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Abstract    

Background 

Irritable Bowel Syndrome (IBS) patients may experience post-prandial symptom 

exacerbation. Nutrients stimulate intestinal release of glucagon-like peptide 1 (GLP-1), an 

incretin hormone with known gastrointestinal effects. However, prior to the post-prandial rise 

in GLP-1, levels of the hunger hormone, ghrelin, peak. The aims of this study were to 

determine if ghrelin sensitizes colonic intrinsic and extrinsic neurons to the stimulatory 

actions of a GLP-1 receptor agonist, and if this differs in a rat model of IBS.  

Methods 

Calcium imaging of enteric neurons were compared between Sprague Dawley and Wistar 

Kyoto rats. Colonic contractile activity and vagal nerve recordings were also compared 

between strains.  

Key Results  

Circulating GLP-1 concentrations differ between IBS subtypes. Mechanistically, we have 

provided evidence that calcium responses evoked by exendin-4, a GLP-1 receptor agonist are 

potentiated by a ghrelin receptor (GHSR-1) agonist, in both submucosal and myenteric 

neurons. Although basal patterns of colonic contractility varied between Sprague Dawley and 

Wister Kyoto rats, the capacity of exendin-4 to alter smooth muscle function was modified by 

a GHSR-1 agonist in both strains. Gut-brain signaling via GLP-1 mediated activation of vagal 

afferents was also potentiated by the GHSR-1 agonist.  

Conclusions & Inferences 

These findings support a temporal interaction between ghrelin and GLP-1, where the pre-

prandial peak in ghrelin may temporarily sensitize colonic intrinsic and extrinsic neurons to 

the neurostimulatory actions of GLP-1. Whilst the sensitizing effects of the GHSR-1 agonist 
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was identified in both rat strains, in the rat model of IBS, underlying contractile activity was 

aberrant.  

 

Key points: 

 Many patients with Irritable Bowel Syndrome report exacerbation of symptoms 

following food intake, however the mechanisms underlying this phenomenon are 

unclear. 

 Brief exposure to the ghrelin receptor agonist potentiated neuronal activation in 

colonic enteric neurons and vagal afferents by a GLP-1 mimetic. Colonic contractile 

activity was differentially modified in an animal model of Irritable Bowel Syndrome. 

 In a rat model of gastrointestinal dysfunction, sensitization of colonic intrinsic and 

extrinsic neurons to the neurostimulatory actions of GLP-1 may potentiate IBS-like 

symptoms. 

 

 

Keywords: colonic contractility, ghrelin, glucagon-like peptide 1, myenteric, vagal. 
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Ghrelin, a stomach-derived orexigenic hormone plays a key role in whole-body energy 

metabolism and is often termed the ‘hunger hormone’. However, in addition to regulating this 

basic survival instinct, ghrelin also modifies gut motility and visceral pain sensitivity through 

its actions on intrinsic myenteric neurons and extrinsic vagal and pelvic nerves, respectively1. 

Interestingly, ghrelin-mediated modulation of myenteric neuronal activity is dependent on 

fasting state. Larger calcium responses are generated in the myenteric neurons of fasted 

guinea pigs as compared to re-fed animals, results which indicate the importance of neuro-

endocrine regulation of satiety and satiation2. Glucagon-like peptide-1 (GLP-1) is a gut-

derived hormone important in satiety. Released from intestinal L-cells in response to the 

arrival of nutrients in the small intestinal lumen3, this incretin hormone enhances glucose-

stimulated insulin biosynthesis and secretion. In the gastrointestinal (GI) tract the effects of 

GLP-1 vary with location. Gastric emptying, the migrating motor complex and small 

intestinal secretion are inhibited by GLP-14, in contrast to its effects in the colon, where a 

vagally-mediated increase in transit resulted from central administration of GLP-15. GLP-1-

mediated changes in motility have been observed in both healthy controls and in patients with 

Irritable Bowel Syndrome (IBS)6-8. 

 

IBS is a common9, heterogeneous functional bowel disorder, characterized by abdominal pain 

and episodes of either diarrhea, constipation, or both10. Miscommunication in the brain-gut 

axis is thought to underlie the pathophysiology, with alterations in neuroendocrine signaling 

being implicated11. Clinical interventions in IBS patients demonstrated that a GLP-1 mimetic 

had anti-spasmodic and pain-relieving properties12 and may have therapeutic efficacy in 

constipation-predominant IBS (IBS-C)13. A prevalent feature of the disorder is post-prandial 

exacerbation of symptoms14-16, making hunger- and satiety-related hormones an area of 

interest in understanding IBS pathophysiology.  
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Ghrelin can enhance the post-prandial nutrient-evoked increase in GLP-1 secretion17 and has 

been proposed as a potential incretin enhancer therapy18. This is consistent with the temporal 

profile of circulating ghrelin, which peaks with hunger prior to a meal19, and GLP-1, which 

peaks 10-15 minutes following a meal20. However, GLP-1 receptor (GLP-1R)-expressing 

neurons are found in both neuronal plexi of the enteric nervous system throughout the GI 

tract21, including the colon.  

 

Vagal and spinal visceral afferents provide a constant stream of interoceptive information to 

the central nervous system. Unlike healthy controls, IBS patients appear to be conscious of 

these sensory inputs22, which is interpreted as abdominal discomfort or pain. The vagus nerve 

has been linked to activation of the hypothalamic-pituitary stress axis, and modification of 

gut-originating pain signaling, which, in turn, leads to altered gut function23. The entire GI 

tract in rats is innervated by the vagus24, and the dorsal motor nucleus of the vagus25 and 

vagal afferents are sensitive to GLP-126. We hypothesize that ghrelin may sensitize gut 

intrinsic and extrinsic neurons to the stimulatory effects of GLP-1 and thereby alter GI 

function. The aims of the study were to determine the importance of GLP-1 and ghrelin in the 

pathophysiology of bowel dysfunction using the stress-sensitive Wistar Kyoto (WKY) rat 

model.  
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Materials and Methods 

Ethical approval 

All experiments were in full accordance with the European Community Council Directive 

(86/609/EEC) and the local University College Cork animal ethical committee (#2011/015). 

Rats were sacrificed by CO2 overdose and exsanguination. 

The protocol for collecting biopsies from the transverse and distal colon with matched serum 

samples from IBS patients and healthy control volunteers was approved by the University 

College Cork Clinical Research Ethics Committee (ECM 4(r) 01/03/16) and was carried out 

in the Mater Private Hospital, Cork, Ireland. Informed consent was obtained from all 

participants. 

 

Animals and Tissue collecting 

Anxiety- and depression-like behaviors, including stress-induced defecation and time spent in 

the aversive, exposed inner zone of the open-field arena and behavior in the forced swim test 

are not reported to differ between male and female Sprague Dawley (SD) and Wistar Kyoto 

(WKY) rats27. Moreover, both male28 and female29 WKY rats exhibit lower pain threshold to 

CRD as compared to SD rats. Given the lack of sex difference and to avoid the cyclical 

hormonal changes, 8-12 week old male SD and WKY rats, purchased from Envigo, 

Derbyshire, UK, were selected for this study. Rodents were group-housed 5 per cage and 

maintained on a 12/12 hour light -dark cycle (08.00-20.00) with a room temperature of 

22±1oC. Animals were permitted at least a week to acclimatize to their new environment 

prior to experimentation. Food and water were available ad libitum and rats were not fasted 

prior to tissue collection. In comparison to SD rats, WKY rats exhibit increased sensitivity to 

stress30-32. In several studies where SD rats were used as comparators, WKY rats exhibited a 
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high anxiety phenotype, visceral hypersensitivity and increased stress-related defecation. This 

model of brain-gut axis dysfunction has been validated as a rodent model of IBS32-35. 

