
Title In vitro infectivity of the Hepatitis C Virus in the context of humoral
immunity and immune escape

Authors Naik, Amruta S.

Publication date 2017

Original Citation Naik, A. S. 2017. In vitro infectivity of the Hepatitis C Virus in the
context of humoral immunity and immune escape. PhD Thesis,
University College Cork.

Type of publication Doctoral thesis

Rights © 2017, Amruta S. Naik. - http://creativecommons.org/licenses/
by-nc-nd/3.0/

Download date 2025-06-30 11:30:17

Item downloaded
from

https://hdl.handle.net/10468/4076

https://hdl.handle.net/10468/4076


 

 

 

In vitro infectivity of the Hepatitis C 

Virus in the context of humoral 

immunity and immune escape  

 

Amruta S. Naik 
 

Department of Medicine 

National University of Ireland,  

University College Cork, 

Cork, Ireland.  

2017 

 

 

Thesis submitted for the Degree of 

Doctor of Philosophy 

Supervisors 

Dr. Liam J. Fanning (Department of Medicine, UCC), 

 Dr. Orla Crosbie and Dr. Elizabeth Kenny-Walsh  

(Department of Hepatology, Cork University Hospital) 



i  

 

Contents 

Acknowledgments .............................................................................................. vi 

Declaration ........................................................................................................ vii  

Statement of Contribution ................................................................................ viii 

List of Publications ............................................................................................ ix 

List of Abbreviations.......................................................................................... xi 

One letter amino acid code ............................................................................... xvi 

Abstract  ................................................................................................ xvii 

1. Introduction 

1.1 Hepatitis C Virus Classification ....................................................... 2     

1.2 Genome Organisation of HCV ......................................................... 3    

1.2.1 E1E2 envelope glycoproteins……………………………… . 7    

1.2.2 Quasispecies and Hypervariable regions .............................. 12     

1.3 Cellular receptors involved in HCV entry and HCV life cycle ... 15    

1.3.1 HCV as lipoviro particle ...................................................... .17    

1.4 Immune response to HCV infection ............................................... 19   

1.4.1 Innate immune response ....................................................... 19    

1.4.2 Adaptive immune response ................................................... 21  

1.4.2.1 Cellular immune response ........................................... 22    

1.4.2.2   Humoral immune response  ...................................... 24   

1.5 Epidemiology and geographical distribution…………………….28  

1.6 Diagnosis ........................................................................................... 31     

1.7 Signs and symptom ......................................................................... .31    

1.8 HCV treatment ............................................................................... 32      

1.8.1   HCV immunoglobulin therapy .............................................. 36   

1.9 Laboratory models to study HCV   

                1.9.1   In-Vivo models ...................................................................... 42 

1.9.2   In-vitro models ...................................................................... 43   

1.9.2.1   Serum derived HCV ................................................... .43   

1.9.2.2   HCV Replicon System ................................................ 43 

1.9.2.3   Retroviral pseudoparticles ........................................... 44   

1.9.2.4   Cell cultured HCV ....................................................... 46 

1.10 Thesis research outline .................................................................. 48  



i i  

 

2. Materials and Methods 

2.1 Materials 

2.1.1   Reagents ..................................................................................... 52 

2.1.2   Plasmids ..................................................................................... 55 

2.1.3   Antibodies .................................................................................. 56 

2.1.4 HCV serum samples ..................................................................... 56 

2.2 Methods 

2.2.1 Fractionation of viraemic sera 

2.2.1.1   Validation of Ab Spin Trap Column .............................. 58 

2.2.1.2   Separation of viraemic sera into antibody ..................... 59 

 associated virus (AAV) and antibody free virus (AFV) 

fractions 

2.2.1.3   Dissociation of antibody-virion complexes and ............ 59 

 collection of VF-Fab λ-VF-Fab and κ-VF-Fab  

2.2.1.4   Antibody- Sera (non-detectable AAV) pull down assay.60 

2.2.2 Molecular Cloning 

2.2.2.1   Nucleic acid isolation and cDNA synthesis ................... 61 

2.2.2.1a   RNA isolation from serum .......................... 61 

2.2.2.1b   cDNA synthesis ........................................... 62  

2.2.2.2    Amplification of the E1E2 region encompassing ......... 62 

HVR1 and full length E1/E2 gene 

2.2.2.3    Site directed mutagenesis ............................................. .66 

2.2.2.4    Agarose gel electrophoresis .......................................... 67 

2.2.2.5    Purification of PCR products ........................................ 67 

2.2.2.6    Cloning of PCR purified products and transformation 

2.2.2.6a   Cloning of 318 base pair product in  .............. 68 

Clone  JET PCR cloning Kit 

2.2.2.6bTransformation of pJET1.2 in One Shot........... 69 

 Top 10 Chemically Competent E.Coli 

2.2.2.6c   Cloning of full length E1E2 glycoprotein ...... 69 

 in pcDNA3.1D/V5-His-TOPO vector 

2.2.2.6d   Transformation of pcDNA3.1D/V5-His-....... 70 

TOPO  vector in SURE2 SuperComp Cells 

2.2.2.7   Restriction Digestion ..................................................... 71 



i i i  

 

2.2.2.8   Miniprep ......................................................................... 72 

2.2.2.9   Maxiprep ........................................................................ 73 

2.2.2.10 Sequencing .................................................................... .74 

2.2.2 HCVpp Based Work 

2.2.3.1   Cell lines ........................................................................ 74 

2.2.3.2   Expression of E1E2 glycoprotein in HEK-293T cells ... 75 

2.2.3.3   Analysis of expressed E1E2 glycoproteins .................... 75 

2.2.3.4   Sodium Dodecyl Sulphate-Polyacrylamide gel ............. 75  

            electrophoresis (SDS-PAGE) and Western Blotting 

2.2.3.5   Generation of HCV pseudotyped particles .................... 76  

2.2.3.6   Infectivity assay ............................................................ .81  

2.2.3.7   VF-Fab mediated neutralisation of HCVpp ................... 81 

2.2.3.8   GNA capture ELISA ...................................................... 82 

2.2.4 Colorimetric ELISA assay ......................................................... 83 

2.2.5 Epitope Mapping 

2.2.5.1   Epitope mapping of amino acid region 364-430 ........... 83 

2.2.5.2   Conformational epitope mapping of  ............................. 85 

E2 glycoprotein (residues 384-619) 

3. Humoral immune system targets clonotypic antibody associated  

Hepatitis C Virus 

3.1 Introduction ...................................................................................... 90 

3.2 Methods ........................................................................................... 92 

3.3 Results 

3.3.1 Validation of Ab Spin TrapTM column ................................. .93 

3.3.2 Separation of viraemic sera into antibody associated ........... 95   

virus and antibody free virus fraction 

3.3.3 Antibodies from AAV positive sera capture viral .............. 100 

            variants from unrelated patients 

3.3.4 Dissociation of antibody-virion complex ........................... 105 

3.3.5 Patient derived VF-Fab selectively targets homologous .... 108 

genotype 

3.3.6 Source of VF-Fab does not affect the ................................. 112 

selective binding to viral variants 



iv 

 

3.4 Discussion ...................................................................................... .115 

4. Amplification, cloning and expression of full length E1E2 glycoprotein  

from antibody associated HCV 

4.1 Introduction .................................................................................... 122 

4.2 Methods .......................................................................................... 124 

4.3 Results 

4.3.1 Cloning and expression of E1E2 glycoprotein ................... 126  

sequence  derived  from AAV 

4.3.2 Difference in the infectivity of HCVpp .............................. 129 

4.3.3 Analysis of E1E2 glycoprotein from the cell extracts ........ 131 

4.3.4    Mutations at 292 in the E1 and 388 in the HVR1 of .......... 135 

            glycoprotein related to infectivity of HCVpp1b-1-3 

4.3.4 HCVpp entry is CD81 dependant ....................................... 139 

4.4 Discussion  ................................................................................... 141 

5. Neutralisation and epitope mapping using patient derived VF-Fab 

5.1 Introduction .................................................................................... 147 

5.2 Method ............................................................................................ 150 

5.3 Results 

5.3.1 Neutralisation of antibody associated E1E2 HCVpp .......... 151 

5.3.2 Total IgG derived from sera without detectable ................. 157  

AAV shows neutralisation activity 

5.3.3 Potential epitopes targeted by VF-Fab1b-5 ........................ 160  

and VF-Fab1b-10 

5.3.4 Conformational epitope mapping of E2 ............................. 164 

5.3.5 Combination of VF-Fab significantly ................................ .168 

 reduces HCVpp infection 

5.3.6 Analysis of tolerated amino acid substitution ..................... 170 

 in predicted motifs 

5.4 Discussion ........................................................................................ .172 

6. A single amino acid change in the hypervariable region 1 of  HCV 

genotype 4a aids humoral immune escape 

6.1 Introduction .................................................................................... 182 

6.2 Methods .......................................................................................... 185 

6.3 Results 



v 

 

6.3.1 T13 yields a clonotypic population in AAV fraction ......... 186 

6.3.2 Peptide P2 shows high affinity towards VF- T13 Fab ........ 188 

6.4 Discussion .......................................................................................... 190 

 

7. Conclusion ............................................................................................ 193 

 

8. Future Directions ................................................................................. 197 

 

9. References ............................................................................................. 200 

 

10. Appendices 

 
Appendix I - List of Genbank sequences .............................................. .230 

Appendix II- Pepscan linear epitope mapping report ............................ 233 

Appendix III- Pepscan conformational epitope mapping report ........... 259 

Appendix IV- Publications .................................................................... 285 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi  

 

 

Acknowledgements 

Foremost, I would like to thank my supervisor Dr. Liam J. Fanning for his supervision, 

motivation and support throughout my PhD. I am also grateful to my co-supervisors 

Dr. Elizabeth Kenny-Walsh and Dr. Orla Crosbie for their guidance and providing the 

clinical samples. I must express my very profound gratitude to Molecular Medicine 

Ireland and University College Cork, Ireland for providing me with the research 

funding and giving me this opportunity.  

I am sincerely thankful to Dr. Arvind H. Patel and Dr. Ania Owsianka for training me 

in the HCV pseudoparticle assays and for their invaluable thoughts on my research. I 

am obliged to Dr. Arvind H. Patel for sharing their laboratory reagents with us. I take 

this opportunity to thank Professor Francois Louis-Cosset for sharing the HCV 

pseudoparticle generation system with us.  

I must mention Kathleen O'Sullivan for her valuable guidance in statistical analysis of 

my data. I am indebted to Dr. Brendan A. Palmer for his insightful comments and 

assistance throughout my PhD. I thank Dr. Kevin Hegarty, John Levis, Bernadette 

Crowley, Jacqueline Kelly, Dr. Owen Cronin, Dr. Gabriella Rizzo, Declan White, all 

the students and staff for making my stay enjoyable in the Department of Medicine. A 

special thanks to Rita Lynch for her constant support during my stay in the department.   

I need to extend a huge thanks to the ‘Suki Calves Group’ (Mary Claire O’Regan, Dr. 

Ciara Harty, Dr. Niamh Denihan, Dr. Charlotte O’Donnell and Dr. Philana 

Fernandes). I am indebted to Dr. Philana for proof reading my thesis. I am thankful to 

‘Marathi Mandal Cork’ for their constant support during these four years. I must 

acknowledge my housemates and friends for being there for me.  

I could not have done this without my father, late mother and sister. Thank you for 

being there always. To my cousins, uncles and aunts, thank you for your love and 

encouragement. To my teachers in India, thank you for motivating me and help me 

achieve this. I am grateful to each and every individual in my life for helping me 

accomplish this task.  

 

Declaration 



vii  

 

I hereby declare that all work presented in this thesis is original and entirely my own 

unless otherwise stated. This thesis has not been submitted in whole or in part for a 

higher degree to this or any other university. Any assistance and contribution by others 

to this work is acknowledged within the text. 

 

Amruta Naik 

Amruta S. Naik, B.Sc. M.Sc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii  

 

Statement of Contribution 

In this thesis I developed the Total IgG/ VF-Fab: AAV negative viraemic sera 

challenge protocol. I amplified, cloned, and expressed the full length AAV-E1E2 

glycoproteins. I generated infectious HCV pseudoparticles, carried out neutralisation 

assays and analysed the data. To generate infectious HCV pseudoparticles MLV-Gag-

Pol packaging vector, phCMV-ΔC/E1/E2 H77 construct were acquired from Professor 

Francois Louis-Cosset, INSERM, France by material transfer agreement. MLV-

luciferase reporter vector and mouse monoclonal antibodies AP33, ALP98, and 

luciferase reporter vector were kindly gifted by Dr. Arvind H. Patel, Centre for Virus 

Research, University of Glasgow, UK. Epitope mapping service was outsourced to 

Pepscan Presto, Lelystad, Netherlands and further analysis of epitope data was done 

by me. 

Dr. Ania Owsianka (Dr. Arvind H. Patel laboratory, CVR, University of Glasgow, 

UK) provided training with respect to the HCV pseudoparticle generation. Kian Harty 

(Bachelor of Science student, UCC), Ciaran J. O’Halloran (Bachelor of Science 

student, UCC), Nicole Walsh (Research Master student, MVDRL, Department of 

Medicine, UCC) carried out site directed mutagenesis of cloned E1E2 and contributed 

in downstream infectious assays. Jessica Neville (Bachelor of Science student, UCC) 

contributed in GNA ELISA assays of HEK lysates used for generating infectious HCV 

pseudoparticles.      

All other work was performed by me. 

This work was funded by Molecular Medicine Ireland, European Regional 

Development Fund, Department of Enterprise Trade and Innovation and the Higher 

Education Authority. 



ix 

 

List of Publications 

This work has been published in the following formats: 

Journal Article: 

1. Amruta S. Naik, Brendan A Palmer, Orla Crosbie, Elizabeth Kenny-Walsh, Liam 

J. Fanning  Humoral immune system targets clonotypic antibody associated 

Hepatitis C Virus  ( J. Gen Virology, 2016 Nov)  

2. Amruta S. Naik, Brendan A Palmer, Orla Crosbie, Elizabeth Kenny-Walsh, Liam 

J. Fanning A single amino acid change in the hypervariable region 1 of HCV 

genotype 4a aids humoral immune escape. (J. Gen Virology, 2016 Jun 

;97(6):1345-9 )  

3. Amruta S. Naik, Ania Owsianka, Brendan A. Palmer, Ciaran J. O’halloran, Nicole 

Walsh, Orla Crosbie, Elizabeth Kenny-Walsh, Arvind H. Patel, Liam J. Fanning 

Reverse epitope mapping of the E2 glycoprotein in antibody associated 

Hepatitis C Virus ( 

     PLOS ONE-PONE-D-17-02203R1 In Press ) 

 

Research Presentations: 

1. Oral Presentation at New Horizons in Medical Research – Dec 2016, Cork, 

Ireland. E2 glycoprotein epitope mapping in antibody associated hepatitis C virus. 

2. Poster presentation at EASL Special Conference-“New perspectives in hepatitis 

C virus infections – The roadmap for cure”-September 2016, Paris, France. E2 

glycoprotein epitope mapping in antibody associated hepatitis C virus.  

3. Poster presentation at 15th International Symposium on Viral Hepatitis and 

Liver Diseases (ISVHLD), July 2015, Berlin, Germany. Immunoglobulin purified 

from antibody associated virus from hepatitis C viraemic sera exhibit selective 

targeting of homologous HCV genotype.  

4. Oral Presentation at New Horizons in Medical Research – Dec 2015, Cork, 

Ireland. Mutations of the immunodominant epitopes lead to humoral immune 

escape of Hepatits C Virus.  



x 

 

5. Oral presentation at MMI Education & Training Annual Scientific Meeting - 

Mar 2015, Dublin, Ireland. Investigation Of antibody associated hepatitis C virus 

in the quasispecies pool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

List of Abbreviations 

3D                Three dimensional  

ΔHVR1 HCVpp lacking HVR1 

AASLD              American Association for the Study of Liver Disease 

AAV                   Antibody associated virus  

AFV  Antibody free virus  

AMP                    Ampicillin 

APO                   Apolipoprotein 

BSA                Bovine Serum Albumin  

bNAbs             Broadly neutralising antibodies  

cDNA         Complementary DNA 

CLIPS       Chemically linked peptides on scaffolds  

CLDN1      Claudin 1 

CTL           Cytotoxic T lymphocytes  

DAA            Direct acting antiviral 

DMEM              Dulbecco’s Modified Eagle Medium 

EASL         European Association for the Study of Liver 

EBOV        Ebola Virus 

EDTA      Ethylenediaminetetraacetic acid  

EIA           Enzyme immunoassays  

ER           Endoplasmic reticulum 

FBS            Foetal Bovine Serum 

FcDART    Fc dual-affinity retargeting  



xii  

 

GNA           Galanthus Nivalis Agglutinin  

HAV           Hepatitis A virus  

HBV           Hepatitis B virus 

HBsAg        Hepatitis B surface antigen 

HCV           Hepatitis C virus 

HCVpp      HCV pseudoparticle  

HCVcc       HCV cell culture derived  

HEK           Human embryonic kidney  

HIV             Human immunodeficiency virus 

HLA Histocompatibility leukocyte antigen 

HRP            Horse radish peroxidase  

Huh             Human hepatoma 7  

HVR            Hypervariable region 

IFN              Interferon 

IgVR Inter-genomic variable region 

IPS-1           IFN-β promoter stimulator protein 1 

IKK-α         IκB kinase  

IL                Interleukin 

IRES           Internal ribosome entry site 

IRF             IFN regulatory factor  

ISG             IFN-stimulated genes  

JFH1          Japenese Fulminant Hepatitis 1  

κVF-Fab   Kappa virus free Fab 



xiii  

 

λ-VF-Fab   Lambda virus free Fab 

LB              Luria Bertani  

LD              Lipid droplet 

LDL              Low density lipoprotein  

LDLR           Low density lipoprotein receptor 

LT                Liver transplant 

LVP             Lipoviral particles 

MAVS          Mitochiondrial antiviral signalling protein 

MAb             Monoclonal antibody 

MLV             Murine leukemia virus  

NANBH       non A, non B hepatitis. 

nAbs             neutralising antibodies 

NK               Natural killer cells  

Neo               Neomycin phosphotransferase  

OASs            2',5'-oligoadenylate synthetases 

OCLN           Occludin  

ORF             Open reading frame 

PAMP           Pathogen associated molecular pattern  

PAGE            Polyacrylamide gel electrophoresis 

 

PBS               Phosphate Buffered Saline  

PBST             PBS-Tween 20  

PCR              Polymerase chain reaction  

pDC              Plasmacytoid dendritic cells  



xiv 

 

PEG-IFN-α   Pegylated IFN-α 

PHHs             Primary human hepatocytes 

PKR               Protein kinase R 

PRR            Pattern recognition receptors  

qRT-PCR   quantitative real-time PCR  

RAV           Resistance associated variants 

RBA           Ribavirin  

RdRp          RNA dependent RNA polymerase  

REM          Replication enhancing mutations 

RLR           Retinoic acid-inducible gene I like receptor 

RIBA Recombinant immunoblot assay 

RIG-I         Retinoic acid inducible gene I 

RPM          Rotation per minute 

RT-PCR     Reverse transcriptase polymerase chain reaction 

SCARB1    Scavenger receptor class B member 1 

sdHCV       Serum-derived HCV 

SDM           Site directed mutagenesis 

SDS            Sodium dodecyl sulphate 

SIV             Simian immunodeficiency virus 

STAT         Signal transducer and activator of transcription  

SVR           Sustained virologic response 

TGF           Transforming growth factor  

TLR           Toll like receptor 

https://en.wikipedia.org/wiki/Simian_immunodeficiency_virus


xv 

 

TNF Tumour necrosis factor 

TRIF         TIR-domain containing adapter-inducing IFN-β  

UTR           Un-translated region 

VF-Fab      Virus free Fab  

VLDL        Very low density lipoproteins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi  

 

One letter and three letter amino acid abbreviation 

Amino acid Three letter code One letter code 

alanine ala A 

arginine arg R 

asparagine asn N 

aspartic acid asp D 

asparagine or aspartic acid asx B 

cysteine cys C 

glutamic acid glu E 

glutamine gln Q 

glutamine or glutamic acid glx Z 

glycine gly G 

histidine his H 

isoleucine ile I 

leucine leu L 

lysine lys K 

methionine met M 

phenylalanine phe F 

proline pro P 

serine ser S 

threonine thr T 

tryptophan trp W 

tyrosine tyr Y 

valine val V 

 



xvii  

 

Abstract 

The hepatitis C virus (HCV) is an enveloped RNA virus which circulates in infected 

individuals as a quasispecies. HCV encodes two highly glycosylated envelope 

glycoproteins E1E2 which is involved in fusion and entry of the virus into the 

hepatocytes. E1E2 is hypervariable in nature and is a target of the humoral immune 

system. The humoral immune system responds to chronic HCV infection by producing 

neutralising antibodies (nAb) (127). The immune system produces antibodies against 

susceptible virions which are removed from the heterogeneous virus population 

leading to the emergence of virions with modulated surface envelope proteins (53, 

230). The objective of this corpus was to analyse in vitro infectivity of the HCV in the 

context of humoral immunity and humoral immune escape.  

In this study, viraemic sera from chronically infected HCV individuals with genotype 

1a (n=5), genotype 1b (n=12), genotype 3a (n=3) and genotype 4a (n=6) were 

segregated into antibody free virus (AFV) and antibody associated virus (AAV) 

populations. All five (n=5/5) (1a), n=5/12 (1b), n=2/3 (3a) and n=1/6 (4a) showed 

detectable levels of AAV using a reverse transcriptase PCR (RT-PCR) assay. Total 

IgG and virus free Fab (VF-Fab) obtained from AAV positive sera were used to 

challenge AAV negative sera which showed no detectable levels of AAV. Selective 

targeting of clonotypic HCV variants from the quasispecies pool was documented. 

Furthermore, HCVpp (n=10) from a clonotypic AAV population were generated. A 

marked difference in the infectivity of AAV E1E2-HCVpp was observed. 40% of the 

pseudotyped viral particles were identified as being infectious. Additionally, the 

neutralisation potential of patient-derived VF-Fab obtained from HCV genotype 1a 

(n=3), genotype 1b (n=7) and genotype 3a (n=1) was studied using a HCVpp system. 
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We documented a reduction in the infectivity of HCVpp derived from AAV sequence 

when challenged with VF-Fab.  

Potential linear epitopes within the E1E2 gene junction of AAV sequences (residues 

364-430) were mapped. Prospective neutralising epitopes within the HVR1 and an 

additional epitope which overlapped with a broadly neutralising AP33 epitope were 

identified (amino acid 412-423 in E2). To assess the possible conformational or 

discontinuous epitope(s) outside the E1E2 gene junction, amino acid region 384-619 

was selected. Five binding motifs were targeted by patient-derived VF-Fab upon 

peptide mapping, of which two shared the residues with previously reported epitopes 

within CD81 binding region. One epitope lies within an immunodominant HVR1 and 

two were novel.  

Separately, longitudinal ultra-deep pyrosequencing analysis of HCV genotype 4a over 

10 years demonstrated the appearance of antibodies at discrete time points and 

extinction of the antibody associated lineage (230). Additional analysis of 4a sera 

extending to 13 years demonstrated the presence of antibodies to a viral variant two 

years after its first appearance. Subsequently, 27 amino acid HVR1 peptides were used 

to test humoral immune escape. We defined by differential peptide binding of VF-Fab 

tha immune escape was due to a single amino acid change in the HVR1.  

In summary, we provide direct evidence of natural humoral immune escape by HCV 

within the HVR1 in a chronically 4a infected patient. We successfully used a reverse 

epitope mapping strategy to identify epitopes targeted by the host humoral immune 

system. Additionally, we combined VF-Fabs which have shown binding reactivity to 

the different epitopes to further reduce HCVpp infectivity. A significant reduction in 

HCVpp infectivity (p<0.05) was observed when challenged with a combination of 
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inter genotype and subtype VF-Fabs. Our data indicate that combining the antigen 

specificity of different antibodies may be a useful strategy to reduce the in vitro 

infectivity of the HCV.  
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1. Introduction: 

1.1 Hepatitis C Virus Classification 

In the mid-1970’s, patients developed symptoms of hepatitis infection after receiving 

blood from hepatitis A (HAV) and hepatitis B (HBV) virus negative donors. The 

causative agent of this hepatitis was serologically unrelated to HAV, HBV or any other 

previously known hepatotropic viruses like Epstein-Barr virus or human 

cytomegalovirus. In the late 1980s, Choo et al. (1989), first characterised HCV as 

Non-A-Non-B  hepatitis (NANBH) (2). Choo et al. prepared cDNA libraries using 

recombinant DNA technology to identify the causative agent of the NANB hepatitis 

virus (2). Choo et al. (1989) screened ten million clones and identified a positive 

cDNA clone (clone 5-1-1) along with a larger clone (clone 81) which overlapped clone 

5-1-1 (2). The maximum size of the RNA was estimated to be 10,000 nucleotides after 

the RNA derived from an infected chimpanzee was subjected to gel electrophoresis 

and hybridised to clone 81. Further analysis revealed that the genome is single 

stranded with a single positive sense open reading frame. HCV was subsequently 

classified into the family Flaviviridae, genus Hepacivirus (3, reviewed in 4). 

However, Smith et al. (2016) have proposed a new nomenclature system for species 

belonging to the Hepacivicrus based on amino acid p-distances for NS2/ NS3 

[protease] and NS5B [RNA-dependent RNA polymerase] proteins (5). Smith et al. 

(2016) propose that HCV being the first Hepacivirus to be discovered and the type 

species of the genus should be assigned to Hepacivirus C rather than Hepacivirus A 

(5). Nonetheless, individual viral isolates of Hepacivirus C still referred to as Hepatitis 

C Virus (5).  

 

 



Chapter 1  

3 

 

1.2 Genome Organisation of HCV 

The HCV genome consists of a positive sense RNA molecule with a single opening 

reading frame (ORF) that encodes a ~3,000 amino acid HCV polyprotein. 5' and 3' 

non-coding regions flank the ORF. The 5’UTR possesses an internal ribosome entry 

site (IRES) and is 341 nucleotides long (Fig 1.1). The IRES is involved in cap-

independent translation. The 3' UTR of HCV harbours a poorly conserved region of 

30-40 nucleotides in length, a poly uridine (poly U) and a unique 98 nucleotide 

sequence which forms a stem loop structure. This stem loop is important for the 

initiation of replication and is known as the X tail (6).  

The HCV polyprotein can be divided into structural and non-structural proteins. HCV 

polyprotein is cleaved into 10 mature proteins co and post-transnationally (7). The 

core, E1 and E2 glycoproteins form the structural components of the HCV polyprotein. 

NS3-NS5B are required for replication of HCV RNA from the non-structural 

component of the polyprotein whilst P7 and NS2 are required for assembly of the viral 

particles (reviewed in 6).  

The core protein of HCV is located at the N-terminus of the precursor protein. There 

are two isoforms of core (P23 and P21) which result from multiple proteolytic 

cleavage events executed by host signal peptidase(s) (reviewed in 6). P23 is the 

immature form of core protein which is first cleaved from the 5′ terminal of HCV 

polyprotein. Mature core-P21 is formed by cleaving the 3′ terminal of P23 between 

amino acids 174 and 191 (8). The core protein forms multimeric complexes which 

fold into viral capsid protein composed of a hydrophilic domain and a hydrophobic 

domain (8, 9). Mature core P21 binds to RNA and co-localises with the endoplasmic 

reticulum (ER). Core also plays a key role in HCV replication (8, 9). 
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The envelope glycoproteins, E1 and E2, located downstream of the core protein are 

involved in the cellular entry of HCV. The glycoproteins are heavily glycosylated and 

are classified as type I transmembrane proteins with an ectodomain and a 

transmembrane domain. Detailed role of E1 and E2 in cellular entry and immune 

escape will be described later (Section 1.6.1).   

P7 is a 63 amino acid hydrophobic polypeptide and its N and C – termini are both 

orientated towards the extracellular domain (10). P7 is classified as a viroporin that 

forms a cationic channel in the lipid bilayers (10). P7 is shown to be crucial in viral 

assembly and enveloping of newly synthesised viral particles (11).  

Genes encoding for non-structural HCV proteins are located downstream of the 

structural protein region. The nomenclature for HCV polyproteins is similar to 

Flavivirus protein nomenclature. However, none of the HCV proteins are homologous 

to Flavivirus NS1, hence HCV non-structural proteins start with NS2 (12). NS2 is 

located between P7 and NS3 on the HCV polyprotein. Although the NS2/NS3 

precursor is not essential for RNA replication, the protease domain of NS2 is 

indispensable for virus production. NS2 undergoes autocatalytic cis cleavage from its 

precursor protein (12) to generate the active form. NS2 also interacts with host proteins 

that belong to the phospholipase family such as phosphatidylserine specific 

phospholipase A1 which are necessary for virion assembly (13). 

NS3 contains an N-terminal serine protease domain and an RNA helicase/NTpase 

domain within its C-terminal domain (12, 14). NS3 forms a non-covalent complex 

with NS4A, where NS4A functions as a co-factor for the enzymatic activity of NS3 

(15). The protease activity of NS3-4A is responsible for the cleavage events 

downstream of NS2/NS3. NS3-4A interferes with the host immune response by 
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inhibiting the activity of proteins essential for antiviral response thereby creating an 

environment susceptible to persistent viral infection. The helicase domain of NS3 is 

involved in polyprotein cleavage which is vital for HCV replication (14).  

NS4B is located downstream from NS4A, cleaved from the polyprotein by NS3/4A 

serine protease activity (16). It is thought that NS4B forms oligomers and in this way 

aids the alteration of ER forming a membranous web (reviewed in 17). NS4B interacts 

with other non-structural proteins and several host proteins during HCV RNA 

replication assisting in the development of HCV replication complexes, viral 

replication and assembly (18, 19).  

NS5A is a membrane associated protein with three distinct domains namely D1, D2 

and D3 (reviewed in 20). NS5A has two differently phosphorylated isoforms of 56 

kDa and 58 kDa (reviewed in 20). NS5A was found to induce accumulation of 

phosphatidylinositol 4-phosphate in membranous web structures which are associated 

with HCV RNA replication complexes by interacting with phosphatidylinositol 

4-kinase III α (PI4K-IIIα) (reviewed in 21). NS5A was also found to interact with 

apolipoprotein E (ApoE) during the RNA replication (22). NS5A also interacts with 

ApoJ, glucose stimulated apolipoprotein and co-localises with HCV core protein on 

the surface of lipid droplets during the HCV infection confirming its role in viral 

assembly (23).  

NS5B is an RNA dependant RNA polymerase. NS5B is highly conserved amongst the 

HCV strains and is an important target for antiviral drug development (24). NS5B 

contains an amino acid motif GDD, which is a distinct characteristic of all the RNA 

dependant RNA polymerases (25). Crystal structure analysis of NS5B has revealed it 

to be a tail anchored ‘right hand’ membrane protein with palm, thumb and fingers 
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subdomains (26). It is the lack of error correcting proof reading activity of NS5B and 

various selection pressures sculpt the HCV quasispecies (Section 1.6.2) 

Figure 1.1:  HCV genome organisation, polyprotein processing, and protein 

topology 

 

 

 

 

 

 

 

 

a. Positive sense single stranded HCV RNA flanked by structured 5′ and 3′ UTRs encodes a 

single open reading frame (ORF) of ~3,000 amino acids.  IRES in the 5′ UTR is involved in 

translation of the ORF, generating a large polyprotein that is organised with structural proteins 

core (C), two envelope glycoproteins (E1 and E2) in the amino-terminal third of the 

polyprotein, followed by the NS (NS2, NS3, NS4A/B and NS5A/B) replication proteins. The 

host and viral proteases cleave the polyprotein co- and posttranslationally to produce the 10 

individual HCV proteins. Coloured arrows indicate involvement of host and viral proteases in 

the proteolytic cleavage b. HCV proteins topology relative to the ER membrane. Core (forms 

a homodimer) and NS5A are anchored to intracellular ER membrane via amphipathic α-

helices. NS3 is tethered to membrane through small α-helix and via the cofactor NS4A 

implanting into the amino-terminal protease domain of NS3. E1E2 forms a heterodimer c. 

three dimensional structure of HCV. 

a. 

b.  

c.  

5′ 3′ 
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1.2.1 E1E2 envelope glycoproteins 

E1E2 is the structural protein which is released by host ER signal peptidase(s). E1 and 

E2 are type I transmembrane proteins with an amino-terminal ectodomain and 

carboxy-terminal transmembrane helix (27). E2p7NS2 is produced upon partial 

cleavage. Later NS2 is cleaved from E2p7NS2 precursor; however, E2p7 is cleaved 

inefficiently (28). This inefficient cleavage occurs as a result of transmembrane 

domains of p7 that reduces the productivity of p7/NS2 cleavage (29). This results in 

the accumulation of E2, E2p7, p7, and NS2 as cleavage products. Additionally, the 

short distance between the cleavage site of E2/p7 or p7/NS2 and the predicted 

transmembrane α-helix located downstream of the cleavage sites is thought to further 

enforce the structural limitations of these cleavage sites (30).     

The envelope protein is highly glycosylated and N-linked glycans constitute 

approximately 50% of the envelope protein ectodomain, with four and 11 potential N-

glycosylation sites in E1 and E2 respectively (31, 32). The molecular weights of 

glycosylated E1 and E2 are approximately 30kDa and 60 kDa respectively (33). The 

envelope proteins are glycosylated post-translationally by oligosaccharyltransferase 

(30). Oligosaccharyltransferases add low-branched oligosaccharide chains of nine 

residues of mannose and three residues of glucose to specific residues.  For example, 

asparagine Asn-X-Ser or Asn-X-Thr sequences are often glycosylated (where X can 

be any amino acid except for proline) (34, 35). The glycosylation sites on E1E2 are 

well conserved. The glycosylation of the viral envelope protein is important for the 

correct folding and assembly of viral particles in the cells. Mutational analysis of 

envelope protein revealed that glycans E1N1, E2N8, E2N10, and E2N11 are crucial 

for viral assembly (36). Glycans E2N1, E2N2, E2N4, E2N6, and E2N11 shield 

neutralisation sensitive epitopes from immunological targeting (36). Additionally, 
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glycans E2N1, E2N2, E2N4, and E2N6 were shown to have a role in E2 interaction 

with CD81 (36). The effect of mutations in the glycosylation sites of the envelope 

protein of HCV 1b and their interaction with the cellular chaperones was studied using 

insect cell lines (35). It was observed that in insect Spodoptera frugiperda cell lines, 

correctly folded heterodimers of functional E1E2 interact with calnexin whereas 

misfolded E1E2 dimers interact with calreticulin (35). Mutations at sites N1, N5 in the 

E1 and N1, N2 or N10 in the E2 lead to misfolding of the E1E2 complex disrupting 

the conformation of the envelope protein (35). These are the key sites which are 

involved in stabilisation of the structure, conformation and productive assembly of the 

viral particles as observed in Spodoptera frugiperda cells (35). 

After glycosylation, E1E2 either forms a non-covalent functional heterodimer 

complex by interacting with calnexin or forms non-functional aggregates containing 

disulphide bridges with the participation of calreticulin. E1 and E2 glycoproteins are 

major targets of nAb. To date, the structure of E1 (193-383) is not sufficiently 

characterised. Recently, Falson et al. (2015) have shown that E1 protein in HCVcc is 

trimeric and HCV envelope glycoproteins most probably assemble as stable trimmers 

of E1E2 heterodimers at the surface of the HCV virion (27). The N-terminal of E1 

consists of a highly conserved GXXXG motif a characteristic of transmembrane 

protein which is involved in intra-membrane protein-protein interactions (27, 37, 38). 

This GXXXG motif oligomerises to form trimmers via its transmembrane helix-helix 

association (37, 38). However, it has been observed that E1 is detected as a trimer on 

HCVcc particles, but identified as a monomer within infected cells, mostly associated 

with E2 as an E1E2 heterodimer (27, 39). Based on these data Falson et al. (2015) 

suggested that trimerisation of E1 is E2 dependent and is performed by preformed 

E1E2 during the virion assembly. Falson et al. (2015) also proposed that this 
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trimerisation of E1 could have an important role in the membrane fusion enabling 

delivery of HCV genome in the infected cells (27).   

E2 (384-747) is a well characterised subunit within the E1E2 heterodimer which forms 

a 334 residue long ectodomain (E2e) and C terminal transmembrane domain 

(reviewed in 40) (Fig 1.3). The E2 glycoprotein harbours hypervaraible regions 

(HVR1 384–410; and HVR2, residues 460–485) and an inter-genotypic variable 

region (IgVR 570-580) (reviewed in 40, Fig 1.3). Structures for some parts of E2c 

namely HVR1, HVR2 and HVR3 could not be determined due to highly disordered 

nature and poor diffraction index of these regions (41). Studies using hydrogen 

deuterium exchange and limited proteolysis have shown that the N terminal regions 

384-463 (HVR1 and HVR2) are exposed and flexible (42). The regions within or 

located near HVRs are assumed to be flexible loops (41). 

E2 is mediates viral attachment by interacting with several host proteins that include 

CD81, scavenger receptor class B type I (SCARB1) and members of the 

claudin/occludin family (reviewed in 43). Due to the highly glycosylated nature of E2e 

(11 N-glycosylation and five O-glycosylation sites) with variable degrees of micro-

heterogeneity and the difficulty in maintaining the conformation, it has been 

challenging to determine the complete structure of E2 (32, 40, 42). Circular dichroism 

and infrared spectroscopy studies have revealed that the E2 comprises of ~35% β-

sheets and ~5% α-helices, with a high degree of disorder (40). Recently Kong et al. 

(2013) analysed the crystal structure of engineered E2 core (E2c) spanning from 

residues 412-645 (Fig 1.3c, H77 isolate, genotype 1a, PDB ID: 4MWF) screening with 

the bNAb AR3C whereas Khan et al. (2014) analysed E2c spanning 456–656 (J6 

isolate, genotype 2a, PDB ID: 4NX3) (reviewed in 40). Both the studies found that 

E2c contains a central Ig-like domain (492-566) formed by four stranded lower, two 
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stranded upper β-sheets and a C- terminal four stranded β-sheets (32, 42). The Ig 

domain is surrounded by α-helices (32, 42). Negative staining of cryoelectron 

microscopic reconstruction of the E2e without TM domain (384-717) with Fab AR3C 

revealed it to be a compact globular structure (32). The truncated N-terminal region 

from E2c (384-421), which includes HVR1, likely fits next to the β-sandwich. Another 

largely truncated region 454-491 which includes HVR2 and the N476 is situated in 

the opposite face of the β-sandwich (32). The C-terminal stalk region (72 residues) 

can occupy space behind the back layer and IgVR (32) (Fig 1.2b). 

Mutagenesis and electron microscopy analysis of the CD81 binding site in the E2 

revealed that E2c contains a conserved N-terminal region (412-423), the frontal layer 

(424-453) and the CD81 binding loop (519-535) (Fig 1.2b) (32, 44). Law et al. (2008) 

identified three antigenic regions (AR) by using an antibody antigen binding fragment 

(Fab) in phage-display library of 115 clones which were generated from chronically 

infected HCV individuals (45).  AR1 is proximal and AR2 is distal to the CD81 

receptor-binding site whereas AR3 is conserved and overlaps the CD81 receptor-

binding site (45). The CD81 binding site is a target of many bNAb. It has three distinct 

conserved antigenic clusters. The first conserved antigenic region within CD81 

binding site (AS412, residues 412-423) is targeted by bNAbs AP33, HCV1, HC33.1 

and 3/11 (46-49). The second antigenic cluster (AS434, residues 434-446) consists of 

α-helix and is targeted by bNAbs HC84-1 and HC84-27 (reviewed in 49, 50). The 

third conserved antigenic region referred to as AR3 is a discontinuous region that 

consists of the entire frontal layer (which includes AS434) and the CD81 binding loop. 

A family of bNAbs AR3A, AR3B, AR3C, and AR3D target AR3 (45, 51, 52). E2 also 

contains 18 cysteine residues which are conserved across all the genotypes. These 

cysteine residues are essential in maintaining the correct topology and are involved in 
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conformational rearrangement upon viral attachment that results in the fusion stage 

(32, 42). 

a. 

 

 

b.                                                             c. 

 

 

 

 

 

 

 

 

Figure 1.2: Structure of the HCV E1E2 glycoprotein 

a. Schematic representation of the E1E2 glycoprotein of the hepatitis C virus showing, 

transmembrane domains (TMD), hypervariable regions (HVR) and intergenotypic variable 

region (IgVR) b. schematic diagram of E2c (421-645) topology modified from Kong et al. 

(2013) (32). Front layer (orange) is formed by N-terminal region residues 421–453, the Ig 

β-sandwich (blue) is formed by residues 492-566,  the CD81 binding loop is formed by 

residues 519-535, back layer  (green) is formed by residues  597–645. A flexible region 

HVR2 is denoted by dotted black lines, Nt- N terminus c. three dimensional structure of E2c 

(412-645) modified from Kong et al. (2013) using SWISS MODEL showing different 

antigenic regions (32). AS412, residues 412-423; AS434, residues 434-446 and AR3 

includes AS434 and CD81 binding loop (519-535). 
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1.2.2 Quasispecies and Hypervariable regions 

HCV has a high rate of replication with the production of estimated 1012copies/day of 

virions (53). In an infected individual HCV circulates as a swarm of minor and major 

phylogenetically closely related diverse variants called as quasispecies (25, 54). RNA 

dependant RNA polymerase’s lack of proof reading activity contributes to the 

qausipsecies nature of HCV (25). Lack of error correcting activity combined with the 

high rate of replication results in synonymous and nonsynonymous mutations (55). 

These mutations undergo either a positive or a negative selection resulting in a 

dominant variant and other related minor variants. Studies in chimpanzees and 

infected individuals have shown that cytotoxic T lymphocytes (CTL) drive HCV 

evolution (reviewed in 56, 57, 58). Erickson et al. (2001) studied four chimpanzees, 

where three animals were chronically infected for five or seven years while one animal 

was  immunised with recombinant HCV glycoprotein before virus challenge (56). 

Erickson and colleagues observed mutations in multiple epitopes which resulted in 

impaired class I major histocompatibility complex (MHC) binding and/or CTL 

recognition (56). Timm and co-workers (2004) studied evolution of immune dominant 

epitope NS3 in human histocompatibility leukocyte antigen (HLA)-B8 in two acutely 

infected subjects under PegIFN-RBA treatment in addition to 30 treatment naïve 

chronically infected individuals (57). They observed mutations within HLA-B8 

restricted epitope B8-1395 in subjects with acute HCV infection (57). Chronically 

infected individuals expressing HLA-B8 allele also showed polymorphism in the 

epitope B8-1395 (57).  Overall, this data supports that amino acid alteration can lead 

to loss of recognition by CTL giving rise to new escape mutants.  

Navas et al. (1998) studied the genetic variability in the HVR1 region of HCV 

obtained from peripheral blood mononuclear cells, liver tissues, and serum samples 
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from HCV infected patients (59). Phylogenetic analysis of HVR1 sequences 

demonstrated compartmentalisation of quasipsepcies in PBMC, liver tissues and 

serum which were obtained at the same time from chronically infected patients (59). 

Ray et al. (2005) studied the genetic variability of HCV obtained from a cohort of 

women infected with HCV contaminated anti-D immunoglobulin (60). In their 

research Ray et al. (2005) observed the highest rate of nonsynonymous change in the 

E2 gene with HVR1 being highly divergent, followed by NS2, p7, E1, NS3, and Core 

(60). These diverse variants have been demonstrated to correlate with the disease 

outcome in acute HCV infection (55). 

Multiple linear epitopes within the 27 amino acid HVR1, in the N terminus of E2 

envelope protein, have been identified as the principle target of nAbs (Fig 1.3a) (30, 

61-67). It was observed that a more diverse HVR1 population led to the establishment 

of chronic infection while infection with less diverse HVR1 population was resolved. 

Research findings by Guan et al. (2012) have shown that HVR1 of HCV-H77 has 

three functional microdomains (68). Residues at positions 14, 15 and 25-27 (397, 398 

and 408-410) are dispensable but are important for binding of the HCV envelope 

protein to the SCARB1 (68). The second microdomain lies between amino acid 

positions 16-24 (399-407) is a neutralisation epitope, however, not essential for viral 

entry (68). The third HVR1 microdomain comprised of first 13 amino acids (384-396) 

can affect HCV infectivity by modulating the binding of the envelope protein to 

SCARB1, yet not essential for viral entry (68). It has been observed that anti-SCARB1 

antibodies do not neutralise HCVpp lacking HVR1 (ΔHVR1) with the same efficiency 

as that of the wild type HCVpp harbouring HVR1 (69). Moreover, ΔHVR1 particles 

are less infectious and modulation of SCARB1 resulted into similar outcomes in the 

infectivity implying HVR1’s dependency on the SCARB1 for infectivity (70). Studies 
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have shown that HVR1 also interacts with low-density lipoprotein receptor (LDLR) 

(70). It is speculated that interaction of HVR1 with LDLR is mediated by ApoE as 

anti-ApoE antibodies neutralise wild type HCVpp more efficiently than the ΔHVR1 

particles. It was observed that the buoyant density of ΔHVR1 was higher as a result of 

reduced level of lipid association (70). Recently, Prentoe et al. (2015) studied the 

neutralisation efficacy of  IgGs (H06)  purified from genotype 1a chronic-phase 

plasma  in animals challenged with a ΔHVR1 clone J6/ JFH (71). They observed 

complete protection of animals using a heterologous antibody, underlining the 

important role of HVR1 in shielding the HCV from nAbs in vivo (71).  

Immunisation of chimpanzees with a peptide corresponding to the HVR1 protected 

against homologous HCV infection. Antibodies specific for epitopes within HVR1 

have been reported to inhibit the binding of E2 glycoprotein to cells and to block HCV 

infectivity in vitro and in vivo (72-74). However, the antibody response to the HVR1 

region is strain specific and could be non-neutralising too. Mutations within HVR1 

are associated with humoral immune escape. On the contrary, HVR2 and IgVR have 

not been observed to be a target of nAbs (Fig 1.2a) (75). However, Prentoe et al. (2015) 

observed a potential escape mutation, D476G, in the HVR2 in an animal infected with 

J6 clone harbouring HVR1. The clone with this mutation provided 6.6 fold resistance 

against H06 IgG as well as 2.0–5.8 fold resistance against MAbs AR3A, AR4A and 

AR5A (71). Deletion of HVR2 or IgVR affects the E1E2 dimerisation resulting in 

disrupted folding causing reduced CD81 binding and viral entry in the HCVpp system 

(reviewed in 76). Deletion of HVR1 and HVR2 resulted in the reduced binding to 

CD81 by a factor of about half. The available data shows that the variable regions in 

the E2 glycoprotein affect the binding of nAbs to the CD81 site (reviewed in 77). 

