
Title Hazard and early warning analysis based on domain specific
modeling technologies

Authors Imran, Syed

Publication date 2013

Original Citation Imran, S., 2013. Hazard and early warning analysis based on
domain specific modeling technologies . PhD Thesis, University
College Cork.

Type of publication Doctoral thesis

Rights © 2013, Syed Imran - http://creativecommons.org/licenses/by-
nc-nd/3.0/

Download date 2024-04-19 09:20:50

Item downloaded
from

https://hdl.handle.net/10468/1038

https://hdl.handle.net/10468/1038




Executive Summary

An aim of proactive risk management strategies is the timely identification

of safety related risks. One way to achieve this is by deploying early warn-

ing systems. Early warning systems aim to provide useful information on the

presence of potential threats to the system, the level of vulnerability of a sys-

tem, or both of these, in a timely manner. This information can then be used

to take proactive safety measures. The United Nation’s has recommended

that any early warning system need to have four essential elements, which

are the risk knowledge element, a monitoring and warning service, dissem-

ination and communication and a response capability. This research deals

with the risk knowledge element of an early warning system.

The risk knowledge element of an early warning system contains models

of possible accident scenarios. These accident scenarios are created by using

hazard analysis techniques, which are categorised as traditional and contem-

porary. The assumption in traditional hazard analysis techniques is that ac-

cidents are occurred due to a sequence of events, whereas, the assumption of

contemporary hazard analysis techniques is that safety is an emergent prop-

erty of complex systems.

The problem is that there is no availability of a software editor which can

be used by analysts to create models of accident scenarios based on contem-

porary hazard analysis techniques and generate computer code that repre-

sent the models at the same time.

This research aims to enhance the process of generating computer code

based on graphical models that associate early warning signs and causal fac-

tors to a hazard, based on contemporary hazard analyses techniques. For this

purpose, the thesis investigates the use of Domain Specific Modeling (DSM)

technologies.

The contributions of this thesis is the design and development of a set

of three graphical Domain Specific Modeling languages (DSML)s, that when

combined together, provide all of the necessary constructs that will enable

ii



safety experts and practitioners to conduct hazard and early warning analy-

sis based on a contemporary hazard analysis approach. The languages repre-

sent those elements and relations necessary to define accident scenarios and

their associated early warning signs. The three DSMLs were incorporated in

to a prototype software editor that enables safety scientists and practition-

ers to create and edit hazard and early warning analysis models in a usable

manner and as a result to generate executable code automatically.

This research proves that the DSM technologies can be used to develop a

set of three DSMLs which can allow user to conduct hazard and early warn-

ing analysis in more usable manner. Furthermore, the three DSMLs and their

dedicated editor, which are presented in this thesis, may provide a significant

enhancement to the process of creating the risk knowledge element of com-

puter based early warning systems.

iii



Acknowledgements

First of all, I would like to thank my supervisor Dr Ioannis Dokas for his guid-

ance, encouragement and advice that he provided to me throughout this re-

search which ensured the successful completion of this thesis. I found his

mentoring and coaching approach to be most invaluable, where he used lec-

tures and workshops to effectively explain complex technical concepts and

ensure that I had a clear understanding of them. His research knowledge

and expertise has inspired me to undertake further research.

I would like to acknowledge the moral support and prayers of my mother

Marium and my younger brother Syed Haider. Undoubtedly, I would not

have been able to complete this research without their unconditional love

and care. Also, a constant motivation for me to successfully complete this

research was my father’s philosophy in life, to realise our full potential and

serve humankind.

I am grateful to all current and previous members of the Cork Constraint

Computation Centre (4C), especially my colleagues - Franclin Foping, Walid

Trabelsi, Abdul Razak and Lisa Swenson; the administrative staff - Eleanor

O’Riordan, Linda O’Sullivan, Catriona Walsh and Olivia Coleman and the

technical staff Peter MacHale and Joe Scanlon. I would like to express my

appreciation to John Feehan who I have enjoyed worked closely with to sur-

mount the challenges of this research and for his help in this research.

I wish to thanks my friends Asif Imtiaz Ranjha, Syed Azhar Shah, Sajjad

Khilji and in particular Mirza Safdar Baig for all the emotional support, ca-

maraderie, entertainment, and caring they provided.

I would like to express my sincere appreciation to the following people

who assisted me with my research, including Dr Ian Pitt, University College

Cork; Dr Richard Wallace, University College Cork; Dr Bartel Van de Walle,

Tilburg University; Dr Dimitrios Kolovos, York University; Dr Igor Kozine,

Technical University of Denmark; Mr Brendan Goggin, and the staff of Cork

City Council; and Mr Pat Murphy, and the staff of Cork County Council.

iv



Finally, I would like to acknowledge the support of the Irish Environmen-

tal Protection Agency for this research project SCEWA (Grant No 2007-DRP-

2-S5) under the DERP grant scheme.

v



Dedication

TO MY FATHER, SYED MAHDI WHO WOULD HAVE BEEN PROUD TO SEE THIS

THESIS COMPLETED.

vi



Declaration

No portion of the work referred to in this thesis has

been submitted in support of an application for an-

other degree or qualification of this or any other uni-

versity or other institution of learning.

Signed:

Syed Imran

vii



Contents

Contents

Executive Summary ii

Acknowledgements iv

Dedication vi

Declaration vii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Problem Statement . . . . . . . . . . . . . . . . 2

1.3 Aim and Research Objectives . . . . . . . . . . . . . . . . . . . 5

1.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Safety and Early Warning Sign Analysis 11

2.1 Accident Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 STAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 STPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Justifying Perceivable Signs as Early Warnings . . . . . . . . . . 17

2.4 EWaSAP Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Hazard and Early Warning Analysis . . . . . . . . . . . . . . . . 20

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methods and Techniques for Domain-Specific Modeling 23

3.1 Model Driven Development . . . . . . . . . . . . . . . . . . . . 23

3.2 Strategies for Defining DSMLs . . . . . . . . . . . . . . . . . . . 27

3.3 Defining DSMLs From Scratch . . . . . . . . . . . . . . . . . . 29

3.3.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1.1 Domain Analysis . . . . . . . . . . . . . . . . . 30

viii



Contents

3.3.1.2 Meta-Model . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Model Transformation . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Meta-modeling Tools that Support the Creation of DSMLs . . . 34

3.5.1 Generic Modeling Environment . . . . . . . . . . . . . . 34

3.5.2 MetaEdit+ . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.3 Microsoft DSL Tools . . . . . . . . . . . . . . . . . . . . 36

3.5.4 Eclipse GMF . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 A Review of DSMLs for Early Warning Systems 38

4.1 Examples of DSMLs Application Domains . . . . . . . . . . . . 38

4.2 DSMLs With Hazard Analysis Concepts . . . . . . . . . . . . . . 39

4.2.1 SOPHIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 EAST-ADL . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 DSML for Risk Knowledge Modeling of Early

Warning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 The Stream-Oriented DSML . . . . . . . . . . . . . . . . 43

4.3.2 The OpenCOM and Transition Diagrams DSML . . . . 45

4.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 49

5 Software Technologies Used for the Development of the Hazard and

Early Warning Analysis DSML 51

5.1 The Development Platform . . . . . . . . . . . . . . . . . . . . 51

5.2 The Main Components of the GMF Framework . . . . . . . . . 52

5.2.1 Eclipse Modeling Framework . . . . . . . . . . . . . . . 53

5.2.2 Graphical Editing Framework . . . . . . . . . . . . . . . 53

5.2.3 EVL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.4 EGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.5 XML, Java and XPath . . . . . . . . . . . . . . . . . . . . 55

5.2.6 PostgreSQL and JDBC . . . . . . . . . . . . . . . . . . . 56

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Hazard and Early Warning Analysis DSML: Requirements, Specifica-

tions and Architecture 57

6.1 Defining the Meta-models . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Hazard and Early Warning Analysis Task Identification 58

6.1.2 Hazard and Early Warning Analysis Concepts and Se-

mantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.3 DSML Meta-model Requirements . . . . . . . . . . . . 61

ix



Contents

6.2 Meta-Model Specifications . . . . . . . . . . . . . . . . . . . . . 64

6.3 Concrete Syntax Specifications . . . . . . . . . . . . . . . . . . 70

6.3.1 Selection of Graphical Icons . . . . . . . . . . . . . . . . 70

6.3.2 Concrete Syntax Specifications . . . . . . . . . . . . . . 72

6.3.3 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 DSML Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Design and Architecture of the Hazard and Early Warning Analysis

Editor 79

7.1 Prototype Software Editor Requirements . . . . . . . . . . . . . 79

7.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2.1 Dedicated Editors Layer . . . . . . . . . . . . . . . . . . 82

7.2.2 Ecore Model Layer . . . . . . . . . . . . . . . . . . . . . 86

7.2.3 The Code Generation Layer . . . . . . . . . . . . . . . . 86

7.2.4 The Database Layer . . . . . . . . . . . . . . . . . . . . . 89

7.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Evaluation 95

8.1 Overview of the Evaluation Process . . . . . . . . . . . . . . . . 95

8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2.1 Usability Evaluation Methods . . . . . . . . . . . . . . . 96

8.2.2 Benchmarking Methods . . . . . . . . . . . . . . . . . . 98

8.3 Evaluation Approach . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3.1 The Reference System . . . . . . . . . . . . . . . . . . . 100

8.3.2 The Participants Groups . . . . . . . . . . . . . . . . . . 102

8.4 1st Evaluation Phase . . . . . . . . . . . . . . . . . . . . . . . . 102

8.4.1 Indicative Example . . . . . . . . . . . . . . . . . . . . . 104

8.4.2 SUS Data Collection and Analysis . . . . . . . . . . . . . 111

8.4.3 Discussion of the 1st Evaluation Phase . . . . . . . . . . 120

8.5 2nd Evaluation Phase . . . . . . . . . . . . . . . . . . . . . . . . 121

8.5.1 Benchmarking Data and Analysis . . . . . . . . . . . . 123

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Summary and Conclusion 129

9.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 129

9.2 Contribution of this Research . . . . . . . . . . . . . . . . . . . 131

9.3 Critical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.3.1 On the Potential Usefulness of the Research . . . . . . . 133

x



Contents

9.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . 133

9.4.1 Web Based Accessibility of the DSMLs . . . . . . . . . . 134

9.4.2 Creating Hazard and Early Warning Analysis Models in

a Collaborative Manner . . . . . . . . . . . . . . . . . . 134

9.4.3 Compare the Updating Process of the Risk Knowledge

Element of a Real Early Warning System . . . . . . . . . 135

9.4.4 Reasoning Support . . . . . . . . . . . . . . . . . . . . . 135

9.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 136

Glossary 137

Appendices 139

A Questionnaires 140

References 165

xi



List of Tables

List of Tables

2.1 The sequence of hazard and early warning analysis steps . . . 21

6.1 The main tasks and subtasks of the hazard and early warning

analysis after hazard identification step. . . . . . . . . . . . . . 58

6.2 Domain concepts associated with first main task and their mean-

ings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Domain concepts associated with second main task and their

meanings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Domain concepts associated with third main task and their

meanings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Requirements necessary for the execution of at least two main

tasks of the domain . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.6 Requirements necessary for the execution of a first main task

of the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.7 Requirements necessary for the execution of a second main

task of the analysis . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.8 Requirements necessary for the execution of a third main task

of the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.9 Ecore concepts and their graphical representation in GMF . . 65

6.10 Selection of graphical icons for the first main task . . . . . . . 71

6.11 Selection of graphical icons for the second main task . . . . . . 71

6.12 Selection of graphical icons for the third main task . . . . . . . 72

6.13 Validations over user models . . . . . . . . . . . . . . . . . . . . 73

6.14 Enforced model validations on the domain concepts of the first

main task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.15 Enforced model validations on the domain concepts of the sec-

ond main task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.16 Enforced model validations on the domain concepts of the third

main task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xii



List of Tables

7.1 Functional requirements hazard of the prototype editor . . . . 80

7.2 Usability requirements of the hazard and early warning analy-

sis prototype editor. . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.1 Calculation of the SUS score based on the User 01 ratings of

the questionnaire shown in Figure 8.16. . . . . . . . . . . . . . 114

8.2 Calculation of the SUS score based on the User 02 ratings of

the questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3 Calculation of the SUS score based on the User 03 ratings of

the questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.4 Calculation of the SUS score based on the User 04 ratings of

the questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.5 Calculation of the SUS score based on the User 05 ratings of

the questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.6 Calculation of the SUS score based on the User 06 ratings of

the questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.7 Calculation of the SUS score based on the User 01 ratings of

the questionnaire shown in Figure 8.17 - Effectiveness Aspect. 117

8.8 Calculation of the SUS score based on the User 02 ratings of

the questionnaire - Effectiveness Aspect. . . . . . . . . . . . . . 117

8.9 Calculation of the SUS score based on the User 03 ratings of

the questionnaire - Effectiveness Aspect. . . . . . . . . . . . . . 118

8.10 Calculation of the SUS score based on the User 04 ratings of

the questionnaire - Effectiveness Aspect. . . . . . . . . . . . . . 118

8.11 Calculation of the SUS score based on the User 05 ratings of

the questionnaire - Effectiveness Aspect. . . . . . . . . . . . . . 119

8.12 Calculation of the SUS score based on the User 06 ratings of

the questionnaire - Effectiveness Aspect. . . . . . . . . . . . . . 119

8.13 The overall SUS scores of each expert for the satisfaction as-

pect of the prototype editor. . . . . . . . . . . . . . . . . . . . . 120

8.14 The overall SUS scores of each expert for the effectiveness of

the DSMLs constructs. . . . . . . . . . . . . . . . . . . . . . . . 120

8.15 Time of each expert to complete the main tasks of the analysis

with and without prototype software editor. . . . . . . . . . . . 123

8.16 Data analysis of the times needed to complete the first main

task of the analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.17 Data analysis of the times needed to complete the second main

task of the analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 124

xiii



List of Tables

8.18 Data analysis of the times needed to complete the third main

task of the analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.19 The time difference between manual analysis and with the use

of the prototype editor. . . . . . . . . . . . . . . . . . . . . . . . 126

xiv



List of Figures

List of Figures

1.1 Common approach for translating the risk knowledge into code

for an early warning system. . . . . . . . . . . . . . . . . . . . . 3

1.2 An improved approach for translating the risk knowledge into

code for an early warning system. . . . . . . . . . . . . . . . . . 4

1.3 The context of this research and its boundaries of the proposed

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The domino model of accident causation (Qureshi, 2008). . . . 12

