
Title Energy consumption for shortcuts to adiabaticity

Authors Torrontegui, E.;Lizuain, I.;González-Resines, S.;Tobalina,
A.;Ruschhaupt, Andreas;Kosloff, R.;Muga, Juan Gonzalo

Publication date 2017

Original Citation Torrontegui, E., Lizuain, I., González-Resines, S., Tobalina,
A., Ruschhaupt, A., Kosloff, R. and Muga, J. G. (2017) 'Energy
consumption for shortcuts to adiabaticity', Physical Review A,
96(2), pp. 022133. doi: 10.1103/PhysRevA.96.022133

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://link.aps.org/doi/10.1103/PhysRevA.96.022133 - 10.1103/
PhysRevA.96.022133

Rights © 2017 American Physical Society

Download date 2024-04-24 17:49:01

Item downloaded
from

https://hdl.handle.net/10468/4993

https://hdl.handle.net/10468/4993


PHYSICAL REVIEW A 96, 022133 (2017)

Energy consumption for shortcuts to adiabaticity

E. Torrontegui,1,2,* I. Lizuain,3 S. González-Resines,4 A. Tobalina,4 A. Ruschhaupt,5 R. Kosloff,2 and J. G. Muga4,†
1Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain

2Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
3Department of Applied Mathematics, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastian, Spain

4Departamento de Química Física, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Apartado 644, Bilbao, Spain
5Department of Physics, University College Cork, Cork, Ireland

(Received 26 April 2017; published 25 August 2017)

Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose
to quantify the “energy cost” of the shortcut by the energy consumption of the system enlarged by including
the control device. A mechanical model where the dynamics of the system and control device can be explicitly
described illustrates that a broad range of possible values for the consumption is possible, including zero (above
the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored
and reused by perfect regenerative braking.
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I. INTRODUCTION

Shortcuts to adiabaticity (STAs) [1,2] are protocols for
the time dependence of the control parameters of a system
(hereafter primary system, PS) so that it reaches the same final
conditions (energy, populations, or state) of a slow adiabatic
process in a shorter time. STAs have found widespread appli-
cations in atomic, molecular, and optical physics and beyond,
e.g., for classical systems [3–5], as a generic tool to combat
decoherence and design robust, fast processes or devices. Some
STAs use the structure of the Hamiltonian describing the slow
process for the PS, as in invariant-based methods [1], and
others add new control terms, as in counterdiabatic approaches
[6], but this distinction does not affect the following discussion.

The total mechanical work done on the PS in a given STA is,
by definition, equal to the work done in the adiabatic process,
i.e., the adiabatic energy increment between initial and final
states. It was soon clear that this quantity could not represent
all relevant energy flows, which led to the consideration
of alternative measures [7]. Several disparate definitions of
energy cost have been proposed in the context of quantum
thermodynamics to characterize quantum engines and refrig-
erators [8–18]. These definitions have been systematically
formulated in terms of the cycling system (PS) alone. Even if
the existing proposals have their own merits and applications,
the point of view put forward in this article is that a broader
perspective is necessary for the definition to be useful and
practically relevant, addressing not only the PS but also the
control system (CS) that drives the time-dependent parameters.
In other words, we advocate redefining and expanding the
“system” in the model to include the PS and the CS in an
enlarged system. It might appear that this simply shifts the
system-defining border so that the same problem is translated
towards the new border. The important point is to find a
meaningful divide, for which the energy changes with the
outer world are modeled by forces that can be easily translated
into fuel or electric power consumption by an active device.

