

• Chapter Five focuses on the importance of facilitating pervasive handheld

computing systems with context-aware capabilities within medical

environments. All prototype systems developed and presented within this

thesis are constructed to operate within the medical field. Each

experimental prototype comprises of a handheld medical device executing

an agent-based middleware protocol to enable utilisation of reconfigurable

resources within its environment.

A number of these prototype systems sense and interpret their contextual

environment to facilitate the deployment framework with enhanced

- 8 -

decision-making ability. Thus, the chapter initially explores the concept of

context-aware computing.

The role of context-awareness within handheld medical device

environments is highlighted through a description of the developed

CAMMD
2
 framework [O’ Sullivan, 06d]. This deployment scenario

outlines the capability of a context-aware, agent-based framework to

enhance the usability and portability of mobile medical devices. The

proposed methodology is also shown to have the capability to address both

storage and network bandwidth constraints.

• Chapter Six is concerned with investigating the potential of agent

technology to exploit reconfigurable resources for pervasive handheld

computing systems. The reconfigurable hardware is integrated into the

environment of the portable computer, i.e. it is placed both into the

physical device and into surrounding adaptive servers. A number of

middleware protocols are proposed:

o An agent-based negotiation and bidding protocol enabling

handheld devices gain efficient access to networked reconfigurable

resources [O’ Sullivan, 05c], [O’ Sullivan, 05d].

o A context-based negotiation protocol enabling utilisation of

networked reconfigurable resources by handheld devices within

contextual environments [O’ Sullivan, 05a].

o An application solutions retrieval protocol for handheld devices

[O’ Sullivan, 04c].

o The establishment of a push-based configuration management

strategy for the coherent distribution of reconfigurable-hardware

based application solutions to handheld devices [O’ Sullivan, 04a].

o The introduction of context-aware hardware reconfiguration

protocol for handheld devices. This enhances utilisation of

reconfigurable resources contained within a portable computer by

2
 Context-Aware Mobile Medical Devices

- 9 -

initiating a configuration process according to the application

requirements of a user [O’ Sullivan, 06b].

These protocols provide a firm basis to explore the potential of the

proposed methodology in meeting the challenges of pervasive handheld

computing systems.

• Chapter Seven presents a negotiation protocol that incorporates learning

and adaptive characteristics into an agent-based framework [O’ Sullivan,

06a]. The integration of these agent attributes into a development system

improves utilisation of networked reconfigurable resources by handheld

medical devices.

The chapter also details a collaborative learning strategy that enhances the

knowledge base of negotiating agents [O’ Sullivan, 06c]. This strategy

employs the physical trait of agent mobility to pool knowledge resources

and to effectively disseminate accumulated experiences.

• Chapter Eight presents an overall evaluation of the presented work

summarising the contributions made within this thesis. A detailed

overview of future work within the field of pervasive handheld computing

systems is also outlined.

- 10 -

CHAPTER 2

Background and Related Work

2.1 Introduction

The field of personal mobile computing will play a significant role in driving

technology in the next decade [Smit, 02]. Mobile devices are becoming more

powerful, ubiquitously available, and network-connected [Mahmoud, 02]. These

technological advancements are leading to an increasing number of portable

computers within physical environments.

This proliferation of mobile computing devices will help realise the ubiquitous

computing vision of people and environments augmented with computational

resources [Abowd, 02]. The realisation of this vision is reliant upon the

computational resources having the capability to provide information and services

when and where desired.

The demands placed upon computational resources within ubiquitous

environments are fundamentally changing the technological role of handheld

devices. The scope of functionality and versatility required by pervasive handheld

computing systems is expanding. This expansion is however impeded by the

constraints associated with portable devices.

These constraints are unique to the field of personal mobile computing and are as

follows [Satyanarayanan, 96]:

• Resource Poor Mobile Elements

Portable device constraints of weight, power, size and ergonomics

negatively affect computational resources such as processor speed,

memory size, and disk capacity [Gaddah, 03]. Whilst mobile elements will

improve in absolute ability, they will always be resource-poor relative to

static elements.

- 11 -

• Highly Variable Network Connectivity

Handheld devices suffer temporary and unannounced loss of network

connectivity through physical movement [Mascolo, 02], [Mascolo, 04].

The two major factors causing network instability are the nature of the

wireless medium and the mobility of devices [Sterbenz, 02]. Interference

can occur within wireless communication channels because of atmospheric

disturbances such as electromagnetic storms or environmental factors such

as rain [Kurkovsky, 04].

Essentially, low data bandwidths and intermittent network connections are

environmental constraints synonymous with portable computers. These

delimiting factors affect device usage and can lead to an unsatisfactory

user experience.

• Limited Power Resources

Next generation applications deployed on wirelessly networked embedded

devices will operate with extremely low power budgets [Verbauwhede,

02]. Portable computers will need to deliver functionality with optimal

energy efficiency [Smit, 99].

These fundamental constraints present considerable limitations within the field of

personal mobile computing. They challenge the multi-functional and high-

performance requirements of pervasive handheld computing systems. The research

methodologies currently employed by researchers to meet the versatility and

performance objectives of pervasive handheld computing systems can generally

be categorised into two distinct groupings.

The first approach has focused on enhancing hardware resources within the

environment of a handheld device. The second approach has prioritised the

importance of developing sophisticated middleware solutions for handheld

computing environments. These middleware solutions enhance handheld device

performance by introducing protocols which improve utilisation of hardware

resources. Both of these methodologies have their own individual merits.

- 12 -

Previous research has witnessed only small degrees of emphasis placed upon the

need to employ both approaches to help resolve the challenges of pervasive

handheld computing systems. This thesis stresses the need to combine both

methodologies to create a uniform approach. The thesis argues a two-pronged

approach can better resolve the challenges posed by the ubiquitous computing

vision.

2.2 Pervasive Handheld Axis

Three key components have been identified as essential elements in constructing

pervasive handheld computing systems. These form an axis of inter-dependability

known as the Pervasive Handheld Axis which is presented in Figure 2.1.

Figure 2.1: Pervasive Handheld Axis for Mobile Computing Systems

The two-pronged approach of the proposed methodology caters for the

middleware technology and hardware resources elements of the Pervasive

Handheld Axis. The methodology considers the pervasive networking

infrastructure element to be a secondary factor as networking infrastructures are

becoming increasingly omnipresent.

- 13 -

Within the context of this work, the middleware technologies element of the

Pervasive Handheld Axis relates to handheld devices employing middleware

protocols for utilisation of reconfigurable resources. These proposed protocols

constitute the second part of our proposed methodology enabling pervasive

handheld computing systems meet their future objectives.

A range of related research has focused on enhancing the hardware resources and

middleware technology elements of the Pervasive Handheld Axis. These research

efforts are outlined in Section 2.3 and 2.4 respectively.

2.3 Hardware Resources within Handheld Device Environments

Performance and versatility are two key issues gathering increasing attention

within the handheld device community. Reconfigurable technology is considered

by many as a viable solution to address these portable computer concerns. The

reconfigurable computing concept is explored in-depth in Chapter 3. Specific

examples of the performance capabilities of reconfigurable hardware are

presented in Section 3.7.

The methodologies employed by mobile computing research groups utilising

reconfigurable hardware can be categorised into two groupings, namely:

• Integral Component Placement

This entails placing reconfigurable hardware within a portable device to

operate as an integral component. Reconfigurable technology incorporated

within a handheld device is beneficial as it establishes a flexible and

dynamic system architecture which can help achieve the requirements of

pervasive handheld computing systems.

• Networked Resource Placement

This involves introducing reconfigurable hardware as an external resource

within the networked environment of a handheld device. Reconfigurable

hardware usage is requested by the portable computer. This enables a

handheld device to offload compute-intensive computational tasks to

neighbouring reconfigurable hardware-based servers.

- 14 -

2.3.1 Integral Component Placement

Multimedia-based applications executing on handheld computers require high

performance capabilities to achieve efficient processing of compute-intensive

applications [Singh, 94]. A reconfigurable computing platform within a

networked and portable multimedia appliance can increase computational power

and maintain device flexibility [Guccione, 02].

The Chameleon research project focuses on developing a heterogeneous

reconfigurable mobile system [Smit, 01]. Their device architecture operates in

cohesion with a QoS
3
-driven operating system. This facilitates selecting

granularity of computation in accordance with the model of task to be performed

i.e. the physical architecture is matched dynamically to each application.

An example application of this design methodology is fine-tuning the settings of a

SDR
4
 component within a handheld device [Smit, 02]. In contrast to ASIC

5

implementations, these radio modifications can be made at runtime according to

the context of the external environment. This translates to reductions in the energy

consumption of a mobile device.

Research within the Gecko project has produced a reconfigurable hardware-based

video decoder application operating within a handheld device [Mignolet, 03]. The

video decoder is a motion JPEG frame decoder. The methodology employed

supports the relocation of the application from reconfigurable hardware to

software and vice-versa. This approach allows the handheld operating system to

spawn or relocate tasks and also enables QoS management.

Additional research utilising reconfigurable technology as an integral handheld

device component has ranged from digital signal processing components for audio

MP3 players [Scalera, 00] to video compression tools [Lee, 00] to enhanced

teaching tools within university microcomputer courses [Gottlieb, 03].

3
 Quality of Service

4
 Software Defined Radio

5
 Application Specific Integrated Circuit

- 15 -

2.3.2 Networked Resource Placement

A range of research projects have constructed system architectures to facilitate

utilisation of networked hardware resources by client machines. These research

efforts have seldom focused upon mobile computing environments. Instead, the

client machines have tended to be represented by workstations which are

connected to networked adaptive servers over reliable wired networks [Smith

King, 01], [Casselman, 02].

Clearly, research projects dealing with networked reconfigurable hardware rely

upon a middleware framework. However, it has been found that middleware

support is commonly treated as an aside within the overall objectives of these

projects. It is generally merely utilised to establish a connection to facilitate

simple inter-communication between clients and servers.

Essentially, middleware frameworks are under-exploited in terms of establishing

protocols to facilitate optimal utilisation of networked hardware resources. This is

especially prevalent for resource-constrained handheld devices seeking to offload

compute-intensive tasks to neighbouring adaptive servers.

Research projects which have investigated middleware frameworks to support

network resource placement are outlined within the middleware technology

section of 2.4.2.

2.4 Middleware Technology

Pervious research incorporating reconfigurable hardware within a distributed

environment as a networked resource has tended to employ simple forms of

middleware infrastructure. Research efforts using reconfigurable technology as an

integral handheld device component have also employed simplified middleware

infrastructures.

- 16 -

These middleware solutions have tended to model traditional client-server

frameworks. These infrastructures are inappropriate for the dynamic and sporadic

nature of mobile computing environments.

Furthermore, there is a lack of research investigating middleware protocols that

target effective exploitation of reconfigurable resources within handheld device

environments. Identification and dissemination of appropriate protocols within the

research community is required to support any realistic expectations of

reconfigurable technology solving the performance and versatility requirements of

pervasive handheld computing systems. The middleware protocols proposed

within the context of this thesis are outlined in Chapters Six and Seven.

2.4.1 Middleware Technology Supporting Integral Component Placement

There is a shortage of research focusing upon middleware protocol support for

handheld devices incorporating reconfigurable logic. The majority of research

projects investigating reconfigurable hardware deployment within portable

computers focus upon the physical framework of the device. Examples of this

type of research are the Chameleon and Gecko projects as outlined in Section

2.3.1. These research initiatives do not concentrate upon network support for

device reconfiguration.

Research dealing with developing middleware infrastructures to support

networked reconfigurable hardware based handheld devices is slowly beginning

to improve. This can be attributed to both a maturing of reconfigurable logic

circuitry (ref. Section 3.1) and to an awareness of the increasing functional

demands of portable devices.

An architectural framework for networked reconfigurable handheld devices

constructed with EJB
6
 technology has been proposed [Nitsch, 03]. Modularity and

flexibility are key objectives of the middleware framework. The developed

architecture contains a system management API
7
 constructed with XML

8
. This

6
 Enterprise Java Bean

7
 Application Program Interface

- 17 -

facilitates services such as application download-on-demand and on-the-fly

update of hardware acceleration components.

A Java-based system architecture supporting networked reconfigurable handheld

devices has been proposed [Lee, 00]. This framework enables reconfigurable

hardware-software based Java applications to be remotely downloaded to the

embedded system through a System Manager object. The System Manager

supports two middleware protocols, namely:

• A download protocol catering for the remote installation of reconfigurable

bitstreams on an embedded device.

• A system maintenance protocol catering for remote management and

testing of the reconfigurable hardware circuitry on the embedded system.

The System Manager object uses a simple TCP/IP
9
 Java-based socket connection

to establish protocol communication between the remote management system and

the embedded device.

There have been a number of additional research projects focusing upon Java-

based middleware frameworks to support networked reconfigurable handheld

devices [Ha, 02], [Ha, 01], and [Guccione, 02]. These middleware frameworks are

also constructed with TCP/IP socket connections. The architectures support basic

modes of operation such as request and retrieval protocols which allow

reconfiguration bitstreams to be retrieved from remote servers.

The Enamorado project is a European Union funded research development

focusing on producing a handheld device with the capability of receiving and

executing multimedia data streams [Nikolouzou, 04], [Nikolouzou, 04b], and

[Kosmatos, 04].

8
 eXtensible Markup Language

9
 Transmission Control Protocol / Internet Protocol

- 18 -

Reconfigurable hardware within the device is employed to process the multimedia

content. A primary feature of an Enamorado portable computer will be its capacity

to dynamically reconfigure its hardware functionality depending upon media

content. Middleware protocols operating over a Java platform support the

Enamorado client handheld device and these include:

• Media Content Delivery Protocols

Media content can be streamed or downloaded to the handheld device

depending upon user preferences.

• Application Code Services Protocols

Reconfigurable hardware-based applications can be downloaded

dynamically according to the usage and performance requirements of each

user. These applications handle the processing of content from streaming

media servers. Protocols are also being developed to allow propagation of

upgrade functionality to handheld devices which is initiated from

provisioning servers.

The Enamorado project is currently nearing completion with an expected delivery

date of December 2005.

2.4.2 Middleware Technology Supporting Networked Resource Placement

The principal benefits of providing a portable computer with a sophisticated

middleware framework to access networked reconfigurable hardware resources

are:

• Enhanced Handheld Device Performance and Versatility

A mobile device can offload computationally-intensive tasks to a

neighbouring adaptive server.

• Enhanced Utilisation of Reconfigurable Resources

The resources of a networked adaptive server can be shared by many

handheld devices.

- 19 -

The middleware infrastructure supporting the handheld device to offload

computational requests to neighbouring adaptive servers should also facilitate

dynamic allocation of computational tasks amongst adaptive servers. Runtime

binding of application requests with networked reconfigurable resources can

improve utilisation of server-based resources by handheld devices.

This is relevant as reconfigurable resources within adaptive servers are costly

commodities. Effective utilisation helps ensure satisfactory return on investment

as well as the highest possible performance and versatility gains for client

handheld devices.

This constitutes an economic and system performance challenge for the

middleware technology supporting portable computers. Communication protocols

are required to ensure a fair workload distribution amongst all adaptive servers.

This helps establish a load-balanced network which in turn provides higher

quality of service to all client mobile devices.

This also helps avoid both system bottlenecks and under-utilisation of resources.

The quality of service experienced by portable computers is also enhanced as their

computational task is dynamically bound to an adaptive server with the lowest

workload.

There have been a number of research efforts which have investigated middleware

solutions to support client systems in utilising adaptive servers. An attempt to

establish ubiquitous access to remote reconfigurable hardware has been outlined

[Indrusiak, 03]. Their objective is to allow a network of reconfigurable hardware

modules be accessible transparently by client applications.

This entails facilitating client application usage of reconfigurable hardware

modules regardless of physical location. This is achieved by raising the

abstraction level of the integration architecture for reconfigurable modules and

computer systems through the employment of a Jini-based middleware solution

[Arnold, 99].

- 20 -

Middleware capable of discovering and exploiting under-utilised computing nodes

containing reconfigurable FPGA-based accelerator boards has been developed

[Gaj, 03]. This entailed extending an off-the-shelf job management system to

facilitate sharing of remote reconfigurable resources. The framework facilitates

scheduling of client requests for usage of remote reconfigurable hardware.

A Middleware solution has been constructed to facilitate remote execution of both

reconfigurable hardware and software based computational requests [Smith King,

01]. Their research introduces a Java-based communication layer called PEP
10

which provides an interface between a client-side application and server-side

target implementations. This abstraction layer is beneficial as it allows the

dynamic binding of applications to target implementations at runtime depending

upon resource usage. The PEP development also facilitates sharing of

reconfigurable hardware resources.

An early visionary paper recognised the potential of agent technology as an

effective middleware to utilise networked reconfigurable hardware within a

distributed medical domain [Mapen, 99]. Their research efforts outline the

benefits of agent technology within healthcare environments. The notion of agents

facilitating efficient utilisation of networked adaptive servers is also conveyed.

Mapen’s work is presented at a high theoretical level and does not focus upon the

unique characteristics of personal mobile computing.

A commercial venture marketing a middleware methodology which supports

management of networked reconfigurable hardware has been launched

[Casselman, 02]. Their business strategy is based upon the belief that an effective

middleware capable of transmitting bitstreams to networked reconfigurable logic

is an essential element for any FPGA-based product strategy. Their bitstream

management environment coins the term intelligent bitstream to refer to a C++

object which includes all the data necessary for delivery, verification and use of a

reconfigurable bitstream on a networked FPGA.

10
 Packet Exchange Platform

- 21 -

The IRL
11

 tool is also a commercial venture developed by Xilinx Corporation

[Xilinx, 05] consisting of a network management API to dynamically configure

and execute remote server-based reconfigurable logic [Jacobson, 00], [Jacobson,

01], [Xilinx, 01]. A conceptual diagram of the elements within a networked

system employing the IRL tool is presented in Figure 2.2.

Figure 2.2: Block Diagram of Internet Reconfigurable Logic System

IRL provides middleware protocols to upgrade adaptive server functionality

through upgrades and fixes. The middleware is built with Java technology and is

modelled upon a traditional client server framework. Xilinx developed the JBits

API to support the IRL management tool. An overview of the JBits framework is

presented in Section 3.6.1.2. IRL provides a basic infrastructure supporting

reconfigurable hardware-based adaptive servers.

Xilinx Corporation together with Wind River Systems [Wind, 05] has also

developed an object-oriented framework to support the management of

reconfigurable hardware in an upgradeable infrastructure [Pave, 05]. Their

PAVE
12

 framework consists of a communication and configuration management

API. The elements of the PAVE framework are shown in Figure 2.3.

11
 Internet Reconfigurable Logic

12
 PLD API VxWorks Embedded

- 22 -

The components of the PAVE framework are a collection of C++ classes and

object models that help to abstract and conceptualise reconfigurable hardware-

based applications.

Figure 2.3: Block Diagram of the PAVE Framework

PAVE treats the programmable hardware as an object within the system which

encourages applications written with this API to be object-oriented, modular and

upgradeable. The PAVE framework introduces a coherent approach to the

development of applications for reconfigurable hardware-based server systems.

The key objective of the RARE
13

 project is to construct a framework enabling

adaptive servers to deliver functionality equivalent to application servers [Doss,

99]. An illustration of the RARE framework is presented in Figure 2.4. RARE

enables client programs to attach to an adaptive server through a Java-based

interface to remotely utilise available reconfigurable resources. Java technologies

utilised within the methodology include JNI
14

 and RMI
15

.

RARE presents a good basic framework for combining network technologies and

reconfigurable computing to provide a distributed adaptive environment.

However, there are certain disadvantages in the methodological approach.

13
 Remote Adaptive computing Resource Environment

14
 Java Native Interface

15
 Remote Method Invocation

- 23 -

Scalability could prove a headache as substantial development would be required

to facilitate fair workload distribution amongst a number of adaptive servers.

Figure 2.4: Block Diagram of the RARE Framework

Additional Java-based middleware solutions enabling dynamic interaction with

remote reconfigurable hardware resources within adaptive servers have been

proposed by Moseley [Moseley, 02] and Agarwal [Agarwal, 94]. There have also

been a number of research efforts focusing upon middleware frameworks to

support reconfigurable hardware usage over the Internet [Cret, 02], [Wirthlin, 02].

2.5 Mobile Device Technology within Telemedicine Environments

The prototype systems constructed within the context of this thesis are targeted

towards mobile telemedicine environments. These experimental prototypes

encapsulate middleware communication protocols which seek to enhance

utilisation of reconfigurable hardware components within handheld medical

device environments.

The primary reasoning for placing these test-case systems within the medical field

was recognition of the necessity to equip healthcare professionals with high-

performance and multi-functional portable computers. This is especially prevalent

as:

- 24 -

• Medical practitioners are nomadic in their work-day practices and

handheld devices provide them with the most-likely mechanism of

interacting with hospital networking infrastructures.

• Healthcare professionals require compute-intensive functionality from

their portable computers e.g. image processing, cryptography services, etc.

Mobile device technology will play a significant role within future medical

environments. Portable computers within medical environments can enhance the

productivity and efficiency of healthcare professionals. They are a key component

in realising the future telemedicine vision of ubiquitous healthcare.

The concept of ubiquitous healthcare refers to the provision of any type of IT-

related health service through mobile computing devices [Kirn, 02]. Handheld

devices are capable of providing a range of health service applications to medical

practitioners.

Enabling these nomadic professionals with access to efficient medical tools at

locations of their choice enhances their productivity levels and can also improve

the accuracy of their patient diagnosis. These portable devices can help provide

greater levels of patient care and help the healthcare system exploit ubiquitous

computing capabilities.

There have been a number of research efforts investigating potential benefits and

possible strategies for deploying portable devices within a medical environment.

The major focus of this work has been an effort to enable medical professionals’

access, manipulate and analyse patient records whilst on the move.

The clear benefits associated with providing wireless handheld access to clinical

patient records have been recognised [Ancona, 01]. This work compared an

electronic patient-based record system accessible on portable computers with a

traditional paper-based system. The study showed electronic records provided a

clear improvement in the productivity of healthcare professionals in comparison

with the conventional paper-based system. The potential for minimising errors

through utilising the wireless-based system was also recognised.

- 25 -

A web-based telemedicine architecture facilitating wireless access to electronic

patient records on a portable device has been proposed [Lamberti, 02]. This

approach utilises Java, XML and XSL
16

 technologies. The web browser of a

mobile device is incorporated as the visual interface. The inherent benefit of using

the Internet as a communication medium is its ability to operate independently of

the client hardware/software architecture.

The ability to access images of patient scans everywhere and anytime on mobile

hardware has also been investigated. This type of wireless application was

identified as beneficial for medical practitioners when performing routine

diagnostics [Kroll, 02]. This feasibility study examined applications developed for

viewing and analysing DICOM
17

 image and waveform objects on handheld

devices.

Their conclusions recognised the importance of developing handheld applications

that prioritised intelligent interaction. This approach helps minimise drawbacks

imposed by the physical constraints of a mobile device. The work also focused on

the computational power shortcomings of mobile devices. A traditional client-

server framework was implemented to enable handheld devices to offload

compute-intensive tasks to neighbouring servers.

2.5.1 Reconfigurable Hardware and Mobile Medical Devices

Computational performance and power consumption of mobile medical devices

are related issues of increasing performance within the telemedicine community.

Reconfigurable computing is considered by many as having the potential to

address these concerns.

The cost, size and power consumption of medical devices is shown to be reduced

through utilising a framework consisting of reconfigurable technology and

efficient communication techniques [Martel, 00]. This work shows that large

16
 Extensible Stylesheet Language

17
 Digital Imaging and Communications in Medicine

- 26 -

repetitive tasks implemented in reconfigurable hardware rather than software can

help yield substantial improvements in power and performance.

The authors conclude increased performance and flexibility for future bio-

instruments and medical devices will continue to be enhanced as reconfigurable

technology becomes increasingly prevalent and communication structures become

more advanced.

2.5.2 Agent Technology and Mobile Medical Devices

The field of agent technology is viewed as a highly suitable paradigm and inter-

communication infrastructure for the analysis and design of mobile telemedicine

systems [Della Mea, 01]. The agent paradigm is viewed as a vast improvement to

the traditional client-server approach for developing complex telemedicine

systems. Such systems can be defined as communities of interacting entities that

aim to support collaboration and resource sharing in a medical environment.

This observation is especially prevalent for mobile telemedicine systems which

have continuously appearing and disappearing components within their distributed

network. Agent-based frameworks are recognised as being capable of

coordinating distributed decision-making processes within these medical-based

environments [Huang, 95]. Agents are seen as abstractions within these hospital

environments that can hide the complexities associated with collaborative work

practices.

Agent middleware is also recognised as a key factor in facilitating the ambient

intelligent vision within future healthcare environments [Rodriguez, 04b].

Ambient intelligence is a research paradigm that aims to empower individuals

within digital environments through awareness of their context and activity whilst

having the capability of displaying sensitivity and reactivity to their needs.

Previous research recognised the potential of agent technology as an effective

middleware to utilise reconfigurable hardware within a distributed medical

domain [Mapen, 99]. This earlier work outlines the advantages of using agent

- 27 -

technology within healthcare environments and also details its ability to

efficiently exploit networked adaptive servers.

2.6 Summary

Reconfigurable computing and agent technology have key roles to play in the

future growth of mobile telemedicine systems. The technical attributes of each of

these research paradigms could be considered essential to the field of mobile

telemedicine and to the concept of ubiquitous computing within healthcare.

Future handheld computers within the medical field will clearly need to be high-

performance, multi-functional devices that are intelligently utilised so that they

are capable of executing a broad range of compute-intensive applications [O’

Sullivan, 05e].

The deployment strategies presented within this thesis highlight a technological

solution for delivering such handheld devices. These deployment strategies

consist of medical-based network environments that incorporate a dynamic

physical architecture (i.e. reconfigurable hardware) as well as a sophisticated

network support infrastructure (i.e. context-aware agent middleware).

The deployment scenarios are by-products of the proposed two-pronged

methodological approach. This methodology recommends agent computing and

reconfigurable logic as the middleware technology and hardware resources

elements of the Pervasive Handheld Axis model. These technologies will help

pervasive handheld computing systems within medical environments meet their

future objectives.

- 28 -

CHAPTER 3

Reconfigurable Computing within Mobile Environments

3.1 Introduction

The reconfigurable computing concept was first presented by Gerald Estrin in

1963 [Estrin, 63]. However, it is only in the last number of years that

reconfigurable hardware has begun to come of age in terms of the potential of

integrating the technology into the environment of a handheld device i.e. either as

an integral component of a portable computer or as a technology encapsulated

within surrounding adaptive servers.

Lower financial costs for reconfigurable hardware units as well as vast increases

in their gate densities
18

 have been the principal driving factors in the growth of

reconfigurable computing systems within handheld device environments. The

primary benefits of incorporating reconfigurable logic within handheld computing

systems are that it provides mechanisms to increase device performance and

system functionality [Guccione, 01]. These improvements are delivered with

efficient consumption of power resources. For example, a reconfigurable

hardware-based implementation of an AES
19

 encryption algorithm reported a

96.7% improvement in power efficiency in comparison with a general purpose

processor solution [Verbauwhede, 02]. The reconfigurable hardware-based

platform also executed the AES algorithm 5% quicker than the general-purpose

processor implementation. An appraisal of the performance capabilities of

reconfigurable hardware is presented in Section 3.7.

Underlying these power efficiency and performance improvements is the

understanding that individual functions or complete systems realised with

hardware execute faster and utilise less power than software-based

18
 Xilinx (http://www.xilinx.com), for one, has confirmed the construction of a reconfigurable

hardware device with one billion transistors [Burger, 97].

19
 Advanced Encryption Standard

- 29 -

implementations [Prophet, 04]. Essentially, the key feature of reconfigurable-

based computing is that it provides the capability to perform computations in

hardware to increase performance, while retaining much of the flexibility of a

software solution [Compton, 02].

It is important to note that most computationally intensive applications expend

90% of their execution time within only 10% of their code [Hennessy, 96]. The

basic instructions within these 10% code blocks naturally differ from application

to application. These observations make the idea of a fast general-purpose central

processing unit appear inconsistent. A custom computing machine or a

reconfigurable computer

allowing for customisation of each application is a

solution to this contradiction of delivering general-purpose computing with high-

performance processing.

Figure 3.1: FPGA Internal (Island-Style) Architecture

An enabling technology of these custom computing machines is the FPGA
20

.

FPGAs were invented by Xilinx Corporation in 1984 [Xilinx, 02]. FPGAs are

20
 Field Programmable Gate Array

- 30 -

used to accelerate algorithm execution by mapping compute-intensive calculations

to the reconfigurable substrate. A detailed examination of the individual

components within an FPGA is presented within Section 3.2.

Basically, reconfigurable computing involves manipulation of the logic within an

FPGA during system runtime. In essence, the design of the hardware may change

in response to the demands placed upon the system whilst it is running. The

FPGA can act as an execution engine for a variety of different hardware functions

and these may operate in parallel or in serial mode.

3.2 FPGA Architecture

The internal architecture of an FPGA is presented in Figure 3.1 and it consists of

the following components:

• Configurable Logic Blocks (CLB)

A CLB is a group of functional elements (look-up tables, multiplexers and

flip flops) used in constructing logic. A look-up table (LUT) logic gate has

chameleon-like capability to emulate any other possible logic gate. An n-

input LUT is an n-address memory used to store the possible values of an

n-input boolean function. With an n-input LUT, it is possible to implement

any function with n variables. The values of the function for any

combination of the n variables is computed and stored in the LUT

[Francis, 92]. An example of this flexibility is presented within Figure 3.2.

• Input-Output Blocks (IOB)

An IOB provides an interface between an outside package pin and an

internal signal line.

• Programmable Interconnect Resources (PIP)

Internal connections are composed of metal wires with programmable

switching points to implement the desired routing. Programmable routing

is utilised to interconnect the inputs and outputs of each CLB and IOB

onto the appropriate networks [Xilinx, 03]. Each type of interconnect is

- 31 -

distinguishable by the relative length of the segment e.g. single-length

lines, double-length lines, and long lines.

Figure 3.2: Example of Look-up Table Flexibility

A user design is implemented within an FPGA by configuring the CLB elements

to determine the digital logic and by configuring the routing to determine the

internal connections of the FPGA. An example schematic of a Xilinx Virtex CLB

slice is shown in Figure 3.3.

- 32 -

Figure 3.3: Xilinx Virtex Device CLB Slice

This CLB has two 4-input LUT(s), D-type flip-flops and some form of fast carry

logic. The general routing allows data to be passed to or received from other

CLBs. The input multiplexers allow wires in the general routing to pass data to

the slices, while the output multiplexers allow the slices to pass data to wires in

the general routing. The Xilinx Virtex FPGA is the reconfigurable hardware

employed within the prototype systems developed and presented within this

thesis.

- 33 -

3.3 Reconfiguration Modes

Reconfigurable computing has several possible execution models which can be

characterised by the context of their architectural design. This classification

divides the design models into three programmability classes based upon their

number of configurations and the time in which reconfiguration takes place

[Adario, 99]. These design models can be described as follows:

• Static Design

This type of circuit design maintains a single configuration which is never

modified. An architectural flow diagram of this model is presented in

Figure 3.4 (a). This design does not exploit the reconfigurable aspects of

the hardware. The principal benefit of this design model is the high-level

of flexibility available during the prototyping phase.

