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Signatures of Ring Currents in a Magnetic Mirror

Plasma Experiment.

P.J. Mc Carthy and S. Knott

Department of Physics, University College Cork, Cork, Ireland

E-mail: pjm@ucc.ie

Abstract.

Spatial profiles of electron density and temperature obtained from Langmuir probe

data in a magnetic mirror plasma experiment using permanent rare-earth magnet

stacks show clear signatures of azimuthal or ring currents generated by grad B and

curvature drifts. The plasma-generating hot cathode filament is placed within the

mirror so that the primary electrons generated with energies ≃ 75 eV are confined by

the magnetic mirror effect resulting in a combination of a rapid bounce motion with a

slower azimuthal drift whose direction is determined by the orientation of the magnet

stacks. A spatial scan using a movable Langmuir probe system shows two peaks of

unequal amplitude in the hot electron density profile at locations along the probe

path corresponding to φ = 90◦ and φ = 270◦ where the filament is located at φ = 0.

The position of the stronger peak is consistent with the shorter path in the electron

drift direction for the choice of orientation of the magnets. Reversing the magnetic

orientation exchanges the locations of the strong and weak hot electron density peaks.

The dependence of the ratio of the two peak amplitudes on gas pressure p is consistent

with exponential attenuation of the hot electron density along the drift orbit with a

mean free path λmfp ∝ 1/p.

(Figures in this article are in colour only in the electronic version)
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 2

1. Introduction

Azimuthal or ring currents primarily consisting of energetic ions play a central role in the

geophysics of the earth’s magnetosphere, in particular in the reduction in the terrestrial

magnetic field strength due to their intensification during geomagnetic storms [1, 2].

They were first postulated by Chapman and Ferraro in 1931 [3] and first experimentally

confirmed by spacecraft measurements starting with Explorer VI [4]. Although recent

work has been done on the detection of azimuthal current flow in plasma accelerators

[5, 6], to our knowledge no results of steady state ring current detection in laboratory

experiments have been reported previously. Hollow density profiles, a natural outcome

of the experiment reported on here, were recently observed in a helicon device [7], but

the more complex vessel geometry and magnetic structure in that work made it difficult

to draw definitive conclusions on the mechanism underlying their formation. Here, we

report results obtained from analysis of Langmuir probe data acquired in a spatial scan

through an axisymmetric magnetic mirror plasma which shows clear signatures of ring

currents. After a description of the experimental set-up, the data analysis method and

a review of some elementary magnetic mirror theory, electron density and temperature

profiles are presented for a range of neutral pressures, in each case for two magnetic

field orientations, which unambiguously demonstrate the presence of strong azimuthal

currents. This is followed by a discussion and some concluding remarks.

2. Experimental Setup

The apparatus used in this research is a Double Plasma device reconfigured as a magnetic

mirror experiment. A schematic is shown in figure 1. The cylindrical stainless steel

vessel has an internal diameter of 25 cm and a length of 47 cm. To limit the rise in wall

temperature for maximum heating powers of several kilowatts the curved cylindrical

surface is surrounded by a ≃ 12mm jacket through which cooling water flows. The

baseplate of the cylindrical chamber is air-cooled. The magnetic mirror is formed by

two stacks of NdFeB rare–earth permanent magnets (internal field = 1.25T) aligned

coaxially and placed diametrically opposite one another against the curved cylinder

surface to form an axisymmetric, non-uniform field as shown in figure 1(b). Various

stack lengths as well as magnet diameters ranging from 12 mm to 50 mm have been

used, but the data presented here were acquired using magnet stacks of length 20 cm

and diameter 30mm. The faces of the magnet stacks are 28.0 cm apart and hence there

is a gap of 15mm between the front face of each stack and the plasma-facing vessel

wall. For this configuration, the magnetic field strength along the mirror axis, plotted

in figure 1(d), takes a maximum value of 183mT at the plasma-facing wall surface

and a minimum of 5.9mT at the symmetry plane of the mirror resulting in a mirror

ratio of 31 along the mirror axis. The calculated field strength along the mirror axis

was experimentally verified with an uncertainty of ≈ ±0.2 mT using a teslameter. As

the field line radius in the symmetry plane increases from 0 to 10 cm the mirror ratio
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 3

decreases from 31 to 20.

Figure 1. Schematic diagram showing (a) side and (b) end views of the cylindrical

vessel with cutaways of the two 20 cm stacks of NeFeB magnets of diameter 3 cm.

Magnetic field lines enclosing flux φ=
∫ r

0
B · dA = 1,3,5,...,15mWb show the mirror

field structure. The orange segments lie within the cooling jacket. The dotted blue

line in panel (b) is the mirror axis. The mirror symmetry plane is normal to the axis

and equidistant from the two magnet stacks. The magnetic field profile along the

vessel axis (coincident with the probe path) is plotted in panel (c), where the zero in

the spatial coordinate is in this case located at the position of the mirror axis. The

magnetic field profile along the mirror axis is plotted in panel (d).

Two gas inlets are located on the far side of an unused second chamber of

rectangular cross-section (see figure 1(a)), and the pumping duct is located midways

along the floor of the cylindrical chamber. The outlet is protected by a mesh filter to

prevent debris from the filament or probe system damaging the turbo-molecular pump.