2.2 Feedback control process. . . . . . . . . . . . . . . . . . . . . . 14

2.3 A feedback control process with generic control process flaws. 17

2.4 Early warning sign justification model. . . . . . . . . . . . . . . 18

2.5 A more detailed view of the early warning signal justification

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 The four layer MDD architecture (Atkinson and Kuhne, 2003). 25

3.2 The model transformation layer as part of the generic MDD

architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 SysML taxonomy diagram (Boutekkouk et al., 2009). . . . . . . 28

3.4 Ecore kernel (Budinsky and Brodsky, 2003). . . . . . . . . . . . 32

4.1 The refinement of the UML meta-model with the fundamental

concepts of SOPHIA. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 A SOPHIA model with elements from the "Accident" package

(Cancila et al., 2009a). . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Sophia and SysML integration model. . . . . . . . . . . . . . . 41

4.4 Snippet of meta-model specifications for EAST-ADL. . . . . . . 43

4.5 Meta-model specification of Stream-Oriented DSML (Sadilek,

2007b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 A user defined earthquake detection algorithm model (Sadilek,

2007a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 OpenCom meta-model (Bencomo, 2008). . . . . . . . . . . . . 46

xv



List of Figures

4.8 The meta-model to model the context and environment vari-

ability (Bencomo, 2008). . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Overview of the approach implemented by Genie (Bencomo,

Grace, Flores, Hughes and Blair, 2008a). . . . . . . . . . . . . . 48

5.1 The three layers of eclipse architecture (Gamma and Beck, 2004). 52

5.2 The GEF model view controller pattern (Hudson and Shah, 2005). 54

6.1 Ecore meta-model specifications. . . . . . . . . . . . . . . . . . 66

6.2 DSML meta-model specific for the first main task. . . . . . . . 67

6.3 DSML meta-model specific for the second main task. . . . . . 68

6.4 DSML meta-model specific for the third main task. . . . . . . . 69

6.5 Snippet of annotations specified for meta-model of ICAML. . . 72

6.6 Snippet of EVL code. . . . . . . . . . . . . . . . . . . . . . . . . 75

6.7 Validation on user model. . . . . . . . . . . . . . . . . . . . . . 76

6.8 The architecture of the proposed solution comprised by three

DSMLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 The consecutive tasks and subtasks of the domain and the three

DSMLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 The architecture of the prototype hazard and early warning

analysis editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Generation of a GMF based editor from the domain model. . . 83

7.4 Graphical icon to generate code on the menu bar. . . . . . . . 84

7.5 Snippet of the java program used to insert an "id" value. . . . . 85

7.6 Database schema with its referential integrity constraints . . . 85

7.7 Snippet of EGL template for generating Java code. . . . . . . . 87

7.8 Generated Java code. . . . . . . . . . . . . . . . . . . . . . . . . 88

7.9 Snippet of EGL template for generating XML code. . . . . . . . 88

7.10 Generated XML code. . . . . . . . . . . . . . . . . . . . . . . . . 89

7.11 Snippet of the java program used to store the generated code

into database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.12 UML Activity diagram of prototype early warning sign analysis

DSML software tool. . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.13 The CSML editor. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.14 The ICAML editor. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.15 The AML editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.16 The Database Explorer editor. . . . . . . . . . . . . . . . . . . . 94

8.1 Part of the chlorination system of water treatment works. . . . 101

8.2 The concept of "Hazard" specified using AML editor. . . . . . . 104

xvi



List of Figures

8.3 Defining a "Control structure diagram" using the CSML editor. 105

8.4 The property view of a component in a "Control structure dia-

gram" using the CSML editor. . . . . . . . . . . . . . . . . . . . 105

8.5 Assigning "Inadequate control actions" using the ICAML editor. 106

8.6 The "Inadequate control action" dialogue in ICAML editor. . . 106

8.7 Defining the "Process model" used to control water chlorina-

tion process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.8 Updating the "Process model" used to control water chlorina-

tion process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.9 Assigning control process flaws using the AML editor. . . . . . 108

8.10 Assigning of possible generic control process flaw type. . . . . 108

8.11 Specifying "Early warning signs" using AML editor. . . . . . . . 109

8.12 Attributes of "Early warning sign". . . . . . . . . . . . . . . . . 109

8.13 Snippet of XML code generated using AML editor. . . . . . . . 110

8.14 Snippet of Java code generated using AML editor. . . . . . . . . 110

8.15 A Query performed using database explorer editor. . . . . . . . 111

8.16 User satisfaction ratings over the satisfaction aspect of the us-

ability of the prototype editor. . . . . . . . . . . . . . . . . . . . 112

8.17 User satisfaction ratings over the effectiveness of the DSMLs

constructs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.18 Average time to complete the main tasks of the domain. . . . . 126

A.1 User 01 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor. . . . . . . . . . . . . . . . . . . . . 141

A.2 User 01 ratings of the SUS questionnaire satisfaction aspect of

prototype software editor (Page 2). . . . . . . . . . . . . . . . . 142

A.3 User 01 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs. 143

A.4 User 01 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs

(Page 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.5 User 02 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor. . . . . . . . . . . . . . . . . . . . . 145

A.6 User 02 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2). . . . . . . . . . . . . . . . 146

A.7 User 02 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs. 147

xvii



List of Figures

A.8 User 02 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs

(Page 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.9 User 03 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor. . . . . . . . . . . . . . . . . . . . . 149

A.10 User 03 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2). . . . . . . . . . . . . . . . 150

A.11 User 03 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs. 151

A.12 User 03 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs

(Page 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.13 User 04 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor. . . . . . . . . . . . . . . . . . . . . 153

A.14 User 04 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2). . . . . . . . . . . . . . . . 154

A.15 User 04 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs. 155

A.16 User 04 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs

(Page 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.17 User 05 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor. . . . . . . . . . . . . . . . . . . . . 157

A.18 User 05 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2). . . . . . . . . . . . . . . . 158

A.19 User 05 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs. 159

A.20 User 05 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs

(Page 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.21 User 06 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor. . . . . . . . . . . . . . . . . . . . . 161

A.22 User 06 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2). . . . . . . . . . . . . . . . 162

A.23 User 06 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs. 163

A.24 User 06 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs

(Page 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xviii



Safety is not proprietary

Exxon Mobil 1
Introduction

1.1 Background

A proactive approach to risk management aims to prevent possible accidents

or reduce their effects if they happen. According to Rasmussen, a proactive

approach aims at designing a strategy based on the following points (Rasmussen

and Svedung, 2000):

i) Identify the boundaries of safe performance;

ii) Make the boundaries of safe performance visible to decision makers;

iii) Counteract pressures that drive decision-makers toward these bound-

aries.

An important phase of a proactive risk management strategy is the iden-

tification of safety related risks. Early warning systems are tools that provide

useful and timely information on the presence of potential threats and vul-

nerabilities in a system. Thus, early warning systems can make visible to de-

cision makers the position where the state of a system lies in relation to the

boundaries of its safe performance. They are considered in many cases as

important tools within the context of proactive risk management.

Early warning systems are used in a wide spectrum of domains. These

domains can be considered to be members of a wider taxonomy of systems

like, for example:

a) Natural and environmental systems, focusing on natural hazards (Zschau

and Küppers, 2003), such as earthquakes (Erdik et al., 2003), landslides

(Zan et al., 2002), floods (Artan et al., 2002), volcanic threats (Ewert et al.,

2005), tsunami (Rudloff et al., 2009), and other natural hazards.

1



1.2. Motivation and Problem Statement

b) Socio-technical systems, where accidents can occur in utilities and crit-

ical infrastructures such as in drinking water treatment plants (Brosnan,

1999), and landfills (Dokas, Karras and Panagiotakopoulos, 2009).

c) Systems where their purpose is to control political emergencies, such as

conflicts (Zenko and Friedman, 2011), humanitarian crises (WHO, 2006)

and genocides (Woocher, 2006).

d) Financial systems, like those associated with currency and banking crises

(Bussiere and Fratzscher, 2006) (Tung et al., 2004).

Variations in the characteristics of different domains is one reason for

the non-existence of a universally acceptable definition of an early warning

system (Dokas, Wallace, Marinescu, Imran and Foping, 2009). Nonetheless,

the United Nations have recommended that in order to be complete and ef-

fective, an early warning system needs to have the following four elements

(UN/ISDR, 2006):

i) Risk knowledge: Collected with appropriate risk assessment and hazard

analyses approaches.

ii) Monitoring and a warning service: To provide accurate and timely fore-

casting of hazards, using reliable scientific methods and technologies

that enable monitoring of the appropriate hazards and vulnerabilities.

iii) Dissemination and communication services: To disperse understand-

able and meaningful warnings so that it can be useful to those at risk.

iv) Response capability: In order to prepare communities to respond and

act on detectable threats.

1.2 Motivation and Problem Statement

The motive of this research is to enhance the creation of the risk knowledge

elements of early warning systems dealing with critical infrastructures safety

issues. The risk knowledge element in such early warning systems contains

models of possible accident scenarios. These accident scenarios are created

by using hazard analysis techniques. The hazard analysis techniques guide

analysts to identify the contributing factors to a loss and to assess the risks

involved within a domain.

Hazard analysis techniques can be categorised as traditional and con-

temporary. When traditional hazard analysis techniques, such as fault tree

2



1.2. Motivation and Problem Statement

analysis and event tree analysis are used, the analysts adopt the assumption

that accidents occur due to a sequence of events, similar to the behaviour

of domino blocks. When one block falls, it causes the others to fall as well.

Conversely, when the contemporary hazard analysis techniques are adopted

the analyst accepts that safety is a dynamic control problem (Rasmussen and

Svedung, 2000), (Stringfellow et al., 2010), (Dulac and Leveson, 2004) and, as

such, they must identify and mitigate the factors which contribute to the en-

forcement of inadequate control actions.

The different perspective, which the assumptions of the contemporary

hazard analysis techniques enforces to the analysts, enables them to identify

a more complete set of contributing factors to a loss, such as organisational,

cultural and software factors (Leveson, 2012), compared to the traditional

techniques.

In practice, when developing computer based early warning systems, an

analyst should first select the appropriate hazard analysis technique and then

create models of possible accident scenarios. He/she needs then to trans-

form the hazard analysis models into software code, to form the risk knowl-

edge element of the early warning system, as depicted in Figure 1.1.

Figure 1.1: Common approach for translating the risk knowledge into code

for an early warning system.

The issues associated with the process of accident scenario creation are

the following:

a) Typically, the analysts responsible for conducting risk analysis choose

traditional hazard analysis techniques. One contributing factor for not

using contemporary techniques is the fact that these have been intro-

duced a few years ago, and hence, have not been fully comprehended

and adopted by the majority of analysts.

b) A significant set of early warning signs and signals may not be recognised

during the analysis, regardless of the type of hazard analysis technique

used. The problem in the case where a traditional hazard analysis is used,

3



1.2. Motivation and Problem Statement

as mentioned above, is that these are not capable to help analysts define

a number of contributing factors to a loss, making the identification of

early warning signs for these causes an impossible task. Whereas, in the

case where a contemporary hazard analysis technique is used, the prob-

lem is the lack of steps for the identification of early warning signs for

each contributing factors to a loss which has been identified. This issue

has been recognised by the systems safety engineering community. It is

stated , for example, by Professor Woods when he concluded in one of his

articles, that "the safety field still lacks the concepts, tools, and measures to

recognise warning signs prior to major failure events" (Woods, 2009).

Vulnerabilities of the process shown in Figure 1.1 include:

a) Possible mistakes in coding, resulting in flaws and bugs in the risk knowl-

edge element of an early warning system;

b) Time delays in the manual coding process;

c) The additional time and resources, which are needed in order to ade-

quately update the models of accident scenarios and to generate the nec-

essary computer code.

One way of addressing these issues and vulnerabilities is by providing to

the analyst a computer program that would allow him/her, as shown in Fig-

ure 1.2, to:

a) Create, edit and update in an easy and usable manner what is referred

in this dissertation as "hazard and early warning analysis" models, which

are models of a contemporary hazard analysis technique that have been

extended with the necessary steps to enable analysts in defining the rela-

tions between the early warning signs and losses, via their corresponding

causal factors;

b) Generate executable code based on these models without any manual

coding.

Figure 1.2: An improved approach for translating the risk knowledge into

code for an early warning system.

4



1.3. Aim and Research Objectives

There are software editors which help analysts create hazard analysis mod-

els. Characteristic examples are PLFaultCAT (Dehlinger and Lutz, 2006), CASE-

HAT (Yet-Pole, 2003) and ReliaSoft’s Xfmea (Cooperation, 2003).

PLFaultCAT (Product-Line Fault Tree Creation and Analysis Tool) is a soft-

ware safety analysis tool with interactive graphical user interface for apply-

ing Software Fault Tree Analysis (SFTA) technique to investigate contributing

causes to potential hazards in safety-critical applications. It is an extension

of the FaultCAT application (Burgess, 2004), which is an open-source tradi-

tional fault tree creation tool written in Java programming language.