• Statically Reconfigurable Design

This type of circuit design has several configurations with any

reconfiguration process occurring at the end of a processing task. An

architectural flow diagram illustrating this type of model is presented in

Figure 3.4 (b). This design model may also be classified as run-time

reconfiguration. The programmable device within this model is better

utilised through dynamic modification of hardware resources.

Reconfigurable computing systems encompassing this design model use

an FPGA like a demand-paged resource. This delivers a virtual hardware

methodology which is analogous to the concept of virtual memory [Hauck,

98]. Image processing applications are well-suited to this design model.

These applications often consist of a pipeline of image filter components.

Each component applies a different image processing algorithm and may

be represented as a separate configuration mapping for the reconfiguration

logic [Quinn, 03].

• Dynamically Reconfigurable Design

This type of circuit design has multiple configurations with any

reconfiguration processes occurring during runtime whilst other hardware

- 34 -

processes may be executing. An architectural flow diagram illustrating this

type of model is presented in Figure 3.4 (c). This design is more efficient

in its use of reconfigurable resources but is also more complex in its

design. The design model may also be classified as partial run-time

reconfiguration. The implementation may use either a partially

programmable device (e.g. Xilinx Virtex FPGA) or a set of conventional

programmable devices (multi-FPGA architecture).

Figure 3.4: Architectural Flow Diagrams of Reconfiguration Modes

The prototypes developed within this thesis to evaluate pervasive handheld

computing systems are within the category of statically reconfigurable design.

However, the software tools and device drivers (ref. Section 3.5) utilised allows

the prototype systems to facilitate the dynamically reconfigurable design model.

- 35 -

3.4 FPGA Design Flow

Reconfigurable systems are fundamentally hardware-software based embedded

systems that have the added capability to modify reconfigurable logic resources

dynamically. The design flow methodology employed in the construction of

prototypes to evaluate pervasive handheld computing systems is presented within

Figure 3.5.

Figure 3.5: Design Flow Methodology for Pervasive Handheld

Computing Systems

Each stage within the design flow methodology can be described as follows:

• System Specification

This stage consists of a detailed analysis of the hardware and software

elements of an application and the relationships between them.

• Partitioning

This concerns the process of deciding, for each subsystem, whether the

required functionality is more advantageously implemented in hardware or

software. The goal is to achieve a partitioning that delivers the required

- 36 -

performance within system constraints (e.g. size, power, processing

speed).

• Scheduling

The scheduling process enables hardware and software resource sharing.

The task of scheduling is to determine task assignment and execution

order on the processing elements (processor or FPGA) whilst respecting

time constraints.

• Hardware Synthesis

Hardware synthesis is the process of converting a high-level language /

hardware description language (HDL) / schematic capture representing the

hardware domain of the system specification to the relevant vendor-

specific FPGA device bitstream format. The hardware synthesis tools

utilised in delivering pervasive handheld computing system prototypes are

outlined in Section 3.6.

• Software Compilation

This stage involves using compilers to generate processor specific

machine code representing the software domain of the system

specification.

• Interface Synthesis

This is a process of defining the interface between the hardware and

software components and synchronising interaction between them. The

interface requires access to driver libraries to facilitate communication to

peripheral devices. A detailed description of the interface employed within

the pervasive handheld computing system prototypes is presented in

Section 3.6.

• System Evaluation

This stage involves ensuring deliverable product meets original

requirements of system specification.

- 37 -

• Design Verification

The design verification phase entails modular testing of hardware and

software components to ensure functional compliance with requirements.

The stage also includes verification of the complete system to ensure all

necessary constraints are met.

3.5 Partitioning and Scheduling Issues

There are varying levels of complexity associated with partitioning and

scheduling of application solutions. The degree of complexity is dependent on the

level of hardware reconfiguration supported by the reconfigurable system (i.e.

static design, statically reconfigurable design, or dynamically reconfigurable

design).

Partitioning and scheduling constraints become increasing difficult to obey as the

degree of reconfiguration flexibility improves. This is primarily attributable to the

issues of configuration latency and partial reconfiguration [Mei, 00]. The

configuration time associated with the execution of a task is dependent on the

preceding and subsequent tasks contained within the schedule of operation for the

dynamic reconfigurable system. Additionally, partial reconfiguration changes the

operation of a reconfigurable system from acting in a sequential processing mode

to functioning like a resource pool. This complicates the process of scheduling

tasks within an FPGA such that it becomes a constrained placement problem.

This has led to a number of research efforts which have attempted to address

automatic partitioning and scheduling for reconfigurable architectures. The Garp

and Nimble compilers allow for automatic partitioning of C-type specifications

for FPGA-based platforms [Li, 00], [Hauser, 98], [Harr, 00]. These compilers

facilitate instruction-level parallelism but are not suited to task-level parallelism.

Crusade and Cords are systems capable of synthesising tasks across a distributed

network of multiple dynamically reconfigurable FPGAs [Dave, 99], [Dick, 98].

The partitioning and scheduling of tasks within the prototypes developed to

demonstrate pervasive handheld computing systems are pre-determined manually

- 38 -

with the aid of system-level designs. Future research will expand upon this

approach to incorporate automated partitioning and scheduling techniques.

3.6 Reconfigurable Hardware Development Tools

The reconfigurable hardware development tools employed within prototype

development of mobile medical computing devices presented within this thesis are

primarily concerned with the processes of hardware synthesis and interface

synthesis.

3.6.1 Hardware Synthesis Development Tools

Hardware synthesis is the process of converting the hardware domain of a system

specification (i.e. a high-level language, a hardware description language or a

schematic capture) to a relevant vendor-specific FPGA device bitstream format

[Ma, 03]. Hardware modules used within the pervasive handheld computing

systems synthesis process were defined with VHDL
21

, JBits and Handel-C. These

hardware development languages are utilised to describe hardware modules

within problem specifications. The Xilinx IDE
22

 toolkit was employed to convert

hardware module designs into board-specific bitstreams [Xilinx, 05b].

21
 VHSIC Hardware Description Language

22
 Integrated Development Environment

- 39 -

3.6.1.1 VHDL

VHDL is a language for describing digital electronic systems [Ashenden, 98]. It is

a well-established and standard design language. VHDL has evolved to cover

multiple levels of abstraction ranging from structural netlist to RTL
23

 to

behavioural [Sweeney, 02]. These levels of abstraction are illustrated within

Figure 3.6 [Spiegel, 01]:

Figure 3.6: Abstraction Levels

VHDL was employed initially as a hardware synthesis tool in the development of

the medical-based prototype systems. A VHDL program implementing the DES
24

encryption algorithm for incorporation within the medical-based prototype

systems was constructed. The purpose of this initial encryption algorithm was to

secure data transfer of confidential patient records within wireless-based

telemedicine environments.

The steep learning curve associated with VHDL for developers with software

engineering backgrounds [Neff, 03] led to an exploration of other hardware

development tools and to an eventual preference to adopt Handel-C.

23
 Register Transfer Level

24
 Data Encryption Standard

- 40 -

3.6.1.2 JBITS

JBits is a Java-based API developed by Xilinx Corporation allowing creation and

dynamic modification of their FPGA circuitry [Guccione, 99]. JBits consists of a

set of Java classes that provide designers with access to the programmable

resources of Xilinx Virtex devices.

The interface allows hardware circuits on this range of FPGAs to be designed,

modified and dynamically reconfigured. JBits enables access to look up table

circuitry within the configurable logic blocks of an FPGA. The API also

facilitates manipulation of the routing resources of the Xilinx Virtex range of

devices [Jbits, 05].

At the heart of JBits are four functions as shown in Figure 3.7. The first two allow

configuration bitstreams to be read and written. The third function allows the state

of a programmable resource to be queried, whilst the fourth function allows the

state of a programmable resource to be set to a defined value. The rest of the JBits

API is a series of constants defining each of the programmable resources within

the device and the value they can be set to. JBits thus hides the proprietary nature

of the configuration bitstream whilst still allowing full read and write access to all

programmable resources [James-Roxby, 00].

Figure 3.7: JBits API Functionality

The JBits API was originally developed as an enabling technology for runtime

reconfiguration but it can also be used to produce traditional static design

bitstream files for Virtex FPGAs.

The design flow for a static design is shown in Figure 3.8. In this flow, the design

is specified in a Java program using the JBits API and/or JBits cores. The

- 41 -

application takes a bitstream file as an input (e.g. null bitstream) and extracts the

device configuration data.

Figure 3.8: Traditional Static Hardware Design using JBits

This data is modified according to the design specified using the JBits API and is

output to a bitstream file that will be used to configure the hardware device. An

example of a JBits program implementing a grey scale image filter algorithm is

presented in Appendix A.1.

3.6.1.3 Handel-C

Handel-C is a hardware-based programming language built upon the syntax of the

conventional C programming language [Handel-C, 05]. It provides an alternative

design approach to circuit description than HDLs
25

 and schematic capture.

Handel-C has additional hardware constructs to help gain maximum benefit in

performance from a target FPGA.

The advantage of Handel-C is that it provides designers with a higher level of

abstraction for hardware design. This benefits software-based engineers as it

enables them to design hardware circuitry using familiar development concepts

[Todman, 05]. A disadvantage of Handel-C is the potential for loss of

performance as it can be argued the design is not as optimised as it would be with

HDL / schematic capture approaches [Edwards, 05].

25
 Hardware Description Languages

- 42 -

The Handel-C compiler generates either XNF
26

 for Xilinx FPGAs or EDIF
27

 for

use with non-Xilinx based devices. The design flow for hardware synthesis with

Handel-C is shown in Figure 3.9. An example of a Handel-C program

implementing an edge detection algorithm is presented in Appendix A.2.

Figure 3.9: Handel-C Design Flow

26
 Xilinx Native Files

27
 Electronic Database Interchange Format

- 43 -

3.6.1.4 Hardware Synthesis Appraisal

Three development methodologies were explored to convert reconfigurable

hardware algorithms specified within the medical-based experimental prototype to

FPGA bitstream representations. These hardware synthesis techniques are

outlined in the sections above. They differ primarily in language specifics, levels

of abstraction and in the tools and mechanisms employed to generate executable

FPGA code.

VHDL is the oldest and most widely used of the three techniques. It is ideally

suited to hardware engineers because effective VHDL development requires

informed knowledge of hardware design [Hedberg, 03].

JBits is a favourable mechanism to employ for hardware synthesis as the language

is purely Java-based. This feature facilitates the direct integration of hardware-

based cores into software agents. This enhances the unity of the design and

development process as it allows reconfigurable hardware and software-based

agent specifications to be implemented using a single high-level language.

Essentially, the hardware and software aspects of an agent’s functionality can be

constructed uniformly. This can help avoid inter-communication and inter-

operability issues arising within large project development teams.

JBits is implemented with a high-level programming language, however its

hardware-specific constructs are intensely low level. This necessitates a detailed

knowledge of the workings of FPGA architecture and specifically the Xilinx

Virtex framework for effective hardware module development. These factors

introduce a steep learning curve for effective JBits usage which is further

increased with poorly documented resources and a lack of developer support

infrastructures
28

. Additionally, JBits is targeted solely towards Xilinx specific

FPGAs raising serious concerns regarding the ability to support diverse FPGA

manufacturers within a large scale deployment of the medical-based prototype

system.

28
 A JBits newsgroup does exist at jbits@yahoogroups.com; however there is no direct support

from Xilinx for this group.

- 44 -

Handel-C was the third hardware synthesis methodology explored within the

prototype development process. The platform became the favoured choice for

application development given its high-level language syntax and associated

hardware abstraction. Handel-C is also packaged with device libraries that help to

deliver a sophisticated inter-communication infrastructure between the agent

platform and the reconfigurable hardware.

3.6.2 Interface Synthesis Tools

The inter-communication layer between the agent platform and the reconfigurable

hardware is an essential interface for successful deployment of the medical-based

prototype. A Java-based agent executing on a general purpose processor utilises

this inter-communication layer to communicate and configure the hardware

portion of its code to the reconfigurable logic.

Two separate approaches were identified and examined as potential mechanisms

to facilitate inter-communication between an agent platform and reconfigurable

hardware, namely:

• JBits XHWIF
29

 Interface

• Handel-C Device Drivers

These inter-communication interfaces were explored with regard to their ability to

support a Java-based agent framework to effectively exploit neighbouring

reconfigurable resources.

3.6.2.1 JBits XHWIF Interface

The JBits XHWIF Interface has its origins within the IRL system design

methodology developed by Xilinx Corporation [Xilinx, 01]. IRL facilitates the

remote upgrade of hardware and ensures reliability for any modification process.

The methodology provides functionality to deliver FPGA bitstreams and software

drivers to remote hardware.

29
 Xilinx HardWare InterFace

- 45 -

The communication of updates to remote hardware occurs over a TCP/IP

connection. Elements involved in this configuration management operation utilise

the JBits XHWIF Interface as can be seen in Figure 3.10. The interface facilitates

dynamic reconfiguration of hardware applications allowing circuits to be modified

at runtime. Configuration management of FPGA bitstreams is achievable

irrespective of the physical location of the target FPGA.

Figure 3.10: JBits XHWIF Interface Deployment

An example of a JBits program utilising the XHWIF interface to initialise and

configure an FPGA resource is presented in Appendix A.3. This program

illustrates a primary benefit of the XHWIF interface. Commands invoking the

interface are written in Java and their operation is controlled directly by the Java

Virtual Machine executing on the host machine. This allows for reuse of device

driver specific code across multiple platforms irrespective of their operating

system environment.

3.6.2.2 Handel-C Device Drivers

The Handel-C development environment is distributed by Celoxica Corporation

[Celoxica, 05b]. Their product is packaged with a range of C-based device drivers

to facilitate inter-communication between software-based programs executing on

a host microprocessor and hardware programs operating on FPGA development

boards.

The operations provided by these device drivers include:

- 46 -

• Configuring a bitstream on FPGA substrate

• Passing data for processing to the board

• Controlling algorithm execution on board

• Retrieving data/results from board

The RC200 development board was utilised as the reconfigurable hardware

component within the medical-based prototype system. This FPGA device

provides a number of peripheral access points to facilitate inter-communication.

These include a Serial port, a Parallel port, and an Ethernet access point. These

physical peripherals are utilised by the C-based device drivers for communication

operations. The device drivers are distributed in DLL
30

 format to maintain source

code privacy. These DLL’s are suitable for Windows 32-bit operating systems. A

high-level architectural overview of the Java-based agent platform communicating

with reconfigurable hardware using Handel-C device drivers is shown in Figure

3.11.

Figure 3.11: Handel-C Device Driver Deployment

The agent platform utilises JNI functionality to establish interoperability with

reconfigurable hardware components. JNI enables code written in Java to utilise

functionality within native libraries (e.g. C, C++). A consequence of the source

code privacy of the DLL’s and their ability to only operate with 32-bit compliant

microprocessors affects their usage with mobile handhelds. These portable

30
 Dynamic Link Libraries

- 47 -

devices typically operate with an 8/16-bit microprocessor and this raises

compatibility problems with the Handel-C device drivers from Celoxica. This

issue affects development of a number of medical-based prototype deployment

scenarios which contain reconfigurable hardware as an integral component of a

portable computer. An account of handheld device usage within these deployment

scenarios is outlined in Section 6.4.

An example of a Java program utilising the JNI interface to invoke the Handel-C

DLL’s to initialise and configure an FPGA resource is presented in Appendix A.4.

3.7 Performance Capabilities of Reconfigurable Computing

Functional decomposition of an application can help determine whether a

reconfigurable hardware-based system will be an effective execution platform. In

general, complex control sequences and irregular computations are efficiently

implemented in software while fixed datapath and data-parallel functionality may

be more efficiently executed with reconfigurable logic [Hauck, 98], [Compton,

02].

A range of research projects have documented reconfigurable hardware-based

systems delivering high performance solutions. These encompass a wide variety

of application areas and have included cryptographic, image processing, and

multimedia-based systems.

The Cameron project investigated mapping imaging applications to reconfigurable

hardware-based systems [Draper, 02]. The primary motivation for this work was

driven by the observation that the comparatively small image processing market

deterred manufacturers from ensuring application-specific processors kept pace

with advances in processor technology. Consequently, the lifetime of these image-

based ASICs was short-lived and left researchers with redundant technology.

Fortunately, FPGA speeds and capacities have obeyed Moore’s law for the last

several years and so this project was aimed at empowering researchers with the

tools to generate highly efficient hardware–based image applications. Their results

showed FPGA-based implementations of a range of image processing tasks

executed between 8 and 800 times faster than high specification Pentium PCs.

- 48 -

Further reconfigurable computing research within the field of image processing

and computer vision has focussed on the areas of real-time point tracking

[Benedetti, 98], colour-based edge detection [Benitez, 99], and image

compression [Hartenstein, 95]. It has also been established that reconfigurable

hardware-based implementations of imaging algorithms have occasionally

delivered the highest performance solution. This has been the case with an FPGA-

based digital image processing system called DRIP
31

 which delivered binary and

grey-level morphological functionality [Adario, 99]. The real-time performance of

DRIP was found to be 200% faster than execution with a comparative special

purpose processor [Adario, 97]. Multi-FPGA solutions have also been found to

deliver the highest performance levels within the image processing fields of

region detection [Rachakonda, 95] and stereo vision [Vuillemin, 96].

The medical computing community have recognised the substantial performance

capabilities of reconfigurable hardware [Martel, 00]. An element of this research

has focused on combining the paradigms of medical image processing and

reconfigurable computing. An example of this work is an implementation of a

concentration index filter [Yokota, 02]. This filter calculates an index value for

each pixel within a patient scan with the resultant output producing a diagnostic

image. The filter has been applied in the detection of stomach cancer which

occurs as gastric folds concentrate to form a cancer lesion. A reconfigurable

hardware-based implementation of the filter operated a hundred times faster than a

high-specification workstation and also facilitated real-time diagnosis.

Reconfigurable computing offers high performance and flexible solutions for

cryptographic algorithms. A customised FPGA implementation of a cryptographic

application is beneficial as the circuitry can be modified after production to

correct security breaches or to ensure adherence to fresh security standards.

The PipeRench research project developed a pipelined reconfigurable fabric

which virtualised hardware facilitating the execution of large cryptographic

31
 Dynamically Reconfigurable Image Processor

- 49 -

circuits on limited physical resources [Taylor, 99]. PipeRench is shown to

outperform a high-performance general-purpose processor
32

 by a factor of ten in

the execution of the IDEA
33

 cryptographic algorithm and it is also shown to be

40% faster than a full-custom silicon implementation of the algorithm.

Reconfigurable hardware-based solutions have also been applied within the

cryptographic domain to the MD5 hash algorithm [Deepakumara, 01] and to the

RSA
34

 algorithm [Vuillemin, 96].

Research groups specialising in multimedia-based systems have recognised the

processing power and system flexibility achievable with reconfigurable

computing solutions [Singh, 94]. A range of research has investigated

opportunities for customising architectures for graphics applications. An example

of this work has focused on executing geometric visualisation applications on a

FPGA platform [Styles, 00]. Geometric visualisation involves the use of standard

graphics rendering techniques such as texture mapping and uniform-direction

lighting. Their results highlighted the FPGA platform is approaching the

performance of a dedicated ASIC for general-purpose graphics applications. The

reconfigurable hardware was 70% more efficient than a high-end workstation

while achieving a 75% level of performance in comparison with the dedicated

card. Additional research within the multimedia sphere has examined the potential

of reconfigurable platforms to provide video decoding [Mignolet, 02] and speech

recognition [Schmit, 95] services.

Reconfigurable computing systems can clearly deliver high performance solutions

within a wide range of application areas. The computational traits of applications

are important in determining their suitability for reconfigurable platform

execution. The research above highlights the benefits that accrue when an

appropriate application is implemented with reconfigurable technology.

32
 A 450MHz Pentium Workstation

33
 International Data Encryption Algorithm

34
 Rivest, Shamir, and Adelman

- 50 -

CHAPTER 4

Agent Middleware Empowering the Ubiquitous Computing Vision

4.1 Introduction

Agent technology is the middleware proposed for pervasive handheld computing

systems. Four primary factors contributed to the decision to employ agent

middleware to empower handheld devices to exploit reconfigurable resources

within their environment.

Firstly, the agent-based paradigm is considered highly suitable for constructing

modular software systems capable of operating in dynamic, unpredictable

environments [Koch, 04]. Secondly, the paradigm is appropriate for analysing,

specifying, and implementing complex software systems [Helin, 03]. Thirdly,

agents can act as intelligent aids to users for advanced mobile services [Lino, 03].

Fourthly, agent middleware is widely considered as a primary enabling

technology for empowering handheld devices within ubiquitous computing

environments [Jennings, 98].

4.2 Agent Concept

In the context of software engineering, an agent can be defined as:

An entity within a computer system environment that is capable of

flexible, autonomous actions with the aim of complying with its

design objectives [Wooldridge, 97].

An abstract view of an agent is presented in Figure 4.1. This diagram shows an

agent taking sensory input from the environment and outputting actions which in

turn affect the environment [Wooldridge, 02]. This interaction is usually ongoing

and non-terminating.

- 51 -

Figure 4.1: Generic Agent Model

An intelligent agent is built upon this generic agent model and has the following

characteristics [Wooldridge, 95]:

• Reactivity

Intelligent agents perceive their environment and can respond accordingly.

• Proactiveness

Intelligent agents exhibit goal-directed behaviour and take the initiative

whenever appropriate.

• Social Ability

Intelligent agents are capable of interacting with other agents (and possibly

humans).

FIPA
35

 is a standards organisation whose aim is to promote the industry of these

intelligent agents by openly developing specifications supporting interoperability

among agents and agent-based systems [FIPA, 05a].

A FIPA-based model of the life cycle of an intelligent agent is shown in Figure

4.2 [FIPA, 05c].

35
 Foundation for Intelligent Physical Agents

- 52 -

Figure 4.2: State Transition Diagram of Agent Life Cycle

This life-cycle model illustrates the state transitions that an agent can experience.

The transit state is associated with the concept of a mobile agent.

4.3 Mobile Agent Concept

A mobile agent encapsulates the characteristics of an intelligent agent as well as

having the added capability of traversing networks [Gray, 00]. The mobile agent

concept is employed within the collective past-experience learning strategy

outlined in Section 7.3.

The advantages of utilising mobile agents are outlined by Silva and Almeida in

their examination of telecommunication systems [Silva, 99]:

• Network Traffic Reduction

Mobile agents facilitate the concept of mobile code. The mobile code

concept merges the models of code-on-demand
36

 and remote evaluation
37

from the realm of distributing computing [Baldi, 97], [Fuggetta, 98].

Mobile agents transport code processing functions to the data source. This

36
 Java applets are an example of code-on-demand

37
 Java servlets are an example of remote evaluation

- 53 -

can conserve network bandwidth and reduce network interactions for

applications processing large amounts of data.

• Software Upgrading

Mobile agents can extend the capabilities of applications and can introduce

new services in the machines or devices of the network. The context-

aware reconfiguration protocol deployment strategy enhances this concept

of software upgrading for handheld devices by incorporating dynamic

configuration of reconfigurable hardware (ref. Section 6.3.3).

• High Robustness

Mobile agents may have the ability to sense their execution environment

and react autonomously to changes and failures in the network. This is in

contrast to the client-server model which is highly dependent on network

availability. This ability of mobile agents to cope with intermittent

connections is highly beneficial within the domain of mobile computing

[Kotz, 97], [Sahai, 98].

Mobile agent technology presents an alternative approach to the design of

distributed systems as compared with traditional client-server and message-based

architectures [Raibulet, 00].This alternative is not a universal solution and should

be perceived as a complimentary technique to traditional object-oriented software

development [Marques, 01].

4.4 Multi-Agent Systems

A multi–agent system is a federation of intelligent software agents interacting in a

shared environment [Carabelea, 03]. A multi-agent environment encourages

cooperation and coordination of actions amongst agents.

An agent management system is the software infrastructure used as an

environment for executing multi-agent systems. The agent management system

provides the normative framework within which agents exist and operate. Agent

management establishes the logical reference model for the creation, registration,

- 54 -

location, communication, migration and retirement of agents [FIPA, 05c]. The

agent management reference model as specified by FIPA is shown in Figure 4.3.

Figure 4.3: Agent Management Reference Model

Each of the logical components within the agent management reference model can

be defined as follows:

• Agent

This is a computational process that implements the autonomous,

communicating functionality of an application. An agent is the

fundamental actor on an agent platform which combines one or more

service capabilities into a unified and integrated execution model.

• Agent Platform

This is the physical infrastructure upon which agents are deployed. The

agent platform consists of hardware, an operating system, and agent

support software.

- 55 -

• Directory Facilitator

This component provides yellow pages services to other agents. Agents

utilise the directory facilitator to either register their services or query the

services of other agents.

• Agent Management System

This component exerts supervisory control over access to and use of the

agent platform.

• Message Transport Service

This component facilitates inter-communication between agents on

different agent platforms.

Agents operating within an agent management system require an ACL
38

 to

communicate with other distributed entities. KQML
39

 [Genesereth, 94] and FIPA-

ACL
40

 [FIPA, 05b] are the predominant ACLs utilised within the agent

community. These communication languages are based upon speech act theory

which was originally developed for modelling human communication [Helin, 03].

A common understanding of knowledge exchanged within a multi-agent system is

facilitated through the use of a shared ontology [Jasper, 99]. An ontology consists

of a vocabulary of terms and a specification of their meaning [Uschold, 98].

Essentially, an ontology is an explicit specification of a conceptualisation [Gruber,

93]. The ontology includes definitions and an indication of how concepts are

inter-related. Collectively, this imposes a structure on the domain and constrains

the possible interpretation of terms.

4.5 Agent Development Systems

The agent development systems employed to meet the goals of pervasive

handheld computing systems are distinguishable according to their physical

38
 Agent Communication Language

39
 Knowledge Query and Manipulation Language

40
 Foundation for Intelligent Physical Agents - Agent Communication Language

- 56 -

platform dependencies. The physical constraints associated with portable

computers have introduced a strand of research focusing on lightweight agent-

based platforms. In contrast, provisioning and adaptive servers are capable of

supporting more resource intensive agent platforms than handheld devices.

A wide range of agent development systems targeted towards server-based

environments have been constructed. These systems provide predefined agent

models and tools to ease agent-based development [Bellifemine, 00].

AgentBuilder provides two components named toolkit and run-time system for

constructing Java-based agent systems [AgentBuilder, 00]. The toolkit consists of

an integrated environment for managing the agent software development process.

The run-time system is essentially an agent engine that provides an execution

environment for the agent software.

dMARS is an agent-oriented development and implementation environment for

building distributed systems based upon the BDI
41

 agent model [D’Inverno, 97].

This type of agent model is associated with deliberative agent-based systems

which encourages agents to reason about their actions. This development

environment has been successfully applied to applications within the fields of air

traffic control and business process management.

Zeus is an agent environment catering for rapid project development with a large

library of agent components and an automatic agent code generator tool [Nwana,

98]. Zeus is primarily suited to the construction of reactive agent-based systems.

Reactive systems operate in a stimulus-response fashion. The main role of

reactive systems is to maintain an interaction with their environment, and

therefore agents should be described and specified in terms of their on-going

behaviour [Pnueli, 86].

41
 Belief, Desire, Intention

- 57 -

JADE
42

 is a Java-based open source development framework aimed at developing

multi-agent systems and applications [Bellifemine, 99]. The JADE project is the

runtime environment employed within this thesis for provisioning and adaptive

server-based prototype development and it is described in further detail in Section

4.5.1.

Agent development systems have also been targeted toward handheld device

environments. This type of agent system can be classified into three categories

[Ramparano, 02]:

• Portal Platforms

This type of agent development environment does not support agent

execution on the handheld device. The portable computer is only used as a

visual interface to facilitate interaction with the mobile user. Agent

operation and execution occurs on remote hosts. An example of this type

of agent system is the MobiAgent development platform [Mahmoud, 01].

• Surrogate Platforms

This type of agent platform supports partial agent execution on the

handheld device. Parts of the agent execution model are run remotely on

separate hosts. This division of labour amongst distributed entities

produces light agents facilitating agent development for resource

constraint devices e.g. mobile phones and two-way pagers. An example of

this type of agent system is the kSACI development platform

[Albuquerque, 01].

• Embedded Platforms

Embedded platforms support the entire agent lifecycle and execution on

handheld devices. This type of agent environment is utilised in the

development of the medical-based prototype systems presented in

Chapters Five, Six, and Seven. Examples of embedded platforms are

AgentLight [Koch, 03], MicroFIPA-OS [Tarkoma, 02] and JADE-LEAP

42
 Java Agent Development Environment

- 58 -

[Caire, 02]. The JADE-LEAP
43

 project is the runtime environment

employed within this thesis for handheld device prototype development

and it is described in further detail in Section 4.5.2.

4.5.1 JADE Agent Development System

JADE is a software framework for developing agent applications in compliance

with FIPA specifications for interoperable intelligent multi-agent systems

[Bellifemine, 03]. The JADE software architecture is fully developed in Java and

is based upon the following driving principals:

• Interoperability

JADE is compliant with all FIPA specifications. This ensures agents

developed with JADE can interoperate with any FIPA-compliant agent

framework.

• Uniformity and Portability

JADE provides a homogeneous set of APIs that are independent of the

underlying network and Java version support. Essentially, JADE maintains

the same APIs for J2EE
44

, J2SE
45

 and J2ME
46

 environments.

JADE enhances scalability by executing multiple parallel agent tasks within the

same Java thread. This also helps meet the constraints of environments with

limited resources. Additionally, JADE supports mobility of code and of execution

state for J2SE and Personal Java environments. The mobility supported is of a

not-so-weak nature because the stack and program counter cannot be saved in

Java.

The JADE development environment represents a generalised agent model that

can be specialised to realise both reactive and deliberative systems. The Jess
47

43
 JADE Lightweight Extensible Agent Platform

44
 Java 2 Enterprise Edition

45
 Java 2 Standard Edition

46
 Java 2 Micro Edition

47
 Java Expert System Shell

- 59 -

software plug-in helps create reactive agent systems [Friedman-Hill, 03]. Jess is

an expert system shell which fully integrates with JADE providing a reasoning

engine for agents. Jess is outlined in further detail in Section 5.1.3.1. The Jadex
48

API is a rational agent layer that integrates with JADE facilitating the

development of deliberative agent systems [Pokahr, 03].

4.5.1.1 Performance Evaluation of JADE

A number of performance evaluation surveys of agent development systems have

been completed [Burbeck, 04], [Vitaglione, 02], and [Altmann, 01]. The JADE

development environment has consistently been selected highly within these

surveys in terms of maturity, security, communication facilities, memory

efficiency, scalability, and performance.

Evaluation tests indicate that JADE is an efficient development environment

limited mostly by the standard limitations of the Java programming language. The

write-once, run-everywhere mantra of Java incurs an overhead in the form of its

Virtual Machine. The JADE environment is found not to introduce substantial

overhead [Vitaglione, 02].