*eriktm@iff.csic.es
†jg.muga@ehu.es

Such a shift is crucial to make the energy “cost” a significant
quantity that indeed has something to do with the feasibility
of the processes, minimal times allowed, or economic costs.
Some examples help to clarify this: If a train (CS) transports
cargo (PS) horizontally between two stations, the total energy
increment of the cargo is zero. Surely what interests us more
as a relevant cost is the energy consumption by the active force
that the engines should do, translated into fuel consumption.
We thus need to evaluate this force by expanding the physical
model to include the train itself, taking into account friction and
the braking mechanism and paying attention to the maximum
power deliverable by the engine, which will put limits on the
minimal transport times. Similar examples can be drawn from
studies by nutritionists or biomechanicists concerned with
the kilocalories the body consumes or the oxygen intake to
perform a given task or exercise [19]. For a weightlifter (CS)
pushing a weight (PS) up, the energy expenditure depends not
only on the work done on the weight but also on CS-dependent
factors such as the lifter’s skill and weight and muscular mass.

This paper is based on a simple model for which enlighten-
ing, explicit expressions for the dynamics, power, and energy
consumption are worked out. In Sec. II we present our model, a
mechanical crane, and the main results. The model is described
by equations similar to the ones used for the transport of
neutral atoms or ions in microscopic traps. In Sec. III we
find the optimal protocol with respect to energy consumption,
and the paper ends with a discussion in which we surmise the
implications that we expect to be broadly applicable.

II. MODEL AND RESULTS

The model is an overhead crane, as depicted in Fig. 1,
composed of a trolley of mass M (CS) moving along a
horizontal bridge and a load of mass m (PS) pending by a
constant-length rope [20]. We neglect the stiffness and mass
of the rope and air resistance. The load can be regarded, in
the small-oscillation regime characteristic of these devices, as
a harmonic oscillator with a moving center. The generalized
coordinates are the position of the trolley x(t) and the swing
angle θ (t). The process we consider is a transport of the load
by moving the trolley from x = 0 to x = d in a time tf . If
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FIG. 1. Overhead crane composed of a load of mass m and a
trolley of mass M connected through a rope of constant length l. The
red solid arrows represent the active force Fa and the friction force
Fr acting on a rightward-moving trolley.

done adiabatically, the initial and final energies of the load
should be equal. Shortcuts for quantum systems subjected to
a moving harmonic (or otherwise) trap have been extensively
studied (see, e.g., [21–23]).

The external forces depicted in Fig. 1 are the actuating
force Fa (e.g., due to an engine or to a braking mechanism if it
opposes the direction of motion of the trolley) and the friction,
modeled here as Fr = −γ ẋ, γ � 0. The Lagrangian, without
friction, is L = L1 + L2,

L1 = m

2
[ẋ2 + l2θ̇2 + 2lẋθ̇ cos θ ] + mgl cos θ,

L2 = M

2
ẋ2 + Fax, (1)

where the dots represent time derivatives, l is the rope length,
and g is the gravitational acceleration. With friction, the
equations of motion are derived from the Euler-Lagrange
equations, with the equation on the trolley position modified
to include a friction term, d

dt
( ∂L

∂ẋ
) − ∂L

∂x
+ ∂F

∂ẋ
= 0, where

F = γ ẋ2/2 is Rayleigh’s dissipation function [24],

0 = lθ̈ + ẍ cos θ + g sin θ, (2)

Fa + Fr = Mẍ + m(ẍ + lθ̈ cos θ − lθ̇2 sin θ ). (3)

Equation (2) defines the kinematics of the load in terms of only
x(t); that is, it is formally independent of characteristics of the
trolley such as mass or friction for a given x(t). This allows
the formal treatment of the load as an open system subject
to an external time-dependent control, but x(t) depends on
these characteristics and on the angle and the pulling force via
Eq. (3). We may compute the frictionless Hamiltonian of the
total system through the Lagrangian L = L1 + L2 given by
Eq. (1), H = ẋpx + θ̇pθ − L, where px = ∂L/∂ẋ and pθ =
∂L/∂θ̇ . To account for friction, one of Hamilton’s equations
changes to [25,26] ṗx = − ∂H