CASEHAT (Computer Aided Semiconductor Equipment Hazard Analysis

Tool) is a computer based hazard analysis tool, which is used to carry out

mainly hazard and operability analysis (HAZOP) for semiconductor manu-

facturing processes. It was developed using Microsoft Access with the sup-

port of Microsoft Visual Basic for Applications (VBA) programming language.

The Xfmea software tool (Cooperation, 2003) facilitates to conduct Fail-

ure Modes and Effects Analysis (FMEA), and Failure Modes, Effects and Crit-

icality Analysis (FMECA). It is based on a spreadsheet format with basic user

interface with customisation options to fit your particular analysis.

However, these editors can create traditional hazard analysis models only

and, furthermore, these editors do not have the capability of generating au-

tomatically executable code based on the models which have been created.

Thus, there is a need to create a new software tool that will allow analysts

to:

a) Create models of accident scenarios based on a contemporarily hazard

analysis;

b) Relate early warning signs with losses;

c) Generate executable code based on these models.

1.3 Aim and Research Objectives

The aim of this research is to enhance the creation of risk knowledge models

together with their associated early warnings and their transformation into

computer code, so as to help analysts in the creation process of early warn-

ing systems for critical infrastructures. The main objective is to create a new

graphical modeling language, based on the fundamental concepts of a con-

temporary hazard analysis technique, which will be incorporated into a pro-

totype software editor using Domain Specific Modeling (DSM) technologies.

5



1.3. Aim and Research Objectives

DSM is a software development methodology that raises the level of ab-

straction beyond programming by specifying solutions directly using domain

concepts (Tolvanen, 2004). It is a methodology, where highly specific model-

ing languages are used in order to generate software via fully automatic code

generation directly from the models (Ansorg and Schwabe, 2010).

With DSM technologies graphical computer languages can be designed

and developed. Each graphical element of the language represents a model

of a concept of the problem domain and it can be connected with other

graphical elements based on a predefined syntax. With models, the focus is

drawn on the important aspects of the problem domain. A domain is an area

of knowledge or activity characterised by a set of concepts and terminology

that is understood by the experts in the domain (Booch et al., 1999).

Domain specific graphical modeling languages differ from general pur-

pose programming languages such as JAVA, Python or domain specific pro-

gramming languages such as Structured Query Language (SQL), eXtensible

Markup Language (XML) and Hyper Text Markup Language (HTML), which

require programming skills. The main skill required for using graphical DSM

languages is an adequate knowledge of the problem domain. Furthermore,

software tools developed based on DSM technologies are capable of pro-

ducing computer code in programming languages, thanks to code genera-

tor mechanisms. These mechanisms are responsible for transforming the

graphical models into a programming language code.

The domain in this dissertation is a contemporary hazard analysis tech-

nique, which has recently been extended with additional steps that enable

analysts to create relations between the early warning signs with losses via

their corresponding causal factors. Specifically, at the core of the domain

is the STAMP-Based Hazard Analysis (STPA), which is a contemporary haz-

ard analysis technique based on systems theory that was introduced by Pro-

fessor Leveson (Leveson, 2004a), (Leveson, 2002a), (Leveson, 2002b). STPA

have been used for the design of safety critical systems and has proved that it

is more comprehensive compared to traditional hazard analysis techniques

(Leveson, 2004a), (Ishimatsu et al., 2010), (Stringfellow, 2011) (Leveson, 2012).

The extension of the STPA, is the Early Warning Sign Analysis Using STPA

(EWaSAP) (Dokas et al., 2012), which provides additional steps, to help an-

alysts identify one or many early warning signs for each contributing factor

to a loss. The result of the integration of EWaSAP into STPA is what will be

referred into this dissertation as a "hazard and early warning analysis" ap-

proach.

6



1.3. Aim and Research Objectives

Figure 1.3: The context of this research and its boundaries of the proposed

solution.

Pursuing a way of achieving a solution to the problem, similiar to the one

shown in Figure 1.3 and described above, implies dealing with the following

objectives:

a) Identify the proper development strategies of the DSM graphical languages

that will allow the execution of the tasks of the domain. In particular, for

the design and development of a graphical DSM, the available alterna-

tives were to refine the concepts of Unified Modeling Language (UML)

using the UML profiling mechanism and to design and develop it from

scratch using proper open source technologies. Both alternatives were

studied and evaluated in this dissertation with respect to the aspects of

the domain which should be represented as well as to their code genera-

tion capabilities.

b) Select the DSM technologies that will be used to develop the prototype

software editor. Indeed, there are a number of software technologies that

7



1.4. Hypothesis

needs to be integrated, to create an editor of a graphical DSM with code

generation capabilities. A description of these technologies and how they

were used to create a novel prototype hazard and early warning analysis

editor will be presented in this dissertation.

c) Assess the effectiveness of the graphical Domain Specific Modeling Lan-

guage (DSML)s and the usability of its prototype software editor. The re-

sults of a usability evaluation, as well as of a benchmarking that measures

the time analysts take to conduct the analysis with the use of the pro-

totype editor, compared to a manual application of the analysis, will be

shown.

In essence, the research questions raised in this thesis are the following:

1. Which DSM technologies would be helpful to develop a prototype soft-

ware editor that can be used by an analyst to perform hazard and early

warning analysis? How can these technologies be combined to create an

effective hazard and early warning analysis tool with code generation

support?

2. How many graphical DSMs are needed to cover all aspects of the problem

domain? How many constructs should each language have? How will

the constructs of the DSML be associated and interact with each other?

1.4 Hypothesis

The hypothesis made in this research is that the graphical DSMLs enables

experts to perform hazard and early warning analysis in a usable manner.

According to International Organization for Standardization (ISO) Standard

9241-Part 11 (ISO, 1998), usability expresses the extent to which a product

can be used by specified users to achieve certain goals with effectiveness,

efficiency and satisfaction in a specified context of use. In order to support

this hypothesis the prototype software editor of the solution approach was

evaluated by a set of users (i.e. the human user of the language who is expert

in the particular domain) for its effectiveness, efficiency and satisfaction after

creating a number of hazard and early warning analysis models.

1.5 Research Contribution

The contribution claimed by this dissertation is a set of three graphical DSMLs

that when combined together, provide all of the necessary constructs that

8



1.6. Dissertation Outline

will enable safety experts and practitioners to conduct hazard and early warn-

ing analysis. The elements that comprise the DSMLs represent those ele-

ments and relations necessary to define accident scenarios and their associ-

ated early warning signs. The three DSMLs were incorporated in to a proto-

type software editor that enables safety scientists and practitioners to create

and edit hazard and early warning analysis models in a usable manner and

as a result to generate executable code automatically. Therefore, this contri-

bution may provide a significant enhancement to the process of creating the

risk knowledge element of computer based early warning systems.

1.6 Dissertation Outline

The rest of the thesis is structured as follows:

Chapter 2, Safety and Early Warning Sign Analysis, introduces fundamental

concepts of the hazard and early warning analysis, which is the domain of

the DSMLs to be designed and developed in this research.

Chapter 3, Methods and Techniques for Domain-Specific Modeling, presents

the basic concepts and necessary techniques for adopting the DSM approach.

The chapter also describes the alternative strategies for developing DSML.

Chapter 4, A Review of DSMLs for Early Warning Systems, surveys previous

work and reports those DSMLs that were capable of creating domain spe-

cific hazard analysis models and that were developed for the creation of early

warning systems.

Chapter 5, Software Technologies Used for the Development of the Early Warn-

ing Sign Analysis DSML, describes open source software technologies and

modeling frameworks selected for the design and development of the haz-

ard and early warning analysis DSMLs.

Chapter 6, Hazard and Early Warning Analysis DSML: Requirements, Speci-

fications and Architecture, describes the main contribution of this research,

which are the requirements and specifications of the hazard and early warn-

ing analysis DSMLs, along with their architecture.

Chapter 7, Design and Architecture of the Hazard and Early Warning Analysis

9



1.6. Dissertation Outline

Editor, focuses on the design and architecture of a prototype software editor,

which was created to enable users to conduct hazard and early warning anal-

ysis from the use of the DSMLs, and generate software code from the models

of their analysis.

Chapter 8, Evaluation, presents a usability evaluation that assesses the effec-

tiveness, satisfaction and effectiveness on the use of hazard and early warn-

ing analysis DSMLs via their prototype software editor.

Finally, in Chapter 9, Summary and Conclusion, presents the summary of

each chapter followed by the research contribution. The chapter concludes

the thesis by providing critical remarks, and future research directions, along

with the concluding remarks.

10



Safety is a control problem.

Nancy Leveson, Jens Rasmussen 2
Safety and Early Warning Sign

Analysis

T
HIS chapter introduces key concepts that were used to build up the

constructs of the hazard and early warning analysis DSMLs. Empha-

sis is given to the Systems Theoretic Accident Models and Processes

(STAMP), which is a contemporary model that explains the phenomenon of

accidents, and to the STPA, which is a contemporary hazard analysis ap-

proach that conforms with the assumptions of STAMP. Furthermore, the EWa-

SAP early warning sign analysis is explained, since it is used as an extension

to STPA to help analysts identify the early warning signs for each contribut-

ing factor to a loss.

2.1 Accident Models

An accident is defined as an undesired and unplanned (but not necessarily

unexpected) event that results in (at least) a specified level of loss (Leveson,

1995). Safety is the freedom from accidents. In order to explain the phe-

nomenon of accidents, scientists and practitioners are making use of ac-

cident models. The accident models provide descriptions of the assump-

tions and of the elementary components that are needed to explain the phe-

nomenon of accidents. According to Hollnagel (Hollnagel, 2004), accident

models can be classified as

(a) sequential;

(b) epidemiological;

(c) systemic.

11



2.1. Accident Models

The sequential models explain accidents causation as the result of clearly

distinguishable events that occur in a specific order and imply that the way

to prevent the accident is to break the sequential order. A representative ex-

ample of the sequential models is Heinrich’s domino theory (Heinrich, 1931)

as shown in Figure 2.1. Domino theory states that accidents result from a

chain of sequential events, where one event triggers the other like a line of

dominoes falling over. In order to avoid an accident it is necessary to remove

a key factor (i.e. a domino from the line).

Figure 2.1: The domino model of accident causation (Qureshi, 2008).

The epidemiological models explain accidents with a set of factors, some

of which are obvious and some are latent. Characteristic example of epidemi-

ological model is Reason’s Swiss cheese model (Reason and Reason, 1997).

According to this model an accident occurs when hazards (i.e. a harmful

agents, large amount of energy, etc.) can pass through the successive lay-

ers of defenses of the system and reach the vulnerable people or assets. An

accident thus entail the breaching of barriers, either these are hard (i.e. tech-

nical devises, automated safety features, interlocks) or soft (i.e. legislations,

permit works etc.). The "erosion" of defenses is attributed to:

a) Active failures, such as errors and violations at the sharp end of the system

by workers;

b) Latent conditions, such as gaps in supervision, poor design, shortfall in

training that may lie dormant for years within the system, similar to a

pathogen of the human body, and become apparent only when are com-

bined with active failures resulting to accidents.

12



2.1. Accident Models

A contemporary explanation of the phenomenon of accidents is provided

by the systemic accident models. According to these models accidents result

due to dysfunctional and in some cases unexpected interactions between

system components, which can affect the performance of the entire system.

Examples of systemic models include the Functional Resonance Accident

Model (FRAM) (Hollnagel, 2004); the Traffic Organisation and Perturbation

AnalyZer (TOPAZ) (Blom et al., 2001); and the STAMP (Leveson, 2004b).

2.1.1 STAMP

STAMP is a new accident model based on systems theory that considers safety

as a control problem (Rasmussen and Svedung, 2000), (Dulac and Leveson,

2004). According to systems theory, systems can be modeled as hierarchical

structures where each level imposes laws that restrict or allows certain be-

haviour in the lower level. STAMP considers two basic hierarchical control

structures, one for system development and one for system operation with

interactions between them (Leveson, 2004c). For example, a system develop-

ment control structure at the top level of the hierarchy may include govern-

ment departments, which define the purpose and the acceptable behaviours

of the elements of the socio-technical system under study via government

policies.

State agencies may be located in the immediate lower level. They are au-

thorised by the government departments to provide operational permits, to

conduct audits and to assess the performance of the elements in the lower

hierarchical levels. Furthermore, they report any findings back to the gov-

ernment departments.

The management of the companies who design and develop the socio-

technical system of the study may be located in the hierarchical levels that

are directly below state agencies. Each company during the design phase

contains its own hierarchical structure, which may include the project man-

agement with its design and development levels and the manufacturing man-

agement with its different levels of manufacturing processes. During the op-

erational phase, in addition to the management and manufacturing levels,

the companies contain the operational management level with its different

levels of operational processes.

Among the different hierarchical levels are safety-related control laws or

constraints that specify what constitute the non-hazardous system states. All

safety constraints are enforced with control processes. Even the physical de-

sign of the system aiming at controlling any harmful condition such as the

13



2.1. Accident Models

release of energy results from a set of control processes during the system

design phase. Control processes can be described with a model similar to

that shown in Figure 2.2, which is a typical feedback control process.

Figure 2.2: Feedback control process.

The model consists of the sensor, controller and actuator elements whose

combined objective is to control the behaviour of a controlled process. The

sensor element interacts with the controlled process and generates streams

of data providing thus feedback information to the controller. The controller

interprets what is being perceived by the sensor and tries to comprehend if

the controlled process is in a safe state or not. During this task the controller

"classifies" some of the received data as early warning signs. This happens

because the controller is the element of the feedback control process that

possesses the process models and the accident scenarios that give meaning

to the stream of perceived data and puts them in context. The controller then

decides, based on these models, if it is necessary to apply changes into the

controlled process via actions executed by the actuator. Therefore, the term

early warning sign in this dissertation implies the value of an observation,

or of a series of observations, made by the sensor element, which according

to the mental models possessed by the controller indicates the presence of

causal factors to a potential loss.