For example, research has shown JADE has executed extremely efficiently on

relatively antiquated hardware [Chmiel, 04]. Their evaluation environment

comprised of PCs with Pentium II processors running at 120 MHz with 48 Mbytes

of RAM and workstations with UltraSparc III processors running at 300 MHz and

192 Mbytes of RAM. This network environment supported experiments

comprising of thousands of agents effectively migrating amongst the eight

machines whilst also communicating tens of thousands of ACL messages. Their

experiments also showed that an increase in the number of agents typically

resulted in a linear increase of processing time.

Differences in execution time between the client-server and agent-based models

are expected to diminish as the Java language matures and improves its efficiency

48
 Jade eXtension

- 60 -

[Chmiel, 04]. This interesting factor should be taken into account when evaluating

the performance tests presented in Chapters 5, 6, and 7 of the thesis.

4.5.2 JADE-LEAP Agent Development System

JADE-LEAP is an agent-based runtime environment targeted towards resource

constrained mobile devices [Berger, 03]. The main goal of the JADE-LEAP

project is to develop a FIPA-compliant agent platform sufficiently lightweight to

be deployed seamlessly on any Java-enabled handheld device [Bergenti, 01].

JADE-LEAP is an add-on to the JADE project replacing parts of its kernel

creating a downsized agent platform [Moreno, 03].

The JADE-LEAP agent environment is operating system agnostic and can be

executed on devices ranging from mobile phones and PDAs to workstations

[Carabelea, 03b]. The agent platform is operational over any wireless network

supportive of TCP/IP. The architecture of the platform is divided into several

containers. A minimum of a single container is assigned to each physical

computing element within the platform. Each of these containers may hold one or

more agents. The containers are responsible for facilitating inter-communication

amongst agents within the platform.

JADE-LEAP supports two separate forms of execution known as stand-alone

mode and split mode. The former mode establishes a full container on the

handheld device. The split mode divides a single container between a portable

computer and a workstation. The container split creates a front-end container

executing on the mobile terminal and a back-end container running within the

fixed network. The back-end is delegated a large portion of container functionality

allowing the front-end to become extremely lightweight in terms of memory and

processing power consumption.

A store-and-forward mechanism is also implemented between the front-end and

back-end containers. This deals with temporary wireless disconnections between

the mobile terminal and the fixed network by buffering messages until wireless

connectivity is re-established. The JADE-LEAP split mode supports extremely

- 61 -

resource limited mobile devices and is the execution model chosen for the

medical-based prototype systems presented within this thesis.

4.6 Agent-Oriented Analysis and Design Techniques

Software agent technology is a promising approach for the analysis, specification,

and implementation of complex software systems [Helin, 03]. Agent-oriented

analysis and design methodologies are essential components in creating agent-

based solutions to complex systems.

This area of research is knows as AOSE
49

 and is concerned with investigating

agent-oriented design and analysis techniques. AOSE examines the engineering of

software that has the concept of agents as its core computational abstraction

[Weiss, 02].

4.6.1 Gaia Methodology

The Gaia
50

 methodology is an agent-oriented analysis and design technique

[Wooldridge, 99]. Gaia is employed in the conceptualisation and implementation

of the medical-based prototype systems presented within this thesis. The main

concepts of Gaia can be divided into the categories of abstract and concrete as

shown in Figure 4.4 [Wooldridge, 02].

Figure 4.4: Gaia Concepts

Abstract concepts are used during the analysis phase to conceptualise the system

and its structure. The result of this process is captured in the organisation model.

This model is a collection of roles, which stand in certain relationships to one

49
 Agent-Oriented Software Engineering

50
 The name originates from the Gaia hypothesis that all organisms in the Earth’s biosphere can be

viewed as acting together to regulate the Earth’s environment.

- 62 -

another, and which take part in systematic, institutionalised patterns of

interactions with other roles [Wooldridge, 99]. A role is defined by the following

three properties:

• Responsibilities

These determine the functionality associated with the role. Responsibilities

can be divided into two types, namely, liveness properties and safety

properties. Liveness properties describe a state of affairs an agent must

establish given certain environmental conditions. In contrast, safety

properties are invariants. A safety property ensures an acceptable state of

affairs is maintained across all states of execution.

• Permissions

A role is associated with a set of permissions. These permissions identify

the resources available to the role to enable it to realise its responsibilities.

• Protocols

A role is also identified with a number of protocols. These define

interaction mechanisms with other roles.

The design aim of the Gaia methodology is to transform the models derived

during the analysis stage into a sufficiently low level of abstraction that traditional

design techniques (including object-oriented techniques) may be applied. The

Gaia design process involves generating three models:

• Agent Model

This documents the various agent types within the system. An agent type

can be imagined as a set of agent roles.

• Services Model

This identifies the main services associated with each agent role. A service

is a function or a coherent block of activity of an agent.

- 63 -

• Acquaintance Model

An acquaintance model defines the communication links between agent

types.

The primary objective of the Gaia analysis and design process is to establish how

a society of agents cooperates to realise the system-level goals. The methodology

also helps to determine the requirements of each individual agent within this

collaborating society.

4.6.2 Additional Methodologies

The predominant methodological approach within AOSE generally focuses upon

adapting object-oriented analysis and design techniques. Examples of this

adaptation strategy are the MaSE
51

, AOAD
52

, MASB
53

, and AUML
54

.

MaSE covers design and initial implementation using an agent modelling

language and an agent definition language built upon OMT
55

 and UML
56

 [Wood,

00]. AOAD proposes an analysis and design method extending the concepts of

class responsibility cards and responsibility-driven design from object-oriented

development [Burmeister, 96]. MASB is an analysis and design method for agent-

oriented systems which borrows models of behaviour diagrams, data models,

transition diagrams, and object life cycles from object-oriented techniques

[Moulin, 96].

AUML is the most well-known design technique at the forefront of this object-

orientation adaptation strategy [Odell, 01]. It is an agent-oriented analysis and

design process which builds upon both the Unified Modelling Language notation

and the Rational Unified Process methodology [Booch, 98]. Agents are presented

as an extension of active objects within AUML. Active objects exhibit the

51
 Multiagent Systems Engineering

52
 Agent-Oriented Analysis and Design

53
 Multi-Agent Scenario-Based

54
 Agent Unified Modelling Language

55
 Object Modelling Technique

56
 Unified Modelling Language

- 64 -

characteristics of dynamic and deterministic autonomy. These traits enable the

object to initiate action without external invocation and to refuse external

requests.

This active object to agent extension is indicative of the methodological

approaches which modify and shape object-oriented analysis and design

techniques towards agent-oriented requirements. The benefit of these strategies is

considered to be the strength of employing UML software engineering concepts

as a foundation for conceiving agent-oriented design and analysis methodologies.

The Gaia methodology outlined in Section 4.6.1 is in contrast to these object-

oriented techniques and instead attempts to construct a framework which focuses

upon the unique characteristics of multi-agent systems. This is a purer approach

to agent-oriented development and it is the methodology employed within the

medical-based prototype systems within this thesis.

Architects of the Gaia technique argue that a fundamental problem with

methodologies that utilise object-orientation as a foundation is that they

immediately fall short in their ability to capture the elementary characteristics of

agency [Weiss, 02]. The differences between agents and objects are outlined in

Section 4.7. This section presents the unique characteristics associated with agent-

based computing in comparison with object-oriented development.

These differences between agents and objects clearly illustrate that an agent-

oriented analysis and design strategy should be conceived primarily from agent-

based computing concepts. This leads to an effective methodology enabling

developers to achieve the correct decomposition of agent and object entities

within their design.

4.6.3 Agent-based Design Patterns

The complexity of modern software and software environments has resulted in an

increasing use of concepts and formalisms aimed at building applications more

efficiently and cost-effectively [Weiss, 02]. Agent-based design patterns are an

- 65 -

example formalism which improves the development process of applications and

the quality of final products [de Araujo Lima, 03].

The development and usage of design patterns is becoming increasingly prevalent

within the agent-based research community. Design patterns are a valuable

mechanism enabling reuse of successful multi-agent structures [Gamma, 95].

Design patterns were originally conceived through the visionary work by

Alexander in the field of architecture and urban planning [Alexander, 79]. In the

context of software engineering, a design pattern can be defined [Buschmann, 96]:

As a particular recurring design problem that arises in specific design

contexts and presents a well-proven generic scheme for its solution.

The solution scheme is specified by describing its constituent

components, their responsibilities and relationships, and the ways in

which they collaborate.

Essentially, patterns are reusable solutions to recurring design problems and they

provide a vocabulary for communicating these solutions to others [Weiss, 04].

Aridor presents a catalogue of agent designs and representative patterns which are

classified into three categories, namely [Aridor, 98]:

• Travelling Patterns

These patterns deal with mobility management within agent-based

computing systems. An itinerary pattern is an example pattern which is

concerned with routing a mobile agent through multiple destinations.

• Task Patterns

These patterns are concerned with the breakdown and delegation of tasks

amongst agents. A fundamental task pattern within this classification is the

master-slave design pattern. This entails a master agent delegating a task

to a slave agent. The slave agent is instructed to move to a destination

host, perform the assigned task, and return with an appraisal of task

execution. This pattern is incorporated into the design of the push-based

configuration management deployment strategy presented in Section 6.3.2.

- 66 -

• Interaction Patterns

This classification of pattern is concerned with locating agents and

facilitating their interaction. A messenger pattern is an example pattern

which defines a surrogate agent to carry a remote message from one agent

to another.

Further classifications of design patterns within agent-oriented computing include

agent patterns which deal with the architectures of agent-based applications

[Silva, 98], communication patterns which focus upon inter-communication

between agents [Deugo, 99], and coordination patterns which are concerned with

managing dependencies between agent activities [Tolksdorf, 98].

4.7 Differentiating Agents and Objects

Agents are defined as autonomous, problem-solving computational entities

capable of effective operation within dynamic environments [Luck, 03]. Objects

are defined as computational entities which encapsulate a state upon which they

are able to perform actions [Wooldridge, 02].

The defining characteristic of object-oriented programming is the principle of

encapsulation. This principle enables an object to exhibit autonomy over its state.

However the principle does not extend to enable an object to exhibit control over

its behaviour. Methods associated with an object are generally made available for

other objects to invoke. Subsequently, an object has no control over whether one

of its methods is invoked. This design methodology is favourable for a system

composed of objects with a common goal. In contrast, a multi-agent system of

communicating entities does not assume this common goal. Therefore, agents

request actions to be performed rather than invoking methods directly.

Fundamentally, the locus of control with respect to decision-making regarding

execution of actions differs between agent and object-oriented systems

[Wooldridge, 02]. Object-oriented systems place the decision with the object

invoking the method. Agent-oriented systems place the decision with the agent

receiving the request. Essentially, agents can be distinguished from objects in that

- 67 -

they are autonomous entities capable of exercising choice over their actions and

interactions.

A second important distinction is the emphasis within agent-oriented systems

upon flexible behaviour. The intelligent agent characteristics of reactivity, pro-

activeness, and social interaction as outlined in Section 4.2 are integral to

developing agent-oriented systems. Object-oriented design does not focus upon

these characteristics.

Another important trait of agent technology is the promotion of a separation of

concerns between computation, semantics, and interaction [Rimassa, 03]. An

agent-oriented system deals with each of these aspects using the agent, ontology,

and conversation protocol components respectively. This abstraction is integral

within agent-oriented design whilst it is not apparent within object-oriented

systems.

To summarise, the multi-agent paradigm is often compared to the distributed

objects paradigm because both involve entities having an internal state, with an

interface based on message-passing, and both allow for similar abstraction and

modularity. However, the differences that make agents unique are:

(1) Their autonomy which means they maintain complete control over

their actions whereas objects method invocation does not allow the

same level of control.

(2) The emphasis placed within agent-oriented systems upon flexible

behaviour.

(3) The promotion of a separation of concerns between computation,

semantics, and interaction within agent-oriented systems.

Agent-based computing can be portrayed as extending object technology by

enriching the component communication model and raising the abstraction level

[Rimassa, 03]. However, leniency within the design of agent-oriented systems is

- 68 -

also necessary. Just as structured control structures are apparent and useful within

object-oriented systems; it may also be favourable to integrate passive

components such as objects within agent-oriented systems. This is the basis of the

mixed agent-object design technique presented in Section 4.8 which is conceived

to improve the performance of agent-based systems.

4.8 Mixed Agent-Object Design Technique

The controversy of “agents versus objects” was a predominant focus within the

agent-based research community. This debate challenged all aspects of agent-

oriented analysis and design. An ideological shift within the community saw a

movement away from this either-or strategy to recognition of a requirement for a

combined approach. This change in perspective reflects a growing agreement on

the need for both agents and objects [Weiss, 02].

The proposed mixed agent-object design technique advocates the use of both

agents and objects within agent-oriented systems [O’ Sullivan, 06e]. The

technique was initially conceived through an analysis of the performance results

associated with the medical-based prototype systems presented within this thesis.

Processing overhead of an all-agent based implementation for a recurrent

computational task was considerably greater than the overhead required by a

client-server based implementation. The disparity in execution times between the

implementation models for the computational task is shown in Table 4.1.

Implementation Type

Execution Time

Client-Server Model

2711 ms

All-Agent Model

4075 ms

Table 4.1: Execution Times of Client-Server & All-Agent Models

- 69 -

This table highlights the processing time required by the all-agent model to be

fifty percent longer than the execution time required by the client-server based

model. The additional performance overhead can be primarily attributed to the

multi-threaded nature of an agent-based implementation. This performance

deficiency can be reduced and minimised by incorporating the mixed agent-object

design technique within system development. The performance benefit of

integrating this design approach is shown in Figure 4.5. This graph highlights the

mixed agent-object design approach reducing processing overhead by 12% in

comparison with the all-agent based implementation model.

Figure 4.5: Performance Overhead of Implementation Models

The basis of the mixed agent-object design technique lies within a proposed

modification to the Gaia methodology. This alteration strengthens the capability

of the methodology to produce agent-oriented designs which achieve a good

balance between agents and objects.

The mixed agent-object design technique is introduced within the analysis stage

of the Gaia methodology during the creation of the roles model. This model

identifies the key roles within the system. A role can be viewed as an abstract

description of an entity’s expected function. Currently, these roles are generally

mapped to agent types during the design stage of the Gaia methodology. This

leads to a danger within the agent-oriented development process of employing too

many agents within the system design [Wooldridge, 98]. The performance results

of the prototype systems clearly highlight the fact that the overhead of managing

- 70 -

too many agent entities can rapidly outweigh the benefits of an agent-based

solution.

The mixed agent-object design technique eliminates this danger within the Gaia

methodology by achieving a fairer balance between agents and object types. The

key opportunity to achieve this distribution occurs during role identification

within the analysis phase. Essentially, the proposed modification advocates that

the responsibilities associated with an identified role should exhibit two of the

three key agent characteristics of reactivity, proactivity, or social ability for it to

be mapped to an agent type during the design phase. A role not meeting this

requirement should otherwise be mapped to an object type(s). This helps to

minimise unnecessary agent instances within an agent-oriented design thus

improving system performance. The mixed agent-object design technique is built

upon a firm foundation as it is encapsulated within a widely accepted

development methodology.

4.9 Agent-Based Solutions within Mobile Computing Environments

Agent-based computing is recognised as an enabling technology for next-

generation mobile services [Jennings, 98]. Agent frameworks have formed an

architectural basis for numerous applications within mobile computing

environments. Service delivery has formed a focal point of development activity

for agent-based researchers operating within the mobile computing field. The

following taxonomy of agent-based mobile services has been presented [Koch,

04]:

• Granularity

An agent-based mobile assistant system can be classified according to the

granularity of the agent domain. A single user support system comprises

of an agent framework which provides support to only one user. A multi-

user interaction support system consists of an agent framework based

upon a society of agents which cooperate to coordinate activities, negotiate

resource usage, etc. The medical-based prototype systems presented within

this thesis are within the category of multi-user interaction support

systems.

- 71 -

• Role

An agent-based mobile assistant system can also be classified according to

the number of primary roles the system fulfils with respect to a

categorisation of complex human-machine tasks.

These tasks were initially presented by Sheridan [Sheridan, 98]. The

medical-based prototype systems presented within this thesis fulfil varying

levels of support for the following human-machine tasks:

o Information Acquisition

Agent system supports information gathering and storage.

o Analysis and Display

Agent system supports both analysis of collected information as

well as graphical display of interpreted results.

o Decision-Making Support

Agent system supports intelligent analysis of collected information

by evaluating data taking into account user context and

preferences. The outcome of this sophisticated analysis procedure

is a course of recommended action to the handheld device user.

o Perform Action

Agent system has the capability to carry out any actions required

for the completion of a user objective.

• Autonomy

An agent-based mobile assistant system can be categorised according to

the level of autonomy exhibited within the application. The level of

autonomy can be classified as either reactive or proactive. The actions of

agents within a reactive system are triggered either by the user or the

environment. Agents are capable of opportunistic goal-directed behaviour

within proactive systems. The medical-based prototype systems presented

within this thesis exhibit both reactive and proactive characteristics.

- 72 -

Real-world examples of agent-based mobile assistant systems include a software

retrieval service [Mena, 00], [Mena, 02], a taxi management system [Moreno, 03],

and a multimedia content provider service [Nikolouzou, 04]. The field of agent

technology is also viewed as a highly suitable paradigm and inter-communication

infrastructure for the analysis and design of mobile telemedicine systems [Della

Mea, 01].

- 73 -

CHAPTER 5

Context-Aware Handheld Devices within a Medical Environment

5.1 Context Aware Computing

The goal of context-aware computing is to acquire and utilise information

regarding the context of a device and to provide services that are appropriate to a

particular setting [Bardram, 04].

Context-aware computing is a key component within two of the agent-based

deployment strategies. The context-based negotiation strategy enabling utilisation

of reconfigurable hardware as a networked resource depends heavily upon the

contextual aspect of location to prioritise computational requests from medical

practitioners. Additionally, the mobile device reconfiguration deployment

scenario emphasising utilisation of reconfigurable hardware as an integral

resource uses a range of contextual components to determine timing of

configuration management operations.

Context-aware computing is a key element in providing the basis for intelligent

handheld devices within these medical-based prototype systems. The precise

benefits of utilising context within a healthcare environment can be explored more

keenly by initially removing the aspect of reconfigurable hardware. This allows

for an exact appraisal of the consequences of providing telemedicine applications

on a medical practitioner’s mobile device with context-aware abilities.

5.1.1 CAMMD: Context Aware Mobile Medical Devices

CAMMD
57

 is a framework conceived to examine the potential benefits of

providing mobile medical devices with the ability to sense and interpret their

contextual environment [O’ Sullivan, 06d]. CAMMD provides handheld medical

devices with a support infrastructure capable of capturing, communicating and

interpreting real-time contextual information. The framework focuses specifically

57
 Context Aware Mobile Medical Devices

- 74 -

on the proactive communication of patient records to a portable device based upon

the active context of its medical practitioner.

Handheld medical devices can provide nomadic healthcare professionals with

efficient access to patient records at the point of care. However, the storage and

visual interface constraints of a portable device affects handheld analysis of these

medical records. These delimiting factors combined with an intermittent wireless

network connection can lead to an unsatisfactory user experience. The CAMMD

framework investigates whether these issues can be resolved by allowing portable

devices sense and interpret their contextual environment.

A context-aware mobile medical device can proactively assess its environment.

The information gathered from this assessment can be interpreted to determine

whether data management operations should be applied to the handheld device.

This approach anticipates a medical practitioner’s specific data requirements.

Essentially, relevant patient records are proactively transmitted to a handheld

device only when they are required.

The medical data to be propagated is determined using an informed decision-

making process that evaluates the contextual environment of the handheld device.

This methodology helps alleviate existing problems of information overload and

low bandwidth. The proposed intelligent data management framework enhances

the usability and portability of a handheld device. Additionally, the timely

deployment of relevant medical records helps to eliminate handheld storage and

visual interface constraints. These improvements can lead to increased

productivity levels for medical practitioners and help to increase the accuracy of

their patient diagnosis.

CAMMD utilises an agent-based architectural framework. Agent technology

provides a sophisticated middleware capable of eloquently representing and

communicating context-aware data elements. The nomadic nature of a medical

practitioner emphasises location, time and activity as key context aware data

components. These real-time data elements must be intelligently interpreted to

inform the decision-making process within the agent framework. CAMMD

- 75 -

utilises an expert system to determine whether data management operations are

required for a handheld device. This rule-based system processes the raw

ingredients of time and location of the handheld. These contextual elements are

then cross-referenced with the work activity of the handheld user to determine

whether data management operations are necessary. A pictorial representation

illustrating the activities of this configuration management operation is shown in

Figure 5.1.

Figure 5.1: Network Activity within CAMMD Configuration

Management Operation

The contextual elements are examined by the expert system through firing a

collection of pre-defined rules. Jess is the rule engine and scripting language

employed within the framework. The Jess component and the technological role it

plays within the proposed deployment scenarios for next-generation mobile

medical devices is discussed in further detail in Section 5.1.3.1.

A primary contextual element required for successful deployment of the CAMMD

is knowledge of the location of the handheld device. This is facilitated within the

- 76 -

framework through the incorporation of a Place Lab module within each portable

device. The Place Lab component and the technological role it plays within the

proposed deployment scenarios for next-generation mobile medical devices is

discussed in further detail in Section 6.2.2.2.1.

The contextual element of location has already been recognised as a useful

mechanism to facilitate delivery of patient records to handheld devices

[Rodriquez, 04a]. Their work recognises the importance of enabling intelligent

handheld access to electronic medical records. This enhances device usability and

improves the user experience.

CAMMD builds upon this work by placing an increased emphasis upon the need

to intelligently interpret the contextual data elements of a handheld device. The

expert system employed within the proposed methodology allows for a

comprehensive analysis of these data elements. This enhances decision-making

ability and enables the framework to deliver more appropriate and proactive

support to users of handheld devices. A further consequence of this sophisticated

support infrastructure is its ability to acutely manage physical device and network

resources. Overall, CAMMD provides a framework to assess the implications of

providing telemedicine applications on a medical practitioner’s mobile device

with context-aware capabilities.

- 77 -

Figure 5.2: CAMMD Agent Infrastructure

The CAMMD framework proactively communicates patient records to a portable

device based upon the active context of a medical practitioner. Agent technology

is the enabling middleware within this data management system. The agent

infrastructure constructed to enable effective deployment of context-aware mobile

medical devices is shown in Figure 5.2. This diagram highlights paths of

intercommunication amongst agents as well as dynamic agent creation. The

architecture was developed using an agent-oriented analysis and design

methodology [Wooldridge, 99]. The role of each agent is outlined within Table

5.1. This table can be used as a reference guide to Figure 5.2.

- 78 -

Agent Name

Agent Role

Mobile Device Manager

This single instance agent is a permanent resident on the mobile medical device and has responsibility for gathering and maintaining information

about the physical device and its owner. The agent operates as the main point of contact between the user and medical applications. The agent

registers for a medical record provisioning service. The operation of this service is based upon the contextual environment of the handheld device.

The agent is also responsible for informing the provisioning server of any changes in the location of the handheld.

Directory Facilitator

(DF)

The Directory Facilitator is responsible for maintaining knowledge about the location and services of each agent within the platform.

Distribution Master

This agent is instantiated as needed and is responsible for handling the propagation of patient records to a mobile medical device. This involves

efficient inter-communication with the Repository Handler to obtain relevant records from persistent storage. These records are packaged into a

medical-based message template and transmitted to the handheld device.

Provisioning Server

Manager

This agent is responsible for the provisioning of electronic patient records to handheld medical devices based upon their active context. This agent

accepts a request to provide a data management service to a portable device. The Provisioning Server Manager acts upon location updates from

medical devices. These location alerts are triggered as the medical practitioner moves within the hospital. This information is communicated to the

Expert System Manager to determine whether data configuration is required for the handheld device. A positive response from this agent will result

in the creation of a Distribution Master agent to begin propagation of patient records to the mobile medical device.

- 79 -

Expert System Manager

The Expert System Manager maintains an interface to a rule-based expert system. This agent is responsible for controlling and interacting with the

rule engine. This involves gathering the contextual data elements of a handheld device and communicating these values to the expert system. The

decision of the rule engine informs the Expert System Manager whether data management operations are required.

Repository Handler

The Repository Handler interfaces with a medical database to obtain patient records.

Table 5.1: Agent Roles and Responsibilities within CAMMD Framework

- 80 -

5.1.2 Evaluation

An experimental prototype has been implemented to evaluate the performance of

the CAMMD framework. This prototype facilitates the proactive communication

of patient records to a portable device based upon the active context of its medical

practitioner. Screenshots of this prototype in operation are shown in Figure 5.3.

Figure 5.3: CAMMD Prototype Screenshots

The left screenshot shows the graphical interface displayed to a medical

practitioner upon initialisation of the CAMMD application. This screen displays

the current time and location of the handheld device. The graphical interface is

displaced upon receipt of a push of medical records from the provisioning server.

This data management operation is triggered by the active context of the medical

practitioner.

The propagated data consists of details related to a practitioner’s current

appointment. This data transmission includes relevant patient records associated

with the appointment. A visual representation of this propagated data as presented

on the handheld device is shown in the middle screenshot of Figure 5.3. The

graphical interface displays the location and time specific details related to the

appointment as well as a list of associated patient names.

CAMMD Initial

Screen
Context Aware

Patient List

Individual

Patient Details

- 81 -

The rightmost screenshot shown in Figure 5.3 is generated upon the selection of a

patient name from this list. The graphical interface displays the medical records of

the selected patient. It includes general patient information and a list of their

health diagnostics. The screen also informs the practitioner of any recent medical

scans.

5.1.3 Test Case Environment

The test case environment consists of a Dell Axim PDA with a Pocket PC 2003

operating system. This handheld device executes the JADE-LEAP agent platform

using a Personal Java virtual machine called Jeode. The provisioning server

operates on a high-end Pentium PC running the JADE agent platform.

The Jess rule-based expert system resides on the provisioning server. Patient

records propagated to handheld devices within the hospital scenario are stored in a

SQL Server database. A Place Lab plug-in resides on each handheld device

enabling an accurate location estimate to be communicated to the provisioning

server. Agents communicate between the distributed components over a Wi-Fi
58

network.

The test case deployment entailed assessing a CAMMD handheld device within a

laboratory environment. The testing scenario attempted to closely emulate

physical ward layout of Cork University Hospital.

5.1.3.1 Jess

Jess is an expert system shell which can be used as an agent reasoning engine

[Friedman-Hill, 03]. This tool was inspired by the CLIPS
59

 environment

developed by NASA [Giarratano, 98]. Jess supports both forward and backward

chaining and uses the Rete pattern-matching algorithm to process rules [Forgy,

82].

58
 Wireless Fidelity

59
 C Language Integrated Production System

- 82 -

Figure 5.4: A Jess rule which cross-references

 appointment times with the current time

Jess is targeted towards Java-based platforms. The expert shell fully integrates

with JADE agent development systems and helps to create reactive agent

environments. Within the context of the CAMMD framework, Jess can interpret

and evaluate the contextual elements of a portable device to recommend data

management operations. An example rule within the CAMMD framework which

cross-references the time aspect of a practitioner’s schedule against the current

time is shown in Figure 5.4.

5.1.4 Performance Results

Four individual tests were executed to evaluate the performance of CAMMD and

these are outlined in Table 5.2. Each test was conducted using both the CAMMD

framework and an RMI medical-based implementation. The tests operated within

a simulated environment of ten geographically distributed wards. A timing

scenario based upon guidelines for medical practitioner consultations was used as

the test-case benchmark [BMA, 04].

- 83 -

Type

Test Name

Description

Handheld Device

Storage

CAMMD

Determine the storage cost on the handheld device

resulting from the propagation of patient records.

Remote Method Invocation

Determine the storage cost on the handheld device

resulting from a retrieval of patient records.

Physical

Constraint Test

Network

Bandwidth Usage

CAMMD

Determine the network bandwidth consumed by a

CAMMD handheld device.

Remote Method Invocation

Determine the network bandwidth consumed by the

RMI implementation.

Data Transmission

Time

CAMMD

Determine the time taken to perform a data

management operation.

Remote Method Invocation

Determine the time required for a retrieval of patient

records from a provisioning server.

Usability and

Interaction Test

User Navigation

CAMMD

Determine the average user time to navigate to a

patient medical record.

Remote Method Invocation

Determine the average user time to navigate to a

patient medical record.

Table 5.2: Overview of CAMMD Performance Evaluation Tests

- 84 -

The British Medical Association report recommended a minimum of fifteen

minutes per patient. The proposed use case scenario randomly distributed twenty-

seven patients over ten wards to represent the daily workload of a medical

practitioner. The patient to ward distribution is shown in Table 5.3. A walk-

through of the wards was conducted by ten individuals to achieve results for each

test case.

Ward Number 1 2 3 4 5 6 7 8 9 10

Number of Patients 3 2 4 3 2 4 3 3 2 1

Table 5.3: Patient to Ward Distribution

The first test examines the storage required by a CAMMD enabled handheld

device when applying this use case scenario. Storage costs for the RMI

implementation were also obtained. The results of this test case are shown in

Figure 5.5.

Figure 5.5: CAMMD Physical Constraint Tests

The data storage on the PDA using the RMI implementation is constant due to the

retrieval of every patient record for the medical practitioner at each ward. In

comparison, the CAMMD implementation requires on average 80% less storage

by retrieving patient records only associated with the practitioner’s active context.

Handheld Device Storage Network Bandwidth Usage

- 85 -

The second test examines the network bandwidth usage of a CAMMD enabled

handheld device. Bandwidth usage of an RMI enabled device was also obtained.

The results of this test case are shown in Figure 5.5. The network usage of the

RMI enabled device is again constant and is calculated by determining the cost of

invoking a remote retrieval of patient records. In comparison, the bandwidth

usage of a CAMMD device fluctuates according to number of patient records

transmitted and the frequency of location updates.

For example, test results for Ward 1 showed the bandwidth usage within the RMI

implementation to be approximately 1100 bytes. The CAMMD test results for

Ward 1 are based upon a series of location updates (right Y-axis) communicated

to the provisioning server and the patient records (left Y-axis) propagated to the

handheld device. The combined figures show a bandwidth usage of approximately

250 bytes highlighting an improvement of over 75% in relation to the RMI

implementation
60

.

The medical records are currently of a simple textual nature resulting in low

memory requirements. Complex medical records with images of patient scans

would show even greater disparity between RMI and CAMMD approaches in

network bandwidth usage and handheld device storage requirements. The

CAMMD framework clearly optimises the physical constraints of a handheld

device and this improves device portability.

The third test examines the data transmission time of a CAMMD enabled

handheld device. Transmission times of the RMI implementation were also

obtained. The results of this test case are shown in Figure 5.6. Time to

communicate patient records within the RMI and CAMMD-based prototypes is

relatively constant. This is mainly due to the stability and availability of the

wireless network. The results show the RMI implementation retrieves medical

records on average three times faster than the CAMMD framework. The primary

reason for this disparity is the inherent overhead associated with an agent

60
 Approximately 190 bytes required for patient records and 60 bytes required for location updates.

- 86 -

framework. The implications of this performance deficiency and a design

mechanism to minimise its effects are discussed in detail in Section 4.8.

