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We theoretically show how two impurity defects in a crystalline structure can be entangled through coupling
with the crystal. We demonstrate this with a harmonic chain of trapped ions in which two ions of a different
species are embedded. Entanglement is found for sufficiently cold chains and for a certain class of initial,
separable states of the defects. It results from the interplay between localized modes which involve the defects
and the interposed ions, it is independent of the chain size, and it decays slowly with the distance between the
impurities. These dynamics can be observed in systems exhibiting spatial order; viable realizations are optical
lattices, optomechanical systems, or cavity arrays in circuit QED.
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Entanglement is a quantum mechanical property with no
classical counterpart. One of its peculiar features are the
correlations between the measurement outcomes for two
entangled objects, even when they are at large distances [1].
This makes entanglement a precious resource for quantum
communication protocols and quantum metrology [2]. On the
other hand, its quantum mechanical nature makes it fragile
against external perturbations [3]. The issue of identifying
open-system dynamics in which entanglement is robust re-
cently motivated a series of studies [4,5], which showed
that a bath can mediate entanglement between two objects
interacting with it [6–11]. Studies which analyzed these
dynamics in abstract terms assumed that the physical objects
coupling with the bath are characterized by the same coupling
strength to the bath degrees of freedom [8–11]. In realistic
models, this corresponds to assuming that both objects couple
to the same particle of the bath. Further works addressed the
question of how bath-mediated entanglement scales with the
distance between the objects [12–16]. In a system composed
by a linear chain of oscillators it was shown that entanglement
between any pair of oscillators decays quickly on a length scale
of the order of the interparticle distance [12,13]. In Ref. [14] the
authors argued on the basis of a phenomenological Markovian
model that the bath cutoff wavelength, which is the inverse of
the cutoff frequency, is the characteristic length over which
bath-mediated entanglement vanishes. In a linear chain of
oscillators this coincides with the interparticle distance.

In Ref. [15], however, it was shown that Markovian models
cannot capture all dynamical processes which can lead to
entanglement between two objects. Moreover, in Ref. [16]
a microscopic model was proposed in which two defect
oscillators embedded in the chain become entangled via the
coupling with the chain instead of thermalizing at the chain’s
temperature [17]. This is possible since the impurities break
the discrete translational symmetry of the lattice, giving rise
to a set of normal modes involving the defects and the ions
between them. Such modes are essential for the generation of
entanglement at steady state. We remark that a linear chain of
oscillators in a thermal state and coupled to a single impurity
is a realization of Rubin’s model; it leads to thermalization

of the impurity and is an example of Brownian motion in a
solid-state environment [17]. The addition of a second impurity
introduces a new symmetry modifying this behavior. In the
context of recent studies on non-Markovianity [15,18–21] one
can say that correlations between the two defects are stored
and mediated by a bath pseudo-mode, which is composed by
oscillations of the bath particles spatially interposed between
the two defects [22]

The findings of Ref. [16] imply that two impurity defects
can be entangled by the surrounding bulk when the latter
exhibits some sort of spatial order. In addition, entanglement
could be found between two defects at any distance, inde-
pendent of the size of the bulk. The latter statement thus
goes beyond existing studies, which analyze entanglement
generation between two systems at the edges of a chain [23,24].
It further addresses the question of whether it is possible to
generate entanglement between two macroscopically distant
objects through interaction with a large common bulk. Un-
derstanding this issue is relevant at the fundamental level, for
example, in the context of recent studies of thermalization in
quantum systems [25,26]. Moreover, it is important for studies
on biological systems [21] and for implementing protocols
based on dissipative dynamics in quantum networks [27–29],
quantum computers [30,31], and metrology [32,33].

In this Rapid Communication we analyze the dependence of
bath-mediated entanglement on the distance by considering the
specific physical system of two ions in a linear Paul trap, which
are embedded in a linear chain of ions of different species, as
shown in Fig. 1 . Let N and Q be the number of ions and their
charge. The ions are aligned along the z axis inside a linear Paul
trap with position (canonically conjugated momentum) rj =
(xj ,yj ,zj ) [pj = (pjx,pjy,pjz)], where j = 1, . . . ,N labels
the ions. The impurity defects are two ions of different species
far away from the chain edges, whose mass M is larger than
the mass m of the other ions composing the chain. The trap
potential for the ion j reads Vtrap(rj) = [U‖z2

j + U⊥,j (x2
j +

y2
j )]/2, where U‖ is determined by the static quadrupole

potential and U⊥,j = (U0/mj − U‖)/2 by the radio-frequency
potential creating the transverse confinement [34]. We note the
dependence of the transverse potential strength on the mass
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FIG. 1. (Color online) A setup where the dynamics we predict
could be tested is an ion chain in a Paul trap, which embeds two ions
of larger mass. A standing-wave laser illuminates the defect ions and
couples their transverse and axial displacements via the mechanical
effects of light. For a certain class of initial separable states, the
defect’s transverse motion becomes entangled by the coupling with
the axial phonons of the chain.

