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Abstract. The offshore wind sector has achieved significant cost reductions in recent years. 

However, there is still work to be done to maintain and surpass these savings across current and 

future farms. There is increased competition to reduce costs within the industry itself. Additional 

challenges are foreseen at future sites located further from shore, in harsher conditions and 

deeper waters. Larger turbines and projects also mean new equipment, logistics and maintenance 

requirements. Moreover, farms are approaching the decommissioning phase where there is little 

experience. Modelling is a safe and cost-effective way to evaluate and optimise operations. 

However, there is a lack of comprehensive decision-support tools, detailed enough to provide 

insight into the effects of technological innovations and novel strategies. To address the gap, the 

EU FP7 LEANWIND project developed a suite of state-of-the-art logistics optimisation and 

financial simulation models. They can assess a farm scenario in detail at every stage of the project 

lifecycle and supply-chain, identifying potential cost reductions and more efficient strategies. 

This paper introduces the models including: an overview of their scope and capabilities; how 

they can be applied; and the potential end users. 

1.  Introduction 

The offshore wind industry has achieved significant cost reductions in recent years with a number of 

projects forecasting a Levelised Cost of Energy (LCOE) surpassing 2020 targets of €100/MWh. In 2016, 

DONG Energy’s bid for the Borssele site implied an LCOE of approximately €68/MWh, excluding 

transmission costs [1]. Vattenfall’s 2016 offshore wind price bid of €49.9/MWh for the Kriegers Flak 
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project set a record LCOE forecast of €40/MWh [2]. Cost reductions can be generally attributed to the 

industry’s growing maturity leading to technology developments, increased competition in the supply-

chain, and supportive policy frameworks, each helping to reduce risk and the cost of capital. However, 

there is more work to be done to maintain and surpass these savings across current and future farms, 

ensuring the continued cost-competitiveness of offshore wind in the energy sector. The anticipated fall 

in LCOE will increase price competition as developers are under pressure to match these forecasts. New 

markets in East Asia and North America have yet to achieve these targets. In addition, challenges are 

presented by future sites located further from shore, in harsher conditions and deeper waters. The move 

towards larger turbines and projects also mean larger equipment requirements and new logistics and 

maintenance issues. Farms are also approaching the decommissioning or repowering phase, where there 

is little experience. The first Offshore Wind Farm (OWF) project to be decommissioned only took place 

in 2016 (Yttre Stengrund, which comprised five 2MW turbines) [3].  

Modelling is a safe and cost-effective way to evaluate and optimise operations. However, there is a 

lack of comprehensive decision-support tools, detailed enough to provide insight into the effects of 

technological innovations and novel strategies. Since most financial models are developed by 

consultancies or by wind farm developers [4], there is little information available describing their 

capabilities. Based on the present literature, while there are a variety that can estimate costs for different 

aspects of an OWF, current models tend to produce relatively high-level assessments of project costs or 

only focus on a single lifecycle phase. Therefore, advances can be made in modelling the full capital 

and installation (CAPEX), operation and maintenance (OPEX) and decommissioning (DECEX) costs. 

In addition, most models use a simplified LCOE as a metric to compare technologies and innovations 

but as the industry advances, more sophisticated parameters are being applied particularly to take into 

account the methods of financing, contractual arrangements, tax policies, risk sharing methods etc. The 

current models are also generally simulation tools, which do not easily facilitate scenario optimisation, 

requiring manual manipulation of decision variables per simulation. This can be extremely time-

consuming and it exceeds human ability to evaluate all possible solutions.  

To address the gap, the EU FP7 LEANWIND project (December 2013-November 2017) developed 

state-of-the-art decision-support tools including: a set of logistics optimisation models covering the 

entire supply-chain of an OWF; and a full lifecycle financial cost model. This was done in close 

cooperation with industry partners and external industry advisors to ensure they could address the key 

challenges and to validate outputs. Whereas prior publications referenced in this paper describe some of 

these tools individually, the objective of the present paper is to give an overview of the complete 

LEANWIND suite of tools. Section 2 summarises the objective and methodologies behind the logistics 

and financial models respectively. Section 3 describes the capabilities of the models individually, while 

Section 4 outlines how they can be applied together to obtain the most economically viable and time 

efficient operational plans for an OWF. Section 5 details the potential end-users and how the models 

can benefit them in each case e.g. to improve Research and Development (R&D), improved logistics 

practices and enhanced policy formulation. 