 

A section of distal colon was excised from each rat and stored in cold Krebs buffered saline 

containing in mmolL-1: 117 NaCl, 4.8 KCl, 2.5 CaCl2, 1.2 MgCl2, 25 NaHCO3, 1.2 NaH2PO4 

and 11 D-glucose (pH 7.4). For calcium imaging and immunofluorescence studies, the 

mucosal layer was removed to expose the submucosal plexus (SMP). To expose myenteric 

neurons, the circular muscle layers were peeled away using forceps leaving a longitudinal 

muscle myenteric plexus (LMMP) preparation. Sections of distal colon stripped of the 

mucosa were used for gut bath studies. The dissection technique used for the colon-vagal 

nerve tissue preparation is described in detail below. 

 

Human plasma and colon biopsy collection 

Patients attending the General Surgery Clinic at the Mater Private Hospital, Cork, Ireland 

were recruited for the study. Patients aged between 18-65 years of age and able to provide 

written informed consent were enrolled. Inclusion criteria for IBS patients included 

confirmed clinical diagnosis of IBS that satisfies the Rome III criteria. Biopsies from age and 

weight-matched healthy controls were taken from patients undergoing routine colonoscopies 

that were good health and negative for bowel disease. Exclusion criteria for participation 

included acute or chronic co-existing illness, recent unexplained bleeding or prior GI surgery 

(apart from hernia repair and appendectomy), psychiatric disease, immunodeficiency, 

bleeding disorder, coagulopathy, a malignant disease or any concomitant end-stage organ 

disease. Subjects were also excluded if they were taking any experimental drugs or if the 

subject had taken part in an experimental trial less than 30 days prior to this study. Mucosal 

biopsies from the transverse and distal colons were taken from fasting patients at the same 
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time as obtaining a matched serum sample. Dipeptidyl peptidase-IV was added to the serum 

samples to inhibit GLP-1 degradation. Samples were assigned a study number, with the key 

held by the treating surgeon, so as to preserve patient confidentiality in accordance with the 

study protocol. The secretory products from biopsies incubated in Dubellco’s Modified Eagle 

Medium (Sigma Aldrich, UK, overnight, 37oC) were used to measure local tissue 

concentration of GLP-1 and ghrelin. Mucosal biopsies were subsequently fixed overnight in 

4% paraformaldehyde, cryoprotected in 30% sucrose and stored at -80°C for later 

immunofluorescent staining.   

 

Mesoscale Discovery Biomarker Assay 

An immunoassay (MesoScale Discovery U-PLEX customized multiplex assay kit I, 

MesoScale Discovery, Gaithersburg, MD, USA) was carried out to determine the GLP-1 and 

ghrelin concentration in plasma samples and biopsy supernatants from 6 healthy, 6 IBS-C and 

6 IBS-D patients. The assay was run in triplicate and an electrochemiluminescent detection 

method was used to measure protein levels in the samples. The plates were read using 

MesoScale Discovery plate-reader (MESO QuickPlex SQ 120). A calibration curve was 

generated using standards, and GLP-1 and ghrelin concentrations were determined from the 

curve. 

 

Calcium Imaging 

For calcium imaging studies, a LMMP or SMP tissue preparation was pinned out in Sylgard 

(Sylgard 184 silicone elastomer kit, WPI, Sarasota FL, USA)-lined petri dishes superfused 

with carbogen-bubbled Krebs saline solution with 1μM nifedipine to inhibit smooth muscle 

contractions. The tissue was loaded with either Fluo 4 (8μM, 1 hr, Thermo Fisher Scientific, 

Waltham, MA, USA) or Fura-2AM (Thermo Fisher Scientific 7μM, 1 hr) in the dark and 
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washed out prior to recording. Cytosolic changes in intracellular calcium ([Ca2+]i) were 

recorded from neuronal cell bodies loaded with Fluo-4 using WinFluor fluorescence image 

capture and analysis program (John Dempster, University of Strathclyde, Scotland) or from 

neurons loaded with Fura-2AM using Cell R software (Olympus Soft imaging solutions, 

1986-2009). Images were captured at 2Hz using a Cairn optoscope 1200 (Cairn Research, 

Kent, UK) or a Xenon/Mercury arc burner (Olympus, Melville, NY, US), a charge-coupled 

device digital camera (Hamamatsu ORCA-ER, Hamamatsu Photonics, Hertfordshire, UK) 

and a 40x water-immersion objective on a fixed stage upright microscope (BX51WI, 

Olympus, South-End-on-Sea, UK).  

 

Ganglionic neurons were identified based on morphology and responsivity to brief exposure 

to 75mM KCl, which was added at the end of each experiment. Neurons were considered to 

be responders if fluorescence increased (in 150 seconds from the point of the initiation of the 

calcium response) by more than two standard deviations from baseline noise values for each 

neuron. The baseline values were calculated as the average ratio during the 150 seconds 

preceding the stimulus and compared to the peak amplitude of response (150 seconds). A 

perfusion system continuously superfused the colonic tissue with carbogen-bubbled Krebs-

buffered saline. The tissue was incubated with pharmacological reagents added to the 

superfusate. 

 

Immunofluorescence and confocal microscopy 

Human distal colonic biopsies, fixed in 4% paraformaldehyde (4oC, overnight), were cryo-

sectioned (10µm in thickness, Leica Biosystems, Wetzler, Germany) and mounted on glass 

slides (VWR, Dublin 15, Ireland). Mucosal biopsies were permeabilized with 0.1% Triton X-

100 and blocked with 1% donkey serum (Sigma Aldrich, UK) and immunolabelled with 



10 
 

rabbit polyclonal anti-GLP-1 antibody36 (1:250, overnight 4oC, Abcam, Cambridge, UK). 

FITC-anti rabbit fluorophore (green staining, 1:250, 2 hrs, 37oC, Jackson Immunoresearch, 

PA, US) was used to visualize GLP-1 expression. Tissue sections were mounted using Dako-

fluorescent mounting medium containing DAPI (Agilent Pathology Solutions Santa Clara, 

California, USA) and a coverslip placed over all tissue. Images were captured using a FVl0i-

Olympus-confocal microscope with Fluoview software (FV10i-SW, Olympus Europe, 

Hamburg, Germany). No non-specific fluorescence was detected in control experiments using 

a GLP-1 binding peptide prior to tissue exposure as compared to a positive control. Controls 

for the secondary fluorophore (tissues were incubated with primary antibody in the absence 

of secondary antibody or the secondary antibody was applied alone) similarly showed no 

non-specific immunofluorescent staining.  

 

Extracellular recording from colonic vagal afferents  

This dissection has been described previously in detail37. In brief, a vertical abdominal 

incision was made below the sternum to expose the intestine with intact peripheral nerves. 