Alhammad et al. (2015) identified two nAbs (MAb33 and MAb36) against epitope 
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within HVR1. They observed that deletion of IgVR led to reduction in binding of these 

antibodies to indicating IgVR’s involvement in governing conformation and or 

accessibility to HVR1 (78). However, simultaneous deletion of both IgVR and HVR2 

restored the binding partially, suggesting that HVR1, HVR2 and IgVR are linked to 

the E2 structurally (Figs 1.3a) (78).  

1.3 Cellular receptors involved in HCV entry and HCV life cycle 

Entry of HCV and its lifecycle in the hepatocytes is shown in Fig 1. 3. HCV entry 

involves interaction of E1E2 glycoprotein with numerous cellular receptors including 

the LDLR (79), CD81 (80), SCARB1 (81), mannose binding lectins (82), 

asialoglycoprotein receptor (83), and glycosaminoglycans (84, reviewed in 85). 

It has been demonstrated that low-density lipoprotein receptor (LDLR) and heparin 

sulphate proteoglycans provide the initial docking for HCV. Experiments using anti-

LDLR antibodies and biochemical inhibitors of Low-density lipoprotein (LDL) 

endocytosis showed inhibition of LDL mediated endocytosis (86). Barth et al. (2003) 

showed that E2 binding was affected by highly sulphated heparan sulphate and 

heparin, and partial enzymatic degradation of heapran sulphate resulted in the 

reduction of E2 binding.  Thus, the level of sulphation of heparin sulphate influences 

the binding of E2.  As a result of these observations, Barth et al. (2003) proposed that 

E2 interacts with HSPGs which mediate the initial binding of E2 to the target cells and 

then may be transferred to another receptor for cell entry (84).  

After the initial attachment of HCV, the synchronised action of four key receptors 

facilitates entry of HCV. The receptors are known as SCARB1 (81), tetraspanin CD81 

(80) and tight-junction proteins claudin-1 (CLDN1) (87), and occludin (OCLN) (88). 

Different experimental data suggests that SCARB1 is the first entry factor in the HCV 
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infection. SCARB1 is a membrane protein with a large extracellular domain that 

separates the two C-terminal and one N-terminal short internal domains. Scarselli et 

al. (2002) have shown that SCARB1 interacts with HVR1 region in the E2 protein and 

this interaction is suggested to be important for unmasking the CD81 site (81).  

SCARB1 binds to lipoproteins and is thought to be engaged in post-attachment 

productive entry by modifying the lipid composition of the lipoprotein moiety of the 

virion and exposing the CD81 binding (89).  

CD81 is the key receptor involved in HCV attachment and entry. CD81 belongs to the 

tetraspanin family. CD81 contains two short extracellular loops and two large 

extracellular loops (80). Many experiments using antiCD81 antibodies in HCVpp and 

HCVcc system have shown inhibition of infection in primary human hepatocytes or 

hepatoma cell lines (33, 90-93). Down regulation of CD81 receptor using siRNA in 

hepatoma cells have been shown to inhibit infectivity of HCVpp and HCVcc (94).  

Tight junction protein CLDN1 has been shown to interact with CD81. It is believed 

that EGFR promotes CD81-CLDN1 complex formation by inducing CD81 diffusion 

through HRas activation and facilitates CD81-CLDN1 co-internalisation with HCV 

particles. After interaction with the CD81-CLDN1 complex, the HCV particle also 

transiently activates the PI3K-AKT pathway in order to facilitate its entry (95). 

Additionally, one other tight junction protein, OCLN, is also involved as a co-receptor 

in HCV entry. It has been reported that TNFα, produced by activated macrophages, 

increases the diffusion coefficient of CD81.  In this way, HCV entry is facilitated by 

relocalising OCLN at the basolateral membrane (96).  

 HCV particles, associated with CD81 and CLDN1, are then endocytosed by clathrin 

mediated process (97). Clathrin coated vesicles are delivered to endosomes. Promoted 
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by interaction with the cell-death-inducing DFFA-like effector b (CIDEB), the acidic 

pH in endosomes triggers the penetration of the virus by fusing with peptides in the 

envelope glycoproteins (98). Following the uncoating of the viral particle, positive 

strand RNA is released into the cytoplasm and host translational machinery is used to 

directly translate the positive strand RNA. Both viral and host proteases process the 

HCV polyprotein. The HCV capsid with nascent viral RNA is enveloped in a lipid 

bilayer harbouring E1E2 glycoprotein buds into ER and is released through host 

secretory pathways (Fig 1.3). 

1.3.1 HCV as lipoviro particle 

Thomssen et al. in 1992, showed that β-lipoproteins are associated with HCV and 

hence the HCV particles that circulate in an infected individual vary in their density 

(99). In 2002, André et al. quantified HCV RNA in the low-density fractions of plasma 

corresponding to the very-low-density lipoprotein (VLDL), intermediate-density 

lipoprotein, and LDL fractions from treatment naive chronically HCV-infected 

patients (100). It has been observed that in an infected individual HCV circulates as a 

‘lipoviral particles’ (LVP) which is associated with ApoB, ApoE HCV RNA and the 

viral core protein (reviewed in 100, 101). Buoyant density of LVPs ranges from <1.03 

to ∼1.25 g/ml (reviewed in 101). 

It has been proven that for the release of infectious HCV, VLDL assembly is needed. 

In the first stage microsomal transfer protein creates pre-VLDL species by lipidating 

ApoB (reviewed in 101). Subsequently pre-VLDLs fuse with triglyceride droplets 

derived from lipid droplets with the help of ApoE. Nascent HCV particles are released 

through the VLDL secretory pathway by exocytosis as LVPs. Upon maturation, they 

are associated with lipoproteins (reviewed in 101).  
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 Figure 1.3: Mechanism of HCV Entry  

A) HCV circulates as a lipoviral particle. HCV-LPVs first bind to HSPG, LDLR, and 

SCARB1 B) Binding to SCARB1 induces conformational changes in HCV E2 which 

facilitates binding of E2 to CD81. C) CD81 binding of HCV results in lateral membrane 

diffusion of HCV preceded by activation of signalling pathways via EGFR, Ras, and Rho 

GTPases. CLDN1 and OCLN are engaged in post viral attachment D) Clathrin-mediated 

endocytosis is initiated by HCV E2-CD81/CLDN1-complex E) The viral envelope and the 

endosomal membrane undergo fusion in a low-pH environment followed by interaction with 

cell-death-inducing DFFA-like effector b (CIDEB) (Adopted with permission from (102)). 

 

 

 

 

 



Chapter 1  

19 

 

1.4 Immune response to HCV infection 

HCV infection often remains asymptomatic delaying the immune response during 

acute infection. Neither HCV specific T-cells nor the HCV specific antibodies are 

observed until 1-2 months of HCV infection. However, HCV RNA can be detected 

within 1-3 weeks of infection (103-105). A complex interplay between host immune 

response and viral factors either leads to eradication or establishment of chronic 

infection.  

1.4.1 Innate immune response 

The host innate immune system recognises HCV infection via pattern recognition 

receptors (PRRs). Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), the 

toll-like receptors (TLRs), and the nucleotide oligomerisation domain-like receptors 

are the three classes of PRRs (106). Double stranded RNA intermediates produced 

during the replication of HCV serve as a pathogen associated molecular pattern 

(PAMP) for PRRs. TLRs play a major role in recognising either viral nucleic acid 

(TLR3, TLR7, TLR9) or viral protein (TLR2 and TLR4) PAMPs. TLR3 recognises 

ds RNA intermediates. Another PRR, RIG-I binds to the conserved 34 nucleotide 

poly-uridine core within the poly U/UC region located within the 3'UTR of the virus 

with 5'ppp motif (107, 108). This leads to a conformational change in RIG-I, followed 

by ubiquitination by the E3-ubiquitin ligase TRIM2 which in turn recruits 

mitochondria antiviral signalling protein (MAVS) (109, 110). MAVS then with 

different signalling partners activates IκB kinase (IKK) and IKK-related kinases (111, 

112), TBK1 and IKKε, which phosphorylate the transcription factors IRF3 and IRF7 

required for production of IFN-I (IFN-α and IFN-β) and IFN-λ (113). Both IFN-I and 

IFN-λ induce JAK/STAT pathway resulting in the activation of IFN-stimulated genes 

(ISGs). RLRs transduce their signals through TIR-domain containing adapter-
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inducing IFN-β (TRIF) and IFN-β promoter stimulator protein 1 (IPS-1) resulting in 

the nuclear translocation of IFN regulatory factor 3 (IRF3), and synthesis of IFN-β 

respectively (reviewed in 114). IFN-β then binds to the IFN-α/β receptor and activates 

STAT1 to form homodimers. These homodimers then translocate to gamma (γ) 

activated sequence elements in ISGs. IFN-β also stimulates uninfected neighbouring 

hepatocytes to produce ISGs. IFN induced transcriptional upregulation leads to the 

production of 3-6-base-long, 2'-to-5' linked oligoadenylates (2-5A) from ATP by 2',5'-

oligoadenylate synthetases. 2-5A in turn activates latent RNase L enzyme which upon 

dimerization cleaves single-stranded RNA at UA and UU dinucleotides. RNase L also 

induces apoptosis of infected cells by degrading cellular mRNAs and rRNAs 

(reviewed in 115). The ISG 20 kDa protein is also stimulated by IFN which acts as a 

3′-5′ exonuclease on ssRNA and supresses viral replication (reviewed in 116). P56 and 

protein kinase R (PKR) were also identified to inhibit viral and host RNA translation 

(117).  

However, HCV interferes with the IFN response which actually results in the 

attenuation of its inhibitory effects. The protease activity of NS3/4A protein of HCV 

cleaves MAVS that leads to dislodging of MAVS from mitochondrial membrane and 

interferes in the RLR signalling (110, 118). NS3/4A has also been shown to block 

TLR3 and RIG-I signalling by hydrolysis of TRIF and IPS-1(119). A study on HCV 

genotype 1b has shown that HCV NS5A inhibited PKR dimerisation and 

phosphorylation thereby inhibiting its functions (120) .  HCV core also interacts with 

STAT1 and impair IFN-induced STAT1 phosphorylation resulting into inhibition of 

downstream ISG transcription (121). 
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Plasmacytoid dendritic cells (pDC) also produce IFN-I in inflamed cells. However, in 

vitro studies have shown that in HCV infection, HCV core and NS3 induce monocytes 

to produce tumour necrosis factor α (TNF-α) which inhibits IFN-α production 

resulting into apoptosis of pDCs (122). Nature killer cells (NK) are important effector 

cells of the innate immune response. NK cells recognise antigen processed by major 

histocompatibility complexes and produce antiviral cytokines, such as IFN-γ and 

TNF-α (123). NK cells shape the T cells response directly by secreting cytokines like 

IFN-γ or by modulating DC. NK cells are capable of killing infected cells thereby 

increasing the amount of antigen available for cross-presentation to CTLs resulting  in 

an increased CD8+ T cell response (124). Tseng et al. (2002) showed that recombinant 

HCV E2 glycoprotein binds to CD81 on the NK cells and inhibits production of IFN-

γ (125). Wang et al. (2013) has offered an alternate model suggesting that that HCV 

may impair the IFN-γ response and proliferation of NK cells by up-regulation of  the 

‘Killer cell lectin-like receptor subfamily G member 1’(126). The NS5A protein of 

HCV induces the secretion of IL-10 by stimulating monocytes by interacting with 

TLR-4. IL-10 is an immunosuppressive cytokine that inhibits IL-12, which is an 

activator of NK cells. IL-10 also induces secretion of transforming growth factor 

(TGF)-β, thereby down regulating NKG2D on the NK cell surface which results in the 

functional impairment of NK cells (127).  

1.4.2 Adaptive immune response 

The adaptive immune response can be divided into the cellular immune response and 

the humoral immune response. The cellular immune response involves activation of 

phagocytes, antigen specific CTLs and the release of antiviral cytokines whilst the 

humoral immune response involves antibody mediated pathogen clearance.  
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1.4.2.1 Cellular immune response 

In HCV infected individuals, up to 40 % people clear the infection spontaneously 

(reviewed in 128, 129). However, the virus-specific T-cell response determines the 

course of acute infection. A long-lasting, strong and multi specific CTL response is 

required for viral clearance (reviewed in 128, 129).  

Both CD4+ (T helper cells) and CD8+ T (CTL) cells are produced in response to HCV 

infection (103, 130). CD4+ T cells play an important role in innate, cellular and 

antibody mediated immune response. Macrophages and DC secret Interleukin (IL) 12 

and IL-18 whereas NK cells produce IFN-γ that promotes growth of CD8+ T cells and 

CD4+ T helper 1 (Th1) cells (reviewed in 131). DC, macrophages and B cells also 

produce IL-6. IL-6 production is also stimulated by TNF-α (reviewed in 132). IL-6 

then promotes secretion of IL-4, and both IL-6 and IL-4 promote growth and 

development of CD4+ T helper 2 (Th2) cells (reviewed in 132). Th2 cells mediate B 

cell activation, antibody production, and the regulation of Th1 responses by secreting 

IL-4, IL-5, IL-6, IL-10, and IL-13 (reviewed in 133). Antigen presenting cells (DC, 

macrophages and B cells) capture, process and display the antigen. Endogenous 

antigens are loaded onto the MHC class I molecule in the ER and are presented to the 

CD8+ T cells whilst extracellular antigens, internalised by APC are presented to CD4+ 

T cells by MHC class II molecules (reviewed in 131). CD4+ Th1 cells produce antiviral 

cytokines IFN-γ, TNF-β and IL-2 (134-136). Sustained CD4+ T cell response is 

essential in viral clearance in acute HCV infection as they aid with CTL priming, 

critical in developing a protective response (134, 136). CD8+ T cells are induced at 

later time points, appearing in the blood after 8-12 weeks of infection (137). Virus-

specific CD8+ T-cells are primed by cross presentation of viral antigens from virus-

infected dying cells (138). CD8+ T cells kill the target cells and produce non-cytolytic 
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antivirals cytokines such as IFN-γ which facilitate viral elimination. Studies involving 

HCV-infected patients and chimpanzees have shown that sustained and multiple 

epitope specific CD8+ T-cell response leads to spontaneous clearance of acute HCV 

infection (103, 134, 139, 140).  

High level of viral turnover (~1012 virions/day) in the absence of proof reading activity 

by RNA dependant RNA polymerase results into frequent mutations within the viral 

genome (53). Mutations in the MHC class I restricted T cell epitopes may lead to a 

delayed T cell response affecting the outcome of cellular response in the infected 

hepatocytes (141). Escape mutations result in the downregulation of T cell responses 

and fail to effectively prime new T cells (142). HCV core impairs T cell function by 

binding to the complement component C1q (gC1qR) which leads to inhibition of 

Lck/Akt activation, decreased production of IL-12 and T cell function. Mutations in 

the T cell epitopes cause decrease in the expression of the inhibitory receptor 

programme death-1 (PD-1) (143, 144). PD-1 expression on CD4+ and CD8+ T cells 

is upregulated in HCV infection. PD-1 interacts with its ligand programme death 

ligand-1, PD-L1 (145). There are two subsets of HCV-specific CTL; the PD-

1+/CD127− subset that do not have expansion ability and are prone to apoptosis and 

the PD-1+/CD127+ subset which maintains the proliferation capacity (146). Upon 

reaching the liver, HCV-specific CTLs acquire a PD-1++/CD127- phenotype, thus 

promoting anergy in activated T cells resulting into decreased T-cell proliferation and 

cytokine release (146). It has been observed that CD4+ regulatory T cells are induced 

at a high frequency in HCV infection resulting in the increased production of IL-10 

and TGF-β  which ultimately leads to the suppression of HCV-specific CTL in patients 

(147). IL10 inhibits T cell activity by aborting T cell function when present during 

priming (148). IL-10 decreases stimulatory molecule expression on MHC class I and 
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II antigen presenting cells leading to decreased cytokine production and maturation of 

T cells (149).  

1.4.2.2 Humoral immune response 

Both structural and NS viral proteins are targeted by the antibodies in HCV infection.  

In HCV infection, nAbs and non-neutralising antibodies (non-nAbs) are produced. An 

antibody or immunoglobulin (Ig) is a “Y” shaped molecule with two identical heavy 

chains (50kDa) and two identical light chains (25kDa) connected by disulphide bonds.  

Immunoglobulins are divided into five different classes based on the type of the heavy 

chain as IgA (α), IgD (δ), IgE (ε), IgG (γ), and IgM (μ) with different effector 

functions. There are two types of Ig light chains namely kappa (κ) and lambda (λ) 

(reviewed in 150).. Each Ig molecule has a constant domain (CL, CH1, CH2, CH3, IgE 

and IgM have four constant regions per heavy chain) and an amino terminal antigen 

binding variable domain (VL, VH). The variable domain has three hypervariable 

regions in the complementarity determining regions (reviewed in 150). Antibodies 

exhibit several antiviral activities in vivo,- i) by binding to the envelope protein of 

virus by blocking the viral attachment to the host cell and interfering with the entry 

process ii) by Fc-mediated effector system by activating complement fixing pathway 

iii) this can lead to cell lysis or clearance by antibody-dependent cellular cytotoxicity 

or complement-dependent cytotoxicity (CDC) (reviewed in 151). 

IgM is the first antibody which appears shortly (average 3.7 weeks) after onset of the 

hepatitis, more specifically to the HCV capsid antigen (152). Anti-HCV IgM 

antibodies appear in both acute and chronic (71-86%) HCV infection (152-154). 

Appearance of IgM in chronic infection is an indication of constantly evolving viral 

antigenic epitopes resulting in secondary IgM response (153). IgGs appear almost 
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concurrently with IgM in HCV infection (152, 153). Chen et al. (1999) have shown 

that IgG to core protein appear first than to envelope or NS proteins (155). Chen and 

colleagues (1999) observed that with the exception of core protein, the IgG response 

to E2, NS3, NS5 and NS4 was restricted to IgG1 isotype and was low in titre (155). 

This limited class switching could be a result of limited T helper cell function and 

skewing of T helper cell subsets to HCV antigens. Regardless, absolute presence of 

anti-HCV antibodies does not differentiate between acute or chronic HCV infection. 

Cross reactive nAbs are generated against HCV envelope protein E1E2 which is a 

major target of the anti HCV humoral immune system (73, 156, 157). bNAbs which 

target conserved regions of the E1E2 glycoprotein have been shown to control HCV 

infection in cell culture and in animal models of HCV (158-160). E1 has been observed 

to generate nAb response, but E1 specific antibodies are produced in low titre in 

infected individuals (161-163). Two nAb epitopes in E1 encompassing residues 192–

202 and 264–327 have been documented (164, 165). Recently, Kong et al. (2015) have 

identified a nearly conserved immunogenic epitope within amino acid region 313-328 

in the E1 region (166). This region was recognised by sera from 30 of 92 HCV infected 

patientss and 15 of 41 vaccinee sera (166).  The induction of anti E1 specific 

antibodies against E1E2 heterodimer has been found to be more difficult to stimulate 

than to E1 alone (167). Besides, all the characterised nAb epitopes are located in the 

E2 region of envelope glycoprotein (reviewed in 61).  

Antibodies specific for epitopes within HVR1 have been reported to inhibit the 

binding of E2 glycoprotein to cells and to block HCV infectivity in vitro and in vivo 

(Fig 1.4) (72-74). However, there is no evidence that antibodies against HVR1 are 

broadly cross-neutralising and HCV pseudoparticle (HCVpp) and cell culture derived 

HCV (HCVcc) experiments have shown poor cross-neutralisation potential of isolate 
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specific nAb response to HVR1 (30, 67, 76) (129, 168, 169). A neutralising epitope 

directly downstream of HVR1 (residues 412-423) has been observed to induce nAbs 

(HCV1, AP33). These Abs block the interaction with CD81 via contact with W420 

residue (170). However, these nAbs lead to emergence of immune escape mutants as 

a result of immune selection pressure.  Furthermore, findings by Tarr et al. (2007) 

suggest that this region is less immunogenic in vivo as less than 5% of spontaneous 

resolvers have been observed to target this region (171). Additionally, two MAbs 

AR4A and AR5A target the E1E2 glycoprotein complex require correct folding of the 

envelope protein (51). Their mechanism of neutralisation is currently unknown (51). 

The CD81 binding loop within E2c has been found to elicit antibody response (32, 42, 

47). Several studies have shown that MAbs target amino acid residues 396-424, 436-

447 and 523-540 in the E2 glycoprotein (Fig 1.4) (32, 61, 172, 173). Recently, Deng 

et al. (2015) have identified three epitopes in the HCV E2 glycoprotein. The major 

epitope is located in the neutralisation face within amino acid region 421-453 and other 

two in amino acid regions 594–618 and 624–653 of E2 (Fig 1.4) (174). Nevertheless, 

in patients with persistent HCV infection, it is often observed that high titres of nAbs 

are developed yet fail to clear the infection. One of the reasons behind the failed 

humoral immune response is strain specificity of nAbs (reviewed in 58, 173).  

von Hahn et al. (2007) undertook a longitudinal study involving neutralisation of 

HCVpp generated from prototype strains H and H77 using nAbs obtained from patient 

H, from 3 weeks to 26 years post HCV infection (1977, 1991, 1992, 1995, and 2002). 

von Hahn and co-workers (2007) observed that serum samples before seroconversion 

failed to neutralise HCVpp. Reduced neutralisation efficiency was observed for 

HCVpp bearing envelope proteins from concurrent and later time point for nAbs 

collected in 1992, 1995, and 2002 in contrast to their higher neutralisation efficacy for 
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HCVpp from earlier time points (175). HCVpp clones generated in 2002 were resistant 

to neutralisation by nAbs collected at all time points. However, nAbs from unrelated 

patients efficiently neutralised all the HCVpp in the study (175). This data suggested 

that generated antibodies clear the established viral variants, but fail to neutralise 

emerging viral quasispecies leading to persistent HCV viraemia (175). 

a. 

b. 

 

 

 

 

 

 

Figure 1.4: Major monoclonal antibody epitopes in the E1E2 glycoprotein 

a. Schematic representation of monoclonal neutralising antibody epitopes in the E1E2 

glycoprotein of hepatitis C virus b. three dimensional structure of E2c (412-645) modified 

from Kong et al. (2013) using SWISS MODEL (32). Different neutralising epitopes targeted 

by MAbs are highlighted in the 3D structure.  
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1.5  Epidemiology and geographical distribution 

The liver is one of the most transplanted organs. There are a number of reasons for 

liver transplantation including the damage caused by viral hepatitis (reviewed in 176, 

177). HCV is a causative agent of viral hepatitis and approximately 3% of the world’s 

population is chronically infected with HCV (178). Globally, HCV has infected 

around 150-170 million people with 3-4 million new infections per year (179). 

HCV is a blood borne virus, transmitted primarily through contaminated blood and 

blood products associated with intravenous drug use and sexual contact. Hepatitis C 

is found worldwide. Egypt (22%), Pakistan (4.8%) and China (3.2%) have the highest 

prevalence of chronic HCV infection (180). It has been observed that following initial 

infection, up to 80% people remain asymptomatic both in the acute and early chronic 

stages (reviewed in 177). Approximately 15-40% of infected individuals resolve the 

HCV infection and 50-80% people develop chronic hepatitis (reviewed in 176, 177). 

Persistent HCV infection can lead to inflammation, liver fibrosis, cirrhosis,  

hepatocellular carcinoma and end stage liver disease (180). 

HCV exhibits a high degree of genetic diversity and differs by 30-35% within different 

genotypes at the nucleotide level (1). Based on the phylogenetic and sequence analyses 

of HCV genome, it is classified into seven genotypes (1-7) and further categorized 

into 67 confirmed and 20 provisional subtypes (1, 181, 182). At the nucleotide level 

each sub genotype differs by 15% (1). HCV genotype 1 is the most prevalent genotype 

with 83.4 million cases worldwide (46.2%, North America and Western Europe 75.8% 

and 59.0% respectively), to which East Asia constitutes 1/3 cases in total (1). Genotype 

3 is the second most prevalent with 54.3 million cases (30.1%, North America 10.4% 

and Western Europe 24.8%), followed by genotypes 2 (North America 12.0% and  
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Western Europe 10.8% ), 4 and 6 contributing 22.8% of all the cases while genotype 

5 constitutes <1% (1) (Fig 1.1). HCV genotypes 1a, 1b, 2a, and 3a are widely 

distributed globally. Genotypes 1 and 2 are primarily observed in West Africa, 3 in 

South Asia, 4 in Central Africa and the Middle East, 5 in Southern Africa, and 6 in 

South East Asia (1, reviewed in 4) (Fig.1.1). There has been only one genotype 7 

infection reported to date, which was isolated from a central African immigrant in 

Canada (182).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1  

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 1
.5

: 
G

lo
b

a
l 

P
re

v
a

le
n

ce
 o

f 
H

C
V

 

R
el

at
iv

e 
d
is

tr
ib

u
ti

o
n

 o
f 

H
C

V
 g

en
o
ty

p
es

 d
ep

en
d
in

g
 o

n
 g

lo
b
al

 b
u
rd

en
 o

f 
d
is

ea
se

 r
eg

io
n
 (

G
B

D
) 

as
 d

es
cr

ib
ed

 b
y
 W

o
rl

d
 H

ea
lt

h
 O

rg
an

is
at

io
n

. 

C
o

lo
u

re
d

 G
B

D
 r

eg
io

n
s 

co
rr

es
p
o
n
d
 t

o
 t

h
e 

co
u
n
tr

ie
s.

 P
ie

 c
h
ar

t 
co

rr
es

p
o
n
d
s 

to
 t

h
e 

p
re

v
al

en
ce

 o
f 

p
ar

ti
cu

la
r 

g
en

o
ty

p
e 

in
 t

h
at

 c
o

u
n
tr

y
. 
A

d
o

p
te

d
 w

it
h
 



Chapter 1  

31 

 

1.6 Diagnosis  

HCV infection is determined by detecting the presence of anti-HCV antibodies and 

HCV RNA. The recombinant immunoblot assay (RIBA) and enzyme immunoassays 

(EIA) were historically used for the detection of HCV infection (183). Third 

generation assays which detect a broad spectrum anti-HCV antibodies that target a 

mixture of HCV epitopes from core, NS3, NS4 and NS5 are now routinely used (184).  

Anti-HCV antibody based diagnosis is unreliable, as the seroconversion can occur 

after a long window period, of up to six months post infection (reviewed in 185). 

Hence, for early phase pre-window period diagnosis of HCV infection, techniques 

based on viral RNA detection are essential. Polymerase chain reaction (PCR) based 

techniques are used for viral RNA detection and Real time PCR offers greater 

sensitivity relative to standard PCR. Currently, the Real time PCR based automated 

platforms that are used for HCV diagnosis are sensitive and include a broader range 

of detection, detecting as low as 10-15 IU/ml (186). 

1.7 Signs and Symptoms 

Eighty percent of the infected individuals remain asymptomatic in acute HCV 

infection and are therefore undiagnosed (187). Elevated levels of liver enzymes- 

alanine aminotransferase and asparagine aminotransferase are the primary signs of 

acute phase HCV infection (185). Up to 40% of the infected individuals clear the HCV 

infection spontaneously, the rest develop chronic hepatitis (reviewed in 128, 129).  
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1.8 HCV treatment 

Until 2011, the standard therapy to treat chronic HCV infection was pegylated 

interferon-α (PEG-IFN-α) and ribavirin (RBA) treatment (188). Success of the 

treatment is measured as a sustained virological response (SVR). A patient is said to 

achieve a SVR if they remain aviraemic 24 weeks following antiviral treatment. This 

method of treatment has worked well for those infected with genotype 2 and 3, 5 and 

6 with 78%-82% demonstrating a SVR with an intermediate SVR for genotype 4 (188, 

189). However, the SVR for genotype 1 is markedly lower ranging between 42%-46% 

(188). A genome wide association study of >1600 patients in a clinical treatment trial 

with Peg-IFN-α RBA identified a single nucleotide polymorphism on chromosome 

19q13, rs12979860, which is associated with SVR (190, 191). This SNP is located 

near the IL28B gene (3 Kb upstream) which encodes type III interferon IFN-λ3. This 

gene is upregulated during the HCV infection. It was also observed that patients with 

the C/C genotype attained two fold higher SVR than patients with the C/T and T/T 

genotypes (192). However, this allele associated SVR is also dependant on the 

ethnicity of an infected individual (190, 192). Moreover, Peg-IFN-α RBA treatment 

can be associated with severe health side effects such as neuropsychiatric symptoms, 

anaemia, alopecia, pruritus, endocrine disorders, angina.  

In 2011, telaprevir and boceprevir both targeting the HCV NS3-4A serine protease 

were approved as the first generation direct-acting antivirals (DAAs) to treat HCV 

genotype 1 infection. Both were used in combination with PegIFN-RBA. This was 

termed as a triple therapy regimen which achieved a SVR of 65-75% (193, 194). 

Nonetheless, these drugs also had serious hematological and gastrointestinal side 

effects and the costs per SVR in advanced liver disease patients were found to be high 

(193, 194). The American Association for the Study of Liver Disease (AASLD) and 
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the European Association for the Study of the Liver (EASL) no longer recommends 

telaprevir and boceprevir in HCV management (195).  

Following recent developments in DAA research, the EU licensed three new antivirals 

as a part of combination therapies in 2014. These DAAs include i) simeprevir an NS3-

4A protease inhibitor which controls the HCV infection by blocking NS3 dependant 

cleavage of the HCV polyprotein. This can further lead to inhibition of RNA 

replication by blocking the likely quantity of the NS5B replicase ii)  daclatasvir, a 

pangenotypic NS5A inhibitor which inhibits formation of membranous web and 

thereby reducing the HCV RNA replicationand iii) sofosbuvir, a pangenotypic 

nucleotide analogue inhibitor of HCV RNA-dependent RNA polymerase which 

interferes with the formation of double stranded RNA  (195). Each of these DAAs in 

combination with PegIFN-RBA yielded SVR of 60-100% and are better tolerated than 

boceprevir or telaprevir alone (196, 197).   

The current focus in HCV management is to achieve viral clearance via an IFN-free 

treatment regimen. An IFN-free combination of sofosbuvir and simeprevir with or 

without RBA was tested in genotype 1 infected patients (COSMOS study) (195, 198) 

and 80 - 95% SVR rates were observed (199). Similarly, a combination of sofosbuvir 

with or without RBA resulted in 81-89% SVR rates for genotype 1 infection (200). 

Other DAAs have been approved by FDA recently, including the NS3 protease 

inhibitors Paritaprevir, the NS5A inhibitors Ledipasvir and Omitasvir; and the non-

nucleos(t)ide inhibitor, Dasabuvir. DAAs daclatasvir, sofosbuvir, ledipasvir, 

simeprevir and dasabuvir (used with ombitasvir/paritaprevir/ritonavir) have been 

added to the WHO Essential Medicines List (WHO/HIV/2016.20).  
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Although these new DAAs achieve high SVR rates, resistance associated variants 

(RAVs) are a challenge. Most commonly detected RAVs with respect to the DAA and 

their class are listed in table 1 (201). The Q80K polymorphism, observed in HCV from 

5%-48% of the patients infected with genotype 1, confers resistance to simeprevir 

reducing SVR to 58% (in combination with PegIFN-RBA) (reviewed in 202). A 

combination of simeprevir with sofosbuvir improves the performance of DAAs in 

such patients; however, this treatment regimen is limited to patients without cirrhosis. 

The S282T mutation is associated with sofosbuvir resistance. Additionally, L159F and 

V321A mutations are associated with sofosbuvir treatment resistance (reviewed in 

202). DAAs have become very important in HCV management; however, it is clear 

that the occurrence of RAVs and treatment associated variants needs to be carefully 

monitored. Additionally, prohibitive costs realistically limit DAA access to discrete 

patient cohorts with cirrhosis and end stage liver disease (203). 

A generic drug is a bioequivalent to the branded product with analogous dosage form, 

safety, strength, route of administration, quality and performance. Although the high 

costs of DAAs present a financial challenge, results of generic alternatives of these 

DAAs are promising. Data presented by Freeman et al. (2016) at The International 

Liver Congress™ organised by EASL in Barcelona, Spain, showed high SVR rates 

after treatment with generic ledipasvir/sofosbuvir (98%), and sofosbuvir/daclatasvir 

(96%) (204). In case of HCV, 12 week treatment with a branded drug sofosbuvir 

(Sovaldi©) by Gilead costs $84,000 (USD). This is in comparison to the generic 

alternative costing less than $1000 (205). An agreement on Trade Related Aspects of 

Intellectual Property Rights prepared by World Trade Organisation allows lesser 

developed countries to produce patented medications for their internal use (205). 

Recently, eleven Indian generic pharmaceutical manufacturers have signed an 
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agreement with Gilead to develop generic versions of sofosbuvir (Sovaldi©), 

ledipasvir/sofosbuvir (Harvoni©) and an investigational sofosbuvir/velpatasvir as a 

single tablet regimen to distribute in 101 developing countries. Bristol-Myers Squibb 

also has signed a royalty-free voluntary licensing agreement for daclatasvir with the 

Medicines Patent Pool for selling the drug to 115 low and middle-income countries. 

An approval from WHO Prequalification Programme or a stringent drug regulatory 

authority is still essential for the licensees to sell the generic drug. 

Table 1.1:  Most Frequent resistant associated variants (RAVs) connected with 

the DAAs 

Sr 

No 

Class of 

DAA 

Name of 

DAA 

RAV Associated 

(sub)genotype 

% occurrence 

1 NS3/4A 

protease 

inhibitor 

Simeprevir NS3- Q80K 1a 37.6 

  

 
NS3-S122T 1b 5.5 

2 NS5A 

inhibitor 

Daclatasvir NS5A-H58P 2a 50.8 

  

 
NS5A-Q30K 3a 29.2 

  
Ledipasvir NS5A-Q30K 3a 29.2 

  
Omitasvir NS5A-Q30R 4,6 55.3%,24.2% 

3 NS5B 

nucleotide 

inhibitor 

Sofosbuvir NS5A-

L31M,P58S, 

Y39H 

1b 3.8-9.7 

  

 
NS5B-L159F 1b 3.8-9.7 

4 NS5B non-

nucleotide 

inhibitor 

Dasabuvir NS5B-S556G 1b 3.8-9.7 
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1.8.1 HCV immunoglobulin therapy 

Potential HCV vaccine candidates are in clinical development since the discovery of 

HCV (reviewed in 129). There are two approaches to develop vaccine against HCV, 

one is prophylactic and the other is therapeutic vaccine for clinical use.  The goal for 

a prophylactic vaccine is to induce nAbs to envelope glycoproteins E1E2 or to induce 

a broad T-cell response (Table 1.2). Additionally, the non-structural genes of HCV are 

also targets of therapeutic vaccine (Table 1.2) (206). The goal for a therapeutic vaccine 

is to strengthen the immune response of an infected individual by passive 

immunisation. Generation of memory B cells and CD8+ T cells require help from 

CD4+ cell. In order to develop a successful preventive and/or therapeutic vaccine, 

following aspects are required to be considered i) a vaccine should be effective against 

multiple circulating HCV quasispecies ii) should induce a vigorous, sustained, long 

lived CD4+ and CD8+ T cell response targeting multiple HCV regions. should 

generate memory CD8+ T cells that can activate effector CD8+ T cells when come in 

contact with viral peptide(reviewed in 207, 208). There are several challenges in 

developing vaccine for HCV i) high rate of replication and error prone polymerase ii) 

highly hypervariable genome and heterogeneity oh HCV iii) overcoming the 

mechanisms by which HCV evades cellular as well as humoral immune response iv) 

limited animal models to study the efficacy of HCV vaccine v) designing and 

execution of efficacy clinical trials as it becomes important to prevent the development 

of chronic HCV infection.  Although DAAs function by ultimately inhibiting the 

completion of the viral life cycle, however, vaccination is the most effective long-term 

means of controlling this infectious disease. Currently, there is no prophylactic or 

therapeutic vaccine available to treat HCV (76).  
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Table 1.2: Prophylactic and therapeutic HCV vaccine candidates in preparation 

Sr. No Name Vaccine Type Vaccine candidate Stage 

1 
Chrion  

(Novartis) 

Prophylactic 

Recombinant E1E2 

(MF59C.1) 
Phase I 

2 Okarios 
Adenoviral vector expressing 

HCV NS3-NS5B 
Phase II 

3 
IC41  

(Intercell AG) 

Immunetherapeutic  

HCV peptide cocktail with 

polyargenine 

Phase II 

with PEG 

IFN 

4 

GI-5005 

(Globe 

Immune ) 

Core-NS3 protein expressed 

by yeast cells 

Phase II 

with PEG 

IFN RBV 

5 
Civacir© 

(Biotest) 
Pooled polyclonal IgGs  Phase III 

6 
TG4040 

(Transgene) 

Modified vaccinia Ankara 

virus expressing NS3-NS5B 

HCV proteins 

Phase I 

 

Both neutralising and non-neutralising antibodies are produced in response to HCV 

infection. anti-HCV antibodies that target core, NS3, NS4 and NS5 which are used in 

serological tests are diagnostic antibodies and are non-neutralising in nature (184). A 

minority of infected individuals clear HCV infection spontaneously and this requires 

a rapid, rigorous and multi-specific antiviral response by the host immune system 

(reviewed in 66, 176, 177). Several experiments using HCV pseudopartcile (HCVpp) 

and HCV cell culture derived (HCVcc) systems have revealed that point mutations of 

immune dominant epitopes within viral E2 envelope protein aid humoral immune 

escape (reviewed in 209). HCVpp and HCVcc are used to measure the neutralisation 

efficacy of antibodies (reviewed in 209). HVR1 is one target of nAbs (30, 64-67). It 

has been observed that selection pressure from nAb response shapes the evolution of 

the viral envelope protein (210-213). Mutations within HVR1 are associated with 

humoral immune escape (Fig 1.3a). Over time, immune pressure drives replication of 

HCV variants to escape targeting by nAbs raised against dominant variants, even in 
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cohorts infected with same inoculum (60, 67). Recent findings by Kong et al. (2013) 

and Khan et al. (2014) have shown that the CD81 binding loop located in the E2 core 

region (residues 519-535, GenBank accession number: AF009606) and residues 421–

453 of E2 are ideal candidates for vaccine design (Fig 1.3) (32, 42, 47). Numerous 

studies have shown that broadly neutralising antibodies (bNAbs) are elicited in the 

infection process (103, 214, 215). bNAbs are observed only in subset of patients  and 

arise after lengthy period of infection . These bNAbs are effective against multiple 

strains of HCV while NAbs which are produced in almost all infected individuals are 

mostly strain specific (reviewed in 216). 

As a prophylactic vaccine development strategy, Choo et al. (1994) immunised seven 

chimpanzees with recombinant E1E2 vaccine (derived from HCV 1a).  Choo et al. 

(1994) observed development of protective immunity against homologous HCV 1a 

genotype. Moreover, upon re-immunisation of four chimpanzees followed by 

subsequent challenge with the heterologous HCV 1a showed that three chimpanzees 

resolved the infection (217). Meunier et al. (2011) used the serum from five of the 

chimpanzees from the Choo study (n=7) to neutralise HCVpp and HCVcc expressing 

envelope glycoproteins from genotypes 1-6. A cross neutralisation activity against 

genotypes 1a, 4a, 5a and 6a, with limited reactivity against 2a and 3a in HCVpp and 

HCVcc system was observed, showing potential for development of a recombinant 

vaccine (218). In 2010, Frey et al. published findings on immunogenicity and safety 

of E1E2/MF59C.1 vaccine. A prophylactic vaccine was developed by constitutive 

expression of recombinant E1E2 derived from HCV genotype 1a in a Chinese hamster 

ovarian cell line (219). Further Phase I randomized, double-blind, placebo-controlled 

dose-escalation study involving 60 healthy subjects who received three different doses 

of HCV E1E2/MF59C.1 vaccine was carried out (219). At the end of the study, 

https://www.ncbi.nlm.nih.gov/nuccore/AF009606
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antibody response was confirmed by anti E1E2 ELISA, CD81 blocking and 

VSV/HCVpp neutralisation experiment. The vaccine successfully induced a strong T 

helper cell response. However, the neutralising antibody response to VSV/HCVpp was 

low and insignificant underlining low immunogenicity of the vaccine (219). Law et 

al. (2013) further used the antisera from the phase I clinical trial to assess the cross 

neutralisation activity in HCVcc expressing E1E2 glycoprotein from HCV genotype 

1-7. A cross neutralisation activity in two of the three tested sera against the 

representative HCV genotypes was observed (220). Wong et al. (2014), recently 

mapped epitopes within E1E2 using antisera from goat and humans immunised with 

recombinant E1E2 vaccine. Wong and colleagues observed a strong competition 

between antisera from vaccinated humans (MF59C.1) with five well characterised 

MAb AP33 (CD81-Mouse MAb E2412-423), AR3B (CD81), AR4A, AR5A, and 

IGH526.  AR4 and AR5 require properly folded E1E2 and their binding is obstructed 

by mutations within 201–206 in E1 and regions 657–659 and 692 in E2 (221). IGH526 

targets region 313-327 in E1. These results showed that the anti-HCV vaccine 

generated broadly cross- neutralising responses by targeting multiple epitopes in the 

E1E2 glycoprotein and shows promising results for clinical development of 

recombinant E1E2 HCV vaccine (221). However, studies by Frey et al. (2010) and 

Law et al. (2013) identified low titres of cross-neutralising antibody which hinders the 

vaccine efficacy (219, 220). Further research is warranted to enhance the 

immunogenicity of the vaccine either by using alum based adjuvants which enhance 

uptake of antigen by DC or immune potentiator type adjuvants that induce DC to 

produce cytokines. 

New data suggests that MAb and polyclonal antibodies have the ability to provide 

protection against HCV infection as a mean of passive immunisation (reviewed in 61, 
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222). bNAbs, which target conserved regions of the E1E2 glycoprotein, have been 

shown to control HCV infection in cell culture and in animal models of HCV (158-

160). Potent bNAbs are widely being considered as a potential therapy to treat viral 

infections (223-225). Chung and co-workers (2013) developed a fully humanised 

MAb-HCV1 which targets conserved epitope within 412-423 in the E2. A randomised, 

double-blind, placebo-controlled study in patients with HCV genotype 1a undergoing 

liver transplant (LT) was carried out (226). Chung et al. (2013) observed control of 

viraemia for 7-28 days post transplantation. A significant delayed time in viral rebound 

was observed in individuals treated with MAb-HCV1 was observed (226). Recently, 

Bukh et al. (2015) have demonstrated that polyclonal antibodies purified from chronic 

HCV patients can suppress the homologous virus in a chimpanzee for 18 weeks (227). 

Recently, Biotest Pharmaceutical has developed an investigational polyclonal 

antibody Civacir© to prevent recurrence of the hepatitis C virus after liver transplant 

surgery (Table 1.2). Recent results from randomized, open-label Phase III trial for 

Hepatitis C Immune Globulin (HCIG-Civacir©) have shown promising outcomes with 

liver transplant patients in the US (228). A study by Biotest showed that Civacir© dose-

dependently neutralised HCVpp and HCVcc expressing different patient derived 

E1E2 glycoproteins which also included variants resistant to host antibodies and 

DAAs. 

Similarly, IC-41 peptide based therapeutic vaccine which targets seven HCV T cell 

epitopes induced IFNγ producing CD4+ and CD8+ cells in healthy and difficult to 

treat subjects (reviewed in 229). TG4040 also induced T cell based immune response 

in 153 HCV 1a treatment naïve patients in Phase II study (230). GI-5005 also has been 

shown to induce antigen specific host CD4+, CD8+ immune response in clinical trial 

(231) (Table 1.2).  
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Targeting a single neutralising epitope may not be the ideal approach in HCV infection 

as sites near the nAb binding site may then mutate resulting in resistance to nAbs 

(160). Combining antigenic specificities of nAbs presents a new approach to treat 

viruses with a hypervaraible genome. A new study on H5N1 strain of influenza virus 

has shown promising use of a bispecific antibody as prophylactic and therapeutic agent 

(232). This bispecific molecule combines the neutralising capacity and specificities of 

two different neutralising monoclonal antibodies from human and murine sources. The 

hemagglutinin (HA) protein of the influenza virus harbours neutralising epitopes. 

However, the most exposed and accessible epitopes on the globular head of HA 

protein are highly variable. Zanin et al. (2015) have developed a bispecific Fc fusion 

protein, the Fc dual-affinity retargeting (FcDART) molecule. FcDART targets the 

conformational epitopes in antigenic sites located on the globular head of HA. 

FcDART provided 100% protection in mice against A/Vietnam/1203/04 challenge 

(232). Similarly, a combination of a  cocktail of ZMab and MB003 (ZMapp-c13C6, 

c2G4, and c4G7) has been shown to provide 100% protection in nonhuman primates 

post 5 days of EBOV infection (225). The MAbs c2G4, and c4G7 bind to the 

membrane proximal part of the viral glycoprotein thereby neutralising viral infectivity. 

MAb c13C6 is a non-neutralising antibody, however, it binds to the tip of the 

glycoprotein and has been suggested to be involved in the complement fixing pathway 

(225).     

Recently, Gautam et al. (2016) in their research have shown that a combination of four 

anti-HIV-1 neutralising monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 

10-1074) can confer protection  in macaques against the repeated administration of a  

low-dose of clade B simian/human virus (SIV/HIV)AD8 (233). Antibodies VRC01 
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(234)and 3BNC117 (235) target the gp120 CD4bs and antibody 10-1074 (236) is 

dependent on the presence of HIV-1 gp120 N332 glycan. Overall, the available data 

suggests that nAbs can be a potential tool of passive immunisation either singly or in 

combination. 

1.9 Laboratory models to study HCV 

After the discovery of HCV, various attempts were made to study the infection and 

replication of HCV in animal and cell culture models. Initially, due to a lack of suitable 

animal and cell culture models to study HCV, attempts to develop vaccine or the 

alternative therapies were met with difficulties. However, in recent years several new 

study models have emerged to study HCV.  