2.  Methodology 

The LEANWIND project sought time and cost savings by optimising existing and developing innovative 

tools, technologies and procedures. BVG Associates estimated that improving the supply-chain could 

provide a 9% reduction in LCOE [5]. This is especially true if optimisation is done in the planning phase, 

where it is cheaper and easier to establish than midway through a project [6]. Therefore, LEANWIND 

developed a holistic set of logistics optimisation models covering the three main supply-chain stages 

(prior to/post port; at port; to/from site). These rank a set of supply-chain arrangements across the 

lifecycle phases.  

To simulate novel technologies and strategies in detail and provide in-depth cost analysis, the project 

also developed a full lifecycle financial model. The model considers the installation, Operation and 

Maintenance (O&M) and decommissioning of OWFs, and can reduce costs by identifying potential 
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savings and fostering effective decision-making. Developed for research purposes, it is a non-

proprietary, independent financial assessment tool and is relevant to numerous potential users.  

The LEANWIND models are divided into two categories: optimisation and simulation. In the 

simplest terms, the logistics models are optimisation tools while the financial model is a simulation tool. 

They have independent objectives as follows: 

 The logistics models consider multiple decision variables e.g. infrastructure and transport 

combinations, examining a large number of configurations and ranking the best options for key 

logistics issues. The objective function is to optimise for cost, although some of the models can 

also consider time, depending on the user’s priority.  

 The financial model consists of three lifecycle phase tools that simulate a farm scenario in detail 

over an hourly time series. It uses the Monte Carlo method, varying selected variables (e.g. 

costs, weather conditions and component failures) over a large number of iterations to consider 

uncertain inputs and key risk factors.  

While the logistics and financial models can stand alone, they are complementary and are designed to 

work together to provide the best input in Front End Engineering Design (FEED) stage decision-making.  

3.  Individual models 

3.1.  Logistics 

The logistics models provide optimised solutions for the supply-chain in the three primary lifecycle 

phases and in each of the three primary supply-chain stages: 

 Prior to/post port: activities prior to the components arriving at the support port (in the 

installation or O&M phases) or upon leaving the support port (in the decommissioning phase). 

For the installation and O&M phases, this can consist of manufacturing, transportation, storage, 

and assembly. In the decommissioning phase, it includes the movement of parts from the port 

to the recycling or landfill sites. 

 At port: selection of the port(s) for each lifecycle phase as well as the optimal layout and usage 

of the port itself. 

 Supply to/from offshore site: the movement of parts from the port to the site for installation and 

O&M or vice versa for the decommissioning phase. 

Table 1 gives a schematic overview of these nine pairings. When executed together, these models are 

capable of generating a holistic solution for a supply-chain for all lifecycle phases of an OWF. They are 

further described in subsections 3.1.1-3.1.5. 

Table 1. Logistics models and associated lifecycle and supply-chain pairings  

 Installation O&M Decommissioning 

Prior to/post port PTPIns PTPOM IntDis 

At port Portlay, PortIns PortOM PortDis 

To/from offshore site VMIns VMOM IntDis 

3.1.1. Portlay. The Port Layout tool identifies the best layout for an offshore wind port with the objective 

function of minimising the total transportation cost of the components within the port. As illustrated in 

Figure 1, the port area is pre-defined and comprises different subareas where the offshore wind turbine 

components including the nacelle, tower and blade are stored (storage area), assembled (staging area) 

and loaded/unloaded. Each subarea contains a rectangle of given dimensions for each component. This 

model is designed for use in the installation phase and has been applied in [7]. 
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Figure 1. Movement of components within the port 

3.1.2. PortIns, PortOM and PortDis. The three port ranking models determine the optimal port to 

support the respective installation, O&M and decommissioning activities from a set of potential options 

for the selected site. These models measure suitability using a set of criteria relevant to the respective 

phase including: (i) physical characteristics e.g. quay length (ii) connectivity e.g. road networks and (iii) 

layout e.g. storage availability. An application of the port selection models is described in [8].  

3.1.3. PTPIns and PTPOm. The prior to port models for the installation and O&M phases determine the 

optimal arrangement of the supply-chain (suppliers, manufacturers/plants, and warehouses (ports)) and 

schedule from the production of turbine parts and components to delivery at port. The objective is to 

ensure they arrive when needed with minimal cost (transport; inventory/storage and production) and 

time wastage. The components considered include the foundation, transition piece, tower, nacelle and 

blades. Components can come from manufacturers/plants or suppliers. Parts are the objects required to 

assemble main components and come from suppliers. They must be delivered to plants to meet the 

production schedule of main components. Components and parts can be delivered by land, sea or both. 