The esophagus with intact posterior vagus and its branches were excised. An ex vivo 

preparation of the distal colon with intact inferior and superior mesenteric and coeliac ganglia 

and the vagus nerve was excised from the abdominal cavity of SD or WKY rats. Vagal nerve 

activity was recorded superior to the stomach near the attached portion of the esophagus. The 

nerve-gut recording rig consisted of two Sylgard-lined Perspex chambers. The colon chamber 

(2.5cm x 10cm) was separated from the adjacent nerve chamber (1.5cm x 10cm) by a 2mm 

barrier. Both chambers were superfused with 5% CO2/95 % O2 bubbled Krebs saline 

comprised of (in mmolL-1): NaCl, 117; KCl, 4.8; CaCl2, 2.5; MgCl2, 1.2; NaHCO3, 25; 

NaH2PO4, 1.2 and D-glucose maintained at 37oC. The colonic tissue was opened at the 

mesenteric border and pinned out, mucosal side up. The serosal side of the tissue was 
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continuously irrigated with perforated plastic tubing embedded in the Sylgard. To expose 

myenteric neurons, the mucosal and submucosal layers were removed and the circular muscle 

fibers were peeled away using fine dissection forceps. To prevent damaging the nerves, glass 

rods were used to thread the nerves and ganglia through to the nerve-recording chamber, 

which was sealed with petroleum jelly. The vagal nerve bundles were placed on platinum 

bipolar recording electrodes (WPI, Sarasota, FL, USA) attached to a Power lab (AD 

Instruments, Oxford, UK). The nerve activity was viewed and recorded with Chart 7 (AD 

Instruments, Oxford, UK). High- and low-pass filters were set at 0.2 and 2kHz, respectively 

and the signal was filtered to exclude mains fluctuation. Data was analyzed in GraphPad 

Prism for Windows (version 5) and presented as area under the curve (AUC). 

 

Gut Bath electrophysiology 

Sections of distal colon were opened along the mesenteric border and the mucosa was 

removed. Tissue was either suspended transversely to measure circular muscle contractility or 

longitudinally to measure longitudinal muscle contractile activity. The colonic sections were 

suspended from a tension transducer under 1g of tension in a water-jacketed tissue bath, 

maintained at 37oC in Krebs-buffered saline and allowed to equilibrate for up to an hour. 

Colonic sections were stimulated with the cholinergic agonist, carbachol (1μM, Sigma 

Aldrich, 5 min) at the beginning and at the end of each protocol to stimulate a maximal 

contractile response and ensure no decline in muscle responsiveness was occurring over time. 

Baseline contractile activity was recorded for 10 minutes prior to addition of reagents such as 

the GLP-1 mimetic, exendin-4 (10μM, Abcam Laboratories, Cambridge, UK) and the ghrelin 

receptor agonist, Ibutamoren mesylate (MK-667, 1μM, Sigma Aldrich, UK). Contractile 

changes in isolated muscle strips were recorded via a mechanical transducer and Powerlab 

system and LabChart7 (all AD instruments Inc, Colorado Springs, CO, USA). LabChart7 was 
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used to measure the area under the curve (AUC), which was used to incorporate both the 

amplitude and frequency of colonic contractions. The rectified trace was calculated by 

computing the integral of the raw data. 

 

 Statistical Analyses  

Data was analyzed using GraphPad prism for windows (version 7). Data were plotted as box 

and whisker plots with 95% confidence intervals. Data were compared using paired two-

tailed Student’s or paired t-tests, as appropriate or One-way or repeated measures ANOVA 

with Tukey post-hoc test. P values of <0.05 were considered significant. 
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Results 

Circulating levels of GLP-1 differ between IBS patient subtypes.  

Circulating levels of GLP-1 and ghrelin were compared between fasting healthy controls 

(HCs), IBS-C and IBS-D patients (n=6 samples per group). Plasma GLP-1 was similar in 

HCs and IBS-C patients (one-way ANOVA, F(2,14)=1.51, p=0.25) but depressed in IBS-D 

patients (p=0.043, figure 1A(i)). Plasma ghrelin did not differ between fasting HCs, IBS-D 

and IBS-C patients (one-way ANOVA, F(2,14)=0.927, p=0.42, figure 1A(ii)). Tissue 

secretion of GLP-1 from colonic biopsies was higher than plasma levels and, increased in 

IBS-C supernatants, as compared to HCs (one-way ANOVA, F(2,11)=5.81, p=0.019), with 

no change in secretion from IBS-D samples (figure 1A(iii), p=0.8). Ghrelin-secreting cells 

are not thought to be found in the colon, so it was unsurprising that ghrelin was undetectable 

in biopsy supernatants.  

 

To determine if a change in the density of colonic L-cells accounted for altered colonic 

secretion of GLP-1, the numbers of L-cells as a fraction of total DAPI-labelled mucosal cells 

in a given field were compared. In HC biopsies, 3.8% of epithelial cells were identified as 

GLP-1-expressing L-cells, 4.8% of cells in IBS-C biopsies and 3% of cells in the IBS-D 

cohort expressed GLP-1. Although this pattern is consistent with increased secretion of GLP-

1 in IBS-C biopsies (figure 1A(iii)), these differences were not significant (n= 6-10 sections 

per biopsy, n=4 biopsies per group, one-way ANOVA, F(2,23)=1.76, p=0.195, figure 1B). 

 

GLP-1 and ghrelin contribute to the neurostimulatory action of IBS plasma on 

submucosal neurons. 

Previous studies from our lab demonstrated that soluble mediators present in plasma from 

IBS patients but not healthy comparators evoked robust increases in [Ca2+]i in enteric neurons 
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from SD distal colons38,39. Due to the innate variability of individual plasma samples, a 

standard preparation of pooled plasma samples from healthy (n = 6) and IBS (n=6 pooled 

samples from IBS-D, IBS-C and IBS-A) was used to standardize calcium responses and 

facilitate investigation of the potential contribution of circulating GLP-1 and/or ghrelin in the 

neurostimulatory effects of IBS plasma on SD and WKY submucosal neurons. IBS plasma 

was diluted 1:250 in Krebs saline and perfused onto the tissue for 3 minutes. Consistent with 

our previous studies38,39, soluble mediators within the plasma stimulated a robust increase in 

[Ca2+]i in submucosal neurons in both SD (n=41 neurons from 3 rats, figure 2A) and WKY 

(n=28 neurons from 4 rats, figure 2B) rats. Similar proportions of total SD (59%) and WKY 

(64%, Fisher’s exact test, p=0.56) rat submucosal neurons responding to 75mM KCl were 

activated by IBS plasma, suggesting that neurons in both rat strains were equally sensitive to 

the stimulatory factors in IBS plasma.  

 

Although we have already determined that stress and immune factors contribute to the 

stimulatory effect of IBS plasma38,39, the GLP-1R antagonist, exendin (9-39) (Ex(9-39), 

10µM, 10min) and the ghrelin receptor antagonist, YIL781 (10nM, 10min) were utilized to 

determine if either of these gut hormones contributed to the neurostimulatory effect. In SD 

SMP tissue, IBS plasma–evoked calcium responses were reduced by Ex(9-39) (n=20 neurons 

from 3 rats, one-way ANOVA, F(2,75)=6.69, p=0.003), whereas the GHSR-1 antagonist had 

no effect on IBS plasma-evoked responses (n=17 neurons from 3 rats, p=0.317, figure 2A). In 

WKY submucosal neurons, the IBS plasma-evoked calcium response was similarly 

attenuated by Ex(9-39) (one-way ANOVA, F(2,39)=13.39, p<0.001), but in contrast to its 

lack of effect in SD tissue, YIL781 attenuated the IBS plasma-induced calcium response in 

this tissue (n=14 neurons from 3 rats, p<0.001, figure 2B). 
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GLP-1 contributes to the neurostimulatory action of IBS plasma on myenteric neurons. 