1.9.1 In-Vivo models  

The chimpanzee (Pan troglodytes), being closely genetically related to human and 

susceptible to HCV infection, has served as the only experimental model to study HCV 

to date. The chimpanzee model was used for early establishment of characteristics of 

HCV. Chimpanzees were used to establish HCV infectious clones and to study the 

immune response to HCV infection which is crucial in vaccine development (237-

240). However, chimpanzees are an endangered species, and are costly to maintain. 

Furthermore being subject of ethical debates, other animals like Tupaia belanger 

cinensis (tree shrews, phylogenetically close to primates, tamarins and marmosets 

(new world monkeys), transgenic mice, immunodeficient mice or tolerised rats 

transplanted with human hepatocytes have been used to study HCV infection (241-

244). Although xenograft models are the most advantageous of all small animal 

models, obtaining xenomic chimeras is still expensive and time consuming, limiting 

their use.  
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1.9.2 In-vitro models  

In recent years different cell culture experimental systems have been established to 

study HCV. Although most of these models provide a limited outlook on isolated 

aspects of viral life cycle, replication and pathogenicity, they have been proven to be 

invaluable source of information.  

1.9.2.1 Serum derived HCV 

Several attempts were made to culture HCV derived from infected patients however, 

due to low infectivity and difficulty in detecting RNA replication, they have been 

unsuccessful. Primary cultured human hepatocytes, B-cell lines and T-cell lines were 

successfully infected with viraemic serum. However, RNA replication was very low 

and was only detectable by quantitative real-time polymerase chain reaction (qRT-

PCR). Additionally, primary cells from humans or chimpanzees have been used to 

propagate HCV in cell culture. Iacovacci et al. (1993, 1997) infected primary foetal 

human hepatocytes with viraemic sera (54, 245). They detected a 20-fold increase in 

HCV positive strand RNA 5 days post infection. Rumin et al. (1999) infected primary 

human hepatocytes for 4 months with HCV and found a gradual increase in the RNA 

titre from ∼103 to ∼6 X 104 genome equivalents per ml (246). However, results 

obtained from the sera were not reproducible partly because of the presence of HCV 

specific antibodies in sera and the fact that results were largely donor dependent. 

1.9.2.2 HCV Replicon System    

Lohmann et al. (1999) from Bartenschlager’s lab created a sub genomic replicon based 

on genotype 1b that lacked structural genes (core, E1E2), p7 and NS2 with a selectable 

marker for neomycin phosphotransferase (neo) under the control of the HCV IRES, 

followed by a second IRES from encephalomyocarditis virus that controlled 
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expression of NS3-NS5B (Fig 1.6) (247). Synthetic RNA obtained from this construct 

in the human hepatoma cell line Huh-7 and G418 selection produced high amounts of 

self-replicating HCV RNA (1,000–5,000 positive-strand RNA molecules per cell). 

However, it has been observed that these replicons acquire ‘replication enhancing 

mutations’ (REM) in order to replicate more efficiently in transduced Huh7 cell lines. 

REMs were mainly located in the N-terminus of NS3, at two distinct amino acids in 

NS4B and in the central domain of NS5A in 1b replicons (248-251). In the case of the 

genotype 1a replicon, REMs were identified in NS3, NS4B, or NS5A (248, 252-254). 

These mutations are not observed in vivo so it is unclear how they influence viral 

replication. Genotype 6a and 2a replicons also have been made (249, 255).  

1.9.2.3 Retroviral pseudoparticles 

Retroviral pseudoparticle system emerged as the most successful experimental model 

to study the role of HCV glycoproteins in virus entry (Fig 1.6). The pseudotyped viral 

particles express full length HCV E1E2 glycoprotein. The system involves co-

transfection of human embryonic kidney cells (HEK293T) with a packaging vector 

encoding gag-pol proteins of either murine leukemia virus (MLV) or human 

immunodeficiency virus (HIV), an expression vector encoding HCV E1E2 and a 

retroviral genome encoding a reporter gene (green fluorescent protein/luciferase) (33, 

256). Upon viral protein translation, retroviral particles encapsidate replication-

defective reporter gene sequences which helps in detection of productive infection and 

are released into the media after acquiring the HCV envelope glycoprotein. HCVpp 

are then used to study the role of E1E2 glycoprotein in viral entry, various 

neutralisation assays involving antiE2 specific monoclonal antibodies or infected 

patient sera (33, 66, 256-258). HCVpp have also been widely used to study entry 

events and host cell receptors involved in the infection. For example, HCVpp were 
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used to identify and verify role of CD81, SCARB1, CLDN, OCLN, 

glycosaminoglycans, LDLR, dendritic cell-specific intercellular adhesion molecule-3-

grabbing non-integrin in viral entry (reviewed in 102). 

However, generating reliable infectious pseudoparticles from highly divergent 

populations of HCV is quite challenging (90, 92, 210). Urbanowicz et al. (2015) 

cloned E1E2 glycoproteins from patients at different stages of HCV infection and 

found 118 out of 493 clones to be infectious, each harbouring an open reading frame 

for E1E2 (258). Urbanowicz et al. (2015) also noticed a marked difference in the 

infectivity pattern of closely related clones in HCVpp system. Recently, Urbanowicz 

et al. (2016) observed a number of factors to be responsible for the infectivity of 

HCVpp. These include differences in the amounts of plasmid used, the species of 

packaging construct utilised (an appropriate retrovirus backbone) and a balance of 

delivery of plasmids encoding the packaging vector versus those encoding 

glycoproteins (172). HCVpp are produced in a non-liver cell line where they assemble 

in post-golgi compartments and/or the plasma membrane like retroviruses and hence 

do not represent the close association of HCV particles with lipoproteins as observed 

naturally.  

Nonetheless, HCVpp can be produced in large quantities and they provide flexibility 

in terms of incorporation of marker genes and allow investigation of viral entry 

independently of replication. HCVpp system has been proved to be indispensable in 

antibody screening in immunoglobulin based therapy and characterisation of several 

host factors and fusion mechanism involved in entry.  
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1.9.2.4 Cell cultured HCV  

In 2001, Kato et al. constructed a subgenomic replicon from a genotype 2a HCV strain, 

termed JFH-1, from a patient with fulminant hepatitis (Fig 1.6). The replicon was 

reported to be highly replicative without acquiring REMs (249, 259) and was hailed a 

major breakthrough in HCV research. With this replicon, it was possible to study viral 

entry, replication, genome packaging, virion assembly, maturation and release of viral 

particles. Viral particles generated using this system closely resemble the HCV viral 

particles, being 50–65 diameter (nm) (93, 260). Due to the ability of the replicon to 

interact with lipoproteins, it was now possible to study the role of lipoproteins in the 

entry of HCV (93, 260, 261). HCVcc-infected chimpanzees develop symptoms similar 

to those infected with human derived HCV (93, 260, 261). 

Similar to the HCVpp, cell culture derived HCV has been used in neutralisation assays. 

HCVcc is also neutralised by CD81 specific antibodies, confirming the CD81 

dependent entry of viral particle. Currently, many chimeric genomes are constructed 

by combining the JFH1 isolate with heterologous strains of  the major HCV genotypes. 

In these chimeric replicons, core-NS2 regions are derived from another genotype 

retaining the replicase proteins necessary for generating the membrane-bound 

replicase complex and nontranslated regions of the JFH1 isolate. An infectious, fully 

replicating HCVcc system for genotype 1a (H77-S) was developed by Yi et al. (2006) 

which was infectious for chimpanzees. However, H77-S was less infectious in 

comparison with JFH1 in vitro (262).  

However, one limitation of the cell-culture derived HCVcc is that the NS5B gene of 

JFH-1 appears to be a major determinant for efficient RNA replication (263, 264). 

Furthermore, chimeric JFH1 replicons grow in low titres and are of limited use in drug 
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discovery. Moreover, HCVcc have a higher density than plasma-derived particles 

(∼1.15 g/ml), and mostly lack ApoB (reviewed in 265). In Huh7 cells, ApoB-

containing VLDL precursors do not fuse to ApoE-containing precursors and hence 

their biochemical characteristics differ from the LPVs isolated from infected 

individuals (reviewed in 265).  

 

Figure 1.6: Systems for the study of HCV replication, entry, and infectivity 

a. Huh7 cells are electrophoresed with bicistronic replicon RNAs, encoding the HCV 

replicase proteins (NS3-NS5B) under control of a heterologous IRES from EMCV and a 

selectable marker (Neor) under control of the HCV IRES. This system helps to monitor 

replication events of HCV b. HCVpp are produced by co-transfection of HEK-293T cells with 

gag-pol of either murine leukemia virus (MLV) or human immunodeficiency virus (HIV), an 

expression vector encoding HCV E1E2 and a retroviral genome encoding a reporter gene 

(green fluorescent protein/luciferase). HCVpp provides a method to investigate entry events 

mediated by envelope protein in the HCV life cycle c. Human hepatocytes are electrophoresed 

with either JFH-1 HCV genomic RNA or chimeras of this genome with heterologous 

sequences to yield HCVcc. The HCVcc can be used to infect naïve cells or animal models. 

Productive infection is measured either by expression of reporter genes or expression of 

NS5A, or by direct measure of viral RNA. 
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1.10 Thesis research outline 

HCV establishes a chronic infection and limits the host’s capacity to develop 

protective immunity by evading the adaptive immune system (237). In an infected 

individual, HCV circulates as a population of closely related, yet heterogeneous, 

sequences: the quasispecies. The quasispecies nature of HCV allows for immune 

evasion by mutations in the epitopes which are the targets of nAbs and persistence 

may therefore require continuous virus sequence change to evade B-cell based 

immunity (266).  

In HCV infected individuals, either HCV will be targeted by antibody assisted immune 

clearance or it will evade the humoral immune system. Moreau et al. (2008) 

hypothesised that if an infected individual has generated an immune response against 

HCV, then an immune complex of antibody-virus may circulate in the blood and HCV 

virions can be separated into IgG depleted and IgG enriched virus subpopulations (Fig 

1.7). To test this hypothesis Moreau et al. (2008) used Qproteome Albumin/ IgG 

depletion columns that use immobilised MAb which have high affinity towards human 

serum albumin and human IgG.  A serum sample from treatment naive patient who 

was infected chronically with HCV genotype 4a was fractionated using Qproteome 

Albumin/ IgG depletion column (267). Clonal analysis at the HVR1 from IgG 

enriched fraction showed a homogenous population when compared with the IgG 

depleted and unfractionated serum (267). Results from Moreau study showed that 

homogenous sequence isolated from IgG enriched fraction was strongly recognised by 

humoral immune system. Analysis of both these fractions at the genomic level 

revealed that the IgG fraction can be diverse, whereas IgG enriched fraction is of 

limited heterogeneity even clonotypic in nature (212, 267, 268). 
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Similarly, longitudinal analysis of chronic hepatitis C viral infection has shown that 

the virus has several adaptive strategies that maintain persistence and infectivity over 

time. Analysis of the IgG enriched viral population from infected individuals present 

an opportunity to improve our understanding of humoral immune escape and viral 

envelope protein evolution. 

 

 

 

 

 

 

 

Figure 1.7: Column based pull down of IgG enriched viral population from 

viraemic serum 

schematic representation of column based separation of unbound IgG depleted fraction and 

IgG enriched fraction using Qproteome Albumin/ IgG depletion columns (267) . Different 

coloured shapes represent quasispecies nature of HCV.  
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It therefore becomes crucial to study humoral immune escape mechanism of HCV in 

context with mutating epitopes against which nAbs are produced.  

1) Based on previous research in Molecular Virology and Diagnostic Research Lab, 

Department of Medicine, University College Cork, in this project it was hypothesised 

that humoral immune system targets homogenous viral population from quasispecies 

population.In order to prove this hypothesis, we used protein G Ab Spin Trap 

Column (GE healthcare) to segregate antibody associated virus (AAV) and antibody 

free virus (AFV) from sera obtained from chronically HCV infected patients. Total 

IgG and virus free Fab (VF-Fab) were used to challenge the genotype/subtype 

matched sera where AAV was not detected and/or below the detectable level. 

2) E1E2 glycoprotein sequences isolated from clonotypic AAV fractions were 

hypothesised to be infectious in the HCVpp system.  To test this hypothesis, sequences 

obtained from AAV population were amplified, cloned and expressed in pcDNA3.1 

directional cloning vector. Furthermore, pseudoparticles were generated from these 

E1E2 clones to study their infectivity in vitro in Huh7 cells. 

3) Based on the available research data, it was hypothesised that E1E2 glycoprotein 

sequence from AAV fraction harbours neutralising epitopes. This was achieved by 

conducting linear and conformational epitope mapping analysis using virus free Fab 

(VF-Fab) fragments obtained from viraemic sera positive for the presence of AAV. In 

order to demonstrate that VF-Fab from AAV positive sera are neutralising in nature, 

HCVpp neutralisation assays were carried out. 

4) Previous investigation of serum samples from a treatment naïve chronically 

infected HCV 4a patient over 10 years has shown emergence, dominance and 

disappearance of distinct lineage in presence of humoral immune response. It was 
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observed that sequences targeted by humoral immune system had a single amino acid 

substitution. It was hypothesised that, a single amino acid substitution can lead to 

immune escape. To prove this, a proof of concept immune escape mutant in HCV 4a 

genotype was studied by designing peptides comprising amino acid substitution within 

the HVR1 region 
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2.1 Materials 

All reagents were stored and prepared according to the manufacturer’s guidelines. 

2.1.1 Reagents  

AB buffer kit -GZ28903059 (GE healthcare) 

Ab Spin Trap Column 11703329 (GE healthcare) 

Agarose A9414 (Sigma Aldrich)  

Anti-Human IgG (H+L), HRP conjugate W4031 (Promega) 

Bovine Serum Albumin A9418 (Sigma Aldrich)  

BCA Protein Assay Reagents A and B 23223 and 23224 (Thermo Scientific, IL, 

USA)  

Calcium phosphate transfection reagent IK278001 (Invitrogen) 

Cell Freezing Media C6164 (Sigma Aldrich) 

Clone JET PCR cloning Kit K1231 (Thermo Scientific) 

Dulbecco's Modified Eagle Medium D5796 (Sigma Aldrich)  

Dulbecco′s Phosphate Buffered Saline (DPBS) D8537 (Sigma Aldrich) 

100mM dNTP set 10966-030 (Biosciences)  

EcoRI R0101S (New England Bioscences) 

Expand High Fidelity PCR system 11732641001 (Roche) 

Fetal Bovine Serum (FBS) F9665 (Sigma Aldrich) 
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GeneJET PCR Purification Kit K0702 (Thermo Scientific) 

GloLysis buffer E2661 (Promega) 

GloBright E2620 (Promega) 

HEPES buffered saline 51558 (Sigma Aldrich) 

HindIII R0104S (New England BioLabs) 

HisGrab metal chelate plates 15143 (Thermo Scientific) 

6x-His Epitope tag antibody (His-H8) MA1-21315 (Thermo Scientific) 

HRP labelled mouse anti-Human IgG Fab antibody orb216300 (biorbyt) 

Immobilon Western Chemiluminiscent HRP substrate WBLUF0500 (Merck 

Millipore, MA, USA)  

Lectin from Galanthus nivialis (Sigma Aldrich) 

Luria-Bertani broth L3022 (Sigma Aldrich)  

Luria-Bertani Agar(Lennox) L2897 (Sigma Aldrich) 

Natural human IgG Fab fragment ab90352 (Abcam) 

NcoI R0193S (New England BioLabs) 

One Shot Top 10 Chemically Competent E.Coli C404006 (Invitrogen) 

One Step RT-PCR- HCV (Primer Design) 

pcDNA 3.1 Directional Cloning kit K490001 (Invitrogen) 

Pfu DNA Polymerase EP0501 (Thermo Scientific) 
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Phosphate Buffered Saline D8662 (Sigma Aldrich)  

Protease inhibitor cocktail I 539131 (Merck Millipore) 

PureYield Plasmid Maxiprep System A2393 (Promega) 

QIAamp RNA mini kit 52904 (Qiagen) 

Random Hexamer Primers FQ-SO142  (Thermo Scientific)  

RNaseOUT™ Recombinant Ribonuclease Inhibitor 10777-019 (Invitrogen) 

RNeasy Plus Mini Kit 74134 (Qiagen) 

Sigma Stop solution (Sigma Aldrich) 

SuperScript® II Reverse Transcriptase 18064022 (Invitrogen) 

SURE2 SuperComp Cells 200152 (Agilent Tech) 

TMB substrate 34021 (Thermo Scientific)  

TransIT-X2 Dynamic Delivery System MIR6003 (Mirus) 

Trypsin EDTA (Sigma Aldrich) 

Uracil DNA glycosylase M0280S (New England BioLabs) 

Xho1 R0146S (New England BioLabs) 

2.1.2 Plasmids 

MLV-Gag-Pol packaging vector, phCMV-ΔC/E1/E2 H77 constructs were acquired 

from Dr. Francois Louis-Cosset, INSERM, France through material transfer 

agreement. . MLV-Luciferase reporter vector was a kind gift from Dr. Arvind Patel, 

CVR, University of Glasgow, UK. 
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2.1.3 Antibodies  

Mouse monoclonal antibody AP33 and ALP98 were a kind gift from Dr. Arvind H. 

Patel, CVR, University of Glasgow, UK.  

2.1.4 HCV serum samples:  

This study was approved by Clinical Research Ethics Committee of the Cork Teaching 

Hospital and written consent from patients was obtained (by Elizabeth Kenny-Walsh 

and Orla Crosbie). Initial characterization of patient sera was done using Versant HCV 

Genotype Assay (LiPA), HCV Amplification 2.0 kit according to the manufacturer’s 

instruction. Serum samples were stored at -80οC at the Molecular Virology Diagnostic 

& research Laboratory, Cork University Hospital. Details of serum samples used in 

this study are given in Table 2.1 

Table 2.1: Serum samples  

Patient 

 Identifier 

#Sample Identifier 

Date of 

Collection 

Other information 

P1a-1 1a-1-1 30/04/2007 

N/A P1a-1 1a-1-2 01/08/2013 

P1a-1 1a-1-3 02/01/2014 

P1a-2 1a-2-1 09/12/2013 N/A 

P1a-2 1a-3-1 12/12/2013 N/A 

P1b-1 1b-1-1 23/12/2002 

anti D P1b-1 1b-1-2 17/12/2013 

P1b-1 1b-1-3 18/03/2014 

P1b-2 1b-2-1 10/12/2013 anti D 
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P1b-3 1b-3-1 09/12/2013 Co-HIV 

P1b-4 1b-4-1 20/05/2014 anti D 

P1b-5 1b-5-1 24/06/2014 BT 

P1b-6 1b-6-1 24/06/2014 anti D 

P1b-7 1b-7-1 23/09/2014 anti D 

P1b-8 1b-8-1 07/10/2014 anti D 

P1b-9 1b-9-1 07/10/2014 anti D 

P1b-10 1b-10-1 14/10/2014 anti D 

P3a-1 3a-1-1 10/12/2013 N/A 

P3a-2 3a-2-1 07/05/2014 N/A 

P3a-3 3a-3-1 20/03/2014 N/A 

P4a-1 4a-1-10-T10 17/11/2011 N/A 

P4a-1 4a-1-11-T11 15/11/2012 N/A 

P4a-1 4a-1-12- T12 13/06/2013 N/A 

P4a-1 4a-1-13 –T13 21/11/2013 N/A 

P4a-1 4a-1-14- T14 08/05/2014 N/A 

P4a-1 4a-1-15- T15 01/12/2014 N/A 

# Sample identifier: Genotype/Subtype-patient identifier, N/A: Not applicable  
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2.2 Methods 

2.2.1 Fractionation of viraemic sera 

2.2.1.1 Validation of Ab spin trap column  

The Ab Spin Trap™ columns were used to separate the samples into (i) antibody 

associated virus (AAV) and (ii) antibody free virus (AFV) populations following the 

manufacturer’s protocol with a few modifications (GE healthcare Life Sciences). The 

protein G columns are used to purify Total IgG from serum or plasma. Natural 

infection with Hepatitis B Virus (HBV) leads to humoral immune response against 

Hepatitis B surface antigen (HBsAg) which, in most cases, confers protective 

immunity (269). A positive and negative antibody HBV serum sample was prepared 

for validation studies and assay performance. HBV serum and anti-HBs (antibodies 

against Hepatitis B surface antigen) were diluted 1:100.  HBV serum was incubated 

for 2 h at 37οC with proteinase K (5 mg/ml) with end-over-end mixing followed by 

overnight incubation at room temperature (RT) to digest the antigenic epitopes on 

HBV (HBV Negative). The volume of serum sample used in the validation experiment 

was 100 μl. HBV positive and proteinase K treated HBV negative serum samples were 

mixed with equal amounts of anti-HBs. These samples were incubated for 2 h at 37οC. 

Patient serum was applied to the column followed by incubation for 15 minutes at RT 

with end-over-end mixing. The first flow-through (W0) was retained as the AFV 

fraction. Eight washes (W1-W8) of 300 μl of binding buffer were applied to the 

column while the last wash (W8) tested by PCR amplicon analysis to confirm the 

absence of virions (2.2.2.2). The column was then incubated for five minutes with 200 

μl of elution buffer with end-over-end mixing. The elute was collected in 30 μl of 

neutralisation buffer. The elute is now identified as Total IgG. Total IgG contains 
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AAV (virus targeted by antibodies), along with free antibodies (IgGs) bound by the 

column.   

2.2.1.2 Separation of antibody associated virus (AAV) and antibody free virus 

(AFV) fractions  

Initial characterisation of patient sera was carried out using the Versant HCV 

Genotype Assay (LiPA), HCV Amplification 2.0 kit according to the manufacturer’s 

instruction. Serum samples were stored at -80οC at the Molecular Virology Diagnostic 

& Research Laboratory, Department of Medicine, Cork University Hospital, 

University College Cork. Details of serum samples used in this study are given in 

Table 2.1. 200 μl of each sample was applied to the Ab Spin trap column™. The 

separation protocol was followed as described in section 2.1.1 

2.2.1. Dissociation of antibody-virion complexes and collection of VF-Fab, λ-VF-

Fab and κ-VF-Fab  

Proteinase K was used to dissociate the antibodies from antibody-virion complex 

(AAV). This was achieved by adding 1:1 volume of proteinase K (5 mg/ml) to AAV 

positive sera. The Ab Spin Trap™ protocol was followed post proteinase K treatment. 

Virus free status of this proteinase K treated antibody preparation was determined by 

the absence of an E1E2 specific amplicon (318 base pair) following RT-PCR as 

described under section 2.2.2. We analysed the functional component in post 

proteinase K treated samples using HiTrap LambdaFabSelect™ and KappaSelect™ 

pre-packed columns (GE healthcare Life Sciences). These columns have a ligand 

which binds to the constant region of lambda or the kappa light chain of human IgG 

respectively. Briefly, 1 ml of proteinase K treated serum samples were passed through 

both the columns as per the manufacturer’s protocol. Columns were washed to remove 
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unbound material with 5 volumes of binding buffer (Phosphate Buffered Saline, pH 

7.4). Fab fragments were eluted with 0.5 ml of elution buffer (0.1 M glycine buffer, 

pH 2.5 for KappaSelect™, 0.1 M acetate buffer, pH 3.5 for LambdaFabSelect™). The 

eluted fractions were concentrated by Amicon Ultra-0.5 centrifugal unit with Ultracel 

50 (Millipore). Confirmation of the virus free status of this proteinase K treated 

preparation was determined by the absence of an E1E2 specific amplification 

following RT-PCR (section 2.2.2). Furthermore, elutes obtained post proteinase K 

treatment from Ab Spin Trap™ (VF-Fab), LambdaFabSelect™ (λ-VF-Fab) and 

KappaSelect™ (κ-VF-Fab) were analysed by western blotting. Elutes, natural human 

IgG Fab fragment protein (ab90352, Abcam) and control IgG obtained from human 

plasma CTM (-) C (Roche Molecular systems), were blotted on a nitrocellulose 

membrane. The samples were then incubated with HRP labelled mouse anti-Human 

IgG Fab antibody (biorbyt) at 1:10,000 concentration in 0.05% PBST.  

2.2.1.4 Antibody- Sera (non-detectable AAV) pull down assay 

Total IgG which contains AAV (hereafter referred as 1οAAV) along with free 

antibodies, VF-Fab, λ-VF-Fab and κ-VF-Fab were used to challenge the AAV 

negative sera in 1:5 ratios. This mixture was then incubated at 37οC for 2 h.  AP33 is 

a mouse MAb which targets the partially confirmation dependent epitope within 

amino acid residues 412-423 (a kind gift from Dr. Arvind Patel, University of 

Glasgow, UK). Simultaneously, we challenged the sera with both intact AP33 and Ab 

Spin Trap™ eluted post proteinase K treated AP33 (25 µg/ml). The Ab Spin Trap™ 

protocol was followed (section 2.1.1) and the challenged samples were tested for the 

presence of a newly formed 2οAAV by PCR (section 2.2, 2.3).  
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2.2.2 Molecular Techniques 

 2.2.2.1 Nucleic acid isolation and cDNA synthesis 

2.2.2.1a RNA isolation from serum 

RNA was isolated from unfractionated serum, AAV and AFV fraction using QIAamp 

Viral RNA mini kit (Qiagen, Manchester, UK) using a combination of silica 

membrane and the speed of microspin based purification protocol. The kit uses highly 

denaturing conditions to inactivate RNases for isolation of intact viral RNA. These 

conditions are provided by buffer AVL carrier RNA which enhances the binding of 

viral nucleic acid to the QIAamp Mini membrane and reduces the chance of RNA 

degradation. 140 μl AAV, AFV and unfractionated serum samples were lysed using 

560 μl of AVL containing 5.6 μl  of carrier RNA (1 μg/ μl) for 10 minutes at room 

temperature after vortexing for 15 seconds. The lysed sample was then added with an 

equal volume (560 μl) of pure ethanol (96-100 %) and mixed by pulse-vortexing for 

15 seconds. The solution(s) were immediately processed using QIAamp mini columns 

according to manufacturer’s protocol. The column was centrifuged at 8000 rpm for 

one minute. The collection tube was discarded and columns were placed in a fresh 

collection tube. The column was then washed with 500 μl of buffer AW1 at 8000 rpm 

for 1 minute followed by a wash with buffer AW2 at 14000 rpm for three minutes. 

QIAamp mini column was placed into a fresh collection tube and was centrifuged at 

14000 rpm for one minute to prevent buffer carryover and residual contaminants. The 

column was then placed into a fresh 1.5ml centrifuge tube and was equilibrated at 

room temperature with 60 μl of buffer AVE for one minute and RNA was eluted by 

centrifugation at 8000 rpm for one minute.   
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2.2.2.1b cDNA synthesis 

cDNA synthesis from isolated RNA was carried out using previously optimised RT-

PCR protocol (270). Briefly, 11 μl of RNA was mixed with one μl of random hexamer 

primer (Thermo Scientific) and was incubated at 75οC for 10 minutes. Eight μl of 

reaction mixture was then added to each sample. Components of the reaction mixture 

are enlisted in table 2.2. Samples were then incubated in a thermo cycler for 60 minutes 

at 42οC followed by heat inactivation of reverse transcriptase at 95οC for three 

minutes.  

Table 2.2:  Reverse Transcriptase PCR reaction components 

Reaction component Volume (μl) 

5X First Strand Buffer     4.0 

0.1 M DTT  2.0 

10mM dNTP  1.0 

RNase OUT 0.25 

SuperScript II Reverse Transcriptase 0.25 

Nuclease free H2O Up to 20 μl 

2.2.2.2 Amplification of the E1E2 region encompassing HVR1 and full length 

E1/E2 gene 

Primers for PCR (Table 2.3) were designed with the aid of online primer designing 

tool Integrated DNA Technologies online OligoAnalyzer 

http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/. Primers were synthesised 

by Eurofins Genomics (Ebersberg, Germany). Amplification of the E1E2 region 

encompassing HVR1 in the E2 glycoprotein of HCV was amplified as previously 

described (270). All the PCR reactions were carried out using proofreading Pfu DNA 

http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/
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polymerase (2.5 U/μl) (Thermo Scientific) to ensure the accurate amplification of 

template due to quasispecies nature of HCV.  The resulting PCR fragment is of 318 

base pairs (bp) in size which corresponds to 1296-1614 of HCV genotype 1a 

(AF011751) (271). To amplify full length E1E2 glycoprotein, nested PCR approach 

was used (reaction conditions as outlined in Fig 2.1a). The outer primers are placed in 

the flanking regions in the HCV core (Core Fwd, upstream nucleotide 280-304) and 

NS2 (Rev Specific 2, downstream nucleotide 3394-3416) coding sequence. The inner 

primers are located such that encoded ORF following amplification encompassing 

amino acids 170-746 (with respect to the polyprotein of strain H77c; GenBank 

accession number AF011751). The primers artificially introduce a start codon at the 

5' end of the proposed signal peptide of E1, and a stop codon following the last amino 

acid of the mature E2 protein (underlined in Table 2.3, Fig 2.1b-c). This permits 

expression of the genes in mammalian cell culture, and incorporation of their products 

into retroviral pseudoparticles. The inner sense primers also include the sequence 

CACC at the 5' end (in bold Table 2.3) to facilitate directional cloning into the TOPO 

family of cloning vectors (Invitrogen). We used Expand High Fidelity PCR system for 

amplification of the full length E1E2. The components of the reaction mixture are 

outlined in Table 2.4. 
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Table 2.3: Oligonucleotide Primers 

 

Table 2.4: Reaction components used in E1E2 amplification  

Reaction component Volume (μl) 

Expand High Fidelity Buffer (10×) 

 with 15 mM MgCl2 

5.0 

10 mM dNTP   1.0 

10 pm/μl Forward Primer  1.5 

10 pm/μl Reverse Primer  1.5 

Expand High Fidelity Enzyme mix 0.5 

cDNA/ Primary PCR product 5.0 

Nuclease free H2O Up to 50 μl 

 

Primer Name Tm Primer Sequence 

Outer forward(I,II) 47.3  5'-ATGGCATGGGATATGAT-3' 

Outer reverse(I) 53.7 5'-AAGGCCGTCCTGTTGA-3' 

Inner forward (I) 49.9 5'-GCATGGGATATGATGATGAA-3' 

Inner reverse (I,II) 52.4 5'-GTCCTGTTGATGTGCCA-3' 

Core FWD 60.5 5'-CTTGTGGTACTGCCTGATAGGGTG-3' 

REV Spec-2 59 5'- GGTTCTTGTCCCGGCCTGTGAGG -3' 

HCV Mod Tarr Fwd 66.7 5'-CACCATGGGTTGCTCYTTYTCTATCTTCC-3' 

HCV 1a-pcDNA Rev 63.6 5'-TTAYGCCTCCRCYTGGGATATGAG-3' 

HCV 1b-pcDNA Rev 66.3 5'-TTARGCCTCRGYCTGRGCTAYCAR C-3' 

HCV 3a-pcDNA Rev 61.4 5'-TTATATCATBAGCATCARCCARARRGC-3' 
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5 μl of the first-round product is then used as a template in a second round PCR 

amplification using the genotype-specific inner sense and antisense primers. 

Amplification parameters for the 1st and 2nd round of PCR are outlined below (Fig 

2.1a-c). Correct PCR amplification results in an amplification product of between 

1,734 and 1,752 bp. 

Figure 2.1a: Amplification parameters for 1st round of PCR with primers Core 

Fwd and Reverse Specific 2 

 

 

 

 

Figure 2.1b: Amplification parameters for 2nd round of PCR for HCV genotype 

1a and 1b with primer HCV Mod Tarr Fwd and HCV 1a-pcDNA Rev or HCV 

1b-pcDNA Rev 
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Figure 2.1c: Amplification parameters for 2nd round of PCR for HCV genotype 

3a with primer HCV Mod Tarr Fwd and HCV 3a-pcDNA Rev 

 

 

 

 

2.2.2.3 Site Directed mutagenesis 

QuickChange Lightening Site Directed mutagenesis kit (Agilent Tech) was used to 

perform site directed mutagenesis (SDM). Primers for SDM were designed using 

Agilent’s web based tool 

http://www.genomics.agilent.com/primerDesignProgram.jsp?_requestid=707517 . 

Primers used for SDM are enlisted in the Table 2.5. Reactions were carried out as 

per the manufacturer’s instruction.  

Table 2.5: Oligonucleotide Primers for site directed mutagenesis 

Bold letters indicate nucleotide site for mutation  

Primer Name Tm Primer Sequence 

a655g I-V P4 F 74.1 5'-GGAGACCCATACGGTAGGGGGGAGCGC-3' 

a655g I-V P4 R 74.1 5'-GCGCTCCCCCCTACCGTATGGGTCTCC-3' 

t677c V-A P4 F 75 5'-CGCGAGCCGTGCCGCCCACCGCG-3' 

t677c V-A P4 R 75 5'-CGCGGTGGGCGGCACGGCTCGCG -3' 

a367g T-A  P4 F  67.9 5'-TCTCTCAGCTGTTCGCCTTCTCGCCTCGC-3' 

a367g T-A  P4 R  67.9 5'- GCGAGGCGAGAAGGCGAACAGCTGAGAGA-3' 
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2.2.2.4 Agarose gel electrophoresis  

PCR products were analysed by eletrophoresis alongside either GeneRulerTM 50bp 

DNA ladder (50-1000 bp) or GeneRulerTM 1kb DNA ladder (250-10,000 bp) (Thermo 

Scientific) depending upon the expected size of PCR product. 1% agarose gel was 

prepared by boiling agarose in 1× tris-acetate ethylene diamine tetra acetic acid (TAE) 

buffer. TAE was prepared with 40mM Trizma base, 20mM glacial acetic acid and 

1mM ethylene diamine tetra acetic acid (EDTA). SYBR Safe DNA Gel Stain (Thermo 

Fisher Scientific) was added prior to casting the gel (5 μl / 100 ml). Ten μl of PCR 

products were added to 2 μl of 6× loading buffer (Thermo Fisher Scientific). Samples 

were resolved at 90V for 40-50 minutes. Subsequently DNA was visualised using UV 

trans-illuminator (UVP). The result of each amplification was then recorded 

photographically.  

2.2.2.5 Purification of PCR products  

PCR products of verified size were purified using GeneJET PCR Purification Kit 

(Thermo Scientific) according to manufacturers’ protocol. One volume of the binding 

buffer, which contains a chaotropic agent that denatures proteins and facilitates 

binding of DNA to the silica membrane of column, was mixed with one volume of 

PCR product. In case of the PCR product less than 500 bp, 100 µl of isopropanol was 

added to 100 µL of product combined with 100 µl of binding buffer. The mixture was 

then applied to the GeneJET purification column and was then centrifuged for 30 

seconds at 10,000 rpm. Flow through was discarded. To remove unincorporated 

nucleotides, primers, enzyme and salts, 700 µl of wash buffer was applied to the 

GeneJET purification column and was centrifuged for 30 seconds at 10,000 rpm. To 

remove all the traces of wash buffer, the column was further spun for one minute at 
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14,000 rpm. DNA was then eluted with 30 μl of the elution buffer and the quantified 

by spectrophotometry and stored at -20ºC.  

2.2.2.6 Cloning of PCR purified products and transformation 

2.2.2.6a Cloning of 318 bp product in Clone JET PCR cloning Kit 

We ligated 318 bp PCR purified product generated by using Pfu polymerase in the 

pJET1.2/blunt cloning vector (Thermo Scientific). The 5' ends of the vector contain 

phosphoryl groups, therefore, phosphorylation of the PCR primers is not required.  

This kit makes use of blunt cloning strategy. pJET1.2 harbours a lethal gene which is 

disrupted by ligation of a DNA insert into the cloning site. This results in the growth 

of only cells with the recombinant plasmids which eliminates the need for blue/white 

screening. The optimal insert: vector ratio is 3:1. Vector pJET1.2/blunt is provided at 

a concentration of 0.05 pmol DNA ends/µl. The optimal amount of the PCR product 

for ligation (0.15 pmol of DNA ends) was calculated using 

www.thermoscientific.com/reviewer. The ligation reaction was set on the ice. 

Reaction components involved in ligation mix are mentioned in table 2.6. 

 

Table 2.6:  Regents used for ligation into pJET1.2/blunt vector 

Reaction component Volume (μl) 

2X Reaction Buffer 10.0 

purified PCR product/other blunt-end DNA fragment 0.15 pmol ends 

pJET1.2/blunt Cloning Vector (50 ng/µl) 1 (0.05 pmol ends) 

T4DNA ligase 1.0 

Nuclease free H2O Up to 20 μl 

Ligation mix was incubated at room temperature (22°C) for five minutes. Ligation 

mix was then used for transformation. 

http://www.thermoscientific.com/reviewer
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2.2.2.6b Transformation of pJET1.2 in One Shot Top 10 chemically competent 

E.Coli 

Transformation was performed on 50 μl aliquots of One Shot Top 10 chemically 

competent E.Coli by adding 20 μl of ligation. It was then incubated on the ice for 30 

minutes followed by heat shock treatment at 42οC for 30 seconds following brief 

incubation on the ice. 250 μl of SOC media provided with the kit was added and 

culture was incubated at 37οC with shaking at 225 rpm for one hour without 

antibiotics. To select bacteria with the plasmid having 318 bp insert, culture was 

seeded on Luria-Bertani (LB) Agar (Lennox, Sigma Aldrich) plates with ampicillin 

(50 μg/ ml). After overnight incubation at 37οC, fifteen colonies from the plate were 

picked for further screening. 

2.2.2.6c Cloning of full length E1E2 glycoprotein into pcDNA3.1D/V5-His-TOPO 

vector (Invitrogen)  

Purified HCV E1E2 product which were amplified using Expand High Fidelity 

enzyme system and with a directional cloning signal- CACC at the 5’ end of forward 

primer (Mod Tarr Fwd) were ligated into a pcDNA3.1D/V5-His-TOPO vector 

(Invitrogen). The linearised vector has a single 3' thymidine overhang and is 

covalently bound to topoisomerase I of Vaccinia virus. The TOPO cloning technique 

eliminates the need for post PCR procedures. The optimal ratio of insert: vector is 

between 0.5:1–2:1. However, we observed insert: vector ratio varies with the genotype 

of HCV. Cloning was performed according to the manufacturer’s instructions with the 

modification of half reaction volumes. The reaction components required for the 

ligation are outlined in table 2.7. After 30 minutes of incubation at room temperature, 

6 μl of ligation mix were added to SURE2 SuperComp Cells (Agilent Tech). 
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Table 2.7: Reagents used for ligation into pcDNA3.1D/V5-His-TOPO vector 

Reaction component Volume (μl) 

Purified PCR product 0.5-4 

Salt Solution 1 

TOPO® vector 1  

Nuclease free H2O Up to 6 μl 

 

2.2.2.6d Transformation of pcDNA3.1D/V5-His-TOPO vector in SURE2 

SuperComp cells 

Transformation procedure for the SURE 2 Supercompetent cells was followed 

according to the manufacturer’s protocols. Cells were thawed on ice and 100 μl was 

aliquoted to a pre-chilled 14 ml BD Falcon polypropylene round-bottom tube with 2 

μl β-mercaptoethanol. The tubes were incubated on ice for 10 minutes with 

intermittent swirling. 6 μl of ligation reaction was added to cells and tubes were 

incubated on ice for 30 minutes. Cells were then heat-pulsed at 42°C in a water bath 

for 30 seconds followed by incubation on ice for two minutes. 900 μl pre-heated 

(42°C) NZY+ broth with filter sterilized  1 M MgCl2 and 20% (w/v) glucose (or 10 

ml of 2 M glucose) (Lab M, Lancashire, UK) was added and tubes were incubated at 

37°C for 1 h with shaking at 225 rpm. Cells were then centrifuged for 30 seconds at 

10,000 rpm. The cell pellet was then suspended in 50 μl of NZY+ broth and this 

transformation mixture was plated on LB Agar plates with ampicillin (50 μg/ ml) and 

incubated overnight at 37°C.  
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2.2.2.7 Restriction digestion 

Restriction enzymes used in this study were purchased from New England Biolabs 

(Hertfordshire, UK). Recognition sequences and incubation temperatures of used 

restriction enzymes are listed in Table 2.8.  

Table 2.8: Restriction enzymes 

^ denotes point of cleavage 

Following restriction enzymes and buffer were used to confirm the ligation of 318 bp 

product. 

 

Table 2.8.1: Reaction components used in restriction digestion of 318 bp product 

Reaction component Volume (μl) 

Cutsmart buffer 2.0 

NcoI 0.5 

XhoI 0.5 

Plasmid DNA 5.0 

Nuclease free H2O Up to 20 

Restriction enzymes used for double digestion of full length E1E2 cloned into 

pcDNA3.1D/V5-His-TOPO vector are enlisted in table 2.8.2 

 

 

Restriction Enzyme Target Sequence(5’-3’) Incubation temperature 

HindIII A^AGCTT 37°C 

Nco I C^CATGG 37°C 

XhoI C^TCGAG 37°C 
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Table 2.8.2: Reaction components used in restriction digestion of 318 bp product 

Reaction component Volume (μl) 

Buffer 2.1 2.0 

Hind III 0.5 

Xho I 0.5 

Plasmid 5.0 

Nuclease free H2O Up to 20 

 

 Digested products were analysed on 1% agarose gel as described in section 2.2.2.4 

with appropriate DNA marker.  

2.2.2.8 Miniprep 

Bacterial colonies from LB agar were inoculated in 5 ml of LB broth with ampicillin 

(50 μg/ ml). The cultures were grown overnight at 37°C on incubator shaker at 225 

rpm. Bacterial cells were harvested by centrifugation at 6000 rpm for 15 minutes at 

4οC. The cell pellet was then suspended in 250 µl of ice cold resuspension solution 

(containing RNase A) and was transferred to 1.5 ml tube. The bacterial cells were then 

subjected to SDS/alkaline lysis by adding 250 µl of lysis solution and mixed by 

inverting for 4-5 times until the solution becomes clear. The mix was then neutralised 

by adding 350 µl of neutralisation solution and tubes were mixed thoroughly by 

inverting. Cell debris and chromosomal DNA was pelleted by centrifuging the tubes 

at 10,000 rpm for five minutes. Supernatant was then applied on to the GeneJET spin 

column and column was then centrifuged for one minute at 10,000 rpm. Further it was 

washed with 500 µl of wash solution twice for one minute at 10,000 rpm. An 

additional one minute spin was given to remove the residual wash solution. Plasmid 

DNA was eluted in 50 µl of elution buffer after equilibrating at room temperature for 
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two minutes. Plasmid concentration was determined using spectrophotometer and 

following formula. Absorbance ratio at 260nm/280nm >1.7 indicated good quality of 

plasmid. Plasmid DNA was stored at -20οC. 

µg/ml= absorbance at 260nm x dilution factor x constant (50) 

2.2.2.9 Maxiprep 

A single colony was picked from a freshly streaked selective plate and inoculated in a 

starter culture of 5 ml LB ampicillin (50 μg/ ml) upon confirming the full length E1E2 

plasmids by restriction digestion and sequencing. Culture was incubated for 8 h at 

37°C with shaking at 225 rpm. This starter culture was used to inoculate 200 ml LB 

ampicillin (50 μg/ml) in order to obtain sufficient volumes of HCV E1E2 containing 

plasmids for mammalian cell transfections. High-quality plasmid was isolated using 

The Pure YieldTM Plasmid Maxiprep System (Promega). The bacterial pellet was 

resuspended in a 12 ml of cell resuspension solution containing RNaseA and was 

mixed by pipetting and vortexing. Cells were lysed by addition of 12 ml alkaline lysis 

cell lysis solution. It was then mixed by inverting gently for 4-5 times followed by 

incubation at RT for five minutes. Cell debris were precipitated by addition of 12 ml 

neutralisation solution. Lysate was centrifuged at 6000 rpm for 30 minutes at 4οC to 

pellet the cell debris. A column stack was assembled by placing a blue PureYield™ 

Clearing Column on the top of a white PureYield™ Maxi Binding Column. The 

assembly was placed onto the vacuum manifold. Supernatant obtained after 

centrifugation was poured in to the clearing column and vacuum was applied.  

PureYield™ Clearing Column was discarded. 5 ml of Endotoxin Removal Wash was 

given to the PureYield™ Maxi Binding Column on vacuum manifold. Contaminants 

were removed by adding 20 ml of column wash solution. The membrane on binding 

column was allowed to dry. Column was equilibrated with one ml nuclease free water 
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at room temperature for two minutes. Plasmid DNA was then eluted in a new 50 ml 

disposable plastic centrifuge tube by centrifuging the binding column in swinging 

bucket rotor at room temperature, 2,000 × g for two minutes.  

2.2.2.10 Sequencing  

Purified PCR products and plasmids were sent for sequencing to Eurofins genomics 

(http://www.eurofinsgenomics.eu/), Germany. 318 bp and full length E1E2 sequences 

were aligned with reference sequences using BioEdit v5.2. All the trace files were 

manually validated and curated using the electrophoregram wherever necessary. 

2.2.3 HCVpp based work 

2.2.3.1 Cell lines 

Two different mammalian cell lines were used for the phenotypic analysis of HCV 

E1E2 glycoprotein: Human Embryonic Kidney (HEK) cells 293T and Human 

hepatoma (Huh) 7 cells (272). Genomic profile of Huh7 was established by analysing 

clinically relevant seven human SNPs which were previously published (271). 

HEK293T cells and Huh7 cells were cultured in DMEM (Sigma) with 10% Foetal 

Bovine Serum (FBS), 1% of Pen/Strep (10,000 units penicillin and 10 mg 

streptomycin per ml in 0.9 % NaCl) and 1% of non-essential amino acids (Gibco). 

Both the cells lines were grown in T-75 ml flasks at 37ºC and 5% CO2. Cells were 

passaged when they have reached confluency of 80-90%. After washing with the PBS, 

cells were trypsinised for 5-10 minutes. Trypsin was neutralised by addition of DMEM 

with FBS and cells were seeded in the fresh media. Cell stocks were stored in 1 ml of 

cell freezing media (Sigma) in liquid nitrogen. Cell lines were regularly tested for 

mycoplasma contamination by using PlasmoTestTM Mycoplasma Detection Kit 

(Invivogen) according to the manufacturer’s instruction. 

http://www.eurofinsgenomics.eu/
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2.2.3.2 Expression of E1E2 glycoprotein in HEK293T cells 

HEK293T cells were seeded in 6 well plate at 2.5 X105 cell density prior transfection. 