The cylindrical vessel has three sealed flange ports. One is located at the top of the

vessel above the pump and is used for electrical feed-throughs to the filament while the

other two face each other horizontally on opposite sides of the vessel. The detachable

baseplate of the vessel also has a flange port for the movable Langmuir probe shaft

whose 300mm range, indicated by the dashed line in figure 1(a), coincides with the axis

of the cylinder. The baseplate has in addition a spectroscopic window which provides

a line of sight perpendicular to the mirror axis. Helium, argon and nitrogen have been

used as working gases. The data presented here were acquired in nitrogen plasmas.

Plasmas are generated by thermionic emission of primary electrons from a

negatively biased tungsten filament inserted through the top port of the cylindrical

chamber. The filament consists of 0.5mm diameter tungsten wire wound to form

a 10mm diameter coil of geometric length 41mm and total wire length of 50 cm
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 4

manufactured by Plansee GmbH. The coil legs are connected to two molybdenum

support rods, which in turn are connected to dual insulated electrical feeds through

the vacuum flange. The tungsten coil legs are tightly wound with additional tungsten

wire of diameter 0.38mm to reduce the leg resistance so that incandescence is restricted

to the horizontal coil windings. The filament axis is located parallel to and 50mm above

the mirror axis as shown in figure 1. The placing of the filament within the magnetic

mirror is a key feature of the experimental set-up, because the primary electrons emitted

from the filament are confined within the mirror in a narrow annulus whose initial radial

extent in the mirror symmetry plane is dfilament+2ρgyro ≈ 22mm for filament windings

of outer diameter 11mm and an electron gyroradius ρgyro ≈ 5.6mm for the experiments

reported below where the typical initial primary electron energy was 75 eV in a field

of 5.2mT at the filament location. Furthermore, the excellent fits to Langmuir probe

data that are presented in the results section are evidence that the confinement of the

primary or hot electron population is long enough to form a good approximation to

a Maxwellian distribution of energies, together with a colder population of secondary

electrons as assumed by the model which fits the probe data.

Thermionic emission results from Ohmic heating of the tungsten filament, using a

Farnell H60/50 power supply, with a threshold power of ≈ 500W for helium plasmas

but which could be as low as ≈ 250 W for nitrogen plasmas. The liberated electrons are

accelerated away from the filament with a bias voltage which can range from 35V to

125V supplied by a Delta Electronika SM 120-50 power supply which allows for plasma

currents of up to 50A. Inelastic collisions between the energetic primary (hot) electrons

and the neutral gas result in two electron populations which requires a bi-Maxwellian

model to fit probe data for low gas pressure experiments. The Langmuir probe system

used is a modified Impedans Ltd. Langmuir Spatial Probe inserted along the axis of the

vessel. The probe tip consists of a tungsten wire of 0.1mm diameter and exposed length

of typically 6mm attached to the probe cradle which in turn is screwed into a metal

probe arm enclosed within a solid ceramic shaft which insulates it from the plasma. To

minimise disturbance of the probe measurement by the ceramic cone from which the

probe wire tip is designed to protrude, we inserted a length of thin ceramic tubing of

inner diameter 0.3mm and outer diameter 0.7mm into the 1mm duct through the cone

(see figure 1(a)) in keeping with optimal probe design practice [8]. The convenience

of the removable ceramic cone was offset by a surface alignment gap of up to 0.2mm

between the cone base and the shaft when the cone was fully screwed in. We attributed

frequent distortions of the ion branch of the Langmuir characteristic to the beam-like

nature of the ring current [9] which caused ions to penetrate the gap, thus spuriously

enhancing the recorded current. The problem disappeared after covering the gap with a

2mm- thick tightly fitting ceramic collar designed for this purpose by Krosaki Harima

Corp. The data presented below for spatial scans covering the 300mm range of the

probe for both magnetic field orientations includes unavoidable perturbations caused by

the probe shaft passing through the plasma.

The Langmuir data analysis code, developed by the first author, has already been
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 5

described [10]. Note that since the minimum magnetic field value of B= 5.9mT along

the mirror axis corresponds to the maximum value of B along the spatial scan path of the

probe (see subfigures 1(c) and 1(d)), the electron gyroradius satisfies ρe ≥ 0.40
√
Te mm

(Te in eV) which for the temperatures reported here of Te > 1 eV exceeds by a factor

of 8 or more the probe radius rP = 0.05mm and hence magnetization effects can be

neglected in the probe analysis [11].

