
Title Fractal patterning of nanoparticles on polymer films and their
SERS capabilities

Authors Amarandei, George;O'Dwyer, Colm;Arshak, Arousian;Corcoran,
David

Publication date 2013-08-27

Original Citation Amarandei, G., O’Dwyer, C., Arshak, A. and Corcoran, D. (2013)
'Fractal Patterning of Nanoparticles on Polymer Films and Their
SERS Capabilities', ACS Applied Materials & Interfaces, 5(17), pp.
8655-8662. doi: 10.1021/am402285e

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://pubs.acs.org/doi/abs/10.1021/am402285e - 10.1021/
am402285e

Rights © 2013 American Chemical Society. This document is the
Accepted Manuscript version of a Published Work that appeared
in final form in ACS Applied Materials & Interfaces, copyright
© American Chemical Society after peer review and technical
editing by the publisher. To access the final edited and published
work see https://pubs.acs.org/doi/pdf/10.1021/am402285e

Download date 2024-04-25 16:08:05

Item downloaded
from

https://hdl.handle.net/10468/6140

https://hdl.handle.net/10468/6140


 1

Fractal Patterning of Nanoparticles on Polymer 

Films and their SERS Capabilities 

George Amarandei
*1
, Colm O’Dwyer

2,3,4
, Arousian Arshak 

1,4
 and David Corcoran

1
  

AUTHOR ADDRESS.  

1
Department of Physics and Energy, University of Limerick, Ireland 

2
Department of Chemistry, University College Cork, Ireland 

3
Tyndall National Institute, Lee Maltings, Cork, Ireland 

4
Materials and Surface Science Institute, University of Limerick, Ireland 

 

ABSTRACT. We demonstrate control, via electro-hydrodynamic (EHD) induced polymer 

instabilities and nanoparticle mobility, of hierarchical fractal arrangements of gold nanoparticles 

on patterned thin polymer films. The induced changes in the film curvature enhance fractal 

formation for high and not for low mobility nanoparticles. The high mobility nanoparticles 

cluster in circular fractal networks on the rims of a hexagonally ordered array of EHD-induced 

polymer peaks. These arrangements exhibit plasmonic properties for surface enhanced Raman 

scattering (SERS) spectroscopy. 
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Introduction 
The patterning of nanoparticles (NPs) on surfaces is a prerequisite for nanotechnological 

applications in photonics, sensing and biomedical science.
1–4

 Patterned polymer films containing 

dielectric NPs have been proven to be viable candidates for a new class of solar cell.
1
 Pioneering 

expertise has been developed in the functional application of nanoparticle polymer film 

composites
5-9

 with potential applications ranging from novel optical and magnetic materials to 

sensors and even antibacterial coatings.
8
 A large variety of reproducible fabrication methods are 

available for adding  nanoparticles to  thin-polymer film surfaces e.g. drop casting from 

solutions,
6
 spray coating,

7
 vapor,

8
 thermal or sputter deposition

5
. In particular, solvent 

evaporation arising from drop casting or spray coating can be used to pattern in a controllable 

manner the nanoparticles on a polymer film.
6,7

 These low cost fabrication methods use 

evaporation induced self-assembly for achieving gold nanoparticle ensembles and patterning of 

the thin film simultaneously.  

When arranged periodically and/or regularly, metallic NPs are useful for surface enhanced 

Raman scattering (SERS) that combines non-invasive and non-destructive molecular fingerprint 

specificity
10

 and single-molecule sensitivity.
11

 The coupling of surface plasmon polaritons on 

proximal Au NP surfaces enhances the electromagnetic (EM) field
12

 and creates ‘hot spots’ that 

allow significantly enhanced scattering cross-sections and very sensitive detection limits.
13–16

  

The ultra-sensitivity and potential label-free analysis associated with SERS has made it an 

attractive and powerful analytical technique to identify and quantify analytes in applications 

ranging from biosensing and explosive detection to art conservation.
15,16

  The main problem in 
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 3

creating “nanoplasmonic devices” is to impregnate/pattern rigid or flexible substrates over large 

areas with regular arrays of nanoparticles that can exhibit SERS effects.
4,15,17

 The patterning has 

to be done in a simple and repeatable fashion to ensure low manufacturing costs for the 

development of low cost plasmonic sensors for daily life applications. In the current state-of-the-

art methods patterning is obtained by means of expensive lithographic techniques (nano-transfer 

printing, shadow overlap of ion-beam lithography etc.) or by the development of sophisticated 

synthesis colloidal techniques.
14–20

 Both classes of methods can lead to the desired regular 

patterns but they are expensive and have low-throughput. A possible alternative is the use of 

soft-lithographic methods that employ thin polymer nanocomposite films to produce hierarchical 

patterns.
2–4

 By controlling the self-assembly and self-organization properties of matter, regular 

patterns can be created with limited input from the outside.  