∂x
− ∂F

∂ẋ
. The power produced by

the force Fa can be expressed as the rate of change of H0 =
H + Fax (the last term cancels the external interaction −Fax

in H, leaving the bare mechanical energy) plus the energy loss

rate due to friction,

P = dH0

dt
+ γ ẋ2 = Faẋ. (4)

The total derivative is computed along the trajectory making
use of Hamilton’s equations for H modified by the friction
term. Here a meaningful divide is established, with the relevant
connection to the outer world being a force Fa produced
by an external engine that, for positive power, consumes
fuel to increase the internal mechanical energy and fight
against friction. The total energy consumption could be defined
as the integral of the power [20], but this would ignore
the peculiarities of braking phases where Fa and ẋ have
different signs. We propose instead a more realistic expression
parameterized by −1 � η � 1, which depends on the braking
mechanism,

E =
∫ tf

0
dtP+ + η

∫ tf

0
dtP− = E+ + ηE−, (5)

where P± = �(±P)P are the positive and negative parts of
P for accelerating or braking phases of the trolley motion and
� is the Heaviside function. E± are the positive and negative
parts of the integral. While more sophisticated descriptions
are possible, with η depending on several variables, our aim
here is to set a crude model that captures the essence of the
energy trade during braking and provides limiting scenarios:
η = 1 corresponds to a mechanism able to fully accumulate
the braking energy E− and give it back on demand, i.e., perfect
regenerative breaking; η = −1 corresponds to using the engine
in both phases of the motion, whereas η = 0 is the limit in
which braking fully dissipates the energy loss of the system
with negligible energy consumption.

To find STAs we use the horizontal deviation of the load
from the trolley position, q(t) = l sin θ (t), and assume the
small-oscillation regime. Equation (2) becomes

q̈ + ω2q = −ẍ, (6)

where ω2 = g/l. The dynamics of the load (PS) is described
in a moving frame by a forced harmonic oscillator, which can
be derived from the Hamiltonian

H = p2

2m
+ 1

2
mω2q2 + mẍq, (7)

where p = mq̇ is the canonical momentum of q. Associated
with H is an invariant of motion [27]

I = 1

2m
(p − mα̇)2 + m

2
ω2(q − α)2, (8)

where α(t) is an auxiliary trajectory that must follow the
dynamics of a forced harmonic oscillator [27],

α̈ + ω2α = −ẍ. (9)

We choose α(t) functions that satisfy the boundary conditions
(BCs) α(tb) = α̇(tb) = α̈(tb) = 0 for tb = 0,tf . In this way
ẍ(tb) = 0 and, from Eqs. (7) and (8), H (0) = I (0) = E0 for
any arbitrary trajectory q(t) satisfying Eq. (6) with initial
energy E0 (for the auxiliary trajectory α,E0 = 0). As I is
invariant, I (tf ) = E0. Moreover, the final energy is H (tf ) =
I (tf ) = Ef . In summary, imposing the appropriate BCs on
α,Ef = E0 for any trajectory, as for an adiabatic, slow
process, but in a finite time.
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FIG. 2. The total power P to control x(t) for different M and
friction coefficients and load power P . Symbols represent P using
the small-oscillation approximation, Eq. (10), and lines represent
using the exact Eq. (4). (a) Power P of the load (symbols) and total
power P (lines) in the M = γ = 0 limit for tf = 7 s (green line and
circles) and tf = 8 s (black line and diamonds). (b) Total power P
with friction, γ = 15 kg/s, tf = 7 s, for different values of the trolley
mass: M = 0 kg (green solid line and circles), M = 10 kg (red solid
line and squares), and M = 20 kg (blue solid line and triangles).
m = 10 kg, l = 5 m, d = 10 m, q(0) = 0 m, q̇(0) = 0 m/s, and
g = 9.8 m/s2.