Figure 5.6: CAMMD Usability / Interaction Tests

The fourth test evaluated the average time required by each user to navigate to a

specific patient record in each ward. This test case examined the usability of both

implementations. The results of this test case are shown in Figure 5.6. The concise

nature of the patient records returned to a CAMMD enabled handheld device

facilitated faster navigation times to individual patient records. The navigation

time with the RMI-based implementation was on average two seconds slower.

The primary cause of this delay is due to the extra time required to locate a

specific patient within a larger list. The CAMMD implementation clearly

improved user interaction by helping to avoid information overload.

5.1.5 CAMMD Appraisal

Healthcare organisations are increasing their reliance on mobile links to access

patient medical records at the point of care. Mobile access to patient records

improves the productivity of healthcare professionals and enhances the accuracy

of their diagnosis. Handheld analysis of medical records is hindered due to the

storage and visual interface constraints of a portable device. These physical

constraints affect user interaction with handheld applications. This factor

combined with an intermittent wireless connection can jeopardise the vision of a

ubiquitous telemedicine environment.

Data Transmission Time User Navigation

- 87 -

The CAMMD environment typifies context-aware mobile medical devices.

CAMMD provides a framework to assess the implications of providing

telemedicine applications on a medical practitioner’s mobile device with context-

aware capabilities. The agent-based architectural solution proactively

communicates patient records to a portable device based upon the active context

of its medical practitioner.

This distribution of medical data enhances the usability and portability of mobile

medical devices as shown in the usability and interaction test cases. The proposed

methodology also overcomes handheld device and network limitation issues as

shown in the physical constraint test cases. The CAMMD framework is a step

towards realising the vision of a ubiquitous telemedicine environment.

- 88 -

CHAPTER 6

Agent Technology Exploiting Reconfigurable Resources for

Handheld Devices

6.1 Introduction

The focus of this work is to investigate the potential of agent technology to exploit

reconfigurable resources for handheld devices. The reconfigurable hardware is

integrated into the environment of the portable computer, i.e. it is placed both into

the physical device and into surrounding adaptive servers.

A number of deployment scenarios are proposed highlighting the benefits of agent

technology as a middleware framework. These scenarios can be categorised into

two groupings according to the placement of the reconfigurable hardware,

namely:

• Reconfigurable hardware as a networked resource

• Reconfigurable hardware as an integral handheld device component

The proposed deployment scenarios within these groupings explore the benefits

and consequences of empowering handheld devices with an agent-based

middleware framework to exploit reconfigurable resources within their

environment.

6.2 Reconfigurable Hardware as a Networked Resource

Adaptive servers are valuable distributed resources that can improve the system

performance and versatility of client mobile devices. Reconfigurable hardware is

the enabling technology of these adaptive servers. Reconfigurable resources

within adaptive servers are costly commodities that should be effectively utilized

to ensure satisfactory return on investment. They should also produce the highest

possible performance and versatility gains for handheld devices. Agent

technology is a highly appropriate middleware that can help meet this economic

and system performance challenge.

- 89 -

Agents can be employed as an effective middleware to enable handheld devices

assign their computational tasks to neighbouring adaptive servers. This offloading

procedure entails intricate decision-making by agents operating both on the

portable device and on neighbouring adaptive servers to ensure satisfactory

performance. The construction and effectiveness of these decision-making

frameworks benefits from the inherent characteristics of agents (ref. Section 4.2).

The following two deployment strategies outline the ability of agent middleware

to empower handheld devices to exploit surrounding adaptive server technology:

• Agent-Based Negotiation Protocol

• Context-Based Negotiation Strategy

6.2.1 Agent-Based Negotiation Protocol

The proactive and cooperative characteristics of agents can be effectively

integrated into a negotiation and bidding protocol enabling mobile devices gain

access to networked reconfigurable resources [O’ Sullivan, 05c], [O’ Sullivan,

05d]. An agent-based negotiation protocol enables a handheld device efficiently

offload reconfigurable hardware-software based computations to neighbouring

adaptive servers.

This negotiation technique between handheld devices and adaptive servers for

reconfigurable resources automatically introduces an effective load balancing

strategy. A fair workload distribution is achieved amongst the adaptive servers.

The distributed system is thus able to avoid both bottlenecks and under-utilisation

of reconfigurable resources. This ensures a high quality of service to all handhelds

through informed intelligent utilisation of reconfigurable resources.

The negotiation strategy between handheld devices and adaptive servers is

embodied into an agent-based architectural framework as shown in Figure 6.1.

This diagram highlights paths of intercommunication amongst agents as well as

dynamic agent creation. The role of each agent is outlined within Table 6.1. This

table can be used as a reference guide to Figure 6.1. The architecture was

- 90 -

developed using the Gaia methodology [Wooldridge, 99]. An overview of this

agent-oriented analysis and design methodology is presented in Section 4.6.1.

Figure 6.1: Agent Architecture Implementing Agent Negotiation Protocol

- 91 -

Agent Name

Agent Role

Mobile Device Manager

All Scenarios

This single instance agent is a permanent resident on the mobile medical device and has responsibility for gathering and maintaining information

about the physical device and its owner.

The agent operates as the main point of contact between the user and the distributed adaptive server architecture. It predicts or responds to resource

limitations on the mobile medical device by attempting to schedule a performance intensive computation upon a neighbouring adaptive server. The

mobile device manager agent initialises the process of selection through invoking a resource requester agent.

Scenario 2: Context-Based Negotiation Strategy

The mobile device manager proactively determines the location of the portable computer. This contextual data element is communicated to a

Resource Requester when starting the process of offloading a computation.

Directory Facilitator

All Scenarios

This agent is responsible for maintaining knowledge about the location and services of each agent within the platform.

Resource Requester

(Negotiator)

All Scenarios

This agent is instantiated as needed and is responsible for initiating the negotiation process with adaptive servers for access to their reconfigurable

resources. This negotiation strategy employs concepts based upon the contract-net protocol [Smith, 80]. The resource requester agent retrieves a list

of all adaptive manager agents within the network from the directory facilitator.

Scenario 1: Agent-Based Negotiation Protocol

A call-for-proposals computation request is broadcast to all adaptive manager agents on this list. The resource requester then evaluates all adaptive

manager bids to determine the best offload option. The computational task is assigned to the adaptive server which promises to service the request

in the quickest time. This process of choosing an adaptive server helps maintain load balancing across all adaptive servers as it ensures fair

- 92 -

workload distribution.

Scenario 2: Context-Based Negotiation Strategy

The agent performs all actions outlined in scenario one. The resource requester additionally populates a location field within the call-for-proposals

computation request. This action communicates the originating location of the mobile device request to adaptive manager agents.

Adaptive Manager

(Negotiator)

All Scenarios

This agent is responsible for facilitating access to reconfigurable resources on an adaptive server.

Scenario 1: Agent-Based Negotiation Protocol

The adaptive manager plays a crucial role in establishing a load-balanced network by attempting to successfully bid to service a mobile medical

device’s computational request. Upon receiving a call-for-proposals, an adaptive manager examines its current queue of jobs and estimates their

total service time. The result of this evaluation combined with an estimate of the time required to service the current computation request

determines the adaptive manager bid.

Scenario 2: Context-Based Negotiation Strategy

The adaptive manager submits a bid to execute the handheld device computational request. The bid is determined by examining their current queue

of jobs and estimating the total service time. This examination of the queue takes into account the geographic location of the current handheld

device request. The priority level associated with the location of the incoming request dictates the placement of the potential computation within

the adaptive manager’s queue of jobs.

The result of this evaluation combined with an estimate of the time required to service the current computation request determines the adaptive

manager bid. The location aware aspect of the decision-making process identifies the urgency of the user request. A time-stamping operation is also

employed by the protocol and this is applied to all tasks. This timing mechanism helps ensure lower level tasks avoid starvation by incrementing

the priority level of each task periodically.

Repository Handler

All Scenarios

This agent has responsibility for retrieving the reconfigurable bitstream representation of an algorithm required for a mobile device’s computational

request. The agent is also responsible for returning any additional data that may be required e.g. scanned patient images.

- 93 -

Reconfigurable Resource

Handler

All Scenarios

This agent is responsible for the process of downloading the bitstream configuration to the reconfigurable resource, interacting with the FPGA and

communicating the results of the hardware computation to the adaptive manager.

Table 6.1: Agent Roles and Responsibilities within Networked Reconfigurable Hardware Deployment Strategies

- 94 -

6.2.1.1 Evaluation

A medical-based experimental prototype was constructed to evaluate the

performance of the negotiation protocol. The prototype enables a physician to

retrieve patient scans that have been image processed in real-time by an adaptive

server. Screenshots of this prototype in operation are shown in Figure 6.2.

Figure 6.2: Medical Prototype Screenshots Implementing Agent-Based

Negotiation Protocol

The left screenshot displays the options available to a physician in terms of patient

names, associated scanned images and imaging algorithms that can be applied.

The right screenshot shows a patient’s original brain scan and a filtered edge-

detected image created in real-time by an adaptive server.

Edge detection algorithms are used widely in medical practise to aid physicians in

their patient analysis. An edge detection algorithm implemented with

reconfigurable hardware observes an increase in speed of a factor of twenty in

comparison with an implementation of the algorithm in software [Daggu, 04]

- 95 -

6.2.1.2 Test Case Environment

The system architecture of the test case environment is presented in Figure 6.3.

Figure 6.3: System Architecture for Agent-Based Negotiation Protocol

The handheld device component within the distributed medical framework

consists of a Dell Axim PDA with a Pocket PC 2003 operating system [Dell, 05a].

The PDA executes the JADE-LEAP agent platform using a Personal Java virtual

machine called Jeode [Jeode, 05].

Four adaptive servers execute within agent containers on a high-end Pentium PC

executing the JADE agent platform. They are connected to a Celoxica RC200

reconfigurable hardware development board as shown in Figure 6.4 [Celoxica,

05a]. This development board is equipped with a Xilinx XC2V1000 FPGA

[Xilinx, 05].

- 96 -

Figure 6.4: Celoxica RC200 Development Board

Agents communicate between the handheld device and the adaptive servers over a

Wi-Fi 802.11b network [Belkin, 05]. The 802.11b specification supports

bandwidth up to 11 Mbps
61

 which is comparable to traditional Ethernet.

6.2.1.2.1 Agent Development Environment

JADE is a Java-based open source software development framework aimed at

developing interoperable multi-agent systems and applications [Bellifemine, 99],

[JADE, 05]. JADE is utilised as the active agent platform on all provisioning and

adaptive servers.

The primary purpose of JADE is to simplify development while ensuring standard

compliance through a comprehensive set of system services and agents. It can be

considered an agent middleware that implements an agent platform and a

development framework. JADE is completely implemented in Java with version

1.2 of the JAVA run time environment being the minimal system requirement

[Java, 05].

61
 Megabits per second

- 97 -

JADE is an open source project being developed through a collaboration of

Telecom Italia Lab (a research and development branch of the Telecom Italia

Group) and the University of Parma.

JADE-LEAP is an agent-based runtime environment that is targeted towards

resource-constrained mobile devices [JADE-LEAP, 05]. The JADE-LEAP

module is an “add-on” to JADE replacing parts of its kernel creating a somewhat

downsized agent platform. The JADE-LEAP runtime environment fully integrates

with the JADE development infrastructure and it is the active agent platform on

all handheld medical devices.

Both JADE and JADE-LEAP conform to FIPA standards for intelligent agents.

FIPA is a standards organisation established to promote the development of agent

technology [FIPA, 05]. JADE and JADE-LEAP are presented in further detail in

Sections 4.5.1 and 4.5.2 respectively.

6.2.1.2.2 Reconfigurable Hardware Development Tools

The reconfigurable hardware development tools employed within prototype

development of mobile medical computing devices are outlined within Section

3.6.

6.2.1.3 Performance Results

The effectiveness of the agent-based negotiation protocol was evaluated with the

development of a purpose built simulator. A Java-based simulation environment

was created and this used data obtained from the prototype system to achieve

reliable analysis.

6.2.1.3.1 Simulation of Real-World Network States

Four separate scenarios were conceived to simulate various real-world network

states. These network states are distinguishable according to the load balancing of

tasks amongst the adaptive servers.

The scenarios model the potential variation of load amongst the four adaptive

servers within the network. Pie chart representations of these probability

- 98 -

distributions are shown in Figure 6.5. The probability distribution scenarios are

utilised to populate adaptive server queues with pending tasks in an attempt to

simulate various real-world network states. These task allocation scenarios can be

described as follows:

• Equal Probability Distribution

This scenario assigns an equal probability to each of the four adaptive

servers of being allocated a job during the queue generation process. This

distribution process will generate a state analogous to a load-balanced

network.

• Low Variation Probability Distribution

This scenario concerns a distribution modelling a network state with small

variations of load amongst the adaptive servers. The variations are

achieved by assigning slightly different job allocation probabilities to each

server. These assigned probabilities are within a five percent range of the

mean probability of twenty-five percent. This distribution process will

generate a state analogous to a slightly unbalanced network.

• Medium Variation Probability Distribution

This simulation scenario proposes job allocation probabilities between

adaptive servers are within a range of fifteen percent of the mean

probability. This distribution probability scenario will generate varying

queues on each adaptive server resulting in a fairly unbalanced network

state.

• High Variation Probability Distribution

This probability distribution models high variations between each adaptive

server load. The assigned probabilities are within a twenty-five percent

range of the mean probability. This high variation creates large differences

between adaptive server loads. The distribution process produces a

network state analogous to a highly unbalanced network.

- 99 -

Figure 6.5: Load Distribution Scenarios Simulating Real-World Network States

- 100 -

The impact on queue generation by the four proposed probability distribution

scenarios can be seen clearly in Figure 6.6. This graph highlights the job variance

between adaptive servers for each simulated allocation.

All tests are executed in job increments of twenty-five using a purpose built Java

simulator. The tests range from allocations of twenty-five jobs to five hundred

jobs. The Total Number of Jobs in each test is allocated amongst the adaptive

servers using the Monte Carlo random allocation technique [Metropolis, 49],

[Rubinstein, 81].

Figure 6.6: Effect of Probability Distribution Scenarios on

Generation of Task Queues

The above graph highlights the variations in balance between the four adaptive

server queues for each simulated probability distribution. The left axis displays

the maximum differential between the jobs allocated to the adaptive servers at

each test stage.

The balance produced by the equal probability distribution sees an initial rise

followed by a relative stabilisation of the variance. There is 16% disparity

between adaptive server computational loads initially but this averages out to

4.2% as job allocation figures increase. This illustrates that computational

workload within this scenario would be shared comparatively equally amongst the

four adaptive servers.

- 101 -

The simulation of the low variation probability distribution witnesses a gradual

rise in the disparity of jobs assigned to adaptive servers. The variance is again

high initially (i.e. 28% disparity) but overall has a mean of 11.8% for the Total

Number of Jobs allocated amongst the adaptive servers. This probability

distribution scenario represents a task allocation state analogous to a slightly

unbalanced network.

The medium variation probability distribution observes a more disproportionate

allocation of computational tasks amongst the adaptive servers. The job variance

over all test stages averages at 26.7% for the Total Number of Jobs allocated. The

queues simulated with this probability distribution are analogous to a fairly

unbalanced network.

Finally, the simulation of the high variation probability distribution establishes a

network state analogous to a highly unbalanced network. This probability

distribution scenario produces widely disproportionate task queues for the

adaptive servers. The job variance is approximately within a 44.2% to 60% ratio

of the Total Number of Jobs allocated amongst the adaptive servers.

These probability distribution scenarios are representative of the varied load-

balancing states of a networked environment. The effect of the distributions upon

the queues of the adaptive servers illustrates network states ranging from a

relatively load-balanced to a severely unbalanced infrastructure.

6.2.1.3.2 Time to Process Computational Request

A test was conceived to examine the time required to service a new computational

request from a handheld medical device. The test compared the time expended by

a device executing the agent-based negotiation strategy against the time needed by

a device operating with a client-server based implementation.

This test examines the performance benefit delivered to a user of a handheld

device equipped with an agent-based negotiation strategy. Any performance

improvement could be effectively determined through a comparison with the

client-server implementation.

- 102 -

The client-server implementation is an un-informed approach as it determines the

adaptive server to be utilised through a random selection of one of the available

servers. The negotiation strategy is an informed approach which facilitates the

choice of adaptive server with the lowest computation load (i.e. smallest job

queue) at runtime.

The simulation employed quantitive values from test-case analysis of both the

agent-based and simple client-server based implementations. The time to process

an edge detection computation request from a Wi-Fi PDA on an adaptive server

using the agent-based negotiation technique was determined. This value

comprises of the intercommunication time required for negotiation and also the

time for the adaptive server to process a computational request. The execution of a

computational request is the time required for the adaptive server to:

• Initialise the FPGA

• Download the configuration bitstream

• Pass the image data

• Execute the algorithm through clocking the FPGA

• Read back results from the FPGA.

The intercommunication and execution time of an edge detection computational

request from a Wi-Fi PDA to an adaptive server using a simple client-server

implementation was also determined. This time was established using a Java-

based remote method invocation (RMI) implementation [Java, 05b].

A breakdown of these quantitive time values is shown in Table 6.2. These values

were determined through an averaging of results achieved from twenty separate

test-runs of both experimental prototype implementations.

- 103 -

Implementation Type

Intercommunication

Time

Adaptive Server

Execution Time

Agent-based Negotiation Model

3110 ms
62

4075 ms

Client-Server Model

1781 ms

2711 ms

Table 6.2: Average Quantitive Times for Agent-Based Negotiation

The execution time of a computational request by an adaptive server

implementing the agent-based negotiation protocol is 50% longer than the

equivalent execution within the client-server based model. Additional

performance overhead can be primarily attributed to the multi-threaded nature of

an agent-based implementation. The implications of this performance deficiency

and a design mechanism to minimise its effects are discussed in detail in Section

4.8.

The intercommunication time of the agent-based model is also over 70% longer

than the client-server model. This is primarily due to the bidding aspect of the

agent-based model which demands a number of interactions between the handheld

and server platforms. These additional interactions are crucial as they inform the

decision-making of the ResourceRequester agent operating on the handheld

device. The benefit of this knowledge to the user of a mobile device can be seen

in the graphs presented in Figure 6.7.

These graphs show the time to process an offloaded computational request from a

Wi-Fi enabled handheld device using the agent-based negotiation model and the

client-server based model within the simulated network environments. These

graphs are generated with results from a purpose-built Java simulator using the

quantitive values presented in Table 6.2. The jobs allocated to the adaptive

62
 Millisecond

- 104 -

servers within the simulation are derived from the probability distribution

scenarios shown in Figure 6.5.

The agent-based negotiation protocol ensures the handheld device always offloads

its computation to the adaptive server with the smallest queue of jobs. The client-

server approach chooses the adaptive server to offload its computational request

through a random selection of one of the available adaptive servers. This

uninformed decision-making means the client-server model generally only

delivers quicker service to the user of a handheld device when the randomly

selected adaptive server happens to have the smallest load. The likelihood of this

occurrence proportionally decreases as the number of adaptive servers within the

network environment increases.

Each probability distribution graph within Figure 6.7 highlights the time required

to service a new computational request utilising the client-server and agent-based

models. The unpredictable nature of the client-server model in relation to

expected service time is highlighted as the network environment becomes

increasingly unbalanced. These wide ranging times lead to poor quality of service

for the user of a handheld device. The wide disparity between expected service

times is also indicative of poor utilisation of network resources.

In contrast, the agent-based negotiation protocol encourages optimal utilisation of

networked reconfigurable resources through informed decision-making for

offloading computation. There is a linear relationship between the service time for

a handheld computational request and the total number of jobs awaiting process

within the distributed environment. The gradient of this linear relationship is

dependent on the equality of task distribution across the adaptive servers. The

protocol enables a mobile device to accurately estimate the service time for an

offloaded task helping to enhance the quality of service for a handheld user.

- 105 -

Figure 6.7: Time to Service a Computational Request

- 106 -

6.2.1.4 Load-Balancing Effect of Agent-Based Negotiation Protocol

The test simulation examining the time to service a new computational request

from a handheld device also clearly shows the protocol attempts to re-establish

load balancing across the adaptive servers regardless of current network state. A

simulated load-balancing graph illustrating this aspect is shown in Figure 6.8.

Figure 6.8: Agent Negotiation Protocol Load Balancing Scenario

The simulation assumes all tasks are offloaded using the agent-based negotiation

protocol and presupposes a reliable and robust network. The graph shows the job

variance between adaptive servers for each simulated allocation within an ideal

network environment to be no greater than one. This highlights the ability of the

agent-based negotiation protocol to lend itself greatly to establishing a load-

balanced network.

- 107 -

6.2.2 Context-Based Negotiation Strategy

A context-based negotiation strategy within an agent-based framework enables

intelligent utilisation of surrounding reconfigurable resources by mobile devices

[O’ Sullivan, 05a]. A context-aware handheld can proactively assess its

environment. The information gathered from this assessment can better inform the

decision-making process of agents operating within adaptive servers with regard

to resource allocation.

The execution of the offloading protocol is influenced by the location of the

portable device. This contextual information enables an adaptive server to identify

the urgency of a computational request from a handheld. The identification of task

priority based upon the location of the mobile device is reflected in the adaptive

server response to the computation request. This helps to optimise the quality of

service experienced by a handheld device user.

An example deployment of relationships between location and task priority within

a telemedicine environment is shown in Table 6.3.

Handheld Device Location

Priority Level

Emergency Room

Urgent

Hospital Ward

High

Hospital Corridor

Medium

Practitioner Office

Low

Table 6.3: Example Priority Levels within Telemedicine Environment

This table presents an association between the geographic location of a medical

practitioner and the priority level assigned to their handheld device computational

requests. This priority level reflects the urgency of their offloaded tasks.

- 108 -

The agent architecture developed to facilitate this context-based negotiation

strategy is shown in Figure 6.9. This diagram highlights paths of

intercommunication amongst agents as well as dynamic agent creation. The

architecture was developed using an agent-oriented analysis and design

methodology [Wooldridge, 99]. The role of each agent is outlined within Table

6.1. This table can be used as a reference guide to Figure 6.9.

Figure 6.9: Agent Architecture Implementing Context-Based Negotiation

Protocol

- 109 -

A key aspect within the context-based negotiation strategy is the manipulation of

the adaptive server queue of tasks by the Adaptive Manager agent. This

modification of task order within the queue is dependent upon the priority level of

the incoming computation request. An example scenario of modifications to a

queue of jobs by an Adaptive Manager is shown in Figure 6.10.

Figure 6.10: Adaptive Server Queue Example within

Context-Based Negotiation Strategy

- 110 -

The context-based negotiation strategy relies upon server-side logic to analyse the

priority level of each incoming computational request and to bid to service the

task accordingly. A time-stamping operation is employed by the protocol and is

applied to all tasks. This timing mechanism helps ensure lower level tasks avoid

starvation by incrementing the priority level of each task as required. The

following formula is applied to avoid task starvation:

The increment threshold is determined by an administrator to dictate their

preferred balance between the speed of response to high urgency computational

requests and the service delay they are willing to accept for lower priority tasks.

The current expected task service time will increase as a task is displaced

downwards within an adaptive server’s queue of jobs by more urgent tasks. The

priority level of the displaced task will increment in the event of the above

formula becoming true. This leads to a re-adjustment of the current expected task

service time helping to return the formula to false.

6.2.2.1 Evaluation

A medical-based experimental prototype was constructed to evaluate the

performance of the proposed context-aware negotiation protocol. The prototype

enables a physician to retrieve patient scans that have been image processed in

real-time by an adaptive server.

6.2.2.2 Test Case Environment

The test case environment builds upon the architecture presented in Section

6.2.1.2 which details the agent-based negotiation framework. The Place Lab

software plug-in is an additional feature which resides within the handheld

medical device [Place Lab, 05]. The enhanced environment incorporating Place

Lab technology is shown in Figure 6.11. This architectural framework facilitates

handheld medical devices and adaptive servers deciding reconfigurable resource

allocation through context-based negotiation.

Task Service Time Reported to Handheld

Current Expected Task Service Time
>

Increment Threshold

(≥ 1)

- 111 -

Figure 6.11: System Architecture for Context-Based Negotiation Protocol

6.2.2.2.1 Place Lab

A contextual element required for successful deployment of the context-based

negotiation protocol is knowledge of the location of the handheld device. This is

facilitated within the framework through the incorporation of Place Lab

technology. This is an open source development project that uses a radio-beacon

based approach to location [LaMarca, 05].

An agent executing on a handheld device can use the Place Lab component to

accurately estimate its geographic position. Place Lab has been shown to be able

to reliably estimate the location of a portable computer within a range of between

fifteen and eighteen meters [Hightower, 04]. The basic GPS
63

 scheme provides

median accuracy estimates of ten meters [Misra, 99]. GPS usage is limited to

outdoor activity whilst its use raises investment and privacy issues [Schilit, 03].

63
 Global Positioning System

- 112 -

In comparison, three primary benefits of incorporating Place Lab technology

within device architecture are the increasing proliferation of wireless routers in

everyday life, the low capital investment requirements, and the importance placed

on maintaining a user’s privacy.

Figure 6.12: Place Lab Usage Model

The diagram presented in Figure 6.12 highlights the operations executed by Place

Lab in delivering geographic location estimates. This outline illustrates a

handheld medical device listening for unique identifiers associated with Wi-Fi

routers. Each wireless router can be uniquely identified through a MAC
64

 address.

64
 Media Access Control

- 113 -

These identifiers are cross-referenced against a cached database of beacon

positions to achieve a location estimate.

6.2.2.3 Performance Results

Test cases applied to this experimental prototype evaluate the effectiveness of the

proposed protocol in recognising the urgency of a computational request. The

context-aware negotiation strategy enhances the quality of service experienced by

a handheld user by recognising the importance of their current context.

A test-case simulation examined the effect on service time for a handheld device

offloading a computational task using the context-based negotiation protocol. The

outcome of this location enhanced approach was contrasted against the agent-

based negotiation protocol presented in Section 6.2.1.

6.2.2.3.1 Simulation of Task Priority Levels

The protocol associates the geographic location of a mobile device with a priority

level for offloaded computational tasks. The priority levels employed within the

test case scenarios relate to a real-world hospital environment and are those

presented within Table 6.3.

Figure 6.13: Priority-Based Distribution Scenario for Task Assignment

Each task is assigned a priority level using the Monte Carlo random allocation

technique. This task assignment uses the priority-based probability distribution

- 114 -

shown in Figure 6.13. The generation of a job queue for each adaptive server is

simulated using the agent-based negotiation protocol. This protocol ensures the

handheld device always offloads its computation to the adaptive server with the

smallest queue of jobs. This distribution process generates a state analogous to a

load-balanced network as highlighted within Figure 6.5.

6.2.2.3.2 Time to Process Priority-Based Computational Request

The test case results for the time to process a priority-based computational request

from a handheld device using the context-based negotiation protocol are presented

in Figure 6.14. This service time is dependent upon the urgency of the

computational request and the current number of tasks queued for processing by

the adaptive servers.

Figure 6.14: Time to Process Computational Requests Using Context-Aware

Negotiation Protocol

The request priority is dictated by the location of the handheld device. The service

time delivered by the context-based protocol is contrasted against the service time

of the agent-based negotiation strategy.

A breakdown of the quantitive time values used for simulation testing within the

context-based approach is shown in Table 6.4. These input values were

determined through an averaging of results achieved from twenty separate test-

runs of both experimental prototype implementations.

- 115 -

Implementation Type

Intercommunication

Time

Adaptive Server

Execution Time

Context-based Negotiation Protocol

3320 ms

4081 ms

Agent-based Negotiation Model

3110 ms

4075 ms

Table 6.4: Average Quantitive Times for Context-Based Negotiation

The results presented in Figure 6.14 highlight varying degrees of quality of

service by the context-based negotiation protocol in servicing different priority-

based computational requests. The primary reason for variation in computational

request service time is the priority level associated with the task. Task priority

dictates the placement of the computational request amongst the adaptive server’s

queue of jobs. This effect of this job positioning process can be seen clearly in

Figure 6.15 which simulates the adaptive server response in placing a task based

on the task priority level and the total jobs awaiting process within the adaptive

server queue.

Figure 6.15: Job Positioning within Adaptive Server Queue of Tasks Using

Context-Based Negotiation Protocol

- 116 -

The following analysis can be drawn from these service time and job positioning

graphs (Figure 6.14 and Figure 6.15 respectively) in terms of adaptive server

response to each priority-based computational request:

• Time to Process Low Priority Request

A low priority computational request from a handheld device is placed at

the end of an adaptive server’s queue of tasks. This graph shows the time

to process a low priority task using the context-based protocol is slightly

higher than the time necessary using the agent-based negotiation strategy.

This is primarily due to the slight increase in time required for

computation within the context-based approach. The additional execution

time can be attributed to the complication of computational requests

having associated priorities.

• Time to Process Medium, High and Urgent Priority Requests

The context-based negotiation protocol delivers better performance than

the agent-based negotiation strategy for medium, high and urgent priority-

based requests. This is primarily due to the ability of the agents operating

on adaptive servers to identify the urgency of computational requests and

to respond accordingly. The agent-based negotiation strategy recognises

all computational requests equally and so is unable to implement a

priority-based task queuing system. An example of the context-based

approach to recognise request urgency can be seen within the simulation

when the total number of jobs distributed amongst the adaptive servers is

250. The time to process a new medium computational request from a

handheld medical device with this number of tasks awaiting process
65

 is

65.6% of the time required with the agent-based approach. The

improvement in service time is more sharply observed as the priority level

of the task increases. A high-priority and urgent-priority task would

65
 Priority-Based Distribution Scenario for Task Assignment (Figure 6.14) is a determining factor

in the evaluation of results.

- 117 -

receive 73.6% and 92.4% quicker service than a task offloaded without

priority using the agent-based negotiation strategy.

6.2.2.3.3 Performance Overhead

The primary benefit of associating a priority level with a computational task is

that it provides agents operating on adaptive servers with the ability to identify the

urgency of each computational request. As the results within Figure 6.15

illustrate, this can clearly improve the quality of service experienced by a

handheld device user.

Performance tests presented within Table 6.4 show inter-communication time

with the context-based approach takes 6.7% longer on average than the agent-

based approach. The adaptive server execution time for a computational task takes

0.15% longer with the context-based approach than the time required for an

equivalent computational task with the agent-based approach. These disparities in

performance between the context and agent-based negotiation protocols are not

vast. The differences do however illustrate the potential for more complicated

negotiation protocols to incur additional overhead.

Performance overheads are clearly incurred when providing handheld medical

devices with the ability to sense, interpret, and reason about their geographic

location. The effects on handheld device resources by the Place Lab software

component are shown in Table 6.5 [Pering, 05], [Place Lab, 05].

