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Abstract 42 

Objectives: Our objective was to demonstrate microbial regulation of hepatic genes 43 

implicated in drug metabolism and transport using germ-free (GF) mice and to explore the 44 

impact of a microbial metabolite, butyrate, and a prebiotic dietary intervention on hepatic 45 

gene expression in mice. 46 

Methods: Using reverse-transcriptase PCR, we investigated cytochrome P450 (CYP) and 47 

multidrug-resistance protein 1 (MDR1) expression in conventional, GF, and colonised GF 48 

mice. To investigate the effects of butyrate, sodium butyrate (3 g/L) was administered for 21 49 

days to conventional or GF mice. In the prebiotic study, young-adult and middle-aged mice 50 

received diet-enriched with 10% fructo-oligosaccharide (FOS)-inulin for 14 weeks.  51 

Key findings: Colonisation of GF animals normalised expression of Cyp3a11 and Mdr1b to 52 

conventional levels. Butyrate upregulated Cyp2b10 in conventional mice (p<0.05) but overall 53 

did not induce widespread changes in hepatic genes. FOS-inulin increased Cyp3a13 54 

expression and had the opposite effect on Mdr1a expression in young-adult mice (p<0.05). 55 

Age, on the other hand, influenced the prebiotic effect on Cyp2a4 expression (p<0.01). 56 

Conclusion: The expression of hepatic genes implicated in drug metabolism and transport 57 

displays sensitivity to the microbiome, microbiome-derived metabolites, and a microbial-58 

targeted intervention. Our study may provide the impetus to explore microbiota-targeted 59 

interventions in normalising host metabolic activity and reducing inter-individual variability 60 

in drug pharmacokinetics. 61 

Keywords: Microbiome, Cytochrome, Transporter, Hepatic, Drug, Metabolism 62 
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Introduction  63 

The metabolic fate and toxicity of drugs are determined, in part, by the expression of drug-64 

metabolising enzymes and drug transporters (1). In particular, the cytochrome P450 (CYP) 65 

enzyme superfamily and drug-efflux transporters are key drivers of oral drug bioavailability 66 

(2). Drug-efflux transporters, including multidrug-resistance protein 1 (MDR1), expel 67 

conjugated drugs from the liver into the bile ducts and thus make an essential contribution to 68 

drug pharmacokinetics (3). Significantly, CYP1-3 family members are implicated in the 69 

metabolism of 70-80% of all drugs in clinical use (4) and MDR1, also known as P-70 

glycoprotein (P-gp), is an efflux pump with broad substrate specificity (2). While humans 71 

express a single MDR1 gene, rodents share the function of hepatic MDR1 between two 72 

highly homologous MDR1-type genes, Mdr1a and Mdr1b (5, 6).  73 

Inter-individual variability in the expression of CYP genes is generally linked to age, race, 74 

genetics, concomitant disease, or co-administered drugs (4). However, the importance of the 75 

gut microbiota, the trillions of micro-organisms residing along the gastrointestinal tract (7), 76 

has recently come to the fore as an additional variable adding to this complexity. Evidence 77 

from germ-free (GF) mice, mice devoid of microbes, demonstrate altered expression of 78 

hepatic genes implicated in drug metabolism (8-10). The drug-metabolising capacity of an 79 

individual may vary, therefore, not only because of polymorphisms in genes encoding host 80 

drug-metabolising enzymes and the concomitant intake of drugs but also due to individual 81 

differences in the composition of the gut microbiota. This interconnectivity between the 82 

intestinal tract and the liver makes it essential to view drug metabolic processes as co-83 

metabolism by the host and the gut microbiota (11). 84 

The liver receives approximately 70% of its blood supply from the intestine and is thus 85 

continually exposed to microbial metabolites, including short-chain fatty acids (SCFA) (12). 86 
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One such SCFA, butyrate, is efficiently metabolised by the intestinal epithelial cells, but a 87 

proportion is absorbed and transported into the liver by the portal vein (13). Evidence 88 