The feedback control processes provide, among other things, the infor-

mation necessary to impose safety laws on the lower hierarchical levels and

measurements indicating how effectively the safety constraints were enforced.

Any controller, human or automated, in a feedback control process must

14



2.2. STPA

contain a model of the system being controlled. For humans, this model is

generally referred to as their mental model of the process being controlled

and for the automated systems is generally referred to as their process model.

Accidents may happen because the models used by the controller to de-

scribe the behaviour of the process being controlled can become inconsis-

tent to the actual state of the controlled process. Hence, it is necessary to

understand and eliminate the contributing factors that may result in any in-

consistencies between the model of the process used by the controllers and

the actual state of the controlled process.

Systems in STAMP are viewed as interrelated components that are kept in

a state of dynamic equilibrium by feedback control processes of information

and control (Leveson et al., 2006) and because of that the causal factors, of

an accident are not limited only to a series of events. Accidents, based on

STAMP, result from inadequate enforcement of control actions triggered by

the process model of the controllers, i.e. the feedback control process cre-

ates or does not handle properly dysfunctional interactions in the process,

including interactions caused both by component failures and by system de-

sign flaws (Leveson et al., 2003).

Inadequate control actions can exist if all or some elements of the pro-

cess control process have flaws. As stated in (Ishimatsu et al., 2010) "because

each component of the control loop may contribute to inadequate control, a

classification of accident factors starts by examining each of the general con-

trol loop components and evaluating their potential contribution: (1) the con-

troller may issue inadequate or inappropriate control actions, including inad-

equate handling of failures or disturbances in the physical process; (2) control

actions may be inadequately executed, or (3) there may be missing or inade-

quate feedback. These same general factors apply at each level of the socio-

technical safety control structure, but the interpretations (applications) of the

factor at each level may differ." .

2.2 STPA

STPA is a hazard analysis based on the STAMP accident model. Its procedure

consists of the following steps (Ishimatsu et al., 2010), (Leveson, 2004b):

(1) Identify the hazards in the system that may allow accidents to occur and

translate these into top-level safety constraints. In STAMP, the term "haz-

ard" does not just imply the sudden release of energy or the presence of

15



2.2. STPA

a harmful agent, but a set of conditions, that together with other condi-

tions in the environment, may lead to an accident.

(2) a) Create the control structure, that is, a functional diagram depicting

the components of the socio-technical system together with their

control and feedback paths. The control structure diagram may be

revisited to depict more information as the analysis progresses.

b) Determine how hazards can occur. As mentioned above, hazardous

states result from inadequate control actions in each of the system

components that would violate the top level safety constraints. The

inadequate control actions fall into the following four general cate-

gories:

i) A required control action to maintain safety is not provided.

ii) An incorrect or unsafe control action is provided that induces a

loss.

iii) A potentially correct or adequate control action is provided too

early, too late, or out of sequence.

iv) A correct control action is stopped too soon.

c) Restate the inadequate control actions as safety constraints.

(3) Determine how the potentially hazardous control actions can occur and

thus define how the safety constraints determined in Step (2) could be

violated.

a) For each controller in the control structure, create a model of the pro-

cess it controls. These models may contain information about the

initial state of the controlled process, information on its current state

or information about the state of the environment around the con-

trolled process.

b) Examine the parts of the process control processes, within which each

controller is embedded, to determine if they can contribute to or

cause system level hazards. The task in this step is guided by a set of

generic control process flaws, which are depicted in Figure 2.3. Each

component of the control process may lead to an inadequate control

action. Thus, each of the general control process components (i.e.

the sensor, the controller, the actuator and the links between them)

must be evaluated for their potential contribution to the hazardous

control actions. For example, the controller may have incomplete

16



2.3. Justifying Perceivable Signs as Early Warnings

mental models about the controlled process; the feedback from the

sensor to the controller may be missing or may be inadequate etc.

(4) Restate any flaws identified in the previous step as safety constraints and

repeat step (3). If necessary, revisit the control structure diagram in step

(2) to depict new components or more detailed information on each iden-

tified component.

Figure 2.3: A feedback control process with generic control process flaws.

2.3 Justifying Perceivable Signs as Early Warnings

Any perceived data is classified as early warning sign by a controller if the

controller possess models capable of relating it to a loss. Figure 2.4 depicts a

model of the justification process of early warning signs where the concepts,

shown with oval shapes, of early warning signs, causal factors and losses are

connected via the relations "A" and "B". Relation "B" expresses that if an

early warning sign is perceived by a sensor and comprehended by the con-

troller, then a condition that is classified as a contributing factor to a loss is

present in the system. The relation "A" expresses how this condition really

contributes to a loss according to the process models of the controller.

17



2.3. Justifying Perceivable Signs as Early Warnings

When the controller, or in the case of a human controller, the human it-

self, believes, considers or assumes that the accident scenarios it possesses

have clear and sound type "A" and "B" relations, then the justification of

some observation data as early warning signs are effortless. When one, or

both, of the "A" or "B" relations does not exist, then the observations, which

are perceived by the sensor are not recognised as early warning signs by the

controller. When the relations "A" and "B" exist but are not sound, then the

perceived data may be classified as a weak sign.

Figure 2.4: Early warning sign justification model.

Hazard analysis techniques produce models similar to that of Figure 2.4.

Hazard analyses techniques, which are based on the sequential accident model,

can detect only a subset of the type "A" relations. These hazard analyses can

identify some detectable events, which are warning signs and causal factors

to a loss at the same time. This subset is denoted with the link "A*" in Figure

2.5, which depicts a more detailed view of the early warning sign justification

model shown in Figure 2.4.

However, when the issue being analysed is the safety of complex socio-

technical systems, traditional hazard analyses are not able to provide a satis-

factory description of accident scenarios due to the inherent limitations of

sequential accident models. What is missing in this case is an additional

set of "A" type relations as denoted by "A’" in Figure 2.5, which define those

contributing factors to a loss that traditional hazard analyses techniques are

unable to identify, such as structural and managerial deficiencies of the or-

ganisation and safety culture flaws, undesirable behaviours and interactions

of system components, software flaws, system changes due to evolution and

adaptation that affect safety.

To define the "A’" type of relations, it is necessary to utilise hazard analy-

sis techniques, such as STPA, that are subject to systemic accident models.

In essence, when the issue being analysed is the safety of complex socio-

technical systems both "A’" and "A*" relations must be identified if it is to be

18



2.4. EWaSAP Steps

claimed that the accident models possessed by the controllers are as com-

plete as possible. However, a limitation of STPA is that it lacks of steps which

aim towards the identification of those perceivable signs which indicate:

a) the presence of flaws in the feedback control processes of the system (i.e.

the type B relation shown in Figure 2.5);

b) the violation of its designing assumptions during the phase of operations.

One reason for this limitation could be that in some industries, system

safety is viewed of, as having its primary role in development and most of

the activities occur before operations begin (Leveson, 2012), paying thus less

attention in identifying the early warning signs that may appear during the

operation phase of the system.

Figure 2.5: A more detailed view of the early warning signal justification

model.

2.4 EWaSAP Steps

EWaSAP is an early warning sign analysis based on the STPA hazard analysis

technique. The objective of early warning sign analysis is to help analysts to

define models where a set of perceivable data (i.e. warning signs) indicating

the presence of flaws in the control processes within the system, are asso-

ciated with losses via accident scenarios. Referring to Figure 2.5, the aim of

early warning sign analysis is to identify "as complete as possible", the "B"

relations for a potential loss.

The EWaSAP steps are described below:

19



2.5. Hazard and Early Warning Analysis

EW (1) For each flaw of the control process identified in Step 3(b) of STPA,

identify the signs or signals that should or can be perceived by the sen-

sor(s) indicating the presence of the flaw in the system.

EW (2) Describe the attributes of each warning sign. The rationale for the

selection of these attributes is based on a set of interrogative questions

such as:

• Source: Where is the early warning sign arising from?

• Receiver: Which controller in the system should be informed about

the presence of the flaw, which is comprehended via the perception

of the sign?

• Medium: How was it is conveyed (means of data/information trans-

fer) to a receiver?

• Timestamp: When was the information received?

EW (3) Update the mental model of the controller(s) with reaction / adap-

tation rules so that to enforce the necessary changes to eliminate the

detected flaw or to make the system resilient if the flaw cannot be cor-

rected. (i.e. this step is an update to step 3(a) in the STPA process)

In Step EW(1), the analyst attempts to define the type B relations which

are depicted in the justification model (see Figure 2.5). In Step EW(2) the

attributes of the warning signs are defined. These attributes are characteris-

tics or properties of the data, which when perceived by the sensor help the

controller to justify that a contributing factor to a loss is present in the sys-

tem. EW(3) the mental models of the controllers are updated with reaction

or adaptation rules given the comprehension of the early warning signs.

2.5 Hazard and Early Warning Analysis

Aim of the hazard and early warning analysis is to identify "as complete as

possible" sets of "A’", "A*" and "B" relations for a potential loss. This aim is

achieved by extending STPA with EWaSAP to incorporate the type "B" rela-

tions shown in Figure 2.5 that connect early warning signs with causal factors

to a loss. In particular, EWaSAP adds the early warning sign identification

steps described in the previous section in between the 3rd and 4th steps of

STPA. As result the steps of the hazard and early warning analysis derive by

integrating STPA and EWaSAP steps in a single analysis. The logical sequence

of the steps are shown in Table 2.1.

20



2.6. Summary

Table 2.1: The sequence of hazard and early warning analysis steps

2.6 Summary

This chapter described the STPA and EWaSAP and has explained their ba-

sic concepts. STPA is a systems theoretic hazard analysis approach whereas

21



2.6. Summary

EWaSAP is an early warning sign analysis approach. EWaSAP extents STPA in

order to help the analysts identifying the early warning signs of each con-

tributing factor to a loss that were identified with the use of STPA. When

the STPA and EWaSAP are integrated they are forming a hazard and early

warning analysis approach, which form the domain of the graphical DSMLs

that are proposed as solution in this dissertation. As such, the key concepts,

which were described in this chapter, will be represented by the constructs

of the graphical DSMLs as it will be shown in a forthcoming chapter.

22



If everything seems under control, you’re just

not going fast enough.

Mario Andretti 3
Methods and Techniques for

Domain-Specific Modeling

T
HE objective of this chapter is to describe important DSM concepts

and techniques, such as Model Driven Development (MDD), alter-

native development strategies for graphical DSMLs and model trans-

formation techniques. Emphasis is given on the distinction between DSML,

where the main contribution of this research belongs to, and Domain Spe-

cific Programming Language (DSPL). It has been found that a DSMLs can be

designed and developed with one of the following strategies: a) development

from scratch; b) refining the concepts and relations of an existing DSML; and

c) extending an existing DSML. Emphasis, thus, has been given on the de-

scription of the state of the art methods and tools for designing and devel-

oping a DSML from scratch and on the description of the Systems Model-

ing Language (SysML), which is an existing, UML based, DSML that provides

models of systems engineering concepts and seemed of having the potential

to be refined so that to develop the DSMLs for the problem domain of this

thesis.

3.1 Model Driven Development

MDD (Selic, 2003), (Stahl et al., 2006) is an established and widely used ap-

proach to software development that aims at cost-effective automation and

improved maintainability through abstract modeling (Pahl and Barrett, 2007).

With this approach software development is treated as a set of transforma-

tions between successive models from requirements to analysis, to design, to

implementation, to deployment (Thomas, 2004). MDD is about focusing on

models rather than computer programs in software development (Sivonen,

2008). This makes the models easier to specify, understand, and maintain

23



3.1. Model Driven Development

(Selic, 2006). In MDD the models are the prime software artefacts and large

parts of computer code may be generated from them. Custom, hand-written

code is used to complete the functionality of the software, filling in those

parts, which are not represented in the model (Kent, 2011).

In essence, the primary goal of MDD is to raise the level of abstraction

of the problem domain, compared to programming languages such as JAVA,

Python etc., by using concepts that are much less bound to the underlying

implementation technology of a software but much closer to the problem

domain. Thus any software developed using a MDD approach can be cre-

ated, maintained and evolved more rapidly and efficiently compared to the

typical software development process. In short, MDD aims to bridge the se-

mantic gap between specification and implementation and as a result the

various activities and tasks that comprise the software life cycle are simpli-

fied and formalised (Hailpern and Tarr, 2006).

The MDD framework consists of four layers as shown in Figure 3.1. The

bottom level, M0, holds the user data, which are the actual data and objects

that a user manipulates. The next level, M1, holds a model of the M0 user

data. Level M2 holds a model of the information represented in M1. Because

M2 is a model of a model, it’s often referred to as meta-model. Finally, level

M3 holds a model of the information represented in M2, and therefore it is

often called the meta-meta-model. Each layer can be viewed independently

of other layers and maintain its own design integrity (UML, 2003).

User defined graphical models of UML or DSML types are contained in

layer M1 and are instances of a meta-modeling language contained into M2

Layer. For example, referring to UML models, the M2 level contains the UML

meta-modeling constructs whereas the level M1 contains the user defined

models that represent his problem domain. Referring to DSML, the M2 level

contains the constructs of a meta-modeling language, such as SysML or Eclipse

Modeling Framework (EMF) Ecore, whereas the level M1 contains the user

defined domain specific models.

Several MDD approaches exist (Mattsson et al., 2009), such as Software

Factories from Microsoft (MS) (Greenfield and Short, 2003), Object Manage-

ment Group (OMG)’s Model Driven Architecture (MDA) (Miller et al., 2003),

and DSM (Pitkänen and Mikkonen, 2006).

24



3.1. Model Driven Development

Figure 3.1: The four layer MDD architecture (Atkinson and Kuhne, 2003).

Software Factories focuses on product line development, that is similar

but distinct software products (Demir, 2006). The mainstream MDD appli-

cations are tightly coupled with OMG’s MDA, where the UML is typically

utilised as a modeling language (Pitkänen and Mikkonen, 2006). The DSM

MDD approach, on the other hand, focuses on providing specific solution

of a problem domain by specifying a particular graphical DSML other than

UML.