Cells were then transfected with the pcDNA3.1D/V5-His-TOPO vector containing 

E1E2 sequence at 70% confluency using TransIT-X2TM Dynamic Delivery System 

(Mirus).TransIT-X2 is a non-liposomal system which comprises a novel class of 

polymers that helps in efficient nucleic acid complex formation, uptake and endosomal 

release. The optimal concentration of DNA: TransIT-X2 worked out to be 2 μg of 

DNA: 6 μl of transfection reagent. Each well was transfected with different pcDNA 

3.1 clones in 250 μl serum free DMEM and was incubated at room temperature for 30 

minutes. The TransIT-X2 and plasmid DNA complexes were added to each well and 

were supplemented with 2.5 ml DMEM. Cells were incubated for 48 hours at 37οC in 

5% CO2. Cells were then lysed and analysed for expression of E1E2 glycoprotein by 

western blotting.  

2.2.3.3 Analysis of expressed E1E2 glycoproteins 

The transfected HEK cells were lysed in 500 μl lysis buffer 2 (LB2; 20 mM Tris-HCl, 

pH 7.4; 20 mM iodoacetamide; 1mM EDTA; 150mM NaCl; 1% Igepal C630, protease 

inhibitor was added just before lysis) for 30 minutes on ice. Clarified supernatant was 

collected by centrifuging the lysate at 13,000 rpm for five minutes (the clarified lysate 

may be stored at -20οC).  

2.2.3.4 Sodium Dodecyl Sulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) 

and western Blotting 

15 μl volume of transfected cell lysates were mixed with 5 μl of 1X Bolt® LDS( 

Lithium dodecyl sulphate) sample buffer and 5 μl of 1X Bolt ® sample reducing buffer 

and were denatured at 95οC for five minutes. Denatured lysates were then separated 
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on a gradient of 4-12% Bis-Tris Plus gel in the mini gel tank system (Thermo 

Scientific) along with a biotinylated protein molecular weight marker (Sigma). SDS-

PAGE was then electrophoresed for 20 minutes at 200V. Resolved proteins were then 

transferred onto nitrocellulose membrane using iBolt® 2 transfer stacks and iBolt® 

gel transfer dry electro-blotting system (Thermo Scientific) at 20V for seven minutes. 

100 µg of total protein was transferred on the nitrocellulose membrane was visualised 

by staining with Ponceau. The membrane was destained with 0.05% PBST until the 

pink stain was removed. The membrane was blocked for 1 h with a 5% milk solution 

in Phosphate Buffered Saline-0.05% Tween-20 followed 3× washes with 5 ml of 

PBST. The membrane was then incubated with the mouse monoclonal antibody 

(MAb) AP33 and ALP98 at a concentration of 1 μg/ml in 5 ml of blocking buffer for 

1 h at room temperature followed by 3× washes with 5 ml of PBST. A mixture of 

primary antibodies was used to enhance the expression signal.  Membrane was then 

incubated with the secondary antibodies, goat anti-mouse IgG, conjugated to 

horseradish peroxidase and anti-biotin antibody at a dilution of 1:10000 in blocking 

buffer at room temperature for 1 h. Finally, the membrane was washed 3× 10 minutes 

with PBST. Proteins were developed by adding the 1ml of Luminata forte western 

HRP substrate solution for five minutes on the membrane. Images were visualised in 

LAS-3000 and recorded at 16 bit.   

2.2.3.5 Generation of HCV pseudotyped particles  

HCV pseudoparicle (HCVpp) is a retrovirus-based system developed by Bartosch et 

al. (2003) (33). It involves co-transfecting HEK293T cells with plasmids expressing 

the HCV glycoproteins, the murine leukaemia virus (MLV) Gag-Pol, and the MLV 

transfer vector carrying the green luciferase reporter gene. MLV gag-pol particles 

encapsidate the replication-defective genome carrying the luciferase sequence and 
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acquire the HCV glycoprotein-containing envelope before being released into the 

medium when expressed in HEK293T cells (Fig 2.2).  

Day 1 

HEK cells were seeded at  the 1.5 ×106 cells density in 100cm diameter tissue culture 

plate in ~15ml DMEM with 10% FBS, 1% Pen-Strep and 1% non-essential amino 

acids. 

Day 2 

At 16 h cells should be about 40% confluent. HEK cells were then transfected using 

calcium phosphate transfection kit (Invitrogen) (do not change the medium before 

adding precipitate). The reagents required for transfection are enlisted in table 2.9. All 

the reagents must be kept ice cold. To prepare no envelope control pseudoparticles, 

pcDNA 3.1 plasmid was replaced with tissue culture grade water. 

For one 100cm diameter plate, following components were added in a 1.5 ml tube in 

the order listed in table 2.9. The components were then mixed by pipetting. 500 l of 

2XHBS was aliquoted into 50 ml tube. The components from 1.5 ml tubes were added 

dropwise to the tube containing 2XHBS while bubbling it continuously. The mixture 

in 50 ml tube should turn cloudy. It was then vortexed briefly and allowed to 

precipitate for 20 minutes at room temperature. This one ml precipitate was then 

distributed over the HEK culture dish. The contents were mixed gently and incubated 

overnight at 37oC in 5% CO2. 
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Table 2.9: Reagents required for transfection of HEK293T cells 

T/C dish:  100mm   60mm 35mm 

Area: 48cm2 21cm2 8.5cm2 

HEK cells: 1×106 4×105 2×105 

p-luciferase 8 μg 3 μg 1.5 μg 

pMLV-gag-pol 8 μg 3 μg 1.5 μg 

pcDNA3.1-E1E2  3 μg 1.2 μg 0.5 μg 

H2O  up to 400 μl 160 μl 80 μl 

2 M CaCl2 100 μl 40 μl 20 μl 

2X Hepes Buffered Saline(HBS)  500 μl 200 μl 100 μl 

Total 1000 μl   400 μl 200 μl 

 

Day 3 

Medium from the HEK plate was changed with the 6 ml of fresh medium containing 

10mM HEPES buffer and plate was incubated overnight at 37oC in 5% CO2. 

Day 4 

Pseudoparticles were harvested 24 h after the media change. Supernatant from the 

HEK culture dish was passed through 0.45m filter. The culture dish was again 

replenished with the fresh 6 ml medium and incubated overnight. The first harvest of 

HCVpp was stored at 4οC. 

 Day 5 

The second harvest of pseudoparticles was collected as described on day 4. Both 1st 

and 2nd harvests were used to infect Huh 7 cells. Remaining HCVpp were stored in 

aliquots at -70οC however, this can result in loss in infectivity.  
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HEK cells which have expressed E1E2 glycoprotein and no envelope glycoproteins 

were lysed in 5 ml of lysis buffer on ice for 30 minutes. Lysis buffer consists of 40 

mM Tris pH 7.5, 1mM EDTA, 150 mM NaCl, 1% Igepal CA-630. These components 

can be stored at 4oC as 10X stock.  20 mM iodoacetamide (3.7 mg/ml) and protease 

inhibitor cocktail (PICT, Millipore) must be added to 1x buffer directly before use. 

Lysate of cells was centrifuged at 5000 rpm for 15 minutes and clear supernatant was 

stored at -20οC for protein expression analysis.  
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Figure 2.2: Schematic diagram of HCV pseudoparticle generation 
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(100cm culture dish) 

Transfection of HEK293T using 

CaPO4 kit 

pMLV Luc   8g 

pMLV gag-pol  8g 

pcDNA3.1 E1E2         3g 

H2O     up to  500l 

2M CaCl2   100l 

HBS      500l  
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2.2.3.6 Infectivity assay  

Huh 7 cells were seeded one day prior to HCVpp infection. Cells were infected with 

HCVpp inoculum as per table 2.10. The plate was incubated at 37οC for 3 to 4 h, then 

the inoculum was removed and cells were re-fed with 150 μl of fresh DMEM. After 

72 h of incubation, media was discarded. Cells were lysed in 50 μl lysis buffer at room 

temperature for 15 minutes. The lysate was then transferred to a white plate and 

luciferase assay was performed according to manufacturer’s protocol using 50 μl 

firefly luciferase substrate BrightGlo (Promega). Relative light unit emission was read 

using a luminometer (Promega GloMax system) 

Table 2.10: Infection table  

Huh7 target cells were seeded one day prior to infection as below: 

TC dish:  6-well 12-well  24-well   48-well  96-well 

Area: 8.5cm2 3.8cm2 2.0cm2 0.8cm2 0.25cm2 

Huh7 cells: 1x105 4.5x104 2.5x104 1.0x104    4.0x103 

HCVpp inoculum: 600 μl 300 μl 150 μl 90 μl 50 μl 

 

2.2.3.7 VF-Fab-mediated neutralisation of HCVpp infection 

To test the neutralising capability of VF-Fab directed against HCV glycoproteins, 

HCVpp were pre-incubated with VF-Fabs at 37οC for 1 h. For unambiguous results, 

VF-Fabs were serially diluted from the highest concentration of 0.400 mg/ml to 0.05 

mg/ml. After 1 h incubation HCVpp-VF-Fab inoculum was added to the Huh7 cells 

(Section 2.2.3.6). 

 

 



Chapter 2  

82 

 

2.2.3.8 GNA capture ELISA  

5 gm of Galanthus Nivalis Agglutinin (GNA-Sigma) was dissolved in the 50 ml 

Phosphate Buffered Saline (PBS). It was then diluted as 1:50 PBS. 96-well high 

binding, F, ELISA plates (Sarstedt) were coated with 0.25 μg/well GNA in 100 μl 

PBS. Plates were incubated overnight at 4ºC. Excess GNA was washed from the wells 

3 times with 250 μl of PBS-Tween 20 (0.05%) (PBST). The plate was then blocked 

with 2% skimmed milk powder in PBST, 200 μl/well for 2 h at room temperature. 

Blocking solution was discarded and traces were removed by washing the plate 3 × 

with PBST (at this stage the plate can be stored at -20oC).  

Total protein content from the HEK lysates was estimated using the BCA Protein 

Assay (Thermo -Scientific). 100 μg of the E1E2 expressed HEK lysates were added to plate 

and were incubated for 2 h at RT (or 4οC overnight). The plate was washed three times by 

dipping into 1L beaker of PBST. The test VF-Fabs were added at the concentration of 50 μg 

in 100 μl of PBST. Mouse monoclonal antibody AP33 was used at the concentration of 

1:10,000. Plate was incubated for 1 h at RT followed by washing three times with PBST.  100 

μl of 1:10,000 anti-mouse horse radish peroxidase (HRP) conjugate in PBST was added to the 

well containing AP33. For human VF-Fab, 100 μl of 1:5000 anti-human (H+L) HRP conjugate 

(Promega) was added. Plate was incubated for 1 h at RT Plate was then washed 6 times with 

PBST. 100 μl of TMB substrate was added to each well and incubated at RT for 30 minutes. 

The plate was inspected intermittently to check the development of colour and the reaction 

was stopped by the addition of 100 μl /well of 0.5 M H2SO4. Absorbance was recorded at 

450nm and 560nm in GLOMAX®-MULTI, Promega.  

 

 

 

 



Chapter 2  

83 

 

2.2.4 Colorimetric ELISA assay 

To confirm the escape phenotype hypothesis, three N-terminally 6xHis tagged, 27 

amino acid HVR1 peptides were synthesised, i.e   

 P1: H-HHHHHHETHITGAVASSNAQKFTSLFTFGPQQN-OH,  

 P2: H-HHHHHHETHITGAVASSNAQKLTSLFTFGPQQN-OH  

 P3:H-HHHHHHETHITGAVASSHAQKFTSLFTFGPQQN-OH  

(Pepscan Presto, Netherlands). Peptides were reconstituted in 100% DMSO at a 

concentration of 1 mg/ml and stored at −20°C. 100 ng/µl of peptide was used in an 

ELISA based method. These peptides were incubated with VF-Fab at 1:10 dilution for 

1 h followed by incubation with anti-human IgG (H&L) HRP conjugate secondary 

antibody (Promega, W4031) at 1:5000 dilution for 1 h. Plate was incubated for 1 h at 

RT. Plate was then washed 3X with PBST. 100 μl of TMB substrate was added to each 

well and incubated at RT for 30 minutes. The plate was inspected intermittently to 

check the development of colour and the reaction was stopped by the addition of 100 

μl/well of 0.5M H2SO4. Absorbance was recorded at 450nm and 560nm in GloMax 

system. 

2.2.5 Epitope Mapping 

2.2.5.1 Epitope mapping of amino acid region 364-430 

Linear peptides were synthesized for 1οAAV and 2οAAV covering amino acid region 

364-430 in the E1E2 glycoprotein to study the epitopes targeted by host immune 

system.  

Two sets (hence, set 1 and set 2) of overlapping peptides of 15 amino acid lengths with 

an overlap of 14 were synthesized for these sequences (Table 2.11). Set 2 comprised 

linear peptides of 15 amino acid length however, amino acids at position 10 and 11 

were replaced by Ala. When a native Ala would occur on either position, it was 



Chapter 2  

84 

 

replaced by Gly. Control peptides unrelated to our test sequences which are propriety 

of Pepscan were designed based on epitopes of monoclonal antibodies 57.9 and 3C9 

(273). The binding of VF-Fab to peptides was assessed in a Pepscan-based ELISA as 

described below (Pepscan Presto, Lelystad) (274). Each well in the card contained 

covalently linked peptides that were incubated overnight at 4οC with VF-Fab between 

0.1 to 10% pepscan buffer and preconditioning blocking buffer (SQ) (a mixture of 

horse serum, Tween 80 and ovalbumin in PBS). After washing, the plates were 

incubated with goat anti-human HRP conjugate (1:1000, Southern Biotech 2010-05) 

for 1 h at 25οC. After further washing, peroxidase activity was assessed using substrate 

(2, 2’-azino-di-3-ethyl-benzthiazolinesulfonate and 20 µl/ml of 3% H2O2. The colour 

development was quantified after 60 minutes using a charge-coupled device camera 

and an image-processing system.  

SET 1 

Mimic Type : Linear peptides 

Label            : LIN 

Description : Linear peptides of length 15 derived from the regions 364-430 with the 

one residue offset. 

SET 2 

Mimic Type : Linear peptides 

Label            : LIN.AA 

Description:  Peptides of set 1, but with residues on positions 10 and 11 replaced by 

Ala. Native Ala on either position was replaced by Gly. This set contains limited 

amounts of peptides. 
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Table 2.11: list peptides used for linear epitope mapping (First 10) 

SET 1  SET 2 

MVGNWAKVLIVMLLF  MVGNWAKVLAAMLLF 

VGNWAKVLIVMLLFA  VGNWAKVLIAALLFA 

GNWAKVLIVMLLFAG  GNWAKVLIVAALFAG 

NWAKVLIVMLLFAGV  NWAKVLIVMAAFAGV 

WAKVLIVMLLFAGVD  WAKVLIVMLAAAGVD 

AKVLIVMLLFAGVDG  AKVLIVMLLAGGVDG 

KVLIVMLLFAGVDGR  KVLIVMLLFGAVDGR 

VLIVMLLFAGVDGRG  VLIVMLLFAAADGRG 

LIVMLLFAGVDGRGT  LIVMLLFAGAAGRGT 

IVMLLFAGVDGRGTY  IVMLLFAGVAARGTY 

Refer to one letter amino acid code  

2.2.5.2 Conformational epitope mapping of E2 glycoprotein (residues 384-619) 

A library of  peptides that covers residues 384-619 in E2 glycoprotein of HCV was 

synthesised using chemically linked peptides on scaffolds (CLIPS) technology (275) 

(Pepscan Presto; Lelystad, Netherlands). HCVpp1b-1-3 being highly neutralisation 

sensitive was chosen as a reference sequence for peptide synthesis. Four different 

peptide libraries were generated for the peptide microarray at Pepscan Presto, Lelystad 

as following: (1) Linear peptides of 15 mer were derived from the target sequence with 

an offset of one residue; (2) Loop mimics of constrained peptides of length 17 were 

constructed. Positions 2-16 were occupied by 15 mer sequences derived from the 

target sequence of HCV-E1E2 glycoprotein. To introduce structural constraints Cys 

were inserted on positions 1 and 17, which then were constrained by mP2 CLIPS; (3) 

Structured peptides of length 23 derived from the target sequence with an offset of one 
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residue were synthesised to mimic the helical structure. Cys residues on positions 1 

and 5 were joined by mP2 CLIPS; and (4) Structured peptides of length 22 were 

constructed to mimic β-turn. 20-mer sequences on positions 2-21 were derived from 

the target sequence of HCV-E1E2 glycoprotein with an offset of one residue. Pro, Gly 

(“PG”) residues supplant the residues present on positions 10 and 11. Cys residues on 

positions 1 and 22 were joined by mP2 CLIPS. Native Cys were protected by 

acetamidomethyl in all the libraries (Table 2.12).  

The binding of VF-Fab to each of the synthesised peptides was tested in a PEPSCAN-

based ELISA (274). The peptide arrays were incubated with VF-Fab (overnight at 

4°C). After washing, the peptide arrays were incubated with a 1:1000 dilution of goat 

anti-human HRP conjugate (Southern Biotech 2010-05) for 1 h at 25°C. After 

washing, the peroxidase substrate 2,2’-azino-di-3-ethylbenzthiazoline sulfonate and 

20 μl/ml of 3% H2O2 were added. After 1 h, the colour development was measured. 

The colour development was quantified with a charge coupled device camera and an 

image processing system. 

SET 3 

Mimic Type : linear 

Label          : LIN 

Description: Linear peptides of length 15 derived from the target sequence of HCV-

E1E2 glycoprotein with an offset of one residue. Cys are protected by 

acetamidomethyl (Acm; denoted “2”). 
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SET 4 

Mimic Type : Loop, mP2 CLIPS 

Label            : LOOP 

Description: Constrained peptides of length 17. On positions 2 – 16 are 15-mer 

sequences derived from the target sequence. To introduce structural constraints Cys 

were inserted on positions 1 and 17, which then were constrained by mP2 CLIPS. 

Native Cys are protected by Acm (denoted “2”). 

SET 5 

Mimic Type : Helical mimic, mP2 CLIPS 

Label           : HEL 

Description Structured peptides of length 23 derived from the target sequence on page 

7 with an offset of one residue. On positions 1 and 5 are Cys residues which are joined 

by mP2 CLIPS. Native Cys are protected by Acm (denoted “2”). 

SET 6 

Mimic Type  : β-turn mimic, mP2 CLIPS 

Label             : BET 

Description: Structured peptides of length 22. On positions 2- 21 are 20-mer sequences 

derived from the target sequence of HCV-E1E2 glycoprotein with an offset of one 

residue. 

“PG” residues supplant the residues present on positions 10 and 11. On positions 1 

and 22 are Cys residues which are joined by mP2 CLIPS. Native Cys are protected by 

Acm (denoted “2”). 
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Table 2.12: List of peptides used in conformational epitope mapping (first 10) 

 

SET 3  SET 4  SET 5  SET 6 

*2GPVY2FTPSPVVVG 
 

CETHTVGGSASRAAHRC 
 

CETHCVGGSASRAAHRVTTFIT 
 

CHRVTTFITRPGSQNIQLINTC 

TALN2NDSLNTGFLA 
 

CTHTVGGSASRAAHRVC 
 

CTHTCGGSASRAAHRVTTFITR 
 

CTYTR2GSGPPGTPR2MVHYPC 

NRTALN2NDSLNTGF 
 

CHTVGGSASRAAHRVTC 
 

CHTVCGSASRAAHRVTTFITRG 
 

CQNIQLINTNPGWHINRTALNC 

SWGENETDVLLLNNT 
 

CTVGGSASRAAHRVTTC 
 

CTVGCSASRAAHRVTTFITRGP 
 

CNDTLT2PTDPGRKHPEATYTC 

DTLT2PTD2FRKHPE 
 

CVGGSASRAAHRVTTFC 
 

CVGGCASRAAHRVTTFITRGPS 
 

CNETDVLLLNPGRPPRGNWFGC 

STGFTKT2GGPP2NI 
 

CGGSASRAAHRVTTFIC 
 

CGGSCSRAAHRVTTFITRGPSQ 
 

CETDVLLLNNPGPPRGNWFG2C 

GVPTYSWGENETDVL 
 

CGSASRAAHRVTTFITC 
 

CGSACRAAHRVTTFITRGPSQN 
 

CP2GIVPAAQPGGPVY2FTPSC 

KHPEATYTR2GSGPW 
 

CSASRAAHRVTTFITRC 
 

CSASCAAHRVTTFITRGPSQNI 
 

C2RPIDKFAQPGGPITHTEPPC 

KFAQGWGPITHTEPP 
 

CASRAAHRVTTFITRGC 
 

CASRCAHRVTTFITRGPSQNIQ 
 

CDSLNTGFLAPGFYTHRFNASC 

WFG2TWMNSTGFTKT   CSRAAHRVTTFITRGPC   CSRACHRVTTFITRGPSQNIQL   CHYAPRP2GIPGAAQV2GPVYC 

* Native Cys are protected by Acm are denoted “2” 
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3. Humoral immune system targets clonotypic antibody associated 

Hepatitis C Virus  

3.1 Introduction 

 
HCV virions can be segregated into antibody associated and antibody free virus (AFV) 

subpopulations (267). Analysis of both these fractions at the genomic level has 

revealed that the AFV fraction can be diverse; whereas the AAV fraction is of limited 

heterogeneity even clonotypic in nature (212, 268).  Longitudinal analysis of HCV 

genotype 4a over a 10 years has demonstrated the appearance of antibodies at discrete 

time points and extinction of an antibody associated lineage (212). Short term 

pyrosequencing analysis of genotype 3a infection has also been used to demonstrate 

the extinction of discrete viral variants in the presence of AAV(276). The vacant 

viraemic space is often replaced by previously existing minor variants.  

 

In current study we tested a hypothesis that patient derived IgG target clonotypic viral 

variants in genotype/subtype matched Hepatitis C sera. 

 

To examine this hypothesis we, 

 Segregated viraemic HCV sera into AFV and AAV fraction 

 Challenged the AAV negative sera with Total IgG purified from AAV positive 

sera 

 Dissociated the antibody-virus complex in AAV positive sera and used virus free 

Fab (VF-Fab) to challenge the AAV negative sera 
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3.2 Methods  

Following methods were used to test the hypothesis. Please refer to the outlined 

sections for further details,- 

2.2.1 Fractionation of viraemic sera 

2.2.1.1   Validation of Ab Spin Trap Column .............................. 58 

2.2.1.2   Separation of viraemic sera into antibody ..................... 59 

 associated virus (AAV) and antibody free virus (AFV) 

fractions 

2.2.1.3   Dissociation of antibody-virion complexes and ............ 59 

 collection of VF-Fab λ-VF-Fab and κ-VF-Fab  

2.2.1.4   Antibody- Sera (non-detectable AAV) pull down assay.60 

2.2.2 Molecular Cloning 

2.2.2.1   Nucleic acid isolation and cDNA synthesis ................... 61 

2.2.2.1a   RNA isolation from serum .......................... 61 

2.2.2.1b   cDNA synthesis ........................................... 62  

2.2.2.2    Amplification of the E1E2 region encompassing ......... 62 

HVR1 and full length E1/E2 gene 

2.2.2.3    Site directed mutagenesis ............................................. .66 

2.2.2.4    Agarose gel electrophoresis .......................................... 67 

2.2.2.5    Purification of PCR products ........................................ 67 

2.2.2.6    Cloning of PCR purified products and transformation 

2.2.2.6a   Cloning of 318 base pair product in  .............. 68 

Clone  JET PCR cloning Kit 

2.2.2.6bTransformation of pJET1.2 in One Shot........... 69 

 Top 10 Chemically Competent E.Coli 

2.2.2.6c   Cloning of full length E1E2 glycoprotein ...... 69 

 in pcDNA3.1D/V5-His-TOPO vector 

2.2.2.6d   Transformation of pcDNA3.1D/V5-His-....... 70 

TOPO  vector in SURE2 SuperComp Cells 

2.2.2.7   Restriction Digestion ..................................................... 71 

2.2.2.8   Miniprep ......................................................................... 72 

2.2.2.10 Sequencing .................................................................... .74 
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3.3 Results 

3.3.1 Validation of Ab Spin TrapTM column  

Initially we examined whether Ab Spin TrapTM columns, specifically designed for IgG 

purification, could also purify IgG associated virus. This was validated by mixing anti-

HBsAg (antibody against Hepatitis B surface antigen) with proteinase K treated 

viraemic HBV serum (anti-HBsAg negative) followed by Ab Spin TrapTM protocol. 

Anti-HBsAg antibodies were obtained from a patient who had cleared HBV infection 

naturally. HBV amplicon from the Total IgG should only amplify if it has an IgG-

virus complex. However, proteinase K treatment of HBV serum should lead to 

digestion of antigenic epitopes, resulting in no antibody-virus (antiHBsAg-HBV) 

complex formation. This was confirmed by absence of HBV specific 319 bp amplicon 

in a PCR amplification reaction. The expected 319 bp fragment was amplified from 

the untreated mix of HBsAg-HBV serum from the Ab Spin TrapTM elute (Fig 3.1). 
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                                      Untreated HBV              Proteinase K treated HBV 

  

                 

Figure 3.1: Validation of Ab Spin TrapTM protocol  

A serum sample positive for hepatitis B virus was treated with proteinase K to digest the 

antigenic epitopes. Both treated and untreated HBV serum samples were mixed with the anti-

HBsAg. Untreated HBV serum sample when mixed with the anti-HBsAg was able to form 

antibody associated virus (AAV) complex. W0: first flow-through, W8: last wash. DNA 

isolated from the Total IgG fraction showed presence of 319bp HBV specific amplicon upon 

PCR amplification. However, DNA isolated from the Total IgG fraction of proteinase K 

treated HBV sample failed to amplify upon PCR amplification (n=2).  
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3.3.2 Separation of viraemic sera into antibody associated virus and antibody free 

virus fraction  

Viraemic serum samples were obtained from sixteen unrelated patients (Table 3.1). 

Out of 18 specimens; n=3/3 (GT 1a), n=5/12 (GT 1b), and n=2/3 (GT 3a) were positive 

for AAV. Previous research on clonal analysis of antibody based fractionation of 

viraemic sera has shown that AAV can be of limited heterogeneity with a diverse AFV 

fraction (212, 267, 268). In the current study, for the initial investigation we analysed 

both the AAV and AFV fractions by direct amplicon sequencing only. Direct 

sequencing of the AAV fraction revealed a single, homogeneous nucleotide sequence. 

Multiple peaks in an electropherogram may indicate heterogeneous sequences within 

the amplicon sample. For the AFV sequences multiple peaks were observed (A 

representative electrophoregram shown in Fig 3.2a). Detailed analysis of 

electropherograms for AAV showed a read of single peaks across the amplicon 

sequence indicating presence of homogenous sequence (Fig 3.2b).  A positive PCR 

amplification from cDNA obtained from 1:100 diluted 1oAAV also ensured that the 

results outlined were not subjected to template resampling. 

A phylogenetic tree for amino acid sequences was constructed using maximum 

likelihood estimation method with a bootstrap value of 1000 (MEGA 5.2). Genotype 

1a, 1b, 3a and 4a sequences were downloaded from GenBank (amino acid 319-424, 

from here onwards every nucleotide and amino acid sequence numbering is described 

against reference sequence AF011751- GT 1a). We acknowledge that only amplicon 

AFV sequences were used to construct phylogram which do not represent the entire 

quasispecies profile of the samples. However, the amplicon sequence likely indicates 

most frequently occurring sequence in the heterogeneous AFV fraction. Based on this, 

sequences with 100% similarity were clustered together, whereas sequences with 
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distinct amino acid profile branched out (Fig 3.3a).  Further investigation at the HVR1 

level revealed that antibody free fractions were distinct in comparison to antibody 

associated fractions (Fig 3.3b). Mostly changes in the amino acids were restricted to 

HVR1, however, substitutions at amino acid 322 for sample 1a-1-3; 372 for sample 

1a-2-1 and 332, 348, 414 for sample 1a-3-1 were observed.  A similar observation was 

made for genotype 1b. Other than HVR1, sample 1b-1-2 showed changes at amino 

acid positions 422, 423; 1b-2-1 at 344, 411, 416, 417 and sample 1b-10-1 at 365 and 

422 (Fig 3.3b). Conversely, sequences obtained from samples 1b-5-1, 3a-1-1 and 3a-

2-1 showed a 100% similarity in both the fractions (Fig 3.3c). In the absence of clonal 

density data for samples 1b-5-1, 3a-1-1 and 3a-2-1, it is likely that the homogenous 

sequences for these sera are under purifying selection pressure.   
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Table 3.1:  Sample characteristics used in the current study     

 

AFV    : Antibody free virus 

1οAAV: Antibody associated virus 

+ : Detectable AAV by RT-PCR 

- :  No detectable levels of AAV by RT-PCR  

# Sample identifier: Genotype/Subtype-patient identifier 

 *Source of infection: contaminated anti-D immunoglobulin (277) 

†Obtained from the same patient at three different time points (2002, 2013 and 2014, 

respectively). Genotype/Subtype-patient identifier- sample number 

¥ Samples positive for 1οAAV, both AFV and 1ο AAV sequences were analysed by direct 

sequencing only  

‡Samples without accession numbers had no detectable levels of AAV   

 

 

 

 

Genotype 
No. of 

Samples 
1ο AAV  

Patient 

Identifier 

Sample #  

Identifier 

Accession 

number 

AFV¥ 

Accession 

Number 

1οAAV‡ 

1a 3 + P1a-1 1a-1-3 KT873141 KT873142 

+ P1a-2 1a-2-1 KT873143 KT873144 

+ P1a-3 1a-3-1 KT873145 KT873146 

1b 12 - P1b-1 1b-1-1*,† KT873147-57 - 

+ P1b-1 1b-1-2*,† KT873158 KT873159 

+ P1b-1 1b-1-3*,† KT873160 KT873161 

+ P1b-2 1b-2-1* KT873162 KT873163 

- P1b-3 1b-3-1 KT873164-71 - 

- P1b-4 1b-4-1* KT873173-81 - 

+ P1b-5 1b-5-1 KT873182 KT873183 

- P1b-6 1b-6-1* KT873184-94 - 

- P1b-7 1b-7-1* KT873195-04 - 

- P1b-8 1b-8-1* KT873205-11 - 

- P1b-9 1b-9-1* KT873212-17 - 

+ P1b-10 1b-10-1* KT873218 KT873219 

3a 3 + P3a-1 3a-1-1 KT873220 KT873221 

+ P3a-2 3a-2-1 KT873234 KT873233 

- P3a-3 3a-3-1 KT873222-32 - 
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a.  

 

 

b. 

 

 

Figure 3.2: AFV fraction shows multiple peaks in the electrophoregram  

Multiple peaks in the electrophoregram indicate nucleotide variation at that nucleotide 

position in the sequence. a. Electropherogram segment of HVR1 of AFV fraction of a 1a-2-1. 

Multiple peaks are shown in the black box b. Electropherogram segment of HVR1 of AAV 

fraction of a 1a-2-1 with clean single peaks indicating homogenous population. 
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Figure 3.3: Phylogenetic and multiple sequence amino acid analysis for AAV and 

AFV 

a. A phylogenetic tree of AAV and AFV amino acid sequences obtained by direct sequencing 

(Maximum likelihood, bootstrap-1000, MEGA5.2). Confidence values >70 are shown on the 

branches. Reference sequences for HCV genotype 1a, 1b, 3a and 4a were downloaded from 

GenBank. Amino acid sequences with 100% similarity in both AAV and AFV fraction 

clustered together (blue triangle). Sequences with distinct amino acid profile are shown in 

brown circle b. Direct sequencing amino acid analysis of AFV and AAV for HCV genotype 

1 was distinct in the HVR1 (384-410) c. Serum samples 1b-5-1, 3a-1-1 and 3a-2-1 showed a 

100% similarity in the HVR1 at the amino acid level in both the fractions. 28 amino acid 

HVR1 domain was observed in AFV and AAV fraction of 1b-5-1. Insertion indicated by a 

black arrow on the top of the sequence.  
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3.3.3 Antibodies from AAV positive sera capture viral variants from unrelated 

patients  

It was postulated that antibodies with targeted discrete viral variants in AAV positive 

sera are isolate specific in the context of a complex mix of variants (212, 268, 276). In 

order to test this hypothesis, sera identified as negative for detectable AAV were 

challenged with antibodies purified from sera which were classified as AAV positive 

(referred as 1οAAV) (Table 3.2, Fig 3.4). Total IgG purified from sera which showed 

detectable levels of 1oAAV were mixed with the sera which were defined as negative 

for the presence of detectable AAV. The presence of a newly formed AAV (referred 

as 2oAAV) in addition to the pre-existing parental DNA sequence in 1oAAV was 

identified by clonal analysis (schematic representation in Fig 3.4). Total IgG from 1b-

5-1 targeted a viral variant from 1b-4-1 and 1b-6-1, total IgG from sample 1b-10-1 

captured a variant from sample 1b-7-1 and antibodies from sample 3a-2-1 were bound 

to a viral variant in 3a-3-1. However, 2oAAV for 1b-8-1 when mixed with the total 

IgG from 1b-5-1 were not detectable.  

The molecular phylogenetic analysis was inferred by using the Maximum Likelihood 

method for amino acid sequences of 1οAAV and 2οAAV. From the phlyogram it was 

clear that 2οAAV sequence targeted by the antibody were non-identical with the 

1οAAV sequence (Fig 3. 5a). Amino acid sequence for the 2οAAV of 1b-7-1 and 3a-

3-1 showed different clade in the phylogenetic analysis. It should be noted that the 

phylogenetic analysis included 106 amino acids for E1E2 gene junction. BLAST 

analysis at nucleotide (318 bp) and amino acid (106) level of 1b-7-1 and 3a-3-1 

sequences revealed that they belong to genotype 1b and 3a respectively. Additionally, 

a separate nucleotide BLAST analysis of partial E1 region (nucleotide 1293-1490) and 

the partial E2 region (nucleotide 1491-1611) in 318 bp E1E2 gene junction of both 
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1b-7-1 and 3a-3-1 for 2οAAV sequence was performed. Partial E1 and E2 region of 

2οAAV 1b-7-1 showed 97% and 88% similarity with genotype 1b sequences 

JX649813 and AB154190, respectively. Similarly, partial E1 and E2 regions of 

2οAAV 3a-3-1 showed 96% and 89% similarity with genotype 3a sequences 

KC964933 and DQ505847, respectively. Rearrangement of the clusters can be 

explained as phylogenies based on sequences with little information are susceptible to 

reordering if the sequences have homoplasy. Due to the high genetic variations in the 

primer binding sites, attempts to amplify the full length E1E2 glycoprotein for further 

analysis were not successful. 

Similarly, total IgG purified from samples 1b-4-1, 1b-6-1, 1b-7-1, 1b-8-1 and 1b-9-1 

which were initially classified as AAV negative were mixed from these experiments 

in a cross-panel pull down assay (e.g., Total IgG from 1b-4-1 were mixed with serum 

samples 1b-6-1, 1b-7-1, 1b-8-1 and 1b-9-1). It was observed that total IgG purified 

from AAV negative sera did not capture any viral variant (Table 3.2).  

Separately, amino acid sequence analysis observed that, 1b-5-1 has a 28 amino acid 

HVR1 domain with an in-frame 3 bp insertion at nucleotides 1492-94 at the 5' end of 

E2 (Fig 3.5b, Table 3.2). An atypical 30 amino acid HVR1 sequence in both 2oAAV 

and AFV fractions of serum 1b-4-1 (Fig 3. 5b, Table 3.2), as a result of 9 bp in-frame 

insertion at 5' end from nucleotide 1492-1500 was identified. Also, as a consequence 

of an in-frame deletion at the 5' end from nucleotide 1491-93, a 26 amino acid HVR1 

profile from specimen 1b-7-1 (Fig 3.5b) was observed. The rest of the targeted 2oAAV 

sequences harboured a classic 27 amino acid HVR1 (Fig 3.5b). 
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Table 3.2: Antibody pull down of serum samples without detectable AAV following initial fractionation 

AAV 

negative 

Sera# 

  
1οAAV 

positive 

sera 

               Antibody Pull down*   Unique 

HVR1‡ 

  Accession numbers of 

2οAAV   Total IgG  AP33  VF-Fab  λ-VF-Fab κ-VF-Fab AP33    

  untreated  proteinase k treated  
   

1b-1-1†  1b-2-1†  - N/D  + - N/D N/D  1  KT873154-57 

1b-3-1†  1b-2-1†  N/D N/D  + N/D N/D N/D  1  KT873166, 70-71 

1b-4-1  1b-5-1  + -  + + - -  1  KT873176-77,80-81 

   1b-10-1  - -  - - - -   -  - 

1b-6-1  1b-5-1  + -  + - - -  1  KT873186,194 

   1b-10-1  - -  - - - -   -  - 

1b-7-1  1b-5-1  - -  - - - -   -  - 

   1b-10-1  + -  + + - -  1  KT873195, 97-204 

1b-8-1  1b-5-1  + -  + - - -  1  KT873205-11 

   1b-10-1  - -  - - - -   -  - 

1b-9-1†  1b-2-1†  + +  + - N/D +  1  KT873216-17 

3a-3-1   3a-2-1   + +   + + - +   1   KT873229 
 

#Patient sera without detectable AAV following initial fractionation were subsequently challenged with genotype/subgenotype matched 1οAAV 

positive sera (as per Table 3.1) 

*Individual antibody preparations originating from 1οAAV positive serum or AP33 are described in Material and Methods section 

†Insufficient amounts of AAV negative sera and/or 1oAAV positive sera limited the number of possible experimental combinations (N/D-Not Done) 

‡Cumulative number of unique HVR1 amino acid sequences identified in 2ο AAV positive sample
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Figure 3.4:  Separation of antibody free virus from antibody associated virus 

from viraemic serum 

Schematic diagram of column based separation of unbound antibody free virus (AFV) and 1ο 

antibody associated virus (1οAAV) fraction as described in methods. Different coloured 

shapes represent quasispecies of HCV. Total IgG from 1οAAV positive sample (Serum A) 

were used to pull down viral variants from an unrelated serum sample (Serum B) which had 

previously been classified as AAV negative. The output of this pull down assay was capture 

of a newly formed viral variant 2oAAV additional to the pre-existing parental 1οAAV 
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Figure 3.5: 1οAAV (parental) sequence is distinct from 2oAAV sequence (newly 

formed)  

a. A phylogenetic tree of 1οAAV and 2οAAV amino acid sequences (Maximum likelihood, 

bootstrap-1000, MEGA5.2). Confidence values >70 are shown on the branches. 1οAAV 

sequences are marked with blue triangle and 2οAAV sequences are marked with purple 

squares. 2οAAV sequences cluster away from 1οAAV at the different nodes indicating their 

distinct amino acid profile. Rearrangement of 1b-7-1 and 3a-3-1 amino acid sequence could 

be due to inclusion of short length of amino acid sequence b. 1οAAV sequence from 1b-5-1 

has a 28 amino acid HVR1 (Insertion is shown by a black arrow on the top). Total IgG 1b-5-

1 captured a 2οAAV [KT873177] from 1b-4-1 which harbours a non-classical 30 amino acid 

HVR1 (Black box shows insertion). 2οAAV [KT873195] from 1b-7-1 harbours a non-classical 

26 amino acid HVR1 that was captured by Total IgG from 1b-10-1 (Black circle shows the 

deletion). Total IgG from 1b-5-1 captured two more viral variants (2οAAV) from unrelated 

sera which harboured a classical 27 amino acid HVR1 profile. Similar observations were made 

for Total IgG from 3a-2-1 which captured a viral variant from serum 3a-3-1 [KT873229]. 

Sequence analysis of 1οAAV with 2οAAV complex revealed to be non-identical. 
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3.3.4 Dissociation of antibody-virion complex  

Virus free antibody fractions were obtained by treating AAV positive sera with 

proteinase K. The absence of E1E2 junction specific PCR products confirmed the virus 

free status of the post proteinase K treated samples (Fig 3.6). Products of proteinase K 

treated sera eluted from Ab spin trap™, LambdaFabSelect™ and KappaSelect™ were 

analysed using a 4-12% bis-tris gradient gel. Analysis revealed that in the process of 

dissociating the antibody-virus complex, the intact antibody was fractionated into 

several peptides. An intact Fab like fragment was identified at ~50 kDa from all three 

fractionation procedure (Fig 3.7). The exact cleavage site of the proteinase K on IgG 

has not been identified in this study. However, the SDS-PAGE, western blot and 

functional analysis of virus free fragment fraction indicates that this fraction contains 

Fab like fragment; henceforth this Fab like molecule will be referred to as either “VF-

Fab” (Ab spin trap™), “λ-VF-Fab” (LambdaFabSelect™), or “κ-VF-Fab” 

(KappaSelect™), as appropriate (Fig 3.7). 
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                            Untreated HCV serum              Proteinase K treated HCV serum 

  

 

                            

Figure 3.6: Confirmation of of antibody-virion complex dissociation 

Serum sample positive for presence of AAV was treated with proteinase K to digest the 

antigenic epitopes. Both untreated and proteinase K treated HCV serum samples were 

segregated into AFV (W0) and AAV (Total IgG) complex using Ab spin trap™. W0: first 

flow-through, W8: last wash. PCR analysis of Total IgG fraction showed presence of 318 bp 

HCV E1E2 junction specific amplicon. However, Total IgG fraction of proteinase K treated 

HCV serum failed to amplify the expected 318 bp amplicon indicating virus free status of total 

IgG fraction.  
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a.      b.                                                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Analysis of proteinase K treated serum sample 

a. Samples (25 μg) post proteinase K treatment after eluting from three different 

columns were analysed on 4-12% bis-tris gradient gel in a non-reducing condition. The black 

box indicates Fab positive control (5 μg) aligning with the test samples. κ-VF-Fab was not 

detectable in SDS-PAGE. Control IgG was purified from human plasma CTM (-)C, Roche 

Molecular systems Inc, a commercial natural human IgG Fab fragment was used (ab90352) 

b. Separately, independent preparations of elutes were transferred onto nitrocellulose 

membrane. The blot was developed using HRP labelled mouse anti-Human IgG Fab 

antibody (biorbyt). We identified intact Fab fragment post proteinase K treatment.  
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3.3.5 Patient derived VF-Fab selectively targets homologous genotype  

Total IgG, which contains AAV (hereafter referred to as 1οAAV) along with free 

antibodies, VF-Fab, λ-VF-Fab and κ-VF-Fab was used to pull down the viral variants 

from the AAV negative sera (Table 3.2, Fig. 3.8). The quantity of HCV specific 

antibodies in the Total IgG and VF-Fab preparations was not known. The bed volume 

for Ab Spin Trap™ column is 100 µl and is capable of purifying >1mg of IgG. 

Considering these factors the ratio of antibodies: AAV negative sera was set to 1:5. 

This mixture was then incubated at 37οC for 2 h. AP33 is a mouse MAb which targets 

the partially confirmation dependent epitope within amino acid residues 412-423 (a 

kind gift from Dr. Arvind Patel, University of Glasgow, UK). Simultaneously, these 

sera (Table 3.1.3.2) were challenged with both intact AP33 and Ab Spin Trap™ eluted 

post proteinase K treated AP33 (25 µg/ml) (278). The Ab Spin Trap™ protocol was 

followed and the challenged samples were tested for the presence of a newly formed 

2οAAV by PCR. We observed that VF-Fabs (n=8/12) were able to capture viral 

variants in all instances in comparison to λ-VF-Fab (n=3/12) and κ-VF-Fab (n=0/12) 

(Table 3.2). Seven genotype 1b and one genotype 3a serum samples which originally 

did not show detectable levels of the AAV were successfully retained (on the Ab spin 

trap™ column) when mixed with the VF-Fabs from a patient infected with the same 

HCV genotype (Table 3.2). A completely homogenous virus population was recovered 

from all the newly formed 2oAAV fractions when analysed clonally at the amino acid 

level (Accession numbers: Table 3.2).  

Both intact MAb-AP33 and proteinase K treated AP33 retained identical viral variants 

from 1b-9-1 and 3a-3-1, only (Table 3.2). The AAV fraction obtained from 1b-9-1 and 

3a-3-1 sera yielded a homogenous virus population of [KT873217] and [KT873229], 

respectively when mixed with AP33. This mirrors the identical viral variants captured 
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by VF-Fab1b-2-1 and VF-Fab3a-2-1 preparations implying the immunogenicity of the 

variants. Detailed analysis at the amino acid level demonstrated that serum samples 

1b-9-1 and 3a-3-1 harbour epitope E412-423.  MAb AP33 targets epitope 

412QLINTNGSWHIN423 (E2412–423) (257). The epitope E2412–423 is conserved across 

samples 1b-3-1, 1b-4-1, 1b-6-1, 1b-7-1 and 3a-3-1 (Fig 3.9). In our samples, amino 

acid isoleucine (I) was replaced with valine (V) at position in 414 in the sequences 

obtained from 1b-1-1 (40%), 1b-8-1 (100%) and 1b-9-1 (100%). Natural E2412–423 

variant 412QLVNTNGSWHIN423 has been observed in genotype 1a (18.5%), genotype 

3a (52%) and genotype 6 (25%) (171). 

Both, VF-Fab and λ-VF-Fab derived from respective homologous genotypes captured 

identical viral variants from 1b-4-1, 1b-7-1 and 3a-3-1 forming a 2oAAV (Table 3.2). 

κ-VF-Fab did not capture viral variant from any of the AAV negative sera.  
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Figure 3.8: Separation of antibody-virion complex 

Schematic diagram of separation of antibodies from virion in AAV positive serum sample as 

described in methods. Different coloured shapes represent quasispecies nature of HCV. λ-VF-

Fab, κ-VF-Fab and VF-Fab from 1οAAV positive sample (Serum A) were used to pull down 

variants from an unrelated (obtained from a different patient) serum sample of same 

genotype/subtype (Serum B) which had previously been classified as AAV negative. The 

output of this pull down assay was capture of a newly formed 2oAAV. 
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Figure 3.9: Weblogo of epitope E412-423 targeted by MAb AP33 observed in sera 

with no detectable antibody associated virus (Table 3.2) 

Amino acid Weblogo of epitope 412QLINTNGSWHIN423 targeted by MAb AP33. Amino 

acids are grouped and colour coded as Black: non polar, Green: polar, Red: acidic, Blue: basic 

and Purple: neutral. The x-axis depicts the amino acid position and the height of the individual 

letter reflects relative frequency of each amino acid at that position. Sequences obtained from 

AAV negative sera 1b-1-1, 1b-8-1 and 1b-9-1 showed I414V mutation.  
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3.3.6 Source of VF-Fab does not affect the selective binding to viral variants 

VF-Fab1b-2-1 was obtained from a serum which belongs to the anti-D cohort (277). 