suggests that butyrate can induce Cyp1a2 expression possibly linked to the modification of 89 

histones (14, 15). However, whether this effect is dependent on an intact gut microbiome or 90 

affects the expression of other CYP genes is unknown. 91 

The impact of microbiota-targeted therapies, including antibiotics, probiotics (i.e., “live 92 

microorganisms which when administered in adequate amounts confer a health benefit on the 93 

host” (16)), and prebiotics (i.e., “a substrate that is selectively utilized by host 94 

microorganisms conferring a health benefit” (17)) on CYP and MDR1, and their potential 95 

knock-on effects on the response to co-administered medication (18), is a significant but 96 

underexplored area of drug metabolism. While there are several reports that a change in 97 

nutritional status affects hepatic levels of drug-metabolising enzymes (19), a commercially 98 

available probiotic mix, VSL#3, exerted a limited effect on CYP gene expression (8). 99 

Modulation of intestinal microbes by prebiotics may also, however, alter the drug-100 

metabolising capacity of the host. Foods such as onions, leeks, and garlic are dietary sources 101 

of the prebiotic inulin (20), which protects against high-fat diet-induced alterations in both 102 

the expression and activity of Cyp1a1, Cyp1a2, and Cyp2e1 (19).  103 

Here, we aimed to further validate the role of the gut microbiota in the regulation of CYP 104 

drug-metabolising enzymes and the drug-efflux transporter, MDR1. The microbial 105 

metabolite, butyrate, was investigated as a potential influencer of these host-microbe 106 

interactions. We further examined the impact of fructo-oligosaccharide-inulin (FOS-inulin), a 107 

dietary prebiotic known to alter the composition and function of the gut microbiome (21), on 108 

hepatic gene expression at different life-stages. 109 
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Materials and Methods  110 

 111 

All experiments were conducted in accordance with the European Directive 86/609/EEC and 112 

the Recommendation 2007/526/65/EC. Ethical approval for each study was obtained from the 113 

Animal Experimentation Ethics Committee of University College Cork before the 114 

commencement of all animal-related experiments. For the impact of the GF/colonisation 115 

study, ethical approval (AE19130/P047) was granted on 16/02/2017. For the butyrate 116 

supplementation study, ethical approval (AE19130/P023) was granted on 13/01/2016. For the 117 

FOS-inulin intervention study, ethical approval (B100/3774) was issued on 18/12/2012. 118 

 119 

Animals  120 

Male F1-generation offspring from conventionally raised and GF C57BL/6J breeding pairs 121 

(Taconic, Germantown, New York, USA) were used as previously described (22). GF mice 122 

were housed in specific isolators. Animals were kept under a 12-h light/dark cycle, with a 123 

temperature of 21 ± 1 °C and humidity of 55 ± 10%. Food and water were given ad libitum. 124 

Conventional, GF, colonised GF, and butyrate-treated mice were fed an autoclaved diet 125 

(Special Diets Services, UK). See FOS-inulin study for corresponding diet and animal 126 

information. 127 

 128 

GF/Colonisation Study 129 

At postnatal day 21, a subset of GF mice were transferred to the conventional animal facility 130 

and were colonised by exposure to used cage bedding of age-, vendor- and sex-matched 131 
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conventional mice for 7-8 weeks. Mice were euthanised by decapitation, and liver samples 132 

were immediately snap-frozen and stored at -80 oC until further analysis.  133 

Butyrate Study  134 

Sodium butyrate (3 g/L; Sigma-Aldrich), or sodium chloride for sodium-matched controls, 135 

was dissolved in sterile drinking water and administered for 21 days to conventional or GF 136 

male C57BL/6 mice (n=13-15/group). This dosage was based on previous studies by our 137 

research group and others investigating the impact of butyrate (600 mg/kg) on behaviour in 138 

mice, combined with an estimated drinking water consumption of 5 ml/day (23-25). Drinking 139 

water was filtered through a 0.2-micron syringe filter (Sarstedt) and refreshed twice per week. 140 