The port warehouses have limited storage. The manufacturers have different production capacities and 

processing times. Suppliers have a limited availability of parts. The PTPIns and PortIns models are 

applied in [9, 10]. 

3.1.4. VMIns and VMOM. The port to site model for the installation phase determines the optimal mix 

and scheduling of vessels, helicopters and bases to support activities. The models can be used to optimise 

for cost or time depending on user’s priorities. The schedule can be used to provide an indicative plan 

for installation activities e.g. the number of components that could be installed per day. Figure 2 

summarises the input and outputs of the VMIns. A computational study illustrates how the model can 

be used in collaboration with the PortIns model to provide decision-support with respect to which vessel 

resources and installation port in [11]. 

 

Figure 2. Input and output overview of the VMIns 
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The transport system during the O&M phase consists of onshore bases, means of transport and 

offshore bases. The VMOM model considers preventive and corrective maintenance. An estimated 

duration is associated with each activity, along with a given number of required technicians, spare parts, 

and vessel resources. Based on the generated maintenance patterns, the model chooses the minimum 

cost transport combination considering the fixed costs of vessels and bases (e.g. time charter costs); 

variable costs of executing maintenance patterns; downtime costs; and penalty costs for not executing 

maintenance activities within the planning horizon. This model is described in [12].                        

3.1.5. IntDis. The integrated dismantling model determines an initial vessel schedule and flow of 

components from the site to a set of ports and onto a set of disposal and recycling points when 

decommissioning an OWF. The objective function is to minimise the total cost of activities rather than 

time, which is not considered a priority at the end of a project. This model considers the blades, nacelle, 

tower, foundation and transition pieces. A jack-up vessel dismantles, while a barge transports 

components to port(s). Components are processed and stored in port until they are transported to 

dump/landfill or recycling areas. The model considers the capacity of the processing machine, port 

storage area, and the number of components that can be transported. The tower and foundation are 

recycled, while blades and the nacelle are landfilled. [13]  

3.2.  Financial 

The financial model consists of a central Microsoft Excel interface, which interacts with three dedicated 

hourly time series simulation modules implemented in MATLAB. The model architecture is illustrated 

in Figure 3. The modules each cover a lifecycle phase (installation, O&M and decommissioning) and 

are probabilistic, employing Monte Carlo simulation to consider stochastic elements such as weather 

and component failures. Calculating a detailed breakdown of the cost and duration of activities, the 

modules allow for a detailed assessment of strategies and technologies. For example, they have been 

used to evaluate the cost-benefit of novel foundation designs and installation strategies; the impact of 

larger turbines (8MW+); near shore and far from shore sites; O&M strategies including remote presence 

technologies, the optimal chartering periods for jack-up vessels and implementing seasons for 

preventive maintenance; novel vessel concepts for each phase; and decommissioning and recycling 

strategies [14-16]. The model outputs include a full project timeline, energy yield and a comprehensive 

breakdown of capital and installation (CAPEX), Operation and Maintenance (OPEX) and 

decommissioning (DECEX) costs. The model provides key financial indicators including the LCOE, 

Net Present Value (NPV), Internal Rate of Return (IRR) and payback period.  

  

Figure 3. Financial model diagram 
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The modules were each successfully validated with a) reasonable comparison to case study data and 

other models; b) significant input from industry on the model input data, assumptions and output data 

checks; and/or c) sensitivity analysis. Subsections 3.2.1-3.2.4 describe the 4 main components.  

3.2.1. Financial model interface. This is the overall controlling model for the system. The user enters 

the required data for all phase modules through data entry sheets including (among others): 

 Simulation information e.g. case study description, the number of iterations etc. 

 Wind farm details e.g. water depth, distance to port, average distance between turbines etc. 

 Asset details e.g. number, type and rated power of turbine; foundation type, cable ratings etc. 

 Available vessels for the three phases 

 Crew for the O&M and decommissioning phases 

 Project finance assumptions 

On completing the inputs, the user initiates the individual phase modules from the central 

spreadsheet. Once the simulations are complete, results are saved in the spreadsheet where the user can 

perform further project level financial calculations. The model facilitates detailed financial analysis 

considering different financing methods (including capital equity, grants and borrowing 

arrangements/debt); tax; depreciation of assets; savings and deposit interest rates; and subsidies (feed-

in-tariff or contract for difference rate). The model produces a cash flow sheet including projected profit 

and loss, as well as a balance sheet to evaluate debt and equity. The following sections outline the scope 

of the three phase models hereafter described as the INST, O&M and DCM modules. 