3. Theory

The motion of electrons trapped in an axisymmetric mirror configuration, before

collisions are taken into account, consists of a rapid bounce motion along magnetic field

lines due to adiabatic conservation of the magnetic moment µ = mv2⊥/2B combined

with a slower azimuthal motion resulting from ∇⊥ B and field line curvature drifts. The

bounce period Tbounce (the round trip time) for particles near the mirror axis is given by

Tbounce = 4
∫ zm

0

dz

v‖
(1)

where z = 0 corresponds to the symmetry plane. Conservation of µ and particle energy

mv2/2 (in a region with negligible E‖) results in the following expression for v‖:

v‖ = v

√

1− B

Bm

(2)

for a particle trajectory where B takes its maximum value Bm at the two mirror points

of the trajectory z = ± zm. The value of Bm or zm for a particular particle is determined

by its pitch angle φ = arctan v⊥/v‖ in the symmetry plane where B takes its minimum

value for the trajectory. The field of a uniformly magnetized cylindrical bar magnet

can be accurately approximated by that of an idealized finite solenoid, i.e. one with

with strictly azimuthal current [12]. Accordingly, the calculation of the magnetic field

of the permanent magnet stacks, assumed to be uniformly magnetized, is based on the

field of a thin circular current loop. This is given in terms of elliptic functions requiring

numerical evaluation, except for the field along the axis of the current loop which, for a

loop of radius a carrying a current I, is given by the well-known expression

B
current loop

axis (z) =
µ0Ia

2

2(a2 + z2)3/2
(3)

Replacing the loop current I by the current per unit length i (the NdFeB internal field

of 1.25T equates to i = 0.995MAm−1) and with z replaced by z + x , equation (3) is

integrated over the range 0 ≤ x ≤ L to yield the axial field for a finite solenoid of length

L and radius a with the origin z = 0 at the leading end:

B
solenoid

axis (z) =
µ0i

2





L+ z
√

a2 + (L+ z)2
− z√

a2 + z2



 (4)

The mirror configuration consists of two coaxial magnet stacks spaced a distance d apart

with the symmetry plane a distance d/2 from each stack face. The combined axial field
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 6

for the two stacks, this time with the origin z = 0 in the symmetry plane, is given by

B
mirror

axis (z) =
µ0i

2





L+ d
2
+ z

√

a2 + (L+ d
2
+ z)2

−
d
2
+ z

√

a2 + (d
2
+ z)2

+

+
L+ d

2
− z

√

a2 + (L+ d
2
− z)2

−
d
2
− z

√

a2 + (d
2
− z)2



 (5)

Substitution of equation (5) into equation (2) followed by evaluation of equation (1)

using the parameters of the experiment (a=15mm, d=28 cm, L=20 cm) yields a

bounce time in microseconds of

Tbounce (µs) ≈ 1.25

√

mj

Tj
(6)

where Tj is the temperature of plasma species j in electron volts and the particle mass

mj is in units of the electron mass. The approximate nature of the result reflects the fact

that there is a modest variation of ±10% in the value of Tbounce over the full zm range:

0 < zm < 12.5 cm, or equivalently over the full Bm range: 5.9mT < Bm < 183mT in the

case of the magnetic field value Bm at the mirror points. For the temperatures reported

in the next section, electron bounce times lie in the range 0.2µs < Tbounce < 1.25µs

while singly ionized nitrogen ions have bounce times of order 1ms.

Ring currents arise from particle drift velocities generated by (i) ∇⊥B, the

perpendicular component of the gradient of the field strength B and (ii) the field line

radius of curvature Rc. When plasma pressure is very weak relative to magnetic field

pressure B2/2µ0, the expressions for both drift velocities have the same dependence on

B and ∇B and both terms combine to give (see, e.g., [13], Chapter 3):

v∇⊥ B + vcurv. =
T⊥ + T‖

q

B×∇B

B3
(7)

In an axisymmetric field this charge-dependent (but mass-independent) drift is strictly

azimuthal and furthermore is reversed for all charge species if the magnetic field direction

is reversed. Since the filament axis is centred on the symmetry plane and aligned

to the local magnetic field direction (see figure 1(b)), the primary electrons will be

preferentially emitted normal to the local magnetic field and hence will initially have

pitch angles resulting in trajectories confined closer to the symmetry plane than in the

case of isotropically emitted primary electrons. To a good approximation, these electrons

have a drift speed vdr(r) dependent only on the radius r in the symmetry plane of the

flux surface on which they reside. The time taken to complete a drift orbit under these

conditions is simply Torbit = 2πr/vdr(r). Taylor expansions at small radii for B and ∇B

in the symmetry plane yield B= a − br2 + · · · and ∇B=−2br r̂ + · · · where a and b

are positive coefficients. If we assume, at a modest cost in accuracy, a single effective

temperature T ≡ (T⊥+T‖)/2 in equation (7), the drift velocity for B in the positive ẑ

direction is given by:

vdr =
2T

q

B×∇B

B3
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 7

=
2T

q

(a+ b r2 + · · ·)ẑ× (−2b r + · · ·)r̂
a3 − 3a2b r2 + · · ·

= − 4Tbr

qa2
φ̂+ · · · (8)

so that the drift orbit period Torbit ∝ r/vdr is to leading order independent of radius. The

drift orbit period for the magnetic field geometry of the experiment for singly charged

species was found to be

Torbit, j(µs) ≈
150

Tj
(9)

for species j where T is in eV and the approximation again indicates variations of ≈ 10%

over the radial range 0 < r < 12.5 cm. The quotient of this expression and equation (6)

yields the dimensionless ratio (with T in eV and m in units of electron mass)

Torbit, j

Tbounce, j

≈ 120
√

mjTj

(10)

This ratio is 120 for 1 eV electrons and 19 for 40 eV electrons which equates to the

largest fitted temperatures in the experimental results presented later. By contrast, the

ratio for 0.1 eV singly ionized nitrogen ions is 2.4 and hence the bounce motion and

drift orbit periods for ions, in contrast to electrons, are comparable. (Measurements

of ion temperature in this device for a wide range of plasma parameters in helium

plasmas using a FTIR-based high resolution spectrometer yielded a temperature range

of 0.08 eV< Ti < 0.35 eV [14] and we use a reference Ti =0.1 eV here.)