As diet can contribute to the gastrointestinal and systemic levels of butyrate in vivo, food 141 

intake was closely monitored across all experimental groups and no significant differences in 142 

food consumption were observed. Mice were euthanised by decapitation, and liver samples 143 

were immediately snap-frozen and stored at -80 oC until further analysis.  144 

 145 

FOS-Inulin Study 146 

Previous work by our laboratory investigated prebiotic supplementation (FOS-Inulin) on the 147 

peripheral immune response and neuroinflammation in middle age (21). Here, we sought to 148 

examine the effects of prebiotic supplementation on hepatic gene expression from tissues 149 

collected from the same animals. In brief, young adult (approx. 2 months at start of treatment) 150 

and middle-aged (approx. 10 months at start of treatment) conventional male C57BL/6 mice 151 

(obtained from Harlan, Cambridgeshire) received a standard diet (ssniff-Spezialdiäten 152 

GmbH, Soest, Germany) or the diet enriched with 10% Oligofructose-enriched inulin (FOS-153 

Inulin: mixture of 92±2% Inulin and 8±2% Fructo-oligosaccharide, Orafti®Synergy1; 154 

BENEO-Orafti N.V., Belgium) for 14weeks (n=9-10/group). Mice were euthanised by 155 
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decapitation, and liver samples were immediately snap-frozen and stored at -80 oC until 156 

further analysis.  157 

 158 

RNA extraction, Reverse transcription and RT-qPCR  159 

Total RNA was isolated from harvested liver tissue using the High Pure RNA Tissue Kit 160 

(Sigma Aldrich) following the manufacturer’s protocol or using the mirVanaTM miRNA 161 

Isolation Kit (Thermo Scientific/Invitrogen; GF/Colonisation study). Tissue from the 162 

GF/Colonisation study required the use of an RNA extraction kit well-suited for total and 163 

miRNA isolation suitable for future downstream miRNA analyses. Both kits allowed for the 164 

comparable high-quality, pure, intact collection of RNA used in the present study. Following 165 

RNA extraction, RNA concentration and quality were determined using the standard 166 

OD260/280 method using a Nanodrop spectrophotometer (Thermo Scientific). The 167 

OD260/OD280 ratio for each RNA sample used in subsequent experiments was in the range 168 

1.9-2.1. RNA was reversed transcribed to cDNA using the Exiqon cDNA Universal Synthesis 169 

kit (Exiqon A/Q) or High Capacity cDNA Reverse Transcription kit (Thermo 170 

Scientific/Applied Biosystems) in a G-storm thermocycler (G-storm, Surrey, UK).  171 

Reverse-transcriptase PCR was employed to compare the mRNA expression of CYP drug-172 

metabolising enzymes and the two mouse isoforms of hMDR1, Mdr1a, and Mdr1b. The most 173 

commonly studied CYP and MDR murine isoforms equivalent to humans are described in 174 

Table.1. [see Table 1] 175 

While the murine isoforms of hMDR1 show differential distribution in other physiological 176 

areas, both Mdr1a and Mdr1b are widely distributed in the liver (26). There are, however, 177 

some inter-species differences in CYP and MDR genes in mice and humans, in terms of 178 

sequence homology and substrate specificity (27). 179 
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For the GF/colonisation study, RT-qPCR was performed using TaqMan Universal Master 180 

Mix II (Thermo Fisher Scientific/Applied Biosystems), and genes of interest were amplified 181 

using TaqMan probes (Integrated DNA Technologies). For the RT-qPCRs from the butyrate- 182 

or FOS-inulin study liver samples, SYBR Green detection chemistry was employed, utilising 183 

the ExiLENT SYBRR GREEN Master Mix (Exiqon A/Q) or SensiFAST SYBR Lo-ROX kit 184 

(Bioline) respectively. SYBR Green compatible primers were obtained from Eurofins 185 