At temperatures larger than the glass transition temperature Tg and in the absence of additional 

external fields, the stability of the films is controlled by the van der Waals forces between the 

air-polymer and polymer-substrate interfaces.
21–24

 For pristine films in a capacitor configuration 

(with applied electric fields of ~ 10 – 50 V/µm), at T > Tg, the electric pressure exerted on the 

dielectric liquid usually dominates and destabilizes the initially flat air-polymer interface. A 

process of self-organization that leads to pattern formation is triggered.
25–28

  

The high electric fields in a capacitor configuration generate interfacial pressures that are 

strong enough to destabilize the film by overcoming the stabilizing action of the surface 

tension.
25,28,29 

 The amplitude of the selected linear mode grows first exponentially, then 

nonlinear effects set in and the growth continues until the film maxima touch the other substrate 

of the capacitor. In this way an array of liquid columns that connect the two substrates is 

formed.
25

 The nonlinear growth process and potentially also the electrostatic repulsion between 
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 4

the columns may lead to their arrangement in lattices with different symmetries (e.g. square, 

hexagonal). Their geometry, however, does not always remain the same over the entire area, and 

a coexistence of different patterns is sometimes observed.
25,29–31

 The packing order of the 

columns is controlled by the film thickness, and an almost perfect hexagonal distribution is 

observed for a specific ratio of the film thickness with respect to the air gap in the capacitor.
25,29–

31
 The use of electric fields can create hierarchical 3D structures in a single step if multilayers of 

thin polymer films are employed.
4,29,32–36

  

The incorporation of nanoparticles with high dielectric constants as fillers in a thin polymer 

film leads to a systematic reduction in length scales of the induced pattern.
3
 Independently of the 

type of filler, no migration or altering of the structure generated by the electric field is 

observed.
2,3

  

Here, we show that electro-hydrodynamic (EHD) induced instabilities form an array of 

polymer patterns with unique Au NP fractal distributions. The polymer structures decorated by 

NP fractal networks exhibit significant SERS for probe organic molecules. The method has the 

advantage of patterning the polymer and Au NPs simultaneously. This establishes the possibility 

of creating and controlling Au NP polymer hierarchical structures for use in nanotechnological 

applications. 

Experimental 
 

Sample preparation. Si wafers (native oxide, hSiOx ≃ 2.0 nm) with a resistivity of 2 – 3 Ω cm 

were cleaned in a jet of CO2 ice crystals, and were used as substrates. For good electrical contact, 

5 nm Cr and 40 nm Au films were deposited on the backside of the wafers. Thin poly (methyl - 

methacrylate) [PMMA10, Mw = 10 kg/mol, Rg = 2.76 nm, Mw/Mn = 1.05, Sigma-Aldrich, UK] 
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 5

and polystyrene [PS10, Mw = 10 kg/mol, Rg = 2.59 nm, Mw/Mn = 1.05, Sigma-Aldrich, UK] films 

were obtained by spin coating onto the substrates using 2 – 3% (w/w) polymer solution in 

toluene.
29

 

Gold layers with different nominal thicknesses (as specified for each experiment in the figure 

captions) were sputtered at a low rate (0.09 nm s
−1

) onto the polymer thin films creating a 

Si/SiOx/polymer/AuNP/air configuration.
5,14,23

 The deposition led to initial uniformly random 

distributed NPs on the polymer surface in the central region of the samples allowing a direct 

comparison between Si/SiOx/polymer/air and Si/SiOx/polymer/AuNP/air regions (see Refs. [23, 