Type of Performance Overhead

Cost of Performance Overhead

Power Consumption of Wi-Fi Beacon

1.2 Watts (Transmit Mode)

1.0 Watts (Receive Mode)

Memory Requirements

12.28 Mb

Table 6.5: Performance Overhead of Place Lab

- 118 -

6.2.2.3.4 Future Research through Further Refinement

The context-based negotiation protocol could be further expanded by interpreting

additional contextual data elements within the handheld device environment. The

introduction of additional relevant data could improve decision-making ability

within the agent-based framework. This could enhance system capability in

recognising the urgency and context of medical practitioner’s computational

requests.

An example of this enhanced context-based strategy within a telemedicine

scenario is presented in Figure 6.16. The proposed computing environment

consists of additional technological investment within the field of sensor

networks. An agent operating on an adaptive server would determine the priority

of a medical practitioner’s computational request according to the location of the

handheld device and the current state of the patient associated with the request.

Figure 6.16: Context-Based Negotiation Protocol within Enhanced

Telemedicine Scenario

- 119 -

The health status of the patient would be determined in real-time by sensors

physically located on the patient’s body. This scenario expands upon the initial

context-based negotiation protocol proposed within this work by essentially

informing decision-making agents with additional data regarding the

circumstances of a medical practitioner’s computational request.

The potential benefit of this enhanced context-based negotiation protocol can

easily be seen in emergency medical situations within a medical environment. A

health practitioner may require immediate analysis on medical data relating to a

patient who is experiencing a life-threatening situation. The convergence of

details relating to the location of the practitioner and the vital signs of the patient

helps to signal the medical practitioner’s request as highly urgent to all adaptive

servers within the environment. This type of telemedicine scenario is possible as

wearable sensors become more powerful and ubiquitous [Barton, 02].

- 120 -

6.3 Reconfigurable Hardware as an Integral Handheld Device

Component

Reconfigurable hardware can be incorporated as an integral handheld device

component. A resource constrained portable computer can adapt its reconfigurable

hardware dynamically. The programmable logic effectively provides application

diversity by allowing a handheld device to modify its reconfigurable hardware

according to the specific requirements of each executing application. This ability

of a portable computer to dynamically adjust programmable logic resources when

switching between applications is analogous to the concept of cache management.

General advantages of incorporating reconfigurable hardware as an integral

handheld device resource can be summarised as follows:

• Firstly, it is an enabling technology that allows mobile devices to execute

a broad range of performance-intensive applications. Essentially, the

reconfigurable substrate delivers computational power and diversity whilst

respecting the physical constraints of the handheld system.

• Secondly, it allows a vendor to release early product versions on time

ensuring they comply with their time-to-market constraints. Full product

functionality can then be achieved in the market-place by distributing

reconfigurable hardware-based patches at a future date.

• Thirdly, it allows manufacturers to disseminate additional reconfigurable

hardware-based applications after consumer purchase. These can be

configured and executed on the handheld system. This facet of

reconfigurable technology can increase both product lifetimes for the

consumer and revenues for the vendor.

Clearly, reconfigurable hardware has the potential to dynamically increase the

system functionality and versatility of a handheld device without major loss in

performance. The general advantages outlined above merely hint at the range of

benefits that can be derived through integrating the technology as an integral

component within a portable computer. However, mobile systems need a

sophisticated middleware framework to help them effectively utilise these integral

reconfigurable resources.

- 121 -

An agent-based middleware is the environment employed for handheld device

management. Agent technology allows for coherent representation and

communication of device characteristics, user preferences and application

requirements. Agents are efficient in their use of network bandwidth and can deal

with intermittent wireless connections.

Additionally, they are capable of coherently handling the execution and

transmission of reconfigurable hardware-software based computations.

Significantly, from a development perspective, agent computing lends itself

favourably towards the design and implementation of heterogeneous mobile

device environments. It encourages a high-level of abstraction and this is

beneficial in conceptualising and constructing these complex distributed systems

[Jennings, 01].

The following two deployment strategies outline the ability of agent middleware

to empower handheld devices to effectively exploit their reconfigurable hardware

components:

• Push-Based Configuration Management Strategy

• Context-Aware Reconfiguration of Handheld Devices

These deployment strategies extend and enhance our initial development of an

application solutions retrieval protocol [O’ Sullivan, 04c]. This protocol enables a

handheld device to dynamically retrieve reconfigurable hardware/software-based

application solutions from a provisioning server using agent technology.

- 122 -

6.3.2 Push-Based Configuration Management Strategy

Distribution of product updates to handheld devices increases product lifetimes

for consumers and also has the potential to increase revenues and brand loyalty

for vendors. Dynamic provisioning of these application solutions to handheld

devices is complex due to their heterogeneous nature. Product updates should be

composed of both software and reconfigurable hardware code which are tailored

to the physical constraints of the device.

Increasingly intense competition combined with time-to-market pressures has also

compelled mobile device manufacturers to release early product versions to

guarantee adequate market share. Full-product functionality is achieved in the

market-place through a configuration management technique of distributing

reconfigurable hardware-software based updates and patches. Push technology is

a distribution mechanism initiated by the vendor enabling delivery of product

updates to handheld devices.

Portable systems are evolving and clearly demand more proficient development

methods and tools for their design, deployment and management [Fleischmann,

99]. A flexible, robust and proactive distribution framework is especially required

to allow vendors confidently disseminate their updates and modifications to

customers after initial product releases. All updates should interoperate seamlessly

with the handheld device ensuring minimal disruption to the customer.

This deployment strategy proposes a configuration management architectural

framework incorporating a mobile agent based push methodology for networked

reconfigurable handheld devices [O’ Sullivan, 04a]. Agent technology is

particularly suitable as a push-based distribution mechanism for mobile systems.

A push strategy utilising agent concepts allows for the coherent distribution of

hardware-software application solutions to networked handheld devices. An

agent-based middleware framework is efficient in its use of network bandwidth

and is flexible in dealing with intermittent network connections. These

characteristics are highly beneficial for mobile wireless devices. Agent technology

encourages management decentralisation which minimises the load on the

- 123 -

network management centre and reduces points of failure within the network

[Raibulet, 00].

6.3.2.1 Review of Push Technology for Data Dissemination

Push technology has been applied within various research communities as an

architectural paradigm for data dissemination.

Telecommunications research has explored the push concept as a method for the

provisioning of configuration settings to mobile phones [Ladas, 01]. The WAP
66

and the GSM
67

 short messaging system
68

 are combined to provide the

implementation framework. A beneficial scenario is highlighted whereby the

hand-held devices belonging to selected personnel at a disaster site are

automatically adapted for specifically directed emergency communications.

Parallel computing has also been exposed to the potential of push-based

technology. A novel mobile agent-based push methodology has been proposed

within the supercomputing domain [Xu, 00]. This approach allows users to

dispatch their jobs as agents who roam the network seeking servers on which they

can execute their task. This is advantageous as it produces an adaptive and fault

tolerant execution model.

Push-based technology also plays a key role within the configuration management

community [Hall, 98]. A push-based distribution strategy enabling software

deployment utilising a mobile agent framework is presented. Key benefits of an

agent-based approach to configuration management are flexibility, reliability and

increased performance [Berghoff, 96].

An embedded systems configuration management technique focusing on hardware

upgrades has also been proposed [Casselman, 02]. Their methodology targets

remote FPGA devices. Object-oriented programming techniques are applied to an

66
 Wireless Application Protocol

67
 Global System for Mobile Communication

68
 Also know as SMS

- 124 -

FPGA configuration bitstream. An object is created encapsulating any additional

information it may require for its delivery, verification and use. The object is

packaged into a payload which is pushed over a TCP/IP network to the embedded

device. Through object-oriented design and analysis techniques, an additional

layer of abstraction is achieved providing a more robust and reliable deployment

methodology.

It is clear the concept of configuration management is increasing in importance

within the embedded device co-design community. It is recognised that with

shorter time-to-market windows and increasing demands for additional product

functionality, there is a need to develop methods and tools to dynamically deploy

hardware-software based application solutions to consumer embedded devices

[Fleischmann, 99].

The approaches of Hall and Berghoff show the combination of mobile agents and

push-based distribution strategies are a highly appropriate implementation

methodology for configuration management. The push-based configuration

management strategy proposed extends these approaches to target the unique

properties of reconfigurable handheld devices to enable cohesive upgrades to their

reconfigurable hardware and software based components.

- 125 -

Agent Name

Agent Role

Mobile Device Manager

All Scenarios

This single instance agent is a permanent resident on the mobile medical device and has responsibility for gathering and maintaining information

about the physical device and its owner. The agent operates as the main point of contact between the user and the provisioning server architecture.

Push-Based Configuration Management Strategy

Application Courier agents interact locally with the Mobile Device Manager to ensure successful execution of an update process.

Context-Aware Reconfiguration of Handheld Devices

The Mobile Device Manager registers with the Provisioning Server Manager to receive application solutions depending upon the context of the

user of the handheld device.

Directory Facilitator

(DF)

All Scenarios

This agent is responsible for maintaining knowledge about the location and services of each agent within the platform.

Push-Based Configuration Management Strategy

This information is used by the Distribution Master to determine the destination of each Application Courier.

Context-Aware Reconfiguration of Handheld Devices

The Mobile Device Manager on the handheld device uses the directory facilitator service to discover the location of the provisioning server

manager. This information is used to register to receive propagated application solutions.

The Distribution Master on the provisioning server also uses this service to determine the destination of the Application Courier agent delivering an

application to a portable computer.

- 126 -

Distribution Master

All Scenarios

This agent is instantiated as needed and has responsibility for coordinating deployment of application solutions to all appropriate handheld medical

devices.

Push-Based Configuration Management Strategy

It coordinates with a profiles repository to discover all devices that qualify for a solution. The update is retrieved from a hardware-software

application solutions repository. This agent creates a number of Application Courier slaves to deliver the update. The functionality of this agent is

based on the master component of the master-slave design pattern which is outlined in further detail in Section 6.3.2.3.

Context-Aware Reconfiguration of Handheld Devices

The Distribution Master determines the location of the handheld device necessitating an application solution. It creates an Application Courier to

carry the application to the portable computer.

Provisioning Server

Manager

All Scenarios

Instances of this agent reside on each provisioning server. It operates as the main point of contact between the system administrator and the

network infrastructure.

Push-Based Configuration Management Strategy

It responds to distribution requests by the administrator by invoking a Distribution Master agent to communicate product updates or fixes to all

relevant embedded devices.

Context-Aware Reconfiguration of Handheld Devices

This agent delegates decision-making regarding the propagation of application solutions to the Expert System Manager. It passes contextual data

associated with each portable computer to the Expert System Manager periodically. The Provisioning Server Manager creates a Distribution Master

to handle the propagation of an application solution to a handheld device.

Expert System Manager

Context-Aware Reconfiguration of Handheld Devices

The Expert System Manager maintains an interface to a rule-based expert system. This agent is responsible for controlling and interacting with the

- 127 -

rule engine. This involves gathering the contextual data elements of a handheld device and communicating these values to the expert system. The

decision of the rule engine informs the Expert System Manager whether application management operations are required.

Application Courier

All Scenarios

This agent is instantiated as needed and has responsibility for carrying application solutions to handheld medical devices. The agent encapsulates

all necessary software and reconfigurable hardware code to execute an update on the mobile device.

Push-Based Configuration Management Strategy

It provides a coherent approach to push-based distribution. The functionality of this agent is based on the slave component of the master-slave

design pattern.

Context-Aware Reconfiguration of Handheld Devices

The Application Courier encapsulates an application solution to be propagated to a portable computer. The agent interacts with the Mobile Device

Manager upon arrival and informs the user of the new application.

Table 6.6: Agent Roles and Responsibilities within Integral Handheld Device Resource Deployment Scenarios

- 128 -

6.3.2.2 Architectural Overview

The agent architecture developed to facilitate this push-based configuration

management strategy is shown in Figure 6.17. This diagram highlights paths of

intercommunication amongst agents as well as dynamic agent creation. The

architecture was developed using the Gaia methodology [Wooldridge, 99]. An

overview of this agent-oriented analysis and design methodology is presented in

Section 4.6.1. The role of each agent is outlined within Table 6.6. This table can

be used as a reference guide to Figure 6.17.

Figure 6.17: Agent Architecture Implementing Push-Based Configuration

Management Strategy

The above mobile agent-based push framework allows for the coherent

distribution of application solutions to handheld medical devices. An agent can

completely encapsulate all necessary reconfigurable hardware and software code

comprising an application solution.

- 129 -

6.3.2.3 Master-Slave Design Pattern

Design patterns provide a strong foundation in constructing agent-oriented

applications. The push-based configuration management strategy employs the

master-slave design [Buschmann, 95]. This behavioural pattern is presented in

Figure 6.18. The pattern is appropriate for frameworks replicating a particular

service through delegating the same task to several independent suppliers.

Figure 6.18: Master-Slave Behavioural Pattern

The pattern is mostly applied to industrial systems requiring fault tolerance,

however it is also a highly apt framework for the distribution of application

solutions to networked handheld medical devices. The Distribution Master and

Application Courier agents represent the master and slave components of the

pattern respectively.

6.3.2.4 Evaluation

A prototype system was implemented to determine the feasibility of the push-

based configuration management strategy. The evaluation system propagates

image processing applications to a medical-based portable computer using a

distribution process triggered by a system administrator.

- 130 -

6.3.2.5 Test Case Environment

The test case environment incorporates reconfigurable hardware as an integral

resource of a portable computer. The handheld device employed within this test

case was a Dell Inspiron 510m Notebook [Dell, 05b]. A detailed account of the

reasoning behind choosing this device is provided within Section 6.4. This

handheld device executes the JADE agent platform. The provisioning server

operates on a high-end Pentium PC also running the JADE agent platform.

An architectural diagram of the reconfigurable hardware-based mobile medical

device employed with prototype development is presented in Figure 6.19.

Figure 6.19: Mobile Medical Device System Architecture

The coherent distribution of application solutions is a primary benefit of the push-

based configuration management strategy. This protocol enables system

administrators to propagate cohesive upgrades to reconfigurable handheld

devices.

Test-case analysis of intercommunication and execution times for agent-based and

client-server based implementation models was obtained and analysed in Section

6.2.1.3.2. Intercommunication time is perceived to be of secondary importance

- 131 -

within the push-based configuration management strategy as product updates and

fixes are irregular and infrequent events. The relatively slow execution time of the

agent-based model in comparison with the client-server model is a concern. A

design mechanism conceived to improve execution time is presented in Section

4.8.

6.3.2.6 Future Work

Security will play a crucial role in achieving a viable configuration management

methodology for handheld mobile devices. Agent characteristics of mobility and

autonomy heighten issues of security within mobile agent-based frameworks.

Security aspects to be considered are outlined in Table 6.7.

Security Feature

Description

Confidentiality

Ensure that only the intended party can read the information.

Integrity

Ensure that information cannot be modified.

Authentication

Ensure the identity of an entity within the framework.

Authorisation

Grant access rights based on the identity of an entity.

Non-repudiation

Ensure an entity cannot deny involvement in a previous

commitment or transaction.

Table 6.7: Security within Handheld Device Configuration Management

A security enhancement to the configuration management infrastructure addresses

safety concerns using the Jade-S security plug-in for agent frameworks

[Vitaglione, 02b].

- 132 -

Jade-S is based on the Java security model [Java, 05c] and incorporates the

following technologies:

• Java Authentication and Authorisation Service (JAAS)

This provides the capability to enforce authentication and access control

upon principals [Sun, 05a].

• Java Cryptography Extension (JCE)

This provides a range of encryption algorithms and also allows for key

generation and management [Sun, 05b].

• Java Secure Socket Extension (JSSE)

This allows for secure communications using channels constructed with

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

technology [Sun, 05c].

Each agent within the distribution framework has an associated identity

certificate. This provides guarantees as to the identity and ownership of agents.

Requests by agents for permission to execute actions are granted or denied by the

Java security manager. The decision is made on the basis of their list of allowed

privileges in the system policy file. An agent can enhance its capabilities with a

delegation certificate. This is a document attesting the necessary authorisation to

execute determined actions on behalf of others [Poggi, 01].

The Jade-S framework is an additional feature which can be incorporated into the

push-based configuration management protocol to ensure confidentiality and

integrity of all product update operations.

- 133 -

6.3.3 Context-Aware Reconfiguration of Handheld Devices

This deployment strategy seeks to enhance utilisation of reconfigurable resources

contained within a mobile device. The strategy proposes using a context aware

agent-based framework to push reconfigurable hardware and software based

application solutions to a handheld device [O’Sullivan, 06b].

This protocol is related to the push-based configuration management strategy (ref.

Section 6.3.2) as it also distributes applications through a server-initiated process.

The context-aware protocol also borrows from the CAMMD project (ref. Section

5.1.1) by employing the concept of context in the decision making process.

As shown, the push-based configuration management strategy focuses upon the

dynamic provisioning of reconfigurable hardware based product updates to

handheld devices. This context-aware protocol increases the frequency of

configuration by seeking to push reconfigurable hardware applications to a mobile

device depending on the contextual environment of a user. This enables a portable

device to have its hardware configuration dynamically tailored to the usage (i.e.

application) requirements of a user.

The contextual elements required to enable effective configuration management

are the location of the mobile device, the time of day, and the activity of the user.

These elements are interpreted by a rule-based expert system operating on a

provisioning server to determine if a reconfigurable hardware application should

be pushed to a portable computer.

An example scenario of this deployment strategy within a distributed telemedicine

environment for a medical practitioner is shown within Table 6.8. The user

activity is derived from a predetermined schedule of user appointments and their

associated application preferences.

- 134 -

Reconfigurable Hardware

Application Pushed to

Mobile Device

Mobile

Device

Location

Time

User

Activity

Reason

Image Processing Application

Hospital

Ward

9 AM

Patient

Check-up
Practitioner analyses

patient scans using

an image processing

application.

Speech Recognition

Application

Office

1 PM

Taking

Patient

Assessment

Notes

Practitioner takes

notes on patients

using a voice

recognition system.

Video Processing Application

Home

7 PM

Personal

Time
Practitioner likes to

watch films on

mobile device whilst

relaxing at home.

Table 6.8: Example Medical Scenario of Context-Aware Hardware

Reconfiguration of Handheld Device

6.3.3.1 Architectural Overview

The agent architecture developed to facilitate this context-aware reconfiguration

strategy is shown in Figure 6.20. This diagram highlights paths of

intercommunication amongst agents as well as dynamic agent creation. The

architecture was developed using the Gaia methodology [Wooldridge, 99]. An

overview of this agent-oriented analysis and design methodology is presented in

Section 4.6.1. The role of each agent is outlined within Table 6.6. This table can

be used as a reference guide to Figure 6.20.

- 135 -

Figure 6.20: Agent Architecture Implementing Context-Aware

Reconfiguration Protocol

The agent architecture employs static and mobile agents to realise the context-

aware reconfiguration protocol. An application courier mobile agent migrates

from the provisioning server to the handheld medical device encapsulating an

application solution. An overview of mobile agents detailing the benefits of

employing them within telecommunication environments is presented in Section

4.3.

6.3.3.1 Evaluation

A medical-based experimental prototype was constructed to evaluate the

performance of the context-aware reconfiguration protocol. This prototype

follows closely upon the evaluation framework developed for the CAMMD

system (ref. Section 5.1.1).

- 136 -

The evaluation system propagates image processing applications to a medical-

based portable computer depending on the contextual environment of the

physician operating the device.

6.3.3.2 Test Case Environment

The test case environment builds upon the architecture presented in Section 5.1.3

which details the CAMMD deployment architecture. The incorporation of

reconfigurable hardware as integral resource of the portable computer is an

additional element. This additional feature enables a device to have its hardware

configuration dynamically tailored to the usage (i.e. application) requirements of a

user.

The handheld device employed within this test case was a Dell Inspiron 510m

Notebook [Dell, 05b]. A detailed account of the reasoning behind choosing this

device is provided within Section 6.4. This handheld device executes the JADE

agent platform. The provisioning server operates on a high-end Pentium PC also

running the JADE agent platform.

Figure 6.21: Context-Aware Reconfigurable System

Architectural Framework

- 137 -

A Jess rule-based expert system resides on the provisioning server.

Reconfigurable hardware bitstreams propagated to handheld devices within the

hospital scenario are stored in a flat-file repository. A Place Lab plug-in resides on

each handheld device enabling an accurate location estimate to be communicated

to the provisioning server. Agents communicate between the distributed

components over a Wi-Fi network.

The components required to implement the context-aware reconfiguration

protocol are presented within the system architectural framework in Figure 6.21.

This diagram also highlights the conceptual context-aware elements of location,

activity, and time which are necessary for successful protocol execution.

6.3.3.3 Performance Results

The testing scenario employed for the context-aware reconfiguration protocol

closely follows the methodology used for the CAMMD framework (ref. Section

5.1.4). A usability and interaction test dealing with user navigation was examined

with regard to the context-aware reconfiguration protocol. This test compares the

proposed agent protocol against an RMI medical-based implementation.

The simulation environment of ten geographically distributed wards conceived

within CAMMD testing was utilised. A hypothetical use-case scenario was

conceived which required practitioners to execute image processing applications

on their mobile medical devices during patient consultations.

These image filtering applications enable a physician to perform image analysis

on patient scans in real-time. The hypothetical scenario associated an image

processing algorithm from a list of ten algorithms with each individual patient.

The patient to ward distribution can be referenced in Table 5.3.

- 138 -

Figure 6.22: Context-Aware

Reconfiguration Protocol Screenshot

A walk-through of the first five wards was conducted by ten individuals to

achieve results for the test case. The usability and interaction test evaluated the

average time required by each user to select both the appropriate image processing

algorithm and patient scan for each consultation. This test case examined the

usability of both implementations. A screenshot of this selection interface is

shown in Figure 6.22 and the results of the test case are shown in Figure 6.23.

Figure 6.23: Usability and Interaction Test Results

- 139 -

The handheld device executing the context-aware reconfiguration protocol

benefited from the concise nature of the lists returned from the provisioning

server. These lists contained image processing algorithms and patient scans. This

conciseness allowed faster navigation for instructing the device to perform image

processing computations. The navigation time with the RMI-based

implementation was on average approximately 2.79 seconds slower. A primary

cause of this delay is due to the extra time required to locate and associate an

image algorithm with a patient scan when dealing with larger lists. The context-

aware reconfiguration protocol clearly improved user interaction by helping to

avoid this information overload.

Another primary benefit of the agent-based protocol is its ability to optimise

handheld device storage. Bitstreams representing reconfigurable hardware

implementations of imaging algorithms are propagated to portable computers

along with their associated patient scans. This is possible due to the conceptual

relationship established between patient scans and image processing algorithms. A

bitstream implementing an edge detection algorithm for a 256*256 pixel image is

approximately 323Kb in size. It is acceptable for the handheld medical device to

store two or three algorithms at any one time, however it is not feasible for the

device to maintain all possible bitstream configurations of image processing

algorithms in memory. The context-aware reconfiguration protocol clearly helps

optimise memory constraints of a portable computer and this improves device

portability.

- 140 -

6.4 Handheld Device Usage

A Dell Inspiron 510m mobile notebook [Dell, 05b] was employed to develop the

agent development systems which incorporated reconfigurable hardware as an

integral device resource. The Dell Axim mobile device [Dell, 05a] was initially

examined to determine its suitability to act as a networked reconfigurable portable

computer.

However, a number of technological interface issues were encountered with this

device. The Dell PDA has a 16-bit Windows CE operating system which was

incompatible with the 32-bit windows device libraries (ref. Section 3.6.2.2)

developed by Celoxica Corporation for interaction with their reconfigurable

hardware boards. Celoxica Corporation was also unwilling to release the source

code to their device libraries.

The JBits XHWIF API (ref. Section 3.6.2.1) is operational with the Windows CE

operating system, however the Xilinx Virtex board compatible with the JBits

device drivers is PCI-based and so physical connection with the Dell PDA is

difficult. Tablet PCs were also investigated as a potential solution, however

financial constraints nullified this option. Employing a Tablet PC was the

preferred approach and the potential of these devices to act as mobile

reconfigurable hardware platforms is highlighted within the research of the

Enamorado project group [Nikolouzou, 04] and [Kosmatos, 04].

The technological shortcoming of using a mobile notebook instead of a more

computationally deficient handheld device is considered minor as the

development prototype systems are primarily focused upon the effectiveness of

the proposed middleware protocols. The overall analysis of their operation and

value is applicable regardless of the technical specification of the reconfigurable

handheld device.

- 141 -

CHAPTER 7

Exploiting Learning and Collaboration Characteristics of Agents

7.1 Introduction

The following deployment strategies outline the ability of agent middleware to

empower handheld devices to more effectively exploit surrounding adaptive

server technology:

• Learning and Adaptation Negotiation Protocol

• Collective Past-Experience Learning Strategy

7.2 Learning & Adaptation Negotiation Protocol

Learning and adaptation are rudimentary characteristics that can be embodied into

an agent
69

. These attributes enable an agent to learn about its environment and to

adapt to conditions within it. This ability of an agent to gather knowledge about

neighbouring entities and to use this information to guide future decision-making

is a powerful trait. It that can be extremely beneficial for the individual on whose

behalf the agent is acting. The integration of learning and adaptation

characteristics into an agent-based framework can enable mobile medical devices

to more effectively utilise surrounding reconfigurable resources [O’ Sullivan,

06a].

Learning and adaptation capabilities have been introduced into the participating

agents within the agent-based negotiation protocol outlined in Section 5.2.1.

These agent characteristics can enhance the decision-making process on a mobile

medical device regarding adaptive server utilisation. Agent decisions concerning

computational task offloading become more informed through the utilisation of

knowledge gathered from past interactions with surrounding adaptive servers.

The agent architecture developed to facilitate this learning and adaptation

technique employs the same model as the simplified agent negotiation protocol

69
 Identifying characteristics of agents are described in detail in Section 4.2

- 142 -

shown in Figure 6.1. This diagram highlights paths of intercommunication

amongst agents as well as dynamic agent creation. The architecture was

developed using the Gaia methodology [Wooldridge, 99]. An overview of this

agent-oriented analysis and design methodology is presented in Section 4.6.1.

The additional complexity required for successful operation of the learning and

adaptation protocol is contained within the responsibilities and actions of the

participating agents. Details regarding the activities of each agent within the

learning and negotiation protocol are outlined within Table 7.1. This table can be

used as a reference guide to Figure 6.1.

- 143 -

Agent Name

Agent Role

Mobile Device Manager

This single instance agent is a permanent resident on the mobile medical device and has responsibility for gathering and maintaining information

about the physical device and its owner. The agent operates as the main point of contact between the user and the distributed adaptive server

architecture. It predicts or responds to resource limitations on the mobile medical device by attempting to schedule a performance intensive

computation upon a neighbouring adaptive server. The mobile device manager agent initialises the process of selection through invoking a resource

requester agent.

Directory Facilitator

This agent is responsible for maintaining knowledge about the location and services of each agent within the platform.

Resource Requester

(Negotiator)

The Resource Requester is the key agent entity within the learning and adaptation negotiation protocol. It implements the Performance Analysis,

Knowledge Building, Knowledge Acquisition, and Informed Action stages of the protocol.

This agent is instantiated as needed and is responsible for initiating the negotiation process with adaptive servers for access to their reconfigurable

resources. This negotiation strategy employs concepts based upon the contract-net protocol [Smith, 80].

The resource requester agent initially retrieves a list of all adaptive manager agents within the network from the directory facilitator. A call-for-

proposals computation request is broadcast to all adaptive manager agents on this list.

The resource requester then evaluates all adaptive manager bids to determine the best offload option. This entails retrieving the Bid Adjustment

ratings of each adaptive server and applying it to their respective bids. The Resource Requester accesses a flat file repository to retrieve and update

the Bid Adjustment ratings of each adaptive server.

The computational task is assigned to the adaptive server which promises to service the request in the quickest time (taking into account the

accuracy of their bidding history). The Resource Requester updates the Bid Adjustment rating associated with the adaptive server upon receiving

the result of a computational task.

- 144 -

Adaptive Manager

(Negotiator)

This agent is responsible for facilitating access to reconfigurable resources on an adaptive server. The adaptive manager attempts to successfully

bid to service a mobile medical device’s computational request. Upon receiving a call-for-proposals, an adaptive manager examines its current

queue of jobs and estimates their total service time. The result of this evaluation combined with an estimate of the time required to service the

current computation request determines the adaptive manager bid.

Repository Handler

This agent has responsibility for retrieving the reconfigurable bitstream representation of an algorithm required for a mobile device’s computational

request. The agent is also responsible for returning any additional data that may be required e.g. scanned patient images.

Reconfigurable Resource

Handler

This agent is responsible for the process of downloading the bitstream configuration to the reconfigurable resource, interacting with the FPGA and

communicating the results of the hardware computation to the adaptive manager.

Table 7.1: Agent Roles and Responsibilities within Learning and Adaptation Negotiation Protocol

- 145 -

Learning and adaptation within the protocol is confined to client-side operations.

The four stages within this pseudo-intelligent technique are shown in Figure 7.1

and are detailed below:

• Performance Analysis

An analysis mechanism is employed by the participating agent on the

mobile medical device to enable it to evaluate the performance of an

adaptive server to which it has offloaded a computational task. A timing

technique is utilised by the agent to allow it to effectively critique service

provided by an adaptive server. This analysis is achieved in terms of

comparing an adaptive server’s actual performance against the

performance originally promised in their service bid. Potential reasons for

poor bid estimation by an adaptive server are presented in Table 7.2.

 Figure 7.1 Pseudo-Intelligent Learning & Adaptation Technique

• Knowledge Building

The outcome of each analysis stage builds the knowledge an agent

operating on a mobile medical device has about an adaptive server within

its environment. In effect, the information accumulated through the

knowledge building process reflects the agent’s overall opinion regarding

the bid reliability of adaptive servers with whom it has interacted.

- 146 -

• Knowledge Acquisition

The stages of Performance Analysis and Knowledge Building constitute

the learning process of the agent operating on the mobile medical device,

whereas the stages of Knowledge Acquisition and Informed Action

formulate the adaptation process of the agent. Adaptation is focused upon

utilising the knowledge gathered within the learning process to determine

the most beneficial option in terms of adaptive server utilisation.

Knowledge acquisition occurs when an agent operating on a mobile

medical device is deciding upon the adaptive server to which it will

offload a computational task. The stage is specifically concerned with

obtaining records from a repository in relation to adaptive server bid

accuracy.

• Informed Action

This stage uses the records returned from the Knowledge Acquisition

process to alter incoming bids from adaptive servers to service a

computational request. This informed modification of adaptive server bids

reflects the reliability of their previous bid accuracy. Bid adjustment can

take the form of an enhancement or alternatively a downgrading of the bid.

- 147 -

Cause of Poor Bid

Estimation

Description

Intermittent Wireless

Connection

An intermittent wireless connection is an external factor

outside of an adaptive server’s control. It can hinder the

ability of a server to return the results of a computational

request to a handheld medical device. This delay can affect

the bid accuracy of an adaptive server.

Arrival of Higher Priority

Tasks

Learning and adaptation characteristics can be incorporated

into participating agents within the context-based negotiation

protocol outlined in Section 5.2.2. The protocol encourages

re-organisation of an adaptive server’s queue of jobs upon the

arrival of tasks with high priority. This can result in an

adaptive server taking longer to service a task than originally

calculated within their bid estimate.