Genomics, and the primer oligosaccharide sequences are detailed in the supplementary 186 

material (Table S1). Reactions were run in GeneAMP PCR System 9700 (Applied 187 

Biosystems). Each transcript value was calculated as the average of at least duplicate samples 188 

across experimental conditions. Values were normalised to β-actin as the housekeeping gene 189 

whose expression was stable under these experimental conditions. Data were analysed with 190 

the comparative cycle threshold method (2-ΔΔCt) (28) and presented as a fold change vs. 191 

conventional control group, or in the case of the FOS-inulin study, fold change vs. the 192 

middle-aged control mice. 193 

 194 

Statistical analysis  195 

Data were analysed using one-way ANOVA followed by Bonferroni’s test. A two-way 196 

ANOVA, with Bonferroni post hoc test for further analysis, was used to compare the effects 197 

of age and FOS-inulin on hepatic gene expression. The Grubbs method was employed to 198 

identify any outliers (29). The threshold for statistical significance was set at p<0.05. Data are 199 

expressed as mean +SEM. All statistical procedures were performed using GraphPad Prism 200 

Software 6.0 (GraphPad Prism, USA). 201 
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Results 202 

 203 

Microbial colonisation significantly alters hepatic CYP and MDR expression in GF mice 204 

The expression of murine CYP drug-metabolising enzymes, Cyp2b10 and Cyp3a11, was 205 

markedly downregulated under GF conditions relative to conventional mice (p<0.001; Figure 206 

1 (A)). [see Figure 1] 207 

We further investigated whether colonisation could restore the expression of these two CYP 208 

drug-metabolising enzymes in GF mice. At the transcript level, Cyp2b10 expression in GF 209 

mice did not recover after exposure to a microbial environment while the expression of 210 

Cyp3a11 was normalised to conventional levels. Colonisation exerted a similar influence on 211 

Cyp2a4 expression, but the effect was not significant.   212 

Neither GF status nor colonisation altered the mRNA expression of Mdr1a (Figure 1(B)). The 213 

Mdr1b isoform was, however, upregulated in GF mice relative to conventional mice 214 

(p<0.01). Notably, colonisation of GF mice normalised Mdr1b expression to conventional 215 

levels. The direction and magnitude of the effect of the gut microbiota on host metabolism 216 

and transport are likely, therefore, to be specific not only to the hepatic gene but also to the 217 

isoform of that gene. 218 

 219 

Butyrate alters Cyp2b10 expression only in the presence of a complex microbiota 220 

Butyrate supplementation did not induce widespread changes in hepatic genes. In the 221 

presence of a complex microbiota, butyrate only had a significant effect on the hepatic 222 

expression of Cyp2b10 (2.85-fold higher relative to conventional mice; p<0.05). No 223 

significant differences were observed in the other CYP or MDR1 genes in conventional mice. 224 
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A secondary objective of the butyrate intervention study was to see if this microbial 225 

metabolite could restore the gene expression of the enzymes altered in GF mice. The mRNA 226 

expression of Cyp2b10 in GF mice, however, remained perturbed after butyrate 227 

supplementation relative to conventional mice (Figure 2(A)). Moreover, the expression of 228 

Cyp3a11 in GF mice also remained extensively downregulated after butyrate 229 

supplementation relative to the corresponding conventional group (p<0.01; p<0.001, 230 

respectively). Butyrate, however, exerted an inhibitory effect on the expression of MDR1 231 

(Figure 2(B)). Butyrate decreased the expression of Mdr1a in GF mice (p<0.05) relative to 232 

the butyrate-treated conventional group, despite no evident changes in this isoform under GF 233 

conditions or by colonisation. Mdr1b expression remained marginally elevated, but not 234 

significantly so, after butyrate supplementation relative to conventional counterparts. [see 235 

Figure 2] 236 

To assess if butyrate had a broader impact on the CYP superfamily of enzymes, the mRNA 237 

expression of members of the Cyp-2c, -2d, and -2e families was further investigated. 238 