24] and schematics drawn in the figures). The films were used as cast and deposited, and no 

annealing procedure was performed prior to heating. All experiments were made in a convection 

oven at 170 ºC. The polymer-air and polymer–air–polymer capacitor configurations (as shown in 

the different schematic diagrams) were obtained using SiO2 microspheres of 1 µm diameter that 

act as spacers.
29

 A voltage U = 50 V was applied to perturb the air–polymer interfaces. During 

the experiments the current through the capacitor was monitored. After an initial transient period 

during heating, a small constant current was observed (1 – 60 mA). If significant large changes 

in the current or short-circuits occurred, the sample was disregarded.
29

 The samples were 

removed from the oven and quenched at different time intervals in the presence of the electric 

field. At the end of the experiment the samples were mechanically separated. For the polymer-

air-polymer configuration the PS was washed from the PMMA substrate using cyclohexane. The 

SiO2 spheres were removed by using PDMS stamps. 

Electron Microscopy. The polymer films and the Au NP distributions were imaged by electron 

microscopy using a Hitachi S4800 FESEM operating at 4 kV and a FEI Orion Focused Ion Beam 

at 5 kV. The mean radius of the particles Rp and the edge-to-edge distance dee between the 

Page 5 of 27

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 6

nearest neighbours were measured using SPIP and calculated as described in detail 

elsewhere.
23,24

 The initial deposition of a nominal 1 nm thickness of Au led to NPs with Rp ≈ 

1.74 nm and dee ≈ 1.76 nm respectively (see also Refs. [23, 24]). For a nominal 2 nm Au 

deposition, presented in Figure 5, the particles were characterized by Rp = 3.48 nm and dee = 1.79 

nm. The fractal dimension D was calculated using the box counting method available in FIJI (see 

Ref. [24] for details). 

Surface Enhanced Raman Specroscopy. SERS measurements were carried out using a Horiba 

Jobin-Yvon T64000 Triple Raman spectrometer attached to an Olympus confocal optical 

microscope. Excitation was provided by a He-Ne laser with a wavelength λ = 633 nm. The 

spectra were typically acquired with a 5 s exposure time and a laser power of 5 mW (at 633 nm) 

to avoid organic dye burning. A 50× objective with a numerical aperture N.A. of 0.75 was used 

for all Raman scattering measurements. This led to a laser spot size Aspot = 1.22 λ/N.A. ≈ 1.1 

µm
2
. Methyl Violet (MV) 10B was used as the probe molecule. The Methyl Violet 10B reagents 

were dissolved into pure deionized water (18.3 MΩ cm) and ethanol. The patterned sample was 

immersed for 1 h in the dye solution at a concentration of 1.0 × 10
-6

 mol dm
-3

 for sufficient 

molecule adsorption before SERS measurements, and subsequently rinsed with deionized water. 

Results 
Thin polymer films at temperatures larger than their glass transition temperature become liquid 

and the Au NPs present at the polymer-air interface become free to diffuse and aggregate.
23,24

 To 

distinguish between the effect of heating with and without the electric field, only a part of the 

thin PMMA-NP covered system is placed in the capacitor configuration as indicated in the 

schematic diagram in Figure 1. This allows a direct comparison of the instabilities developed by 

Page 6 of 27

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 7

the NP coverage in Region I (Figure 1.a) and by the electric field in Region II (Figure 1.b-d) 

and the influence these instabilities have on the Au NP distribution. 

In Region I the initial stages of the spinodal instability (Figure 1.a) are seen. A previously 

reported fractal network (D = 1.68 ± 0.09) of Au NPs (seen at t > 45 min) that forms as a result 

of a cluster-cluster limited aggregation process
24

 is not observed here. Only its incipient stages 

i.e. the formation of quasi-linear NP clusters, which are the main constituents of the eventual NP 

fractal network, are observed as the experimental time is short (t1 ≈ 21 min). The Au clusters 

formed during aggregation are uniformly distributed on the peaks and within the troughs of the 

polymer instability, showing that the development of the spinodal instability does not influence 

NP movement. 