Under-estimation of

Computational Ability

An adaptive server may under-estimate its computational

processing power. This can lead to service time for a

computational task taking less than the time originally

proposed within a bid estimate.

 Table 7.2: Potential Reasons for Poor Bid Estimation by Adaptive Servers

The Performance Analysis stage contained within the learning and adaptation

negotiation protocol dictates the Mobile Device Manager agent’s satisfaction or

dissatisfaction with the performance of an adaptive server. Their degree of

leniency is pre-determined by an administrator through a graphical user interface

upon device initialisation.

This interface enables an agent operating on a mobile medical device to determine

the degree of leniency to award to adaptive servers within the Performance

Analysis stage. Their degree of leniency is pre-determined by an administrator

- 148 -

through a graphical user interface upon device initialisation. A screenshot of this

visual interface is shown in Figure 7.2.

Figure 7.2: Tolerance Levels Screenshot within

Learning and Adaptation Negotiation Protocol

The tolerance levels dictate the cut-off point upon which the agent will begin

imposing penalties or credits for an inaccurate bid. The percentage values of the

threshold levels are shown in Table 7.3.

The percentage rating associated with each tolerance level determines the time

differential acceptable by an agent in relation to bid time versus actual

computational task service time.

When the actual service time violates a tolerance level, a penalty or a credit is

applied to the bid adjustment weighting as shown in a pseudo-code extract

presented in Figure 7.3. This bid adjustment weighting is utilised to modify an

adaptive server’s computational service bid to accurately reflect their previous

record of performance.

- 149 -

Tolerance Level

Percentage Rating

 (percentage a bid time can be outside actual

time to service a computational task)

High

20%

Medium

10%

Low

5%

None

Not Applicable

Table 7.3: Tolerance Level Percentage Ratings

7.2.1 Evaluation

A medical-based experimental prototype was constructed to evaluate the

performance of the proposed context-aware negotiation protocol. The prototype

enables a physician to retrieve patient scans that have been image processed in

real-time by an adaptive server.

7.2.2 Test Case Environment

The test case environment utilises the same physical framework presented in

Section 6.2.1.2. This presents a network environment consisting of a JADE-LEAP

agent platform executing on a Dell Axim PDA. The handheld device

communicates over a Wi-Fi network to an agent platform that comprises of four

adaptive servers executing within agent containers on a high-end Pentium PC.

- 150 -

Figure 7.3: Bid Adjustment Pseudo-Code

The additional reasoning required for successful deployment of the learning and

adaptation negotiation protocol is encapsulated within the participating agents that

comprise the middleware within the distributed framework.

7.2.3 Performance Results

Test cases were conceived to examine the effectiveness of the proposed protocol

in enabling a handheld medical device recognise and learn from misleading

adaptive server bids. The learning and adaptation negotiation protocol enhances

the quality of service experienced by a handheld device user by enabling an

informed decision-making process regarding adaptive server utilisation.

A test case simulation examined the changes applied to a bid adjustment

weighting by the negotiation protocol. These modifications were derived through

simulated interactions between a handheld device and adaptive servers of varying

reliability. The threshold level acceptable by the agent operating on the handheld

device within simulation testing was set at low for an adaptive server delivering

both better and worse performance times. A low threshold level has an associated

percentage rating of 5%.

Three separate adaptive server reliability scenarios were conceived and these are

shown in Figure 7.4. The Java-based simulation environment employed these

scenarios to model adaptive servers of varying reliability.

- 151 -

Figure 7.4: Adaptive Server Reliability Scenarios

The bid accuracy of the adaptive server scenarios modelled was as follows:

• Low Reliability Adaptive Server

This server has a 40% chance of delivering an inaccurate bid to a handheld

device.

• Medium Reliability Adaptive Server

This server has an 80% chance of providing performance in accordance

with its original bid to a handheld medical device.

• High Reliability Adaptive Server

This adaptive server is the least likely within the three proposed scenarios

to deliver an inaccurate bid. There is a 5% chance of a bid from this

adaptive server proving inaccurate in comparison with actual performance

levels.

The above adaptive server scenarios were applied within a simulated environment

whereby each server was awarded a hundred computational tasks from a handheld

medical device. The changes applied by the portable computer to its bid

adjustment weighting variable were monitored. The results obtained from this

simulated testing are shown in Figure 7.5. These results are applicable to a device

- 152 -

with a low tolerance level for adaptive servers delivering both better and worse

performance.

Figure 7.5: Bid Adjustment Scenarios for Adaptive Server Scenarios

Under-Estimating & Over-Estimating Bids

The simulation environment models actual performance levels of an adaptive

server by applying the following steps:

1. A random number was generated to determine if the server has delivered

an inaccurate bid. The determinant applied was the reliability rating of the

server as highlighted within Figure 7.4.

2. If an adaptive server was adjudged to have delivered an in-accurate bid

then an additional random number was generated to determine if the

performance of the adaptive server violated the tolerance level of the

handheld device.

3. Random number generation was achieved through applying the Monte

Carlo technique.

Simulation results shown in Figure 7.5 highlight the ability of a handheld device

to learn about adaptive server reliability through its interactions with the servers.

The modification made to the bid adjustment weighting reflects the adaptive

measures undertaken by the portable device in responding to this learning

experience.

- 153 -

The simulated scenario of a low reliability adaptive server that under-estimates

service time shows it to be heavily penalised by the agent operating on the mobile

device. Its bid adjustment weighting is shown to be 140 after a hundred

computational offloads by the portable computer to this adaptive server. This

represents a 40% increase by the handheld device on any future bid received from

the adaptive server.

7.2.4 Future Research through Expansion of Learning Agents

The learning and adaptation protocol could be further expanded by increasing the

number of learning agents within the distributed framework. Currently, learning

and adaptation is constrained to operate within the handheld medical device.

These characteristics could also be introduced to agents executing on adaptive

servers. This would be especially beneficial within a network environment which

combined the learning and adaptation protocol with the context-based negotiation

strategy presented in Section 6.2.2.

Such a combined negotiation protocol would compromise the ability of an

adaptive server to make accurate calculations as to computational task service

time. The arrival of higher priority tasks as outlined in Table 7.2 could lead to an

adaptive server making inaccurate computational task bids. Learning and

adaptation abilities would enable agents operating on adaptive servers to make

educated estimates as to the arrival rate of higher priority tasks. This would result

in the calculation of a more accurate bid in response to a call for proposals from a

handheld device.

- 154 -

7.3 Collective Past-Experience Learning Strategy

An agent operating on a handheld device can learn through interaction about

adaptive servers within its environment and can use this knowledge to enhance

quality of service for its owner. These learning and adaptation characteristics are

integral components of the negotiation protocol presented in Section 7.2. The

protocol enables agents executing on handheld devices to make informed

decisions regarding adaptive server utilisation.

An extension of this protocol is to collect, correlate and share the knowledge of

every agent on a handheld device within the network [O’ Sullivan, 06c]. This

collective past-experience learning strategy focuses strongly on the collaborative

nature of multi-agent systems.

Figure 7.6: Collective Past-Experience Learning Strategy

Strong collaboration among agents allows for both efficient pooling of knowledge

resources and for effective dissemination of accumulated experiences. The

collective learning strategy improves the knowledge base of each negotiating

- 155 -

agent on a handheld device. This enhances their decision-making ability with

regard to adaptive server utilisation. The collective past-experience learning

strategy consists of three distinct phases which are shown through numbering in

Figure 7.6 and can be described as follows:

• Itinerant Knowledge Collector Agent Phase

This phase witnesses the traversal of all handheld devices by a mobile

agent. The Itinerant Knowledge Collector agent moves between portable

computers gathering their records of past-experience with adaptive

servers. An example outlining the format of these past-experiences is

shown in Figure 7.7. This shows a Mobile Device Manager agent

documents its offloading experiences with adaptive servers according to

an overall bid adjustment value. This bid adjustment weighting is utilised

to modify an adaptive server’s computational service bid to accurately

reflect their previous record of performance.

 Figure 7.7: Handheld Device Bid Adjustment Records Example

The Itinerant Knowledge Collector agent commences its journey around

the handheld medical devices from the knowledge management server.

This server is the central point of control for executing the processes

within the collective past-experience strategy. The Itinerant Knowledge

Collector agent accesses a repository within this server which details the

locations of portable computers within the network environment to which

it will travel.

- 156 -

• Knowledge Correlator Agent Phase

This phase observes the filtration of accumulated knowledge obtained by

the Itinerant Knowledge Collector agent. The agent responsible for

determining meaningful analysis from gathered data is the Knowledge

Correlator agent. This is a static agent which resides within the knowledge

management server. The Knowledge Correlator is the agent responsible

for controlling all phases of the collective past-experience learning

strategy. It initiates the movement of both the Itinerant Knowledge

Collector and the Itinerant Knowledge Updater agents amongst the

handheld medical devices. The formula devised to obtain an overall

appraisal of handheld device impressions for each adaptive server within

their environment is shown below:

This formula simply calculates the mean bid adjustment value for each

adaptive server. This generates a clearer picture of individual adaptive

server performance as the value calculated reflects opinions gathered from

all handheld devices. There is further scope for extending the complexity

of this appraisal process which is discussed in Section 7.3.4.

• Itinerant Knowledge Updater Phase

This phase witnesses the dissemination of correlated data amongst all

handheld devices within the network environment. The Itinerant

Knowledge Updater agent moves to each portable computer updating their

repository of bid adjustment values. This mobility of the agent facilitates

local interaction with handheld device resources and this helps reduce

network bandwidth usage. Mobility is also a highly suitable mechanism to

combat intermittent wireless connections. The Itinerant Knowledge

Updater agent will always re-attempt to move to the next destination on its

path and is capable of operating with sporadic network connectivity.

N

Bid Adjustment
1
 + Bid Adjustment

2
 + ……. + Bid Adjustment

N

Bid Adjustment

Appraisal
=

Where N = Total Number of Handheld Devices within Network Environment

- 157 -

The agent architectural roles of Itinerant Knowledge Collector, Knowledge

Correlator, and Itinerant Knowledge Updater within the collective past-

experience learning strategy were developed using an agent-oriented analysis and

design methodology [Wooldridge, 99].

7.3.1 Evaluation

A system framework was constructed to effectively evaluate the potential of the

collective past-experience learning strategy. This evaluation prototype extended

the medical-based system outlined in Section 7.2.1 which was utilised to deploy

the learning and adaptation negotiation protocol.

The collective learning strategy is initiated by an administrator through a

graphical user interface. This input screen executes within the knowledge

management server and is displayed upon initialisation of the collective learning

strategy application. Activation of the Itinerant Knowledge Collector agent occurs

through an administrator-driven manual process.

The collective learning strategy would be an automated process within a real-

world setting. The interval between complete cycles of the process would be

administrator defined. The learning strategy would be executed during periods of

low network activity as part of a bandwidth and handheld device resource

conservation policy.

7.3.2 Test Case Environment

The test case environment comprises of the knowledge management server

executing on a Pentium PC. Logic implementing the collective learning strategy

operates within a JADE agent platform on this server. The high-performance

desktop computer is connected through a USB
70

 cable to a Wi-Fi beacon. This

establishes a private wired/wireless network.

70
 Universal Serial Bus

- 158 -

A Dell Inspiron Mobile Notebook communicates over the wireless portion of this

network with the knowledge management server [Dell, 05b]. This notebook

executes four separate JADE agent containers concurrently. Each individual

container emulates an individual handheld device within the test case

environment.

7.3.3 Performance Results

A test was conceived to examine the effectiveness of collaboration amongst

agents within the collective past-experience learning strategy. This test was

executed within two simulated real-world network scenarios. The potential

changes applied to bid adjustment records within a handheld device by an

Itinerant Knowledge Updater agent operating through the collective learning

strategy were examined.

A purpose-built Java simulator was constructed and this used data obtained from

the test-case environment to achieve reliable analysis. The network scenarios

comprised of three adaptive servers with varying degrees of bid estimation

accuracy. These simulated adaptive servers are drawn from the reliability

scenarios presented in Figure 7.4 and included a low reliability, a medium

reliability, and a high reliability server. The simulation modelled servers which

under-estimated computational task service time with these reliability settings.

Four handheld devices were utilised to offload six hundred computational tasks

amongst the three adaptive servers (i.e. approximately one hundred and fifty tasks

originating from each portable computer). These tasks were distributed to the

adaptive servers equally. As each task was assigned to an adaptive server, an

additional random number was generated using the Monte Carlo random number

generation technique which determined if the server delivered an inaccurate bid.

The determinant applied was the reliability rating of the adaptive server.

The tolerance level setting for handheld devices within the simulation was

disregarded so as to simplify the test case scenario. If an adaptive server was

adjudged to have delivered an in-accurate bid then modifications were applied to

its bid adjustment weighting.

- 159 -

The performance results of the initial simulation are presented in Figure 7.8.

These bar charts show the bid adjustment weightings of a handheld device before

and after the execution of the collective past-experience learning strategy.

Figure 7.8: Initial Simulation Performance Results

The results clearly highlight the learning experiences of the individual mobile

device and of the wider handheld community to be very similar. This is known as

the reinforcement characteristic of the collective learning strategy. Essentially,

beliefs are reinforced within a handheld device community for adaptive servers

with consistently reliable or unreliable bid estimates. The reinforcement

characteristic is synopsised within the graphic presented in Figure 7.9.

This is an important attribute of the collective learning strategy as it ensures the

protocol does not unduly alter widely held beliefs within the agent community.

- 160 -

Figure 7.9: Reinforcement Characteristic of Collective

Past-Experience Learning Strategy

The second network simulation sought to alter the learning experience of an

individual mobile device in comparison with the wider handheld community and

to monitor the effect of the collective learning strategy on this device’s beliefs.

The environment settings for the simulator model were modified such that any

computational tasks offloaded to the high reliability server by the second

handheld device were dealt with in a low reliability manner. The performance

results for this simulation are presented in Figure 7.10.

The results highlight another generalised recurring characteristic of the collective

learning strategy. Essentially, a belief held by a handheld device about the bid

reliability of an adaptive server may be forced to change if it is contrary to the

wider held belief within the agent community. This is apparent within the second

simulation performance results graph in relation to the substantial belief change

experienced by the individual handheld device. Its bid adjustment weighting is

subject to an alteration increase of 19% which drastically modifies its view of the

bid reliability of the third server.

- 161 -

Figure 7.10: Second Simulation Performance Results

The second simulation environment is clearly staged such that a belief of an

individual handheld is contrary to the wider community belief. However, the point

of interest is the capability of the collective past-experience learning strategy to

depict a more accurate picture of adaptive server reliability for all handheld

devices.

Figure 7.11: Enlightenment Characteristic of Collective

 Past-Experience Learning Strategy

- 162 -

This enlightenment characteristic is synopsised within the diagram presented in

Figure 7.11. The attribute highlights a beneficial characteristic of the collective

learning strategy as it shows collaborative sharing of knowledge will influence

individually held beliefs. This is preferential as the wider community experience

is a more dependable indicator of the actual bid reliability of adaptive servers.

7.3.4 Future Research

Future research would introduce finer granularity to the records held by a

handheld device in relation to adaptive server bid reliability. Further data

concerning the environmental conditions experienced by a handheld device when

offloading a computational task would enrich the knowledge correlation phase of

the collective past-experience learning strategy.

For example, an intermittent wireless connection is an external factor outside of

an adaptive server’s control. It can hinder the ability of a server to return the

results of a computational request to a handheld medical device. This delay can

affect the bid accuracy of an adaptive server.

However, the wireless connection may only operate erratically within a small

geographic area of the overall hospital environment. Being aware of the physical

geographic locations associated with an offloaded computational request would

ensure the knowledge correlation phase can take into account mitigating factors

when setting the bid adjustment weighting of an adaptive server.

It should be noted that the primary disadvantage of enhancing the collective past-

experience learning strategy is the additional demands placed upon system

resources throughout the network. The demands relate to recording, gathering,

correlating and disseminating supplementary data.

- 163 -

CHAPTER 8

Thesis Evaluation and Conclusions

8.1 Introduction

Pervasive handheld computing systems are multi-functional mobile devices that

are capable of executing a broad range of compute-intensive applications. This

thesis outlines a two-pronged methodology enabling pervasive handheld

computing systems to meet their performance and versatility requirements.

The proposed methodology is a fusion of two independent whilst complementary

concepts. The initial step employs reconfigurable technology to enhance the

physical hardware resources within the environment of a portable computer.

Reconfigurable hardware can dynamically increase the system functionality and

versatility of a handheld device without major loss in performance. The second

step of the methodology introduces agent-based middleware protocols to support

mobile devices to effectively manage and utilise available reconfigurable

hardware resources within their environment.

Effectively, this two-pronged methodology places an equal emphasis upon the

need for high-performance hardware resources within handheld device

environments and upon a sophisticated middleware to enable effective

management of these aforementioned resources. The thesis argues that this

methodology constitutes a coherent approach to meeting the performance and

versatility objectives of pervasive handheld computing systems.

8.2 Contributions and Results

This dissertation makes a number of research contributions to the field of

pervasive handheld computing systems. Each research contribution is novel in

nature and has been performance evaluated. These contributions can be

summarised as follows:

- 164 -

• A mixed agent-object design technique advocating the use of both agents

and objects within agent-oriented systems is presented within Section 4.8.

This design strategy helps produce agent-oriented designs which achieve a

healthy balance between agents and objects.

• An intelligent medical-oriented framework denoted as CAMMD is

outlined within Chapter Five. CAMMD provides handheld medical

devices with a support infrastructure capable of capturing, communicating

and interpreting real-time contextual information. The CAMMD

framework is shown to enhance the usability and portability of mobile

medical devices. The methodology embodied within the architecture also

helps overcome handheld device and network limitation issues.

• An agent-based negotiation protocol enabling a handheld device to

efficiently offload reconfigurable hardware-software based computations

to neighbouring adaptive servers is presented within Section 6.2.1. The

performance of the protocol is evaluated through a range of test case

scenarios. These scenarios compare performance with results gathered

from a traditional client-server framework implementation. The protocol is

shown to deliver vast service time improvements to users of handheld

devices within networks of unevenly distributed loads.

• A context-based negotiation strategy facilitating intelligent utilisation of

networked reconfigurable resources by portable computers is outlined

within Section 6.2.2. This protocol employs contextual information to

better inform the decision-making process of agents operating within

adaptive servers with regard to resource allocation. Test cases were

applied to an experimental prototype to evaluate the ability of the protocol

to recognise the urgency of a computational request. The context-based

negotiation protocol is shown to deliver better performance than the agent-

based negotiation strategy for medium, high, and urgent priority-based

requests.

- 165 -

• A push-based configuration management strategy for the coherent

distribution of reconfigurable-hardware based application solutions to

handheld devices is presented within Section 6.3.2. The mobile agent

concept is employed to completely encapsulate and transport all necessary

reconfigurable hardware and software code representing an application

solution. The configuration management protocol was developed using

agent-based design patterns and an agent-oriented analysis and design

methodology known as Gaia.

• A protocol facilitating context-aware hardware reconfiguration for

handheld devices is outlined within Section 6.3.3. This protocol seeks to

enhance the utilisation of reconfigurable resources contained within a

portable computer. Essentially, the protocol propagates reconfigurable

hardware-based applications to a handheld device depending upon the

contextual environment of its user. This enables a portable computer to

have its hardware configuration dynamically tailored according to the

usage (i.e. application) requirements of a user. An implementation

framework was developed which showed the context-aware

reconfiguration protocol improved user interaction by helping to avoid

information overload. This prototype system also highlighted the ability of

the protocol to effectively utilise portable computer storage helping to

improve device portability.

• A learning and adaptation negotiation protocol enabling handheld devices

to more effectively exploit adaptive server technology is presented within

Section 7.2. Learning and adaptation are agent characteristics which can

enhance the decision-making process regarding networked reconfigurable

hardware utilisation on a portable computer. A test case environment was

constructed to examine handheld medical devices employing the protocol.

This enabled the device to recognise and learn from misleading adaptive

server bids. Simulation results verified the ability of the protocol to enable

a handheld device to learn about the reliability of adaptive servers within

its network environment. Simulation results also showed the protocol

allowed the device to adapt its behaviour accordingly.

- 166 -

• A collective past-experience learning strategy improving the knowledge

base of negotiating agents within a distributed environment is outlined

within Section 7.3. This protocol collects, correlates, and shares adaptive

server knowledge of every negotiating agent on a handheld device within a

network. The collective past-experience learning strategy focuses strongly

upon the collaborative nature of multi-agent systems. Strong collaboration

amongst agents allows for both efficient pooling of knowledge resources

and for effective dissemination of accumulated experiences. A system

framework was constructed to effectively evaluate the potential of the

protocol. Test case results were distinguished according to the effect of the

protocol upon the knowledge base of an individual handheld device. These

belief changes are categorised as reinforcement and enlightenment

characteristics and are detailed further within Section 7.3.3.

8.3 Future Work

The field of pervasive handheld computing systems is relatively young and

requires much further research and development. The following topics have been

identified within the course of this work as areas which would benefit the field of

pervasive handheld computing systems:

• Partitioning and scheduling constraints become increasingly difficult

to obey as the degree of reconfiguration flexibility increases. This is

primarily attributable to the issues of configuration latency and partial

reconfiguration. The partitioning and scheduling of tasks within the

prototypes developed to demonstrate pervasive handheld computing

systems were pre-determined manually with the aid of system-level

designs. Future research will expand upon this approach to incorporate

automated partitioning and scheduling techniques.

• The context-based negotiation protocol outlined within Section 6.2.2

would benefit by interpreting additional contextual data elements

within the handheld device environment. An example scenario of an

enhanced context-based strategy operating within a telemedicine

environment is detailed further within Section 6.2.2.3.4. This scenario

- 167 -

employs real-time sensors physically located upon a patient to better

inform the decision-making process of agents. Essentially, an agent

operating on an adaptive server would determine the priority of a

medical practitioner’s computational request according to the location

of the handheld device and the current state of the patient associated

with the request.

• The push-based configuration management strategy presented within

Section 6.3.2 would be enhanced by introducing security-based

concepts to the framework. An overview of a security approach which

could be employed is detailed within Section 6.3.2.6.

• The learning and adaptation negotiation protocol introduced within

Section 7.2 could be enhanced by facilitating those agents operating

within adaptive servers with learning and adaptation characteristics.

This concept and the associated benefits are further expanded upon

within Section 7.2.4.

• The collective past-experience learning strategy presented within

Section 7.3 would benefit from the introduction of finer granularity in

relation to adaptive server bid reliability. Essentially, additional data

concerning the environmental conditions experienced by a handheld

device when offloading a computational task would enrich the

knowledge correlation phase of the collective past-experience learning

strategy. The implications and benefits of this enhancement are

detailed further within Section 7.3.4.

- 168 -

BIBLIOGRAPHY

[Abowd, 02] G. D. Abowd, E. D. Mynatt and T. Rodden, The Human

Experience, In Proceedings of the IEEE Pervasive

Computing Journal, vol. 1, no. 1, pp.48-57, (2002).

[Adario, 97] A. M. S. Adario, M. L. Cortes and N. J. Leite, An FPGA

Implementation of a Neighbourhood Processor for Digital

Image Applications, In Proceedings of the 10
th

 Brazilian

Symposium on Integrated Circuit Design, (1997).

[Adario, 99] A. M. S. Adario, E. L. Roehe, S. Bampi, Dynamically

Reconfigurable Architecture for Image Processor

Applications, In Proceedings of the ACM Design

Automation Conference, (1999).

[Agarwal, 94] L. Agarwal, M. Wazlowski and S. Ghosh, An

Asynchronous Approach to Efficient Execution of

Programs on Adaptive Architectures Utilising FPGAs, In

Proceedings of Second IEEE Workshop on FPGAs for

Custom Computing Machines, pp. 101-110, (1994).

[AgentBuilder, 00] AgentBuilder: An integrated toolkit for constructing

intelligent software agents, White Paper, (2000).

http://www.agentbuilder.com.

[Aksoy, 98] D. Aksoy, et al, Research in Data Broadcast and

Dissemination, In Proceedings of the 1st International

Conference on Advanced Multimedia Content Processing,

(1998).

[Albuquerque, 01] R. L. Albuquerque, et al, KSACI: A Handheld Device

Infrastructure for Agents Communications, In Proceedings

- 169 -

of the Eight International Workshop on Agent Theories,

Architectures and Languages, (2001).

[Alexander, 79] C. Alexander, The Timeless Way of Building, Oxford

University Press, New York, (1979).

[Altmann, 01] J. Altmann, F. Gruber, L. Klug, W. Stockner and E.

Weippl, Using Mobile Agents in Real World: A Survey and

Evaluation of Agent Platforms, In Proceedings of the 2nd

Workshop on Infrastructure for Agents, MAS, and Scalable

MAS at Autonomous Agents Conference, (2001).

[Ancona, 01] M. Ancona, et al, Ward In Hand: Wireless Access to

Clinical Records for Mobile Healthcare Professionals, In

Proceedings of the 1
st
 Annual Conference on Mobile and

Wireless Healthcare Applications, (2001).

[Aridor, 98] Y. Aridor and D. B. Lange, Agent Design Patterns:

Elements of Agent Application Design, In Proceedings of

the Autonomous Agents Conference, (1998).

[Arnold, 99] K. Arnold, A. Wollrath, B. O’ Sullivan, R. Scheifler, and J.

Waldo, The Jini Specification, Addison-Wesley

Publications, (1999).

[Ashenden, 96] P. J. Ashenden, The Designer’s Guide to VHDL, Morgan

Kaufmann Publishers, San Francisco, USA, (1996).

[Ashenden, 98] P. J. Ashenden, The Student’s Guide to VHDL, Morgan

Kaufmann Publishers, San Francisco, USA, (1998).

[Baldi, 97] M. Baldi, S. Gai and G. Picco, Exploiting Code Mobility in

Decentralised and Flexible Network Management, In

Proceedings of the Mobile Agents Conference, (1997).

- 170 -

[Bardram, 04] J. Bardram, Applications of Context-Aware Computing in

Hospital Work – Examples and Design Principles, In

Proceedings of the ACM Symposium on Applied

Computing, (2004).

[Barton, 02] J. Barton, et al, Miniaturised Modular Wireless Sensor

Networks, In Proceedings of the International Conference

on Ubiquitous Computing, (2002).

[Belkin, 05] Wireless Router D-Link AirPlus DI-614 Datasheet

available at http://www.belkin.com

[Bellifemine, 99] F. Bellifemine, A. Poggi, and G. Rimassa, JADE – A FIPA

Compliant Agent Framework, In Proceedings of the

International Conference on the Practical Application of

Intelligent Agents and Multi-Agent Systems, pp. 97-108,

(1999).

[Bellifemine, 00] F. Bellifemine, A. Poggi, G. Rimassa and P. Turci, An

Object-Oriented Framework to Realise Agent Systems, In

Proceedings of the Workshop From Objects to Agents, pp.

52-57, (2000).

[Bellifemine, 03] F. Bellifemine, G. Caire, A. Poggi and G. Rimassa, JADE

A White Paper, In Proceedings of the TILAB Journal,

(2003).

[Benedetti, 98] A. Benedetti and P. Perona, Real-Time 2-D Feature

Detection on a Reconfigurable Computer, In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Detection, (1998).

- 171 -

[Benitez, 99] D. Benitez and J. Cabrera, Reactive Computer Vision

System with Reconfigurable Architecture, In Proceedings

of the International Conference on Vision Systems, (1999).

[Bergenti, 01] F. Bergenti and A. Poggi, LEAP: A FIPA Platform for

Handheld and Mobile Devices, In: Proceedings of the

workshop on agent theories, architectures, and languages,

(2001).

[Berger, 03] M. Berger, et al, Porting Agents to Small Mobile Devices:

The Development of the Lightweight Extensible Agent

Platform, In Proceedings of the TILAB Journal, (2003).

[Berghoff, 96] J. Berghoff, O. Drobnik, A. Lingnau and C. Monch, Agent-

Based Configuration Management of Distributed

Applications, In Proceedings of 3rd International

Conference on Configurable Distributed Systems, (1996).

[BMA, 04] Quality & Outcomes Framework Guidance, British Medical

Association, available at:

http://www.bma.org.uk/ap.nsf/Content/QualityOutcomes,

(2004).

[Booch, 98] G. Booch, J. Rambaugh and I. Jacobson, The Unified

Modelling Language User Guide, Addision-Wesley,

Reading, (1998).

[Burbeck, 04] K. Burbeck, D. Garpe and S. Nadjm-Tehrani, Scale-up and

Performance Studies of Three Agent Platforms, In

Proceedings of the International Workshop on Middleware

Performance, (2004).

- 172 -

[Burmeister, 96] B. Burmeister, Models and methodology for agent-oriented

analysis and design, In Proceedings of the Agent-oriented

Programming and Distributed Systems Workshop, (1996).

[Burger, 97] D. Burger and J. Goodman, Billion-Transistor

Architectures, In Proceedings of the Computer Journal, vol.

30, no. 9, pp.46-49, (1997).

[Buschmann, 95] F. Buschmann, The Master-Slave Pattern, Pattern

Languages of Program Design, editors: O. J. Coplien and

D. Schmidt, Addison Wesley, pp. 133-142, (1995).

[Buschmann, 96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and

M. Stal, Pattern-Oriented Software Architecture: A System

of Patterns, Wiley, Chichester, (1996).

[Caire, 02] G. Caire, N. Lhuillier, and G. Rimassa, A Communication

Protocol for Agents on Handheld Devices, In Proceedings

of Autonomous Agents and Multi-Agent Systems

Conference, (2002).

[Capra, 02] L. Capra, Mobile Computing Middleware for Context-

Aware Applications, In Proceedings of the International

Conference on Software Engineering, (2002).

[Carabelea, 03] C. Carabelea, O. Boissier, and F. Ramparany, Benefits and

Requirements of using Multi-Agent Systems on Smart

Devices, In Proceedings of the 9th International Euro-Par

Conference, pp. 1091-1098, (2003).

[Carabelea, 03b] C. Carabelea and O. Boissier, Multi-Agent Platforms on

Smart Devices: Dream or Reality?, In Proceedings of the

Smart Objects Conference, pp.126-129, (2003).

- 173 -

[Carzaniga, 97] A. Carzaniga, G. P. Picco and G. Vigna, Designing

Distributed Applications with Mobile Code Paradigms, In

Proceedings of the 19th International Conference on

Software Engineering, (1997).

[Casselman, 02] S. Casselman and J. Schewel, Net Aware Bitstreams that

Upgrade FPGA Hardware Remotely Over the Internet, In

Proceedings of the SPIE Conference, vol. 4867, (2002).

[Celoxica, 05a] Celoxica RC200 Datasheet available at

http://www.celoxica.com

[Celoxica, 05b] Celoxica Corporation, http://www.celoxica.com

[Chalmers, 98] D. Chalmers, Quality of Service in Mobile Environments,

Masters Dissertation, Department of Computing, Imperial

College, London, (1998).

[Chavez, 97] A. Chavez, A. Moukas and P. Maes, Challenger: A Multi-

Agent System for Distributed Resource Allocation, In

Proceedings of the First International Conference on

Autonomous Agents, (1997).