If the z axis coincides with the mirror axis and the positive z direction is into

the page in figure 1(a), the direction of increasing azimuthal angle φ̂ = ẑ × r̂ in a

right-handed system of cylindrical coordinates is clockwise. From the final expression

in equation (8), the drift direction for electrons when the magnetic field is oriented in

the positive z direction is in the positive φ̂ direction and is hence also clockwise with

reference to figure 1(a). Thus the signature of ring currents for this ‘positive’ orientation

labelled as ‘S’ in the next section, should include the following properties:

(i) If y0 is the position along the probe path directly under the filament which is at

a height h (= 50mm) above the vessel axis, then a strong local maximum in the

hot electron density is expected at a location y = y0 − h , i.e. on the near side

(with respect to the baseplate) of the filament where the primary electrons consist

of those which have completed a minimum of a quarter of a drift orbit and, for

sufficiently low pressure allowing multiple passes, with further contributions from

primary electrons that have completed N + 1
4
drift orbits where N ≥ 1 .

(ii) A weaker local maximum is expected at a location y = y0+ h on the far side of the

filament due to pressure-dependent attenuation of the drifting hot electrons which

reach the probe tip having completed a minimum of three quarters of a drift orbit,

with possible additional contributions from those which complete N+ 3
4
drift orbits

where N ≥ 1.
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 8

(iii) The distance between the observed peak locations should be 2h, i.e. the diameter

of the circular drift orbit which is determined by the height of the filament axis

above the mirror axis.

(iv) A local minimum in the hot electron density would be expected, on symmetry

grounds, at or close to the location on the probe path directly under the filament

at y = y0.

(v) For the alternative ‘negative’ orientation, labelled ‘N’ in the next section, when

B is oriented in the negative z direction (out of the page in figure 1(a)), the drift

direction is reversed and hot electrons should drift anti-clockwise with reference to

figure 1(a), and hence the stronger hot electron density peak should be located at

y = y0 + h and the weaker at y = y0 − h along the probe path.

(vi) On symmetry grounds we would expect the amplitudes of the stronger and weaker

peaks in the negative (N) orientation to be the same as those of the positive

orientation (with locations exchanged).

Finally, since cold electrons result from inelastic collisions by the primary electrons,

they should possess characteristics similar to those of the hot population, but modified

by differences in collisionality and spatial distribution.

The foregoing calculations and predictions are relevant provided the bounce and

drift timescales are shorter than the particle confinement time τp. The a priori

calculation of mirror confinement times based on velocity space diffusion is challenging

in this experiment since 0.1 eV nitrogen ion gyro radii in the symmetry plane range from

2 cm on axis to 4 cm at r = 12.5 cm and hence ions do not satisfy the magnetized plasma

condition ρgyro/D ≪ 1 where D = 12.5 cm is the relevant dimension of the plasma.

Hence, depending on experimental conditions, electrons can be better confined than

ions, and this is in fact observed in spatial profiles of the plasma potential reported below

which can be both positive and negative. In the next section, analysis of density profiles

derived from Langmuir probe data yields estimates of the global particle confinement

time τp which confirm that this criterion is satisfied for the hot electron population

where Torbit ≪ τp but not for cold electrons where Torbit > τp.

4. Experimental results

Langmuir probe traces with fitted parameters illustrative of low, medium and high

pressure conditions in the results presented in this section are shown in figure 2(a-c).

The low fit errors (rmse< 0.5% of maximum probe current) is evidence that the bi-

Maxwellian model [10] used to fit the data gives credible values for the temperatures and

(to within a fixed correction factor due to uncertainties in the effective probe collecting

area) densities of the hot and cold electron populations. For the lowest pressure at which

stable plasmas could be maintained, namely P=0.2mtorr, the hot electron temperature

is maximum, and a fitted value of 40.1 eV was obtained for the probe trace in figure

2(a) where the floating potential-plasma potential difference is -76.3V. By contrast, no
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 9

Figure 2. Raw (black dots) and fitted (green curve) Langmuir probe I(V)

characteristics for (a) P=0.2mtorr, (b) P=1.3mtorr and (c) P=2.0mtorr taken with

the probe tip located (a) 220mm, (b) 230mm and (c) 80mm from the baseplate.

The blue, orange and purple curves are fitted cold electron, hot electron and ion

contributions to the fitted I(V) characteristic. The vertical dashed line marks the

location of the plasma potential. Parameter values are tabulated in each panel. See

text for remarks on error bars.
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Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 10

fast electrons were present in the probe trace in figure 2(c) where the fitted electron

temperature was 1.87 eV and Vf −Vp was almost an order of magnitude lower at -7.8V.