DSM is a MDD approach, which involves:

(a) the systematic use of Domain Specific Language (DSL) to represent the

various facets of a domain, in terms of domain models (Rivera et al.,

2009), (Tranoris and Denazis, 2010);

(b) the utilisation of a code generator when this is necessary.

One of the most frequently cited definitions of a DSL is that referred by

(Van Deursen et al., 2000) which states that DSL is a "programming language

or executable specification language that offers through appropriate nota-

tions and abstractions, expressive power focused on and usually restricted

to, a particular problem domain".

There are two types of DSLs:

1. The Programming Languages (DSPL)

2. The Modeling languages (DSML)

25



3.1. Model Driven Development

The difference between DSPL and DSML is that the first is represented via

a sequence of characters written and processed using an interpreter or com-

piler, while the second is represented via graphical models created usually

in a canvas. For example HTML (webpage markup), SQL (database queries),

Latex (text processing) or shell scripts of the UNIX systems are DSPLs, which

allow experts with computer/programming skills to create web pages, query

databases, write documents and scripts.

DSMLs, on the other hand, consists mostly of graphical models that rep-

resent domain concepts and relations and can be used by domain experts,

which typically do not have programming skills. In practice, engineers ex-

press models using diagrams, structured text, and storyboards of one form

or another (Thomas, 2004). Likewise, DSMLs are collections of shapes, such

as boxes, circles, and lines. The domain concepts are represented by shapes.

The relations are represented by linking lines. The shapes and the lines have

a text associated to them that describe their roles and their editable proper-

ties.

When there is a need to transform user models to other models or lan-

guages, like, for example, when there is a need to generate code from a DSML,

the framework shown in Figure 3.1 may be extended with one additional

layer as Figure 3.2 shows. Specifically, in the case of code generation from

a DSML the user defined graphical models created as result of the combined

utilization of layers M0 to M3 of Figure 3.1 may generate code after the ap-

propriate utilization of code generator facilities. In this case the generated

code is hold in to the "Model transformation layer", which it is shown in the

bottom of Figure 3.2 .

DSPLs and DSMLs are special-purpose languages (Spinellis, 2001) and

not a general-purpose language (GPL) such as C or Java. Some of the main

differences between DSMLs and GPLs are that a DSML focuses on a partic-

ular domain as stated previously, while GPL is a programming language de-

signed to be used for writing software code in a wide variety of application

domains. The use of DSMLs may or may not require programming skills,

while the use of GPL requires programming skills.

This thesis emphasises on DSMLs and not on DSPLs and GPL. Therefore,

the following sections will describe, the key tasks for designing and develop-

ing a DSML with code generation support.

26



3.2. Strategies for Defining DSMLs

Figure 3.2: The model transformation layer as part of the generic MDD archi-
tecture.

3.2 Strategies for Defining DSMLs

There are three alternative strategies to define a DSML (Selic, 2007), (Karsai

et al., 2009), (Selic, 2011):

1. Extend an existing modeling language, i.e. by supplementing new domain-

specific concepts with new constructs in to the concepts of an existing

language.

2. Refine an existing modeling language, by specialising some of the gen-

eral concepts of an existing language.

3. Define a new modeling language from scratch (Kelly and Pohjonen,

2009).

When a DSML is created by extending an existing modeling language, the

base concepts of the modeling language are extended further by adding ad-

ditional modeling constructs for a specific domain problem. For example,

in order to create a modeling language for a hazard and early warning anal-

ysis by extending an existing modeling language, a base modeling language

27



3.2. Strategies for Defining DSMLs

must be selected first. The base modeling language in this case should repre-

sent the appropriated STAMP and STPA safety related concepts in order to be

considered as suitable. This strategy would be the ideal for the development

of the hazard and early warning analysis DSML, if a DSML dedicated to STPA

hazard analysis exists.

The refinement approach should be considered only if there is a signif-

icant semantic similarity and no semantic conflicts, such as contradictory

constraints, between the concepts of the desired DSML and the concepts of

the chosen base language (Selic, 2011). The UML is typically used as the base

language in this development alternative because of the UML profile mech-

anisms, which allows the refinement of the UML constructs (Selic, 2007),

(Silingas et al., 2009).

In essence, the difference between the refining and extending develop-

ment strategies is that, in the later, the constructs of the final DSML are de-

rived after extending the concepts of a base DSML with additional features

and new concepts. Whereas, in the former development strategy a DSML

do not need to be in existence but the constructs of a generic modeling lan-

guage, such as UML, must be refined and/or extended using for example the

UML profiling mechanism to construct the concepts of the final DSML.

A number of DSMLs have been developed based on the refinement strat-

egy, such as the MARTE (MARTE, 2008) - a UML profile for real-time and

embedded systems and SysML (team, 2008) - a UML profile designed for sys-

tems engineering.

Figure 3.3: SysML taxonomy diagram (Boutekkouk et al., 2009).

28



3.3. Defining DSMLs From Scratch

For example, SysML uses seven of the UML 2.0’s thirteen diagrams. Three

UML2.0 diagrams, which are shown with the bold outlined diagrams in Fig-

ure 3.3, have been refined and two, that are shown in Figure 3.3 with the dot-

ted outlines, have been added. Thus, there are nine diagrams in total into the

SysML, which represent different concepts of the domain.

For instance, the "block definition" diagram represents the structural el-

ements (i.e. physical or logical elements of the system, such as hardware,

software, data, or persons) called blocks, and their composition and classifi-

cation (Friedenthal et al., 2011).

The "Internal block" diagram represents the possible interconnections

and interfaces between the parts of a block.

The "Activity" diagram represents the behaviour (i.e. represents the flow

of inputs and outputs and the flow of control between activities) in terms

of the order in which actions are executed based on the availability of their

inputs, outputs, and control.

The "Requirement" diagram represents text-based requirements and their

relationship with other requirements, design elements, and test cases for

modeling the systems requirements, along with their traceability in relation

to their architecture evolution (Espinoza et al., 2009).

Finally the "Parametric" diagram represents constraints on system pa-

rameter values , such as F = m * a, used to support engineering analysis

(Friedenthal et al., 2011).

Furthermore, SysML inherits the stereotype construct by the UML , which

is an extension mechanism. This allows to further extend and refine SysML

concepts and create other DSMLs that need to represent concepts of the sys-

tems engineering domain.

3.3 Defining DSMLs From Scratch

To define a DSML from scratch, depending on its size and complexity, re-

quires some consequent efforts and language design skills (Robert et al., 2009).

However, it gives the developers the freedom to define those features in the

DSML, which collectively may potentially provide maximum expressiveness

to the end user.

When developing a DSML from scratch two main tasks should be accom-

plished. The first is to define its abstract syntax, and the second is to de-

fine its concrete syntax (Krahn et al., 2007) , (Oberortner et al., 2009) , (Ráth

29



3.3. Defining DSMLs From Scratch

et al., 2010). These steps are enhanced by special tools known as "meta-

modeling tools". All these will be described in the following sections.

3.3.1 Abstract Syntax

The abstract syntax describes the vocabulary of the concepts which will be

provided as constructs by the DSML and how they may be combined to cre-

ate models. Referring to Figure 3.2, the abstract syntax define the constructs,

that must be represented in to the M2 level of the generic MDD architecture.

It consists of: a) the definitions of the concepts of the language, b) their rela-

tionships, c) a set of rules, which specify the semantics of the language.

In order to define the abstract syntax it is necessary to:

i) Acquire and comprehend the domain knowledge;

ii) Define the appropriate concepts, relations and rules of the language.

The first is achieved by an approach known as domain analysis and the sec-

ond is achieved by defining the meta-model of the DSML.

3.3.1.1 Domain Analysis

Domain analysis seeks to identify and capture the commonalities and vari-

abilities of the domain that is to be used to create the reusable language arte-

facts or domain models (Prieto-Díaz, 1990). The strategy that has been com-

monly used to identify the commonalities and the variabilities is to acquire

first the knowledge of the domain and then to identify what is common and

what is different in the concepts of the domain.

The knowledge on the domain is acquired from various sources, such as

experts, technical documents, procedures, regulations and other materials

(Imran, Foping, Feehan and Dokas, 2010a). The commonalities of the do-

main are captured by identifying the similar features, which are present into

the instances of the concepts of the domain. The variabilities of the domain

include those features that may differ among the domain concepts.

The output of a domain analysis can vary widely; however, it basically

consists of domain specific terminology and semantics in more or less ab-

stract form (Mernik et al., 2005). The approaches to conduct domain analysis

can be mainly classified under the patterns of formal, informal and extrac-

tion from code (Mernik et al., 2005):

• Formal approach: The domain analysis approaches, which follow a method-

ology or a defined process, can be considered as formal approaches.

30



3.3. Defining DSMLs From Scratch

The use of formal patterns aims at ensuring that all of the relevant as-

pects of the domain are analysed and supporting the consistent analy-

sis of the domain by following a specified procedure. Some formal do-

main analysis approaches include the: Feature-Oriented Domain Anal-

ysis (FODA) (Cohen et al., 1990), Sherlock (Valerio et al., 1997), Family-

Oriented Abstraction, Specification and Translation (FAST) (Weiss and

Lai, 1999), Domain Analysis and Reuse Environment (DARE) (Frakes

et al., 1998).

• Informal approach: The domain analyses, which do not follow a method-

ology or a defined process are considered informal. Examples of the

informal approaches includes the ontological approach (Tairas et al.,

2009), the object oriented analysis approach and the use of Integration

Definition for Function Modeling (IDEF0) (Imran, Foping, Feehan and

Dokas, 2010b).

• Extraction from code: In this approach, the domain analysis is con-

ducted by extracting the concepts from programming codes, that is,

mining and extracting domain knowledge from existing computer pro-

grams written in general purpose programming languages, by means of

manual or software supported methods.

3.3.1.2 Meta-Model

According to Kleppe (Kleppe, 2007), the meta-model represents the abstract

syntax of the language. A meta-model is the embodiment of a modeling

paradigm, that is, the set of axioms, notions, idioms, abstractions, and tech-

niques that govern how systems within the domain are to be modeled (Ledeczi,

Nordstrom, Karsai, Volgyesi and Maroti, 2001).

EMF Ecore is a meta-model specification language, which allows the de-

velopment of meta-models. EMF Ecore is based on the implementation of

the Essential Meta-object Facility (EMOF), which is a simplified version of

the original OMG MetaObject Facility (MOF) standard. The main elements

of EMF Ecore are depicted in Figure 3.4, which are the EClass, EAttribute,

EReference and EDataType:

31



3.3. Defining DSMLs From Scratch

Figure 3.4: Ecore kernel (Budinsky and Brodsky, 2003).

EClass is used to represent a class of a model, it has an attribute to specify

its name and can have zero or more attributes to express its properties

and references;

EAttribute is used to represent the attributes of a model;

EReference represents an association between two classes (i.e. EClasses);

EDataType is used to provide the type of an attributes such as such as EInt,

EString or EDate (Budinsky et al., 2003).

In addition to these, EAnnotations (Schauerhuber et al., 2006) can be

used to provide additional information that cannot be represented directly

via the Ecore-based meta-models into each element of the meta-model.

There are no particular terms on how the features of meta-models should

be specified, as for a very similar modeling language a software developer

may create different meta-models to represent the same domain concepts.

Hence, the decision on which meta-model would be best for the develop-

ment of a particular application relies on the expertise of the software devel-

oper (García-Magariño et al., 2009).

3.3.2 Concrete Syntax

Concrete syntax defines the notation that the end user will use to specify the

models, which will conform with the abstract syntax. In essence, the con-

crete syntax provides the elements of the M1 level of the generic MDD archi-

tecture shown in Figure 3.2. Typical notation types are the textual and the

32



3.4. Model Transformation

graphical. The advantage of a textual notation is that it is good at represent-

ing detail, while a visual notation is good at communicating structure (Clark

et al., 2004).

In many problem domains, graphical notations are preferred by practi-

tioners, as they often are the most intuitive representation of domain con-

cepts (Esser and Janneck, 2001). Intuition, however, is a feature that is sub-

jective. Each user may apprehend differently the true meaning of the con-

crete syntax of a DSML. As result, there is not any specific standard or crite-

ria for ensuring that a DSML is intuitive1. However, choosing notations that

are standard or commonly used for each concept in the domain is suffice of

addressing this problem, especially when the concrete syntax design takes

place under the consultation of domain experts.

3.4 Model Transformation

Model transformation is an automated process that involves the models, which

were created using a DSML, as inputs, and textual or other graphical models

as outputs. The outputs of this process resides into the "Model transforma-

tion layer", which is shown in the generic MDD architecture of Figure 3.2.

There are three common model transformations approaches (Beydeda

et al., 2005):

1) Refactoring transformations;

2) Model-to-model transformations;

3) Model-to-text transformations (i.e. code generation).

The refactoring transformation is performed when the information on a

model is changed without altering its semantics. The output from this is a

refactored model, which is a revision of the original model. A refactoring

example is the renaming of all instances of a modeling construct where a

particular entity name is used (Beydeda et al., 2005). This transformation is

commonly used to improve the readability and extendibility of the models.

The model-to-model transformation (M2M) is performed when the user

created models, (i.e. a UML model) must be converted in to another type

of model (i.e. a Statechart model). Some of the common technologies used

to perform model-to-model transformation are the: ATLAS Transformation

Language (ATL) (Jouault and Kurtev, 2006), Epsilon Transformation Language

1Eclipse Community Forums , a thread on "modeling constructs to be intuitive" at: http:
//www.eclipse.org/forums/index.php/m/873160/, last accessed (11th October, 2012).

33



3.5. Meta-modeling Tools that Support the Creation of DSMLs

(ETL) (Kolovos et al., 2008) and OMG’s Query-View-Transformation (QVT)

(OMG, 2005).