[Chmiel, 04] K. Chmiel, et al, Testing the Efficiency of JADE Agent

Platform, In Proceedings of the Third International

Symposium on Parallel and Distributed Computing, pp. 49-

56, (2004).

[Compton, 02] K. Compton, and S. Hauck, Reconfigurable Computing: A

Survey of Systems and Software, In ACM Computing

Surveys, vol. 34, no. 2, pp. 171-210, (2002).

[Cret, 02] O. Cret, Z. Baruch, and K. Pusztai, FPGAW: FPGA

Configuration Over the Internet, In Proceedings of the

- 174 -

Third International Symposium on Mathematical and

Computational Applications, (2002).

[Daggu, 04] R. V. Daggu, and V. Muthukumar, An Efficient

Reconfigurable Architecture and Implementation of Edge

Detection Algorithm using Handel-C, In Proceedings of the

International Conference on Information Technology:

Coding and Computing, (2004).

[Dave, 99] B. P. Dave, Crusade: Hardware/Software Co-Synthesis of

Dynamically Reconfigurable Heterogeneous Real-Time

Distributed Embedded Systems, In Proceedings of the

Design, Automation and Test in Europe Conference, pp.

97-104, (1999).

[de Araujo Lima, 03] E. F. de Araujo Lima, P. D. de Lima Machado, J. C. A. de

Figueiredo and F. R. Sampaio, Implementing Mobile Agent

Design Patterns in the Jade Framework, In Proceedings of

the TILAB Journal, (2003).

[Deepakumara, 01] J. Deepakumara, H. M. Heys, and R. Venkatesan, FPGA

Implementation of MD5 Hash Algorithm, In Proceedings of

the IEEE Canadian Conference on Electrical and Computer

Engineering, (2001).

[Dell, 05a] Dell Axim X3 Pocket PC Datasheet available at

http://www.dell.com

[Dell, 05b] Dell Inspiron 510m Notebook Datasheet available at

http://www.dell.com

[Della Mea, 01] V. Della Mea, Agents Acting and Moving in Healthcare

Scenario: A New Paradigm for Telemedical Collaboration,

- 175 -

In Proceedings of the IEEE Transactions on Information

Technology in Biomedicine, (2001).

[Deugo, 99] D. L. Deugo, Communication as a Means to Differentiate

Objects, In Proceedings of the Technology of Object-

Oriented Languages & Systems Conference, (1999).

[Dick, 98] R. P. Dick and N. K. Jha, Cords: Hardware-Software Co-

Synthesis of Reconfigurable Real-Time Distributed

Embedded Systems, In Proceedings of the International

Conference on Computer-Aided Design, pp. 62-68, (1998).

[D’Inverno, 97] M. D’Inverno et al, A Formal Specification of dMARS, In

Intelligent Agents IV, editors: A. Rao, M. P. Singh and M.

J. Wooldridge, vol. 1365, pp. 155-176, (1997).

[Doss, 99] C. C. Doss, and C. S. Clay, Automated Interface

Generation for Remote Access to Adaptive Computing

Resources, In Proceedings of the Military and Aerospace

Programmable Logic Devices Conference, (1999).

[Draper, 02] B. Draper, et al, Implementing Image Applications on

FPGAs, In Proceedings of the 16th International

Conference on Pattern Recognition, (2002).

[Edmonds, 01] T. Edmonds, S. Hodges, and A. Hopper, Pervasive

Adaptation for Mobile Computing, In Proceedings of the

15
th

 International IEEE Information Networking

Conference, (2001).

[Edwards, 05] S. A. Edwards, The Challenges of Hardware Synthesis

from C-Like Languages, In Proceedings of the Design,

Automation and Test in Europe Conference, pp. 66-67,

(2005).

- 176 -

[Estrin, 63] G. Estrin, Parallel Processing in a Restructurable Computer

System, In Proceedings of IEEE Transactions on Electronic

Computers, (1963).

[FIPA, 05] The Foundation for Intelligent Physical Agents,

http://www.fipa.org

[FIPA, 05b] FIPA Agent Communication Language Specification,

available at http://www.fipa.org

[FIPA, 05c] FIPA Agent Management Specification, available at

http://www.fipa.org

 [Fleischmann, 99] J. Fleischmann, K. Buchenrieder, and R. Kress, Java Driven

Codesign and Prototyping of Networked Embedded

Systems, In Proceedings of the Design Automation

Conference, (1999).

[Fleischmann, 99b] J. Fleischmann and K. Buchenrieder, Prototyping

Networked Embedded Systems, In Proceedings of the IEEE

Computer Journal, vol. 32, no. 2, pp. 116-119 (1999).

[Forgy, 82] C. Forgy, Rete: A Fast Algorithm for the Many Pattern /

Many Object Pattern Match Problem, In Proceedings of the

Artificial Intelligence Journal, vol. 19, pp. 17-37, (1982).

[Francis, 92] R. J. Francis, A Tutorial on Logic Synthesis for Lookup-

Table Based FPGAs, In Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp.

40- 47, (1992).

[Friedman-Hill, 03] E. Friedman-Hill, Jess in Action: Rule-Based Systems in

Java, Manning Publications, (2003).

- 177 -

[Fuggetta, 98] A. Fuggetta, G. Pietro Picco and G. Vigna, Understanding

Code Mobility, In Proceedings of the IEEE Transactions on

Software Engineering, vol. 24, no. 5, (1998).

[Gaddah, 03] A. Gaddah and T. Kunz, A Survey of Middleware

Paradigms for Mobile Computing, Technical Report SCE-

03-16, Department of Systems and Computing Engineering,

Carleton University, (2003).

[Gaj, 03] K. Gaj, et al, Effective Utilization and Reconfiguration of

Distributed Hardware Resources using Job Management

Systems, In Proceedings of the International Parallel and

Distributed Processing Symposium, (2003).

[Genesereth, 94] M. R. Genesereth, and S. P. Ketchpel, Software Agents, In

Communications of the ACM, vol. 37, no. 7, pp. 48-53,

(1994).

[Gamma, 95] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design

Patterns, Addison-Wesley, Reading, (1995).

[Giarratano, 98] J. Giarratano and G. D. Riley, Expert Systems: Principles

and Programming, Third Edition, PWS Publishing

Company, Boston, (1998).

[Gottlieb, 03] D. B. Gottlieb and N. P. Carter, Microprocessor Interfacing

Laboratory, In Proceedings of the International Conference

on Microelectronic Systems Education, (2003).

[Gray, 00] R. Gray, D. Kotz, G. Cybenko and D. Rus, Mobile agents:

Motivations and state-of-the-art systems, Research Report

TR2000-365, Dartmouth College, USA, (2000).

- 178 -

[Gruber, 93] T. Gruber, A Translation Approach to Portable Ontology

Specifications, In Proceedings of the Knowledge

Acquisition Journal, vol. 5, no. 2, pp. 199-220, (1993).

[Guccione, 99] S. Guccione, D. Levi, and P. Sundararajan, JBits: Java

Based Interface for Reconfigurable Computing, In

Proceedings of 2nd Annual Military and Aerospace

Applications of Programmable Devices and Technologies

Conference, (1999).

[Guccione, 02] S. Guccione, D. Verkest, and I. Bolsens, Design

Technology for Networked Reconfigurable FPGA

Platforms, In Proceedings of Design, Automation and Test

in Europe Conference, pp. 994-997, (2002).

[Ha, 99] Y. Ha, et al, A Scalable Architecture to Support Networked

Reconfiguration, In Proceedings of the IEEE Program for

Research on Integrated Systems and Circuits, pp. 677-683,

(1999).

[Ha, 01] Y. Ha, et al, Virtual Java / FPGA Interface for Networked

Reconfiguration, In Proceedings of the Asia and South

Pacific Design Automation Conference, pp. 558-563,

(2001).

[Ha, 02] Y. Ha, et al, Building a Virtual Framework for Networked

Reconfigurable Hardware and Software Objects, In

Proceedings of the Journal of Supercomputing, vol. 21,

no.2, pp.131-144 (2002).

[Hall, 98] S. R. Hall, D. Heimbiger and L. A. Wolf, A Cooperative

Approach to Support Software Deployment Using the

Software Dock, In Proceedings of the International

Conference on Software Engineering, pp. 174-183, (1998).

- 179 -

[Handel-C, 05] Handel-C White Paper available at

http://www.celoxica.com

[Harr, 00] R. Harr, The Nimple Compiler for Agile Hardware: A

Research Platform, In Proceedings of the 13
th

 International

Symposium on System Synthesis, (2000).

[Hartenstein, 95] R. W. Hartenstein, et al, A Reconfigurable Machine for

Applications in Image and Video Compression, In

Proceedings of the Conference on Compression

Technologies and Standards for Image and Video

Compression, (1995).

[Hauck, 98] S. Hauck, The Roles of FPGAs in Reprogrammable

Systems, In Proceedings of the IEEE, vol. 86, no. 4, pp.

615-638, (1998).

[Hauser, 98] J. R. Hauser and J. Wawrzynek, Garp: A MIPS Processor

with a Reconfigurable Coprocessor, In Proceedings of the

IEEE Symposium of Field-Programmable Custom

Computing Machines, pp. 12-21, (1998).

[Hedberg, 03] H. Hedberg, et al, Teaching Digital HW-Design by

Implementing a Complete MP3 Decoder, In Proceedings of

the International Conference on Microelectronic Systems

Education, (2003).

[Helin, 03] H. Helin, Supporting Nomadic Agent-based Applications in

the FIPA Agent Architecture, PhD Thesis, Department of

Computer Science, University of Helsinki, Finland, (2003).

- 180 -

[Hennessy, 96] J. L. Hennessy and D. A. Patterson, Computer Architecture:

A Quantitative Approach, Morgan Kauffman Publishers,

San Francisco, (1996).

[Hightower, 04] J. Hightower and G. Borriello, Particle Filters for Location

Estimation in Ubiquitous Computing: A Case Study, In

Proceedings of the International Conference on Ubiquitous

Computing, (2004).

[Huang, 95] J. Huang, N. R. Jennings, and J. Fox, An Agent-based

Approach to Health Care Management, In Proceedings of

the International Journal of Applied Artificial Intelligence,

pp. 401-420, (1995).

[Indrusiak, 03] L. S. Indrusiak, et al, Ubiquitous Access to Reconfigurable

Hardware: Application Scenarios and Implementation

Issues, In Proceedings of the Design, Automation and Test

in Europe Conference, (2003).

[Jacobson, 00] N. G. Jacobson, Leveraging PLDs for Embedded System

Functionality, In Proceedings of the Electronics Engineer

Journal, (2000).

[Jacobson, 01] N. G. Jacobson, Using the Internet to Repair Hardware in

the Field, In the EETimes Magazine, July Edition, (2001).

[JADE, 05] JADE Application framework available for download at

http://jade.tilab.com/

[JADE-LEAP, 05] JADE-LEAP Application framework available for

download at http://jade.tilab.com/

[Jahnke, 04] J. H. Jahnke, Y. Bychkov, D. Dahlem and L. Kawasme,

Implicit, Context-Aware Computing for Health Care, In

- 181 -

Proceedings of the Workshop on Building Software for

Pervasive Computing, (2004).

[James-Roxby, 00] P. James-Roxby, S. A. Guccione, Automated Extraction of

Run-Time Parameterisable Cores from Programmable

Device Configurations, In IEEE Workshop on Field

Programmable Custom Computing Machines, pp. 153-161,

(2000).

[Jasper, 99] R. Jasper and M. Uschold, A Framework for Understanding

and Classifying Ontology Applications, In Proceedings of

the Sixteenth International Joint Conference on Artificial

Intelligence Conference, (1999).

[Java, 05] Sun Microsystems Java White Paper available at:

http://java.sun.com/

[Java, 05b] Java Remote Method Invocation White Paper

(Sun Microsystems) available at:

http://java.sun.com/products/jdk/rmi/

[Java, 05c] Java Security API, (Sun Microsystems), available at:

http://java.sun.com/security/

[Jbits, 05] Xilinx JBits Standard Development Kit for Xilinx Virtex

Devices, http://www.xilinx.com/products/jbits/

[Jeode, 05] Jeode Java Virtual Machine available at:

http://www.esmertec.com/solutions/

[Jennings, 98] N. R. Jennings, K. Sycara and M. J. Wooldridge, A

Roadmap of Agent Research and Development, In

Proceedings of Autonomous Agents and Multi-Agent

Systems Conference, (1998).

- 182 -

[Jennings, 01] N. R. Jennings, An Agent-Based Approach for Building

Complex Software Systems. In Communications of the

ACM, vol. 44, no. 4, (2001)

[Kirn, 02] S. Kirn, Ubiquitous Healthcare: The OnkoNet Mobile

Agents Architecture, In Proceedings of the International

Conference NetObjectDays on Objects, Components,

Architectures, Services and Applications for a Networked

World, (2002).

[Koch, 03] F. L. Koch and J. Meyer, Knowledge Based Autonomous

Agents for Pervasive Computing using AgentLight, In

Proceedings of the ACM/IFIP/USENIX International

Middleware Conference, (2003).

[Koch, 04] F. Koch and I. Rahwan, Classification of Agents-based

Mobile Assistants, In Proceedings of the Autonomous

Agents and Multi-Agent Systems Workshop on Agents for

Ubiquitous Computing, pp. 7-38, (2004).

[Kosmatos, 04] E. Kosmatos, et al, Enamorado: An intelligent multimedia

content delivery system, In Proceedings of the 13
th

 Mobile

and Wireless Communications Conference, (2004).

[Kotz, 97] D. Kotz, et al, Agent TCL: Targeting the Needs of Mobile

Computers, In Proceedings of the IEEE Internet Computing

Journal, vol. 1, (1997).

[Kroll, 02] M. Kroll, et al, Accessing DICOM 2D/3D-Image and

Waveform Data on Mobile Devices, In Proceedings of the

Second Conference on Mobile Computing in Medicine,

(2002).

- 183 -

[Kurkovsky, 04] S. Kurkovsky, Bhagyavati, and A. Ray, A Collaborative

Problem-Solving Framework for Mobile Devices, In

Proceedings of the 42
nd

 Annual ACM Southeast

Conference, (2004).

[Ladas, 01] C. Ladas, R. Edwards and G. Peersman, Use of Wireless

Application Protocol Service Configuration Provision over

the Short Messaging System for Nomadic Device

Adaptation, In Proceedings of the 2
nd

 Symposium on the

Convergence of Telecommunications, Networking and

Broadcasting, (2001).

[LaMarca, 05] A. LaMarca, et al, Place Lab: Device Positioning using

Radio Beacons in the Wild, In Proceedings of the Pervasive

2005 Conference, Munich, Germany, (2005).

[Lamberti, 02] F. Lamberti, et al, A Web-based Architecture Enabling

Multichannel Telemedicine Applications, In Proceedings of

Systemics, Cybernetics and Informatics, pp. 257-262,

(2002).

[Lee, 00] S. Lee, K. Yun, K. Choi. S. Hong, S. Moon and J. Lee,

Java-Based Programmable Networked Embedded System

Architecture with Multiple Application Support, In

Proceedings of the Chip Design Automation Conference,

(2000).

[Li, 00] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.

Stockwood, Hardware-Software Co-design of Embedded

Reconfigurable Architectures, In Proceedings of the Design

Automation Conference, (2000).

[Lino, 03] N. Q. Lino, et al, Delivering Intelligent Planning

Information to Mobile Device Users in Collaborative

- 184 -

Environments, In Proceedings 18th International Joint

Conference on Artificial Intelligence, AI Moves to IA:

Workshop on Artificial Intelligence, Information Access,

and Mobile Computing, (2003).

[Luck, 03] M. Luck, P. McBurney and C. Preist, Agent Technology:

Enabling Next Generation Computing, A Roadmap for

Agent-Based Computing, available at

http://www.agentlink.org, (2003).

[Ma, 03] J. Ma, Incremental Design Techniques with Non-

Preemptive Refinement for Million-Gate FPGAs, PhD

Dissertation, Department of Electrical and Computer

Engineering, Virginia Institute of Technology, (2003).

[Mahmoud, 01] Q. H. Mahmoud, MobiAgent: An Agent-based Approach to

Wireless Information Systems, In Proceedings of the Third

International Conference Bi-Conference Workshop on

Agent-Oriented Information Systems, (2001).

[Mahmoud, 02] Q. H. Mahmoud and L. Vasiu, Accessing and Using

Internet Services from Java-Enabled Handheld Wireless

Devices: A Mediator-based Approach, In Proceedings of

the 4
th

 International Conference on Enterprise Information

Systems, pp. 1048-1053, (2002).

[Mano, 02] M. M. Mano, Digital Design, Third Edition, Prentice-Hall

Publishers, London, (2002).

[Mapen, 99] B. E. Mapen, et al, Integrating Adaptive Computing with

Distributed Services Medicine, In Proceedings of the 12
th

IEEE Symposium on Computer-Based Medical Systems,

(1999).

- 185 -

[Marques, 01] P. Marques, et al, Providing Applications with Mobile

Agent Technology, In Proceedings of the Fourth IEEE

International Conference on Open Architectures and

Network Programming Conference, (2001).

[Martel, 00] S. Martel, K. Doyle and I. Hunter, Reducing the Cost, Size,

and Power Consumption of Medical Devices through

Communication and Reconfigurable Computing

Techniques, In Proceedings of the IEEE-EBMS Asia

Pacific Conference on Biomedical Engineering, China,

(2000).

[Mascolo, 02] C. Mascolo, L. Capra and W. Emmerich, Middleware for

Mobile Computing, In Advanced Lectures on Networking,

Editors: E. Gregori, G. Anastasi, and S. Basagni, vol. 2497,

pp. 20-58, (2002).

[Mascolo, 04] C. Mascolo, L. Capra and W. Emmerich, Principles of

Mobile Computing Middleware, In Middleware for

Communications, Editor: Q. Mahmoud, John Wiley,

(2004).

[Mei, 00] B. Mei, P. Schaumont, and S. Vernalde, A Hardware-

Software Partitioning and Scheduling Algorithm for

Dynamically Reconfigurable Embedded Systems, In

Proceedings of the Circuits, Systems and Signal Processing

Workshop, (2000).

[Mena, 00] E. Mena, A. Illarramendi and A. Goni, A Software

Retrieval Service based on Knowledge-Driven Agents, In

Proceedings of the 7
th

 International Conference on

Cooperative Information Systems, pp. 174-185, (2000).

- 186 -

[Mena, 02] E. Mena, J. A. Royo, A. Illarramendi and A. Goni, An

Agent-based Approach for Helping Users of Hand-Held

Device to Browse Catalogs, In Proceedings of the 6
th

International Cooperative Information Agents Workshop,

pp. 51-65, (2002).

[Metropolis, 49] N. Metropolis, and U. Stanislaw, The Monte Carlo method,

Journal of the American Statistical Association, 44 (247),

pp. 335-341, (1949).

[Mignolet, 02] J. Y. Mignolet, S. Vernalde, D. Verkest, and R.

Lauwereins, Enabling Hardware-Software Multitasking on

a Reconfigurable Computing Platform for Networked

Portable Multimedia Appliances, In Proceedings of the

International Conference on Engineering Reconfigurable

Systems and Architectures, (2002).

[Mignolet, 03] J. Y. Mignolet, et al, Infrastructure for Design and

Management of Relocatable Tasks in a Heterogeneous

Reconfigurable System-on-Chip, In Proceedings of the

Design, Automation and Test in Europe (DATE)

Conference, pp. 986-991, (2003).

[Misra, 99] P. Misra, B. P. Burke, and M. M. Pratt, GPS Performance

in Navigation, In Proceedings of the IEEE (Special Issue on

GPS), vol. 87, pp. 65-85, (1999).

[Moreno, 03] A. Moreno, A. Valls and A. Viejo, Using JADE-LEAP to

Implement Agents in Mobile Devices, Research Report 03-

008, Technical School of Engineering, Universitat Rovira i

Virgili, Spain, (2003).

[Moseley, 02] R. Moseley, Reconnetics: A System for the Dynamic

Implementation of Mobile Hardware Processes in FPGAs,

- 187 -

In Proceedings of the Communicating Process

Architectures Journal, (2002).

[Moulin, 96] B. Moulin and M. Brassad, A scenario-based design

method and an environment for the development of

multiagent systems, In Proceedings of the First Australian

Workshop on Distributed Artificial Intelligence, (1996).

[Neff, 03] N. Neff and G. Sampath, An Object Framework for

Teaching ALU Component Design in Architecture Courses,

In Proceedings of the Journal of Computing Sciences in

Colleges, vol. 18, no. 5, pp. 23-30, (2003).

[Nikolouzou, 04] E. Nikolouzou, et al, Real-time multimedia content delivery

system for nomadic users, In Proceedings of the 1st

International Workshop on Streaming Media Distribution

over the Internet, (2004).

[Nikolouzou, 04b] E. Nikolouzou, et al, Constraint-based Media Content

Deivery over Heterogeneous Networks and Devices, In

Proceedings of the International Journal of Wireless and

Mobile Computing, Special Issue on Media streaming over

Wireless and Mobile networks, (2004).

[Nitsch, 03] C. Nitsch, C. Lara and U. Kebschull, A Novel Design

Technology for Next Generation Ubiquitous Computing

Architectures, In Proceedings of the Reconfigurable

Architectures Workshop, (2003)

[Nwana, 98] H. S. Nwana, D. T. Ndumu and L. C. Lee, Zeus: An

Advanced Toolkit for Engineering Distributed Multi-Agent

Systems, In Proceedings of the International Conference on

the Practical Application of Intelligent Agents and Multi-

Agent Systems, pp. 377-391, (1998).

- 188 -

[Odell, 01] J. Odell, H. Van Dyke Parunak and B. Bauer, Representing

Agent Interaction Protocols in UML, Agent-Oriented

Software Engineering, Editors: P. Ciancarini and M.

Wooldridge, Springer-Verlag, Berlin, pp. 121-140, (2001).

[O’ Sullivan, 06a] T. O’ Sullivan and R. Studdert, Learning Agents on

Handheld Devices Negotiating for Reconfigurable

Resources, (2006). [In Preparation]

[O’ Sullivan, 06b] T. O’ Sullivan and R. Studdert, Context-Aware Hardware

Reconfiguration of Handheld Devices, (2006). [In

Preparation]

[O’ Sullivan, 06c] T. O’ Sullivan and R. Studdert, Collaborative Learning

Amongst Handheld Devices Benefiting Negotiation for

Networked Reconfigurable Resources, (2006). [In

Preparation]

[O’ Sullivan, 06d] T. O’ Sullivan, J. O’ Donoghue, J. Herbert, and R. Studdert,

CAMMD: Context Aware Mobile Medical Devices, In

Proceedings of the International Journal of Universal

Computer Science, Special Issue on Pervasive Health

Management: New Challenges for Health Informatics,

(2006).

[O’ Sullivan, 06e] T. O’ Sullivan and R. Studdert, Mixed Agent-Object

Design Technique, (2006). [In Preparation]

[O’ Sullivan, 05a] T. O’ Sullivan and R. Studdert, Context-Aware Negotiation

for Reconfigurable Resources with Handheld Devices, In

Proceedings of the OnTheMove Federated Conferences,

Workshop on Context-Aware Mobile Systems, Ayia Napa,

Cyprus, (2005).

- 189 -

[O’ Sullivan, 05b] T. O’ Sullivan, Context Aware Mobile Devices and

Reconfigurable Computing, In Proceedings of the Fifth

International Conference on Modelling and Using Context,

Doctoral Colloquium, Paris, France, (2005).

[O’ Sullivan, 05c] T. O’ Sullivan and R. Studdert, Handheld Medical Devices

Negotiating for Reconfigurable Resources using Agents, In

Proceedings of the 18th IEEE International Symposium on

Computer-Based Medical Systems, Dublin, Ireland, (2005).

[O’ Sullivan, 05d] T. O’ Sullivan and R. Studdert, Agent Technology and

Reconfigurable Computing for Mobile Devices, In 20th

ACM Symposium on Applied Computing, Special Track on

Handheld Computing, Santa Fe, New Mexico, USA,

(2005).

[O’ Sullivan, 05e] T. O’ Sullivan and R. Studdert, MMD-ARC: Mobile

Medical Devices Incorporating Agents and Reconfigurable

Computing, In Proceedings of the IEEE Conference on

Enabling Technologies for Smart Appliances, Hyderabad,

India, (2005).

[O’ Sullivan, 04a] T. O’ Sullivan and R. Studdert, Configuration Management

for Networked Reconfigurable Embedded Devices, In

Proceedings of the IEEE/IFIP Mobility Aware

Technologies & Applications, Florianopolis, Brazil, (2004).

[O’ Sullivan, 04b] T. O’ Sullivan, Enabling Next Generation Embedded

Devices with Reconfigurable Computing and Agent

Technology, In Proceedings of the Student Session of the

6
th

 European Agent Systems Summer School, Liverpool,

United Kingdom, (2004).

- 190 -

[O’ Sullivan, 04c] T. O’ Sullivan and R. Studdert, Mobile Agent Technology

and Networked Reconfigurable Embedded Devices, In

Proceedings of the International Conference on Pervasive

Computing and Communications, Las Vegas, USA, (2004).

[Pave, 05] Pave Framework White Paper available at:

http://direct.xilinx.com/bvdocs/publications/ds084.pdf

[Pering, 05] T. Pering, V. Raghunathan and R. Want, Exploiting Radio

Hierarchies for Power-Efficient Wireless Device Discovery

and Connection Setup, In Proceedings of the International

Conference on VLSI Design, pp. 774-779, (2005).

[Place Lab, 05] Place Lab: A Privacy-Observant Location System,

 Framework available for download at:

http://www.placelab.org/

[Pnueli, 86] A. Pnueli, Specification and Development of Reactive

Systems, In Proceedings of the Information Processing 86

Journal, pp. 845-858, (1986).

[Poggi, 01] A. Poggi, G. Rimassa and M. Tomsiuolo, Multi-User and

Security Support for Multi-Agent Systems, In Proceedings

of the Workshop from Objects to Agents, pp. 8-13, (2001).

[Pokahr, 03] A. Pokahr, L. Braubach and W. Lamersdorf, Jadex:

Implementing a BDI-Infrastructure for JADE Agents, In

Proceedings of the EXP Journal, vol. 3, no. 3, pp. 76-85,

(2003).

[Prophet, 04] G. Prophet, Reconfigurable Systems: Shape Up for Diverse

Application Tasks, In Proceedings of EDN Europe

Magazine, Editor: Graham Prophet, January Edition, (2004)

- 191 -

[Quinn, 03] H. Quinn, L. A. Smith King, M. Leeser, and W. Meleis,

Runtime Assignment of Reconfigurable Hardware

Components for Image Processing Pipelines, In

Proceedings of the 11
th

 Annual IEEE Symposium on Field

Programmable Custom Computing Machines, (2003).

[Rachakonda, 95] R. V. Rachakonda, High-Speed Region Detection and

Labelling using an FPGA-based Custom Computing

Platform, In Lecture Notes in Computer Science 975 –

Field-Programmable Logic and Applications, Eds. W.

Moore, W. Luk, pp. 86-93, (1995).

[Raibulet, 00] C. Raibulet and C. Demartini, Mobile Agent Technology

for the Management of Distributed Systems – A Case

Study, In Proceedings of the TERENA Networking

Conference, (2000).

[Ramparano, 02] F. Ramparano and O. Boissier, Smart Devices Embedding

Multi-Agent Technologies for a Pro-Active World, In

Proceedings of the Ubiquitous Computing Workshop,

(2002).

[Reinhartz-

Berger, 02] I. Reinhartz-Berger, D. Dori and S. Katz, Modeling Code

Mobility Paradigms in OPM/Web, In Proceedings of the

Israeli Workshop on Programming Languages &

Development Environment, (2002).

[Rimassa, 03] G. Rimassa, Runtime Support for Distributed Multi-Agent

Systems, PhD Thesis, University of Parma, Italy, (2003).

[Rodriguez, 04a] M. Rodriquez, et al, Location-Aware Access to Hospital

Information and Services, In Proceedings of the IEEE

- 192 -

Transactions on Information Technology in Biomedicine,

Vol. 8, No. 4, pp. 448-455, (2004).

[Rodriguez, 04b] M. Rodriquez, et al, An Agent Middleware for Supporting

Ambient Intelligence for Healthcare, In Proceedings of the

ECAI Workshop on Agents Applied in Health Care,

Valencia, Spain, (2004).

[Rubinstein, 81] R. Y. Rubinstein, Simulation and the Monte Carlo method,

John Wiley & Sons, New York, (1981).

[Sahai, 98] A. Sahai and C. Morin, Mobile Agents for Enabling Mobile

User Aware Applications, In Proceedings of the

Autonomous Agents Conference, (1998).

[Satyanarayanan,

96] M. Satyanarayanan, Fundamental Challenges in Mobile

Computing, In Proceedings of the 15
th

 ACM Symposium

on Principles of Distributed Computing, (1996).

[Scalera, 00] J. Scalera and M. Jones, A Run-Time Reconfigurable Plug-

In for the Winamp MP3 Player, In Proceedings of the IEEE

Symposium on Field-Programmable Custom Computing

Machines, (2000).

[Schilit, 03] B. Schilit, et al, Challenge: Ubiquitous Location-Aware

Computing and the Place Lab Initiative, In Proceedings of

the ACM International Workshop on Wireless Mobile

Applications and Services on WLAN, (2003).

[Schmit, 95] H. Schmit, and D. Thomas, Implementing Hidden Markov

Modelling and Fuzzy Controllers in FPGAs, In Proceedings

of the IEEE Symposium on Field Programmable Custom

Computing Machines, (1995).

- 193 -

[Schmidt, 02] A. Schmidt, Ubiquitous Computing - Computing in

Context, PhD Thesis, Computing Department, University

of Lancaster, United Kingdom, (2002).

[Sheridan, 98] T. B. Sheridan, Rumination on Automation, In Proceedings

of the 7
th

 Symposium on Analysis, Design and Evaluation

of Man-Machine Systems, (1998).

[Silva, 98] A. Silva and J. Delgado, The Agent Pattern for Mobile

Agent Systems, In Proceedings of the Third European

Conference on Pattern Languages of Programming and

Computing, (1998).

[Silva, 99] M. L. Silva and L. Almeida, The Advantages of Using

Mobile Agents in Software for Telecommunications, In

Proceedings of the International Conference on Computer

Communication, (1999).

[Singh, 94] S. Singh and P. Bellec, Virtual Hardware for Graphics

Applications using FPGAs, In Proceedings of the IEEE

Symposium on Field Programmable Custom Computing

Machines, (1994).

[Smit, 99] G. J. M. Smit, et al, Reconfigurable Mobile Multimedia

Systems, In Proceedings of the ProRISC workshop on

Circuits, Systems and Signal Processing, pp. 431-436,

(1999).

[Smit, 01] G. J. M. Smit, et al, Future Mobile Terminals: Efficiency

by Adaptivity, In Proceedings of the Workshop on Mobile

Communications in Perspective, (2001).