Patients in the anti-D cohort were iatrogenically infected with the same source of HCV 

genotype 1b (277). Three of four HCV 1b sera which were mixed with VF-Fab1b-2-1 

were from the anti-D cohort (1b-1-1, 1b-8-1, and 1b-9-1) (Table 3.2). However, viral 

variants from only two of viraemic sera (1b-1-1, 1b-9-1) were captured by the VF-

Fab1b-2-1. Interestingly, serum sample from which VF-Fab1b-5-1 was obtained does 

not belong to the anti-D cohort yet successfully retained virus from the anti-D serum 

1b-4-1, 1b-6-1 and 1b-8-1. On the other hand, 1b-7-1 was targeted by VF-Fab1b-10-

1, obtained from another anti-D serum. Of note, no shared reactivity with respect to 

capture viral variants (2oAAV) for VF-Fab1b-5-1 or VF-Fab1b-10-1 was observed. 

Moreover, similar to the previous observation, amino acid substitutions were restricted 

to HVR1 in 1b-3-1, 1b-9-1, 1b-4-1, 1b-8-1 and 1b-7-1. The relative percentages of 

2oAAV clonal population (amino acid at the HVR1 level) identified in AFV ranges 

from 10-100% (Fig 3.10). Supplementary clonal analysis of unfractionated sample 3a-

3-1 showed presence of 2oAAV in the unfractionated sample indicating this variant 

was a minor variant of the quasispecies pool. It is likely that VF-Fab3a-2-1 has 

targeted all the available 2oAAV 3a-3-1 variants in serum (Fig 3.10). However, in 

some of the viral samples changes in the amino acid profile were also observed outside 

the HVR1 (Fig 3.11). For genotype 1a, 1b-1-1 showed changes at the amino acid 

positions 344, 347, 355, 373 and 414. In case of genotype 1b, the amino acid positions 

319, 345, 347, 373 and 379 showed variation in 1b-6-1 and positions, 339 and 346 in 

1b-8-1. In 3a-2-1, variations in the amino acid profile were observed at positions 337, 

345, 383 and 415.  
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Figure 3.10: Clonal density per sample in AFV fraction 

The histogram represents the clonal density of 2οAAV (when mixed with VF-Fabs) identified 

in antibody free fraction of parental sample at the amino acid level in HVR1 domain. Ten 

clones per serum sample were analysed. The X axis depicts homologous genotypes mixed 

with patient derived VF-Fab (Table 3.2). The vertical bars represent the percentage of unique 

variants within each specimen. The purple boxes indicate proportion of 2οAAV detected in 

AFV fraction after challenging the viraemic sera with VF-Fab from homologous genotype. A 

single viral variant in 1b-1-1, 1b-3-1 and 1b-9-1 was targeted by VF-Fab1b-2-1. A unique 

viral variant in 1b-4-1, 1b-6-1 and 1b-8-1 was successfully retained by VF-Fab1b-5-1. A 

unique viral variant from 1b-7-1 was targeted by VF-Fab1b-10-1. A unique variant from 3a-

3-1 was retained by VF-Fab3a-2-1 was identified in unfractionated serum sample 3a-3-1. 

Accession numbers for 2οAAV are enlisted in Table 3.2.  
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Figure 3.11: Quasispecies heterogeneity in the partial E1E2 glycoprotein of AFV population in HCV at the amino acid level 

1b-1-1  

Amino acid Weblogo of partial E1E2 glycoprotein sequence (residues 319-424, ref: AF011751). Amino acids are grouped and colour coded as Black: 

non polar, Green: polar, Red: acidic, Blue: basic and Purple: neutral. The x-axis depicts the amino acid position and the height of the individual letter 

reflects relative frequency of each amino acid at that position. Red boxes show heterogeneity at the HVR1 level. Stars below the x- axis depict changes 

in the amino acid composition outside HVR1.    
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3.4 Discussion 

Both the proof-reading activity of HCV RNA polymerase and the high mutation rate 

of HCV contribute to the rapid evolution in HCV (279). The phenotypes of virus 

population can change in short periods of time. The biological impact of this 

variability includes the appearance of escape mutants, alterations in cell tropism and 

changes in virulence and host range giving rise to fitter virus populations. HCV 

genome is heterogeneous except for the conserved 5' UTR, with higher diversity in the 

envelope genes (280). The HVR1 undergoes significant genomic variation (279). It 

has been observed that selection pressure from nAb responses shape the evolution of 

viral envelope protein (210-213). Previous research has shown that HCV virions can 

be segregated into AAV and AFV subpopulations (267). Analysis of both these 

fractions at the genomic level has revealed that the AFV can be diverse, whereas AAV 

can be of limited heterogeneity, even clonotypic in nature (268). Investigation of the 

AAV from immunologically active individuals provide an opportunity to advance our 

understanding of immune escape mutants and viral envelope protein evolution. 

 In the current study, viraemic HCV sera were fractionated into AAV and AFV 

subpopulations to investigate the viral variants targeted by host humoral immune 

system (Fig 3.2). Furthermore, virus free Fab (VF-Fab) were obtained from the AAV 

complexes and used to mix homologous genotype/subtype matched sera where AAV 

was not detected previously (Fig 3.4). This study assessed the ability of Total IgG and 

VF-Fab to target viral variants from unrelated patients in serum derived HCV system. 

To our knowledge, this is the first successful attempt where Total IgG and VF-Fab 

preparations purified from AAV positive sera captured viral variant from viraemic 

HCV sera classified as AAV negative (Figs 3.4, 3.8). Findings from this study 

demonstrated that inter-patient viral variants can be targeted by using antibodies from 
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homologous AAV positive sera (Figs 3.3, 3.5). It has been shown in HCVpp and 

HCVcc in vitro infection systems that antibodies obtained from patient sera are 

broadly reactive (reviewed in 61). In this instance, however, in the complex serum 

environment, antibodies targeted unique viral variants from the quasispecies pool from 

unrelated patient sera which were previously not encountered by the patient B cells 

(Table 3.2, Figs 3.3, 3.5).  

Patient derived anti-HCV VF-Fab fragments either crude (Ab Spin TrapTM) or purified 

λ-VF-Fab (HiTrap LambdaFabSelect™) have the same targeting potential (against 

defined E2 epitopes) as that of the intact Total IgG (Fig 3.8, Table 3.2). This indicated 

that antigen binding site was intact post proteinase K treatment. Lack of κ-VF-Fab to 

capture any viral variant can be explained by its very low concentration, as observed 

in western blot analysis (Fig 3.7b). Protein G, a surface protein purified from 

Streptococci group C or G has been shown to bind to the broader range of IgG 

subclasses. Protein G binds to the interface between CH2 and CH3 region of Fc portion 

in IgG (281). Antibodies purified from proteinase K treated serum samples resulted in 

fragmentation (Fig 3.7a). SDS-PAGE analysis of fragments obtained from Ab Spin 

TrapTM showed Fab like fragment along with other fragments (Fig 3.7). It has been 

previously shown that CH1 domain of the Fab arm has a binding site for streptococcal 

protein G (282). This is a likely explanation to how we obtained functional VF-Fab 

from proteinase K treated AAV positive serum samples (Fig. 3.7).  

It is of note that, although six samples were from the Irish anti-D cohort (277), VF-

Fab showed a selective targeting of viral variant in homologous subtyped matched 

HCV 1b sera, irrespective of the common source of HCV infection (Fig 3.5b). 

Analysis of relative distribution of 2oAAV at the HVR1 level suggests that the viral 
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variant targeted by VF-Fab need not dominate the heterogeneous virus population (Fig 

3.9). Multiple sequence and phylogenetic analysis indicated amino acid diversity of 

distinct 2oAAV targeted by VF-Fab (Fig 3.5). This data suggests that the variants 

targeted by VF-Fab must share a common epitope. In an infected individual HCV is 

associated with ApoB, ApoE and circulates as a lipoviral particle (reviewed in 100, 

101). This limits the accessibility to the immunogenic epitope. Furthermore, the 

immunogenicity and antibody-epitope binding kinetics play a crucial role in selecting 

the clonotypic population out of the diverse mixture of variants in patient sera. 

Competition between the antibodies produced against different viral variants is 

another potential reason for the clonotypic selection of the virion. Additional unknown 

factors in the serum could also contribute to the selective targeting of viral variant(s).  

The HVR1 in the E2 undergoes significant genomic variation (279). A recent study 

by Palmer et al. (2015) involved ultra-deep pyrosequencing analysis of HVR1 

phenotypes isolated from 23 treatment naïve chronically infected patients where 

samples were collected for 16 weeks biweekly (276). Based on the HVR1 variation, 

quasispecies were distinguished as stationary viromes (purifying immune pressure) 

phenotype and antigenic drift (positive selection pressure) phenotype (276). Several 

studies have documented the existence of neutralisation epitopes within HVR1 (30, 

61-67), hence making it vulnerable to antibody mediated immune selection pressure. 

Positive selection pressure results in immune evasion of variants from antibody 

responses and HCV successfully establishes persistent infection in the face of 

continual production of neutralising antibodies (nAb) (268, 283, 284). In the present 

work, we observed that variations in the amino acid profile were largely concentrated 

within HVR1, which supports the already published data that HVR1 is constantly 

under immune selection pressure (Fig 3.3b-c and 3.5b) (266, 268, 283, 284). A 
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dominant homogenous HVR1 population with no variations in the amino acid profile 

outside HVR1 was observed for samples 1b-4-1 (70%), 1b-8-1 (100%) and 1b-7-1 

(90%), implying the variants are under purifying selection pressure (Fig 3.10). The 

partial E1 sequence (319-383) showed very few amino acid substitutions (Fig 3.11). 

E1 is a transmembrane protein, which limits its exposure to the antibodies (27, 37, 38). 

This may be explained partially as E1 being a poor immunogenic region and hence 

subject to less immune pressure (161-163, 167).  

Insertion-deletion events in HVR1 are a feature of HCV biology (212, 267, 285). This 

study reports the capture of a non-classic 30 amino acid HVR1 (from sample 1b-4-1, 

Fig 3.5b) using VF-Fab1b-5-1 from an unrelated sample. The variant in AAV positive 

1b-5-1 harboured a non-classical 28 amino acid HVR1 (sample 1b-5-1, Fig 3.5b). 

These data indicate that the three amino acid insertion at the N-terminus of HVR1 did 

not interfere with the binding capacity of aforementioned VF-Fabs from sample 1b-5-

1. Guan et al. (2012) in their experiments have shown that first 13 amino acids do not 

affect the infectivity in HCVpp system. This is likely because nAbs target C terminus 

of HVR1 and hence deletion or insertion at the N terminus doesn’t affect this 

phenomenon (129).  

Epitope 412QLINTNGSWHIN423 targeted by MAb AP33 is a highly conserved epitope 

downstream from the HVR1 is broadly neutralising and conserved across different 

genotypes (53.4%) (171, 257). Importantly, MAb AP33 (either intact or proteinase K 

treated) was able to retain epitope positive viral variant(s) from only 1b-9-1 and 3a-3-

1 (Table 3.2, Fig 3.9). In our study, sequences obtained from samples 1b-1-1 (40%), 

1b-8-1 (100%) and 1b-9-1 (100%) harboured I414V mutation in the E2412–423 epitope 

(Fig 3.9). Tarr et al. (2006) observed that alanine replacement at positions L413, N415, 
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G418 and W420 resulted in a reduction in binding (>75%) (286). In another study in 

2007 they observed that alanine substitution at I414 and T416 resulted into 60% 

reduction in binding (171, 286). However, AP33 showed >100% reactivity to I414V 

natural variant in genotype 1a, 3a and 6 (171). Tarr et al. (2007) also noted that 

antibodies obtained from less than 2.5% acute and chronically infected individuals 

were reactive to E2412–423 epitope (genotype 1- 4%, genotype 2- 1% and genotype 3- 

1%) (171). These findings suggested that E2412–423 presentation is genotype specific 

(171). This explains despite of the I414V mutation how AP33 targeted viral variant in 

sample 1b-9-1.  

Dreux et al. (2006) have shown that high density lipoproteins in serum can shield the 

CD81 binding site making it unavailable for binding of MAbs like AP33 (287). 

Recently, Deng et al. (2015) have found no detectable antibody response to a peptide 

(PUHI 19) harbouring E2412–423 epitope (409-423) suggesting weak immunogenicity 

of the epitope (174). Another study by Li et al. (2015) shows that E1412-423 assumes 

different conformations leading to decreased immunogenicity in the infected 

individuals (288). Li et al. (2015) showed that epitope E2412–423 in complex with 

antibody HC33.1 (Human MAb to E2412–423) assumed a conformation intermediate to 

a β-hairpin and coil (288) in contrast to its β-hairpin structure in complex with AP33 

and other two MAbs HCV1 and Hu5B3.v3 (48). These findings suggest that E2412–423 

is a flexible region. This is due to the fact that the epitope structure depends on the 

polypeptide sequence up and/or downstream of the antigenic site. E2412–423 is preceded 

by a highly disordered and variable region which is assumed to form a flexible loop 

like structure (41) implying that strain or isolate specific amino acid variation may 

modulate the epitope presentation thereby altering the neutralisation efficiency. 

Overall, the available data suggest that structural flexibility of E2412–423 renders it less 
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immunogenic depending upon the individual quasispecies heterogeneity, partly 

explaining as to why AP33 failed to target some of the viral variant(s) in our serum-

AP33 pull down experiments. 

From our results it was not possible to determine whether, i) the antibodies which 

targeted 1oAAV are the same antibodies that targeted 2oAAV, and/or ii) the antibodies 

were not saturated by 1oAAV. Moreover, Total IgG purified from AAV negative sera 

were not capable of capturing viral variants from other AAV negative sera. In this 

context, absence of AAV might represent a period when antibody sensitive viral 

variants were removed (from a quasispecies pool) or below the detection level leaving 

behind the humoral immune escape mutants. Nonetheless, we acknowledge that these 

AAV negative sera might have nAbs against previously culled viral variants from the 

quasispecies pool (Section 5.3.2).  

In summary, we segregated the chronically infected viraemic sera from HCV infected 

patients into a diverse population of AFV and a clonotypic AAV fraction. Our study 

highlights that mutations in the HVR1 of AAV provide an insight into the dynamics 

of viral evolution. Presence of AAV signifies an active host immune response in the 

context of a complex serum based environment. We show differential binding of 

patient derived anti-HCV antibodies, VF-Fab and murine MAb AP33 in unrelated 

viraemic sera (Table 3.2). The data presented here shows that selective binding is 

independent of the source of infection and/or mutations within the HVR1. Thus our 

data strengthen the hypothesis that antibodies derived from HCV infected patients 

target viral variant(s) from homologues genotype/subtype matched sera. 
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4. Amplification, cloning and expression of full length E1E2 

glycoprotein from antibody associated HCV 

4.1 Introduction 
 

HCV pseudoparticle system has been proven to be an efficient in vitro system to study 

the role of E1E2 glycoprotein in HCV life cycle (33, 51, 165, 256). Recently, 

Urbanowicz et al. (2015) assessed the infectivity of a diverse panel of patient derived 

HCV envelope glycoproteins and their neutralisation using monoclonal antibodies 

(MAb) (258). Urbanowicz et al. (2015) observed variance in the infectivity and 

neutralisation sensitivity of these patient derived HCV glycoproteins. In the previous 

chapter we have shown that the humoral immune system targets clonotypic viral 

variants from the quasispecies population. In this chapter, we tested the hypothesis 

that the E1E2 sequences generated from the antibody associated virus fraction are 

infectious in the HCV pseudoparticle (HCVpp) system. 

 

To examine this hypothesis we, 

 Amplified, cloned and expressed the full length AAV- E1E2 glycoprotein  

 Generated HCV pseudoparticles using MLV based packaging vector in the 

HEK293T cells 

 Carried out infectivity assay in the Huh7 cells 
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4.2 Methods  

Following methods were used to test the hypothesis, 
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4.3 Results: 

4.3.1 Cloning and expression of E1E2 glycoprotein sequence derived from AAV  

A panel of viraemic sera positive for HCV genotype 1a (n=3), 1b (n=7), 3a (n=1) were 

selected from eight chronically infected patients at different time points (Table 

3.2.3.1). Six out of seven 1b serum samples were acquired from a cohort of Irish 

women infected with HCV genotype 1b via contaminated anti-D immunoglobulin 

(277). cDNA sequences encoding full-length E1E2 were amplified from RNA 

extracted from Total IgG fraction using Expand High Fidelity PCR system (Roche) 

(Table 4.1, Fig 4.1a). Ten out of eleven samples successfully amplified expected ~1.7 

kb E1E2 sequences. Several attempts to amplify E1E2 from 1b-6-1 were unsuccessful. 

Heterogeneity in the region of interest, from the signal peptide of E1 to the cytoplasmic 

domain of E2 presents a significant challenge in successful recovery of the PCR 

product. The resulting ten E1E2 sequences were cloned into the pcDNA3.1 V5his D-

TOPO expression vector (Life Technologies) (Section 2.2.2.6c). The E1E2 proteins 

expressed in transfected HEK 293T cells were assessed by western blot (Section 

2.2.3.4) (Fig 4.1b). E1E2 sequence from 1a-1-2 was not expressed whereas 1b-8-1 

showed very low level of expression (Fig 4.1b).  
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Table 4.1: Sample characteristics used in the current study.                         

Genotype No. of 

samples 

AAV 

positive 

samples 

Patient 

Identifier 

Sample #  

identifier 

Date of 

collection 

Accession 

Number 

AAV 

$VF-

Fab 

1a 3 + P1a-1 1a-1-1 04/2007 KY031948 1a-1-1 

+ P1a-1 1a-1-2 08/2013 KY031950 1a-1-2 

+ P1a-1 1a-1-3 01/2014 KY031949 1a-1-3 

1b 7 + P1b-1 1b-1-2* 12/2013 KY031951 1b-1-2 

+ P1b-1 1b-1-3* 03/2014 KY031952 1b-1-3 

- P1b-4 1b-4-1* 05/2014 KU888835¥ 1b-4-1 

+ P1b-5 1b-5-1 04/2015 KU888834 1b-5-1 

- P1b-6 1b-6-1* 06/2014 N/A 1b-6-1 

- P1b-8 1b-8-1* 10/2014 KU888836¥ 1b-8-1 

+ P1b-10 1b-10-1* 04/2015 KU888837 1b-10-1 

3a 1 + P3a-1 3a-1-1 12/2013  KY031953 3a-1-1 
# Sample identifier: Genotype/Subtype-patient identifier- sample number  

*Source of infection: contaminated anti-D immunoglobulin (277) 

¥ KU888835 and KU888836 targeted by VF-Fab1b-5-1 and VF-Fab1b-10-1 forming 2οAAV  

 $ VF-Fab - Virus free Fab obtained from sera positive for AAV complex 
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a. 

                  

      

                                 

 

 

   

b.  

 

 

Figure 4.1 Cloning and Expression of E1E2 glycoprotein 

a. PCR amplification of ten selected E1E2 sequences associated with AAV. RNA was 

extracted from patient sera and cDNA generated using specific primers (Section 2.3, Table 

2.3). ~1.7kb PCR product was visualised on 1% agarose gel (shown in a black box). M: 

GeneRulerTM 1 kb DNA ladder (250-10,000 base pair). Only representative samples are shown 

in this figure b. Western blot of E2 glycoprotein (50 μg/well) detected with a mixture of anti- 

E2 MAbs AP33 (amino acid residues 412-423) and ALP98 (amino acid residues 644-651). 

M: Biotinylated molecular weight marker (6,500-180,000 Da).  
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4.3.2 Difference in the infectivity of HCVpp  

Ten pseudotyped HCV particles were generated in this study according to the Bartosch 

et al. (2003) protocol (Section 2.2.3.5) (33). The pseudoparticles were screened for 

their infectivity, as previously described (Section 2.2.3.6) (258). No envelope control 

was used as a baseline to determine the infectivity of the pseudoparticles. Out of ten 

pseudotyped viruses, four were identified as being infectious in our entry assay (Fig 

4.2). H77 pseudoparticles were included as a reference standard in each experiment 

(Fig 4.2). HCVpp1b-4-1 yielded a 10 fold greater relative luminescence value (RLU) 

than no envelope control in 48 well plate only (Section 2.2.3.6) (Fig. 4.2). HCVpp1b-

1-2 were highly infectious yielding 657 times greater RLU followed by HCVpp1b-1-

3 with 440 times greater RLU than no envelope control. Even though these 

pseudoparticles express E1E2 derived from patient P1b-1 at different time points, the 

difference in their infectivity was consistent from batch-to-batch. HCVpp1a-1-3 

showed 61 fold higher RLU than the no envelope control (Fig 4.2). HCVpp1a-1-1, 

HCVpp1a-1-2, HCVpp1b-5-1, HCVpp1b-8-1, HCVpp1b-10-1 and HCVpp3a-1-1 

were non-infectious as they did not pass the threshold set for infectivity (10 times 

higher than the no envelope control) (258). Lack of infectivity could be due to 

individual mutations in the E1E2 gene or the ratios of plasmids used in transfection 

and/or Murine Leukaemia virus reporter system (172).  
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Figure 4.2: Varying degree of infectivity of E1E2 glycoproteins derived from 

AAV HCVpp                                                       

 

HCVpp generated from E1E2 associated with AAV showed varying degree of infectivity. 

HCVpp generated from phCMV-ΔC/E1/E2 H77 were used as reference HCVpp. No envelope 

control reproducibly gave RLU values less than 100, therefore a cut-off of 1000 RLU was 

used to determine the infectivity of a clone (*p<0.0001, one way ANOVA, Dunnett’s posthoc 

test). phCMV-ΔC/E1/E2 H77  was used as a reference clone. From a panel of 1οAAV and 

2οAAV E1E2, four pseudoparticles were found to be infectious (dotted boxes). The X axis 

depicts HCVpp clones in this study. Y axis infectivity in RLU (Log10). Black box represents 

no envelop control Error bars indicate standard deviation. All the experiments were repeated 

four times with three technical replicates each. The RLUs were normalised with the values 

from no envelop control.   
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4.3.3 Analysis of E1E2 glycoprotein from the cell extracts  

100 µg of  HEK cell extracts of all ten E1E2 clones were used to further characterise 

the reactivity of MAb AP33, MRCT10 (HCV envelope glycoprotein E2 fragment 412-

423 with humanised and affinity-matured antibody, 4HS6-PDB) and VF-Fab in GNA 

(Galanthus nivalis) capture ELISA (Section 2.2.3.8). The absorbance range for 

GLOMAX®-MULTI has a photometric measuring range of 0-4 with the OD accuracy 

of <2% at OD 4. AP33 is mouse MAb which targets an epitope within amino acid 

region 412-423 in the E2 glycoprotein (257). Equivalent binding efficiency in ELISA 

was observed when probing GNA captured E2 with AP33 and its humanised version 

MRCT10 to all the glycoproteins (Fig 4.3a). Cell extracts from HCVpp1a-1-2, 

HCVpp1b-4-1 and HCVpp1b-8-1 showed a low binding signal (O.D. 0.033-0.073) for 

AP33 which mirrors the western blot results for these E1E2 glycoproteins (Figs 4.1b, 

4.3a).  Moreover, all the VF-Fab were able to bind to the glycoproteins in the HEK 

cell lysate (Fig 4.3b-d). HCVpp1a-1-2 showed a low signal for VF-Fab from genotype 

1a (O.D. 0.14-0.40) (Figs 4.3a and 4.3b). VF-Fab derived from genotype 1a showed 

higher affinity towards cell extracts from HCVpp1a-1-1, HCVpp1a-1-3, HCVpp1b-1-

2, HCVpp1b-1-3 and HCVppH77 (O.D. 0.55-1.96) (Fig 4.3b). Whereas VF-Fab 

derived from genotype 1b showed more affinity (O.D. 0.79-2.00) towards cell extract 

from HCVpp1b-1-2 and 1b-1-3 which were extracted from cells infected with HCVpp 

from genotype 1b (Fig 4.3c). VF-Fab1b-5-1 appeared to be highly efficient (O.D. 0.02-

2.09) in binding to all the E1E2 extracts in this study (Fig 4.3c). Similarly, VF-Fab 

derived from 3a-1-1 showed highest binding signal (O.D. 0.88) to HEK extract from 

HCVpp3a-1-1 (Fig 4.3d). Equal amounts of HEK cell extracts were used to analyse 

the expression of the E1E2 glycoproteinp (172). , this cannot be directly correlated to 

the infectivity of the HCVp – you need to develop this a little more or else leave out 
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Figure 4.3 
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Figure 4.3: GNA capture ELISA of transfected HEK cell extracts 

a. Cell extracts of HEK (100 µg) 293T co-transfected with MLV packaging vector, 

pcDNA3.1 expressing E1E2 (different genotypes, Table 4.1) were analysed for the presence 

of E2 by GNA capture ELISA using MAb AP33 (at 1μg/ml, 1:10,000) and humanised version 

of AP33, MRCT10 (1:10,000) b. VF-Fab obtained from genotype 1a c. VF-Fab genotype 1b  

(50μg/ml) d. VF-Fab genotype 3a. Error bars represent standard deviation. *MRCT10 

experiments were done at CVR, University of Glasgow, UK. MRCT10 was not available for 

HCVpp1b-8-1 and HCVpp1b-10-1.  
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4.3.4 Mutations at 292 in the E1 and 388 in the HVR1 of glycoprotein modify 

infectivity of HCVpp1b-1-3  

It was observed that HCVpp1b-1-2 was 1.5 times more infectious than HCVpp1b-1-

3. It is interesting to note that these 1b HCVpp expressing E1E2 glycoproteins were 

obtained from P1b-1 at two different time points (Table 4.1). However, HCVpp1b-1-

2 differed from HCVpp1b-1-3 by only three amino acids at positions 292 (C-terminal 

of E1), 388 and 395 (HVR1 of the N-terminal of E2) in the E1E2 glycoprotein 

sequence and yet showed differences in the infectivity (Fig. 4.4a). It was hypothesised 

that these three amino acid correlates were responsible for the difference in their 

infectivity. As a reference range, infectivity of HCVpp1b-1-2 was set to 1.  Individual 

mutants, 1b-1-2I388V and 1b-1-2V395A, generated 1.34 and 2.12 fold greater levels of 

infectious particles compared to that of HCVpp1b-1-2 respectively (Fig 4.4b). These 

results indicated that alanine substitution at position 395 plays a more significant role 

in enhancing HCVpp infectivity in vitro than wild type valine. A mutation in the E1 

at T292A dramatically decreased the HCVpp infectivity by 0.74 fold for 

T292AHCVpp1b-1-2I388V and 1.04 fold T292AHCVpp1b-1-2V395A in comparison to the 

individual mutant clones HCVpp1b-1-2I388V and HCVpp1b-1-2V395A (Fig 4.4b). 

Importantly, the T292AHCVpp1b-1-2DM clone (0.76 fold) closely replicates the 

infectivity of the HCVpp1b-1-3 (0.83 fold) wild type (Fig 4.4b). These results indicate 

a potential role for the amino acid at position 292 (within E1) in governing the degree 

of infectivity in vitro (Fig 4.4a).  Simultaneously 162 GenBank sequences for genotype 

1a, 1b, 3, 4, 5 and 6 (GT 1a=44, GT 1b= 21, GT 2=19, GT 3=21, GT4=20, GT 5=17 

and GT 6=20) were compared to E1265-296 sequence from HCVpp1b-1-3. Out of 159 

sequences, GenBank sequences of 78 clones used by Urbanowicz and colleagues for 

neutralisation assay were included in the analysis (GenBank accession numbers in 
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appendix 1) (258). At position E1292 amino acid T was replaced by I (5.06%), V 

(1.89%) in genotype 2 and with S (11.3%) in genotype 4 (Fig 4.4a). Only our clone 

HCVpp1b-1-3 harboured T292A substitution. This bioinformatics analysis revealed 

that T292 is a nearly conserved amino acid in rest of the genotypes. Subsequent 

western blotting analysis of HEK extracts of the mutated isolates revealed decreased 

expression of E2 glycoprotein for clones HCVpp T292A1b-1-2I388V, HCVpp T292A1b-1-

2V395A, HCVpp 1b-1-2DM and HCVpp T292A1b-1-2DM as compared to the wild type 

HCVpp1b-1-2 and HCVpp1b-1-3 (Fig 4.5). 
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Figure 4.4: Site directed mutagenesis of HCVpp1b-1-2 

a. Amino acid sequence alignment of wild type HCV1b-1-2, HCVpp1b-1-3 and sequential 

site directed mutagenesis at positions 292 in the E1, 388 and 395 in the HVR1 of E2 

glycoprotein b. Amino acid Weblogo of partial E1 glycoprotein sequence (residues 265-296, 

ref: AF011751). Black: non polar, Green: polar, Red: acidic, Blue: basic and Purple: neutral. 

The x-axis depicts the amino acid position and the height of the individual letter reflects 

relative frequency of each amino acid at that position. Star below the x-axis denotes a 

conserved amino acid threonine (T) at position 292 in E1 c. Six mutant clones were generated 

for highly infectious HCVpp1b-1-2 as follows, 1b-1-2I388V, 1b-1-2V395A, T292A1b-1-2I388V, 

T292A1b-1-2V395A, 1b-1-2DM and T292A1b-1-2DM (DM corresponds to double mutant I388V and 

V395A). Wild type clones HCVpp1b-1-2 and HCVpp1b-1-3 were used as controls. Mutation 

in the E1 glycoprotein reduces the infectivity of HCVpp1b-1-2. Pairwise mutation at position 

292 and 388 (T292A1b-1-2I388V) and T292A1b-1-2DM corresponds to wild type HCVpp1b-1-3 

which was less infectious in comparison to HCVpp1b-1-2. Pairwise mutation at position 292 

and 388 (T292A1b-1-2I388V) and T292A1b-1-2DM corresponds to wild type HCVpp1b-1-3 

(*p<0.0001, one way ANOVA, Dunnett’s posthoc test). All the experiments were repeated 

four times with three technical replicates each. The X axis depicts infectious mutant HCVpp 

clones in this study. Y axis denotes infectivity in fold difference. ~~~ denotes the break in the 

amino acid sequence for the presentation purpose. Error bars indicated standard deviation.  

 

 

3
8

8
 

2
9

2
 

3
9

5
 

b. 

***  ***  ***  **  



Chapter 4  

138 

 

               

 

 

 

 

 

 

 

 

 

Figure 4.5: Western blot analysis of HEK extracts expressing wild type and 

mutated E1E2 glycoproteins. 

HEK extracts (50μg/well) were analysed on 4-12% bis-tris gradient gel in reducing condition 

followed by transferring onto a Nitrocellulose membrane. DM corresponds to double mutant 

I388V and V395A. The blot was developed using a primary mouse MAb AP33 and ALP98 (a 

kind gift from Dr. Arvind Patel, University of Glasgow, Scotland) and secondary HRP labelled 

goat anti-mouse antibody. It was observed that proteins with E1 mutation showed low level 

of expression as compared to individual mutants. Wild type HCVpp1b-1-3 harbouring all 

three mutations showed high level of protein expression than T292A1b-1-2DM. Error bars 

represent standard deviation. 
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4.3.5 HCVpp entry is CD81 dependent 

 

It has been shown that CD81 receptors play a key role in the entry of HCV 5μl  (289).  

AntiCD81 antibody (BD, Pharmingen, JS-81) can block the entry of viral particles. In 

this study, antiCD81 antibody was used to test the role of CD81 in infectivity of 

HCVpp in three different treatment groups (5μg/ml) (289). 

1. HCVpp – HuH7 cells were infected with different HCVpp without antiCD81 

antibody  

2. HCVpp+antiCD81 - antiCD81 antibody was added 1 h post HCVpp inoculation  

3. AntiCD81+HCVpp - antiCD81 antibody was added 1 h prior to HCVpp inoculation  

Addition of antiCD81 antibodies prior to HCVpp inoculation rendered greater 

reduction the infectivity as compared to the group where antibodies were added 1 h 

post inoculation (Fig 4.6). This data implies that antiCD81 blocks the CD81 receptors 

on the Huh7 cells affecting the cellular entry of HCVpp.  
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Figure 4.6: antiCD81 antibody (5μg/ml) reduces HCVpp infection dependent 

HCVpp1a-1-3, HCVpp1b-1-2, HCVpp 1b-1-3 and HCVppH77 were used to infect Huh7 cells. 

Huh7 cells were treated in three different treatment groups. a. HCVpp – Huh7 cells were 

infected with different HCVpp without antiCD81 antibody b. HCVpp+antiCD81 – antiCD81 

antibody was added 1 h post HCVpp inoculation c. antiCD81+HCVpp – antiCD81 antibody 

was added 1 h prior to HCVpp inoculation. In treatment groups’ b and c HCVpp infectivity 

was reduced as a result of CD81 receptor blocking. Error bars represent standard deviation.  
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4.4 Discussion  

Surface glycoprotein E1E2 play a key role in the HCV cell entry and are the major 

targets of neutralising antibodies (nAbs) (63). Hepatitis C virus pseudoparticle system 

(HCVpp) is  robustly used to study the neutralisation epitopes and conserved host 

cellular receptors involved in entry (256). To date nAb response is measured in cell 

culture using HCVpp and HCVcc bearing glycoproteins of prototype strains and 

which  does not reflect the diversity of the virus population targeted by the  host 

immune system (33, 51, 165, 256). Generation of HCVpp involves co-transfection of 

HEK293T cells with a retroviral vector harbouring Gag-Pol gene, vector carrying a 

reporter gene and a vector that encodes E1E2 glycoproteins of HCV (33, 256). 

 In this study HCVpp were generated using sequence information from the clonotypic 

antibody bound virus population (Table 4.1). We were able to amplify, clone and 

express ten full length E1E2 which were targeted by host antibodies however, not all 

were infectious in the HCVpp system. Only 40% of glycoprotein clones yielded 

infectious HCVpp (Fig 4.2). Generation of infectious psuedoparticles from a diverse 

HCV population presents some challenges. It has been previously reported that for 

glycoproteins isolated from chronic and acute infections, only 24-27% yielded 

infectious clones (258). Recently, Urbanowicz et al. (2015) screened 883 E1E2 clones 

from 3909 patients. Of these clones, they identified 493 clones with E1E2 ORF; 

however, only 118 clones (24%) were infectious in the infectivity assay (258). Further 

investigation into determinants of HCVpp infectivity lead to the following outcomes, 

i) different ratios of packaging vectors and glycoprotein expression constructs largely 

influences infectivity which could be due to the difference in the incorporation of 

glycoproteins into pseudoparticles ii) species of retroviral packaging.  
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vector used (172). Increasing the concentration of glycoprotein expression vector 

beyond threshold, however, lead to reduced infectivity as a result of likely increase in 

the autophagy of expressed proteins becoming toxic to the producer cells or reduction 

in expression of capsid protein causing decrease in the budding of retrovirus (172). 

Additionally, when the species of packaging vector was changed, some HCVpp which 

were infectious in MLV-based HCVpp system turned out to be non-infectious in HIV-

1 based packaging construct while some were equally infectious in both the packaging 

vectors (172). In MLV-based vector, HCV E1E2 glycoproteins are likely to be 

incorporated in an intracellular compartment. E1E2 polymorphism could influence 

their cellular localisation resulting into difference in the incorporation into particles 

(172). In case of HIV-1 as a packaging vector, the E1E2 expression construct can alter 

the site of Gag/glycoprotein co-localisation (290), resulting in decreased levels of 

intracellular envelope (291). Nevertheless, role of genetic variations of the E1E2 

glycoprotein in localisation of envelope protein with Gag needs to be studied in more 

detail. Factors such as concentration and species of the packaging vector used to 

express the E1E2 sequence and polymorphism of the glycoprotein may influence the 

difference in the infectivity of the HCVpp observed in our experiments. The technical 

difficulties in generating infectious HCVpp can be overcome by implementing 

aforementioned methods by Urbanowicz et al. (2016). However, no significant 

difference was observed in the neutralisation curves for HCVpp generated with altered 

plasmid ratios (172). 

HCVpp1b-1-2 and HCVpp1b-1-3 were closely related but differed in their infectivity 

(Fig 4.4b). Urbanowicz et al. (2016) have shown that difference in the infectivity of 

closely related E1E2 clones is due to isolate specific mutations in these genes (172). 

Site directed mutagenesis in current study showed that mutations in the HVR1 of E2 
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maintained the physicochemical properties by replacing hydrophobic amino acid 

(V395A and I388V) and thereby infectivity of HCVpp (Fig 4.4). Pe´rez-Berna et al. 

(2006) showed that residues 265-296 in the E1 glycoprotein are hydrophobic and have 

membranotropic characteristics making them a candidate for membrane fusion (292). 

Weblogo of residues from 265-296 (150 GenBank sequences) revealed that position 

T292 was conserved (Fig 4.4a). In the E1 glycoprotein of HCVpp1b-1-3, a polar amino 

acid (T) was replaced by a hydrophobic (A) amino acid at position 292 which might 

have affected the membrane fusion ability of E1. It was also observed that pairwise 

mutation at position 292 and 388 lead to decrease in the HCVpp infectivity similar to 

the clone harbouring all three mutations (HCVpp1b-1-3). Western blot analysis of 

HEK extracts (from which HCVpp were generated) showed decreased expression of 

HCVpp1b1-1-2 mutants harbouring T292A substitution (Fig 4.5). However, it has 

been shown that expression of glycoprotein cannot be directly correlated with their 

infectivity (172). In the absence of well-defined structure for E1 and the hypervaraible 

region in the E2, this data provides an insight into probable engagement of E1292 and 

E2388 in the infectivity of viral particle (Fig 4.4b). The observed substitutions outside 

HVR1 may have an impact on the variant’s fitness at the entry level.  In this instance, 

our data supports the hypothesis that these amino acid coordinates play an important 

role in the infectivity of HCVpp1b-1-3 specifically. This result also highlights the 

sensitivity of HCVpp system to the small but relevant genetic change in the E1E2 

glycoprotein influences infectivity of pseudoparticles (44, 172).  

E1E2 glycoproteins from the clarified lysates of transfected HEK293T cells were 

captured onto GNA lectin (Sigma Aldrich) coated microtiter plates and then detected 

with the anti-E2 mouse MAb AP33, MRCT10 and a panel of VF-Fab (Fig 4.3). The 

GNA capture enzyme immunoassay, validated that all the clones were expression 
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competent (Fig 4.3). Isolates HCVpp1a-1-2, HCVpp1b-8-1 and HCVpp-1b-10-1 a low 

absorbance signal for AP33, MRCT10 and VF-Fab likely because of no detectable or 

low levels of E2 resulting into non-infectious HCVpp (Fig 4.1b). The highest 

reactivity was observed between VF-Fab obtained from the homologous genotype, 

possibly due to genotype-restricted targeting of the epitopes (Fig 4.3). VF-Fab1a-1-3, 

VF-Fab1b-1-2, VF-Fab1b-1-3 were able to recognise all the E1E2 lysates, this cross-

reactivity likely resulted from targeting the conserved epitopes in the glycoprotein (Fig 

4.3). Epitope mapping study might help in knowing the conserved epitopes targeted 

by these VF-Fab preparations. However, why some of the HCVpp expressing E1E2 

glycoproteins were non-functional in entry assay is not clear (Figs 4.1, 4.3).  

Many studies have shown involvement of CD81 receptor in the HCV entry. In the 

liver CD81 is expressed on hepatocytes and sinusoidal endothelium. It has been shown 

that antibodies against large extracellular loop of CD81 inhibit the entry of HCVpp, 

HCVcc and serum-derived HCV (32, 42, 44, 69, 293). It has been shown that CD81 

binding region of the E2 glycoprotein encompasses discontinues epitopes and requires 

correctly folded E2 for the interaction to occur (294). Recent crystal structure by Kong 

et al. (2013) has established that several amino acid residues (427–430 and  442–444) 

in the frontal layer of E2 and residues 523, 526-531, 535, 538, 540 and 550 in CD81 

binding loop are involved in CD81 interaction (32). Hence, antibodies blocking CD81 

interaction have garnered much attention in the Hepatitis C research. Ectopic 

expression of CD81 receptor on the non-permissive cell lines like HepG2, HH29 cells 

and also some sub-clones of Huh-7 cells enables entry of HCVpp and HCVcc, 

underlining involvement of CD81 receptor in HCV cell entry (43, 91, 295, 296). 

Numerous studies involving bNAbs have shown that HCVpp, HCVcc are neutralised 

by blocking the CD81 interaction with the E2 glycoprotein (32, 42, 44, 69, 293). 
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Similarly, in this study antiCD81 antibodies were used to block the entry of HCVpp 

in Huh7 cells. Our data showed that even though anti-CD81 antibodies were added 1 

h post HCVpp inoculation, they still reduced the infectivity by interfering with the 

CD81 dependent entry (Fig 4.6) (43, 93, 295, 297, 298). It will be interesting to study 

the involvement of patient derived antibodies in targeting of CD81 epitopes in the 

clonotypic antibody associated HCVpp (Section 5.3.4, 5.4).  

 In summary, here we have shown that not all the E1E2 sequences which were targeted 

by humoral immune system were infectious in the HCVpp system. Nonetheless, the 

E2 glycoprotein was expressed in both infectious and non-infectious HCVpp. Small 

but relevant genetic variation in the E1E2 glycoprotein can modify the infectivity of 

the closely related sequences underscoring the potential role of E1292 and E2388 in the 

HCVpp infectivity.  
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5. Neutralisation and epitope mapping using patient derived VF-Fab 

 

5.1 Introduction 
 

E1E2 glycoproteins are major target of nAbs. Various research studies have shown 

that MAbs target amino acid residues 396-424, 412-424, 436-447 and 523-540 in the 

E2 glycoprotein (32, 61, 172, 173). Furthermore, Wong et al. (2014) observed a multi-

epitope specific antibody response in the sera analysed from individuals vaccinated 

with recombinant E1E2 glycoprotein (221). In the previous chapter we showed that 

not all the E1E2 glycoproteins isolated from antibody associated virus are infectious 

in a pseudoparticle system. Generating reliably infectious HCVpp is very challenging 

(172, 258). However, the HCVpp system is a robust in vtiro model to study the 

neutralisation potential of patient derived and monoclonal antibodies. In this chapter 

we tested the hypothesis that VF-Fab obtained from AAV positive sera are neutralising 

in nature and target different epitopes in the E1E2 glycoprotein. Based on the available 

anti-HCV monoclonal nAb mapping information we selected amino acid region 384-

619 for conformational epitope mapping.  

 

To examine this hypothesis we, 

 Carried out neutralisation assay with VF-Fab obtained from AAV positive sera  

 Carried out neutralisation assay with post proteinase K treated Total IgG obtained 

from AAV negative sera 

 Mapped epitopes in the amino acid region 364-430 in AAV using patient derived 

VF-Fab  

 Based on the available anti-HCV monoclonal nAb mapping information mapped 

amino acid region 384-619 for conformational epitope mapping using patient 

derived VF-Fab. 
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 Combined the antigenic specificity of different VF-Fabs to achieve a greater 

neutralisation range in HCVpp expressing AAV associated E1E2 glycoproteins.  
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5.2 Methods  

Following methods were used to test the hypothesis, 

 

2.2.2 HCVpp Based Work 

2.2.3.1   Cell lines ........................................................................ 74 
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5.3 Results 

5.3.1 Neutralisation of antibody associated E1E2 HCVpp  

In this chapter, in order to determine the neutralisation potency of patient derived virus 

free Fabs (VF-Fab), the source sera were treated with proteinase K (Section 2.2.3.7). 

The sera were obtained from the same patients who were positive for presence of AAV 

(Table 5.1). Neutralisation assays were carried out to assess whether patient derived 

VF-Fabs block the virus attachment and entry of HCVpp into Huh7 cells. HCVpp 

generated from phCMV-ΔC/E1/E2 H77 were used as reference. Initially, a 

neutralisation assay for HCVppH77 was carried out using defined concentrations of 

VF-Fab ranging from 0.006-0.400 mg/ml of VF-Fab1b-5-1 and VF-Fab1b-10-1 (Fig 

5.1). Percentage infectivity is expressed as the average of three independent 

experiments. VF-Fab1b-5-1 at the concentration of 0.167 mg/ml was highly 

neutralising, reducing the HCVppH77 infection by 85% (Fig 5.1). VF-Fab1b-10-1 

reduced HCVppH77 infection by 75% at 0.400 mg/ml (Fig 5.1). HCVpp1b-4-1 

showed 10 fold greater relative light values (RLU) than the no envelope control. VF-

Fab1b-5-1 reduced HCVpp1b-4-1 infection by 88% at 0.167 mg/ml (Fig 5.2). VF-

Fab1b-10-1 showed 72% of inhibition of infection for HCVpp1b-4-1 at 0.400 mg/ml 

(Fig 5.2).  