The model-to-text transformation (M2T), which is also known as model-

to-code, is carried out when the information from user models converts to

software code and other textual artefacts. The M2T transformation is com-

monly referred as code generation (Cuadrado and Molina, 2007). The trans-

formation is not limited to programming languages such as Java and C, but

also to the data definitions, deployment configuration, message schemas and

other types of files.

3.5 Meta-modeling Tools that Support the Creation

of DSMLs

Meta-modeling tools are special software programs, which enhance the de-

velopment of DSML from scratch. DSML developers may define with these

tools the constructs of the M0, M1, M2 levels, as well as the specifications of

the model transformation layer that is shown into the generic MDD architec-

ture of Figure 3.2.

The objective of the meta-modeling tools is to provide to developers the

software libraries, which are necessary for defining the abstract and concrete

syntax, as well as for the creation of the code generator facility. The meta-

modeling tools speed up the development process of DSML from scratch.

Without them the development process could take an enormous amount of

time (Kelly, 2004), (Miotto and Vardanega, 2009).

The most commonly used meta-modeling tools are the Generic Model-

ing Environment (GME) (Ledeczi, Maroti, Bakay, Karsai, Garrett, Thomason,

Nordstrom, Sprinkle and Volgyesi, 2001), MetaEdit+ (Kelly et al., 1996a), MS

DSL tools (Cook et al., 2007), and Eclipse Graphical Modeling Framework

(GMF)2, which are introduced in the following sections.

3.5.1 Generic Modeling Environment

The GME was developed at the Institute for Software Integrated Systems at

Vanderbilt University. It is a configurable toolkit for DSM and program syn-

thesis environment, which has the ability to automatically transform require-

ments and design information into application software (Nordstrom et al.,

2Eclipse: Graphical Modeling Framework at: http://www.eclipse.org/modeling/gmp/,
last accessed (11th October, 2012).

34



3.5. Meta-modeling Tools that Support the Creation of DSMLs

1999).

GME is used for creating and evolving DSMLs. It is configurable, en-

abling it to work with different domains. The configuration is accomplished

through a UML based meta-modeling environment supported by a meta-

modeling language called MetaGME (for Software Integrated Systems, 2005).

The meta-model is used to automatically generate the target domain specific

environment, which is then used to build domain models that are stored in a

model database or in an XML format (for Software Integrated Systems, 2005),

thereby specifying the domain specific modeling language for the applica-

tion domain.

The two main components of GME are the GMeta and GModel. The GMeta

is a graphical tool for constructing meta-models and the GModel implements

the GME modeling concepts. Both GMeta and GModel demonstrate their

services through graphical interface that is based on MS Component Ob-

ject Model (COM)(Williams and Kindel, 1994) technology (Lédeczi, Bakay,

Maroti, Volgyesi, Nordstrom, Sprinkle and Karsai, 2001).

3.5.2 MetaEdit+

MetaEdit+ is a commercial tool that provides an environment to support the

design and development of domain specific modeling languages and has

been applied successfully in various application domains. MetaEdit+ is con-

figurable toolset that supports the development of different modeling lan-

guages by specifying their meta-model. MetaEdit+ employs the GOPPRR

(Graph-Object-Property-Port-Role-Relationship)(Kelly et al., 1996b) as meta-

modeling language based on which the meta-modes of the DSMLs, which

each user of MetaEdit+ wants to create, are specified.

In MetaEdit+, the meta-model and its design model instances are stored

into an object-oriented repository system, which supports complex refer-

ences between design elements, e.g. inheritance and reuse by reference. The

repository also enables multiple users to access and share the design data

concurrently (Tolvanen et al., 2007). Furthermore, MetaEdit+ environment

consists of two main components: MetaEdit+ workbench, for designing the

modeling language by specifying its concepts, rules, notation and generator

and MetaEdit+ Modeler, which provides the modeling tool functionality in

creating and editing models such as programming editor, browser, genera-

tor3. The modeling language definition is stored in the MetaEdit+ repository,

3Available at http://www.metacase.com/products.html, last accessed (11th October,
2012).

35



3.5. Meta-modeling Tools that Support the Creation of DSMLs

from where it can be retrieved for later modification.

3.5.3 Microsoft DSL Tools

MS DSL is a suite of tools for creating, editing, visualising, and using domain-

specific data for automating the enterprise software development process

(Bézivin et al., 2005). MS DSL tools employ the Software Factories approach

(Greenfield and Short, 2004) and its toolset relies on MS technologies. The

DSL tool consists mainly of a project wizard on which a visual studio project

template runs to collect the data that is needed to create a fully configured

solution in which domain models can be defined. Furthermore, it consists

of a graphical designer for defining and editing domain models specified us-

ing XML format. It also contains a set of code generators that takes as an

input the source domain model definition and the designer definition and

validates them.

3.5.4 Eclipse GMF

The GMF is the main initiative of the Eclipse community in its drive to pro-

vide support tools for DSM. The GMF project has been restructured into the

GMF Tooling, GMF Runtime and GMF Notation projects under the Graph-

ical Modeling Project (GMP)4. The GMF runtime provides a set of reusable

components for graphical editors such as printing, image export, actions and

toolbars. It aims to bridges the different command frameworks used by EMF

(Steinberg et al., 2009) and Graphical Editing Framework (GEF) (Hudson,

2003), and allows graphical editors to be open and extendible.

The GMF tooling offers a model-driven approach to generating graphical

editors in Eclipse, based on the GMF runtime. Both GMF runtime (i.e. run-

time infrastructure) and GMF tooling (i.e. generative component) are used

for developing graphical editors based on the EMF with the use of Ecore

meta-modeling language and the GEF (Di Ruscio et al., 2011). The GMF

notation provides a standard EMF notational meta-model, which is a stan-

dard means for persisting diagrams information separately from the domain

model.

In essence, GMF forms a generative bridge between EMF and GEF, whereby

a diagram definition will be linked to a domain visual language model, which

4Available at http://www.eclipse.org/modeling/gmp/?project=gmf-tooling#
gmf-tooling, last accessed (11th October, 2012).

36



3.6. Summary

serves as an input to the generation of a visual editor (Taentzer, 2006). Ar-

guably, GMF can be considered as the mainstream approach to facilitate

the tooling environment for domain specific graphical editor development

within the Eclipse platform (Di Ruscio et al., 2011).

3.6 Summary

This chapter has introduced the key concepts of DSM. A DSM development

approach involves the creation of some type of DSL, such as DSPL or DSML,

and in some cases the inclusion of model transformation capabilities, such

as code generation. The differences between DSPL and DSML were pre-

sented. These differences are: a) DSPLs have a textual form whereas DSMLs

have a graphical form, b) DSPLs are intended to be used by users with pro-

gramming skills, whereas DSMLs are intended to be used by users without

programming skills.

Three common types of model transformation were identified in the lit-

erature and introduced herein. These are: a) Refactoring transformations; b)

Model-to- model transformations; and c) Model to text or code generation.

Three DSML development approaches were identified. The goal in one

of them is to extent an existing DSML. The goal of the second is to refine

an existing modeling language (i.e. usually the UML). The aim of the last

approach is to create a DSML from scratch. Thus, possible alternatives in

addressing the research problem in this thesis are the following:

a) To extent an existing STPA based DSML;

b) To refine the SysML meta-model so that to include the concepts of the

hazard and early warning analysis. The rational for assessing this as an

alternative solution to the problem is based on the fact that STPA and

EWaSAP are based on a systems theoretic accident model;

c) To define a DSML for hazard and early warning analysis from scratch.

Two are the main tasks that should be accomplished when developing a

DSML from scratch. The first is to define the specifications of DSMLs abstract

syntax and the second is to define its concrete syntax. The abstract syntax

specifies the vocabulary of concepts provided by the DSML. The concrete

syntax defines the notations that the end user will use to specify his programs

with the DSML. Finally, the chapter has presented the state of art tools for

designing DSML from scratch. These tools are known as "meta-modeling

tools" and include the GME, MetaEdit+ , MS DSL tools, and Eclipse GMF.

37



Safety is defined absolutely as a quality that

may not be entirely achievable, but that can

still be defined in absolute terms as a desirable

quality that can be improved.

Nicolas Dulac 4
A Review of DSMLs for Early

Warning Systems

T
HIS chapter begins by listing a number of DSMLs, which have being

used in a variety of domains, such as telephone and radio services

and computer games. Emphasis then is given to a number of DSMLs,

which were used for the creation of domain specific hazard analysis models

and for the development of early warning systems. That resulted in studying

four DSMLs, namely the SOPHIA, EAST-ADL, Stream-Oriented DSML, Open-

COM and Transition Diagrams DSML, in more detail. These DSMLs are then

assessed for their potential use in creating the risk knowledge elements of

early warning systems. The criteria for the assessment were: 1) the utilisa-

tion of domain concepts that conforms to accidents and hazard analysis such

as, "hazard", "causal factor", "warning"; and 2) their capability of generating

code. Two out of the four DSMLs were found of being capable of generating

code. Both of them were created from scratch. The result of the literature

review has been the confirmation of the nonexistence of a DSML dedicated

to STPA hazard analysis. Thus, one alternative strategy for addressing the re-

search problem, that of developing the DSML for the hazard and early warn-

ing analysis by extending an existing DSML, was eliminated.

4.1 Examples of DSMLs Application Domains

DSMLs are used in a vast array of domains to create applications for a broad

collection of languages and platforms, including many industrial applica-

tions (Imran, Dokas, Feehan and Foping, 2010). Examples of domains in

which DSMLs have been developed and used include communications (Claypool

et al., 2009), mobile health monitoring (Balagtas-Fernandez and Hussmann,

38



4.2. DSMLs With Hazard Analysis Concepts

2009), architectural knowledge capture (Olumofin and Mišic, 2006), and com-

puter games (Furtado and Santos, 2006).

Examples of applying DSML are also given in (Kelly and Tolvanen, 2008).

Each example examines the use of DSMLs for different problem domains,

ranging from insurance products, home automation, IP telephony and call

processing, mobile phone applications and digital wristwatch to microcon-

troller applications. The above examples indicate that DSMLs have reached

a sufficient level of maturity that contributed positively in their adoption for

the creation of a significant number of real word applications.

4.2 DSMLs With Hazard Analysis Concepts

The domain of hazard analyses use concepts such as "Hazard", "Cause", "Ef-

fect", "Consequence". General purpose graphical modeling languages, such

as UML, can be used to model these concepts. For example, the UML pro-

file mechanism can be used by the developers to "define" these concepts in

order to design and develop a DSML. Two DSMLs have been found in the lit-

erature that formally express hazard analysis concepts in this way. These are

the SOPHIA and the EAST-ADL.

4.2.1 SOPHIA

SOPHIA (Cancila et al., 2009a) is a DSML that formalises safety related con-

cepts and their relationships with system modeling constructs. SOPHIA’s lan-

guage specification derives from UML via a refinement approach.

Figure 4.1: The refinement of the UML meta-model with the fundamental

concepts of SOPHIA.

39



4.2. DSMLs With Hazard Analysis Concepts

Figure 4.1 shows the "infiltration" of SOPHIA fundamental concepts in

to the UML meta-model, with the use of the UML profiling mechanism. In

essence, the fundamental concepts of SOPHIA have refined the UML con-

cepts via the use of the UML profile mechanism.

The fundamental concepts of SOPHIA are the "packages" and the "libraries".

The "packages" define the notions of the language and their relationships,

whereas the "libraries" specify the data types of the elements contained in

the "packages". There are two subpackages in the "packages" of SOPHIA. The

first is called "SystemDesign" and specifies the relationship between the sys-

tem concepts and the model element of the system. The second is the "Safe-

tyConcepts", which contains the packages "Accident", "Mitigations" and "Fault-

ContainmentRegion". The "Accident" package defines the notions and re-

lationships involved in an accident, such as "Hazard", "AccidentCase" and

"AccidenConsequences". The "Mitigations" package defines the notions and

relationships about the mechanism, which is responsible to mitigate an ac-

cident. The "FaultContainmentRegion" package defines the concepts and

relationships, which are involved during any error propagations efforts.

Figure 4.2: A SOPHIA model with elements from the "Accident" package

(Cancila et al., 2009a).

40



4.2. DSMLs With Hazard Analysis Concepts

Figure 4.2 shows some elements of the "Accident" package, that were used

to define the concept of "TolerableAccidentRate", whose definition in the

problem domain, where SOPHIA was used (i.e. the railway safety engineer-

ing), is "a threshold between what is tolerable and what is undesirable with

respect to the consequence of an accident". The tolerable accident rate in

this example is an attribute of the concept "Hazard". The concept "Hazard"

represents "an event observable at the system boundary, which has poten-

tial either directly or in combination with other factors (external to the sys-

tem), for giving rise to an accident at railway system level" (Cancila et al.,

2009a). Each accident leads to one to many unintended events with unde-

sirable outcomes represented with the concept of "AccidentCase". An "Ac-

cidentCase" can have the following properties: a unique "ID"; an "Accident-

Type" chosen from a statically pre-defined list; "ManualTolerableAcciden-

tRate" and "AutomaticTolerableAccidentRate". Each "AccidentCase" leads

to one to many "AccidentConsequenques". The "AccidentConsequences"

represent the adverse result of a given hazard. An attribute of the "Accident-

Case" is the "Severity", which may take only one of the following four prede-

fined values: "Catastrophic", "Critical", "Marginal", or "Insignificant".

The M1 level of SOPHIA, that is the elements of its concrete syntax that

a user can use to create his models, is composed of the graphical represen-

tations of SOPHIA’s concepts and of some SysML concepts, such as the "re-

quirement diagram" and the "block diagram". The SysML concepts act as

complementary to those of SOPHIA. Thereby, SOPHIA and SysML, which are

both designed by refining the UML concepts using the UML profile mecha-

nism, can be used jointly by the analysts via the same UML editor (Cancila

et al., 2009a), as Figure 4.3 shows (Cancila et al., 2009b).