Notably, the expression of these enzymes was not affected by butyrate supplementation, 239 

regardless of the microbial status of the mice (Table S2).  240 

 241 

The impact of FOS-inulin on hepatic CYP and MDR expression is gene-specific and 242 

age-dependant 243 

Subsequently, we assessed whether the hepatic expression of CYP and MDR1 genes could be 244 

manipulated by modulating the gut microbiota with a prebiotic mix in young adult versus 245 

middle-aged mice. 246 

A significant interaction was identified between age and prebiotic in dictating the expression 247 

of Cyp2a4 (p<0.05; F (1,34) =4.216) (Figure 3(A)). In Cyp2a4, age affected the response to 248 
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FOS-inulin; Cyp2a4 gene expression was significantly upregulated in young-adult treated 249 

relative to middle-aged treated mice (p<0.01). 250 

Age and FOS-inulin did not alter Cyp2b10 expression. As no significant difference was 251 

evident in Cyp3a11 expression, the impact of diet-enriched with 10% FOS-inulin on the other 252 

CYP3A4/5 equivalent mouse isoform, Cyp3a13, was also investigated. For both Cyp3a13 253 

and Mdr1a, a significant interaction between age and prebiotic was observed [(p<0.05; F 254 

(1,35 =5.159), (p<0.01; F (1,32) =11.00) respectively]. Bonferroni’s multiple comparisons 255 

test revealed a significant downregulation of Cyp3a13 in young adult mice (p<0.05) and the 256 

prebiotic mix upregulated hepatic Mdr1a expression in young adults (p<0.05). As evident in 257 

Figure 3(B), the prebiotic mix did not elicit a significant effect on Mdr1a in middle-aged 258 

mice. Interestingly, the age-related impact on Mdr1a was opposite to the FOS-inulin induced 259 

upregulation in young mice (p<0.05).  Conversely, increasing age was coupled with 260 

decreased Mdr1b expression (p<0.05). [see Figure 3] 261 
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Discussion  262 

The implications of microbiome research for therapeutic interventions requires, in part, a 263 

mechanistic and predictive understanding of clinically-relevant microbiome-drug interactions 264 

(30, 31). Whilst most research to date on microbial-mediated metabolism of drugs largely 265 

centred around direct interactions between the drug substance and a microbe within the 266 

bacterial-dense colon (32), the research presented herein highlights the underappreciated 267 

indirect mechanisms by which the microbiota can dictate host metabolism in the liver. Here 268 

we further validated the modulation of CYP enzymes and MDR1 by the gut microbiome and 269 

illustrated the altered expression of hepatic genes in GF animals that can be rescued, in some 270 

cases, by colonisation. The overall impact of butyrate and prebiotic supplementation on host 271 

gene expression cannot be generalised. Butyrate and FOS-inulin only modify the hepatic 272 

expression of certain enzymes in a context and time-dependent manner. Neither intervention 273 

exerted a consistent effect across all enzymes and transporters investigated in this study. 274 

Given the gut microbiome is a complex ecosystem regularly exposed to a continually 275 

changing cocktail of small and large molecules (33), it is unlikely that a single metabolite, or 276 

prebiotic, could have a universal effect overall. There are likely to be a variety of pathways or 277 

metabolites involved in microbiome-host interactions that will contribute to inter-individual 278 

variability in drug metabolism and disposition. Our results may, however, provide the 279 

impetus to explore the potential of prebiotic supplementation to modify CYP and MDR1 280 

expression in a clinical setting 281 

Consistent with previous findings, GF conditions resulted in the most prominent changes in 282 

hepatic genes, most notably a downregulation in mRNAs of Cyp2b10 and Cyp3a11, and a 283 

substantial upregulation of Mdr1b. The colonisation of GF mice restored Cyp3a11 expression 284 

to conventional levels illustrating that Cyp3a11 may be particularly susceptible to changes in 285 
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the composition of the gut microbiota. This finding may have important clinical implications 286 

as Cyp3a11 is the murine equivalent gene of hCYP3A4/5. In particular, the hCYP3A gene 287 

family is responsible for the oxidation of approximately 50% of drugs (34). The normalized 288 