3.2.2. INST module. This model considers the installation of the turbine, foundation, substation, 

substation foundation, export and inter-array cabling. The user can specify or use a pre-defined selection 

of assets. Different operations are then associated with the installation of each asset. For example, the 

user can choose to float out and sink the foundation or lift via crane. Table 2 lists the installation 

strategies available. The module generates and executes a schedule of activities, recording the actual 

sequence of events, the time spent carrying out each activity, and details of any delays.  

The tool calculates the overall time taken per asset and the cost of activities. Outputs include the 

capital cost of assets; pre-installation transport costs from the manufacturer to the supply port (not 

included in the time series); the charter and fuel costs for vessels; costs for survey and monitoring; port 

activities; other balance of plant costs e.g. onshore works.  

Table 2. Turbine installation methods 

Installation method Lifts 

All components individually 7 

2 tower parts; nacelle and hub pre-assembled; 3 blades 6 

Tower pre-assembled; nacelle and hub pre-assembled; 3 blades 5 

2 tower parts; nacelle; hub and blades pre-assembled 4 

2 tower parts; nacelle, hub and 2 blades (bunny ears) pre-assembled; 1 blade 4 

Tower pre-assembled; nacelle, hub and 2 blades (bunny ears) pre-assembled; 1 blade 3 

Pre-assembled onshore 1 

Pre-installed on substructure (float-out to site) 0 

The installation module was validated using a number of case studies including C-Power Phase 1: A 

small scale 30 MW OWF located on Thornton Bank in the North Sea, 30 km from the Belgian coastline. 

Results were found to closely correlate with the LEANWIND model output of €146 million, only 4.67% 

less than the expected €153 million quoted for this farm [17].  

3.2.3. O&M module. This model analyses a given O&M strategy including corrective, condition-based 

and predetermined preventive maintenance; the resources available including vessels, personnel 
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(considering shift patterns), spare parts, and the maintenance base location (either port or offshore 

maintenance base e.g. “floatel” or “mothership”). The model uses the Monte Carlo method to consider 

stochastic elements such as e.g. weather and component failures. Based on an hourly time-series input 

by the user, the model generates a synthetic weather time series for the operational lifetime of the project 

for each Monte Carlo iteration using Markov chain modelling techniques. The model results include a 

breakdown of O&M costs e.g. personnel, vessels, spare parts; the wind farm availability; and energy 

production.  

This O&M module was developed from the NOWIcob model and is further described in [18, 19]. 

During its years of development, it has undergone extensive validation activities including separate 

industry projects and more specific validation studies. Through these studies, the applicability and 

accuracy of the O&M module has been tested and improvements have been made accordingly. Industrial 

studies include a project with a Norwegian offshore wind developer for the investment decision of a real 

OWF project [19]. This model and the logistics VMOM model have also previously been used together 

and benchmarked against other state-of-the-art O&M models [20].  

3.2.4. DCM module. Figure 4 summarises the decommissioning cost estimates found in the current 

literature. It is clear that there is a wide range of expectations. With the first offshore wind farms being 

dismantled, this model is particularly timely to support cost-effective planning. 

 

 

Figure 4. Decommissioning cost estimates [3, 21-25] 

The decommissioning and salvage expenditure module (DECEX) simulates a strategy to dismantle 

the turbine and foundation. Inputs include the component and their materials e.g. tower, steel; 
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locations. The model can also account for the re-sale of components or re-conditioning in the case of 

repowering rather than fully decommissioning a farm. The user specifies the number of components 

(e.g. blades, nacelle, gearbox etc.) and order in which they are dismantled. The model can consider 

strategies with or without a feeder vessel e.g. a barge which would transport materials from site while 

the larger heavy-lift vessels continue dismantling onsite. The model derives an estimate of 
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decommissioning costs and the time taken to complete activities. It also calculates salvage revenue from 

recycling etc. and post-decommissioning costs e.g. for disposal.  

Validation of this model is difficult given the lack of experience and is highly dependent on the 

method used to estimate costs in the current literature. However, the model was run using the installation 

module case-studies for consistency. Costs were expected to fall within the range estimated by DNV 

GL of €200,000-€600,000/MW [25]. Results for the C-Power OWF were €513,000 per MW. While at 

the upper limit of the estimated costs, this and other validation studies correlated well with the best 

possible estimates for decommissioning cost in the industry at this point in time. 