of the ion: This implies that the defect’s transverse motion
is a localized oscillation in the chain for sufficiently large
ratios M/m. The ions are at a sufficiently low temperature
T such that they perform harmonic vibrations about their
respective equilibrium positions r (0)

j = (0,0,z
(0)
j ), at which the

trap force and the Coulomb repulsion mutually balance. In this
limit the dynamics is governed by the quadratic Hamiltonian
H0 = H‖ + H

(x)
⊥ + H

(y)
⊥ , with

H‖ =
N∑

j=1

⎛
⎝ p2

j,z

2mj

+ 1

2
U‖q2

j + 1

4

∑
� �=j

Kj,�(qj − q�)2

⎞
⎠ , (1)

H
(x)
⊥ =

N∑
j=1

⎛
⎝p2

j,x

2mj

+ 1

2
U⊥,j x

2
j − 1

8

∑
� �=j

Kj,�(xj − x�)2

⎞
⎠ ,

(2)

and H
(y)
⊥ = H

(x→y)
⊥ . Here, qj = zj − z

(0)
j , while Kj,� =

2Q2/|z(0)
j − z

(0)
� |3 is the coupling due to the Coulomb repulsion

[35]. We label the defect ions by j1,j2, with 1 � j1 < j2 � N

and mutual distance d ∝ j2 − j1 � N .
We first analyze the spectrum of Hamiltonian H0. For sim-

plicity, we assume equally spaced axial equilibrium positions
with interparticle distance a = z

(0)
j+1 − z

(0)
j , which can be found

in the central region of long ion chains [35] and in anharmonic
potentials [36,37]. Figure 2(a) displays the spectra of the axial
and transverse modes for M ≈ 2.87m, which corresponds to
In+ ions embedded in a Ca+ chain [38]. Two degenerate
normal mode frequencies for each transverse spectrum are
separated from the respective transverse branch by a gap.
If this gap is sufficiently large, these modes approximately
coincide with the defects transverse vibrations. In this limit
they are strongly coupled with each other via the Coulomb
interaction and weakly coupled to the rest of the chain. Their
dynamics are governed by a beam-splitter type of interaction:
The two defects can become entangled by the unitary evolution
after preparing each transverse mode in a squeezed state [39].
We verify this behavior assuming that initially the chain is
in a thermal state at temperature T while the transverse
modes are prepared in identical squeezed vacuum states
along the x direction with variances �x2

j1,j2
= x2

0 e2s/2 and
�p2

j1,j2
= p2

0 e−2s/2. Here x0 = √
h̄/(M�⊥) is the size of the

ground state of the defect oscillator with frequency �⊥ =√
U⊥(M)/M , p0 = h̄/x0, and s is the real-valued squeezing

parameter [39]. The defect’s state remains Gaussian under the
evolution given by the quadratic Hamiltonian, Eq. (2), and is
hence described by the first moments and the covariance matrix
[40]. Entanglement between the defect modes is quantified by
means of the logarithmic negativity EN obtained from the
symplectic eigenvalues of the partially transposed covariance
matrix [41]. The grey curves in Fig. 2(b) display EN as a
function of the time t for a fixed distance d = 7a: EN grows
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FIG. 2. (Color online) (a) Spectrum of excitations when a chain of Ca+ ions contains two In+ ions with mutual distance d = 7a. The mass
ratio is M/m ≈ 2.87 [38]. The eigenfrequencies ωk of H⊥ (solid line) and H‖ (dashed line) are displayed as a function of the quasimomentum
k (in units of π/a). The isolated transverse frequencies, indicated by the circle, almost coincide with the frequency of the defect transverse
oscillator. The parameters are U⊥(m)/U‖ = 2000 and ω‖ = 2π × 26.1kHz, while the frequencies are in units of ω‖ = √

U‖/m. (b) Logarithmic
negativity EN as a function of time t (in units of ω−1

‖ ) for N = 50, initial squeezing s = 0,0.5, while the rest of the chain is initially prepared at
T = 8h̄ω‖/kB ≈ 10μK. The black (grey) curves represent the case with laser coupling switched on (off), with coupling strength γ = 18.2mω2