Cyp3a11 gene expression in the livers of colonised GF mice is consistent with previous 289 

studies using colonisation or secondary bile acid replacement approaches (8, 35, 36). In 290 

contrast to others (8), however, GF status substantially reduced Cyp2b10 in our study. 291 

Cyp2b10 is the murine equivalent gene of hCYP2B6, which is linked to the metabolism of 292 

anaesthetics and analgesics (37). However, a more recent study, using RNA-sequencing, by 293 

the same research group supported our finding of reduced Cyp2b10 in GF mice (38).  294 

Our study is the first to demonstrate a clear role of the gut microbiome on drug transporters. 295 

P-gp works in tandem with drug-metabolising enzymes, specifically CYP3A4/5, to reduce 296 

the oral bioavailability of certain drug molecules, which are substrates of both genes (39). 297 

Intestinal and hepatic drug transporters can dictate the amount of drug in the systemic 298 

circulation by influencing drug absorption from the gut lumen or by facilitating the evasion of 299 

drug metabolism on the first pass through the gut and liver. Factors affecting transporter 300 

function or expression may, therefore, be important determinants of drug pharmacokinetics 301 

(40). Our results illustrate that both murine isoforms of MDR1 are susceptible to microbiota-302 

related changes as evidenced by the induction of Mdr1b by GF conditions, or by the 303 

inhibitory effect of butyrate on Mdr1a and Mdr1b. Previously, colonisation with Bacteroides 304 

thetaiotaomicron downregulated Mdr1a expression in GF mice (41). Earlier research has also 305 

indicated a sex-related food effect on the protein level of intestinal P-gp in rats (42). The 306 

induction of Mdr1a expression by diet-enriched FOS-inulin in our study may provide further 307 

insights into the dietary impact on host P-gp expression levels.   308 

Overall, butyrate supplementation did not induce widespread changes in hepatic gene 309 

expression. Butyrate supplementation did not cause extensive changes in hepatic genes of 310 
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conventional mice except for Cyp2b210. In the case of GF mice, transcript levels of Cyp2b10 311 

remained downregulated even after butyrate supplementation, but this microbial metabolite 312 

had a significant inhibitory effect on Mdr1a expression in butyrate-treated GF mice relative 313 

to conventional counterparts. Butyrate-induced effects on hepatic genes, therefore, may 314 

depend on the microbial status of the host, highlighting the complexity of microbe-liver 315 

interactions, and the difficulty in extrapolating from GF animals to those with a conventional 316 

microbiota. Future studies employing a longer duration of butyrate supplementation or 317 

investigating the effect of alternative SCFAs (e.g., acetate, propionate) or a combination of 318 

SCFAs, may provide further mechanistic insight into the role SCFAs play in microbiome-319 

influenced host gene expression. Indeed, investigating the impact of different microbial 320 

metabolites, such as tryptophan and bile acids, on hepatic CYP expression may help to 321 

further delineate the molecular underpinnings of this host-microbe interaction. Moreover, the 322 

microbial regulation of the hepatic transcriptome has been linked to the circadian oscillations 323 

of serum metabolites which can affect the detoxification pattern in the liver (43), therefore, 324 

the impact of microbial metabolites at different times of the day also merits consideration. 325 

Fermentation of fibre is one of the primary sources of SCFAs. Diet-derived butyrate must 326 

also be considered in terms of experimental design as it may have implications for butyrate-327 

mediated physiological functions (44), albeit dietary sources may, however, be more 328 

important in small intestine where bacterial fermentation is lowest (45). Through regular 329 

monitoring of food intake across the butyrate-supplemented and non-treated groups, we 330 

confirmed no differences in the potential dietary sources of butyrate across all groups. 331 