4.  Combined application 

As indicated in Section 2, the logistics and financial models were developed to be complementary and 

can be used in an integrated manner to obtain the most economically viable and time efficient solutions 

to a wide range of logistical and strategic issues. The first step is to determine an optimal supply-chain 

for a given wind farm scenario using the logistics models. The user inputs the choices they wish to 

consider, and the models examine different arrangements to determine a selection of promising near-

optimal supply-chain configurations for all three phases of the lifecycle. However, most of the logistics 

models (with the exception of the VMOM) are deterministic, i.e. key risk factors such as weather do not 

vary. As their focus is to test a large number of supply-chain configurations, they are also less detailed 

than the simulation models with a small number of parameters/functionalities/assumptions. Thus the 

near-optimal solutions from the logistic models should in general be evaluated by more detailed 

simulation models to increase the quality and validate the final and optimised solutions.    

Therefore, the top ranking solutions output from the logistics models are used as inputs for the 

financial model to investigate their potential as well as examining the overall scenario through more 

detailed analysis. As the financial models consider multiple possible realizations of a project lifecycle, 

they consider the potential impact of uncertain factors on results (e.g. weather, component failures). 

Combined use significantly reduces the time-consuming process of optimising a scenario by running 

numerous iterations in detail with the simulation models. 

5.  Potential end users 

The LEANWIND models are capable of providing decision-support to a wide range of stakeholders. 

Users could vary from a technology or vessel developer (interested in the impact of their technology on 

a specific lifecycle phase) to project developers (interested in higher-level investment information). The 

mapping of offshore wind stakeholders and their interests is complex and, to an extent, still evolving for 

this significant and emerging sector. The following shows some of the different stakeholders who could 

utilise the models individually or in combination: 

 Manufacturers: to guide their facility location policy and optimise the movement and storage of 

parts. Additionally, if the manufacturer is supplying multiple OWFs, then the potential gains of 

using a common supply-chain can be investigated.  

 Ports: to determine their potential for use in the different lifecycle phases; to assess the impact 

of upgraded facilities and capabilities targeting the offshore wind sector for marketing purposes; 

and to plan the configuration of space.  

 A technology developer: to assess the impact of the innovation on costs and time. For example, 

the models could assess a new turbine concept with improved reliability or the potential benefits 

of a float-out substructure design over the current industry standard.  

 A wind farm developer: to determine the optimal supply-chain and to produce detailed 

forecasted costings to support effective planning e.g. comparing various strategies at each phase 

or examining the impact of size and type of vessel fleet on project finances.  

 OWF operator: to investigate the impact of a specific change in circumstances during operations 

e.g. if a new type of vessel becomes available in the O&M phase.  

 Specialist O&M company: to optimise their provision and scheduling. 
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 Specialist vessel providers: to better predict likely installation, O&M and decommissioning 

strategies and plan future vessel types and number.  

 A vessel developer or investor in a new vessel concept: to assess the impact of the design on 

costs and improved time for installation, maintenance or decommissioning.  

 Recycling or landfill centre: to understand and prepare for the need to process material from 

nearby OWF in the decommissioning phase. 

 A project investor or insurance companies: to analyse the possible financial outcomes or key 

risk factors of a given project or projects. 

 Policy makers and funding bodies: to undertake broader cost-benefit analysis such as assessing 

the impacts of different sites on industry finances; new vessel concepts or foundations or other 

innovations on industry costs and financial viability; or regional investment in port or transport 

infrastructure on project finances in that region.  

 Academics/Research: to analyse OWF project finances, technical innovations and trends. 

6.  Conclusion 

A comprehensive and complementary set of logistics and financial models were developed. They can 

be used individually or together to optimise and simulate the full supply-chain and lifecycle of an OWF 

project. The LEANWIND suite of tools fills a significant gap in the current models available, which 

cannot support detailed analysis or optimisation at every key stage of an OWF project. While the 

logistics models focus on ranking an optimum set of supply-chain configurations, the financial model 

assesses the impact of strategic decisions and technologies on costs and time in detail. Combined use 

can save considerable computational time, which would be needed to analyse a large set of potentially 

sub-optimum supply-chain solutions and strategies through the simulation models. The models were 

designed primarily for the project planning and design phase and to address the current and future 

challenges faced by a wide range of stakeholders. Through effective and efficient decision-support these 

models can foster cost-savings in the industry and help secure the continued cost-competitiveness of 

offshore wind in the energy mix. Several of models have already been applied, either individually or 

together, and the references included in this paper point to detailed descriptions of the case studies. 

Separate papers are also planned to publish results reported in [15-16]. 
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