Traces similar to those in figure 2 were acquired for spatial scans at 10mm intervals

over the 300mm range of the scanning probe system for 11 nitrogen pressures in the

range 0.2mtorr≤P≤ 4mtorr. In all cases the bias voltage varied from -90V to -60V

across the incandescent filament windings, resulting in mean primary electron energies

of ≃ 75 eV. The heating circuit power was fixed at 560W which resulted in plasma

currents in the range 2.5A< Ip < 4.0A. Each stored Langmuir I(V ) trace at a given

spatial location is the average of 50 successive traces. A typical single trace consists of

data taken over the voltage range −100 < V < 25V at intervals of 0.05V. Each point

within a trace is sampled 30 times, so the stored, time-averaged traces each represent

an average of 1500 samples. The natural scatter of the stored traces was empirically

found to vary from ≈ 25µA for V <−30V to a maximum of ≈ 75µA for 20<V< 25V.

In each case, spatial scans were taken for both orientations of the magnet stacks as

described in section 3 (‘S’, the ‘positive’ orientation corresponding to B directed into the

page in figure 1(a), and ‘N’, the ‘negative’ orientation with B out the page). Figure 3

shows (for both magnetic orientations) spatial profiles of hot and cold electron densities

and temperatures as well as floating and plasma potentials for the pressures specified on

the density plots in the left column. The nominal range is 0≤ y≤ 300mm but note that

at y=0 the centre of the 6mm-long probe tip is 15mm in from the baseplate surface.

In the S orientation, if the expected ring current behaviour is to be observed in the

experiment, the near peak should correspond to hot electrons which have completed the

shorter drift orbit path of N + 1
4
orbits, N ≥ 0, and the far peak should correspond

to the longer path of N + 3
4
drift orbits. For ease of reference this arrangement of the

two peaks is termed near:1
4
, far:3

4
or ‘n:1

4
, f:3

4
’ . For the negative (N) orientation of the

two magnet stacks, the drift direction is reversed and the shorter drift path is to the

far peak. Hence this arrangement is referred to as ‘n:3
4
, f:1

4
’. The trends in the profiles

presented in figure 3 for three of the 11 pressures are present in the full set of data for

which peak hot electron densities versus pressure are plotted in figure 4. These findings

can be itemized as follows:

(i) For all 11 pressures for which spatial scans were acquired, the dominant hot electron

peak in the S/positive orientation is the near peak and the weaker peak is the far

peak. This is consistent with the ring current n:1
4
, f:3

4
arrangement.

(ii) In all cases the dominant hot electron peak in the N/negative orientation is the far

peak and the weaker peak is the near peak. This, too, is consistent with the ring

current n:3
4
, f:1

4
arrangement.

(iii) The mean value and standard deviation of the location of the near hot electron

peak as determined from the spline fit to each discrete profile of 31 spatial points

is 〈ynear peak〉 = 119 ± 1.6mm and, for profiles where the far peak is observable,

〈yfar peak〉 = 225 ± 3.1mm. The separation of the peaks is 106 ± 4mm consistent

with a circular drift orbit of radius 50mm (the height of the filament axis above the
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Figure 3. Spatial profiles along the probe path versus distance (mm) from the

vessel baseplate of cold and hot electron densities (left column), cold and hot electron

temperatures (middle column) and floating and plasma potentials (right column) from

Langmuir probe spatial scans for P = 0.2, 0.5, 1.5mtorr. The solid curves are cubic

spline interpolations of the fitted parameters. Horizontal axes run from right to left to

conform to the view of the vessel in figure 1(a) where the origin of the probe trajectory

is at the baseplate to the right. Te hot values are omitted when Ne hot < 108 cm−3. For

each pressure, profiles for both S andN orientations of the magnet stacks are presented.

In all cases the bias voltage varied from -90V to -60V across the incandescent filament

windings.

Page 11 of 18 AUTHOR SUBMITTED MANUSCRIPT - PREX-100138.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Signatures of Ring Currents in a Magnetic Mirror Plasma Experiment. 12

horizontal midplane of the vessel). By contrast, the separation of the cold electron

peaks increases steadily with pressure from ≈ 95mm to ≈ 130mm, a difference in

which the higher collision frequency of cold electrons (∝ T−3/2
e ) is likely to play a role

and which would in any case require transport modelling to explain quantitatively.

(iv) With increasing pressure, the ratio of the two peak amplitudes increases strongly,

consistent with increased attenuation of the hot electron ring current caused by the

extra semicircular drift path to be completed before the hot electrons first reach

the location of the n:3
4

or f:3
4

peaks. For p ≥ 2mtorr, only the n:1
4

and f:1
4

hot

electron peaks are present.

(v) A local minimum in the hot electron density, when both peaks are present, occurs

in the range 170 ≤ y ≤ 180mm which is close to or at the symmetric value of

≈ 172mm.