Previous research has illustrated that the majority of SCFAs in the gut come from bacterial 332 

fermentation as has been reported previously with levels of 1020 mumol/kg in caecum of 333 

Norwegian GF mice vs levels of 124,600 mumol/kg in the caecum of conventional mice (45). 334 

Recently, our group illustrated that supplementation with the prebiotic mix, FOS-inulin, 335 
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altered propionate, and valerate levels in the caecum (21), further substantiating previous 336 

links between SCFAs and prebiotics (46-48). Our results suggest FOS-inulin-induced effects 337 

on hepatic gene expression are specific to the gene isoform. This prebiotic mix significantly 338 

altered Cyp3a13 and Mdr1a expression in the liver of young adult mice but exerted no 339 

influence on the Cyp3a11 or Mdr1b gene isoforms. Overall, FOS-inulin supplementation for 340 

14 weeks did not translate to marked differences in the expression of hepatic genes in 341 

conventional animals. Previously, a one-month treatment with a cocktail of probiotics, 342 

VSL#3, was also found insufficient to alter the hepatic expression of many drug-metabolising 343 

genes (8). It is plausible that microbiota-targeted interventions, including prebiotics and 344 

probiotics, may require extended chronic treatment to elicit more extensive changes in 345 

metabolic pathways under healthy or naïve conditions or that the effects may be contingent 346 

on the host, such as age or gender.  347 

As age is a well-established influential factor for drug metabolism capacity (4, 49-51), we, 348 

therefore, sought to explore whether the response to prebiotics was age-dependant. Increasing 349 

age is associated with an approximate 40-45% downregulation of detoxification enzymes 350 

(34). In this study, the specific life-stages of young adult and middle-aged were chosen to 351 

examine if the response to FOS-inulin depended on the age of the host while avoiding the 352 

confounding effect of old age-related decline in hepatic function (52). Like the prebiotic-353 

induced effects, age significantly modified the expression of CYP and MDR1 isoforms in an 354 

isoform-specific manner. Moreover, age dictated the impact of prebiotics on Cyp2a4, 355 

suggesting that age-related changes in hepatic CYP isoforms may influence the efficacy and 356 

safety of drugs. However, the effects of ageing on the expression and activity of CYP 357 

enzymes in humans remains controversial due to the many confounding factors, including 358 

concomitant diseases and personal medical history. 359 
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Overall, these results lend further support to the role the gut microbiota plays on host drug 360 

metabolism. To our knowledge, this study provides the first evidence on the influence the gut 361 

microbiota exerts on a drug-efflux transporter gene, MDR1. Having identified current gaps in 362 

our understanding of the mechanistic basis for these microbiome-liver interactions, the 363 

impact of butyrate supplementation on a much broader range of host drug-metabolising 364 

enzymes and transporters was investigated, extending to previous work on butyrate-induced 365 

changes specific to the Cyp1a family (14, 15). A limitation of the study herein is that data 366 

obtained on the mRNA level only hints on a general pattern of expression, and future studies 367 

should now focus on protein levels and enzyme activity to confirm the microbial regulation 368 

of these hepatic genes implicated in drug metabolism and transport. Herein, butyrate did not 369 

exert an extensive impact on a range of hepatic genes and research efforts may need to be 370 

shifted towards alternative microbial metabolites. Nonetheless, the study herein represents an 371 

important stepping stone for further studies exploring the microbiome-liver crosstalk. 372 

Furthermore, there is still uncertainty concerning the existence of species differences in genes 373 

implicated in drug metabolism and transport (27), and thus, there is a requirement for more 374 

studies in this area to establish a sound basis for correlation of preclinical studies to clinical 375 

research (5). 376 
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Conclusion 377 