The neurostimulatory effects of IBS plasma were assessed in the myenteric neurons of SD 

and WKY distal colons. Pooled IBS plasma evoked a robust increase in [Ca2+]i in both SD 

(n=32 neurons from 3 rats, figure 2C) and WKY (n=19 neurons from 3 rats, figure 2D) 

myenteric neurons. The percentage of myenteric neurons responding to IBS plasma (71% SD 

vs 69% WKY, Fisher’s exact test: p=0.878) was similar between rat strains. To determine if 

GLP-1 and ghrelin may represent neurostimulatory soluble mediators present in IBS plasma, 

Ex(3-39) and YIL781 were applied to LMMP tissue prepared from each rat strain. In SD 

tissue, Ex(3-39) inhibited the response evoked by IBS plasma (n=14 neurons from 3 rats, 

one-way ANOVA, F(2,61)=10.74, p<0.001) whereas YIL781 had no effect (n=18 neurons 

from 3 rats, p=0.957, figure 2C). In WKY LMMP tissue, the GLP-1R antagonist similarly 

attenuated the IBS plasma-evoked response (n=18 neurons from 3 rats, one-way ANOVA, 

F(2,51)=9.36, p<0.001), whereas the ghrelin receptor antagonist had no effect (n=15 neurons 

from 3 rats, p=0.59, figure 2D). 

 

MK-667 sensitizes colonic submucosal neurons to exendin-4. 

We have previously noted differences between SD and WKY enteric neurons in their 

sensitivity to neuromodulatory molecules40. Calcium imaging of submucosal neurons 

demonstrated that the GLP-1R agonist, exendin-4 (Ex-4, 10µM, 3 min) evoked a small, short-

lived increase in [Ca2+]i in SD rats that was reproducible, with no difference between the first 

and second application (n=10 neurons from three rats, paired t-test: p=0.489, figure 3A). Ex-4 

evoked a calcium response in both SD (n=18 neurons from 3 rats, figure 3B) and WKY rats 

(n=26 neurons from 3 rats, figure 3C). The ghrelin receptor agonist, MK-667 (1µM, 3 min) 

evoked an increase in [Ca2+]i, which was similarly short-lived in both strains. No strain 

difference was detected in the amplitude of response for Ex-4 (p=0.898) or MK-667 
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(p=0.08). However, re-application of Ex-4, 10 minutes after the brief exposure to MK-667, 

evoked an enhanced calcium response both in SD (repeated measures ANOVA, 

F(2,44)=9.19, p=0.005, figure 3B) and WKY (repeated measures ANOVA, F(2, 25)=109.8, 

p<0.001, figure 3C) rats. Sensitization of neurons by the GHSR-1 agonist appears to be a 

short-lived phenomenon as 30 minutes after exposure to MK-667, the calcium response 

evoked by Ex-4 in SD submucosal neurons (0.885 ±0.83) was no longer potentiated as 

compared to the control response (1.217 ± 0.86, n=27 neurons from 3 rats, paired t-test: 

p=0.167). The potentiated calcium response did not differ between SD and WKY strains (t-

test: p=0.15).   

 

Potentiation of an exendin-4 evoked calcium response in colonic myenteric neurons by 

MK-667 is larger in Wistar Kyoto rats.  

To determine if the ghrelin agonist similarly sensitized myenteric neurons to the 

neurostimulatory actions of the GLP-1R agonist, Ex-4 (10µM, 3 min) was applied to colonic 

myenteric neurons. An increase in [Ca2+]i was evoked in SD rats, which was reproducible 

upon re-application, with no significant difference between the first and second application 

(n=25, paired t-test: p=0.452, figure 4A). Both Ex-4 and MK-667 evoked calcium responses 

in SD (n=14 neurons from 3 rats, figure 4B) and WKY (n=37 neurons from 3 rats, figure 4C) 

rats. No strain difference in the amplitude of response was detected for Ex-4 (p=0.39). The 

amplitude of response to MK-667, however was larger in WKY rats (p=0.05). Ex-4 applied 

post-exposure to MK-667 resulted in an enhanced calcium response, such that the amplitude 

was significantly larger than the control Ex-4 response in SD (repeated measures ANOVA, 

F(2,13)=8.9, p=0.0023, figure 4B) and in WKY (repeated measures ANOVA, F(2, 

36)=39.13, p<0.001, figure 4C) rats. Moreover, between strains, the potentiated Ex-4 

response was significantly larger in WKY rats (t-test: p=0.0009).  
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MK-667 potentiates Ex-4-evoked smooth muscle colonic contractile activity. 

To assess if the potentiation of Ex-4-evoked excitatory activity in myenteric neurons had a 

functional impact on colonic smooth muscle activity, colonic tissue was suspended in gut 

baths in the circular and longitudinal orientations. The cholinergic agonist, carbachol (1µM) 

was applied to the tissue at the beginning and the end of the experiment to evoke a maximal 

response. No run-down in response was detected in either circular (n=6, t-test, p=0.29) or 

longitudinal muscle (n=6, p=0.78). Baseline colonic circular smooth muscle contractions are 

regular in SD rats, with reasonably consistent amplitude and frequency (figure 5A). The 

pattern of circular muscle contractile activity in WKY rats appears more erratic (figure 5B) 

and the amplitude of contractions was reduced (p=0.01, t-test). Longitudinal muscle 

contractile activity in SD rats (figure 5C) is also less erratic than the pattern of activity in the 

WKY rat (figure 5D), which is also of lower amplitude (p=0.009, t-test). However, no 

differences in the frequency of contractions was detected between strains in either circular 

(p=0.427) or longitudinal muscle (p=0.467). As a combined measure of amplitude and 

duration of contractions above baseline, area under the curve (AUC) was compared between 

strains in remaining experiments.  

 

In SD circular muscle, Ex-4 (10µM, 10min) modified the pattern of contraction (n=6, figure 

5A), a response that was reproducible upon repeated application. The response was 

attenuated in the presence of the neurotoxin, tetrodotoxin (100nM, n=5, p=0.025), indicating 

that the action of Ex-4 is primarily neurally-regulated. However, the post-MK-667 (1µM, 

20min) response evoked by Ex-4 was potentiated (repeated measures ANOVA, F(2, 

5)=5.576, p=0.024, figure 5A) with evidence of increased amplitude and frequency of 

contractions, and a notable increase in colonic tone. In WKY circular muscle, Ex-4 
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suppressed the aberrant activity noted at baseline (n=6, figure 5B). The post-MK-667 

application of Ex-4 stimulated increased colonic tone and circular contractile activity 

(repeated measures ANOVA, F(2, 5)=5.2, p=0.028). Despite differences in baseline 

contractile activity, the potentiated response did not differ between strains (t-test, p=0.73). 

 

In SD colonic tissue suspended to record longitudinal muscle activity, the amplitude of 

colonic contractions was suppressed by Ex-4 (n=6, figure 5C) with a decrease in muscle tone. 

However, the effect of Ex-4 was not attenuated significantly by tetrodotoxin (n=5, p=0.166). 

After exposure to MK-667, Ex-4 evoked an increase in colonic tone and more contractile 

activity (repeated measures ANOVA, F(2, 4)=5.27, p=0.035, figure 5C), although the 

synchronicity of the response was lost. In WKY rat colons, Ex-4 suppressed tonic 

longitudinal muscle contractile activity, but the post-MK-667 response evoked by Ex-4 was 

potentiated (repeated measures ANOVA, F(2, 5)=4.32, p=0.044, figure 5D), with a large 

increase in tone and loss of synchronous contractions. The potentiated response in 

longitudinal muscle contractile activity did not differ between strains (n=5, t-test, p=0.413). 