(vi) For each pressure, the disparity between the two peak amplitudes in the S

orientation is more pronounced than in the N orientation. In the case of P =

1.5mtorr (see figure 3), there is no observable f:3
4

peak whereas the n:3
4

peak is

present in theN orientation. The more pronounced disparity in the peak amplitudes

for the S orientation is readily explained by the disruptive effect of the probe

shaft on the ring current. The drift direction is clockwise in the S orientation and

hot electrons reach the probe tip at the location of the near (n:1
4
) peak without

encountering the probe shaft. However, there is a significant probability of hot

electrons colliding with the probe shaft before they reach the location of the far

peak; hence the f:3
4

peak will be attenuated both by the longer drift path and

by the presence of the probe shaft. The drift direction is anticlockwise in the N

orientation and in this case the ring current reaches the probe tip at the location

of the n:3
4
peak unimpeded by the probe shaft. In the case of the far peak the first

pass, one-quarter-drift orbit contribution to the f:1
4

peak also reaches the probe

tip unimpeded by the probe shaft, and while the current from hot electrons which

complete N + 1
4
, N > 0 drift orbits is diminished by the presence of the shaft,

its contribution to the f:1
4
peak amplitude, even with the effect of the probe shaft

excluded, decreases rapidly with increasing pressure.

(vii) Finally, we note from equation 9 that for typical hot electron temperatures of 30 eV

the ratio of electron to ion drift velocity for the reference ion temperature of 0.1 eV

is ≈ 300 and hence the ring current is carried essentially exclusively by electrons.

4.1. Test for exponential attenuation of hot electron density

The hot electron ring current is attenuated along its drift orbit, where the azimuthal

angle φ satisfies φ(t) = vdr t/rring ∝ t for fixed rring ≈ 50mm and hence fixed vdr,

and t is the elapsed time since the hot electrons were emitted from the filament at

φ = 0. Elapsed time is also proportional to the total distance travelled following

thermionic emission given by s(t) ≈ vth t where vth =
√

Te, hot/me is the thermal
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Figure 4. Hot electron density peak values versus gas pressure for (a) S and (b) N

orientations for the full set of pressures for which spatial scans were acquired.

speed. Note that s(t) includes both the more rapid bounce motion and still more

rapid gyromotion and hence greatly exceeds the azimuthal drift distance rφ(t). Hence

exponential attenuation of the hot electron density with distance travelled is expected,

due principally to inelastic collisions with gas molecules and characterized by a mean

free path λ = 1/nσ ∝ 1/p where σ is the cross-section and p is the gas pressure, provided

the inelastic cross-section is approximately fixed for the experimental Te, hot range. For

inelastic electron collisions with nitrogen molecules, the cross-section in the energy range

25 eV< Ee < 120 eV, equivalent to a temperature range 16 eV< Te < 80 eV which

includes the experimental range of hot electron temperatures, lies in the narrow range

σinelastic(Ee) = 3.3± 0.2× 10−16 cm2, a result obtained from elastic and total scattering

cross-section data in reference [15].

The hypothesis of exponential attenuation with λ ∝ 1/p can be tested using the

ratio of the two peaks in the N orientation where the attenuation of the far f:1
4
peak due

to the perturbing influence of the probe shaft, if present, is expected to be restricted

to low pressures (see finding (vi) earlier in this section). If the beam attenuation is

expressed in terms of φ, then

ne, hot(φ) = ne, hot(0)e
−δφ/λ

≡ ne, hot(0)e
−φp/ℓ (11)

where δ is the distance travelled per radian of azimuthal drift, ne, hot(0) is the hot electron

density when first leaving the filament and ℓ = λp/δ where ℓ is in units of mtorr. The

ratio of the two peaks, ̺, is then given by

̺ ≡ f : 1
4
/n: 3

4
= ne, hot(0)e

−(π/2)p/ℓ/ne,hot(0)e
−(3π/2)p/ℓ

= eπp/ℓ (12)

Accordingly, if exponential attenuation with a decay length inversely proportional

to pressure correctly describes the peak ratio behaviour, the quantity ℓ = πp/ ln(̺)

should be a constant independent of pressure. Figure 5 shows the peak ratio ̺= f:1
4
/

n:3
4
and πp/ ln(̺) for 8 of the 11 pressures for which the n:3

4
peak was present, namely for

0.2mtorr≤ p≤ 1.5mtorr. The horizontal dotted line marks the mean value of 1.87mtorr
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Figure 5. N orientation hot electron density peaks ratio ̺ (green trace) and πp/ ln ̺

(magenta trace) versus nitrogen gas pressure for the 8 pressures for which both peaks

were present. The horizontal dotted line marks the average value of 1.87mtorr for the

parameter ℓ = πp/ ln ̺.

with an associated standard deviation of 0.22. The lack of a systematic pressure-

dependent pattern in the calculated values of ℓ and the modest ±12% standard deviation

indicates that exponential attenuation with a mean free path inversely proportional to

pressure is a good description of the dependence of the hot electron density on distance

travelled.