The transition between Region I and Region II is seen in Figure 1.b. In Region II the typical 

EHD pattern develops by the end of the experiment as observed by the shadow features in the 

SEM observations (Figure 1.b-d). The top electrode of the capacitor is placed at a small angle 

(exaggerated in the schematic diagram for illustration purposes) and this allows the observation 

of the EHD instability development at different times without measurable change to the 

instability wavelength.
4,29

 In Region IIa where the electric field is larger, the instability develops 

faster and it is observed in its final development stages after touching the upper electrode 

(Figure 1.b, right), at an intermediate developed stage but not touching the electrode (Figure 

1.c, left), and in its initial stages in Region IIb (Figure 1.c, right). The black arrows in Figure 1.c 

reveal the initial stages of the EHD development and associated Au NP distribution. When the 

amplitude of the instability is small, the particle distribution on the peaks is almost the same as in 

the instability troughs. However, once the instability grows in amplitude the particle density on 

the peaks starts to increase and the quasi-linear clusters begin forming fractal networks (white 
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 8

arrows in Figure 1.c). Finally, prior to contact, the fractal network is fully formed and covers the 

entire peak of the EHD instability as seen to the left of Figure 1.c and magnified in Figure 1.d 

and its inset. The network is formed by Au NPs with a mean radius Rp ≈ 5.91 nm and a mean 

edge-to-edge distance dee ≈ 4.51 nm and it has a fractal dimension of D = 1.69 ± 0.11. Fractal 

networks of Au NPs are known to arise when the deposited films are near the percolation 

threshold.
9 

 The values of fractal dimension compare well with those seen after 135 min of 

heating in a sample where no electric field was present (see Ref. [24]). Here, however, these 

values are obtained after shorter time (t1 ≈ 21 min). 

Thus the EHD induced polymer instability with a characteristic wavelength can be patterned 

with high and low density distributions of Au NPs and it seems to enhance the cluster-cluster 

aggregation process that leads to fractal formation. 

The experiment is repeated using thin polystyrene films covered by Au NPs where the NP 

mobility is smaller.
23,24,37,38

 In the absence of any other external fields such films also develop a 

spinodal instability,
23

 but the time to reach full development is much longer than for PMMA. In 

PMMA films a spinodal instability can develop in the first ~ 45 min, reaching its maximum 

amplitude by ~ 315 min;
24

 in PS films a spinodal instability requires over 24 hours to reach its 

maximum amplitude.
23

 Therefore, the electric field is applied over the entire surface area 

covered by Au NPs, as schematically described in Figure 2. As in the PMMA study (Figure 1), 

a small angle (exaggerated in the schematics) exists between the capacitor plates allowing 

observation of different evolution stages of the EHD instability. 

In Region I, where no Au NPs or electric field are present (Figure 2.a), the thin polymer film 

exhibits nucleation dewetting and beads up in a Voronoi pattern as expected.
23

 In Region IIa the 

instability is fully formed and its peaks already contact the upper electrode at a few locations (the 
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 9

black points indicated by white arrows in Figure 2.b). In Region IIb, the early stage of the 

instability is seen (Figure 2.c). Independently of the development stage of the EHD instability or 

their position (i.e. on the peaks or within the troughs) the Au NPs maintain their initial uniform 

distribution as seen in Figure 2.d. In this regard, as noted earlier Au NP aggregation occurs at a 

slower rate on PS than on PMMA, taking place either through Ostwald ripening or a slow 

coalescence process.
23,39

  

In a double layer PS/air/AuNP/PMMA configuration (Figure 3), a single mode instability is 

predicted
29

 and indeed is experimentally seen to develop in both layers. Due to the higher bulk 

viscosity of the PMMA film combined with the presence of Au NPs on its surface, its mobility is 

significantly lower than the mobility of the PS film, and consequently the instability grows faster 

in the more mobile PS film.
29

 Indeed, the topography of the PS-PMMA double layer is consistent 

with the type II topography previously seen for double layer systems where the mobility of one 

film far exceeds that of the other. The more mobile film exhibits a labyrinthine pattern while the 

less mobile film exhibits features that appear to be extruded from a flat background.
29

 

As PS and PMMA are used, columns with a PS core and PMMA shell are formed
29,32,33

 when 

the corrugated peaks of the two polymer films meet (Figure 3.a.). In this case the densification 

of the Au NPs occurs on and/or around the rims created by the PMMA shells (Figure 3.b,c). 