While MK-667 appears to sensitize the colon of both rat strains to the actions of the GLP-1R 

agonist, the patterns of baseline contractile activity vary considerably between SD and WKY 

rats. 

 

Potentiation of Exendin-4 evoked vagal nerve firing by MK-667. 

To determine if the GHSR-1 agonist can sensitize afferent nerve signaling to Ex-4, 

extracellular recordings of colonic vagal nerve fibers were undertaken. In an isolated 

chamber, vagal nerve activity was recorded in response to stimulation of a colonic LMMP 

tissue preparation. Application of Ex-4 (10µM, 10 min) to SD distal colon LMMP stimulated 

a rapid but short-lived increase in vagal nerve firing (n=6 rats, figure 6A). Similarly, Ex-4-
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evoked increase in compound vagal nerve activity in WKY rats (n=6 rats, figure 6B). 

Exposure to the GHSR-1 agonist, MK-667 also evoked a similar afferent nerve response in 

both strains, however, re-application of Ex-4 post-MK-667 resulted in a significantly larger 

increase in vagal firing than the control Ex-4. This potentiation was evident in both SD 

(repeated measures ANOVA, F(2,5)=17.6, p=0.033, figure 6A) and WKY (repeated 

measures ANOVA, F(2,5)=13.05, p=0.027, figure 6B) rats and did not significantly differ 

between strains (t-test: p=0.073). The duration of the response was over twice as long in 

WKY rats as compared to SD rats (SD: 1.46 ±0.61 min, WKY: 3.68 ±0.84 min) although it 

didn’t quite reach statistical significance (t-test: p=0.058). Repeated application of Ex-4 in the 

absence of MK-667 did not result in an enhanced neural response (3.22 ±0.55 vs 3.61 ±0.74, 

n=3 t-test: p=0.694), indicating that exposure to MK-667 was the likely cause for the 

potentiated response. 

 

  



20 
 

Discussion  

In many IBS patients, ingestion of a meal leads to exacerbation of symptoms, including 

abdominal bloating and pain, and diarrhea14-16. The cellular mechanisms underlying this acute 

exacerbation of symptoms is likely to involve both endocrine and afferent nerve signaling. In 

our study, we have used the stress-sensitive WKY rat, which exhibits visceral pain 

hypersensitivity30,34 and increased stress-related defecation32 to determine if endocrine-

mediated modification of GI function differs in an animal model of bowel dysfunction. We 

investigated if ghrelin, which peaks prior to meal ingestion, sensitized colonic intrinsic and 

extrinsic neurons to the neurostimulatory actions of GLP-1. Our findings indicate that the 

ghrelin receptor agonist, MK-667, sensitizes colonic enteric neurons to the neurostimulatory 

effects of a GLP-1R agonist, Ex-4 in both SD and WKY rats. However, despite similar 

neuronal responses, differences between the strains became apparent when colonic function 

was examined. Under basal conditions, WKY rats exhibited aberrant colonic contractile 

activity. Ex-4 suppressed contractile activity in both SD and WKY strains, but this response 

was altered by exposure to MK-667. However, the underlying patterns of contractile activity 

were maintained in WKY rats. In separate experiments, we found that vagal nerve activity, 

which provide the CNS with interoceptive information from the viscera, were stimulated by 

application of Ex-4 to myenteric neurons of the distal colon. Exposure to the GHSR-1 

agonist, potentiated this response. The finding that circulating GLP-1 was altered in human 

IBS-D patients suggested that our mechanistic findings in the rat model may be translatable 

to the human functional bowel disorder.  

 

Ghrelin is primarily secreted by gastric epithelial cells thus it was unsurprising that no ghrelin 

was detected in secretions from colonic biopsies. Nonetheless, acetylated ghrelin, the 

endogenous ligand for GHSR-1, has a reasonably long half-life of ~10 minutes41 and can 
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activate colonic enteric neurons42. Indeed, MK-667 stimulated a short-lived increase in 

[Ca2+]i in submucosal and myenteric neurons prepared from rat colons. We previously 

demonstrated that IBS plasma, which contains neurostimulatory soluble mediators, such as 

corticotrophin-releasing factor and interleukin-6, which are not present in plasma from 

healthy controls, evokes larger calcium responses in enteric neurons38,39. However, blocking 

GHSR-1 did not alter calcium responses evoked by IBS plasma in SD submucosal or 

myenteric neurons. Indeed, ghrelin levels were not different between healthy controls and 

IBS patients, which is consistent with a previous study43. Interestingly, the amplitude of the 

response evoked by pooled IBS plasma in WKY submucosal, but not myenteric neurons, was 

reduced in the presence of a GHSR-1 antagonist. Submucosal neurons regulate GI absorpto-

secretory function, which is altered in WKY rats33,44. These findings may indicate a possible 

role for ghrelin in absorpto-secretory dysfunction in the WKY model of IBS. However, what 

is perhaps more interesting, is the capacity of MK-667 to modify the sensitivity of enteric 

neurons to the GLP-1R agonist, Ex-4.  

 

Some17,45, but not all studies46,47 show that ghrelin can stimulate L-cells to secrete GLP-1, or 

ghrelin may prime intestinal L-cells for nutrient-induced GLP-1 secretion17, fitting with the 

temporal peak in ghrelin concentrations prior to ingestion of a meal and subsequent GLP-1 

release18. In our experiments, only supra-physiological concentrations of Ex-4 evoked small, 

short-lived increases in intracellular calcium in both submucosal and myenteric neurons. This 

may reflect a mechanism where local L-cell activation facilitates the accumulation of higher 

concentrations of GLP-1 to activate enteric neurons through paracrine mechanisms. However, 

research demonstrating that feeding status tunes the sensitivity of myenteric neurons to 

orexigenic or anorexigenic molecules2,48, and our finding that GHSR-1 activation sensitizes 

enteric neurons to Ex-4, could explain how colonic neurons gain sensitivity to post-prandial 
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physiological concentrations of GLP-1. This increase in sensitivity is time-limited however as 

it is not apparent 30 minutes after exposure to MK-667. GLP-1 may also contribute to the 

neurostimulatory actions of IBS plasma in both neuronal plexi of both rat strains as the GLP-

1R antagonist resulted in a decrease in the amplitude of response. However, it is likely that 

GLP-1 is just one contributory factor in the altered modulation of enteric neurons, as we have 

previously noted the importance of immune factors and circulatory hormones in this 

effect38,39,49. In our cohort we found that fasting GLP-1 was lower in IBS-D with no change 

in IBS-C patients, which contrasts with a report that indicated plasma GLP-1 was decreased 

in IBS-C patient samples50.  

 

Others have examined the functional effects of GLP-1 on mucosal secretory physiology and 

postulated that activation of submucosal GLP-1Rs leads to a decrease in neurally evoked 

chloride secretion, a pathway mediated through suppression of neural acetylcholine4. Thus, 

we focused on colonic contractile activity. Striking differences in basal smooth muscle 

contractile activity were noted in SD and WKY rats, which is similar to differences in colonic 

contractility reported between WKY and SHR rat comparators51. Sustained colonic tone and 

regular circular muscle contractions in SD rats contrasted with an erratic baseline tone and 

contractile frequency observed in WKY colons. Basal activity in longitudinal smooth muscle 

also differed between strains and combined, this is likely to underlie dysfunctional GI transit 

in WKY rats32. In SD circular muscle, Ex-4 evoked a small increase in tone and contractions 

that were more frequent but of smaller amplitude. In WKY rats, the large amplitude erratic 

contractions, characteristic of basal contractile activity, was suppressed by Ex-4. In 

longitudinal muscle, Ex-4 caused suppression of colonic contractions and tone in SD rats, 

although regular contractile activity returned following washout. In WKY rats the inhibitory 

effects of Ex-4 on longitudinal muscle contractile function was reversed upon washout, 
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although the amplitude of contractions remained suppressed. The suppressive effects of Ex-4 

in WKY rat colons are consistent with reports that GLP-1 mimetics suppress intestinal 

motility in both humans6 and rats52, and this may underpin the therapeutic benefits of GLP-1 

mimetics in IBS.  