We interpolate α(t) with a polynomial, α(t) = ∑7
i=0 ait

i ,
where the first six coefficients (a0–a5) are derived from the six
BCs for α. The trajectory x(t) of the trolley is deduced from
Eq. (9), x(t) = − ∫ t

0 dt ′
∫ t ′

0 dt ′′[α̈(t ′′) + ω2α(t ′′)] and satisfies
ẍ(tb) = ẋ(0) = x(0) = 0. The coefficients a6 and a7 are set
by demanding ẋ(tf ) = 0 and x(tf ) = d. Due to the freedom
to design α, optimal-control theory could be used to find
trolley trajectories that optimize a chosen variable given some
physical constraints [21]. For small oscillations, the total power
in Eq. (4) takes the form

P = (Mẍ − mqω2 + γ ẋ)ẋ, (10)

plotted in Fig. 2 for q(t) = α(t). The terms in parentheses
represent the force to move a free trolley (with no load or
friction) minus the force that the load exerts on the trolley
(a “pull or drag” back-action whose sign depends on their
relative positions) minus the friction force (which always
gives a positive contribution to the power). Let us compare
this quantity to the power on the load, P = dE(t)

dt
, where E(t)

is the mechanical energy of the load, E(t) = m(ẋ + q̇)2/2 +
mω2q2/2. [For arbitrary t , this is different from H (t) since

FIG. 3. Effect of the trajectory q(t) on the total power P for
different trolley masses. q(0) = q̇(0) = 0 (dashed lines), q(0) =
0.2 m, and q̇(0) = 0.1 m/s (circles). (a) q(t) for different initial
conditions. (b) Corresponding power consumed for different m/M

ratios: M = 2 kg (blue long-dashed line and small circles) and
M = 100 kg (green short-dashed line and big circles). m = 1 kg,
l = 5 m, d = 10 m, tf = 7 s, γ = 0 kg/s, and g = 9.8 m/s2.

H is defined in a moving frame, but they coincide at the
boundary times.] Using Eq. (6), P = −mqω2ẋ, which is the
rate of energy change in the PS, but for a given x(t), it
ignores other features of the trolley. In contrast, P and E
generally depend [see Eq. (10)] on the characteristics of the CS
(M,γ ), on its dynamics (ẋ, ẍ), and on the deviation of the load
q(t). If M = γ = 0, PM=γ=0 = −mqω2ẋ = P (see Fig. 2). A
practical advantage of the limit M � m is that P can be made
essentially independent of q(t), i.e., of the initial conditions
{q(0),q̇(0)} (see Fig. 3), where the α(t) chosen implies that
ẍ = 0 at the boundary times and at the middle time. This
stabilization comes with a price, namely, higher-power peaks
due to a larger M .

The integral of P , without friction, γ = 0, is zero by
construction of the STAs (the final adiabatic energy of the load
must be equal to the initial one, and the trolley starts and ends at
rest), so the total energy consumption would be zero for η = 1.
The other parameters may be arbitrary, even tf , within small
oscillations. Friction and realistic braking mechanisms (η �= 1)
imply |ηE−| < E+ and therefore dependences of E > 0 on
γ,M , or tf . Note that E depends linearly on η with minimum
E+ + E− at η = 1 and maximum E+ − E− at η = −1. Since
the time integral of the frictionless part of Eq. (10) is zero, we
get, using the Euler-Lagrange equation, the lower bound

E � γ d2/tf , (11)
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FIG. 4. Contour surface of the energy consumption E as a
function of the CS variables M and γ for different values of the η

parameter: (a) η = 1 and (b) η = −1. m = 10 kg, l = 5 m, d = 10 m,
tf = 9 s, q(0) = 0 m, q̇(0) = 0 m/s, and g = 9.8 m/s2.

which is valid for all η. This agrees with Landauer’s expec-
tation for energy costs of processes not involving information
losses [28]. However, a different, tighter bound is found in
Sec. III from the optimal protocol.