Where PS peaks contact the AuNP/PMMA layer, the Au NP aggregation appears to freeze-in 

(Figure 3.b,c) as the Au NPs adsorb to PS.
23,40

 As has been shown above, the NP distribution on 

PS is effectively retarded from significant changes. The result is the generation of a rich 

hierarchical Au NP – polymer structure (Figure 3.b) consisting of a polymer film plane of 

uniform Au NP cluster distribution, on which are superimposed polymer rims with high density 

Au NPs and inner troughs of Au NP clusters (Figure 3.a).  
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 10

Different stages of evolution of the Au NPs on polymer patterns are observed due to the slight 

tilt in the electrode spacing mentioned earlier (see also Ref. [29]). In the more developed 

situation presented in Figure 3, the fractal network is located on the outside base of the rim. At 

an earlier stage of development (Figure 4.a), the Au NP fractal network (D = 1.73 ± 0.09) is 

distributed along the entire contour and on the top of the rim (Figure 4.b). The particles have a 

mean Rp ≈ 6.86 nm and dee ≈ 4.8 nm. The particles outside of the rim (see also Figure S.1 in the 

Supporting. Information.) form clusters that are not connected to the NP network. The particles 

within such clusters are characterized by an Rp ≈ 7.26 nm and dee ≈ 5.2 nm. As seen in Figure 1, 

the cluster-cluster aggregation process is enhanced by the presence of a larger curvature (in this 

case on the rim). 

A similar ridge with Au NP densification and an inner trough with uniformly distributed NPs 

can also be produced by placing a SiO2 sphere on a heated AuNP/PMMA configuration, as 

depicted in Figure 5. In this instance, the Au NPs outside the rim form the typical fractal 

network of Au NP clusters previously observed.
24

 The fractal is also present on the rim, but 

underneath the spheres, i.e. where the mobility of the NPs is severely impaired, the distribution 

remains uniformly random. These results together with the observations from polymer-air and 

the polymer-air-polymer configurations above suggest that the local increase in the curvature of 

the polymer extrusions enhances the Au NP organization process to form fractal NP 

arrangements, while the factors that reduce Au NP mobility act to retard this process. 

Site specific SERS measurements are carried out on the early stage PMMA structures from the 

polymer-air-polymer experiment shown in Figures 4.a and 4.b. The small quasi-linear Au NP 

aggregates located inside of the rim (position 2), and the large fractal network on the rim 

(position 3) are potentially suitable arrangements for SERS
13,18,41–43

 of organic moieties such as 
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 11

MV 10B used here. In principle, an organic molecule with a molecular footprint that covers 

proximal NPs can have their vibrational characteristics enhanced. The higher particle density in 

these arrangements allows for the presence of the so called hot spots that are defined by electric 

field enhancement between closely spaced Au NPs. The hot spots are necessary for SERS given 

that Raman scattering cross sections for MV 10B are extremely small (~ 3.6 × 10
-26

 cm
2 

sr
-1

).
13,44

 

The coverage, arrangement of the Au NP structures, the planar surface distribution of Au NPs 

(Figure 4.b) and the curvature of the polymer  are unaffected by the liquid-based dye during 

functionalization as shown in Figure S.1. The quasi-linear Au NP clusters and the NP networks 

remain spatially pinned in their original positions. 

Raman scattering measurements of the MV 10B are acquired from the fractal NP network 

covering the rim (position 3) and the central region inside the structure (position 2) and 

compared to those from the planar area between the polymer peaks (position 1) in Figure 4.c. 

The spectra reveal that the fractal networks exhibit significant enhancement of the scattering 

cross-section as the specific Raman-shifts undergo intensity increases and markedly improved 

resolution (Figure 4.c, spectrum 3). The NP arrangement in the central region also exhibits an 

enhancement (Figure 4.c, spectrum 2) but the effect is generally weaker. The primary signatures 

of the MV i.e. the main bands enhanced, are at ~ 1175 (in plane aromatic C–H bending), ~ 1373 

(phenyl C–N stretching and in-plane C–H bending), ~ 1584 and 1617 cm
-1

 (out–of–phase in 

plane stretching of the carbon ring atoms).
45

 The ratios of the integrated intensities (i.e. the area 

under each spectrum) are I2/I1 ≈ 3 and I3/I1 ≈ 10
2
.  