4.2. Estimation of the particle confinement time τp

Density profiles acquired along the path of the movable probe which traverses the

mirror symmetry plane can be used to make an estimate of the particle confinement

time provided the total electron density profile ne(z) along the direction parallel to the

mirror axis is known. Spatial scans made close to the mirror axis in helium plasmas

using an older movable probe geometry which operated through a mid-vessel port (see

figure 1(a)) resulted in density profiles obeying an approximate parabolic dependence:

ne(z) = n0(1 − z2/z2wall) for flux surfaces near the mirror axis with ne = n0 in the

symmetry plane where z = 0.

The starting point in calculating the integral of ne(r, φ, z) over the mirror volume

is the area integral
∫

ne(r, φ, 0) dA over the symmetry plane where z = 0. This

yields dN/dz, the number of electrons per unit length in the axial direction at the

symmetry plane. Note from figure 3 that the near and far portions of the cold electron

density profiles are of comparable magnitude at all pressures, in contrast to the hot

electrons where the n:3
4
and f:3

4
peaks become much weaker relative to the n:1

4
and f:1

4

peaks, ultimately disappearing (see figure 4) with increasing pressure. Hence separate

approaches are needed for the hot and cold electron populations. The cold electron

density at location y along the perturbation-free half of the trajectory on the near side

of the filament is used as a representative value for ne, cold(r(y), φ, 0) where 0 ≤ φ ≤ π

in the case of the S orientation, and π ≤ φ ≤ 2π in the case of the N orientation. Here,

r(y) = y0 − y is the radius of the flux surface in the symmetry plane at the location
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y along the probe path. This approach enables the calculation of the number of cold

electrons per unit length in the symmetry plane, where care must be taken to restrict

the φ range when r(y) exceeds the cylindrical radius of the vacuum vessel R = 12.5 cm:
(

dNcold

dz

)

z=0

=
∫

symm.

plane

ne, cold(r, φ, 0) dA

≈
∫ y0

y=0
(ne, cold(y)S + ne, cold(y)N)∆φ r(y) dy, (13)

∆φ =

{

π, r(y) ≤ R

2 arcsin(R/r(y)), r(y) > R

The equivalent calculation for the hot electron density assumes exponential attenuation

as calculated in the previous subsection. Thus ne, hot(r, φ, 0)=ne,hot(r, 0, 0) e
−φp/ℓ where

ne, hot(r(y), 0, 0)=ne,hot(y)S e
+πp/2ℓ as is easily seen from equation (11). This gives:

(

dNhot

dz

)

z=0

=
∫

symm.

plane

ne, hot(r, φ, 0) dA

≈
∫ y0

y=0

∫ 2π

φ=0
ne, hot(y)S e

+πp/2ℓ e−φp/ℓ dφ r(y) dy

=
ℓ

p
eπp/2ℓ

(

1− e−2πp/ℓ
)

∫ y0

y=0
ne, hot(y)S r(y) dy (14)

where here it is not neccessary to restrict the φ range since ne, hot ≈ 0 for r(y) ≥
12.5 cm. The use of the same attenuation function e−φp/ℓ for all r(y) is justified by the

approximate radial independence of the drift orbit period Tdr (see equations (8,9)) and

hence the total distance travelled s(t) is also approximately independent of drift orbit

radius.

The integrals in equations (13) and (14) (the latter using ℓ = 1.87, see figure 5)

were evaluated for each pressure to yield dN/dz in the symmetry plane for cold and

hot electrons. The empirically observed approximate parabolic dependence on z of

ne(z) close to the mirror axis was assumed to hold everywhere, so that ne(r, φ, z) =

ne(r, φ, 0)(1 − z2/z2wall) for arbitrary r, φ, z which results in a simple proportionality

between dN/dz at z = 0 and the total number of electrons:

N =
∫ dN

dz
dz

=
∫ R

z=−R

(

dN

dz

)

z=0

(1− (z/R)2) dz

=

(

dN

dz

)

z=0

× 4R

3
(15)

Figure 6(a) shows N for cold and hot electron populations (and their sum) versus

pressure calculated using equations (13-15). Figure 6(b) shows the drift orbit period Tdr

(in µs) calculated from equation (9) using the volume averaged electron temperature

〈T 〉 =
∫

neTe dV/
∫

ne dV for cold and hot electrons, respectively. Also plotted is the

particle confinement time (in µs) τP = N/Ṅ where Ṅ = Ip/e for plasma current Ip and
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Figure 6. (a): Cold (blue trace), hot (orange trace) and total (green trace) number

of electrons confined in the magnetic mirror versus nitrogen gas pressure; (b): Drift

orbit period Tdr for cold (blue trace) and hot (orange trace) electrons and the particle

confinement time τP (green trace). All times are in µs.

elementary charge e. For p ≥ 0.5mtorr, τP lies ion the narrow range 50≤ τP ≤ 60µs.

The hot electron drift period satisfies Tdr, hot/τP ≈ 0.1, thus fulfilling the criterion

outlined at the end of section 3 for the relevance of the bounce and drift timescale

calculations. This is not the case for the cold electrons where the drift period lies in the

range τP < Tdr, cold < 3τP .