‖ .
(c) Logarithmic negativity as a function of time for a chain with N = 800 (solid line), 1000 (dashed), and 1200 (dotted) ions, for d = 17a,
T = 0, s = 0.5, and γ = 0.036 mω2

ref. For each curve, the time is in units of ω‖(N )−1, with ω‖(N ) = ωref
√

log N/N and ωref = 2π × 659.6
kHz. Insets: corresponding spectral densities (in units of mω2

‖) as a function of the frequency. The solid (dashed) lines correspond to J+(ω)
[J−(ω)]. The arrows indicate the defect frequencies for the solid curves in (b) and (c) [44].
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with t and increases with s. The defects become entangled
also when they are initially not squeezed (s = 0), which is due
to the fact that the normal modes of the isolated frequencies
include some small displacements of the other ions of the
chain. Numerical simulations show that EN at a given time t

decreases with the strength of the direct Coulomb coupling,
which scales with the distance as 1/d3.

We now demonstrate that entanglement between the defects
can be generated and substantially enhanced by coupling
with the axial phonons of the chain. For this purpose we
consider an interaction which couples the defects’ transverse
and axial displacements. The dynamics are now given by the
Hamiltonian H = H0 + HI (t), where

HI (t) = γ (t)

2

[
(xj1 − qj1 )2 + (xj2 − qj2 )2] , (3)

with γ (t) = γ �(t) being an effective coupling strength and
�(t) the Heaviside function. This coupling could be realized,
for instance, using a standing-wave laser in the x-z plane
illuminating the defects in the Lamb-Dicke regime and with
nodes at their equilibrium positions [42]. For this geometry
the motion along y is decoupled and will be ignored from now
on. At t > 0 a displacement of each defect along x excites a
wave packet of axial phononic modes.

We first note that these dynamics lead to thermalization of
a single defect [17,43], but are significantly modified when
both defects are coupled. In order to understand why, let
us consider that the defects are symmetrically placed with
respect to the trap center. By performing a change of coor-
dinates, q±

j = (qN−j+1 ± qj )/
√

2 and X± = (xj1 ± xj2 )/
√

2,
it becomes evident that the defect’s transverse center-of-mass
(c.m.) displacement, X+, couples to the axial displacements
q+

j , and the same holds for X− and q−
j . The action of the axial

vibrations on the dynamics of the defects’ collective variable
can be characterized in terms of the spectral densities [16]

J±(ω) = π

N/2∑
k=1

(γ ±
k )2

2mω±
k

δ(ω − ω±
k ),

where γ ±
k is the coupling strength of the coordinate X± to

the kth normal mode at eigenfrequency ω±
k of the chain q±

j .
The inset of Fig. 2(b) displays the spectral densities J±(ω) for
d = 7a. The appearance of frequency values ω+

� (ω−
� ), at which

the spectral density J+ (J−) vanishes, is a signature of “dark”
normal modes, namely, localized excitations which involve the
collective variable X+ (X−) and which are decoupled from the
rest of the chain. These zeros equal the number of ions between
the two defects, and each frequency ω+

� (ω−
� ) corresponds to

a decoherence-free subspace for X+ (X−) when the defect
frequency fulfills �⊥ 
 ω+

� (�⊥ 
 ω−
� ) [44]. Entanglement

between the defects can thus be generated for an initial state in
which both impurities are in a squeezed state while the rest of
the chain is in a thermal state [45]. In fact, taking, for instance,
�⊥ = ω−

� , the dynamics leads to thermalization of the defect’s
c.m. motion, X+, and destroys all initial correlations between
the defect’s c.m. and relative motion, while the relative
coordinate preserves part of the initial squeezing. Sufficiently
large squeezing s and low temperatures T lead to two-mode
squeezing of the defect’s transverse motion [10,43], and hence
to entanglement [46].

The logarithmic negativity is determined after numerically
evaluating the defect dynamics, starting from the formal
solution of the coupled Heisenberg equations of transverse,
axial, and defect modes of the Hamiltonian H [43]. The
solid curves in Fig. 2(b) display EN in a chain of 50 ions
and for times over which finite-size effects are negligible.
Entanglement builds up after a transient time and reaches
values which are an order of magnitude larger than the values
found in the absence of the coupling laser. It increases with the
strength of the initial squeezing s, and we checked that it also
increases when decreasing the temperature of the chain, which
is consistent with the results of previous works [10,16,43].
We note that although cooling a large chain to ultralow
temperatures is a challenging task, the basic requirement for
observing the dynamics predicted here is that the axial mode
of the chain resonant with the defect frequency is prepared
in the ground state. In a chain of trapped ions this could be
realized, for example, by cooling the motion of the defect ions
while the laser coupling transverse and axial displacement
is switched on [47]. Noise will not significantly affect the
predicted dynamics, provided that the dark mode is cold and
protected from external noise sources [48].