 378 

This data further strengthens the increasing body of evidence linking the gut microbiota as a 379 

modulator of host gene expression, specifically in influencing hepatic enzymes involved in 380 

drug metabolism and disposition. Not only may the gut microbiota alter how the host 381 

metabolises drugs but may, through the modified efflux process from the liver to the bile 382 

duct, also influence the distribution and elimination process of drugs.  On a mechanistic level, 383 

it appears the microbial metabolite butyrate is not singularly involved in mediating these 384 

effects on host metabolism and transport. Butyrate-induced effects on CYP and P-gp 385 

expression are gene-specific and, even in some cases, dependent on the specific isoform of 386 

the gene, as evidenced by its impact on Cyp2b10 and MDR1 isoforms, respectively. Further 387 

studies are required to elucidate microbiota-induced changes in host gene expression at the 388 

protein level and to unravel the mechanistic basis for this crosstalk between the gut 389 

microbiome and the liver, including the impact of other SCFAs or different microbial 390 

metabolites such as tryptophan. Furthermore, prebiotic supplementation modulates host gene 391 

expression and may play a role in normalising metabolic activity or reducing inter-individual 392 

variability in drug pharmacokinetics.  393 
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Tables 
Table 1. Overview of the human equivalent mouse CYP enzymes. The previously 563 
identified murine Cyps most similar or equivalent to human CYP enzymes, and examples of 564 
corresponding substrate drugs are illustrated. (a)www.drugbank.ca/drugs.  565 

Gene 

(mouse) 

Gene 

(human) 

Substrate Drugs References 

Cyp1a2 CYP1A2 Chlorpromazine, Amitriptyline, Zolmitriptan  

 

 

(4, 53, 54) 

(a) 

Cyp2a4 CYP2A6 Letrozole, Nicotine, Nifedipine 

Cyp2b10 CYP2B6 Ketamine, Selegiline, Methadone 

Cyp3a11  

CYP3A4/5 

Clarithromycin, Citalopram, Alprazolam, 

Morphine Cyp3a13 

Mdr1a  

MDR 1 

Digoxin, Verapamil, Domperidone, Ranitidine 

(Strong overlap with CYP3A4/5 substrates)   

 566 
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Figure Legends 

 567 

Figure 1. Microbial status alters mRNA expression of hepatic genes. (A) Relative mRNA 568 
expression of CYP450 drug-metabolising genes in the livers of germ-free (GF), colonised 569 
GF, and conventionally raised C57BL/6 mice. (B)  Relative mRNA expression of two murine 570 
isoforms of hMDR1, Mdr1a, and Mdr1b, in the livers of GF, colonised GF, and 571 
conventionally raised C57BL/6 mice. Data analysed by one-way ANOVA with Bonferronis’ 572 
multiple comparisons test and represented as mean + SEM (n=5-6). (* Conv. vs GF; # Conv. 573 
vs GF colonised; $ GF vs GF colonised; $ = p<0.05; **, p<0.01; ###, p<0.001; n=5-6/group). 574 

 575 
Figure 2. Impact of butyrate supplementation on hepatic genes. Relative mRNA 576 
expression of murine hepatic (A) CYP isoenzymes and (B) MDR1 transporter in 577 
conventionally raised and GF mice supplemented with sodium butyrate or sodium-matched 578 
saline (n=12-15/group). Data analysed by one-way ANOVA with Bonferronis’ multiple 579 
comparisons test and represented as mean + SEM. * p<0.05; ##, p<0.01; ###, p<0.001; Conv, 580 
conventionally raised; GF, germ-free. 581 

 582 
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 583 
Figure 3. FOS-inulin impact on hepatic gene expression. Relative mRNA expression of 584 
murine hepatic (A) CYP isoenzymes and (B) MDR1 transporter respectively in young and 585 
middle-aged conventionally raised male mice receiving chow supplemented with FOS-inulin 586 
or standard chow. Data analysed by two-way ANOVA and Bonferroni’s multiple 587 
comparisons test. Data represented as mean + SEM (n=9-10). (#or $, p<0.05; **, p<0.01). 588 
n=9-10/group.  589 

 

 

 

 

 

 

 