 The enhancement factor, EF, for each region can be calculated
44,46

 using: 

tNI

I
EF

CV

gle

RS

SERS

⋅

⋅=
1

sin
        (1) 
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For MV dye the contribution of a single dye molecule without surface enhancement to the 

Raman signal rate is 
17sin

103.6
−−

×= sI
gle

RS .
46

 In the present study a monolayer of dye molecules 

is assumed to be absorbed onto the substrate (see Supporting Information). Considering that a 

MV dye molecule occupies an area of 3.51 nm
2
 per molecule

46
 implies ~ 3.12 × 10

5
 molecules 

are adsorbed in the laser spot area of ~ 1.1 µm
2
. Using the ISERS for the 1617 cm

-1
 peak and 

considering a uniform monomolecular coverage of the dye the enhancement factors for the 

regions are found to be EF1 ≈ 1, EF2 ≈ 3 and EF3 ≈ 2 × 10
2
. The enhancement factor calculated 

for EF3 is an underestimate as Aspot = 1.1 µm
2 

is larger than the rim area Arim ≈ 0.36
 
µm

2
 and so 

contains regions of lower NP density and SERS enhancement (see Figure S.1). Accounting for 

this and considering uniform coverage, EF3 can be written as the linear contribution of the two 

regions:
46

 

13 EF
A

AA
EF

A

A
EF

spot

rimspot

rim

spot

rim
×

−
+×=      (2) 

Thus, the enhancement factor from the rim alone is estimated to be EFrim ≈ 6 × 10
2
. As the 

largest enhancement occurs from the fractal network of NPs on the rim (position 3), this 

confirms that the rim has the highest density of NPs with proximities that allow electromagnetic 

field enhancement causing plasmonic coupling and therefore SERS. Conversely those regions 

with lower enhancement (regions 2 and 1) correspond, in order of decreasing value, to lower NP 

density. 

Discussion 
In this study the Au NPs are sputtered onto the surface of the polymer film. Once the polymer 

films become liquid the particles are free to diffuse and aggregate. The mobility of the NPs on 

the polymer film influences their aggregation process. Thus, for lower mobility the NP diffusion 
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and aggregation occurs by Ostwald ripening and/or slow coalescence.
23,39

 These processes do not 

seem to be affected by the growth of an electric field induced instability in the polymer film (see 

Figure 2).  

When the NPs are highly mobile, the aggregation process proceeds by initially forming small 

linear clusters that continue to aggregate and eventually form a fractal network through a 

diffusion limited process (see Ref. [24] and the references therein). The presence of an electric 

field that induces faster changes in polymer surface corrugation seems to enhance this process. 

This leads to changes in particle density and spatial distribution resulting in fractal clusters 

(network) on the peaks of the corrugation. The localised fractal formation seems to be associated 

with an increase in the localised polymer curvature. Thus, in Figure 1 and 3 we note that the 

fractal is formed either on the peak of the EHD instability (clusters) or on the rims (circular 

network), while in the flat regions between structures the Au NPs remain organized in quasi-

linear clusters. When compared with previous studies presented in Ref. [24] the values 

characterizing the particles arrangements (i.e. Rp, dee and D) seen on the curved features after t ≈ 

21 or 28 min are similar to those obtained for larger heating times (i.e. t ≥ 135 min). 

The SERS measurements directly confirm the visual changes to the NP density observed in the 

polymer-air-polymer experiment. The scattering data are consistent with the highest particle 

density being on the rims, and a greater particle density being inside these structures (position 2) 

compared to the flat regions (position 1).   

In the polymer-air-polymer system, the EHD starts to develop in both films at the same time. 

As the PS has a smaller viscosity than PMMA, the instability growth is accelerated for PS.
29

 

Therefore, the instability in PMMA is less developed and its amplitude and curvature is small. 

The contact with the mirrored features from PS freeze-in the linear Au NPs clusters at an early 
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stage i.e. well before the fractal is formed (compare Figure 3.c with Figure 1.d). Once the 

contact between the mirrored features is formed the PMMA tends to form the shell of the 

columnar structures (see schematic in Figure 3). The aggregation process continues on the rims 

where the Au NP movement is not restricted (compare Figure 4.b with Figure 3). The presence 

of SiO2 sphere also impairs the movement of the NPs from the outset in Figure 5, the NP radius 

as deposited (Rp = 3.48 nm) being above the critical radius (3.3 nm) that allows for Au clusters to 

undergo fusion processes on Si substrates.
9
 Therefore, NPs maintain their initial randomly 

uniform distribution (Figure 5.a). Essentially, the contact with PS instabilities or SiO2 

microspheres can retard Au NP aggregation on PMMA, and thus control it. 