 

Prior exposure to the GHSR-1 agonist, which aimed to replicate the peak in ghrelin prior to 

food ingestion, modified the effect of Ex-4 in circular and longitudinal muscle in both rat 

strains, although the basal pattern of contraction in each strain influenced the outcome. While 

Ex-4 applied to naïve tissue made contractile responses more quiescent and caused a decrease 

in colonic tone, re-application of Ex-4 after MK-667 exposure caused an increase in colonic 

tone and larger, more frequent contractions. In health, increased contractile activity following 

food ingestion may be important in stimulating fecal transit in preparation for the arrival of 

more luminal content. However, in pathophysiological conditions, such as IBS this 

contractile activity may contribute to abdominal pain associated with contraction of hollow 

viscera, which are the most frequently reported symptoms exacerbated by food intake in 

IBS15. Consistent with the potentiating effects of MK-677 on Ex-4-evoked activation of 

myenteric neurons, tetrodotoxin inhibited Ex-4-evoked suppression of basal contractile 

activity in circular muscle but not longitudinal muscle in SD rats. Given that the sensitivity of 

myenteric neurons to Ex-4 is similar between SD and WKY rats, we would expect to see a 

similar outcome in the pre-clinical IBS model, however this does need to be experimentally 

verified.  

 

The physiological mechanisms by which ROSE-010, a GLP-1 analogue, inhibits acute 

abdominal pain in IBS12 and relieves constipation in IBS patients53, remain unclear. It may be 

via an endocrine pathway, however, given the short half-life of GLP-1 in plasma, direct 
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neural signaling is also likely to be important. Spinal afferents are important in pain 

signaling, and a recent paper demonstrated expression of GLP-1Rs in DRG neurons54. 

However, GLP-1 did not directly stimulate calcium responses in these neurons. Moreover, 

the nociceptive receptor, TRPV1 was not affected by acute application of GLP-1, leading the 

authors to conclude that pain signaling is perhaps not modulated via this pathway. The vagus 

has been implicated in the pathophysiology of IBS, as it can stimulate the stress 

hypothalamic-pituitary-adrenal axis, modulate the neuro-immune axis and pain signaling 

originating in the gut, contributing to bowel dysfunction23. The dorsal motor nucleus of the 

vagus is sensitive to GLP-125 and intravenous injection of GLP can stimulate vagal firing26. 

GLP-1Rs are expressed in the nodose ganglion55, where vagal afferent neurons innervating 

the abdominal viscera are found56. Thus, central regulation of visceral pain sensitivity could 

be influenced by GLP-1. Ex-4 increased the compound neural activity in vagal nerves when it 

was applied to myenteric neurons in the distal colon. Moreover, Ex-4-evoked vagal nerve 

activation was enhanced by prior exposure to the GHSR-1 agonist.  

 

The reported exaggeration of the sensory component of the gastro-colonic response57 and 

increased colo-rectal sensitivity to balloon distension58 following food ingestion in IBS could 

be due to modulation of peripheral neurons by orexigenic and anorexigenic hormones. This 

study has provided evidence to support a role for ghrelin, which is primarily described as a 

driver of feeding, in priming both colonic enteric neurons and vagal afferents originating in 

the colon for the neurostimulatory actions of GLP-1. GLP-1 is secreted upon arrival of food 

in the small intestine but also in response to luminal molecules such as microbial factors, bile 

acids and short-chain fatty acids, which are more abundant in the distal intestine. Our data 

suggest that ghrelin receptor activation sensitizes intrinsic and extrinsic gut neurons to GLP-1 

as part of the normal physiological response to the arrival of food in the gut. However, 
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underlying dysfunction of contractile activity or gut-brain signaling, as evident in the WKY 

rat model of IBS, may dictate whether the outcome is physiological or pathophysiological. 

Thus, the temporal regulation of ghrelin and GLP-1 may contribute to the post-prandial 

exacerbation of IBS symptoms.  

  



26 
 

Acknowledgements: 

MMB and RO’B performed the research and analyzed the data. JMB contributed human 

samples. DO’M designed the research study and wrote the paper. 

Our thanks to A. Mulcahy and G. Jasionek Department of Physiology, University College 

Cork, Ireland for help in preparing this manuscript. 

 

Funding:  

This work was supported by a grant from TRAP funding, School of Medicine, UCC. RO’B is 

supported by the Department of Physiology, University College Cork, Ireland.  

 

Conflicts of Interest: No competing interests declared. 

  



27 
 

References 

1. Avau B, Carbone F, Tack J, Depoortere I. Ghrelin signaling in the gut, its physiological 
properties, and therapeutic potential. Neurogastroenterol Motil. 2013;25(9):720-732. 

2. Roosen L, Boesmans W, Dondeyne M, Depoortere I, Tack J, Vanden Berghe P. Specific 
hunger- and satiety-induced tuning of guinea pig enteric nerve activity. The Journal of 
physiology. 2012;590(17):4321-4333. 

3. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7-
36)amide and glucose-dependent insulinotropic polypeptide secretion in response to 
nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 
1993;138(1):159-166. 

4. Baldassano S, Wang GD, Mule F, Wood JD. Glucagon-Like Peptide-1 Modulates Neurally-
Evoked Mucosal Chloride Secretion in Guinea Pig Small Intestine In Vitro. Am J Physiol 
Gastrointest Liver Physiol. 2011. 

5. Nakade Y, Tsukamoto K, Iwa M, Pappas TN, Takahashi T. Glucagon like peptide-1 accelerates 
colonic transit via central CRF and peripheral vagal pathways in conscious rats. Auton 
Neurosci. 2007;131(1-2):50-56. 

6. Hellstrom PM, Naslund E, Edholm T, et al. GLP-1 suppresses gastrointestinal motility and 
inhibits the migrating motor complex in healthy subjects and patients with irritable bowel 
syndrome. Neurogastroenterol Motil. 2008;20(6):649-659. 

7. Schirra J, Houck P, Wank U, Arnold R, Göke B, Katschinski M. Effects of glucagon-like 
peptide-1(7-36)amide on antro-pyloro-duodenal motility in the interdigestive state and with 
duodenal lipid perfusion in humans. Gut. 2000;46(5):622-631. 

8. Schirra J, Nicolaus M, Roggel R, et al. Endogenous glucagon-like peptide 1 controls endocrine 
pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut. 2006;55(2):243-
251. 

9. Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a 
meta-analysis. Clin Gastroenterol Hepatol. 2012;10(7):712-721 e714. 

10. Enck P, Aziz Q, Barbara G, et al. Irritable bowel syndrome. Nat Rev Dis Primers. 
2016;2:16014. 

11. El-Salhy M, Seim I, Chopin L, Gundersen D, Hatlebakk JG, Hausken T. Irritable bowel 
syndrome: the role of gut neuroendocrine peptides. Front Biosci (Elite Ed). 2012;4:2783-
2800. 