Figure 4.3: Sophia and SysML integration model.

41



4.2. DSMLs With Hazard Analysis Concepts

In essence, a number of basic concepts coming from the domain of haz-

ard analyses are embedded into SOPHIA’s meta-model definition. However,

there is no indication of the existence of the early warning sign concept. Fur-

thermore, the publications describing SOPHIA lack of discussions on the ac-

cident model, which was adopted in order to formalise the safety related con-

cepts. It seems, however, that the developers of SOPHIA have adopted a tra-

ditional and not a contemporary accident model.

4.2.2 EAST-ADL

EAST-ADL (Electronics Architecture and Software Technology-Architecture

Description Language) is an Architectural Description Language that pro-

vides a means to model and analyse software architectures, which are re-

quired to sustain the evolution of vehicle electronics. Its elements can be

used to enhance the hazard analysis process curried upon the features of the

electronics and software in the vehicles. Figure 4.4 depicts how a number of

hazard analysis concepts, such as "Hazard" and "HazardousEvent" were de-

fined in the meta-model level (i.e. Level M2 of the architecture) of EAST-ADL

architecture.

In general, the "Hazards" are identified by negating the functionality of an

"Item". Risk assessment is done on a set of "Hazardous Events". The "Haz-

ardous Event" is modelled as a "Hazard" in combination with a given "op-

erationalSituation". The "operationalSituation" in EAST-ADL is modelled as

a combination of "traffic" and "environmentSituations" and a "UseCase" of

the "Feature" corresponding to the "Item". A "SafetyGoal" could be seen as a

"SafetyRequirement" on the vehicle level.

Looking at the elements of EAST-ADL meta-model it can be concluded

that this DSML is heavily focused on the creation of accident scenarios that

may arise only by component failures, which according to the systemic ac-

cident models such as STAMP, are only one contributing factor to accidents

(Leveson, 2012). Other, contributing factors to accidents in complex socio-

technical systems according to STAMP that need to be taken into account are

organisational and social factors, human performance and software design

flaws (Leveson, 2004b).

42



4.3. DSML for Risk Knowledge Modeling of Early
Warning Systems

Figure 4.4: Snippet of meta-model specifications for EAST-ADL.

4.3 DSML for Risk Knowledge Modeling of Early

Warning Systems

Two DSMLs capable of generating code so that they can be used in early

warning systems where identified. The Stream-Oriented DSML for earth-

quake detection algorithms and the OpenCOM and Transition Diagrams DSML

for the development of flood warning early warning systems. Both were de-

veloped from scratch.

4.3.1 The Stream-Oriented DSML

The purpose of the Stream-Oriented DSML is to generate earthquake detec-

tion algorithms from models that can run on the nodes of wireless sensor

networks (WSN) in order to process the data received by the sensors. The

generated algorithms are set up to work so that, if an earthquake is detected

by one node, this information can then be passed to the surrounding nodes,

and once there is consensus that an earthquake event is occurring, a warning

signal will be disseminated throughout the whole network.

43



4.3. DSML for Risk Knowledge Modeling of Early
Warning Systems

The main concepts used in a Stream-Oriented DSML are the: "Source",

"Filter" and "Sink". The "Source" represents the sensor reading streams. The

"Filter" is responsible for passing only those sensor readings that are consid-

ered to be the beginning of an earthquake and blocks all others. To manage

the time interval of an earthquake detection warning at a reasonable level the

idea of "time filter" has been employed. The "Sink" is responsible for gener-

ating an earthquake detection warning, for example, by activating a warning

alarm. To control the sound level of the warning, a corresponding parame-

ter named "SoundLevel" was included. The meta-model specification of the

Stream-Oriented DSML (i.e. the Level M2 of its architecture) is shown in Fig-

ure 4.5.

Figure 4.5: Meta-model specification of Stream-Oriented DSML (Sadilek,

2007b).

Figure 4.6: A user defined earthquake detection algorithm model (Sadilek,

2007a).

44



4.3. DSML for Risk Knowledge Modeling of Early
Warning Systems

A user generated model using the concrete syntax of the Stream-Oriented

DSML (i.e. the elements of the Level M1 of its architecture) is shown in Figure

4.6.

The Eclipse Integrated Development Environment (IDE) (Holzner, 2004)

was utilised for the development of the Stream-Oriented DSML. The meta-

modeling tool, which was used to create this DSML is the GMF. The approach

for the M2T transformation in this DSML consisted of two sub-tasks: a) a syn-

tactic translation of a program from its meta-model-based representation

to its targeted code representation, the Scheme (Dybvig, 2003) in this case,

which is a functional programming language and one of the two main di-

alects of the programming language Lisp (Van Rossum and Drake, 2003), and

b) a semantic translation of the domain-specific concepts to base concepts

of Scheme and the target platform by means of Scheme’s abstraction facili-

ties. The approach, which was used in this DSML achieves the same results

compared to MDA but in a different order of task execution (Sadilek, 2007a).

4.3.2 The OpenCOM and Transition Diagrams DSML

An adaptive system is capable of changing behaviour at runtime and exhibit

dynamic variability or runtime variability. In this context, there are two types

of dynamic variability namely the Environment or Context variability and

the Structural variability. The OpenCom DSML and the Transition Diagrams

DSML are two DSMLs that form a set based on which the dynamic recon-

figuration of adaptive systems may be achieved. These DSMLs are brought

together via a dedicated editor called Genie (Bencomo, Grace, Flores, Hughes

and Blair, 2008b). Genie has been implemented using the MetaEdit+ meta-

modeling tool.

The meta-model of the OpenCom DSML contains definitions of the con-

cepts, which are necessary for the modeling of the structural variability of

adaptive systems. The models of the OpenCom DSML define the resulting

architectural configurations. The meta-model of the Transition Diagrams

DSML defines the necessary concepts to model the environment variabil-

ity or context variability of adaptive systems. The models created by the

Transition Diagrams DSML define the conditions under which a system must

adapt.

The meta-model of OpenCOM is shown in Figure 4.7. Its main concepts

are: "OpenCom Component", "Capsule", "Interface", "Binding Component"

and "Component Framework". The "OpenCOM Component" represents a

reusable software component. Each "OpenCOM Component" component is

45



4.3. DSML for Risk Knowledge Modeling of Early
Warning Systems

related to an "Interface". The "Interface" allows an "OpenCOM Component"

to provide and receive some (necessary) services to and from other "Open-

COM Components". The "Binding Component" defines the possible associ-

ations of the "Interface" of a component. The "Capsules" are the elements

responsible for loading the "Binding Component" and the "Interface" of an

"OpenCom Component" in runtime. The "Component Framework" is a set

of components that cooperate to address a required functionality or struc-

ture (e.g. service discovery and advertising, security etc).

Figure 4.7: OpenCom meta-model (Bencomo, 2008).

The meta-model of the Transition Diagrams DSML is shown in Figure 4.8.

The basic concepts defined in this meta-model are the "Structural Variant",

"Transition" and "Trigger". The "Structural Variant" represents a possible

configuration of the "Component Framework". A "Transition" expresses the

change of the "Structural Variant" from the current state to a new state each

time a "Trigger" is activated. "Triggers" define the existing conditions in the

environment that may force a change in the system.

46



4.3. DSML for Risk Knowledge Modeling of Early
Warning Systems

Figure 4.8: The meta-model to model the context and environment variabil-

ity (Bencomo, 2008).

Using the modeling constructs of these DSMLs the developer can spec-

ify the configurations of the components and their transition diagrams. The

model transformation capability of these modeling languages allows differ-

ent software artefacts to be generated via model transformations. With the

OpenCom DSML, the developer can define the components and their con-

figurations, which all together define the component frameworks. Whereas,

the reconfiguration policies of the adaptive system can be generated from

the Transition Diagrams DSML.

The use of Genie is demonstrated by a case study on flood warning sys-

tem (Bencomo, Sawyer, Blair and Grace, 2008). GridStix is a grid-enabled

wireless sensor network for flood management. The model based approach

supported by Genie consists of three different levels of abstractions (abstrac-

tion levels are raised from bottom to top) as shown in Figure 4.9 (Bencomo,

Grace, Flores, Hughes and Blair, 2008b). The Level 1, is populated by different

software artefacts like component source code, and files of configurations of

47



4.3. DSML for Risk Knowledge Modeling of Early
Warning Systems

component frameworks and reconfiguration policies. The Level 2 in the mid-

dle is populated models associated with components and component frame-

works (configurations). These models provide visual representations of the

component configurations and are constructed using OpenCOM DSML. The

Level 3 at the top is populated with the specification (models) of adaptations,

where these models are in essence transition diagrams that guides the recon-

figuration and adaptation process of GridStix. These models are specified

using Transition Diagrams DSML.

In the case study the purpose of the two DSMLs was to generate an adap-

tive, to environmental conditions, dissemination and communication mech-

anism for the early warning system. The communication mechanism should

be able to activate different channels, such as Wifi, Bluetooth for communi-

cating the warnings and the alerts to the appropriate stakeholder, as Figure

4.9 shows, depending on the water fluctuation and/or flood level.

Figure 4.9: Overview of the approach implemented by Genie (Bencomo,
Grace, Flores, Hughes and Blair, 2008a).

48



4.4. Discussion and Conclusions

4.4 Discussion and Conclusions

The search for DSMLs, which are capable of modeling safety related con-

cepts, resulted in the identification of four cases. These are: 1) SOPHIA,

2) EAST-ADL, 3) Stream-Oriented DSML, 4) OpenCOM and Transition Dia-

grams DSML.

SOPHIA and EAST-ADL can model the cause and effect relations that may

lead to component failures (i.e. in the case of EAST-ADL) and accidents (i.e.

in the case of SOPHIA). Both were developed through the refinement ap-

proach and used the UML profiling mechanism to define their concepts and

relations into their meta-model level. However, they are not providing code

generation facilities and, thus, they cannot produce executable code to be

used into the risk knowledge element of early warning systems.

The users of Stream-Oriented DSML can model earthquake detection al-

gorithms. They can, in a sense, model the causes, which may trigger earth-

quakes. Stream-Oriented DSML was developed from scratch using the open-

source eclipse based GMF meta-modeling tool. It has a code generation fa-

cility and it can generate executable code that can be used to form the risk

knowledge element of earthquake early warning systems. However, the con-

structs of this language represent concepts that belong into the natural haz-

ards domain and are not the same as the concepts of the accident models

that explain the phenomenon of accidents in manmade systems. Thus, the

concepts and relations of this DSML are not capable of representing the con-

cepts of the contemporary hazard analysis techniques that are used to create

accident scenarios of manmade systems.

The OpenCOM and Transition Diagrams DSMLs are two DSMLs that have

been integrated into a dedicated DSML editor called Genie. Both DSMLs

were developed from scratch using the MetaEdit+, which is a commercial

meta-modeling tool. Genie provides code generation mechanism, thus, these

DSML are capable of creating executable code. In fact, they were used to

model the necessary adaptations of a flood early warning system given as

inputs the dynamic changes of water fluctuations. However, the purpose of

these DSMLs is to provide an adaptive dissemination and communication

mechanism for the flood early warning system and not the models for its risk

knowledge element.

SOPHIA is a DSML, which refines UML concepts and makes use of some

SysML concepts so that to generate safety related concepts. As result, the

users of SOPHIA can create models of accident scenarios. Thus, the strat-

egy of extending SOPHIA for developing the early warning analysis DSML

49



4.4. Discussion and Conclusions

seemed feasible. However, this alternative falls short according to the crite-

ria mentioned previously in this chapter about the need of the hazard and

early warning analysis DSML to:

1) Support the creation of models based on contemporary accident models;

2) Provide code generation support.

Indeed, the accident model, which has been adopted for the creation of

SOPHIA’s meta-models, accord with traditional and not with any contempo-

rary accident model. Furthermore, SOPHIA is not equipped with code gen-

erator mechanisms. From the literature review, it became apparent that an-

other feasible way of developing the hazard and early warning analysis DSML

is by refining the UML by using the UML profile mechanism in a manner

similar to SOPHIA and SysML, but with the integration of code generation.

There were two challenges in this alternative. The first was that UML pro-

files were penalised by lacks of methodological guidelines and tool support

(Robert et al., 2009) for designing DSMLs and standardised UML profile gen-

eration process (Giachetti et al., 2009). The second challenge was to find al-

ternative ways of generating code from the modeling constructs of the haz-

ard and early warning analysis DSML, which will be specified by the UML

profile mechanism. After conducting a literature search about this matter

it was made clear that the only alternative was to develop a dedicated code

generator, similarly to the work of (Silingas et al., 2009) (Vidal et al., 2009).

Thus, the alternative ways of achieving the research objective have been

limited to the following two:

1) Create a DSML UML profile generation process together with a dedicated

code generator capable of supporting the UML profile mechanism and

based on these define the proper meta-modeling concepts of the hazard

and early warning analysis in UML.

2) Create a hazard and early warning analysis DSML from scratch.

It was assessed that by selecting the first alternative, the entire research

effort would have been exhausted in creating a code generator for UML pro-

files and that is actually something, which deviates completely from the ini-

tial research objectives. As a result, a decision was made to develop the early

warning analysis DSML from scratch. This decision enforced the identifi-

cation of the appropriate open source tools and frameworks which will be

presented in the following chapter.

50



The first rule of any technology used in a busi-

ness is that automation applied to an efficient

operation will magnify the efficiency. The sec-

ond is that automation applied to an ineffi-

cient operation will magnify the inefficiency.