Similarly, eight VF-Fabs (0.006-0.400 mg/ml), from genotype 1a (n=3), genotype 1b 

(n=4) and genotype 3a (n=1) were each tested for neutralisation of HCVppH77, 

HCVpp1a-1-3, HCVpp1b-1-2, HCVpp1b-1-3. The IC50 are presented in Table 5.2 and 

the corresponding neutralisation curves are presented in Fig 5.2. The panel of patient 

derived VF-Fab cross-neutralised genotype 1 HCVpp efficiently. VF-Fab1a-1-2, VF-

Fab1b-1-2, VF-Fab1b-1-3, VF-Fab1b-5-1 and VF-Fab1b-10-1 showed greatest 

neutralisation breadth, reducing the infection, by at least 50% for all the HCVpp clones 
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(Fig 5.2). The neutralisation sensitivity to each VF-Fabs varied across the HCVpp 

panel, with HCVpp1b-1-3 being highly neutralisation sensitive (relative infection 

range 2-32%), HCVpp1a-1-3, HCVpp1b-1-2 being moderately neutralisation resistant 

(relative infection range 10-65%) to each of the tested VF-Fabs. HCVpp generated 

from phCMV-ΔC/E1/E2 H77 were resistant to the VF-Fab1a-1-1 and VF-Fab3a-1-1 

neutralisation and showed varying degree of sensitivity to the VF-Fab1a-1-2 (81%), 

VF-Fab1a-1-3 (66%), VF-Fab1b-1-2 (62%), VF-Fab1b-1-3 (66%) and VF-Fab1b-10-

1 (73%) (Fig 5.2). VF-Fab1b-5-1 at the concentration of 0.200 mg/ml and VF-Fab1b-

10-1 at 0.400 mg/ml were highly neutralising inhibiting the infectivity of all the 

HCVpp clones by average 75-96% (Fig 5.2). Despite showing highest neutralisation 

potential, unique fit for VF-Fb1b-5-1 was not identified. This can be corrected by 

including either higher concentration of VF-Fab or constraining the values for the top 

and/or bottom parameters (GraphPad Prism guidelines). However, at 200 μg/ml 

concentration VF-Fab1b-5-1 reduced the infectivity by average 80-98% in HCVpp. In 

this situation using concentration higher than 200 μg/ml was not ideal. Hence, values 

for the bottom parameter for VF-Fab1b-5-1 were constrained to zero.   
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Table 5.1: Sample characteristics used in the current study                        

Genotype No. of 

samples 

AAV 

positive 

samples 

Patient 

Identifier 

Sample #  

identifier 

Date of 

collection 

Accession 

Number 

AAV 

$VF-

Fab 

1a 3 + P1a-1 1a-1-1 04/2007 KY031948 1a-1-1 

+ P1a-1 1a-1-2 08/2013 KY031950 1a-1-2 

+ P1a-1 1a-1-3 01/2014 KY031949 1a-1-3 

1b 7 + P1b-1 1b-1-2* 12/2013 KY031951 1b-1-2 

+ P1b-1 1b-1-3* 03/2014 KY031952 1b-1-3 

- P1b-4 1b-4-1* 05/2014 KU888835¥ 1b-4-1 

+ P1b-5 1b-5-1 04/2015 KU888834 1b-5-1 

- P1b-6 1b-6-1* 06/2014 N/A 1b-6-1 

- P1b-8 1b-8-1* 10/2014 KU888836¥ 1b-8-1 

+ P1b-10 1b-10-1* 04/2015 KU888837 1b-10-1 

3a 1 + P3a-1 3a-1-1 12/2013  KY031953 3a-1 

   

AAV: Antibody associated virus  

# Sample identifier: Genotype/Subtype-patient identifier- sample number  

*Source of infection: contaminated anti-D immunoglobulin (277) 

¥E1E2 sequences were obtained from 2οAAV (Table 3.2) 

$ VF-Fab - Virus free Fab obtained from sera positive for AAV complex 
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Figure 5.1: Neutralisation of E1E2- HCVpp isolated from antibody associated 

virus 

Neutralisation curve for HCVpp-H77 shows 0.167 mg/ml and 0.400 mg/ml as the most 

effective concentration to inhibit the HCVpp infection for VF-Fab1b-5-1 and VF-Fab1b-10 

by 85% and 75% respectively b. VF-Fab1b-5 at 0.167 mg/ml inhibits 88% of HCVpp1b-4 

infection whereas VF-Fab1b-10 at 0.400 mg/ml inhibits only 72% of infection. Each 

experiment was repeated three times with two technical replicates. Error bars indicate standard 

deviation.  
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    Figure 5.2                                                                                   
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Figure 5.2: Patient derived VF-Fab display varying degree of neutralising ability 

to different E1E2 HCV pseudoparticles 

VF-Fab were obtained from antibody-virus complex. VF-Fab1a-1-1, VF-Fab1a-1-2, VF-

Fab1a-1-3 were purified from a patient infected with HCV genotype 1a. VF-Fab1b-1-2, VF-

Fab1b-1-3 and VF-Fab1b-10-1 were purified from a patients infected with genotype 1b whose 

common source of infection was HCV infected anti D immunoglobulin (30).  VF-Fab1b-5-1 

were purified from a blood transfusion patient infected with genotype 1b. VF-Fab3a-1-1 was 

purified from a patient infected with HCV genotype 3a (Table 5.1).  HCVpp incorporating 

E1E2 derived from genotype 1a (HCVpp1a-1-3, HCVppH77), 1b (HCVpp1b-1-2 and 

HCVpp1b-1-3) were pre-incubated with different concentrations (0.006 to 0.4 mg/ml) of 

purified VF-Fabs prior to infection of Huh7 cells. No envelope control was used to normalise 

the data. The neutralising activity of the VF-Fab is expressed as percentage of inhibition of 

the infectious titres. Prism was unable to find unique fit for VF-Fb1b-5-1, hence, as per prism 

guidelines, bottom values were constraint to zero for that data set only. Each experiment was 

repeated three times with two technical replicates. IC50 for each VF-Fab is detailed in Table 

5.2. Error bars indicate standard deviation. * Limited quantity of VF-Fab1a-1-1 restricted the 

number of concentration points used for neutralisation assay.  
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5.3.2 Total IgG derived from sera without detectable AAV shows neutralisation 

activity 

In the previous chapter, we have shown that Total IgG purified from sera classified as 

AAV negative do not demonstrate viral variant targeting activity in the viraemic HCV 

sera (Chapter 3, Section 3.3.3) (299). In the current work, the ability of Total IgG from 

AAV negative sera to neutralise HCVpp was tested. The AAV negative sera were 

treated with proteinase K (Section 2.2.1.3). HCVpp1b-1-3 and HCVppH77 were 

highly neutralisation sensitive to VF-Fab1b-4-1 and VF-Fab1b-8-1, reducing the 

infectivity by 75% and 85% respectively (Fig 5.3). However, HCVpp1a-1-3 and 

HCVpp1b-1-2 were resistant to neutralisation by VF-Fab1b-4-1, VF-Fab1b-6-1 and 

VF-Fab1b-8-1 (Fig 5.3). Although the VF-Fabs were derived from sera from an anti-

D cohort, a varying degree of neutralisation breadth was observed in HCVpp1b-1-2 

and HCVpp1b-1-3, which were also derived from an anti-D patient serum P1b-1.   
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Figure 5.3: VF-Fab from sera without detectable AAV shows neutralisation 

activity 

VF-Fab1b-4-1, VF-Fab1b-6-1, VF-Fab1b-8-1 were purified from three unrelated patients 

infected with HCV genotype 1b that were negative for presence of AAV.  HCVpp 

incorporating E1E2 derived from genotype 1a (HCVpp1b-1-3, HCVppH77) and 1b 

(HCVpp1b-1-2, HCVpp1b-1-3) were pre-incubated with different concentrations (0.006 to 

0.4 mg/ml) of purified VF-Fabs prior to infection of Huh7 cells. A no envelope control was 

used to normalise the data. The neutralising activity of the VF-Fabs is expressed as percentage 

of inhibition of the infectious titres. Each experiment was repeated three times with two 

technical replicates. IC50 for each VF-Fabs is detailed in Table 5.2. 
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Table 5.2:  IC50 values (mg/ml) of neutralisation curves in Figure 5.1 and Figure 

5.2 for each VF-Fabs.   

 

                   

HCVpp 
VF-Fab 

1a-1-1 

VF-Fab 

1a-1-2 

VF-Fab 

1a-1-3 

VF-Fab 

3a-1-1 

1a-1-3 0.088 0.161 0.097 0.023 

1b-1-2 - - 0.041 0.399 

1b-1-3 0.108 0.133 0.100 0.069 

H77 0.142 0.111 0.140 - 

 

 

HCVpp 
VF-Fab 

1b-1-2 

VF-Fab 

1b-1-3 

VF-Fab 

1b-4-1 

VF-Fab 

1b-5-1* 

VF-Fab 

1b-6-1 

VF-Fab 

1b-8-1 

VF-Fab 

1b-10-1 

1a-1-3 0.080 0.067 - 0.061 0.038 - 0.066 

1b-1-2 0.117 0.081 0.087 0.021 0.087 - 0.066 

1b-1-3 0.075 0.036 - 0.015 - 0.132 0.057 

H77 0.100 0.134 - 0.054 - 0.235 0.165 

 

* Prism was unable to find unique fit for VF-Fb1b-5-1, hence, as per prism guidelines, 

bottom values were constraint to zero for that data set only. 
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5.3.3 Potential epitopes targeted by VF-Fab1b-1 and VF-Fab1b-10-1  

Based on the previous research by Guan et al. (2012), initially the partial E1E2 region 

which covers both the HVR1 and AP33 epitope was explored for potential binding 

motifs targeted by the humoral immune system (68). Linear peptides were synthesised 

for 1οAAV 1b-5-1 [KU888834], 1b-10-1 [KT873219] and 2οAAV 1b-4-1 

[KU888835], 1b-7-1 [KT873204], 1b-8-1 [KU888836] covering amino acid region 

364-430 in the E1E2 glycoprotein to study the epitopes targeted by host immune 

system. Full length sequences for 1b-7-1 [KT873204] and 1b-10-1 [KT873219] were 

not available so peptides were designed for region 364-423. 

Five different potential binding motifs were observed for 1b-4-1, 1b-5-1 and 1b-8-1 

sequences (Table 5.3, Appendix II). All the peptides in this study were designed as 15 

mers with overlapping 14 mer peptides. Outliers representing best fitting epitope 

candidates were evaluated based on raw ELISA intensity profiles with subtracted 

background values. Background was calculated as a mean value of ELISA signals 

corresponding to the interaction between test samples and unrelated control peptides 

designed from epitopes of monoclonal antibodies 57.9 and 3C9 (273). VF-Fab1b-5-1 

targeted a motif which shares amino acid residues 412, 413, 415-423 with epitope 

E2412-423 (QLINTNGSWHIN) targeted by MAb AP33 in 1oAAV fraction of 1b-5-1 

and 2oAAV fraction of 1b-8-1 (Table 5.3) (257). VF-Fab1b-10-1 targeted motif 396-

407 within the HVR1 domain of 2oAAV fraction of 1b-4-1 [KU888835] and 1b-8-1 

[KU888836] and 1oAAV fraction of 1b-5-1 [KU888834], it is the same antigenic 

domain targeted by MAb 3C7 and 9/27 (Table 5.3) (reviewed in 300). 

A heatmap representation of scaled and centred data for each VF-Fabs is shown in Fig 

5.4. Heat maps give a visual overview of complex data sets in matrices. In this data 

set, column represents VF-Fabs and each row represents ELISA score obtained from 
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a peptide for the VF-Fabs under analysis (Table 5.3). Rows were arranged sequentially 

with respect to the target sequence. Colour key shows the colour-coded Z-score 

distribution of the displayed dataset. Scaling and centering was performed for each 

sample individually meaning that ELISA signal of each peptide was compared with 

ELISA signals obtained with all other peptides for a sample (Raw data appendix II). 

Here, the Z-score is the result of scaling and centering applied to data from a VF -Fab 

and was calculated by subtracting the mean of the column from every value and then 

dividing the resulting values by the standard deviation of the column. In this case, 

magnitude of the magenta colour indicates ‘Z’ score (Fig 5.4). In our data set the Z-

scores range from ± 4 standard deviation which defines the magnitude of magenta. 

This is a visual representation of the binding affinity of the VF-Fabs to that particular 

peptide (Fig. 5.4). 

 

Table 5.3: Binding Motifs targeted by VF-Fabs 

VF-Fabs 

Target  

Sequence 

 

Accession 

numbers 

          Putative Epitope 

VF-Fab1b-5-1 1b-5-1 KU888834 410NIQLVNTNGSWHINR424 

 1b-8-1 KU888836 410KIQLVNTNGSWHINR424 

VF-Fab1b-10-1 1b-4-1 KU888835 388MGEAQGRTTRGLA400 

 1b-5-1 KU888834 398GFASLFRLGPSQ409 

 1b-8-1 
KU888836 397HSFVRFFASGPSQ410 
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Figure 5.4: Heatmap overview of peptides targeted by VF-Fabs 

1oAAV fractions of 1b-5-1, 1b-10-1 and 2οAAV fractions of 1b-4-1, 1b-7-1, 1b-8-1 were 

assessed for epitope mapping with VF-Fab1b-5-1 and VF-Fab1b-10-1 from amino acid 364-

430 including the HVR1 in E2. Individual peptides are listed on the right-hand side and VF-

Fabs is indicated at the base of the heatmap. Black horizontal lines show start position of a 

new target sequence in that particular set of peptides. Target sequences are flanked by black 

brackets on the left. The magnitude of colour (dark magenta) with higher Z score represents 

the binding affinity of Fab to the peptide. Sequence in a red box (in right) represents motif 

targeted by VF-Fab1b-5-1. Sequence in a blue box (in right) represents motif targeted by VF-

Fab1b-10-1. In order to make Heatmap legible, only every second peptide in the study has 

been included in the figure.   
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5.3.4 Conformational epitope mapping of E2  

The linear peptide mapping suggested that there might be additional conformational 

epitopes in the E2 region (32, 42, 76, 78, 170, 173). Based on the available anti-HCV 

monoclonal nAb mapping information and E2 structure, selected amino acid residues 

that cover HVR1 (384-410), HVR2 (460-482), E2 β-sandwich (492–566) and IgVR 

(572-588) spanning up to amino acid 619 were selected for conformational epitope 

mapping (32, 42, 76, 78, 170, 173). Five different binding motifs were targeted by VF-

Fab1a-1-3, VF-Fab1b-1-3, VF-Fab1b-5-1 and VF-Fab3a-1-1 in HCVpp1b-1-3 

sequence upon peptide mapping (Table 5.4, Fig 5.5, Appendix III). Amino acid 

variation in the epitopes targeted by patient derived VF-Fabs in infectious HCVpps 

from this study are shown in Fig 5.5a. The 3D model of sequence mapped for potential 

epitopes (HCVpp1b-1-3) is shown in Fig 5.5b.  

The epitope mapping data showed that all the VF-Fabs targeted an immunodominant 

epitope within region 393-405, henceforth, AN1 within HVR1 (Table 5.4). The 

regions within or located near HVRs are assumed to be flexible loops (VR1, VR2 and 

IgVR) (41). Of note, VF-Fab1b-5-1, VF-Fab3a-1-1 showed a higher binding affinity 

towards the β-turn mimics of AN1393-405 as compared to the linear mimics by VF-

Fab1a-1-3 and VF-Fab1b-1-3 (Fig 5.5). The second motif in the region 433-445. AN2, 

overlaps with amino acid residues 428-447 (AN3) and is part of discontinuous B cell 

epitope targeted by MAb AR3C (428-433, 436, 438, 439, 441-443, 446) (32, 42, 301). 

The AN4539-551 epitope is reported for the first time. Residues 549 (CBH7), 540 

(AR3A, AR3C) and 550 (H48) are part of conformational epitopes for broadly 

neutralising anti HCV MAbs (reviewed in 300). Notably, epitope AN5599-608 which 

lies beside IgVR572-588 (78) has not been reported previously. In case of conformational 

epitope mapping high sequence variability of test peptides and signal redundancy 
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provided by the presence of various epitope mimics corresponding to the same region 

of the target sequence replaced the need for control peptides. Analysis of 162 GenBank 

sequences (GT 1a=44, GT 1b= 21, GT 2=19, GT 3=21, GT4= 20 GT 5=17 and GT 

6=20, Appendix I)  revealed that residues 540, 544, 545, 548, 550 and 551 in AN4 and 

residues 600, 601, 602, 604, 605 and 607 in AN5 are highly conserved across all the 

genotypes  (Fig 5.5c).  

 

Table 5.4: Putative Epitopes targeted by VF-Fabs 

VF-Fabs Motif 
Epitope 

Name 

1a-1-3,1b-1-3,1b-5-1*, 3a-1-1* 393SRAAHRVTTFITR*
405 AN1# 

1a-1-3 433LNTGFLAALFYTH445 AN2 

1b-5-1*, 3a-1-1* 428NCNDSLNTGFLAALFYTHRF*
447 AN3 

1b-1-3, 1b-5-1*, 3a-1-1* 539LLNNTRPPRGNWF551 AN4 

3a-1-1 599SGPWLTPRCM608 AN5 

*VF-Fabs binding to β-turn mimics was higher when compared with that of linear mimics 

[Ref AF011751] (Pepscan Presto; Lelystad, Netherlands) 
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Figure 5.5 

a.  

 

 

 

b.                                         c.   

        

         

  

 

 

 

AN4 

AN5 
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Figure 5.5: Conformational epitope mapping of E2 glycoprotein region starting 

from amino acid 384-619 

a. The multiple sequence alignment (MSA) of the E2 glycoprotein. HCVpp1b-1-3 is a 

reference sequence; HCVpp1b-1-1, HCVpp1a-1-3 and HCVppH77 were the infectious 

pseudoparticles. AF011751 is an H77 strain.  aa marked with *: targeted by patient derived 

VF-Fabs. The colour code of the epitopes represent the position of the epitope in 3D structure 

of E2 glycoprotein (Table 5.5); gray stars: AN1, yellow stars: AN3, red stars: AN4, blue stars: 

AN5 aa in dashed box: linear epitope targeted by AP33 mouse MAb (257); aa in red box: 

residues on E2 interact with AR3C HuMAb (32); aa marked with ‡: residues important for 

CD81 binding (32) b. The 3D model of HCV-E1E2 glycoprotein shown in white cartoon with 

flexible non-modelled E2 N-termini (384-412) labelled with spheres. Sequence 

428NCNDSLNTGFLAALFYTHRF447 is highlighted in yellow, 539LLNNTRPPRGNWF550 in 

red and 599SGPWLTPRCM608 in blue (Pepscan Presto; Lelystad, Netherlands) c. Amino acid 

Weblogo of epitope AN4539-551 and AN5599-608 showing conserved residues. Black: non polar, 

Green: polar, Red: acidic, Blue: basic and Purple: neutral. The x-axis depicts the amino acid 

position and the height of the individual letter reflects relative frequency of each amino acid 

at that position.  
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5.3.5 Combination of VF-Fabs significantly reduces HCVpp infection 

Based on the date of collection of sera, IC50, and epitope mapping data (Tables 5.1, 

5.2), VF-Fab1a-1-3, VF-Fab1b-1-3, VF-Fab1b-5-1 and VF-Fab3a-1-1 were selected 

for mixed VF-Fabs pull down assay. The ratio of the combined VF-Fabs was set by 

choosing the average LogIC50 for each of the selected VF-Fabs (Prism 5 guide lines). 

Averages of % infectivity for all the HCVpp treated with a particular VF-Fabs 

combination were chosen for statistical analysis. A significant reduction in HCVpp 

infectivity with VF-Fab1a-1-3 and VF-Fab1b-1-3, VF-Fab1a-1-3 and VF-Fab1b-5-1, 

VF-Fab1b-1-3 and VF-Fb1b-5-1 and VF-Fab1b-5-1 and VF-Fab3a-1-1 combinations 

when compared to the individual VF-Fabs concentration was observed (Dunnett t test, 

p<0.05-0.001) (Table 5.6, Fig 5.6). However, VF-Fab1a-1-3 & VF-Fab3a-1-1 in 

combination did not show any substantial reduction (in infectivity) compared to 

individual VF-Fabs concentration (Table 5.5, Fig 5.6). 

Table 5.5:  Summary of statistical significance of average IC50 (mg/ml) of VF-

Fab in combination in comparison with the individual VF-Fab 

 

Concentration of 

individual VF-Fab 

 

VF-Fab1a-1-3 VF-Fab1b-1-3 VF-Fab1b-5-1 VF-Fab3a-1-1 

0.078 0.078 0.02 0.108 

Combination  

of VF-Fabs 
    

 1a-1-3 & 1b-1-3 ** *** ** *** 

 1a-1-3 & 1b-5-1 ** ** * ** 

 1a-1-3 & 3a-1-1 ns ns ns ns 

 1b-1-3 & 1b-5-1 *** *** *** *** 

 1b-1-3 & 3a-1-1 ** *** ** *** 

 1b-5-1 & 3a-1-1 *** *** *** *** 

 1a-1-3 n/a ns ns ns 

 1b-1-3 ns n/a ns ns 

 1b-5-1 ns ns n/a ns 

 3a-1-1 ns ns ns n/a 

*p<0.05, **p<0.001, ***p<0.0001, ns = not significant, n/a = not applicable 
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Figure 5.6: Neutralisation of pseudotyped virus with combination of VF-Fabs  

HCVpp1a-1-3, HCVpp1b-1-2, HCVpp1b-1-3 and control HCVppH77 were tested for 

neutralisation using the average Log IC50 (mg/ml) for the VF-Fabs in combinations (Table 5). 

Control Fab were obtained by treating commercially available male AB plasma with 

proteinase K (SLBK465 V, Sigma). The data was obtained from three independent 

experiments. Data for all the HCVpp were grouped together for statistical analysis. Averages 

of % infectivity for all the HCVpp treated with a particular VF-Fabs combination were chosen 

for statistical analysis Significance was tested using one-way ANOVA with Dunnett t test 

(p<0.05-0.001, Table 5.5). Each VF-Fabs combination was compared against individual VF-

Fabs at the concentration used in combination experiments.  

 

 

 

 

 

 

0.0 0.1 0.2 0.3 0.4
0

25

50

75

100
Plasmid 2

Plasmid 4

Plasmid 5

Plasmid H77

 VF-Fab mg/ml

In
fe

c
ti

v
it

y
 (

%
)

HCVpp1a-1-3  

HCVpp1b-1-2  

HCVpp-1b-1-3  

HCVppH77  



Chapter 5  

170 

 

5.3.6 Analysis of tolerated amino acid substitution in predicted motifs 

Using an in silico Sorting Intolerant From Tolerant (SIFT) amino acid analysis, we 

discovered that epitopes AN2-AN5 were not affected by the (observed) variation at 

the different positions in the epitopes (Table 5.6). Amino acid residues in the binding 

motifs of AN2-AN5 were broadly conserved. It is likely that amino acid variations in 

the aforementioned epitopes of HCVpp sequences were functionally tolerable and 

hence, were recognised by the VF-Fabs in this study (deleterious variations <0.05, 

Table 5.6). However, in case of AN1, a single amino acid substitution at position 395 

was predicted as tolerable with respect to the VF-Fabs binding (Table 5.6). AN1 lies 

in the HVR1, an immunodominant region which generates a strain specific immune 

response.  

Based upon the number of sequences submitted to the programme, SIFT presumes that 

a particular amino acid is well-conserved in the query sequence. The programme then 

calculates the probability of amino acid based on the most frequent amino acid 

appearing at each position in the alignment and their physicochemical properties 

(302). If the position in an alignment contains a hydrophobic amino acid, then residues 

other than hydrophobic characteristics are predicted to be deleterious for protein 

function (302). The programme uses a default cut off value of 0.05 for functional 

intolerance to evaluate the amino acid substitution (302). 
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Table 5.6:  Tolerance to the amino acid substitution in the epitopes targeted by  

VF-Fab1a-1-3, VF-Fab1b-1-3, VF-Fab1b-5-1 and VF-Fab3a-1-1. 

 

a. AN1 

393S R A A H R V T T F I T 405R 

A  T T A G L V G L F S A 

G  V      S  L  P 

  1 - - - - - - - - - - 

1  0.34 1 1 1 1 0 1 1 1 1 1 

0  1 0 0 0 0 0 0 0 0 0 0 
 

b. AN3 

 

c. AN4 

539L L N N T R P P R G N W 551F 

V        L     
1 - - - - - - - 1 - - - - 

1 - - - - - - - 1 - - - - 

 

d. AN5 

 

 

Data presented is analysed and predicted using programme SIFT 

(http://sift.jcvi.org/www/SIFT_aligned_seqs_submit.html). Row corresponds to a position in 

the reference epitope. Column corresponds to amino acid variation (observed in our data set) 

at that position in different HCVpp (Fig 5.5a). Score at a particular position for an amino acid 

substitution is mentioned below the amino acid variant. The default threshold for functional 

intolerance used was 0.05 for amino acid substitution. 

 

428N C N D S L N T G F L A A L F Y T H R 447F 

- - - E - - H - - W I - G - L - Q Y K - 

- - -  - -  - - - - -  -  - R -  - 

- - - 1 - - 1 - - 1 1 - 1 - 1 - 1 1 1 - 

- - - 0.73 - - 0.46 - - 0.94 0.61 - 1 - 1 - 0.65 0.68 1 - 

- - - - - - - - - - - - - - - - 0.8 - - - 

599S G P W L T P R C 608M 

    I     L 

- - - - 1 - - - - 1 

- - - - 1 - - - - 1 
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 5.4 Discussion: 

The HCVpp system is widely used to study the neutralisation sensitivity to serum-

derived antibodies and MAbs (256). In the last chapter, we have shown that not all the 

E1E2 clones isolated from AAV were infectious in the HCVpp system. This chapter 

analyses the neutralisation potential of the VF-Fabs in HCVpp generated from AAV-

E1E2 clones.  Initially, a neutralisation assay was performed using VF-Fab1b-5-1, VF-

Fab1b-10-1 on HCVpp-H77 and HCVpp1b-4-1. Both VF-Fab1b-5-1 and VF-Fab1b-

10-1 neutralised HCVpp with different efficiencies, VF-Fab1b-5-1 being highly 

neutralising (Figs 5.1 and 5.2). Subsequently, VF-Fabs obtained from patients P1a-1 

and P1b-1 at different time points were tested for their neutralisation efficacy against 

the HCVpp expressing patient derived glycoprotein (Fig 5.2). In the case of genotype 

1a, VF-Fab1a-1-1, VF-Fab1a-1-2 and VF-Fab1a-1-3 were able to neutralise 

HCVpp1a-1-3, all were acquired from the same patient at different time points (Table 

5.1, Fig 5.2). Similar observations were made for VF-Fab1b-1-2 and VF-Fab1b-1-3, 

which had the ability to neutralise HCVpp1b-1-2 and HCVpp1b-1-3 (Table 5.1, Fig 

5.2). The neutralisation of HCVpp by the VF-Fabs derived from antibodies present in 

the earlier serum samples (Table 5.1) suggests that the viral escape from the humoral 

immune response continues even after years of chronic infection. Most significantly, 

we also detected that VF-Fabs from unrelated patient sera 1b-5-1, 1b-10-1 and 3a-1-1 

were efficient in reducing the HCVpp infectivity in all cases, suggesting that these 

VF-Fabs must target common neutralising epitope(s). Proteinase K treated Total IgG 

purified from AAV negative sera were also used to neutralise the HCVpp in this study 

(Fig 5.3). In chapter 3 it was shown that proteinase K treated Total IgG from the AAV 

negative sera were not able to capture any viral variant(s) from a complex serum 

environment (Section 3.3.3). However, in the HCVpp system VF-Fab1b-4-1 and VF-
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Fab1b-8-1 neutralised HCVpp1b-1-3 and HCVppH77. These latter sera likely have 

nAbs against now extinct viral variants, which, targeted conserved epitopes present in 

the homogenous HCVpp system of HCVpp1b-1-3 and HCVppH77 (Fig 5.3). Our data 

supports that viral variants successfully evade the humoral immunity as nAb response 

elicited in patient lags behind the rapidly evolving glycoprotein sequences present 

within the quaispecies population in vitro (215) (Section 3.4). Our observation 

emphasises that the epitope evolution is a result of strong immune selection pressure. 

Our data supports further how the immune response fails to resolve the HCV infection 

even after nAb response by host. 

Several methods can be used for epitope mapping. X-ray crystallography of antigen-

antibody complex and multidimensional nuclear magnetic resonance (NMR) are the 

gold standards for epitope characterisation (303, 304). The biggest advantage of X-ray 

crystallography is that it provides atomic resolution of residues involved in interaction 

between both epitope and complementarity-determining regions in the antibody 

paratope (303, reviewed in 305). X-ray crystallography requires purification of both 

antigen and antibody followed by crystallisation of the complex. This method of 

epitope mapping faces complications such as high expertise, difficulties in obtaining 

diffraction quality crystals and the capital cost (reviewed in 305). Similarly, NMR 

requires predetermined structure of the free antigen (reviewed in 305). Another 

approach to determine the presence of epitope(s) is by analysing the binding of 

antibodies by mutating antigenic determinants (306). Alanine scanning mutagenesis 

is widely used to screen as many as hundreds to thousands of the proteins for epitope-

paratope interaction (306). However, mutation within the epitope does not 

differentiate to whether the loss in antibody binding is a result of alteration in the 

protein folding or is genuinely a key interacting residue. Regardless, mutagenesis 
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along with the crystallography technique has been used to study the contribution of 

individual residue in the antigen-antibody interaction (307, 308). 

Peptide based method is another epitope mapping strategy. In order to study the 

epitopes targeted by the VF-Fabs in 1oAAV and 2oAAV fractions, the peptide based 

epitope mapping service was outsourced to Pepscan Presto, Lelystad, Netherlands. 

Here, microarrays of overlapping peptides that covers sequence of interest are 

prepared and the binding affinity of antibodies is tested in ELISA format (reviewed in 

305, 309). This approach is more suited for linear epitope mapping, yet, discontinuous 

or constrained peptides can be synthesised using Pepscan’s CLIPS technology 

(Section 2.2.5.2) (275). Peptide based epitope mapping does not necessarily require 

purified antigen or antibody. The peptide arrays can be used multiple times for 

screening of antibodies. This method is ideal for linear, discontinues and relatively 

conformational antigens. Pepscan uses peptide based ELISA format for both linear 

and constrained epitope mapping (Section 2.2.5). 

Primarily, the linear epitope mapping service from Pepscan was used to identify 

epitopes in the E1E2 gene junction covering the HVR1 and E2412-423 epitopes. To our 

knowledge, this is the first time a sequence which was targeted by host humoral 

immune system (AAV) has been used for epitope mapping using patient derived VF-

Fabs. Linear epitope mapping analysis revealed that VF-Fab1b-5-1 targeted motifs in 

1oAAV fraction of 1b-5-1[KU888834] and 2oAAV fraction of 1b-8-1 [KU888836] 

that overlap with the well characterised AP33 epitope E2412-423 (Fig. 5.4, Appendix 2).  

It has been shown that broadly neutralising E2412-423 epitope is conserved across 

different HCV genotypes (53.4%) (257). Antibodies against E2412-423 epitope inhibit 

HCV entry by blocking CD81 interaction (257). Our data and others have already 
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established that HCVpp entry is CD81 dependent (Section 4.3.5) (32, 42, 44, 69, 293). 

This is a likely explanation why VF-Fab1b-5-1 is highly neutralising. AP33 is a 

partially conformational dependent epitope and its immunogenicity varies among the 

infected patients (Section 3.3.5, Fig. 3.9) (171, 310). VF-Fab1b-10-1 targeted epitope 

within the HVR1 (Table 5.3). Neutralising antibodies against HVR1 are strain specific 

and of limited cross-reactivity, hence, VF-Fab1b-10-1 is the least neutralising in 

HCVpp1b-4-1 and HCVppH77 neutralisation assay (reviewed in 61, 300). It should 

be noted that both VF-Fab1b-5-1 and VF-Fab1b-10-1 did not recognise any epitope in 

2oAAV fraction of 1b-7-1 and 1oAAV of 1b-10-1. This data infers a possible 

conformational or discontinuous epitope(s) outside the HVR1, which was not included 

in linear epitope mapping analysis.  

To further expand the epitope knowledge base, E2 sequence (residues 384-619) from 

a highly neutralisation sensitive HCVpp1b-1-3 was used to construct conformational 

peptides (Fig 5.5, Appendix III). The conformational epitope mapping predicted five 

putative epitopes AN1-AN5 (Table 5.4). AN1393-405 lies in the domain targeted by 

MAbs 3C7 and 9/27 (Fig. 5.5) (reviewed in 300). Cerino et al. (2001) immunised mice 

with mimitopes (surrogate peptides) of HVR1 obtained from chronically infected 

patient and obtained a panel of MAbs (311). From the panel of MAbs, 3C7-C3 

recognised HVR1 chimeras/linear peptide pairs (truncated E2 protein from H77). 3C7-

C3 was also efficient in capturing bona-fide (infected with genotype 2c) and 

recombinant viral particle (HCV-LP 1a, H77) (311). Hsu et al. (2003) showed that 

mAb 9/27 recognised 396-407 residues in the C terminal of HVR1 and neutralised 

HIV-H77 E1E2 pseudoparticles. Our study and others have demonstrated that nAbs 

target epitopes on the C terminus of HVR1 and hence role of HVR1 in neutralisation 
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is apparent (65, reviewed in 129). However, as of writing, there is no evidence that 

antibodies against HVR1 are broadly cross-neutralising.  

VF-Fab1a-1-3 recognised a second linear epitope AN2433-445 which overlaps with 

epitope AN3 (Fig 5.5). A study by Deng et al. (2015) has shown that a major epitope 

lies on the neutralisation face of E2 glycoprotein, between amino acid 421-543 (174). 

VF-Fab1b-5-1 and VF-Fab3a-1-1 showed a higher affinity towards the β-turn mimics 

of epitope AN3428-447. AN3 is a part of the neutralisation face of E2 and intersects with 

the CBH-2 epitope as well (293). AN3 also shares residues with HuMAb AR3C (Fig 

5.5a, red solid boxes) (32). Kong et al. (2013) have shown that N-terminal region 

residues 421 to 453 form a front layer, a part of CD81 binding loop. The crystal 

structure of this epitope has shown that it is targeted by bNAbs (32). This provides a 

probable explanation to why VF-Fab1b-5-1 and VF-Fab3a-1-1 showed high affinity 

towards the β-turn mimics of epitope AN3 (32).  

VF-Fab1b-1-3, VF-Fab1b-5-1 and VF-Fab3a-1-1 have targeted a new epitope AN4 

(residues 539-551). VF-Fab3a-1-1 also showed binding affinity towards epitope 

AN5599-608. Three CD81 binding regions on E2 glycoprotein have been proposed 

which includes residues 474-492, 522-551 and 612-619 (reviewed in 41). However, 

the Kong-E2c structure do not contain region 474-492, but it still binds to CD81 

receptor and 612-619 are on different face from  the CD81 binding domain (reviewed 

in 41). This data indicates that contact point between E2c and CD81 likely lies within 

region 522-551 (reviewed in 41). AN4 amino acid residues 540 and 550 are involved 

in CD81 binding (32) however; AN4 and AN5’s role in HCV infection needs to be 

further characterised (Fig 5.5c). 
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A recent study on H5N1 strain of influenza virus has shown promising use of 

neutralising antibodies as prophylactic and therapeutic agents (312). A cocktail of 

ZMab and MB003 (ZMapp - c13C6, c2G4, and c4G7) has been shown to provide 

100% protection in nonhuman primates post 5 days of EBOV infection (225). Bukh et 

al. (2015) have shown that polyclonal antibodies purified from chronic HCV patient 

can suppress the homologous virus in the chimpanzee for 18 weeks (227). However, 

it failed to provide protection against the heterologous strains. Wong et al. (2014) 

documented targeting of multiple epitopes within E1E2 glycoprotein by antisera 

collected from five human volunteers who were immunised with recombinant E1E2 

glycoprotein from genotype 1a. Wong et al. (2014) observed antibodies from vaccinee 

sera competed against well characterised MAb AP33 (E412-423), AR3B, AR4A, AR5A 

and IGH526. AP33 targets epitope E2412-423 (221). AR3B targets a discontinuous 

conformation dependent epitope within amino acid region 396–424, 436–447, and 

523–540 in the E2 glycoprotein (313). Both AP33 and AR3B neutralise the HCVpp 

and HCVcc infection by blocking CD81 interaction (51, 257). AR4A and AR5A 

require correctly folded E1E2 glycoprotein for the interaction to occur (51). E1 region 

201–206 and the E2 regions 657–659 and 692 are critical for binding of both AR4A 

and AR5A (51). However, their target in the E1E2 glycoprotein and mechanism of 

action for neutralisation is unknown (51). IGH526 targets residues 313-328 in the E1 

region which is nearly conserved and is recognised by 30 of 92 HCV patient sera and 

15 of 41 vaccinee sera (166). These studies collectively show the value of using an 

antibody adjunct to achieve control of viraemia. In our study, we observed that VF-

Fabs when used in a combination had an enhanced effect in reduction of the HCVpp 

infection (Fig 5.6). We posited the following question, is this greater decline in the 

infectivity of HCVpp due to the targeting of multiple E2 epitopes?  The epitope 
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mapping analysis clearly showed that all the VF-Fabs used in the combination 

experiment recognised multiple epitopes hence suggesting that these patient derived 

VF-Fabs do indeed target multiple epitopes in HCVpp (Table 5.4, Fig 5.5). Our data 

demontrate that a HCV infected individual elicits nAb response to multiple cross-

neutralising epitopes. However, the immune response lags behind the continuously 

evolving viral envelope protein (175).   

The observed binding behaviour of these VF-Fabs suggest two possibilities a) VF- 

Fabs are of polyclonal nature, and/or b) they recognise discontinuous epitopes. The 

binding capacity of the VF-Fabs pool represented here is inter-genotype and inter-

subtype. Immunovirology and bioinformatics analysis of amino acid variation of the 

putative epitopes predicted that the observed natural changes do not affect the 

functionality of the targets (Fig 5.7, Table 5.7). SIFT calculates the probabilities for 

all the possible substitutions at each position and constructs a position-specific matrix 

considering the physiochemical properties of the amino acids. Positions with 

normalised probabilities <0.05 are predicted to be deleterious to the VF-Fabs binding 

(314-316). One drawback of the programme is that it calculates the probability of an 

amino acid at a given position depending upon the number of sequences submitted. 

Regardless, SIFT is a valuable tool for primary analysis of variance observed in the 

protein of interest. In this study, only four sequences which yielded infectious HCVpp 

were used for SIFT analysis. The observed variation in amino acid residues in the 

epitopes indicates that there must be preservation of the physicochemical properties 

and perhaps structural conformation to enable the VF-Fabs to target the previously 

“unseen” epitopes (probabilities range between 0.34-1.00). Specifically, this may 

explain (in part) why VF-Fabs, which were never exposed to the unrelated E1E2 

glycoprotein, were still able to neutralise the HCVpp in our experiments (Fig 5.1, Fig 
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5.2). Amino acid substitution analysis hints towards the strain specificity of VF-Fabs 

in case of AN1 epitope. Campo et al. (2012), used a set of 261 HVR1 peptides for 

enzyme based Immunoassay (317). Of these sequences, 103 synthetic HVR1 peptides 

from different genotypes were used to immunise mice (317). Campo and colleagues 

observed 16.2%-20.6% cross immune reactivity between inter- and intra-genotypic 

pairs, respectively (317). They also identified that capacity of antibody (raised against 

one viral variant) to recognise variant peptide(s) was inversely proportional to genetic 

distance between viral variants (317). It should be acknowledged that cross immune 

reactivity is important but it always doesn’t result in cross neutralisation. This possibly 

explains why all four VF-Fabs were able to recognise the AN1 epitope (Table 5.4, Fig. 

5.5).   

A well-known caveat that needs to be appreciated when using MAb and serum 

antibody screening for neutralisation potential in HCVpp system is that the 

pseudoparticle system provides a homogenous population of E1E2 glycoprotein, as 

compared to the complex heterogeneity and density of native glycoprotein in HCV 

virions.  A limitation of this study is that this phenomenon was only explored with 

eleven patient derived VF-Fabs in genotype 1 in an HCVpp system. However, other 

studies and recent work by Wasilewski et al. (2016) collectively have shown that both 

HCVcc and HCVpp are equivalent with respect to the neutralisation phenotypes (160, 

258, 318). Nevertheless, our immunovirological data lays a strong foundation for the 

investigation of humoral immune targeting of conserved HCV epitopes in antibody 

associated HCV and adds novel information to the in vivo humoral immune response 

to chronic HCV infection.  
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We present original and noteworthy findings in terms of the targeting of multiple 

epitopes, using unrelated patient derived VF-Fabs. The epitope mapping data showed 

potential antigenic determinants, which are subjected to humoral immune attack in 

vivo. Importantly, two new epitopes have been identified using VF-Fabs obtained from 

immunologically active patients. 
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6. A single amino acid change in the hypervariable region 1 of HCV 

genotype 4a aids humoral immune escape 

6.1 Introduction: 

Longitudinal analysis of chronic hepatitis C viral infection has shown that the virus 

has several adaptive strategies that maintain persistence and infectivity over time. 

Longitudinal analysis of HCV genotype 4a, over a near 10 year period by Palmer et 

al. (2012) has shown the emergence, dominance and disappearance of distinct but 

related lineages (L1 and L2) in a treatment naïve patient chronically infected with 

HCV genotype 4a (268). The vacant viraemic space was replaced by previously 

existing minor variants (212, 268). Preliminary investigation of sample set T1-T9, by 

clonal analysis led to the  observation of two distinguishable lineages L1 and L2 based 

on the presence of typical and atypical HVR1 (212). Additional exploration of the 

same sample set T1-T10 with ultra-deep pyrosequencing revealed the dominance of 

three sub-lineages (L1a, L1b and L1c) at different time points until T7 (268). L1 

dominated the virome for the first eight years of the sampling period prior to 

population collapse and this led to the concomitant rise to prominence of L2. During 

this period of dominance, IgG-targeting of the L1 was detected in five of the first seven 

samples, which in part contributed directly to the humoral immune mediated removal 

of this group of variants (212, 268). Despite the near total dominance of the L2 

sequences in latter samples (96.9% and 99.9% at T9 and T10, respectively), no IgG-

targeting of the L2 virions was detected in the study (268). Furthermore, the HVR1 of 

the L2 variants remained predominantly under purifying selection across the 10 year 

period with a single principle HVR1 amino acid variant persisting during this time. 

Follow up clonal analysis indicated that a HVR1 variant with a single point mutation 

had superseded the principle variant, yet the L2-IgG remained undetectable (268).  
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In current follow up study we tested a hypothesis that the HVR1 variants which were 

not targeted by host immune system to be potential humoral immune escape mutants. 

 

To examine this hypothesis we, 

 Designed 6x His-tag peptides harbouring three different HVR1 variants. 

 Performed a colorimetric ELISA 
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6.2 Methods  

Following methods were used to test the hypothesis, 

 

2.2.1 Fractionation of viraemic sera ......................................................  

2.2.1.2   Separation of viraemic sera into antibody ..................... 59 

 associated virus (AAV) and antibody free virus (AFV) 

fractions 

2.2.1.3   Dissociation of antibody-virion complexes and ............ 59 

 collection of VF-Fab 

 

2.2.2 Molecular Cloning 

2.2.2.1   Nucleic acid isolation and cDNA synthesis ................... 61 

2.2.2.1a   RNA isolation from serum .......................... 61 

2.2.2.1b   cDNA synthesis ........................................... 62  

2.2.2.2    Amplification of the E1E2 region encompassing ......... 62 

HVR1 and full length E1/E2 gene 

2.2.2.4    Agarose gel electrophoresis .......................................... 67 

2.2.2.5    Purification of PCR products ........................................ 67 

2.2.2.6    Cloning of PCR purified products and transformation 

2.2.2.6a   Cloning of 318 base pair product in  .............. 68 

Clone  JET PCR cloning Kit 

2.2.2.6bTransformation of pJET1.2 in One Shot........... 69 

 Top 10 Chemically Competent E.Coli 

 

2.2.4 Colorimetric ELISA assay ......................................................... 83 

 

 

 

 

 

 

 

 

 



Chapter 6  

186 

 

6.3 Results  

6.3.1. T13 yields a clonotypic population in AAV fraction (2.3.1-2.3.4, 2.3-2.8) 

Upon initial fractionation of HCV 4a serum samples, we observed only one sample 

(n=4) was positive for detectable levels of AAV (Table 6.1). In their previous research 

work, Palmer et al. (2012) observed that T11 had three different HVR1 amino acid 

variants, namely; H395-X-X-X-F399, N395-X-X-X-F399 and N395-X-X-X-L399 (Fig. 6.1a) 

(subscript numbering identifies specific amino acid positions within the 27 amino acid 

HVR1 with reference to NC_004102). The presence of HVR1 variant H395-X-X-X-

F399 in AFV fraction of T12 was confirmed by amplicon sequencing only. The 

subsequent AFV fraction of T13 also had H395-X-X-X-F399 (frequency=0.40) amino 

acid profile. However, N395-X-X-X-L399 variant was now dominant in T13 

(frequency=0.60) (Fig. 6.1b). Interestingly, the predicted HVR1 sequence from AAV 

RNA detected at T13 indicated N395-X-X-X-L399 motif targeting. This Leu containing 

motif was isolated in the succeeding samples, T14 and T15 in AFV fraction. However, 

AAV was not detected in samples T11, T12, T14 and T15. 

Table 6.1 Samples used in this study 

 

 

Time Point 

Date of 

Collection 

Unique HVR1 

variants 

Accession Number 

AFV  AAV 

T10* 17/11/2011 2 JQ743313-17  - 

T11* 15/11/2012 3 KC689336–41  - 

T12 13/06/2013 1 KT595215  - 

T13 21/11/2013 2 KT595216–21  KT595222-23 

T14 08/05/2014 2 KT595225  - 

T15 01/12/2014 2 KT595225  - 
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Figure 6.1: Temporal mapping of quasispecies dominance at 

different time points  

 

 

Multiple sequence alignment of T11 AFV fraction at amino acid level using BioEdit v 5.2. 

T11 had three different clones H395-X-X-X-F399, N395-X-X-X-F399 and N395-X-X-X-L399 in 

the HVR1 (black box) b. Clonal DNA sequence analysis of the antibody-free fraction of T11 

(268), T13–T15 yielded the following predicted amino acid variants: (i) three unique AFV 

HVR1 variants for T11 (GenBank accession numbers KC689336–KC689341), (ii) two 

unique AFV HVR1 variants for T13 (GenBank accession numbers KT595216–KT595221), 

(iii) a clonotype amino acid quasispecies from the AAV in T13 (GenBank accession numbers 

KT595222 and KT595223), and (iv) an identical amino acid clonotype profile to T13 AAV 

in T14 (GenBank accession number KT595224) and T15 (GenBank accession numbers 

KT595225 and KT595226). T12 (GenBank accession number KT595215) was analysed by 

amplicon sequencing only. Columns are representative of the relative abundance of that 

sequence at that time point: black, N 395-X-X-X-L 399 (N- - -L); grey, H 395-X-X-X-F 399 (H-

 - -F); white, N 395-X-X-X-F 399 (N- - -F). In this study the antibody response was detected at 

T13. The detectable antibody response identified at T13 and the variant associated with it is 

denoted by a plus sign. NA, Data not available. 
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6.3.2 Peptide P2 shows high affinity towards VF- T13 Fab (2.18) 

Despite of several attempts full length E1E2 amplification of T13-AAV sequence was 

unsuccessful. The reason behind this is because of likely variable region(s) within the 

primer binding sites (Section 4.3.1). In this case, to study the immune escape mutant 

a colorimetric peptide based ELISA approach was taken.  To confirm the escape 

phenotype hypothesis, three N-terminally 6xHis tagged, 27 amino acid HVR1 peptides 

were synthesised, i.e.  