We now demonstrate that the created entanglement is
not a finite-size effect, and is indeed independent of the
chain size. Figure 2(c) displays the logarithmic negativity
as a function of time for various chain sizes and a mutual
distance of d = 17a between the defects. Here the c.m. motion
is decoupled by tuning its frequency to a value at which
the corresponding spectral density vanishes (see inset). The
curves are displayed for times that are shorter than the revival
time and have been rescaled by the size-dependent frequency
ω‖ = ωref

√
log N/N , where ωref is a constant and the size-

dependent factor warrants that the interparticle distance at
the chain center is independent of N (therefore keeping
constant the cutoff frequency) [35]. One observes that the
logarithmic negativity oscillates about a (quasi) stationary
state, whose value is independent of the chain size. For
increasing chain sizes the revival time, and thus the time win-
dow over which this entanglement is found, correspondingly
increases.

We finally show that the entanglement generated by the
interaction with the chain slowly decays with the mutual
distance. Figure 3 displays the mean value of the logarithmic
negativity, EN , averaged over the time in which it regularly
oscillates, as a function of the mutual distance when the c.m.
is decoupled. The different points correspond to different
zeros of the spectral density: optimal entanglement is thus
achieved by suitably tuning the frequency of the impurity, so
that it matches the frequency of an optimal dark normal mode.
Steady-state entanglement is found on time scales t0 of the
order of d/cs , where cs 
 ω‖a is the sound velocity [35]. For
the parameters and the chains here considered, t0 ∼ 100 μs.
At large d, EN decays linearly with the distance, which is
confirmed by a systematic analysis performed on a model
with nearest-neighbor interactions [49].

The resulting entanglement can be measured by extending
the method developed in Ref. [50] to two Gaussian modes.
The procedure consists of coupling the transverse oscillation
of each defect with an ancillary qubit, such as an electronic
transition of the defect ion. This can be done using the
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FIG. 3. (Color online) Steady-state entanglement as a function
of the defects’ mutual distance. Solid lines connect EN for c.m.
decoupling via the �th zero of J +(ω). Dashed line shows the
maximum EN . Parameters are set to N = 800, T = 0, s = 0.5
and coupling γ = 3230mω2

‖ . Inset: Spectral densities for d = 15a.
Arrows indicate corresponding frequencies ω+

� .

Hamiltonian H int
j=j1,j2

= h̄gj (t)σ z
j (aje

−i�j t + a
†
j e

i�j t ), where

aj = (xj/x0 + ipxj/p0)/
√

2 annihilates a phonon of the defect
oscillator at frequency �⊥, gj denotes the Rabi coupling with
the internal transition, and σ

x,y,z

j are the Pauli operators. The
expectation value 〈T 〉 = 〈σx ⊗ σx − σy ⊗ σy + iσ x ⊗ σy +
iσ y ⊗ σx〉 gives the characteristic function χ (β1,β2) of a
two-mode system, where β1,2 = 2i

∫ t

0 dt ′gj1,j2 (t ′)ei�j1 ,j2 t ′ . The
reconstruction of the oscillators state and thus of its entan-
glement properties is granted by properly designed coupling
profiles. Note that it is sufficient to probe the characteristic

function of Gaussian states close to the phase-space origin
since they are characterized by their first and second moments.

Our study sheds light on the role of the reservoir in
establishing quantum correlations. It further identifies the basic
requirements for entangling two distant objects which interact
with a bulk exhibiting long-range order. Here, nonlocal,
decoherence-free subspaces appear which are associated with
normal modes involving the defect vibrations. In principle,
it is thus possible to entangle arbitrarily distant objects via a
common bath. An intrinsic limitation to such dynamics is the
fact that the required time linearly scales up with the distance,
while the zeros of the dark normal modes become denser
and denser. A further challenge is the realization of arbitrary
large regular lattices. Such limitations could be overcome by
applying local time-dependent operations [51].

Tuning the defect frequency is the key for entanglement
generation in other physical platforms. These dynamics can
also be observed, for instance, in dipolar quantum gases
in the Mott insulator phase in an optical lattice, where the
optical traps can be engineered in order to tune the frequency
of the transverse oscillations of different species [52,53].
Other examples are cavity arrays in circuit QED [54] and
optomechanical systems as in [55], where the frequencies
can be controlled by means of proper designs and the use
of refractive media.
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and the Irish Research Council through the Embark Initiative
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