Some trends are seen in Figs. 2 and 4: Friction enhances E+
and diminishes or even suppresses E−. A larger M generally
increases the power peaks and also hinders the suppression
of E− by friction; longer process times decrease power peaks
and, typically, E too, with the mentioned exception of an ideal
setting, γ = 0, η = 1, for which E = 0 for any time tf . The
contour plots of E for η = ±1 are quite different (see Fig. 4),
with E independent of M if η = 1 and nearly independent of
γ for weak friction if η = −1.

The feasibility of a given STA will depend not only on the
additive energy consumption E but also on the possibility to
deliver the instantaneous power peaks, which increase with
diminishing process times. STAs can be designed to lower the
peak in P , as done for P in [29]. The mean-value theorem pro-
vides bounds for the peak of P in different regimes dominated
by one of the terms in Eq. (10): P � Md2/t3

f for a regime
dominated by the trolley frictionless dynamics (M term),
whereas P � γ d2/t2

f for a friction-dominated one. Finally,
peak bounds for M = γ = 0 scale as md2/t3

f at long process
times and as 4md2/(ω2t5

f ) at short times. (The bounds at
short times are meaningful only for a pure harmonic oscillator
since the pendulum will abandon the small-oscillation regime,
and we have assumed

√
2E0/m/ω � d.) Minimal times for a

given maximal power can be read directly from the bounds.

III. PROTOCOL FOR MINIMAL ENERGY CONSUMPTION

We use the degeneracy of the STAs to design a proto-
col that minimizes energy consumption, combining inverse-
engineering STAs with optimal-control theory [21,30]. In this
section we assume that the harmonic model holds.

It is convenient to use the horizontal position of the load
in the laboratory frame, X ≡ q + x, which obeys the Newton
equation

Ẍ + ω2(X − x) = 0. (12)

Like we did for the difference between a general q and a
particular trajectory α in the previous section, we distinguish a
particular trajectory ξ that satisfies Eq. (12) and the boundary
conditions ξ (0) = 0,ξ (tf ) = d and ξ̇ (tb) = ξ̈ (tb) = 0, with
tb = 0,tf . To follow the usual conventions in optimal-control

theory, we use a new notation,

y1 = ξ, y2 = ξ̇ , u(t) = x, (13)

where y1,y2 are the components of a “state vector” y and the
trolley position u(t) is considered the (scalar) control function.
With this notation Eq. (12) for ξ becomes

ẏ1 = y2, (14)

ẏ2 = −ω2(y1 − u). (15)

The optimal-control problem is to find |u(t)| � δ for some
fixed bound δ, with u(0) = 0 and u(tf ) = d, such that the
system starts at {y1(0) = 0,y2(0) = 0}, ends up at {y1(tf ) =
d,y2(tf ) = 0}, and minimizes a cost function J .

In order to match the boundary conditions at the initial
and final times, the optimal control obtained may be comple-
mented by appropriate jumps. We use Pontryagin’s maximum
principle, which provides necessary conditions for optimality
[31]. Generally, to minimize the cost function

J (u) =
∫ tf

0
g(y(t),u)dt, (16)

the maximum principle states that for the dynamical system
ẏ = f(y(t),u), the coordinates of the extremal vector y(t) and
of the corresponding adjoint state k(t) formed by Lagrange
multipliers k1, k2 fulfill the Hamilton’s equations for a control
Hamiltonian Hc,

ẏ = ∂Hc

∂k
, (17)

k̇ = −∂Hc

∂y
, (18)

where Hc is defined as

Hc(k(t),y(t),u) = k0g(y(t),u) + kT · f(y(t),u). (19)