The NP mobility is affected mainly by viscosity of the polymer and the adhesion work 

between the Au NP and the film, while the NP cluster mobility is affected by possible bridges 

created by the polymer chains between the NPs.
24,47

 In the present case, the enhancement in NP 

and/or cluster mobility in PMMA can be attributed only to a decrease in viscosity as the other 

two factors that act to reduce the mobility have similar values across the samples. Moreover, the 

reduced viscosity appears to depend on changes in the local curvature of the polymer film as the 

aggregation is enhanced in these regions.  

Such changes are reported in the literature
27,29,48,49

 but are related to changes in the mobility of 

pristine polymer films. For imprinted features with large aspect ratio and large curvature
48

 such 

enhancement in polymer mobility is seen only when the feature height is above a certain 

threshold. A similar threshold is required for the enhancement in the growth rates of the 

instabilities formed in a polymer-air-polymer system.
29

 In the present case, however, the 

enhancement of the NP aggregation is seen from the initial stages of the EHD instability where 

extreme curvatures are not present and the system can be theoretically treated using the long 
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wave approximation.
29

 The presence of a surface layer with a lower viscosity is also reported for 

high molecular weight polymers, where entanglement of the polymer chains occurs
27

 or when the 

film thickness is reduced.
29,49

 If such an effect is present, it should affect the NP mobility 

everywhere and would not be limited to the highly curved corrugations of the polymer film as 

observed here.  

The reduction in the film viscosity is also reported to be caused by chain alignment under a 

thermal field.
50

 Such alignments increase with decreasing molecular weight and decreasing film 

thickness and might be able to induce changes in film mobility in very thin films.
29,51

 Here, 

however, the system is isothermal. Therefore, if present, any alignment that could cause a 

reduction in viscosity must increase with the curvature. This viscosity decrease could explain the 

observed enhancement of the NP mobility as the structures are formed. 

Finally, it should be mentioned that the method reported here has the significant advantage of 

patterning the polymer and Au NPs simultaneously. Classical approaches in thin polymer film 

patterning include the use of top-down photolithography,
52

 nanoimprinting
53,54

 or e-beam 

writing,
4
 but these techniques are limited by their expensive multi-step processes, the 

development of lithographic, or imprinting masks or by the beam drift and/or its stability.
4
 

Alternative approaches to creating the required patterns are to incorporate NPs as fillers in thin 

polymer films, and use either spinodal demixing,
1
 induce spinodal

23,24
 or EHD

2,3
 instabilities to 

corrugate the air interface of the thin nanocomposite film.  

SERS is observed here in the fractal networks of Au NPs formed on the rims of PMMA in a 

polymer-air-polymer electric field configuration. The enhancement factors of the test molecule 

spectral components are comparable to those recently reported in the literature for a silicon 

substrate with evaporated carbon and sputtered gold layers
55

 or for clusters in solutions with low 
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dye concentration.
19

 Thus, when low dye concentration (1× 10
-6

 M) are used in solutions with 

randomly distributed clusters formed by particles with small radii (7.5 – 15 nm) enhancement 

factors of EF ~ 10
1
 – 10

2
 are reported.

19
 Here, however, the use of an electric field induced 

instability allows for patterning of the thin polymer film 
25,32

 and, therefore, for spatial 

positioning of the regions with higher Au NP density. Thus, polymer patterns and the high NP 

density regions can be controlled and anticipated from the outset. This demonstrates that the 

simple patterning of the polymer by an electric field induced instability associated with 

densification of NPs around these features can be used as a soft-lithographic technique to create 

patterned substrates suitable for SERS measurements. 

Conclusions 
The present study shows that by inducing an electric field instability in a thin polymer film 

covered by Au nanoparticles it is possible to form a panoply of patterns at different length scales 

and spatial positions. It is observed that the rapid growth of a single instability mode from the 

capillary spectrum due to the applied electric field can have a significant influence on the 

nanoparticle aggregation process only if the NPs have large mobility on the polymer surface. 