P1: H-HHHHHHETHITGAVASSNAQKFTSLFTFGPQQN-OH,  

P2:H-HHHHHHETHITGAVASSNAQKLTSLFTFGPQQN-OH and  

P3:H-HHHHHHETHITGAVASSHAQKFTSLFTFGPQQN-OH (Pepscan Presto, 

Lelysted, Netherlands). The HVR1 sequence of P1 and P3 corresponds to the 

dominant L2 HVR1 variant for the initial 10 years of in vivo infection for which no 

AAV was detected (268). The P2 sequence corresponds to the predicted HVR1 of 

AAV RNA isolated at T13. The ELISA results confirmed that the peptide containing 

the N395-X-X-X-L399 mutation was recognized by the VF-T13Fab. In order to exclude 

the possibility that the P2 variant motif containing N395-X-X-X-L399 was not accessible 

to antibodies, we similarly tested VF-T11Fab, VF-T12Fab and VF-T15Fab for binding 

affinity to the HVR1 peptide variants. The binding phenotype of VF-T13Fab had the 

strongest affinity towards P2 (P2>>P1>>P3) with Leu at position 399 compared, to 

the predicted escape variant Phe (P=0.06, Kruskal-Wallis test, GraphPad Prism 4) (Fig 

6.2) in-vitro. However, VF-T11Fab, VF-T12Fab and VF-T15Fab did not show any 

biding affinity towards any of the peptides in this study.  

 

 

 



Chapter 6  

189 

 

Figure 6.2: Recognition of antigenic epitope within HVR1 by VF -Fab 

 

ELISA-based detection of the binding of the VF-T13Fab to the predicted HVR1 derived His 6-

tag peptide epitopes (P1–P3, see text). The P1 and P3 variants were observed in the AFV 

fraction of T11, and the P2 variant was observed in the AAV fraction of T13. The control 

reference points included only peptides, peptides with only primary antibodies and peptides 

with only secondary antibodies. VF-T13Fab showed the strongest affinity towards P2 and 

baseline activity towards P3. The data were obtained from three independent experiments. 

The x-axis indicates the peptide used in the ELISA, i.e. P1, P2 and P3. The y-axis indicates 

the absorbance obtained by subtracting the A 450 reading from the A 560. *P = 0.06. 
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6.4 Discussion:  

Longitudinal ultra-deep pyrosequencing analysis of HCV genotype 4a over 10 years 

has demonstrated the appearance of antibodies at discrete time points and extinction 

of the antibody associated lineage (268). Short term pyrosequencing analysis of 

genotype 3a has also been used to demonstrate the extinction of viral variants targeted 

by the humoral immune system (276). It has been observed that selection pressure 

from nAb responses shape the evolution of viral envelope protein (210-213). A study 

by Guan et al. (2012) has shown that neutralisation epitopes lies within amino acid 

positions 16-24 (i.e.399-407) in HVR1 (68). It is interesting to note that in our study, 

amino acid variation was observed only at amino acid positions 395 and 399 within 

the entire HVR1. Based on the Guan et al. (2012). data, we hypothesised that the 

HVR1 variants with N395-X-X-X-F399 (T11-AFV) and H395-X-X-X-F399 (T13-AFV) 

motif are potential humoral immune escape mutants which have Phe at position 399. 

Our ELISA results prove that, in this case, a naturally occurring single amino acid 

change to Phe in the HVR1 alone at position 399 can drive humoral immune escape 

after more than 10 years of immune silence. Our results demonstrated that none of the 

VF-T11Fab, VF-T12Fab and VF-T15Fab were bound to the HVR1 peptide variants 

P1-P3. 

In our current study, analysis of serum samples over a 13 year period showed two 

distinct periods when AAV were present. A window period of five years existed 

between the two points during which AAV were detectable. The antibody specificity 

of the latter time point, T13, targeted a different HVR1 lineage from that found 

previously (212, 268). The HVR1 variant captured by the T13Ab was first observed 

in pyrosequencing data at T10 (1.1 %) (268). A further two year period elapsed before 

T13Ab to this latter variant was detected (Fig. 6.1b) 
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Interestingly, the HVR1 genomic sequence associated with virus captured by T13Ab 

was found to be present in the subsequent samples, i.e., T14 and T15. Analysis of 

samples T14 and T15 revealed that the T13Ab response was not sustained to detectable 

levels. The loss of nAb is a recognised feature of the natural history of HCV infection 

(319). Additionally, it is also recognised that a sustained antibody response is likely a 

prerequisite for complete removal of viral variant(s). The short life span of the 

antibody response could be because of lack of establishment of memory B cells (175). 

The notable absence of a sustained and neutralising antibody response (in T14 and 

T15) and likely fitness superiority explains why the motif (N395-X-X-X-L399) persisted 

in subsequent samples. 

In conclusion, our proof of concept study has confirmed that antibodies were naturally 

generated against a discrete viral variant (Fig 6.2). We have additionally confirmed 

that naturally occurring amino acid variations in this epitope represent one mechanism 

by which HCV escapes humoral immunity. 
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Conclusion  

In May 2016, during the World Health Assembly, the World Health Organisation 

(WHO) put forward a global strategy which aims to eliminate viral hepatitis as a public 

threat by 2030 (320, 321). In support of the WHO’s Global Strategy for Viral 

Hepatitis, 36 countries had developed national plans to eradicate HCV. Ireland is one 

of the member states to adopt this strategy. The Health Service Executive (HSE) in 

Ireland established a National Hepatitis C Treatment Programme in 2016, outlining a 

strategic programme direction for 2016-2026 leading to the  potential elimination of 

HCV in Ireland by 2026 

(http://www.hse.ie/eng/about/Who/primarycare/hepcprogramme%20.html).  

WHO plans to achieve eradication of viral hepatitis as a major public health burden 

by using a combination of available treatments and aims to achieve 80% reduction in 

new cases of HCV infection (321). Direct acting antivirals (DAAs) have emerged as 

an effective HCV treatment and are promising in the effective management of HCV.  

Although the available DAAs provide a successful outcome in HCV management, 

there still exists a need to explore the immunoglobulin based therapy. In this thesis, 

we investigated E1E2 glycoprotein associated with AAV and the target epitopes in the 

antibody associated clonotypic virus population. Primarily, we segregated viraemic 

sera into AAV and AFV.  AAV was observed to be homogenous in nature implying 

immunogenicity of the sequence in quasespecies pool targeted by the host humoral 

immune system. Although sequences obtained from AAV negative sera were positive 

for E2412-423 epitope, only two samples showed reactivity to MAb AP33. This indicates 

genotype/subtype/patient specific epitope presentation of the epitope. We provide 

significant data that Total IgG or VF-Fab target viral variant in homologous 

genotype/subtype matched sera irrespective of source of the antibody. The targeted 

http://www.hse.ie/eng/about/Who/primarycare/hepcprogramme%20.html
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viral variant need not be a dominant within the heterogeneous quasispecies. We 

analysed the E1E2 glycoprotein sequences associated with the AAV complex. AAV-

associated E1E2 sequences obtained from patients at different time points provided us 

with an insight into the diversity of the envelop protein targeted by humoral immune 

system. Furthermore, variance in the infectivity of HCVpp was observed. This 

variability relates to the individual polymorphism of the envelope glycoprotein 

targeted by host humoral immune system at that point. SDM analysis also showed that 

small genetically related changes govern the infectivity of HCVpp. Our data also 

showed that AAV negative sera carried nAbs against viral variants which were 

removed from the population. This data strengthened the findings that the in vivo nAb 

response to HCV infection lags behind the constantly evolving HCV and aids in 

immune escape. 

Lastly, we successfully identified epitopes targeted by patient derived VF-Fabs in the 

antibody associated HCV using a reverse epitope mapping approach. Our data shows 

that VF-Fab are broadly reactive against viral variants which were previously not 

encountered by the immune system. Primary investigation of E1E2 gene junction 

revealed that HVR1 and E2412-423 epitope (AP33) are targeted by a panel of unrelated 

VF-Fab derived from different patients. This implied immunogenicity of the epitope 

varies amongst the infected individuals. Conformational epitope mapping analysis 

showed five binding motifs. Similarly, in this analysis, VF-Fab recognised HVR1 

epitope (AN1) further strengthening the role of HVR1 in HCV biology. Two epitopes 

AN2 and AN3 overlap with the discontinuous epitope targeted by a broadly 

neutralising antibody AR3C which blocks the CD81 interaction with E2 glycoprotein. 

This data indicates some infected individuals generate antibodies to block the CD81 

interaction. However, the lack of sustained, multi specific, vigorous antibody response 
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results in failure to clear the virus. We identified two new epitopes, AN4 and AN5, 

whose role in HCV infection needs to be established. Moreover, when we combined 

the antigenic specificities of VF-Fab in the neutralisation experiments we observed 

significant greater reduction (p<0.05-0.0001) in the infectivity of HCVpp. Together 

our neutralisation assay and epitope mapping data signifies that combining broadly 

nAbs which target different epitopes could enhance the neutralisation efficacy.  

We provide unique evidence that natural humoral immune escape of HCV (4a 

genotype) can occur within the HVR1.  

In summary, the data presented here provides new information on humoral immune 

targeting of viral variants in qausispecies pool and the potential epitopes in the 

envelope protein involved in this interaction. 
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Future Directions  

Identifying a conserved epitope(s) across all the HCV genotypes is a very big 

challenge in HCV vaccine development. Broadly neutralising MAbs have been 

identified to target a discontinuous CD81 epitope in the E2, yet have only been tested 

in HCVpp and HCVcc. In vivo, quasispecies are much more complex than these HCV 

models. This thesis presents opportunities for further research into immunovirology 

of HCV infection.  

In this thesis, we observed that MAb AP33 was able to capture viral variant in only 

two out of eight E2412-423 epitope positive samples. Importantly, the targeted variant 

was found to be clonotypic in nature. This implied that immunogenicity of the epitope 

is genotype specific and varies with the individual. Additional research using a panel 

of polyclonal antibodies (from patients who have resolved HCV infection) and MAbs 

to challenge the HCV sera is warranted. Furthermore, a larger panel of HCVpp and 

corresponding HCVcc needs to be explored following the antibody-HCV sera pull 

down experiments. These investigations have the potential to aid in the identification 

of viral variant(s) targeted by antibodies which will enhance our understanding of 

immunogenicity of the sequences targeted from a heterogeneous virus population.  

From our neutralisation assays, we observed that VF-Fab from 1b-5-1 was most 

neutralising. Peripheral blood mononuclear cells from patient 1b-5 can be obtained 

and B cells from that patient can be immortalised. Another approach to obtain B cells 

is isolating them from tonsils of patient 1b-5. The cells can be then screened for the 

secretion of antibodies. These antibodies then can be used in the neutralisation assays.  

Furthermore, combinatorial antibody libraries can be prepared. Four types of antibody 

libraries can be built. i) Immune libraries: here information from V gene of VF-Fab1b-

5-1 can be used to target E2 glycoprotein ii) Semi-synthetic libraries: here unarranged 
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V genes from pre-B cells from patient 1b-5-1 can be used or complementary 

determining region (CDR) H3 from VF-Fab1b-5-1 can be randomised iii) Synthetic 

libraries: can be constructed by randomising the CDR cassettes where V, D and J gene 

segments are  assembled in vitro iv) Naïve libraries: V gene segment from 

unimmunised or healthy individuals can be rearranged or synthetic V gene segment 

can be constructed. Our epitope mapping data presents opportunities for translational 

research. Methods to identify roles of the two new epitopes AN4 and AN5 have been 

discussed in Chapter 5.  Similarly, the information on AN4 and AN5 epitope can be 

further used to develop monoclonal antibodies against these epitopes. Our 

bioinformatics analysis has shown that AN4 and AN5 epitopes are conserved across 

the genotypes. Moreover, AN4 epitope is located within the Ig like domain of the E2 

glycoprotein which is conformationally flexible. Proteins with Ig like domain have 

conserved sequence patterns and been shown to be involved in the protein-protein or 

protein-ligand interactions. Peptides corresponding to AN4 and AN5 epitopes can be 

designed and used to immunise the animals to produce MAbs. A step by step site 

directed mutagenesis of epitope followed by HCVpp neutralisation assay can be used 

to study whether the MAbs against AN4 and AN5 are neutralising or non-neutralising. 

Similarly, this approach can be used to identify role of AN4 epitope in governing the 

conformation of the E2 glycoprotein.  

 

Furthermore, using information from already well characterised MAbs, antigenic 

targeting potential of these MAbs can be combined which will provide us further 

insight in the prospective use of a combination of antibodies to control HCV infection, 

as a possible adjunct therapy. 
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List of Genebank sequence  

Accession number of genotypes used in this study (GenBank) 

 

 

 

 

 

 

 

 

 

 

 

Genotype 1a  Genotype 1a  Genotype 1b  Genotype 2 

AF011751    KU285170*  AF333324   AB047639 

EU862828   KU285171*  DQ071885    AB690461 

GQ149768  KU285172*  JX649852   AF169004 

KU285151*  KU285178*  KU285191*  AF169005 

KU285152*  KU285173*  KU285192*   DQ155560 

KU285153*  KU285174*  KU285193*   DQ155561  

KU285154*  KU285175*  KU285194*  HQ639939 

KU285155*  KU285176*  KU285195*   JF735112 

KU285156*  KU285177*  KU285196*  JX227967 

KU285158*  KU285179*  KU285197*   KC967476 

KU285157*  KU285180*  KU285198*   KF676351 

KU285161*  KU285182*  KU285199*   KF700370 

KU285162*  KU285181*  KU285200*  KM102770 

KU285159*  KU285185*   KU285201*   KU285209*  

KU285160*  KU285183*  KU285202*  KU285210*  

KU285163*  KU285184*  KU285203*  KU285211* 

KU285164*  KU285187*  KU285204*  KU285212* 

KU285165*  KU285186*  KU285205*  KU285213*  

KU285166*  KU285190*   KU285206*  KU285214* 

KU285167*  KU285188*  KU285207*   

KU285168*  KU285189*   KU285208*  
 

KU285169*  NC_004102      
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Continued… 

Genotype 3  Genotype 4  Genotype 5  Genotype 6 

AF046866   AB795432   AF064490   AY545978  

AY734985   AY734987   EF043104   DQ480512 

AY958020  DQ418784   EF427672   DQ480513 

AY958007  DQ418787   KC767829   DQ480514 

AY958017   DQ516084   KC767832   DQ480520 

AY958012  DQ988073   KC767835   KJ678747 

AY957990  DQ988078   KC767838   KJ678754 

AY957993  DQ418783  KC767839   KJ678755 

AY957997   GU814265  KC767842  KJ678761 

DQ437509    GU814266  KC767843  KJ678764 

JQ285741   KT735185  KC767844   KJ678765 

JQ285790  KU285220*  KC767845   KJ678766 

KJ470613  KU285221*  KJ925148  KJ678781 

KJ470614  KU285222*   KU285225*  KJ678784 

KU285215*  KU285223*  KU285226*   KJ678785 

KU285216*  KU285224*  KU871279   KJ678782 

KU285217*  KU871289   KU871280  KJ678814 

KU285218*   KU871290  
  KJ678815 

KU285219*   KU871291   
  KU285227* 

KX621501  Y11604   
  KU285228*  

KX621530        

 

* GenBank sequences for HCVpp from Urbanowicz et al .(2015)(258)  
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Raw Data     

__ Label VF-Fab1b-10-1 VF-Fab1b-5-1 

__ dilution 5μg/ml 4μg/ml 

__ preconditioning 10%SQ PT 

__ Sample buffer 10%SQ PT 

__ conjugate Humpo 1/1000 Humpo 1/1000 

MVGNWAKVLIVMLLF LIN 183 149 

VGNWAKVLIVMLLFA LIN 185 125 

GNWAKVLIVMLLFAG LIN 177 136 

NWAKVLIVMLLFAGV LIN 162 154 

WAKVLIVMLLFAGVD LIN 145 180 

AKVLIVMLLFAGVDG LIN 156 152 

KVLIVMLLFAGVDGR LIN 172 160 

VLIVMLLFAGVDGRG LIN 196 186 

LIVMLLFAGVDGRGT LIN 193 128 

IVMLLFAGVDGRGTY LIN 162 145 

VMLLFAGVDGRGTYT LIN 135 93 

MLLFAGVDGRGTYTT LIN 137 65 

LLFAGVDGRGTYTTG LIN 116 83 

LFAGVDGRGTYTTGG LIN 97 76 

FAGVDGRGTYTTGGA LIN 98 78 

AGVDGRGTYTTGGAQ LIN 153 95 

GVDGRGTYTTGGAQA LIN 153 84 

VDGRGTYTTGGAQAF LIN 173 107 

DGRGTYTTGGAQAFT LIN 191 96 

GRGTYTTGGAQAFTT LIN 181 85 

RGTYTTGGAQAFTTH LIN 179 95 

GTYTTGGAQAFTTHS LIN 133 86 

TYTTGGAQAFTTHSF LIN 136 116 

YTTGGAQAFTTHSFV LIN 147 119 

TTGGAQAFTTHSFVR LIN 166 244 

TGGAQAFTTHSFVRF LIN 150 243 

GGAQAFTTHSFVRFF LIN 129 176 

GAQAFTTHSFVRFFA LIN 154 208 

AQAFTTHSFVRFFAS LIN 161 183 

QAFTTHSFVRFFASG LIN 142 140 

AFTTHSFVRFFASGP LIN 163 143 

FTTHSFVRFFASGPS LIN 124 95 

TTHSFVRFFASGPSQ LIN 254 119 

THSFVRFFASGPSQN LIN 239 122 

HSFVRFFASGPSQNI LIN 256 117 

SFVRFFASGPSQNIQ LIN 200 103 

FVRFFASGPSQNIQL LIN 202 115 

VRFFASGPSQNIQLV LIN 156 109 

RFFASGPSQNIQLVN LIN 155 110 

FFASGPSQNIQLVNT LIN 140 82 
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FASGPSQNIQLVNTN LIN 130 113 

ASGPSQNIQLVNTNG LIN 75 100 

SGPSQNIQLVNTNGS LIN 106 76 

GPSQNIQLVNTNGSW LIN 122 148 

PSQNIQLVNTNGSWH LIN 131 175 

SQNIQLVNTNGSWHI LIN 127 170 

QNIQLVNTNGSWHIN LIN 135 160 

NIQLVNTNGSWHINR LIN 123 350 

IQLVNTNGSWHINRT LIN 118 187 

QLVNTNGSWHINRTA LIN 168 170 

LVNTNGSWHINRTAL LIN 165 239 

VNTNGSWHINRTALN LIN 186 95 

NTNGSWHINRTALNC LIN 163 110 

TNGSWHINRTALNCN LIN 208 96 

MVGNWAKVLTVMLLF LIN 201 136 

VGNWAKVLTVMLLFA LIN 166 140 

GNWAKVLTVMLLFAG LIN 195 130 

NWAKVLTVMLLFAGV LIN 168 102 

WAKVLTVMLLFAGVD LIN 171 119 

AKVLTVMLLFAGVDG LIN 168 108 

KVLTVMLLFAGVDGV LIN 154 115 

VLTVMLLFAGVDGVT LIN 165 115 

LTVMLLFAGVDGVTH LIN 182 114 

TVMLLFAGVDGVTHT LIN 162 109 

VMLLFAGVDGVTHTL LIN 134 99 

MLLFAGVDGVTHTLG LIN 106 97 

LLFAGVDGVTHTLGG LIN 169 84 

LFAGVDGVTHTLGGT LIN 177 105 

FAGVDGVTHTLGGTQ LIN 173 99 

AGVDGVTHTLGGTQA LIN 158 83 

GVDGVTHTLGGTQAR LIN 166 141 

VDGVTHTLGGTQARA LIN 170 110 

DGVTHTLGGTQARAA LIN 163 99 

GVTHTLGGTQARAAS LIN 152 84 

VTHTLGGTQARAASG LIN 156 102 

THTLGGTQARAASGF LIN 156 149 

HTLGGTQARAASGFA LIN 169 102 

TLGGTQARAASGFAS LIN 168 102 

LGGTQARAASGFASL LIN 148 117 

GGTQARAASGFASLF LIN 141 107 

GTQARAASGFASLFR LIN 167 161 

TQARAASGFASLFRL LIN 150 144 

QARAASGFASLFRLG LIN 126 133 

ARAASGFASLFRLGP LIN 209 211 

RAASGFASLFRLGPS LIN 228 173 

AASGFASLFRLGPSQ LIN 237 134 
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ASGFASLFRLGPSQK LIN 241 110 

SGFASLFRLGPSQKI LIN 249 132 

GFASLFRLGPSQKIQ LIN 235 125 

FASLFRLGPSQKIQL LIN 185 136 

ASLFRLGPSQKIQLV LIN 205 126 

SLFRLGPSQKIQLVN LIN 206 103 

LFRLGPSQKIQLVNT LIN 204 108 

FRLGPSQKIQLVNTN LIN 184 114 

RLGPSQKIQLVNTNG LIN 157 110 

LGPSQKIQLVNTNGS LIN 140 101 

GPSQKIQLVNTNGSW LIN 160 204 

PSQKIQLVNTNGSWH LIN 141 210 

SQKIQLVNTNGSWHI LIN 106 164 

QKIQLVNTNGSWHIN LIN 95 129 

KIQLVNTNGSWHINR LIN 170 319 

MVGNWAKVLIGKLLF LIN 166 128 

VGNWAKVLIGKLLFA LIN 153 153 

GNWAKVLIGKLLFAG LIN 151 118 

NWAKVLIGKLLFAGV LIN 166 124 

WAKVLIGKLLFAGVD LIN 151 108 

AKVLIGKLLFAGVDG LIN 148 109 

KVLIGKLLFAGVDGA LIN 140 95 

VLIGKLLFAGVDGAT LIN 171 120 

LIGKLLFAGVDGATH LIN 175 121 

IGKLLFAGVDGATHH LIN 175 119 

GKLLFAGVDGATHHT LIN 173 104 

KLLFAGVDGATHHTY LIN 140 137 

LLFAGVDGATHHTYR LIN 148 238 

LFAGVDGATHHTYRM LIN 160 166 

FAGVDGATHHTYRMG LIN 148 155 

AGVDGATHHTYRMGE LIN 91 83 

GVDGATHHTYRMGEA LIN 149 83 

VDGATHHTYRMGEAQ LIN 151 88 

DGATHHTYRMGEAQG LIN 140 103 

GATHHTYRMGEAQGR LIN 175 143 

ATHHTYRMGEAQGRT LIN 206 116 

THHTYRMGEAQGRTT LIN 242 110 

HHTYRMGEAQGRTTR LIN 178 203 

HTYRMGEAQGRTTRG LIN 172 164 

TYRMGEAQGRTTRGL LIN 209 155 

YRMGEAQGRTTRGLA LIN 229 195 

RMGEAQGRTTRGLAS LIN 238 172 

MGEAQGRTTRGLASI LIN 229 196 

GEAQGRTTRGLASIF LIN 178 173 

EAQGRTTRGLASIFT LIN 161 119 

AQGRTTRGLASIFTP LIN 183 168 
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QGRTTRGLASIFTPG LIN 163 150 

GRTTRGLASIFTPGA LIN 95 74 

RTTRGLASIFTPGAS LIN 204 130 

TTRGLASIFTPGASQ LIN 158 100 

TRGLASIFTPGASQR LIN 163 173 

RGLASIFTPGASQRI LIN 160 180 

GLASIFTPGASQRIQ LIN 154 135 

LASIFTPGASQRIQL LIN 150 134 

ASIFTPGASQRIQLI LIN 171 178 

SIFTPGASQRIQLIN LIN 192 151 

IFTPGASQRIQLINT LIN 220 122 

FTPGASQRIQLINTN LIN 187 129 

TPGASQRIQLINTNG LIN 166 119 

PGASQRIQLINTNGS LIN 174 110 

GASQRIQLINTNGSW LIN 179 206 

ASQRIQLINTNGSWH LIN 168 195 

SQRIQLINTNGSWHI LIN 136 220 

QRIQLINTNGSWHIN LIN 125 171 

RIQLINTNGSWHINR LIN 124 211 

IQLINTNGSWHINRT LIN 191 211 

QLINTNGSWHINRTA LIN 152 141 

LINTNGSWHINRTAL LIN 103 72 

INTNGSWHINRTALN LIN 150 114 

MAGNWAKVLIVMLLF LIN 176 182 

AGNWAKVLIVMLLFA LIN 199 211 

KVLIVMLLFAGVDGS LIN 175 150 

VLIVMLLFAGVDGST LIN 131 71 

LIVMLLFAGVDGSTT LIN 219 119 

IVMLLFAGVDGSTTT LIN 197 106 

VMLLFAGVDGSTTTM LIN 195 97 

MLLFAGVDGSTTTMG LIN 194 115 

LLFAGVDGSTTTMGG LIN 183 102 

LFAGVDGSTTTMGGS LIN 180 115 

FAGVDGSTTTMGGSA LIN 150 90 

AGVDGSTTTMGGSAA LIN 110 93 

GVDGSTTTMGGSAAY LIN 116 84 

VDGSTTTMGGSAAYN LIN 165 120 

DGSTTTMGGSAAYNT LIN 106 75 

GSTTTMGGSAAYNTS LIN 77 62 

STTTMGGSAAYNTSS LIN 78 57 

TTTMGGSAAYNTSSL LIN 78 63 

TTMGGSAAYNTSSLA LIN 137 102 

TMGGSAAYNTSSLAS LIN 111 69 

MGGSAAYNTSSLASF LIN 113 104 

GGSAAYNTSSLASFF LIN 144 132 

GSAAYNTSSLASFFS LIN 124 102 
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SAAYNTSSLASFFSR LIN 167 160 

AAYNTSSLASFFSRG LIN 173 186 

AYNTSSLASFFSRGS LIN 154 121 

YNTSSLASFFSRGSA LIN 207 147 

NTSSLASFFSRGSAQ LIN 206 135 

TSSLASFFSRGSAQK LIN 212 151 

SSLASFFSRGSAQKI LIN 193 114 

SLASFFSRGSAQKIQ LIN 165 75 

LASFFSRGSAQKIQL LIN 181 107 

ASFFSRGSAQKIQLV LIN 185 176 

SFFSRGSAQKIQLVN LIN 158 118 

FFSRGSAQKIQLVNT LIN 102 67 

FSRGSAQKIQLVNTN LIN 110 82 

SRGSAQKIQLVNTNG LIN 94 75 

RGSAQKIQLVNTNGS LIN 81 60 

GSAQKIQLVNTNGSW LIN 70 63 

SAQKIQLVNTNGSWH LIN 150 164 

AQKIQLVNTNGSWHT LIN 131 117 

QKIQLVNTNGSWHTN LIN 103 79 

KIQLVNTNGSWHTNR LIN 165 188 

KVLIVMLLFAGVDGT LIN 144 95 

VLIVMLLFAGVDGTQ LIN 208 120 

LIVMLLFAGVDGTQT LIN 184 135 

IVMLLFAGVDGTQTT LIN 156 125 

VMLLFAGVDGTQTTG LIN 199 123 

MLLFAGVDGTQTTGR LIN 129 112 

LLFAGVDGTQTTGRV LIN 169 145 

LFAGVDGTQTTGRVA LIN 174 148 

FAGVDGTQTTGRVAA LIN 122 78 

AGVDGTQTTGRVAAR LIN 143 117 

GVDGTQTTGRVAARN LIN 103 67 

VDGTQTTGRVAARNA LIN 158 130 

DGTQTTGRVAARNAH LIN 130 97 

GTQTTGRVAARNAHG LIN 95 63 

TQTTGRVAARNAHGF LIN 105 73 

QTTGRVAARNAHGFT LIN 209 143 

TTGRVAARNAHGFTS LIN 174 120 

TGRVAARNAHGFTSL LIN 144 119 

GRVAARNAHGFTSLF LIN 167 140 

RVAARNAHGFTSLFS LIN 173 181 

VAARNAHGFTSLFSP LIN 175 174 

AARNAHGFTSLFSPG LIN 145 99 

ARNAHGFTSLFSPGA LIN 138 73 

RNAHGFTSLFSPGAS LIN 186 109 

NAHGFTSLFSPGASQ LIN 161 98 

AHGFTSLFSPGASQN LIN 97 61 
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HGFTSLFSPGASQNL LIN 140 94 

GFTSLFSPGASQNLQ LIN 85 64 

FTSLFSPGASQNLQL LIN 101 74 

TSLFSPGASQNLQLI LIN 86 81 

SLFSPGASQNLQLIN LIN 86 87 

LFSPGASQNLQLINT LIN 162 124 

FSPGASQNLQLINTN LIN 86 60 

SPGASQNLQLINTNG LIN 70 65 

PGASQNLQLINTNGS LIN 130 99 

GASQNLQLINTNGSW LIN 137 179 

ASQNLQLINTNGSWH LIN 151 181 

SQNLQLINTNGSWHI LIN 132 161 

QNLQLINTNGSWHIN LIN 155 176 

NLQLINTNGSWHINR LIN 151 222 

MVGNWAKVLAAMLLF LIN.AA 113 75 

VGNWAKVLIAALLFA LIN.AA 92 79 

GNWAKVLIVAALFAG LIN.AA 113 81 

NWAKVLIVMAAFAGV LIN.AA 92 59 

WAKVLIVMLAAAGVD LIN.AA 92 56 

AKVLIVMLLAGGVDG LIN.AA 111 111 

KVLIVMLLFGAVDGR LIN.AA 182 193 

VLIVMLLFAAADGRG LIN.AA 91 65 

LIVMLLFAGAAGRGT LIN.AA 105 74 

IVMLLFAGVAARGTY LIN.AA 113 83 

VMLLFAGVDAAGTYT LIN.AA 96 71 

MLLFAGVDGAATYTT LIN.AA 140 95 

LLFAGVDGRAAYTTG LIN.AA 160 85 

LFAGVDGRGAATTGG LIN.AA 154 89 

FAGVDGRGTAATGGA LIN.AA 121 86 

AGVDGRGTYAAGGAQ LIN.AA 187 99 

GVDGRGTYTAAGAQA LIN.AA 195 87 

VDGRGTYTTAAAQAF LIN.AA 93 72 

DGRGTYTTGAGQAFT LIN.AA 94 58 

GRGTYTTGGGAAFTT LIN.AA 191 135 

RGTYTTGGAAGFTTH LIN.AA 98 79 

GTYTTGGAQGATTHS LIN.AA 95 75 

TYTTGGAQAAATHSF LIN.AA 122 113 

YTTGGAQAFAAHSFV LIN.AA 110 98 

TTGGAQAFTAASFVR LIN.AA 149 161 

TGGAQAFTTAAFVRF LIN.AA 92 66 

GGAQAFTTHAAVRFF LIN.AA 87 64 

GAQAFTTHSAARFFA LIN.AA 105 84 

AQAFTTHSFAAFFAS LIN.AA 153 165 

QAFTTHSFVAAFASG LIN.AA 126 90 

AFTTHSFVRAAASGP LIN.AA 214 120 

FTTHSFVRFAGSGPS LIN.AA 191 97 
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TTHSFVRFFGAGPSQ LIN.AA 257 152 

THSFVRFFAAAPSQN LIN.AA 228 122 

HSFVRFFASAASQNI LIN.AA 124 72 

SFVRFFASGAAQNIQ LIN.AA 163 135 

FVRFFASGPAANIQL LIN.AA 106 85 

VRFFASGPSAAIQLV LIN.AA 159 134 

RFFASGPSQAAQLVN LIN.AA 82 59 

FFASGPSQNAALVNT LIN.AA 79 67 

FASGPSQNIAAVNTN LIN.AA 85 63 

ASGPSQNIQAANTNG LIN.AA 61 65 

SGPSQNIQLAATNGS LIN.AA 69 62 

GPSQNIQLVAANGSW LIN.AA 77 79 

PSQNIQLVNAAGSWH LIN.AA 126 145 

SQNIQLVNTAASWHI LIN.AA 137 176 

QNIQLVNTNAAWHIN LIN.AA 96 99 

NIQLVNTNGAAHINR LIN.AA 148 166 

IQLVNTNGSAAINRT LIN.AA 130 102 

QLVNTNGSWAANRTA LIN.AA 183 114 

LVNTNGSWHAARTAL LIN.AA 141 93 

VNTNGSWHIAATALN LIN.AA 152 100 

NTNGSWHINAAALNC LIN.AA 119 100 

TNGSWHINRAGLNCN LIN.AA 76 64 

VGNWAKVLTAALLFA LIN.AA 133 146 

GNWAKVLTVAALFAG LIN.AA 147 121 

NWAKVLTVMAAFAGV LIN.AA 82 49 

WAKVLTVMLAAAGVD LIN.AA 80 50 

AKVLTVMLLAGGVDG LIN.AA 108 73 

KVLTVMLLFGAVDGV LIN.AA 161 146 

VLTVMLLFAAADGVT LIN.AA 88 46 

LTVMLLFAGAAGVTH LIN.AA 214 139 

TVMLLFAGVAAVTHT LIN.AA 198 120 

VMLLFAGVDAATHTL LIN.AA 145 101 

MLLFAGVDGAAHTLG LIN.AA 165 111 

LLFAGVDGVAATLGG LIN.AA 148 90 

LFAGVDGVTAALGGT LIN.AA 167 106 

FAGVDGVTHAAGGTQ LIN.AA 165 105 

AGVDGVTHTAAGTQA LIN.AA 119 87 

GVDGVTHTLAATQAR LIN.AA 154 121 

VDGVTHTLGAAQARA LIN.AA 123 98 

DGVTHTLGGAAARAA LIN.AA 165 101 

GVTHTLGGTAGRAAS LIN.AA 175 109 

VTHTLGGTQGAAASG LIN.AA 74 82 

THTLGGTQAAGASGF LIN.AA 68 57 

HTLGGTQARGGSGFA LIN.AA 70 58 

TLGGTQARAGAGFAS LIN.AA 71 41 

LGGTQARAAAAFASL LIN.AA 82 61 
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GGTQARAASAAASLF LIN.AA 84 61 

GTQARAASGAGSLFR LIN.AA 165 101 

TQARAASGFGALFRL LIN.AA 153 85 

QARAASGFAAAFRLG LIN.AA 170 189 

ARAASGFASAARLGP LIN.AA 177 105 

RAASGFASLAALGPS LIN.AA 197 131 

AASGFASLFAAGPSQ LIN.AA 180 110 

ASGFASLFRAAPSQK LIN.AA 258 107 

SGFASLFRLAASQKI LIN.AA 107 62 

GFASLFRLGAAQKIQ LIN.AA 105 56 

FASLFRLGPAAKIQL LIN.AA 101 59 

ASLFRLGPSAAIQLV LIN.AA 159 95 

SLFRLGPSQAAQLVN LIN.AA 108 58 

LFRLGPSQKAALVNT LIN.AA 69 43 

FRLGPSQKIAAVNTN LIN.AA 80 59 

RLGPSQKIQAANTNG LIN.AA 61 48 

LGPSQKIQLAATNGS LIN.AA 107 83 

GPSQKIQLVAANGSW LIN.AA 144 170 

PSQKIQLVNAAGSWH LIN.AA 141 169 

SQKIQLVNTAASWHI LIN.AA 152 173 

QKIQLVNTNAAWHIN LIN.AA 146 149 

KIQLVNTNGAAHINR LIN.AA 150 129 

MVGNWAKVLAAKLLF LIN.AA 158 95 

GNWAKVLIGAALFAG LIN.AA 155 120 

NWAKVLIGKAAFAGV LIN.AA 193 128 

WAKVLIGKLAAAGVD LIN.AA 140 73 

AKVLIGKLLAGGVDG LIN.AA 131 83 

KVLIGKLLFGAVDGA LIN.AA 132 82 

VLIGKLLFAAADGAT LIN.AA 137 108 

LIGKLLFAGAAGATH LIN.AA 165 107 

IGKLLFAGVAAATHH LIN.AA 95 54 

GKLLFAGVDAGTHHT LIN.AA 82 63 

KLLFAGVDGGAHHTY LIN.AA 149 119 

LLFAGVDGAAAHTYR LIN.AA 129 144 

LFAGVDGATAATYRM LIN.AA 146 96 

FAGVDGATHAAYRMG LIN.AA 94 67 

AGVDGATHHAARMGE LIN.AA 146 86 

GVDGATHHTAAMGEA LIN.AA 107 74 

VDGATHHTYAAGEAQ LIN.AA 91 77 

DGATHHTYRAAEAQG LIN.AA 146 95 

GATHHTYRMAAAQGR LIN.AA 124 78 

ATHHTYRMGAGQGRT LIN.AA 135 66 

THHTYRMGEGAGRTT LIN.AA 119 58 

HHTYRMGEAAARTTR LIN.AA 141 140 

HTYRMGEAQAATTRG LIN.AA 152 145 

TYRMGEAQGAATRGL LIN.AA 97 64 
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YRMGEAQGRAARGLA LIN.AA 89 65 

RMGEAQGRTAAGLAS LIN.AA 77 63 

MGEAQGRTTAALASI LIN.AA 127 94 

GEAQGRTTRAAASIF LIN.AA 158 172 

EAQGRTTRGAGSIFT LIN.AA 150 106 

AQGRTTRGLGAIFTP LIN.AA 113 94 

QGRTTRGLAAAFTPG LIN.AA 179 144 

GRTTRGLASAATPGA LIN.AA 139 57 

RTTRGLASIAAPGAS LIN.AA 187 95 

TTRGLASIFAAGASQ LIN.AA 108 73 

TRGLASIFTAAASQR LIN.AA 220 161 

RGLASIFTPAGSQRI LIN.AA 195 218 

GLASIFTPGGAQRIQ LIN.AA 168 115 

LASIFTPGAAARIQL LIN.AA 135 141 

ASIFTPGASAAIQLI LIN.AA 161 171 

SIFTPGASQAAQLIN LIN.AA 161 112 

IFTPGASQRAALINT LIN.AA 197 83 

FTPGASQRIAAINTN LIN.AA 154 87 

TPGASQRIQAANTNG LIN.AA 131 91 

PGASQRIQLAATNGS LIN.AA 157 95 

GASQRIQLIAANGSW LIN.AA 165 165 

ASQRIQLINAAGSWH LIN.AA 159 184 

SQRIQLINTAASWHI LIN.AA 141 183 

QRIQLINTNAAWHIN LIN.AA 139 141 

RIQLINTNGAAHINR LIN.AA 132 162 

IQLINTNGSAAINRT LIN.AA 129 94 

QLINTNGSWAANRTA LIN.AA 110 77 

LINTNGSWHAARTAL LIN.AA 166 145 

INTNGSWHIAATALN LIN.AA 113 92 

MAGNWAKVLAAMLLF LIN.AA 132 125 

AGNWAKVLIAALLFA LIN.AA 122 106 

KVLIVMLLFGAVDGS LIN.AA 186 134 

VLIVMLLFAAADGST LIN.AA 187 125 

LIVMLLFAGAAGSTT LIN.AA 186 107 

IVMLLFAGVAASTTT LIN.AA 204 120 

VMLLFAGVDAATTTM LIN.AA 154 83 

MLLFAGVDGAATTMG LIN.AA 160 102 

LLFAGVDGSAATMGG LIN.AA 149 85 

LFAGVDGSTAAMGGS LIN.AA 131 93 

FAGVDGSTTAAGGSA LIN.AA 135 98 

AGVDGSTTTAAGSAA LIN.AA 120 77 

GVDGSTTTMAASAAY LIN.AA 122 89 

VDGSTTTMGAAAAYN LIN.AA 136 74 

DGSTTTMGGAGAYNT LIN.AA 105 60 

GSTTTMGGSGGYNTS LIN.AA 135 76 

STTTMGGSAGANTSS LIN.AA 126 77 
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TTTMGGSAAAATSSL LIN.AA 120 101 

TTMGGSAAYAASSLA LIN.AA 143 93 

TMGGSAAYNAASLAS LIN.AA 123 88 

MGGSAAYNTAALASF LIN.AA 130 116 

GGSAAYNTSAAASFF LIN.AA 139 106 

GSAAYNTSSAGSFFS LIN.AA 135 127 

SAAYNTSSLGAFFSR LIN.AA 140 146 

AAYNTSSLAAAFSRG LIN.AA 145 184 

AYNTSSLASAASRGS LIN.AA 128 112 

YNTSSLASFAARGSA LIN.AA 131 120 

NTSSLASFFAAGSAQ LIN.AA 139 89 

TSSLASFFSAASAQK LIN.AA 184 91 

SSLASFFSRAAAQKI LIN.AA 206 113 

SLASFFSRGAGQKIQ LIN.AA 184 64 

LASFFSRGSGAKIQL LIN.AA 127 76 

ASFFSRGSAAAIQLV LIN.AA 152 88 

SFFSRGSAQAAQLVN LIN.AA 157 88 

FFSRGSAQKAALVNT LIN.AA 184 85 

FSRGSAQKIAAVNTN LIN.AA 131 88 

SRGSAQKIQAANTNG LIN.AA 115 85 

RGSAQKIQLAATNGS LIN.AA 123 79 

GSAQKIQLVAANGSW LIN.AA 148 159 

SAQKIQLVNAAGSWH LIN.AA 137 169 

AQKIQLVNTAASWHT LIN.AA 124 90 

QKIQLVNTNAAWHTN LIN.AA 133 130 

KIQLVNTNGAAHTNR LIN.AA 123 106 

KVLIVMLLFGAVDGT LIN.AA 157 142 

VLIVMLLFAAADGTQ LIN.AA 185 174 

LIVMLLFAGAAGTQT LIN.AA 176 94 

IVMLLFAGVAATQTT LIN.AA 154 82 

VMLLFAGVDAAQTTG LIN.AA 127 92 

MLLFAGVDGAATTGR LIN.AA 96 80 

LLFAGVDGTAATGRV LIN.AA 127 73 

LFAGVDGTQAAGRVA LIN.AA 146 74 

FAGVDGTQTAARVAA LIN.AA 147 79 

AGVDGTQTTAAVAAR LIN.AA 133 113 

GVDGTQTTGAAAARN LIN.AA 105 96 

VDGTQTTGRAGARNA LIN.AA 137 106 

DGTQTTGRVGGRNAH LIN.AA 151 123 

GTQTTGRVAGANAHG LIN.AA 138 103 

TQTTGRVAAAAAHGF LIN.AA 128 94 

QTTGRVAARAGHGFT LIN.AA 128 105 
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V F - F A B 1 A - 1 - 3  

V F - F A B 1 B - 1 - 3  

V F - F A B 1 B - 5 - 1  

V F - F A B 3 A - 1 - 1  
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V F - F A B 1 A - 1 - 3 

V F - F A B 1 B - 1 - 3 

V F - F A B 1 B - 5 - 1 

V F - F A B 3 A - 1 - 1 
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V F - F A B 1 A - 1 - 3 ,  V F - F A B 1 B - 1 - 3 ,  V F - F A B 1 B - 5 - 1  &  V F - F A B 3 A - 1 -  

V F - F A B 1 A - 1 - 3 ,  V F - F A B 1 B - 1 - 3 ,  V F - F A B 1 B - 5- 1  &  V F - F A B 3 A - 1 - 1 

V F - F A B 1 A - 1 - 3 ,  V F - F A B 1 B - 1 - 3 ,  V F - F A B 1 B - 5 - 1  &  V F - F A B 3 A - 1 - 1  

V F - F A B 1 A - 1 - 3 ,  V F - F A B 1 B - 1 - 3  
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V F - F A B 1 A - 1 - 3  

V F - F A B 1 B - 1 - 3  

V F - F A B 1 B - 5 - 1  

V F - F A B 3 A - 1 - 1  

V F - F A B 1 B - 1 - 3  V F - F A B 1 B - 5 - 1  
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Heat map overview of peptides targeted by VF-Fab 

Libraries of peptides beginning at the E2 N-terminus (residue 384-619 of the H77 reference 

strain AF011751) of the envelope protein were synthesized using chemically linked peptides 

on scaffolds (CLIPS) technology for conformational epitope mapping (Pepscan Presto; 

Lelystad, Netherlands).Individual peptides are listed on the right and VF-Fab are indicated at 

the base of the heatmap. Native Cys were protected by acetamidomethyl in all the libraries 

(denoted by “2”). The magnitude of colour (dark magenta) with higher z score represents the 

binding affinity of VF-Fab to the peptide. All the VF-Fabs commonly bound peptides with 

core sequence 393SRAAHRVTTFITR405 from all the sets. Additional binding was recorded for 

VF-Fab1a-1-3, VF-Fab1b-1-3 and VF-Fab1b-5-1 on linear peptides with core sequences 

433LNTGFLAALFYTH445 and 539LLNNTRPPRGNWF550 respectively. VF-Fab1b-5-1 and 

VF-Fab31-1-1 similarly bound one β- turn mimic with core sequences 

428NCNDSLNTGFLAALFYTHRF447. Linear sequences 599SGPWLTPRCM608, 

539LLNNTRPPRGNWF550 were additionally recognized by VF-Fab3a-1-1 (Table 3). 

Herceptin was used as an internal negative control. In order to make Heatmap legible, only 

every second peptide in the study has been included in the figure.  

A. Linear peptides of 15 residues B. loop mimics of constrained peptides of 17 residues. C. 

structured peptides of 23 residues mimic the helical structure D. structured peptides of 22 

residues mimic the β-turn. 
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Humoral immune system targets clonotypic antibody-
associated hepatitis C virus

Amruta S. Naik,1 Brendan A. Palmer,1 Orla Crosbie,2 Elizabeth Kenny-Walsh2 and Liam J. Fanning1,*

Abstract

Hypervariable region 1 (HVR1) is one of the potential neutralization domains in the E2 glycoprotein of hepatitis C virus (HCV).

Point mutations of the HVR1 can lead to humoral immune escape in HCV-infected patients. In this study, we segregated the

chronically infected viraemic sera from HCV-infected patients into populations of antibody-free virus and antibody-associated

virus (AAV) and mapped potential epitopes within the E1E2 gene junction of AAV sequences (residues 364–430).