12. Hellstrom PM, Hein J, Bytzer P, Bjornsson E, Kristensen J, Schambye H. Clinical trial: the 
glucagon-like peptide-1 analogue ROSE-010 for management of acute pain in patients with 
irritable bowel syndrome: a randomized, placebo-controlled, double-blind study. Aliment 
Pharmacol Ther. 2009;29(2):198-206. 

13. Mosinska P, Salaga M, Fichna J. Novel investigational drugs for constipation-predominant 
irritable bowel syndrome: a review. Expert Opin Investig Drugs. 2016;25(3):275-286. 

14. Cabre E. Irritable bowel syndrome: can nutrient manipulation help? Current opinion in 
clinical nutrition and metabolic care. 2010;13(5):581-587. 

15. Morcos A, Dinan T, Quigley EM. Irritable bowel syndrome: role of food in pathogenesis and 
management. Journal of digestive diseases. 2009;10(4):237-246. 

16. Ragnarsson G, Bodemar G. Pain is temporally related to eating but not to defaecation in the 
irritable bowel syndrome (IBS). Patients' description of diarrhea, constipation and symptom 
variation during a prospective 6-week study. European journal of gastroenterology & 
hepatology. 1998;10(5):415-421. 

17. Gagnon J, Baggio LL, Drucker DJ, Brubaker PL. Ghrelin Is a Novel Regulator of GLP-1 
Secretion. Diabetes. 2015;64(5):1513-1521. 

18. DeMarco VG, Sowers JR. Ghrelin: a new incretin enhancer therapy? Diabetes. 
2015;64(5):1500-1502. 



28 
 

19. Tschop M, Wawarta R, Riepl RL, et al. Post-prandial decrease of circulating human ghrelin 
levels. J Endocrinol Invest. 2001;24(6):RC19-21. 

20. Carr RD, Larsen MO, Jelic K, et al. Secretion and dipeptidyl peptidase-4-mediated 
metabolism of incretin hormones after a mixed meal or glucose ingestion in obese 
compared to lean, nondiabetic men. The Journal of clinical endocrinology and metabolism. 
2010;95(2):872-878. 

21. Amato A, Cinci L, Rotondo A, et al. Peripheral motor action of glucagon-like peptide-1 
through enteric neuronal receptors. Neurogastroenterol Motil. 2010;22(6):664-e203. 

22. Bradette M, Delvaux M, Staumont G, Fioramonti J, Bueno L, Frexinos J. Evaluation of colonic 
sensory thresholds in IBS patients using a barostat. Definition of optimal conditions and 
comparison with healthy subjects. Dig Dis Sci. 1994;39(3):449-457. 

23. Bonaz B, Sinniger V, Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in 
the Pathology of the Gastrointestinal Tract. Front Immunol. 2017;8:1452. 

24. Altschuler SM, Escardo J, Lynn RB, Miselis RR. The central organization of the vagus nerve 
innervating the colon of the rat. Gastroenterology. 1993;104(2):502-509. 

25. Holmes GM, Browning KN, Tong M, Qualls-Creekmore E, Travagli RA. Vagally mediated 
effects of glucagon-like peptide 1: in vitro and in vivo gastric actions. The Journal of 
physiology. 2009;587(Pt 19):4749-4759. 

26. Bucinskaite V, Tolessa T, Pedersen J, et al. Receptor-mediated activation of gastric vagal 
afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil. 2009;21(9):978-
e978. 

27. Burke NN CJ, Deaver DR, Roche M, Finn DP, Kelly J. Sex differences and similarities in 
depressive- and anxiety-like behaviour in the Wistar-Kyoto rat. Physiol Behav. 2016;167:28-
34. 

28. O'Mahony SM, Coelho AM, Fitzgerald P, et al. The effects of gabapentin in two animal 
models of co-morbid anxiety and visceral hypersensitivity. Eur J Pharmacol. 2011;667(1-
3):169-174. 

29. Martinez V, Ryttinger M, Kjerling M, Astin-Nielsen M. Characterisation of colonic 
accommodation in Wistar Kyoto rats with impaired gastric accommodation. Naunyn 
Schmiedebergs Arch Pharmacol. 2007;376(3):205-216. 

30. Gunter WD, Shepard JD, Foreman RD, Myers DA, Greenwood-Van Meerveld B. Evidence for 
visceral hypersensitivity in high-anxiety rats. Physiol Behav. 2000;69(3):379-382. 

31. Rittenhouse PA, Lopez-Rubalcava C, Stanwood GD, Lucki I. Amplified behavioral and 
endocrine responses to forced swim stress in the Wistar-Kyoto rat. 
Psychoneuroendocrinology. 2002;27(3):303-318. 

32. O'Malley D, Julio-Pieper M, Gibney SM, Dinan TG, Cryan JF. Distinct alterations in colonic 
morphology and physiology in two rat models of enhanced stress-induced anxiety and 
depression-like behaviour. Stress. 2010;13(2):114-122. 

33. O'Malley D, Dinan TG, Cryan JF. Interleukin-6 modulates colonic transepithelial ion transport 
in the stress-sensitive wistar kyoto rat. Front Pharmacol. 2012;3:190. 

34. O'Mahony SM, Bulmer DC, Coelho AM, et al. 5-HT(2B) receptors modulate visceral 
hypersensitivity in a stress-sensitive animal model of brain-gut axis dysfunction. 
Neurogastroenterol Motil. 2010;22(5):573-578, e124. 

35. o'malley D, Julio-Pieper M, Gibney SM, Gosselin RD, Dinan TG, Cryan JF. Differential stress-
induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto 
rat. Neurogastroenterol Motil. 2010;22(3):301-311. 

36. Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal 
signals in obesity. J Nutr Biochem. 2013;24(10):1663-1677. 

37. Buckley MM, O'Malley D. Development of an ex Vivo Method for Multi-unit Recording of 
Microbiota-Colonic-Neural Signaling in Real Time. Front Neurosci. 2018;12:112. 



29 
 

38. Buckley MM, O'Halloran KD, Rae MG, Dinan TG, O'Malley D. Modulation of enteric neurons 
by interleukin-6 and corticotropin-releasing factor contributes to visceral hypersensitivity 
and altered colonic motility in a rat model of irritable bowel syndrome. The Journal of 
physiology. 2014;592(23):5235-5250. 

39. O'Malley D, Buckley MM, McKernan DP, Quigley EM, Cryan JF, Dinan TG. Soluble mediators 
in plasma from irritable bowel syndrome patients excite rat submucosal neurons. Brain 
Behav Immun. 2015;44:57-67. 

40. O'Malley D, Dinan TG, Cryan JF. Altered expression and secretion of colonic interleukin-6 in a 
stress-sensitive animal model of brain-gut axis dysfunction. J Neuroimmunol. 2011;235(1-
2):48-55. 

41. Tong J, Dave N, Mugundu GM, et al. The pharmacokinetics of acyl, des-acyl, and total ghrelin 
in healthy human subjects. Eur J Endocrinol. 2013;168(6):821-828. 

42. Wang Y, Chen F, Shi H, et al. Extrinsic ghrelin in the paraventricular nucleus increases small 
intestinal motility in rats by activating central growth hormone secretagogue and enteric 
cholinergic receptors. Peptides. 2015;74:43-49. 

43. El-Salhy M, Lillebo E, Reinemo A, Salmelid L. Ghrelin in patients with irritable bowel 
syndrome. International journal of molecular medicine. 2009;23(6):703-707. 