The superscript T used here denotes the transpose of a vector,
and k0 < 0 can be chosen for convenience since it amounts to
multiplying the cost function by a constant. The (augmented)
vector with components (k0,k1,k2) is nonzero and continuous.
Note that the Lagrange multiplier k0 is a constant; however, k1

and k2 are time dependent since the equations of motion (14)
and (15) must be satisfied at all times. For almost all 0 � t � tf
the function Hc(k(t),y(t),u) attains its maximum at u = u∗,
and Hc(k(t),y(t),u∗) = c, where c is constant. Assuming that
the integrals of two of the terms of the total power (10)
depending on M and m vanish (this is explicitly confirmed
later), we shall consider only the term γ ẋ2, so the cost
function is

JP =
∫ tf

0
ẋ2dt =

∫ tf

0
u̇2dt (20)

for an “unbounded problem” (i.e., without restrictions on the
possible values of the control) and an ideal (η = 1) type
of process with perfect regenerative braking. The control
Hamiltonian is

Hc(k1,k2,y1,y2,u) = k0u̇
2 + k1y2 − k2ω

2(y1 − u), (21)

which sets the costate equations

k̇1 = ω2k2, k̇2 = −k1. (22)
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FIG. 5. (a) Designed function ξ = α + x as a function of time.
Polynomial interpolation used in Sec. II (red dashed line) and optimal
solution to minimize the energy consumption (blue solid line).
(b) Trolley displacement x as a function of time. Parameter values:
tf = 8 s, l = 5 m, d = 10 m, g = 9.8 m/s2, and k0 = −1.

The solution to this set of equations is

k1(t) = c1 cos(ωt) + ωc2 sin(ωt),

k2(t) = c2 cos(ωt) − c1

ω
sin(ωt), (23)

where c1 and c2 are arbitrary constants. According to Pon-
tryagin’s maximum principle, the time-optimal control u(t)
maximizes the control Hamiltonian Hc. Using the Euler-
Lagrange equation, this is done when u satisfies k2ω

2 = 2k0ü.
Using Eq. (23), we find

u(t) = x(t) = c3 + tc4 − c2

2k0
cos(ωt) + c1

2k0ω
sin(ωt),

(24)

with c3 and c4 also being arbitrary constants. Finally, solving
the differential equation (12), the optimal ξ (t) is found. The
constants are fixed by imposing the boundary conditions on
ξ . In Fig. 5(a) we plot the optimal function ξ and the one
deduced from Sec. II with a polynomial α. The optimal
trolley displacement xop(t) [Fig. 5(b)] satisfies xop(0) = 0 and
xop(tf ) = d,

xop(t) = [d{−2 + ω2tf t + 2 cos(ωt) − 2 cos[ω(t − tf )]

+2c̄ + ωts̄}]/[ − 4 + t2
f ω2 + 4c̄ + ωtf s̄

]
, (25)

with c̄ = cos(ωtf ) and s̄ = sin(ωtf ). However, ẋop(0+) =
ẋop(t−f ) �= 0, ẍop(0+) = −ẍop(t−f ) �= 0, and instantaneous
jumps are required to satisfy the boundary conditions
ẋ(0−) = ẋ(t+f ) = ẍ(0−) = ẍ(t+f ) = 0, where the plus (minus)
represents an approach from the right (left). The trajectory
(25) must be limited to the domain 0 < t < tf and must be
complemented by xop = 0 for t < 0 and xop = d for t > tf .
ẋ is discontinuous at t = 0 jumping from zero to xop(0+).
Similarly, at tf , ẋ jumps from ẋ(t−f ) to zero. The acceleration
thus includes Dirac δ impulses [29,32],

ẍop =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t � 0−,

ẋop(0+)δ(t), 0− < t < 0+,

ẍop(t), 0+ � t � t−f ,

−ẋop(t−f )δ(t − tf ), t−f < t < t+f ,

0, t+f � t,

(26)

where ẋop and ẍop represent the first and second time
derivatives of Eq. (25). This implies that q,X, and Ẋ are
continuous at the edges. The protocol, including the jumps,
is indeed a shortcut, as the mechanical energy of the load,