Furthermore, we generated HCV pseudoparticles (HCVpp) derived from AAV sequences to assess their infectivity. We studied

the neutralization potential of virus-free Fab obtained from antibody–virus complexes, in the HCVpp system. We observed

selective targeting of clonotypic HCV variants from the quasispecies pool. Moreover, we identified potential neutralizing

epitopes within the HVR1 and an additional epitope that overlapped with a broadly neutralizing AP33 epitope (amino acid

412–423 in E2). We observed a marked difference in the infectivity of HCVpp generated using E1E2 sequences isolated from

AAV. We document reduction in the infectivity of HCVpp-H77 and HCVpp derived from AAV sequences when challenged with

virus-free Fab. Our results provide novel insights into the complexities of engagement between HCV and the humoral

immune system.

INTRODUCTION

Globally, approximately 130–150 million people are chroni-
cally infected with hepatitis C virus (HCV) [1]. The quasi-
species nature of HCV helps the virus to establish persistent
infection [2–4]. The current focus in HCV management is
to achieve an IFN-free regime. Direct-acting antivirals have
emerged as an effective HCV treatment. However, prohibi-
tive costs limit direct-acting antiviral access to discrete
patient cohorts with cirrhosis and end-stage liver disease
[5]. Vaccination is the most effective means of controlling
an infectious disease, yet there is no prophylactic or thera-
peutic vaccine available to treat HCV [6].

A minority of infected individuals clear HCV infection
spontaneously [7]. This requires a rapid, rigorous and
multi-specific antiviral response by the host immune system
[7]. Numerous studies have shown that broadly specific
neutralizing antibodies (nAbs) are elicited early in infection
[8–10]. Several experiments using HCV pseudoparticles
(HCVpp) and cell-culture-derived HCV (HCVcc) have
revealed that point mutations of immune dominant

epitopes within viral E2 envelope protein aid humoral
immune escape [11]. Hypervariable region 1 (HVR1) is one
target of nAbs [2, 7, 12–14]. HVR1 is located in a stretch of
27 residues at the amino-terminus of E2 envelope glycopro-
tein (comprising amino acids 384–410), and is an immuno-
dominant epitope with multiple linear epitopes [15].
Mutations within HVR1 are associated with humoral
immune escape.

Potent and broadly nAbs are widely being considered as a
potential therapy to treat viral infections [16–18]. However,
over time, immune pressure drives replication of HCV var-
iants to escape targeting by nAbs raised against dominant
variants, even in cohorts infected with the same inoculum
[13, 19]. Conversely, a note of caution needs to be applied
here as cross-reactive nAbs may lead to antibody-dependant
enhancement of infection [20]. It has been observed that
selection pressure from nAb responses shapes the evolution
of viral envelope protein [21–24].

To date, the neutralization potential of anti-HCV antibodies
has been assessed in cell culture using HCVpp and HCVcc
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bearing glycoproteins of prototype laboratory strains. These
clonotypic systems lack the diversity of the virus population
within the serum [25–28]. In the current study, we fraction-
ated viraemic HCV sera into antibody-associated virus
(AAV) and antibody-free virus (AFV) subpopulations to
investigate the viral variants targeted by the humoral
immune system [29]. The presence of AAV is a key signa-
ture of active immune response to the antigenic epitopes.
Virus-free Fab (VF-Fab) was obtained from the AAV com-
plexes and used to challenge homologous sera where AAV
was not detected. We mapped prospective epitopes within
amino acid position 364–430, which includes HVR1 and
AP33 epitopes using VF-Fab. Owsianka et al. [30] have
shown that the mouse mAb AP33 recognizes a broadly neu-
tralizing linear epitope in E2 (412–423) [30].

We generated HCVpp using sequence information from the
AAV population. We further assessed the ability of VF-Fab
to target viral variants from unrelated patients both in the
HCVpp and serum-derived HCV system. Notably, we dem-
onstrate that VF-Fab has distinct binding activity in the
context of a homogeneous pseudoparticle system when
compared to the complex heterogeneous serum environ-
ment. Our results provide an insight into the humoral
immune response in chronic HCV infection.

RESULTS

Antibodies from AAV-positive sera capture viral
variants from unrelated patients

Viraemic serum samples were obtained from 16 unrelated
patients (Table 1). Out of 18 specimens, n=3/3 (1a), n=5/12
(1b) and n=2/3 (3a) genotypes were positive for AAV
(Table 1). We further selected these AAV-positive sera for
our antibody challenge experiment.

We postulated that antibodies that have targeted discrete viral
variants in AAV-positive sera are isolate specific in the context
of a complex mix of variants [23, 31–33]. In order to test this
hypothesis, we challenged sera identified as negative for
detectable AAV (Table 2, Fig. 1a) with total IgG purified from
sera, which were classified as AAV positive (referred to as
1�AAV). We discovered the presence of a newly formed AAV
(referred to as 2�AAV) in addition to the pre-existing parental
1�AAV (schematic representation in Fig. 1a). We observed
that total IgG from 1b-5 targeted a viral variant from 1b-4
[KT873176–77, KT873180–81] and 1b-6 [KT873186,
KT873194], total IgG from 1b-10 captured a variant from 1b-
7 [KT873195, KT873197–204] and antibodies from 3a-2 were
bound to viral variant in 3a-3 [KT873229]. However, we were
not able to detect 2�AAV for 1b-8 when mixed with the total
IgG from 1b-5. 1�AAV and 2�AAV sequences are unrelated
and non-identical (Fig. 1b–d). Similarly, total IgG purified
from 1b-4, 1b-6, 1b-7, 1b-8 and 1b-9, which were initially clas-
sified as AAV negative, were mixed from these experiments in
a cross-panel challenge (e.g. total IgG from 1b-4 were mixed
with sera 1b-6, 1b-7, 1b-8 and 1b-9). We observed that total
IgG purified from AAV-negative sera did not capture any viral
variant.

Separately, our sequence analysis observed that 1b-5 has a
28 amino acid HVR1 domain with an in-frame 3 bp inser-
tion at nucleotide 1492-94 [ref: AF011751] at the 5¢ end of
E2 (Fig. 1b, Table 2). We observed an atypical 30 amino
acid HVR1 sequence in both the 2�AAV and AFV fractions
of serum 1b-4 (Fig. 1b, Table 2), as a result of 9 bp in-frame
insertion at the 5¢ end from nucleotide - 1492-1500 [ref:
AF011751]. We also identified a 26 amino acid HVR1 pro-
file from specimen 1b-7 (Fig. 1c) as a consequence of an in-
frame deletion at the 5¢ end from nucleotide - 1491-93 [ref:
AF011751]. The rest of the targeted 2�AAV sequences har-
boured a classic 27 amino acid HVR1 (Fig. 1d).

Analysis of proteinase-K-treated sera

We obtained virus-free antibody fraction by treating AAV-
positive sera with proteinase K. Absence of E1E2-junction-
specific PCR product confirmed the virus-free status of the
post-proteinase-K-treated samples. We further analysed the
products of proteinase-K-treated sera eluted from Ab Spin
Trap, LambdaFabSelect and Kappa Select on 4–12 % Bist-
ris gradient gel. Analysis revealed that, in the process of dis-
sociating the antibody–virus complex, the intact antibody
was fractionated into several peptides. An intact Fab frag-
ment was identified at ~50 kDa (Figs 2 and S1, available in
the online Supplementary Material) from all three fraction-
ation procedures, hence, VF-Fab (Ab Spin Trap), l-VF-Fab
(LambdaFabSelect) and k-VF-Fab (KappaSelect). It has
been previously shown that the CH1 domain of the Fab arm
has a binding site for streptococcal protein G [34]. This is a
likely explanation as to how we obtained VF-Fab from pro-
teinase-K-treated AAV-positive serum samples.

Patient-derived VF-Fab selectively targets
homologous genotypes

We used Fab fragments obtained from three different col-
umns to challenge the AAV-negative sera. We observed
that VF-Fabs were able to capture viral variants (2�AAV)
in all instances in comparison to l-VF-Fab and k-VF-Fab
(Table 2). Clonal analysis of 2�AAV variants revealed that
2�AAV variants were clonotypic in nature. Both intact
mAb AP33 and proteinase-K-treated AP33 retained identi-
cal viral variants from 1b-9 and 3a-3 only (Table 2). The
AAV fraction obtained from AP33-challenged 1b-9 and
3a-3 sera yielded a homogenous virus population of
[KT873217] and [KT873229], respectively. Significantly,
this mirrors the viral variants captured by VF-Fab1b-2 and
VF-Fab3a-2.

Both VF-Fab and l-VF-Fab derived from respective homol-
ogous genotypes captured identical viral variants from 1b-4,
1b-7 and 3a-3 forming a 2�AAV (Table 2). k-VF-Fab did
not capture viral variant from any of the challenge sera.

Source of VF-Fab does not affect the selective
binding to viral variants

VF-Fab1b-2 was obtained from a serum that belongs to an
anti-D cohort [35]. Patients in an anti-D cohort were iatro-
genically infected with the same source of HCV genotype 1b
[35]. Three of four HCV 1b sera which were challenged with
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VF-Fab1b-2 were from an anti-D cohort (1b-1-1, 1b-8 and
1b-9) (Table 2). However, viral variants from only two of vir-
aemic sera (1b-1-1, 1b-9) were captured by the VF-Fab1b-2.
Interestingly, the serum sample from which the VF-Fab1b-5
was obtained does not belong to an anti-D cohort yet success-
fully retained virus from anti-D sera 1b-4, 1b-6 and 1b-8. On
the other hand, 1b-7 was targeted by VF-Fab1b-10 obtained
from another anti-D serum. Of note, no shared reactivity with
respect to capture viral variants (2�AAV) for VF-Fab1b-5 or
VF-Fab1b-10 was observed.

Potential epitopes targeted by VF-Fab1b-5 and VF-
Fab1b-10

Based on previous research by Guan et al. [4], we explored
the 364–430 region for probable epitopes targeted by the
humoral immune system [4]. Five different potential binding
motifs were observed for included sequences. All the peptides
in this study were designed as 15 mer with overlapping 14
mer peptides. The candidate epitopes are proposed by sub-
tracting positive peptides and by aligning them to extract
overlapping residues. VF-Fab1b-5 targeted a motif that shares
amino acid residues 412, 413 and 415–423 with the AP33 epi-
tope (QLINTNGSWHIN) in the 1�AAV fraction of 1b-5 and
the 2�AAV fraction of 1b-8 (Table 3) [30]. VF-Fab1b-10 tar-
geted a motif within the HVR1 domain of the 2�AAV fraction
of 1b-4 [KU888835] and 1b-8 [KU888836] and the 1�AAV

fraction of 1b-5 [KU888834]; it is the same antigenic domain
targeted by mAb 3 C7 and 9/27 (396–407) (reviewed by Helle
et al. [36]) (Table 3). Heatmap representation of scaled and
centred data for each peptide recorded from both VF-Fabs is
shown in Figs 3 and S3.

VF-Fab1b-5 efficiently neutralizes HCVpp-H77 and
HCVpp1b-4

We generated five pseudotyped HCV particles. HCVpp-
H77 was used as a reference clone. However, not all the
expressed clones were infectious in Huh7 (Fig. 4a). Out of
four AAV-E1E2 pseudotyped viruses, HCVpp1b-4 was
infectious, yielding a 10-fold greater relative luminescence
value [relative light unit (RLU)] than no envelope control.

We observed that VF-Fab1b-5 at a concentration of 0.167 mg
ml�1 was highly neutralizing, reducing the HCVpp-H77
infection by 85 % (Fig. 4b). On the other hand, VF-Fab1b-10
reduced HCVpp-H77 infection by 75 % at 0.400 mg ml�1

(Fig. 4b). We used the highest neutralizing concentration of
VF-Fab1b-5 and VF-Fab1b-10 in the neutralization assay for
HCVpp1b-4. VF-Fab1b-5 reduced HCVpp1b-4 infection by
88 % at 0.167 mg ml�1 (Fig. 4c). VF-Fab1b-10 showed 72 %
of inhibition of infection of HCVpp1b-4 at 0.400 mg ml�1

(Fig. 4c). In both neutralization assays, we found VF-Fab1b-5
to be highly neutralizing.

Table 1. Sample characteristics used in the current study

Genotype No. of samples 1
�

AAV Sample identifier* Accession no. AFV† Accession no. 1
�

AAV‡

1a 3 + 1a-1 KT873141 KT873142

+ 1a-2 KT873143 KT873144

+ 1a-3 KT873145 KT873146

1b 12 � 1b-1–1§, || KT873147–57 �

+ 1b-1–2§, || KT873158 KT873159

+ 1b-1–3§, || KT873160 KT873161

+ 1b-2§ KT873162 KT873163

� 1b-3 KT873164–71 �

� 1b-4§ KT873173–81 �

+ 1b-5 KT873182 KT873183

� 1b-6§ KT873184–94 �

� 1b-7§ KT873195–04 �

� 1b-8§ KT873205–11 �

� 1b-9§ KT873212–17 �

+ 1b-10§ KT873218 KT873219

3a 3 + 3a-1 KT873220 KT873221

+ 3a-2 KT873234 KT873233

� 3a-3 KT873222–32 �

+, Detectable AAV by reverse transcription PCR (RT-PCR); �, no detectable levels of AAV by RT-PCR.

*Genotype/subtype patient identifier.

†Samples positive for 1
�

AAV; both AFV and 1
�

AAV sequences were analysed by direct sequencing only.

‡Samples without accession numbers had no detectable levels of AAV.

§Source of infection: contaminated anti-D immunoglobulin [35].

||Obtained from the same patient at three different time points (2002, 2013 and 2014, respectively). Genotype/subtype patient identifier-sample

number.
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DISCUSSION

This is the first successful attempt to capture inter-patient
viral variants from viraemic HCV sera using antibodies
from homologous AAV-positive sera. It has been shown in
HCVpp and HCVcc in vitro infection systems that antibod-
ies obtained from patient sera are broadly reactive (reviewed
in Ball et al. [37]). However, in our experiments, we
observed that in the complex serum environment, antibod-
ies target unique viral variants (from the quasispecies pool)
from unrelated patient sera. We made similar observations
for VF-Fab. From our results, we were unable to determine
whether (i) the antibodies that targeted 1�AAV are the same
antibodies that targeted 2�AAV and/or (ii) the antibodies
were not saturated with antigen/virus. Additionally, we have
shown that total IgG purified from AAV-negative sera were
not capable of capturing viral variants from other AAV-
negative sera. In this context, absence of AAV might repre-
sent a period when antibody-sensitive viral variants were
removed (from a quasispecies pool), leaving behind the
humoral immune escape mutants. Nonetheless, we
acknowledge that these AAV-negative sera might have
nAbs against previously culled viral variants. Analysis of the
relative distribution of 2�AAV (Fig. S2) suggests that the
viral variant targeted by VF-Fab need not dominate the het-
erogeneous virus population. Immunogenicity, accessibility
and antibody–epitope binding kinetics might play a crucial
role in selecting the clonotypic population out of the diverse
mixture of variants in patient sera.

Extra-long HVR1 is a feature of the biology of HCV [23, 29,
38]. Guan et al. [4] in their experiments have shown that the

first 13 amino acids do not affect infectivity in the HCVpp sys-
tem. We are the first to report the capture of a non-classic 30
amino acid HVR1 (from sample 1b-4, Fig. 1b) using VF-
Fab1b-5 from an unrelated sample. This latter variant har-
boured a non-classical 28 amino acid HVR1 (sample 1b-5,
Fig. 1b). Our data indicate that this three amino acid insertion
at the N-terminus of HVR1 did not interfere with the binding
capacity of the aforementioned VF-Fab from sample 1b-5.
This is likely because nAbs target the C-terminus of HVR1,
and hence, deletion or insertion at the N-terminus doesn’t
affect this phenomenon [39].

In this study, we used human anti-HCV VF-Fabs for epi-
tope mapping of viral sequences that were previously tar-
geted by host humoral immune system. Our epitope
mapping data showed that VF-Fab1b-5-targeted motifs in
the 1�AAV fraction of 1b-5 [KU888834] and the 2�AAV
fraction of 1b-8 [KU888836] overlap with the well-
characterized AP33 epitope. It has been shown that the lin-
ear AP33 epitope is highly conserved across different HCV
genotypes and is broadly neutralizing [30]. Importantly,
mAb AP33 (either intact or proteinase-K-treated) was able
to retain epitope-positive viral variant(s) from only 1b-9
and 3a-3 (Table 2). Deng et al. [40] in their research found
no detectable antibody response to a peptide (PUHI 19)
harbouring AP33 epitope (409–423), suggesting weak
immunogenicity of the epitope, which might explain selec-
tive targeting of AP33-epitope-positive variants in our anti-
body-serum binding experiments [40].

Studies have shown that HCVpp and HCVcc lacking
HVR1 are sensitive to neutralization by patient-derived

Table 2. Antibody challenge of serum samples without detectable AAV following initial fractionation

AAV-negative

sera*

1
�

AAV-

positive

sera

Antibody challenge† Unique

HVR1‡

Accession nos. of 2
�

AAV

Untreated Proteinase-K-treated

Total IgG AP33 VF-Fab l-VF-Fab k-VF-Fab AP33

1b-1–1§ 1b-2§ � ND + � ND ND 1 KT873154–57

1b-3§ 1b-2§ ND ND + ND ND ND 1 KT873166, KT873170–71

1b-4 1b-5 + � + + � � 1 KT873176–77, KT873180–81

1b-10 � � � � � � � �

1b-6 1b-5 + � + � � � 1 KT873186, KT873194

1b-10 � � � � � � � �

1b-7 1b-5 � � � � � � � �

1b-10 + � + + � � 1 KT873195, KT873197–204

1b-8 1b-5 + � + � � � 1 KT873205–11

1b-10 � � � � � � � �

1b-9§ 1b-2§ + + + � ND + 1 KT873216–17

3a-3 3a-2 + + + + � + 1 KT873229

ND, Not done.

*Patient sera without detectable AAV following initial fractionation were subsequently challenged with genotype/subgenotype-matched 1
�

AAV-

positive sera (as per Table 1).

†Individual antibody preparations originating from 1
�

AAV-positive serum or AP33 are described in Methods.

‡Cumulative number of unique HVR1 amino acid sequences identified in 2
�

AAV-positive samples.

§Insufficient amounts of AAV-negative sera and/or 1
�

AAV-positive sera limited the number of possible experimental combinations.
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antibodies, which again indicates an important role of
HVR1 in overall viral fitness [41–43]. We observed fewer
changes outside the HVR1 in all the isolates. VF-Fab1b-10
targeted a motif within HVR1 of the 2�AAV fraction of 1b-
4 and 1b-8 and in the 1�AAV fraction of 1b-5 upon epitope
mapping (Table 3, Fig. 3). Notably, these results suggest
the existence of an immunodominant epitope on the
C-terminal region of HVR1 recognized by patient-derived
VF-Fabs. Our data are in strong agreement with that of

previously published data, supporting that HVR1 is one of
the potential antigenic epitopes under immune selection
pressure [24, 32, 36, 44, 45].

In our study, we observed that both VF-Fab1b-5 and VF-

Fab1b-10 neutralize HCVpp with different efficiencies, VF-

Fab1b-5 being highly neutralizing (Fig. 4b, c). A likely

explanation of the neutralizing activity of VF-Fab1b-5 is

that it targeted a highly neutralizing epitope and captured

(a)

(b)

(c)

(d)

AFV

1°AAV

1°AAV2°AAV

Serum A

1°AAV1b-10
2°AAV1b-7

Serum B

Serum B
AFV

Total IgG Total IgG

AFV

Total IgG

1°AAV1b-5
2°AAV1b-4 

1°AAV1b-5
2°AAV1b-6

1°AAV3a-2
2°AAV3a-3

2°AAV1b-8

Fig. 1. 1
�

AAV (parental) is non-identical with 2
�

AAV (newly formed). (a) Schematic diagram of column-based separation of unbound

AFV and 1
�

AAV fraction as described in Methods. Different coloured shapes represent the quasispecies nature of HCV. Total IgG from

1
�

AAV-positive sample (Serum A) were used to challenge an unrelated serum sample (Serum B) that had previously been classified as

AAV negative. The output of this challenge was capture of a newly formed viral variant 2
�

AAV additional to the pre-existing parental

1
�

AAV. (b) 1
�

AAV sequence from 1b-5 has a 28 amino acid HVR1. Total IgG 1b-5 captured a 2
�

AAV [KT873177] from 1b-4, which har-

bours a non-classical 30 amino acid HVR1 [ref: AF011751]. HVR1 domain is marked by a black arrow on the top of the sequences.

(c) 2
�

AAV [KT873195] from 1b-7 harbours a non-classical 26 amino acid HVR1 that was captured by total IgG from 1b-10. (d) Total IgG

from 1b-5 captured two more viral variants (2
�

AAV) from unrelated sera that harboured a classical 27 amino acid HVR1 profile. Simi-

lar observations were made for total IgG from 3a-2, which captured a viral variant from serum 3a-3. Sequence analysis of 1
�

AAV with

2
�

AAV complex revealed to be non-identical.
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viral variants in all the antibody challenge experiments,

when compared to VF-Fab1b-10 (Table 2). However, nAbs

against HVR1 are mostly strain-specific and of limited

cross-reactivity; hence, VF-Fab1b-10 is the lesser neutraliz-

ing between the two VF-Fabs (reviewed previously [36, 37]).

A well-known caveat that needs to be appreciated when

studying neutralization potential is that the pseudoparticle

system provides a homogenous population of E1E2 glyco-

protein, as compared to the complex heterogeneity and den-

sity of native glycoprotein in HCV virions.

It should be noted that both VF-Fab1b-5 and VF-Fab1b-10
were not able to recognize any epitope in the 2�AAV frac-
tion of 1b-7 and the 1�AAV fraction of 1b-10. This may
indicate a possible conformational or discontinuous epitope
outside the HVR1, which is not included in our study. Our
total IgG and VF-Fab binding studies strongly suggest that
nAb responses are clonotypic in nature. However, this state-
ment must be qualified by the fact that we have only exam-
ined AAV in the context of eight samples.

In conclusion, we show differential binding behaviour of
patient-derived anti-HCV antibodies, VF-Fab and mAb
AP33 targeting clonotypic populations in unrelated virae-
mic sera. We have identified two epitopes that are subjected
to humoral immune attack in vivo. Importantly, our data
add new information on the in vivo humoral immune
response to chronic HCV infection.

METHODS

Serum

This study was approved by the Clinical Research Ethics
Committee of the Cork Teaching Hospitals, and written
consent from patients was obtained. A panel of viraemic
sera positive for HCV genotypes 1a (n=3), 1b (n=12) and 3a
(n=3) was randomly selected (Table 1). Ten out of 12 1b
serum samples belonged to a cohort of Irish women infected
with a single source of HCV genotype 1b via contaminated
anti-D immunoglobulin [35]. Patient 1b-1 was the only
patient whose serum samples were obtained at three differ-
ent time intervals (Table 1). The VERSANT HCV Geno-
type Assay was used to confirm the HCV genotype.

Nucleic acid extraction and E1E2 gene junction
amplification

HCV RNA was extracted with QIAamp Viral RNA mini kit
where applicable (Qiagen). The E1E2 gene junction (318
bp) of HCV was amplified as previously described [29]. All
PCRs were carried out using Pfu DNA polymerase (Thermo
Scientific) to guard against unequal template selection due
to the quasispecies nature of the virus [46].

Fractionation of serum samples into AFV and AAV

The Ab Spin Trap columns were used to separate the sam-
ples into (i) AFV and (ii) AAV populations following the
manufacturer’s protocol with a few modifications (GE
Healthcare Life Sciences). The protein G columns were used
to purify total IgG from serum or plasma. Briefly, 200 µl of
patient sera was applied to the column followed by incuba-
tion for 15 min at room temperature with end-over-end
mixing. The first flow-through (W0) was retained as the
AFV fraction. Eight washes (W1–W8) of 300 µl binding
buffer were applied to the column, while the last wash (W8)
was tested by PCR amplicon analysis to confirm the absence
of HCV virions. The column was then incubated for 5 min
with 200 µl elution buffer with end-over-end mixing. The
elute is now identified as total IgG. Total IgG contains AAV
(HCV targeted by antibodies), along with free antibodies
bound by the column.

Dissociation of antibody–virion complexes and
collection of VF-Fab, l-VF-Fab and k-VF-Fab

Proteinase K was used to dissociate the antibodies from the
antibody–virion complex. This was achieved by adding 1 : 1
(v/v) of proteinase K (5 mg ml�1) to AAV-positive sera. The
Ab Spin Trap protocol was followed post-proteinase K treat-
ment. We analysed the functional component in post-pro-
teinase-K-treated samples using HiTrap LambdaFabSelect

41 2 3 5 6

Fig. 2. Analysis of proteinase-K-treated serum samples. Products of

post-proteinase-K-treated samples eluted on LambdaFabSelect (l-

Fab), KappaSelect (k-Fab) and Ab Spin Trap (VF-Fab) were analysed

on 4–12 % Bistris gradient gel under a non-reducing condition. Elutes

were transferred onto nitrocellulose membrane. The blot was devel-

oped using HRP-labelled mouse anti-human IgG Fab antibody (Bior-

byt). We identified intact Fab fragment post-proteinase K treatment

(black box). 1, Control IgG [human plasma CTM (�)C, Roche Molecular

Systems]; 2, natural human IgG Fab fragment protein (ab90352); 3, l-

VF-Fab; 4, k-VF-Fab; 5, VF-Fab1b-5; 6, VF-Fab1b-10.

Table 3. Binding motifs targeted by VF-Fab

VF-Fab Target sequence

[accession nos.]

Putative epitope

VF-Fab1b-5 1b-5 [KU888834] 410NIQLVNTNGSWHINR424

1b-8 [KU888836] 410KIQLVNTNGSWHINR424

VF-Fab1b-10 1b-4 [KU888835] 388MGEAQGRTTRGLA400

1b-5 [KU888834] 398GFASLFRLGPSQ409

1b-8 [KU888836] 397HSFVRFFASGPSQ410
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and KappaSelect pre-packed columns (GE Healthcare Life
Sciences). These columns have a ligand that binds to the
constant region of lambda or the kappa light chain of
human IgG, respectively. Briefly, 1 ml proteinase-K-treated

serum samples were passed through both the columns as per
the manufacturer’s protocol. Columns were washed to
remove unbound material with 5 vols binding buffer (PBS,
pH 7.4). Fab fragments were eluted with 0.5 ml elution

1
b

-5
1

b
-8

1
b

-4
1

b
-1

0
1

b
-7

VF-Fab1b-10 VF-Fab1b-5

Fig. 3. Heatmap overview of binding motifs targeted by VF-Fab1b-5 and VF-Fab1b-10. 1
�

AAV fractions of 1b-5 and 1b-10 and 2
�

AAV

fractions of 1b-4, 1b-7 and 1b-8 were assessed for epitope mapping with VF-Fab1b-5 and VF-Fab1b-10 from amino acid 364–430

including the HVR1 in E2. Individual peptides are listed on the right-hand side, and VF-Fab is indicated at the base of the heatmap.

Black horizontal lines show the start position of a new target sequence in that particular set of peptides. Target sequences are flanked

by black brackets on the left. The magnitude of colour (dark magenta) with higher z score represents the binding affinity of Fab to the

peptide. The sequence in a red box (on the right) represents a motif targeted by VF-Fab1b-5. The sequence in a blue box (on the right)

represents a motif targeted by VF-Fab1b-10. In order to make the heatmap legible, only every second peptide in the study has been

included in the figure.
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buffer (0.1 M glycine buffer, pH 2.5, for KappaSelect, 0.1 M
acetate buffer, pH 3.5, for LambdaFabSelect). The eluted
fractions were concentrated by an Amicon Ultra-0.5 centrif-
ugal unit with Ultracel 50 (Millipore). Confirmation of the
virus-free status of this proteinase-K-treated preparation was
determined by the absence of an E1E2-specific amplification
following reverse transcription PCR (RT-PCR). Furthermore,
elutes obtained post-proteinase K treatment from Ab Spin
Trap (VF-Fab), LambdaFabSelect (l-VF-Fab) and KappaSe-
lect (k-VF-Fab) were analysed by Western blotting. Elutes,
natural human IgG Fab fragment protein (ab90352, Abcam)
and control IgG obtained from human plasma CTM (�)C
(Roche Molecular Systems), were blotted on a nitrocellulose
membrane. The samples were then incubated with HRP-
labelled mouse anti-human IgG Fab antibody (Biorbyt) at 1 :
10 000 concentration in 0.05 % (v/v) PBS Tween-20.

Antibody-sera (non-detectable AAV) challenge

Total IgG that contains AAV (hereafter referred to as
1�AAV) along with free antibodies, VF-Fab, l-VF-Fab and
k-VF-Fab, were used to challenge the AAV-negative sera
in 1 : 5 ratios (Table 2). This mixture was then incubated
at 37 �C for 2 h. AP33 is a mouse mAb that targets the
partially confirmation-dependent epitope within amino

acid residues 412–423 (a kind gift from Dr Arvind Patel,
University of Glasgow, UK). Simultaneously, we challenged
the sera (Table 2) with both intact AP33 and Ab-Spin-
Trap-eluted post-proteinase-K-treated AP33 (25 µg ml�1).
The Ab Spin Trap protocol was followed, and the chal-
lenged samples were tested for the presence of a newly
formed 2�AAV by PCR.

Molecular cloning and sequencing analysis

The AFV and 1�AAV fractions obtained on initial analysis
of sera were analysed by direct sequencing only. cDNA
obtained from 1�AAV and 2�AAV was diluted 1 : 100 to
ensure that there was no template resampling. AFV and
2�AAV amplicon obtained from total IgG, VF-Fab and
AP33 antibody (Table 2) were cloned into pJET1.2/blunt
cloning vector (Thermo Scientific). Ten colonies each for
AFV and three colonies each for 2�AAV fractions were ana-
lysed for sequencing (MWG Operon).

Epitope mapping

Linear peptides were synthesized for 1�AAV 1b-5
[KU888834] and 1b-10 [KT873219] and 2�AAV 1b-4
[KU888835], 1b-7 [KT873204] and 1b-8 [KU888836] cover-
ing amino acid region 364–430 in the E1E2 glycoprotein [ref:
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AF011751] to study the epitopes targeted by the host immune
system. (For 1b-7 [KT873204] and 1b-10 [KT873219], since
we did not have full-length sequences at the time, peptides
were designed for region 364–423.)

Two sets (hence, set 1 and set 2) of overlapping peptides of
15 amino acid lengths with an overlap of 14 were synthe-
sized for these sequences. Set 2 comprised linear peptides of
15 amino acid length; however, amino acids at positions 10
and 11 were replaced by Ala. When a native Ala would
occur on either position, it was replaced by Gly. Control
peptides unrelated to our test sequences that are propriety
of Pepscan were designed based on epitopes of monoclonal
antibodies 57.9 and 3C9 [47]. The binding of VF-Fab1b-5
and VF-Fab1b-10 to peptides was assessed in a Pepscan-
based ELISA as described below (Pepscan Presto) [48]. Each
well in the card contained covalently linked peptides that
were incubated overnight at 4 �C with VF-Fab1b-5 and VF-
Fab1b-10, between 0.1 and 10 % Pepscan buffer and precon-
ditioning blocking buffer (SQ) (a mixture of horse serum,
Tween 80 and ovalbumin in PBS). After washing, the plates
were incubated with goat anti-human HRP conjugate
(1 : 1000, Southern Biotech 2010–05) for 1 h at 25 �C. After
further washing, peroxidase activity was assessed using sub-
strate 2,2¢-azino-di-3-ethyl-benzthiazolinesulfonate and
20 µl ml�1 of 3 % H2O2. The colour development was quan-
tified after 60 min using a charge-coupled device camera
and an image-processing system.

Production of infectious HCVpp

Full-length E1E2 glycoprotein sequences 1b-5 [KU888834]
and 1b-10 [KU888837] positive for 1�AAV on initial serum
analysis and 1b-4 [KU888835] and 1b-8 [KU888836] tar-
geted by VF-Fab1b-5 and VF-Fab1b-10 forming 2�AAV
(Table 2), respectively, were cloned in pcDNA3.1V5his D-
TOPO expression vector (Life Technologies) as previously
described [28]. HCVpp were generated according to the
protocol of Bartosch et al. [25]. Briefly, HEK-293T cells
were co-transfected with plasmids expressing the HCV
E1E2 glycoproteins, the murine leukaemia virus Gag-Pol
packaging vector (Inserm Transfert) and a transfer con-
struct with luciferase reporter gene (a gift from Dr Arvind
Patel, University of Glasgow, UK). Pseudoparticles gener-
ated without E1E2 glycoprotein (no envelope) were used as
a negative control. phCMV-DC/E1/E2 H77 clone was used
as a positive control (Inserm Transfert). Infectivity of the
HCVpp was tested as previously described [25, 28]. To
characterize the capacity of our VF-Fab to recognize differ-
ent isolates, E1E2 glycoproteins from the clarified lysates of
transfected HEK 293T cells were captured onto GNA (Gal-
anthus nivalis) lectin (Sigma Aldrich)-coated microtitre
plates and then detected by the anti-E2 mouse mAb AP33
and VF-Fab1b-5, VF-Fab1b-10 and control Fab [human
plasma CTM (�)C, Roche Molecular Systems].

Neutralization of HCVpp infection in Huh7 cells

Neutralization was tested only for those HCVpp with infec-
tivity at least 10 times greater than mock pseudoparticle (no

envelope) values. Huh7 cells were cultured in 24 well plates
at 2.5�104 cells density for 2�AAV HCVpp1b-4 and 4�103

cells in 96 well plates for HCVpp-H77. HCVpp-H77 were
mixed with VF-Fab1b-5, VF-Fab1b-10 and control Fab
[human plasma CTM (�)C, Roche Molecular Systems], at
concentrations from 0.015 to 0.400 mg ml�1 to estimate the
highest neutralization working concentration. HCVpp1b-4
were mixed with VF-Fab1b-5 (0.167 mg ml�1), VF-Fab1b-
10 (0.400 mg ml�1) and control Fab (0.400 mg ml�1) and
incubated for 1 h at 37 �C. The mixture was added to the
Huh7 cells and was incubated for 4 h at 37 �C. Inoculum
was removed and replaced with fresh media and incubated
at 37 �C for 72 h. After 72 h, media was removed from the
cells, and 50 µl Cell Culture Lysis Reagent (Promega) for 96
well plate and 100 µl for 24 well plate were added and left to
incubate for >15 min. The lysate was then transferred to a
white low-luminescence 96 well plate, and luciferase activity
was measured in RLUs in a GloMax. The percentage of neu-
tralization was calculated as 100 %�[1�(HCVppRLUtest/
HCVppRLUcontrol)]. Each sample was tested in duplicate
following three independent experiments.
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Longitudinal analysis of chronic hepatitis C virus (HCV) infection has shown that the virus has

several adaptive strategies that maintain persistence and infectivity over time. We examined four

serum samples from the same chronically infected HCV genotype 4a patient for the presence of

IgG antibody-associated virus. RNA was isolated from antibody-associated and antibody-free

virions. Subsequent to sequence analysis, 27 aa hypervariable region 1 (HVR1) peptides were

used to test the humoral immune escape. We demonstrated that differential peptide binding of

Fab was associated with a single amino acid change. We provide direct evidence of natural

humoral immune escape by HCV within HVR1.

Hepatitis C virus (HCV) infects 2–3% of the world popula-
tion and is a leading cause of liver disease (Freeman et al.,
2001; Zhou et al., 2014). Early in infection the host immune
system responds by producing neutralizing antibodies (Terilli
& Cox, 2013). Although HCV infection stimulates a strong
immune response, it is generally insufficient to eradicate
infection, as 50–80% of the infected individuals develop
chronic liver disease (Deng et al., 2013; Freeman et al., 2001;
Inchausp�e et al., 2008; Kenny-Walsh, 1999). The high rate of
viral persistence is thought to be a result of a complex inter-
play between viral diversity and suboptimal immunity.
Viruses with hypervariable genomic regions evade host
humoral immune response by several mechanisms (Brown
et al., 2005; Quaranta et al., 2012; Thimme et al., 2006). The
best understood mechanism for viral immune escape is sin-
gle-point mutation which results in non-synonymous changes
within the immunodominant viral envelope glycoprotein and
NS3 (Cox et al., 2005; Ray et al., 2005; Thimme et al., 2006,
2012). Multiple linear epitopes within the 27 aa hypervariable
region 1 (HVR1), in the N terminus of the E2 envelope pro-
tein, have been identified as the principle target of neutralizing
antibodies (Ball et al., 2014; Fafi-Kremer et al., 2012; Tarr
et al., 2015). Antibodies specific for epitopes within HVR1
have been reported to inhibit the binding of the E2
glycoprotein to cells and to block HCV infectivity in vitro and
in vivo (Farci et al., 1996; Habersetzer et al., 1998; Owsianka
et al., 2001). However, HCV pseuodparticle and cell-culture-
derived HCV experiments have shown poor cross-neutraliza-
tion potential of isolate-specific neutralizing antibody

response to HVR1 (Brown et al., 2005; Cashman et al., 2014;
Larrubia et al., 2014). Cytotoxic T-lymphocytes drive evolu-
tion of the HVR1, which can lead to the emergence of escape
variants (Cox et al., 2005; Ray et al., 2005). However, there is
an absence of direct in vivo evidence of humoral immune
escape by host-derived antibodies and viral glycoproteins
(Chung et al., 2013).

Previous research from our group has observed, over a near
10 year period, the emergence, dominance and disappear-
ance of distinct but related lineages (L1 and L2) in a treat-
ment-naive patient chronically infected with HCV genotype
4a (Palmer et al., 2014). L1 dominated the virome for the
first 8 years of the sampling period prior to population col-
lapse and this led to the concomitant rise to prominence of
L2. During the initial dominance of L1, IgG targeting of L1
was detected in five of the first seven samples which, in
part, contributed directly to the extinction of this group of
variants (Palmer et al., 2012, 2014). In spite of the near total
dominance of L2 sequences in later samples (96.9 and
99.9% at T9 and T10, respectively; see Fig. 1 for details of
sampling times), no IgG targeting of L2 virions was detected
in this previous study (Palmer et al., 2014). Furthermore,
the HVR1 of L2 variants remained predominantly under
purifying selection across the 10 year period with a single
principle HVR1 amino acid variant persisting during this
time. Follow-up clonal analysis 1 year later (T11) revealed
that a HVR1 variant with a single-point mutation had
superseded the principle variant. There was no antibody-
associated virus (AAV) found at T11 (Palmer et al., 2014)
(Fig. 1). Fig. 1 summarizes the AAV profile of all samples
analysed.

The GenBank/EMBL/DDBJ accession numbers for the hepatitis C virus
isolate sequences are KT595215–KT595226.
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In the current follow-up study to Palmer et al. (2014) we

mapped a further four serum samples T12–T15 that

extended the sampling period to 13 years (Fig. 2). Serum

samples were obtained from a treatment-naive patient. This

study was approved by the Clinical Research Ethics Com-

mittee of the Cork Teaching Hospital and written consent

from the patient was obtained. The clonal sequence analysis

of these samples identify the continued dominance of L2

sequences. The constituent virions were partitioned into

antibody-free virus (AFV) and AAV fractions, as described

previously (Moreau et al., 2008; Palmer et al., 2014). Of

these samples, only T13 contained detectable levels of AAV

(GenBank accession numbers KT595222 and KT595223)

(Fig. 1). The antibody–virus complex of this fraction was

dissociated and disruption of the virion was achieved by

treatment with proteinase K (5 mg ml�1) for 2 h at 37
�

C

with end-over-end mixing followed by overnight incuba-

tion at room temperature. Confirmation of the virus-free

status of this proteinase K-treated T13 antibody (T13Ab)

preparation was determined by the absence of an E1E2-spe-

cific amplicon following reverse transcription PCR; the

virus-free T13Fab fragment was designated VF-T13Fab.

T11 had three different HVR1 amino acid variants, i.e.
H395-X-X-X-F399, N395-X-X-X-F399 and N395-X-X-X-L399
(subscript numbering identifies specific amino acid posi-
tions within the 27 aa HVR1 with reference to GenBank
accession number NC_004102). The presence of HVR1 var-
iant H395-X-X-X-F399 in the AFV fraction of T12 was con-
firmed by amplicon sequencing only. The subsequent AFV
fraction of T13 also had the H395-X-X-X-F399 amino acid
profile (frequency 0.40). However, the N395-X-X-X-L399
variant was now dominant in T13 (frequency 0.60). Inter-
estingly, the predicted HVR1 sequence from AAV RNA
detected at T13 indicated N395-X-X-X-L399 motif targeting
(Fig. 2). This Leu-containing motif was isolated in the suc-
ceeding samples, i.e. T14 and T15 (Fig. 2). AAV was not
detected in samples T11, T12, T14 and T15. However, in
order to exclude the possibility that the P2 variant motif
containing N395-X-X-X-L399 was not accessible to anti-
bodies, we similarly tested VF-T11Fab, VF-T12Fab and VF-
T15Fab for binding affinity to the HVR1 peptide variants.

A recent study by Guan et al. (2012) showed that neu-
tralization epitopes can be between amino acid positions 16
and 24 (i.e. 399–407) in HVR1. It is interesting to note that
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Fig. 1. Ultra-deep pyrosequencing (UDPS) and clonal analysis of serum samples over 13 years. All the samples were
screened for the presence or absence of AAV. The y-axis depicts the percentage of lineage L2 in all the samples in the study.
The x-axis demonstrates antibody response to L2 over the period of 13 years. The black columns indicate dominance of L1,

grey columns indicate dominance of L2. The plus sign in the bottom row at 11.6 years indicates detectable levels of T13Ab to
L2. Neither clonal nor UDPS data is available for T12.
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in our study, amino acid variation was observed only at
amino acid positions 395 and 399 within the entire HVR1.
Based on the Guan et al. (2012) data, we hypothesized that
the HVR1 variants with N395-X-X-X-F399 (T11-AFV) and
H395-X-X-X-F399 (T13-AFV) motifs were potential humoral
immune escape mutants which have Phe at position 399.
To confirm the escape phenotype hypothesis, three N-ter-
minally His6-tagged, 27 aa HVR1 peptides were synthesized,
i.e. P1 (H-HHHHHHETHITGAVASSNAQKFTSLFTFGP-
QQN-OH), P2 (H-HHHHHHETHITGAVASSNAQKLT-
SLFTFGPQQN-OH) and P3 (HHHHHHETHITGAVASSH-

AQKFTSLFTFGPQQN-OH) (Pepscan Presto), where
underlining indicates the His6-tag and bold indicates the
variant amino acid at position 395 or 399. The HVR1
sequence of P1 and P3 corresponded to the dominant L2
HVR1 variant for the initial 10 years of in vivo infection for
which no AAV was detected (Palmer et al., 2014). The P2
sequence corresponded to the predicted HVR1 of AAV
RNA isolated at T13. Peptides were reconstituted in 100%
DMSO at a concentration of 1 mg ml�1 and stored at � 20
�

C. Peptide (100 ng µl�1) was used in an ELISA-based
method. These peptides were incubated with VF-T11Fab,
VF-T12Fab, VF-T13Fab and VF-T15Fab at 1 : 10 dilution
for 1 h followed by incubation with anti-human IgG
(H&L)–HRP conjugate secondary antibody (Promega) at
1 : 5000 dilution for 1 h (Fig. 3). The ELISA results con-
firmed that the peptide containing the N395-X-X-X-L399
mutation was recognized by VF-T13Fab. The binding phe-
notype of VF-T13Fab had the strongest affinity to P2

(P2>>P1>>P3) with Leu at position 399, compared with
the predicted escape variant Phe in vitro (P = 0.06, Kruskal–

Wallis test using Prism 4; GraphPad) (Fig. 3). Our results
prove that, in this case, a naturally occurring single amino

acid change to Phe in the HVR1 alone at position 399 can
drive humoral immune escape after >10 years of immune

silence. Our results demonstrated that none of VF-T11Fab,
VF-T12Fab and VF-T15Fab bound to the HVR1 peptide

variants P1–P3.

In our current study, analysis of serum samples over a 13

year period showed two distinct periods when AAVs were
present. A window period of 5 years existed between the

two points during which AAVs were detectable. The anti-
body specificity of the latter time point, i.e. T13, targeted a

different HVR1 lineage from that found previously (Palmer
et al., 2012, 2014). The HVR1 variant captured by the

T13Ab was first observed in pyrosequencing data at T10
(1.1%) (Palmer et al., 2014). A further 2 years elapsed

before T13Ab to this latter variant was detected (Fig. 2).

Interestingly, the HVR1 genomic sequence associated with
virus captured by T13Ab was found to be present in the

subsequent samples, i.e. T14 and T15. Analysis of samples
T14 and T15 revealed that the T13Ab response was not sus-

tained to detectable levels. The loss of neutralization anti-
bodies is a recognized feature of the natural history of HCV

infection (Shimizu et al., 1994). Additionally, it is also rec-
ognized that a sustained antibody response is likely a pre-

requisite for complete removal of viral variant(s). The
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Fig. 2. Clonal DNA sequence analysis of the antibody-free fraction of T11 (Palmer et al., 2014), T13–T15 yielded the follow-
ing predicted amino acid variants: (i) three unique AFV HVR1 variants for T11 (GenBank accession numbers KC689336–

KC689341), (ii) two unique AFV HVR1 variants for T13 (GenBank accession numbers KT595216–KT595221), (iii) a clono-
type amino acid quasispecies from the AAV in T13 (GenBank accession numbers KT595222 and KT595223), and (iv) an
identical amino acid clonotype profile to T13 AAV in T14 (GenBank accession number KT595224) and T15 (GenBank acces-

sion numbers KT595225 and KT595226). T12 (GenBank accession number KT595215) was analysed by amplicon sequenc-
ing only. Columns are representative of the relative abundance of that sequence at that time point: black, N395-X-X-X-L399
(N- - -L); grey, H395-X-X-X-F399 (H- - -F); white, N395-X-X-X-F399 (N- - -F). In this study the antibody response was detected at

T13. The detectable antibody response identified at T13 and the variant associated with it is denoted by an asterisk. NA, Data
not available.
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notable absence of a sustained and neutralizing antibody
response (in T14 and T15), and likely fitness superiority,
explains why the motif (N395-X-X-X-L399) persisted in sub-
sequent samples.

In conclusion, our proof-of-concept study has confirmed
that antibodies were naturally generated against a discrete
viral variant (Fig. 3). We additionally confirmed that natur-
ally occurring amino acid variations in this epitope repre-
sent one mechanism by which HCV escapes humoral
immunity.
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