44. Hyland NP, O'Mahony SM, O'Malley D, O'Mahony CM, Dinan TG, Cryan JF. Early-life stress 
selectively affects gastrointestinal but not behavioral responses in a genetic model of brain-
gut axis dysfunction. Neurogastroent Motil. 2015;27(1):105-113. 

45. Lindqvist A, Shcherbina L, Fischer AT, Wierup N. Ghrelin Is a Regulator of Glucagon-Like 
Peptide 1 Secretion and Transcription in Mice. Front Endocrinol (Lausanne). 2017;8:135. 

46. Xu G, Hong X, Tang H, et al. Ghrelin regulates GLP-1 production through mTOR signaling in L 
cells. Mol Cell Endocrinol. 2015;416:9-18. 

47. Zhang X, Li W, Li P, et al. Intraportal infusion of ghrelin could inhibit glucose-stimulated GLP-
1 secretion by enteric neural net in Wistar rat. Biomed Res Int. 2014;2014:923564. 

48. Gallwitz B. Anorexigenic effects of GLP-1 and its analogues. Handbook of experimental 
pharmacology. 2012(209):185-207. 

49. Buckley MM, O'Brien R, Devlin M, et al. Leptin modifies the prosecretory and prokinetic 
effects of the inflammatory cytokine interleukin-6 on colonic function in Sprague-Dawley 
rats. Experimental physiology. 2016;101(12):1477-1491. 

50. Li ZY, Zhang N, Wen S, et al. Decreased glucagon-like peptide-1 correlates with abdominal 
pain in patients with constipation-predominant irritable bowel syndrome. Clinics and 
research in hepatology and gastroenterology. 2017. 

51. Allen SJ, Martinez EG, Gregorio GV, Dans LF. Probiotics for treating acute infectious 
diarrhoea. Cochrane Database Syst Rev. 2010(11):CD003048. 

52. Tolessa T, Gutniak M, Holst JJ, Efendic S, Hellstrom PM. Glucagon-like peptide-1 retards 
gastric emptying and small bowel transit in the rat: effect mediated through central or 
enteric nervous mechanisms. Digestive diseases and sciences. 1998;43(10):2284-2290. 

53. Camilleri M, Vazquez-Roque M, Iturrino J, et al. Effect of a glucagon-like peptide 1 analog, 
ROSE-010, on GI motor functions in female patients with constipation-predominant irritable 
bowel syndrome. American journal of physiology. 2012;303(1):G120-128. 

54. Anand U, Yiangou Y, Akbar A, et al. Glucagon-like peptide 1 receptor (GLP-1R) expression by 
nerve fibres in inflammatory bowel disease and functional effects in cultured neurons. PLoS 
One. 2018;13(5):e0198024. 

55. Nakagawa A, Satake H, Nakabayashi H, et al. Receptor gene expression of glucagon-like 
peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion 
cells. Auton Neurosci. 2004;110(1):36-43. 

56. Dockray GJ, Sharkey KA. Neurochemistry of visceral afferent neurones. Prog Brain Res. 
1986;67:133-148. 



30 
 

57. Simren M, Abrahamsson H, Bjornsson ES. An exaggerated sensory component of the 
gastrocolonic response in patients with irritable bowel syndrome. Gut. 2001;48(1):20-27. 

58. Simren M, Agerforz P, Bjornsson ES, Abrahamsson H. Nutrient-dependent enhancement of 
rectal sensitivity in irritable bowel syndrome (IBS). Neurogastroenterol Motil. 2007;19(1):20-
29. 

 

  



31 
 

Figure Legends 

Figure 1: Circulating GLP-1 is depressed in IBS-D samples. 

A: The box and whisker plots illustrate circulating plasma levels of (i) GLP-1 and (ii) ghrelin 

and (iii) supernatant concentration of GLP-1 in healthy controls (HCs), constipation- (IBS-C) 

or diarrhea (IBS-D) – predominant irritable bowel syndrome patient samples. B: The box and 

whisker plot and representative immunofluorescent images of GLP-1-expressing L-cells 

compare L-cell numbers in HC, IBS-C and IBS-D human colonic biopsies. Scalebar: 50µm. * 

indicates p<0.05. 

 

Figure 2: GLP-1 contributes to the neurostimulatory effects of IBS plasma. 

The box and whisker plots and representative calcium imaging traces illustrate the 

stimulatory effect of IBS plasma on A: Sprague Dawley (SD) and B: Wistar Kyoto (WKY) 

colonic submucosal (SMP) neurons. IBS plasma also stimulates myenteric (LMMP) neurons 

in C: SD and D: WKY rats. The calcium response in SMP and LMMP neurons is inhibited by 

the GLP-1 receptor antagonist, exendin (9-39) (Ex(9-39)) in both strains. The ghrelin receptor 

(GHSR-1) antagonist, YIL781 has no effect on SD SMP neurons or LMMP neurons in both 

strains, but does attenuate the response in WKY submucosal neurons. ** and *** indicate 

p<0.01 and p<0.001, respectively. 

 

Figure 3: MK-667 sensitizes submucosal neurons to Ex-4 in both Sprague Dawley and 

Wistar Kyoto colons. 

A: The box and whisker plots and sample calcium imaging traces illustrate the reproducibility 

of the calcium response evoked by Ex-4 in SD submucosal neurons. The change in 

fluorescence evoked by Ex-4 (10µM) was potentiated by exposure to MK-667 in both B: 
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Sprague Dawley and C: Wistar Kyoto rats. ** and *** indicate p<0.01 and p<0.001, 

respectively. 

 

Figure 4: MK-667 potentiates the Ex-4-evoked response in Sprague Dawley and Wistar 

Kyoto myenteric neurons.  

A: The box and whisker plots and sample calcium imaging traces illustrate the reproducible 

calcium response evoked by Ex-4 (10µM) in Sprague Dawley myenteric neurons. B: The 

change in fluorescence in myenteric neurons evoked by Ex-4 before and after exposure to the 

ghrelin receptor agonist, MK-667 (1µM) is shown in Sprague Dawley and C: Wistar Kyoto 

rats. ** and *** indicate p<0.01 and p<0.001, respectively. 

 

Figure 5: MK-667 potentiates Ex-4 evoked contractile activity in Sprague Dawley and 

Wistar Kyoto colons.  

The box and whisker plots and representative colonic contractile activity recordings illustrate 

how Ex-4 differentially modifies circular muscle contractility in A: Sprague Dawley and B: 

Wistar Kyoto rats. Following exposure to MK-667 the response to Ex-4 is potentiated. The 

box and whisker plots and colonic contractile activity traces illustrate the effect of Ex-4 on 

baseline contractile activity in longitudinal muscle in both C: Sprague Dawley and D: Wistar 

Kyoto rats. Application of Ex-4 following exposure to MK-667 resulted in a dramatic change 

in colonic tone in both Sprague Dawley and Wistar Kyoto rats and a potentiation of the 

contractile response. * indicates P<0.05. 

 

Figure 6: Vagal nerve activity evoked by Ex-4 application to myenteric neurons is 

enhanced by exposure to MK-667. 
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The box and whisker plots and representative un-filtered and filtered extracellular recordings 

from vagal nerves, recorded superior to the stomach, show that application of Ex-4 to colonic 

myenteric neurons stimulates afferent nerve firing in both A: Sprague Dawley and B: Wistar 

Kyoto rats. While MK-667 itself evokes a moderate stimulatory response, the capacity of Ex-

4 to evoke vagal nerve firing is enhanced following exposure to MK-667 in both strains of 

rat, although this effect is potentiated in the Wistar Kyoto rat. * indicates p<0.05. 
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