5. Discussion and conclusions

The shape of the plasma potential profile Vpl(y) (see figure 3) usually closely tracks

the hot electron density in the vicinity of the density peaks and hence has a positive

maximum at the location of the hot electron density peak value. This gives rise to a

radial electric field Erad = −∇Vpl which is zero-valued at the peak density location and

reaches oppositely directed extreme values at extrema in ∇Vpl which lie in the range

50 < |Erad,max| < 150V/m. This radial electric field makes an additional contribution

to the azimuthal drift. Its typical extreme value for B≃ 5mT near r = rring is given by

(vdr,E×B)max = |Erad,max/B|
≈ 100Vm−1/0.005T

= 2× 104ms−1 (16)

Evaluation of the combined ∇⊥B and curvature drift (which, to distinguish it from the

total drift, we now label vdr,∇⊥B) for a typical hot electron temperature of 30 eV at the

filament radius r = rring = 50mm using equation (9) yields a value of 6.28 × 104ms−1

and we conclude that the E×B drift makes a significant but limited contribution to the

overall hot electron drift. Moreover, the ratio of drift to thermal velocity at r = rring
is ≈ 0.005

√
Te (for Te in eV) and hence electron drift plays a negligible role in the

interpretation of probe data.

To quantify the localized effect of the E×B drift for the electrons, we consider

first the region along the probe path between the peaks, i.e. for r(y) < rring where
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(see figure 3) ∇Vpl = ∂Vpl(r)/∂r > 0 and hence Erad = −∇Vpl is directed radially

inwards. Here, the E×B drift is clockwise for the S orientation and anticlockwise for

the N orientation, which in both cases is in the same direction as vdr,∇⊥B and hence

leads to an increased net vdr. For r(y) > rring, ∂Vpl(r)/∂r < 0 and hence the E×B

drift is oppositely directed to vdr,∇⊥B leading to a weakened net vdr. But a reduced

net drift velocity results in a longer drift orbit period and hence a greater value of s(t),

the total distance travelled by drifting electrons which have orbited through a given

azimuthal distance. This implies a greater attenuation of the hot electron density on

the r(y) > rring side of the peak and a reduced attenuation on the r(y) < rring side.

Where asymmetries in the hot electron density peak shape are visible, in particular for

the p = 1.5mtorr profiles in figure 3, the effect, however, appears to be opposite to that

expected, since the hot electron density profiles decay more steeply on the r(y) < rring
side (i.e. on the mirror axis side) of the peak locations.

In contrast to electrons, the E×B drift, which is identical for all plasma species,

would appear to have dramatic consequences for the ion current to the probe, since

ionized nitrogen molecules travelling at 2× 104ms−1 satisfy 1
2
Mv2 =58 eV. A condition

for the validity of particle drift expressions is that the gyroradius be much smaller than

relevant scale lengths. The scale length for∇Vpl is given by LErad
≈ 20mm and, for 30 eV

electrons in a magnetic field of 5.2mT, the gyroradius ρg =2.5mm yields a small finite

Larmor radius parameter ǫ= ρg/L ≈ 0.125. For Ti =0.1 eV ions, however, ρg =33mm

and ǫ > 1 so that the drift condition is strongly violated, and in fact ion gyromotion is

large enough to span both positive and negative ∂Vpl(r)/∂r regions in a single gyro-orbit

which would indicate a substantial reduction in, if not effective elimination of, directed

ion motion. The complex calculations to correctly model these conditions lie outside

the scope of this work.

Finally, we remark that in figure 4, the f:1
4
peak is moderately and systematically

stronger than the n:1
4
peak when the inequality, at least for very low pressures, would

be expected in the other direction due to the perturbing influence of the probe shaft.

One possible explanation for this discrepancy would be a left/right asymmetry (with

reference to figure 1(a)) in the efficiency of the filament surface causing a somewhat

stronger electron fluence away from the baseplate. This would result in a small

anticlockwise shift in the zero position of the azimuthal angle φ, thus enhancing the

f:1
4
peak relative to the n:1

4
. Another possible reason for the stronger f:1

4
peak is the

fact that the mirror axis is 185mm distant from the baseplate as against 285mm from

the other end of the cylindrical vessel, a necessary asymmetry due to the limited scan

range of the probe. The closer proximity of the baseplate where the electron density is

clamped at zero could explain the imbalance in the peak strengths, however appropriate

modelling calculations would be required to test this hypothesis.

In summary, the experimental results presented here show clear signatures of a ring

current of primary electrons emitted from a hot filament located within an axisymmetric

magnetic mirror configuration. Analyses of spatial Langmuir probe scans using a bi-

Maxwellian fitting model yield hot electron density profiles with localized peaks of
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unequal strengths at locations along the probe path consistent with intersection by

a circular ring current whose radius is given by the height of the hot filament above

the scan path. The locations of the stronger and weaker peaks are exchanged when

the orientation of the mirror field is reversed, a result which strongly supports the ring

current hypothesis. The dependence of the ratio of the two peak amplitudes on gas

pressure p is consistent with exponential attenuation of the hot electron density along

the drift orbit with a mean free path λmfp ∝ 1/p. Finally, an estimate of the total

number of electrons in the mirror volume yielded a particle confinement time in the

range 50≤ τP ≤ 60µs for 0.5≤ p ≤ 4mtorr.
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