E(t) = m(ẋ + q̇)2/2 + mω2q2/2, is equal at initial (0−) and
final (t+f ) times. This can be seen from the vanishing of the
integral

∫ t+f

0−
qẋop dt = 0, (27)

which does not get any contribution at the edges, E(0−) =
E(0+) = E(t−f ) = E(t+f ). Comparing explicitly load mechan-
ical energies immediately before and after the boundary times,
this is consistent with the following jumps in q̇:

q̇(0+) = q̇(0−) − ẋ(0+), (28)

q̇(t+f ) = q̇(t−f ) + ẋ(0−). (29)

The total mechanical energy,

Etot(t) = E(t) + 1
2Mẋ2, (30)

is also equal at initial and final times since the trolley begins
and ends at rest,

∫ t+f

0−
ẍopẋop dt = 0. (31)

In more detail, the integral vanishes in the interior domain,
from 0+ to t−f , since ẋop(0+) = ẋop(t−f ), and the jumps due

to initial and final δ impulses compensate,
∫ 0+

0− Mẍopẋopdt =
Mẋ2

op(0+)/2 and
∫ t+f
t−f

Mẍopẋopdt = −Mẋ2
op(t−f )/2. Moreover,

since the singularity of ẋop at the boundaries corresponds to a
finite jump,

∫ 0+

0−
ẋ2

opdt = 0,

∫ t+f

t−f

ẋ2
opdt = 0, (32)

the Dirac impulses do not contribute to the energy dissipated
by friction. Using expression (25) for the optimal trajectory,
we find the explicit expression for the minimal energy
consumption. This sets a bound for any other process,

E � γ d2

tf + 4[−1+cos(ωtf )]
ω[ωtf +sin(ωtf )]

, (33)

tighter than Eq. (11), E � γ d2/tf . At large times, compared
to the oscillation period, they coincide. Indeed, γ d2/tf
agrees with Landauer’s prediction on the energy dissipation
proportional to the “velocity of the process” when there is no
information loss [28]. However, whereas he emphasized that
the dissipation can be made arbitrarily small for sufficiently
long times, STAs are, by construction, intended as fast
processes where the dissipation due to friction does not vanish.
A second difference with Landauer’s discussion is that at short
times, the dependence in Eq. (33) changes to

E � 720d2

ω4t5
f

, (34)

with the caveat that this result indeed requires harmonic
oscillator dynamics.

Note that the discontinuities in the derivatives of xop(t)
imply infinite-power peaks, but the energy consumed by the
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engine controlling the motion of the trolley, which is equal to
the dissipated energy since the initial and final mechanical
energies are equal, is finite. The ability to approach this
ideal scenario of infinite-power peaks will depend on the
characteristics of the engine, but in any case, the bound (33)
sets the minimum energy required to produce a STA protocol
for a given transport time tf .

IV. DISCUSSION

We have worked out an explicit model to analyze the energy
consumption in shortcuts to adiabaticity. The model helps
to point out a number of fundamental aspects, such as the
importance of considering the control system together with
the primary system. In our model the power for the primary
system and the total power agree only in a rather unrealistic
scenario, namely, a control system with zero mass and no
friction. The small mass limit of the control system is not only
unrealistic but also undesirable, as it would make the total
power and the external actuating control force depend on the
specific dynamics (i.e., the initial boundary conditions) of the
primary system. This is against the spirit of useful shortcuts,
intended to take systems from initial to final Hamiltonian
configurations without final excitation, irrespective of the
initial conditions. Control systems for microscopic primary
systems will typically involve macroscopic masses, currents,
or classical fields, so the need to consider the control system
to examine energy costs will be prevalent.

The model also provides an ideal test bed to realize that
different types of braking affect the results dramatically. It
illustrates that the stability of a given control protocol with
respect to the primary system dynamics implies an energy
cost and higher-power peaks, and it underlines the importance
of both integrated and local-in-time quantities to determine the
feasibility of shortcuts.