When they have low mobility, the NPs maintain their initial distribution and the electric field 

leads to an instability in the polymer film. Higher mobility nanoparticles form fractal clusters or 

networks spatially organized on the regular pattern in the polymer film induced by the electric 

field instabilities. The potential for such systems in surface enhanced Raman spectroscopy is 

demonstrated by exploiting the beneficial and controllable arrangement of the Au nanoparticles 

at the same time as the polymer patterning. 
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Figure 1. Schematic diagram showing the development of instabilities in a region without and 

with the electric field. (a) Optical micrograph (scale bar (SB) = 50 µm) of the spinodal instability 

(as shown by the FFT) developed due to Au coverage in the region without electric field on a 

film of hPMMA10 = 29 nm, hAu = 1 nm after t1 = 21 min. The SEM inset (SB = 1 µm) shows the Au 

distribution. (b) SEM image showing the transition from Region I to Region IIa (SB = 1 µm). 

The SEM inset (SB = 1 µm) describes the Au distribution in and around a peak of the EHD 

instability that was already in contact with the top electrode. (c) SEM image (SB = 1 µm) 

showing the different stages in EHD development at the transition between Region IIa and 

Region IIb. The black arrows indicate EHD peaks in the early stages (small amplitude) where the 

Au particles distribution is closed to that for the flat film. The white arrows indicate the 

beginning of the fractal cluster formation. (d) SEM image (SB = 1 µm) of a fully formed EHD 

instability peak in Region II showing the changes in particle density. The inset (SB = 500 nm) 

shows that as the density become larger on the peak and the particles already form a fractal 

cluster.  
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Figure 2. Schematic diagram showing the development of the instability in a region without and 

with the electric field applied. SEM images describing (a) the nucleation dewetting in the region 

without Au and electric field (SB = 50 µm); (b) the EHD instability in Region IIa (SB = 50 µm). 

The white arrows indicate some of the contact points with the upper electrode; (c) the early 

stages of the EHD instability as seen in Region IIb (SB = 50 µm) and (d) the uniform distribution 

that is maintained as deposited in Region II (SB = 50 nm). The polymer film thickness hPS10 = 25 

nm and the nominal thickness of the Au layer hAu = 1 nm. The experimental time is t1 = 90 min.  
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Figure 3. Schematic diagram showing the polymer surface and NP distribution in a 

polymer/AuNP – air – polymer system. (a) The PMMA surface after PS washing from a PS100-

air-PMMA100 as described in Ref. [16]; (b) SEM image (SB = 10 µm) showing the PMMA10 

surface and the Au distribution from a PMMA10/AuNP – air – PS10 system. The flat film 

between the rings indicates the presence of type II behaviour.
16

 (c) SEM image (SB = 1 µm) 

showing a magnified view of the rings and emphasizing the presence of the fractal cluster on the 

rim. The linear clusters have the same distribution inside and outside of the rims. The 

experimental heating time is t1 = 28 min.  
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Figure 4. (a) Secondary electron FIB images showing early contact structures in PMMA (SB = 

10 µm) after the MV solution is applied; (b) SEM magnification of a PMMA feature (SB = 10 

µm) prior to MV adsorption; (c) SERS spectra obtained at the positions identified in (b).  
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Figure 5. Schematic diagram showing the Au distribution under a spacer before and after 

heating. (a) SEM image (SB = 200 nm) revealing the Au NP distribution prior to heating. SEM 

images describing the Au distribution after heating before (b) and after (c) spacer removal. 

(Scale bars represent 1 µm and 200 nm, respectively.) It can be seen that under the spacer (c) the 

Au NPs retain their initial uniform distribution as in (a). Film polymer thickness is hPMMA10 = 26 

nm, nominal thickness of the deposit Au layer was hAu = 2 nm, heating time t1 = 17 min. 
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TOC 

Electro-hydrodynamic (EHD) instabilities induced in thin polymer films covered with gold 

nanoparticles leads to a panoply of patterns. The resulting polymer features are decorated with 

Au nanoparticles that remain uniformly distributed or form fractal arrangements as dictated by 

nanoparticle mobility. Fractal patterned surfaces have potential as functional substrates for 

surface enhanced Raman spectroscopy. 
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