- 194 -

[Smit, 02] G. J. M. Smit, et al, Dynamic Reconfiguration in Mobile

Systems, In Proceedings of the 12
th

 International

Conference on Field Programmable Logic and Application,

(2002).

[Smith, 80] R. Smith, “The Contract Net Protocol: High-Level

Communication and Control in a Distributed Problem

Solver”, In IEEE Transactions on Computers, vol. 29, pp.

1104-1113, (1980)

[Smith King, 01] L. A. Smith King, et al, Run-Time Execution of

Reconfigurable Hardware in a Java Environment, In

Proceedings of the International Conference on Computer

Design, pp. 380-385, (2001).

[Spiegel, 01] J. Van der Spiegel, VHDL Tutorial, Department of

Electrical Engineering, University of Pennsylvania, USA,

(2001) available at: http://www.seas.upenn.edu/~ee201/

[Sterbenz, 02] J. P. G. Sterbenz, et al, Survivable Mobile Wireless

Networks: Issues, Challenges, and Research Directions, In

Proceedings of the ACM Workshop on Wireless Security,

(2002).

[Styles, 00] H. Styles and W. Luk, Customising Graphics Applications:

Techniques and Programming Interface, In Proceedings of

the IEEE Symposium on Field-Programmable Custom

Computing Machines, (2000).

[Sun, 05a] Sun Microsystems, Java Authentication and Authorization

Service (JAAS) Reference Guide, available at:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAA

SRefGuide.html

- 195 -

[Sun, 05b] Sun Microsystems, Java Cryptography Extension (JCE)

Reference Guide, available at:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCER

efGuide.html

[Sun, 05c] Sun Microsystems, Java Secure Socket Extension (JSSE)

Reference Guide, available at:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSE

RefGuide.html

[Sweeney, 02] C. Sweeney, Hardware Design Methodologies, Celoxica

University Press, (2002).

[Tarkoma, 02] S. Tarkoma and M. Laukkanen, Facilitating Agent

Messaging on PDAs, In Fourth International Workshop on

Mobile Agents for Telecommunication Applications,

(2002).

[Taylor, 99] R. Reed Taylor and S. Copen Goldstein, A High-

Performance Flexible Architecture for Cryptography, In

Proceedings of the First International Workshop on

Cryptographic Hardware and Embedded Systems, pp. 231-

245, (1999).

[Todman, 05] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O.

Mencer, W. Luk and P. Y. K. Cheung, Reconfigurable

Computing: Architectures and Design Methods, In

Proceedings of the IEE Computer and Digital Techniques

Journal, vol. 152, no. 2, pp. 193-208, (2005).

[Tolksdorf, 98] R. Tolksdorf, Coordination Patterns of Mobile Information

Agents, In Proceedings of the Cooperative Information

Agents Workshop, (1998).

- 196 -

[Uschold, 98] M. Uschold, Knowledge Level Modelling: Concepts and

Terminology, In Proceedings of the Knowledge

Engineering Review, vol. 13, no. 1, (1998).

[Vasilko, 01] M. Vasilko, L. Machacek, M. Matej, P. Stepien and S.

Holloway, A Rapid Prototyping Methodology and Platform

for Seamless Communication Systems, In Proceedings of

the 12
th

 IEEE International Workshop on Rapid System

Prototyping, pp. 70-76, (2001).

[Verbauwhede, 02] I. Verbauwhede and M. Chang, Reconfigurable

Interconnect for Next Generation Systems, In Proceedings

of the International Workshop on System-Level

Interconnect Prediction, (2002).

[Vitaglione, 02] G. Vitaglione, F. Quarta and E. Cortese, Scalability and

Performance of JADE Message Transport System, In

Proceedings of Autonomous Agents and Multi-Agent

Systems Conference, (2002).

[Vitaglione, 02b] Jade Security Administrator Guide, University of Parma,

September 2002 (v 2.61), available at:

http://sharon.cselt.it/projects/jade/

[Vuillemin, 96] J. Vuillemin, et al, Programmable Active Memories:

Reconfigurable Systems Come of Age, In Proceedings of

IEEE Transactions on VLSI Systems, vol. 4, no. 1, pp. 56-

69, (1996).

[Wang, 04] G. Wang, et al, Application of Middleware Technologies to

Mobile Enterprise Information Service, In Middleware for

Communications: Concepts, Designs, & Case Studies,

Editor: Q. Mahmoud, Wiley Publications, (2004).

- 197 -

[Weiser, 91] M. Weiser, The Computer for the 21
st
 Century, In

Proceedings of the Scientific American, vol. 265, no. 3, pp.

94-104, (1991).

[Weiser, 93] M. Weiser, Some Computer Science Issues in Ubiquitous

Computing, In Proceedings of the Communications of the

ACM, vol. 36, no. 7, (1993).

[Weiss, 02] G. Weiss, Agent Orientation in Software Engineering, In

Proceedings of the Knowledge Engineering Review, vol.

16, no. 4, pp. 349-373, (2002).

[Weiss, 04] M. Weiss, A Pattern Language for Motivating the Use of

Agents, In Proceedings of the Agent-Oriented Information

Systems Conference, (2004).

[Wind, 05] Wind River Systems: http://www.windriver.com/

[Wirthlin, 02] M. J. Wirthlin and B. McMurtrey, IP Delivery for FPGAs

using Applets and JHDL, In Proceedings of the Design

Automation Conference, (2002).

[Wood, 00] M. Wood and S. A. DeLoach, An overview of the multi-

agent systems engineering methodology, In Proceedings of

the First International Workshop on Agent-Oriented

Software Engineering, (2000).

[Wooldridge, 95] M. Wooldridge and N. R. Jennings, Intelligent Agents:

Theory and Practise, In Proceedings of the Knowledge

Engineering Review, vol. 10, no. 2, pp. 115-152, (1995).

- 198 -

[Wooldridge, 97] M. Wooldridge, Agent-Based Software Engineering, In

Proceedings of IEE Journal of Software Engineering, vol.

144, pp. 26-37, (1997).

[Wooldridge, 98] M. Wooldridge and N. R. Jennings, Pitfalls of Agent-

Oriented Development, In Proceedings of the Second

International Conference on Autonomous Agents, pp. 385-

391, (1998).

[Wooldridge, 99] M. Wooldridge, N. R. Jennings, and D. Kinny, A

Methodology for Agent-Oriented Analysis and Design, In

Proceedings of the Third International Conference on

Autonomous Agents, (1999).

[Wooldridge, 02] M. Wooldridge, An Introduction to MultiAgent Systems,

John Wiley & Sons, West Sussex, England, (2002).

[Xilinx, 01] Architecting Systems for Upgradeability with IRL (Internet

Reconfigurable Logic) 2001. Xilinx Application Note,

XAPP 412 (v1.0).

[Xilinx, 02] The Programmable Logic Data Book, Xilinx Corporation

Publications, (2002).

[Xilinx, 03] Xilinx Virtex Series Configuration Architecture, User

Guide, (2003).

[Xilinx, 05] Xilinx Corporation: http://www.xilinx.com

[Xilinx, 05b] Xilinx Integrated Software Development Environment,

version 7.1, available at: http://www.xilinx.com

[Xu, 00] C. Xu and B. Wims, A Mobile Agent Based Push

Methodology for Global Parallel Computing, In

- 199 -

Proceedings of the Wiley Journal: Concurrency – Practice

and Experience, vol. 12, pp. 705-726, (2000).

[Yokota, 02] T. Yokota, et al, A Scalable FPGA-based Custom

Computing Machine for Medical Image Processing, In

Proceedings of the 10
th

 Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, (2002).

[Zaslavsky, 04] A. Zaslavsky, Mobile Agents: Can They Assist with

Context Awareness, In Proceedings of the IEEE

International Conference on Mobile Data Management,

(2004).

- 200 -

APPENDIX

Appendix A.1

// Gray Scale Image Filter implemented with JBits

import java.io.*;

import com.xilinx.JBits.CoreTemplate.Bitstream;
import com.xilinx.JBits.CoreTemplate.CoreOutput;
import com.xilinx.JBits.CoreTemplate.Offset;
import com.xilinx.JBits.CoreTemplate.Gran;
import com.xilinx.JBits.CoreTemplate.Net;
import com.xilinx.JBits.CoreTemplate.Bus;

import com.xilinx.JBits.Virtex.Devices;
import com.xilinx.JBits.Virtex.JBits;

import com.xilinx.JRoute2.Virtex.JRoute;

import com.xilinx.JBits.Virtex.RTPCore.Arithmetic.Subtracter;
import com.xilinx.JBits.Virtex.RTPCore.Basic.Constant;
import com.xilinx.JBits.Virtex.RTPCore.Basic.Counter;
import com.xilinx.JBits.Virtex.RTPCore.Basic.CounterProperties;
import com.xilinx.JBits.Virtex.RTPCore.Basic.MemoryElements.BRAM;
import
com.xilinx.JBits.Virtex.RTPCore.Basic.MemoryElements.BRAMPropertie
s;
import com.xilinx.JBits.Virtex.RTPCore.Basic.Clock;
import com.xilinx.JBits.Virtex.RTPCore.Basic.Register;

import com.xilinx.JBits.Virtex.Devices;
import com.xilinx.JBits.CoreTemplate.*;
import com.xilinx.Netlist.SYM.*;

/**
** This application tests a GrayScale filter core.
** 8-bit red, green and blue inputs for the filter come from
** three BRAM. The filter output goes to another BRAM in the
** same column. A simple counter core feeds the address lines of
** the input BRAM and a delayed version of the address
** (accounting for BRAM latency and processor pipeline delay)
** feeds the output BRAM address lines.
** The inputs and output of the filter are registered.
*/

public class GrayScaleProcessorTest extends RTPCore
{
public GrayScaleProcessorTest(String name) throws CoreException
{
 super(name);

 int height = Devices.getClbRows(Devices.XCV1000);
 int width = Devices.getClbColumns(Devices.XCV1000);
 setHeight(calcHeight(height));
 setWidth(calcWidth(width));
 setHeightGran(calcHeightGran());
 setWidthGran(calcWidthGran());
} // end of constructor

// return the vertical granularity of this core
public static int calcHeightGran()
{
 return Gran.CLB;
} // end of calcHeightGran() method

- 201 -

// return the horizontal granularity of this core.
public static int calcWidthGran()
{
 return Gran.CLB;
} // end of calcWidthGran() method

// calculates height for this core.
public static int calcHeight(int height)
{
 //return 16;
 return height;
} // end of calcHeight() method

// calculates width for this core.
public static int calcWidth(int width)
{
 //return 20;
 return width;
} // end of calcWidth() method

/** This method creates and places the RTPCores */
public void implement()
{
 // Define the location parameters
 int row = 0;
 int col = 2;
 int bramRow = 0;
 int bramCol = 0;

 // Define the data path widths
 int addressGeneratorWidth = 10;
 // Only need nine, but has to be even number
 int addressWidth = 9;
 // because Counter core only takes even number
 int dataWidth = 8;

 // Define the Ram size in total bits
 int ramSize = 4096/dataWidth;

 //
 // Create top level counter nets and buses
 //
 Net clk = new Net("clk", null);
 Bus addressGeneratorOut = new Bus("addressGeneratorOut",
null, addressGeneratorWidth);

 Bus address = new Bus("address", null, addressWidth);

 Bus delayAddress = new Bus("Delayed address", null,
addressWidth);

 Bus constantDelay = new Bus("Constant value", null,
addressWidth);

 Bus red = new Bus("Red Input reg",null,dataWidth);
 Bus blue = new Bus("Bl Input reg",null,dataWidth);
 Bus green = new Bus("Gr Input reg",null,dataWidth);

 Bus gray = new Bus("Gray Input reg",null,dataWidth);

Bus grayOut = new Bus("Op reg",null,dataWidth);

 Bus dummyAddressInRamB1 = new Bus("dummyAddressInRamB",
null, addressWidth);

 Bus dummyInputRamInA1 = new Bus("dummyInputRamInA", null,
dataWidth);
 Bus dummyInputRamInB1 = new Bus("dummyInputRamInB", null,
dataWidth);

- 202 -

 Bus dummyInputRamOutB1 = new Bus("dummyInputRamOutB",
null, dataWidth);

 Bus dummyAddressOutRamB = new Bus("dummyAddressOutRamB",
null, addressWidth);
 Bus dummyDIBOutRam = new Bus("dummyDIBOutRam", null,
dataWidth);
 Bus dummyOutputRamOutA = new Bus("dummyOutputRamOutA",
null, dataWidth);
 Bus dummyOutputRamOutB = new Bus("dummyOutputRamOutB",
null, dataWidth);

// Define the output buses for the read-only RAM.
// These buses are routed to other inputs in the circuit.
Bus inputRamOutA1 = new Bus("inputRamOutA1", null, dataWidth);
Bus inputRamOutA2 = new Bus("inputRamOutA2", null, dataWidth);
Bus inputRamOutA3 = new Bus("inputRamOutA3", null, dataWidth);

try
{
// Connect the addressGeneratorOutput (n-1 outputs) to the address
// bus
// Don't need the last odd connection.
for (int i = 0; i < addressWidth; i++)
{
 addressGeneratorOut.setNet(i, address.getNet(i));
} // end of for

addressGeneratorOut.setNet(addressGeneratorWidth-1,
Net.NoConnect);

//
// Create the Cores
//

// Create Clock Core
Clock clock = new Clock("clock", clk);

// Create Counter Properties for the address generator
CounterProperties cpAddressGenerator = new CounterProperties();
cpAddressGenerator.setIn_clk(clk);
cpAddressGenerator.setIn_ce(Net.NoConnect);

cpAddressGenerator.setIn_rst(Net.NoConnect);
cpAddressGenerator.setOut_dout(addressGeneratorOut);

// Create the address generator
Counter addressGenerator = new Counter("addressGenerator",
cpAddressGenerator);

// Create an address adjusting circuit
Subtracter delayGenerator = new Subtracter("Delay", address,
constantDelay, delayAddress);

// Create a constant delay
Constant delay = new Constant("Delay Constant", constantDelay);

// Create properties for the input RAM
BRAMProperties inputRamProperties1 = new BRAMProperties();
inputRamProperties1.setADDRA(address);
inputRamProperties1.setADDRB(dummyAddressInRamB1);
inputRamProperties1.setCLKA(clk,false);
inputRamProperties1.setDIA(dummyInputRamInA1);
inputRamProperties1.setDIB(dummyInputRamInB1);
inputRamProperties1.setDOA(inputRamOutA1);

inputRamProperties1.setDOB(dummyInputRamOutB1);
inputRamProperties1.setWEA(0);
inputRamProperties1.setWEB(0);
inputRamProperties1.setSELA(1);

- 203 -

inputRamProperties1.setSELB(0);
inputRamProperties1.setRSTA(0);
inputRamProperties1.setRSTB(0);

// Create properties for the input RAM
BRAMProperties inputRamProperties2 = new BRAMProperties();
inputRamProperties2.setADDRA(address);
inputRamProperties2.setADDRB(dummyAddressInRamB1);
inputRamProperties2.setCLKA(clk,false);
inputRamProperties2.setDIA(dummyInputRamInA1);
inputRamProperties2.setDIB(dummyInputRamInB1);
inputRamProperties2.setDOA(inputRamOutA2);

inputRamProperties2.setDOB(dummyInputRamOutB1);
inputRamProperties2.setWEA(0);
inputRamProperties2.setWEB(0);
inputRamProperties2.setSELA(1);
inputRamProperties2.setSELB(0);
inputRamProperties2.setRSTA(0);
inputRamProperties2.setRSTB(0);

// Create properties for the input RAM
BRAMProperties inputRamProperties3 = new BRAMProperties();
inputRamProperties3.setADDRA(delayAddress);
inputRamProperties3.setADDRB(dummyAddressInRamB1);
inputRamProperties3.setCLKA(clk,false);
inputRamProperties3.setDIA(dummyInputRamInA1);
inputRamProperties3.setDIB(dummyInputRamInB1);
inputRamProperties3.setDOA(inputRamOutA3);

inputRamProperties3.setDOB(dummyInputRamOutB1);
inputRamProperties3.setWEA(0);
inputRamProperties3.setWEB(0);
inputRamProperties3.setSELA(1);
inputRamProperties3.setSELB(0);
inputRamProperties3.setRSTA(0);
inputRamProperties3.setRSTB(0);

// Create the Input RAM
BRAM inputRam1 = new BRAM("red input RAM", inputRamProperties1);
BRAM inputRam2 = new BRAM("green input RAM", inputRamProperties2);
BRAM inputRam3 = new BRAM("blue input RAM", inputRamProperties3);

// Create properties for the output RAM
BRAMProperties outputRamProperties = new BRAMProperties();
outputRamProperties.setADDRA(delayAddress);
outputRamProperties.setADDRB(dummyAddressOutRamB);
outputRamProperties.setCLKA(clk,false);
outputRamProperties.setDIA(grayOut);
outputRamProperties.setDIB(dummyDIBOutRam);

outputRamProperties.setDOA(dummyOutputRamOutA);
outputRamProperties.setDOB(dummyOutputRamOutB);
outputRamProperties.setWEA(1);
outputRamProperties.setWEB(0);
outputRamProperties.setSELA(1);
outputRamProperties.setSELB(0);
outputRamProperties.setRSTA(0);
outputRamProperties.setRSTB(0);

// Create the Output RAM
BRAM outputRam = new BRAM("output Ram", outputRamProperties);
// Create Register Cores
Register reRegister = new Register("Red Input
Register",clk,inputRamOutA1,red);
Register blRegister = new Register("Blue Input
Register",clk,inputRamOutA2,blue);
Register grRegister = new Register("Green Input
Register",clk,inputRamOutA3,green);

- 204 -

Register opRegister = new Register("Op Input
Register",clk,gray,grayOut);

// Create GrayScale Core
GrayScale filter = new
GrayScale("GrayScale1",clk,red,green,blue,gray);

//
// Set Offset Locations so we can place the cores
//
// Set the input counter offset

reRegister.getRelativeOffset().setVerOffset(Gran.CLB, row);
reRegister.getRelativeOffset().setHorOffset(Gran.CLB, col);
blRegister.getRelativeOffset().setVerOffset(Gran.CLB, row+4);
blRegister.getRelativeOffset().setHorOffset(Gran.CLB, col);
grRegister.getRelativeOffset().setVerOffset(Gran.CLB, row+8);
grRegister.getRelativeOffset().setHorOffset(Gran.CLB, col);
opRegister.getRelativeOffset().setVerOffset(Gran.CLB, row+12);

opRegister.getRelativeOffset().setHorOffset(Gran.CLB, col);
// Set the addressGenerator offset
addressGenerator.getRelativeOffset().setVerOffset(Gran.CLB, row);
addressGenerator.getRelativeOffset().setHorOffset(Gran.CLB,
col+1);

// Set the delayGenerator offset
delayGenerator.getRelativeOffset().setVerOffset(Gran.CLB, row+12);
delayGenerator.getRelativeOffset().setHorOffset(Gran.CLB, col+1);

// Set the delay offset
delay.getRelativeOffset().setVerOffset(Gran.CLB, row+6);
delay.getRelativeOffset().setHorOffset(Gran.CLB, col+1);
delay.getRelativeOffset().setVerOffset(Gran.CLB, row+6);
delay.getRelativeOffset().setHorOffset(Gran.CLB, col+1);

// Set the filter offset
filter.getRelativeOffset().setVerOffset(Gran.CLB, row);
filter.getRelativeOffset().setHorOffset(Gran.CLB, col+2);

// Create the initial data for the input Ram
int[] initialInputRamValues1 = new int[ramSize];
int[] initialInputRamValues2 = new int[ramSize];
int[] initialOutputRamValues = new int[ramSize];

for (int i = 0; i < ramSize; i++)
{
 initialInputRamValues2[i] = 0;
 initialOutputRamValues[i] = 0;
} // end of forss

// Implement the RTPCores
clock.implement(1); // Use GCLK3 for XCV1000, GCLK1 otherwise
addressGenerator.implement();
delayGenerator.implement();
delay.implement((long) 13); // pipeline and BRAM delay = 13
reRegister.implement();
blRegister.implement();
grRegister.implement();
opRegister.implement();
filter.implement();
inputRam1.implement(bramRow, bramCol, initialInputRamValues2);
inputRam2.implement(bramRow+1, bramCol, initialInputRamValues2);
inputRam3.implement(bramRow+2, bramCol, initialInputRamValues2);
outputRam.implement(bramRow+3, bramCol, initialOutputRamValues);

//
// Connect the buses/nets
//
Bitstream.connect(clk);

- 205 -

Bitstream.connect(inputRamOutA3 Bitstream.connect(inputRamOutA1);
Bitstream.connect(inputRamOutA2);

Bitstream.connect(red);
Bitstream.connect(blue);
Bitstream.connect(green);
Bitstream.connect(gray);
Bitstream.connect(grayOut);
Bitstream.connect(address);
Bitstream.connect(delayAddress);
Bitstream.connect(constantDelay);
} // end of class

- 206 -

Appendix A.2

// Handel-C Edge Detection Algorithm

// platform specific definitions
// board Type
#define PP1000_BOARD_TYPE PP1000_V2_VIRTEX

// handel-c clock is the same frequency as RC1000-PP clock
#define PP1000_DIVIDE1

// PP1000 clock is PP1000_MCLK
#define PP1000_CLOCK PP1000_MCLK

// clock rate
#define PP1000_CLOCKRATE 20

// use 8 bit external RAM access - but can also use 32 bit
#define PP1000_32BIT_RAMS

// memory bank details
// source pixel memory bank data (bank 0: mask = 0b0001 = 0x1)
#define SOURCE_PIXEL_MEMORY_BANK 0b1111
// destination pixel memory bank data (bank 3: mask = 0b1000 =
0x8)
//#define DESTINATION_PIXEL_MEMORY_BANK 0x8

// paramters of image and threshold for edges
#define LOG2_WIDTH 8
#define WIDTH 256
#define LOG2_HEIGHT 8
#define HEIGHT 256
#define TOP_THRESHOLD 16
#define PIXEL_NUMBER 256*256

// family and part details
set family = XilinxVirtex;
set part = "XCV1000BG560-6";

// include rc1000-pp support header file
#include <pp1000.h>

// macro to determine absolute value
macro expr abs(a) = (a < 0 ? -a : a);

void main (void)
{

 unsigned int 32 originalPixelFromMem;
 unsigned int 32 leftPixel;
 unsigned int 32 belowPixel;
 unsigned int 32 originalPixel;
 unsigned int 32 resultPixel;

 signed 21 rowCounter;
 unsigned 21 columnCounter;

 // declare memory address holder
 unsigned int 21 memoryAddress;
 unsigned int 21 memoryAddressLeft;
 unsigned int 21 memoryAddressBelow;
 unsigned int 8 count;

 unsigned int 21 firstRowChecker;

 // status variable to coordinate action between host
 // and FPGA

- 207 -

 unsigned char status;

 // assign initial value to memory address holder
 memoryAddress = 0;

 // request source pixel memory bank
 PP1000RequestMemoryBank(SOURCE_PIXEL_MEMORY_BANK);

 // loop for every pixel
 for(rowCounter = HEIGHT; rowCounter > -1; rowCounter--)
 {
 for(columnCounter = WIDTH; columnCounter > 0;
columnCounter--)
 {
 if (rowCounter == 0)
 {
 memoryAddress = (unsigned) (columnCounter-1);
 } // end of if
 else
 {
 firstRowChecker = (unsigned) (rowCounter*WIDTH);

 memoryAddress = (unsigned) (columnCounter-1) +
 firstRowChecker;

 } // end of else

 PP1000ReadBank0(originalPixelFromMem,memoryAddress);
 leftPixel = originalPixelFromMem;
 memoryAddress = memoryAddress + 1;

 PP1000ReadBank0(originalPixelFromMem,memoryAddress);
 originalPixel = originalPixelFromMem;

 if (rowCounter != HEIGHT)
 {
 memoryAddress = memoryAddress + 256;
 PP1000ReadBank0(originalPixelFromMem,memoryAddress);
 belowPixel = originalPixelFromMem;
 memoryAddress = memoryAddress - 256;
 } // end of if
 else
 {
 // just make belowPixel same as originalPixel
 belowPixel = originalPixel;
 } // end of else

 if(leftPixel > originalPixel)
 {
 resultPixel = leftPixel - originalPixel;
 } // end of if
 else
 {
 resultPixel = originalPixel - leftPixel;
 } // end of else

 if (resultPixel < TOP_THRESHOLD)
 {
 // check against pixel below
 if (belowPixel > originalPixel)
 {
 resultPixel = belowPixel - originalPixel;
 } // end of inner if
 else
 {
 resultPixel = originalPixel - belowPixel;
 } // end of inner else

 if (resultPixel < TOP_THRESHOLD)
 {

- 208 -

 PP1000WriteBank0(memoryAddress, 0);
 } // end of inner if
 else
 {
 PP1000WriteBank0(memoryAddress, 255);
 } // end of inner else
 } // end of if
 else
 {
 PP1000WriteBank0(memoryAddress, 255);
 } // end of else
 } // end of inner for
 } // end of for

 // release source pixel memory bank
 PP1000ReleaseMemoryBank(SOURCE_PIXEL_MEMORY_BANK);

 // assign value to status
 status = '2';
 PP1000WriteStatus(status);

} // end of main()

- 209 -

Appendix A.3

// Name: TestVirtexDS
// Written by: Timothy O' Sullivan
// Date: 30/08/03
// Description: This class is responsible for making
// XHWIF calls to FPGA board

// xilinx board connection classes
import com.xilinx.XHWIF.XHWIF;
import com.xilinx.JBits.Virtex.ConfigurationException;
import com.xilinx.JBits.Virtex.ReadbackCommand;
import com.xilinx.JBits.Virtex.Devices;
import com.xilinx.JBits.Virtex.JBits;
import com.xilinx.JBits.Virtex.ConfigurationException;
import com.xilinx.JBits.Virtex.Bits.CLB;

// xilinx CoreTemplate classes
import com.xilinx.JBits.CoreTemplate.Bitstream;
import com.xilinx.JBits.CoreTemplate.CoreOutput;
import com.xilinx.JBits.CoreTemplate.Offset;
import com.xilinx.JBits.CoreTemplate.Gran;
import com.xilinx.JBits.CoreTemplate.Net;
import com.xilinx.JBits.CoreTemplate.Bus;
import com.xilinx.JBits.CoreTemplate.Port;
import com.xilinx.JBits.CoreTemplate.Pin;
import com.xilinx.JBits.CoreTemplate.Bitstream;
import com.xilinx.JBits.CoreTemplate.CoreException;
import com.xilinx.JRoute2.Virtex.JRoute;
import com.xilinx.JRoute2.Virtex.ResourceDB.CenterWires;
import com.xilinx.Netlist.SYM.*;
import com.xilinx.Netlist.XDL.*;

// import jade classes
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.table.*;

// import general java classes
import java.util.*;
import java.io.*;
import java.lang.*;

public class TestVirtexDS
{
// declare static variables
private final static int WIDTH = 16;
public final static int DEPTH = 16;

// declare class variables
private int deviceType;
private int port;
private int result;
private String serverName;
private byte[] configuringBitStream;
private byte[] readingBackCommand;
private byte[] readingBackData;

///
private XHWIF myBoard;
//

public void setDeviceType(int value)
{
 this.deviceType = value;
} // end of setDeviceType(..) method

- 210 -

public int getDeviceType()
{
 return this.deviceType;
} // end of getDeviceType() method

public void setPort(int value)
{
 this.port = value;
} // end of setPort(..) method

public int getPort()
{
 return this.port;
} // end of getPort() method

public void setResult(int value)
{
 this.result = value;
} // end of setResult(..) method

public int getResult()
{
 return this.result;
} // end of getResult() method

public void setServerName(String value)
{
 this.serverName = value;
} // end of setServerName(..) method

public String getServerName()
{
 return this.serverName;
} // end of getServerName() method

public void setConfiguringBitStream(byte[] value)
{
 this.configuringBitStream = value;
} // end of setConfiguringBitStream(..) method

public byte[] getConfiguringBitStream()
{
 return this.configuringBitStream;
} // end of getConfiguringBitStream() method

public void setReadingBackCommand(byte[] value)
{
 this.readingBackCommand = value;
} // end of setReadingBackCommand(..) method

public byte[] getReadingBackCommand()
{
 return this.readingBackCommand;
} // end of getReadingBackCommand() method

public void setReadingBackData(byte[] value)
{
 this.readingBackData = value;
} // end of setReadingBackData(..) method

public byte[] getReadingBackData()
{
 return this.readingBackData;
} // end of getReadingBackData() method

public void loadBitStream(JBits myJBits, String inputFileName)
{
 System.out.println("In method loadBitStream:\n" + "Reading
in: " + inputFileName);

- 211 -

try
{
 myJBits.read(inputFileName);
} // end of try
catch (Exception ex)
{
System.out.println("Exception caught in CounterTestVirtexDS");
System.out.println("Exception caught in loadBitStream method");
System.out.println("Could not read in " + inputFileName);
ex.printStackTrace();
System.out.println("\n\n");
System.exit(-1);
} // end of catch
} // end of loadBitStream(..) method

public void startUpVirtexDS(JBits myJBits) throws
ConfigurationException
{
// Connect to the VirtexDS
myBoard = XHWIF.Get(PathDescriptor.BOARD_NAME);

// check if we have found board
if (myBoard == null)
{
System.out.println("Can not find: " + PathDescriptor.BOARD_NAME);
} // end of if

setServerName(XHWIF.GetRemoteHostName(PathDescriptor.BOARD_NAME));
setPort(XHWIF.GetPort(PathDescriptor.BOARD_NAME));
setResult(myBoard.connect(getServerName(), getPort()));

// check if connection is established
if (getResult() != 0)
{
System.out.println("Could not connect to: " +
PathDescriptor.BOARD_NAME);
System.exit(-1);
} // end of if

System.out.println("Connected to: " + PathDescriptor.BOARD_NAME);
// reset the board

System.out.print("reseting board ... ");
myBoard.reset();
System.out.println("done");

// load bitstream
System.out.print("loading null bitstream to board ... ");
myJBits.clearPartial();
setConfiguringBitStream(myJBits.getPartial());
myBoard.setConfiguration(0, getConfiguringBitStream());
System.out.println("done");
} // end of startUpVirtexDS(..) method

public void reconfig(JBits myJBits) throws ConfigurationException
{
// Generate Parital bitstream
System.out.print("loading partial bitstream to board ... ");

setConfiguringBitStream(myJBits.getPartial());
myBoard.setConfiguration(0, getConfiguringBitStream());
System.out.println("done");
} // end of reconfig() method
} // end of class

- 212 -

Appendix A.4

public class SendProtocolExample
{
 // declare native methods
 public native int RC200BoardConfiguration();

 static
 {
 System.loadLibrary("SendProtocolExample");
 } // end of static

 public SendProtocolExample()
 {
 } // end of constructor

 public void start()
 {
 // declare local variables
 int myReturnValue;

 try
 {
 System.out.println("ReconfigurableInterface: Begin
 Board Reconfiguration");
 myReturnValue = RC200BoardConfiguration();
 } //end of try
 catch(Exception myException1)
 {
 myException1.printStackTrace();
 } // end of catch
 } // end of start() method
} // end of class