The current analysis may be extended to further classical,
quantum, or hybrid systems. In particular a quantum load
represented by a particle in a harmonic trap could be driven by
exactly the same STA protocols devised here since I and H

have the same form as in our model. Close to the current model
is the transport of ions or neutral atoms for which different
experiments have been performed or are planned [33–35]. For
the transport of ultracold atoms in [33], the trap was formed
by optical tweezers, moved by displacing a lens mounted
on a motorized translation stage. This setting realizes the
stabilizing M > m limit, a typical scenario with microscopic
loads. Similarly, Zenesini et al. moved an optical lattice by
displacing the mirror mounted on piezoelectric actuators [36].
For ion transport in linear, multielectrode Paul traps, the cost
will involve assessing the energy consumed by the microchip
controlling the effective moving trap by means of time-varying
electrode potentials. The stabilization of the total power will
depend on the macroscopic charges in the electrodes to change
the voltages being much larger than the ion charge.

While the results so far have been for a harmonic potential,
deviations from the harmonic approximation could be taken
into account following [37]. We may also consider initial
angles of the load θi beyond the small-oscillation regime and
redesign the protocol for the trolley motion x(t) to minimize
the difference between initial and final mechanical energies

FIG. 6. Energy excitation of the load versus initial angle (with
load initially at rest) in an inversely engineered transport process
with d = 10 m, tf = 10 s, l = 5 m, and m = 10 kg, using additional
free parameters in the ansatz for α(t). The scaling factor is the
kinetic energy for a constant-velocity process, K0 = md2/(2t2

f ).
Black dashed line: process without additional parameters; red dotted
line: one parameter added to minimize excitation in θi = 20◦

(b8 = −3513.3); solid blue line: minimization for the excitation in
θi = 20◦ and θi = 45◦ using two free parameters (b8 = −13862 and
b9 = 2941.5).

of the load (�E = |Ef − E0|). This requires a higher-order
polynomial functions α(t) = ∑7+n

j=0 bj t
j to minimize the en-

ergy difference for one or more (n) initial angles θi with the
extra parameters. The number of free parameters n is set by the
number of initial angles used to minimize the excitation, and
the rest of the coefficients in α(t) are fixed by the boundary
conditions as in Sec. II. In Fig. 6 we plot the excitation energy
for processes with one and two free parameters and for the
process in Sec. II (n = 0). Figure 6 demonstrates clearly that
STAs beyond the small-oscillation regime are indeed possible.
This implies zero or negligible energy consumption under
ideal conditions (no friction, γ = 0, and regenerative braking,
η = 1).

For a general system, beyond transport systems, regardless
of the specific dynamics involved, friction, the combination of
positive and negative power domains, and the independence
of the external forces with respect to the primary system
dynamics will be ubiquitous in STA implementations and thus
essential elements to evaluate actual energy consumptions.
Whereas for slow processes the energy dissipated by friction
can be made negligible (a standard assumption for infinite-time
processes), even if the friction coefficient is not zero, STAs are,
by definition, fast processes, so to neglect energy dissipation
in STAs the stronger assumption of zero-friction coefficients is
necessary. Again, the fast nature of STA protocols implies large
positive and negative powers, which enhances the importance
of braking. Braking mechanisms determine the cost of the
energy integrated in negative power segments and if this
energy can indeed be reused. In typical scenarios this is not
the case, i.e., η �= 1, so negative power segments consume
energy (the extreme case is η = −1), or if they do not consume
energy (η = 0), they do not compensate for the consumption
in positive segments. For the realistic expectation that γ �= 0
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and η �= 1, shorter process times imply higher-power peaks
and an increased energy consumption. Note that even in
the highly idealized limit γ = 0, η = 1, with zero global
cost (with respect to final adiabatic energy minus initial
energy), shortening the time also implies higher-power peaks,
which become a limiting factor that cannot be ignored when
determining the feasibility of a shortcut.
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