Bill Gates
5

Software Technologies Used for the

Development of the Hazard and

Early Warning Analysis DSML

T
HE previous chapter described existing DSMLs that can model a num-

ber of hazard analysis concepts. It described also the rational based

on which it was decided to create the hazard and early warning anal-

ysis DSML from scratch. This chapter describes the open source software

technologies, which were selected to design and develop the early warning

sign analysis DSML from scratch. Specifically, this chapter describes soft-

ware technologies such as Java, Epsilon Generation Language (EGL), Epsilon

Validation Language (EVL), XML and the modeling frameworks EMF and GEF,

which were "plugged in" to the GMF meta-modeling tool for the develop-

ment the hazard and early warning analysis DSML.

5.1 The Development Platform

Eclipse is an extensible platform structured around the concept of exten-

sion points, which are software programs for extending the platform by con-

tributing additional functionalities that are commonly referred as plug-ins

(Sivonen, 2008). For example, the Eclipse plug-in that was used for the cre-

ation of the hazard and early warning analysis DSML is the GMF, a detailed

description of which was provided in section 3.5.4.

Eclipse IDE offers advanced features to the developers, such as auto code

completion for long variables or method names, helpful keyboard short cuts,

51



5.2. The Main Components of the GMF Framework

real time compilation for finding errors like wrong input parameters and un-

declared variables, real time compilation that provides indications for find-

ing errors or potential errors such as undeclared variables, unmatched brack-

ets, and wrong input parameters or return values, and code-refactoring to

increase code clarity and maintainability by restructuring (Chen and Marx,

2005).

The architecture of Eclipse is presented in Figure 5.1. It is composed of

three layers (Gamma and Beck, 2004): 1) Platform; 2) Java development tools

(JDT); and 3) Plug-in development environment (PDE). The platform is the

bottom layer, which its purpose is to define the common infrastructure of

Eclipse. The Java development tools represent the middle layer. This layer

adds a full feature Java IDE to Eclipse. Finally, the plug-in development envi-

ronment is the top layer, which extends JDT in order to support the develop-

ment of plug-ins into Eclipse.

Figure 5.1: The three layers of eclipse architecture (Gamma and Beck, 2004).

5.2 The Main Components of the GMF Framework

GMF contains two main modeling frameworks. These are the EMF and the

GEF. The EMF is used to manage the meta-model (i.e. the Level M2) of

DSMLs and the GEF is used to create the graphical representation (i.e. the

Level M1) of the DSMLs. Both frameworks are described in the following

sections.

52



5.2. The Main Components of the GMF Framework

5.2.1 Eclipse Modeling Framework

EMF (Budinsky, 2004) (Moore et al., 2004) is a modeling framework1 for MDD.

It has evolved as one of the standard technologies which are needed to define

a DSML and to create Eclipse based applications with model transformation

capabilities. The EMF consists of three fundamental parts (Colombo et al.,

2009):

1) The Core framework that includes a meta-model for describing models

and runtime support for change notification and XMI serialisation;

2) The Edit framework that includes generic reusable classes for building ed-

itors for EMF models;

3) The Codegen framework that provides code generation facilities to build

a complete editor for an EMF model.

The meta-model contained in the EMF is called EMF Ecore or simply

Ecore. Ecore models can be created by different means such as, by trans-

forming Java notations, UML models and XML schema. It also provides tools

and runtime support that produce a set of Java implementation classes from

the specified meta-model. These classes are extensible, regenerable and can

be modified by adding user defined methods and instance variables. The

user defined modifications to the implementation classes can be retained

even when the model changes and implementation classes are regenerated2.

5.2.2 Graphical Editing Framework

GEF (Moore et al., 2004) is an open source framework3. Its purpose is to pro-

vide all necessary libraries for the creation of graphical editing environment

for applications on the eclipse platform. Main components of the GEF are

the Draw2D4 libraries and the Standard Widget Toolkit (SWT)(Northover and

Wilson, 2004).

GEF is designed in a manner so that the user will be able to create graphi-

cal representation of models, which are generated by EMF, by providing data

1Eclipse project - Eclipse Modeling Framework, at: http://www.eclipse.org/modeling/
emf/, last accessed (11th October, 2012).

2EMF/FAQ, What is EMF? EMF Wiki Category, at: http://wiki.eclipse.org/EMF/FAQ,
last accessed (11th October, 2012).

3Eclipse project- Graphical Editing Framework, at: http://www.eclipse.org/gef/, on-
line access (11th October, 2012).

4Draw2d, at : http://www.eclipse.org/gef/draw2d/index.php, last accessed (11th Oc-
tober, 2012).

53



5.2. The Main Components of the GMF Framework

into the components of a software design pattern known as Model-View-

Controller. The model consists of the user defined data (i.e. the EMF mod-

els), the view consists of figures (i.e., the graphical icons which will be used

to represent the EMF models) and the controllers consists of libraries that

modify the models and update the views whenever the user makes changes

to the EMF modes and/or their graphical representation. Hence, once an

EMF model is modified the effected view is refreshed by the controller (Rath

and Varro, 2006).

As shown in Figure 5.2, each "Model" is associated with a specific "Figure"

that graphically represents the "Model" element. The mapping between the

"Model" element and the "Figure" is achieved with the "EditPart" classes of

the GEF. Normally, each "Model" element has its corresponding "EditParts"

class, which has the role of the controller in to the Model-View-Controller

software pattern. The "EditParts" classes specify how the "Model" element is

mapped into its visual "Figure", and how the "Figure" will behave to specific

types of user interactions.

Figure 5.2: The GEF model view controller pattern (Hudson and Shah, 2005).

5.2.3 EVL

EVL (Kolovos et al., 2012) is a language, which allows the developers to apply

the constraints and the appropriate validations in to the domain models. The

validators check that the user models do not contain any inconsistencies,

which may be emerged due to missing or incompatible information. The

54



5.2. The Main Components of the GMF Framework

constraints enforce some limitations in the creation of the user models. For

example, the constraints can be used to ensure that graphical user models,

which represent specific concepts that are not should be associated, will not

be linked together. The EVL validations are defined at the meta-model level

M2, which are later checked at the user model level M0.

5.2.4 EGL

EGL (Kolovos et al., 2012) is a template-based language that can be used

to transform models into various types of textual artefacts, including exe-

cutable code (e.g. Java), reports (e.g. in HTML), images (e.g. using DOT),

formal specifications (e.g. Z notation (Spivey, 1992)), or even entire appli-

cations comprising code in multiple languages (e.g. HTML, Javascript and

Cascading Style Sheets (CSS) (Kolovos et al., 2012). In EGL, text based arte-

facts are produced by combining static text information from the templates

and the information from the user models.

5.2.5 XML, Java and XPath

XML is a data description language, which is commonly used for storing and

exchanging data across multiple systems. It can also be used to facilitate the

generation and management of meta-data and allows the creation of many

vocabularies, as standards for various domains. An XML document is com-

posed of XML elements with a start-tag "<" and an end-tag ">". The infor-

mation between the tags, if any, is called content of an element, where each

element can have additional information described by its attributes. The tags

in an XML document indicate the data meaning and not the data appearance

(Zisman, 2000) .

Java is an object oriented programming language where programs are

built from classes. A number of objects can be created from a defined class.

These objects then are called instances of the class. A class contains fields

and methods. Fields are data variables belonging either to the class itself or

to the objects of the class. Methods are collections of statements that oper-

ate on the fields to manipulate their data by assigning, for example, values to

fields and other variables, evaluating arithmetic expressions, invoking meth-

ods, and controlling the flow of execution.

XML Path Language (XPath) is a language for selecting information from

XML documents. It treats XML as a tree of various node types such as an el-

ement node, an attribute node and a text node. To locate these nodes from

55



5.3. Summary

a tree structured XML document, path expressions are used. An XPath ex-

pression is a series of location steps separated by slashes "/". In each step a

set of nodes in relation to the current node is selected. These nodes become

the current node(s) for the next step. The set of nodes, which are selected

by the expression, are the nodes remaining after processing each step in or-

der. A location step consists of: a) an axis b) a node test and c) zero or more

predicates. The axis specify the tree relationships between the nodes selected

by the location step and the current node (e.g., ancestor, ancestor-or-self, at-

tribute, child, descendant, descendant-or-self); a node test is used to identify

a node within an axis, by specifying a node type or the node name (e.g. text(),

node()); a predicate is an expression placed inside square brackets, used to

further refine the set of nodes selected by the location step (e.g. [@Type=’IT’])

(Carminati et al., 2005).

5.2.6 PostgreSQL and JDBC

PostgreSQL is an open source object-relational database management sys-

tem through its use of SQL as a query language. It provides an easy-to-use

graphical interface for managing and developing PostgreSQL database and

to perform complex queries on the stored data. The Java DataBase Connec-

tivity (JDBC) driver is a set of classes and methods available in Java program-

ming language to establish a connection with a database from the computer

program.

5.3 Summary

This chapter described the software platform, the modeling frameworks as

well as the software technologies used for the development of the hazard and

early warning analysis DSML and its dedicated editor. The main criterion for

selecting these tools and technologies was their open source nature as well as

their efficient support by the development community. These technologies

and tools had to be configured and used in order to define the appropriate

architecture of the hazard and early warning analysis DSML. Details on the

DSML constructs and on the result from the utilisation of these technologies

will be given in the following chapters.

56



Everything should be made as simple as possible, but

not simpler.

Albert Einstein 6
Hazard and Early Warning Analysis

DSML: Requirements, Specifications

and Architecture

T
HE previous chapters described the alternative strategies for devel-

oping a DSML as well as the rational for selecting the "development

from scratch" strategy for the hazard and early warning analysis DSML.

This chapter will proclaim the requirements and specifications of the DSML

and it will describe how they were defined. Furthermore, the architecture of

the DSML will be presented. As mentioned in Chapter 3, there are two main

tasks that should be accomplished when developing a DSML from scratch.

The first is to define the specifications of the DSMLs abstract syntax and the

second is to define its concrete syntax. Sections 6.1 to 6.2 will describe in

detail the process for defining the abstract syntax of the hazard and early

warning analysis DSML and sections 6.3 to 6.3.3 will describe the process

for defining its concrete syntax. In essence, this chapter reveals the linguistic

characteristics of the hazard and early warning analysis DSML.

6.1 Defining the Meta-models

The steps taken in order to define the meta-models of the hazard and early

warning analysis DSML were the following:

1) Identify the tasks that should be accomplished when the hazard and early

warning analysis is applied.

2) List the concepts and relations that should be represented into the DSML

in order to make the creation of user models, during the execution of each

task of the analysis, feasible.

57



6.1. Defining the Meta-models

3) Define the requirements, based on which the meta-models will be speci-

fied, so that, each user model will "hold" the features and data necessary

for the completion of each task of the analysis.

These steps will be described in detail in the following sections.

6.1.1 Hazard and Early Warning Analysis Task Identification

As shown in Table 2.1 the hazard and early warning analysis starts always

with the definition of a hazard. Then, the analysts should accomplish the

following tasks:

• Represent the real world elements, which comprise the reference sys-

tem (i.e. create a control structure diagram), and define the feedback

control process(es) responsible for keeping the system in a safe state.

• Define the conditions that may lead to accidents (i.e. define the inad-

equate control actions) based on the feedback control processes which

identified in the previous task.

• Define the flaws and the early warning signs associated with each feed-

back control process.

Table 6.1: The main tasks and subtasks of the hazard and early warning anal-

ysis after hazard identification step.

58



6.1. Defining the Meta-models

As Table 6.1 shows, the main tasks of the analysis are comprised of sub-

tasks. The subtasks are deriving by the logic sequence of STPA and EWaSAP

steps that, as it was mentioned in section 2.5, compose the hazard and early

warning analysis.

6.1.2 Hazard and Early Warning Analysis Concepts and Se-

mantics

The concepts associated to each main task of the analysis together with their

semantics are shown in Tables 6.2, 6.3, 6.4.

Table 6.2: Domain concepts associated with first main task and their mean-

ings.

59



6.1. Defining the Meta-models

Table 6.3: Domain concepts associated with second main task and their

meanings

60



6.1. Defining the Meta-models

Table 6.4: Domain concepts associated with third main task and their mean-

ings

6.1.3 DSML Meta-model Requirements

After comprehending the tasks and the concepts of the hazard and early warn-

ing analysis, the next step in defining the DSML meta-model specifications

was to collect, with the guidance of domain experts, those features of the

analysis, which should be specified into the meta-model of the DSML. This

step is necessary in order to help the intended users1 of the DSML to create

models that will represent exactly what they need during the execution of

each task and subtask of the hazard and early warning analysis.

Two sets of requirements were identified during this step. The first set

1As noted in chapter 1, the intended users of the DSML are the professionals in particular
domain (i.e. safety analysts).

61



6.1. Defining the Meta-models

comprises of the requirements, which apply when users executing more than

one main tasks of the domain. Table 6.5 depicts these requirements. The

second set comprises of the requirements, which apply when users executing

just one main task. Tables 6.6, 6.7, 6.8 and 6.5 depicts these requirements.

For example, the user of the DSML must have in his disposal a represen-

tation of the concept "inadequate control action" (i.e. Table 6.7), when at-

tempting to create models for the 2nd main task of the domain. This concept,

however, is not necessary for the creation of models that represent the results

of the 1st or 3rd task of the analysis. Therefore, defining the concept of "in-

adequate control action" into the meta-model of the DSML is a requirement

that belongs in to the second set of requirements. To the contrary, the re-

quirement of a "name" property in each concept of the DSML (i.e. Table 6.5),

is common to all tasks of the domain. Thus, the provision of this attribute to

the concepts and relations of the DSML is a requirement that belongs in to

the first set of the requirements.

Table 6.5: Requirements necessary for the execution of at least two main

tasks of the domain

Table 6.6: Requirements necessary for the execution of a first main task of the

analysis

62



6.1. Defining the Meta-models

Table 6.7: Requirements necessary for the execution of a second main task of

the analysis

63



6.2. Meta-Model Specifications

Table 6.8: Requirements necessary for the execution of a third main task of

the analysis

6.2 Meta-Model Specifications

Having produced the list of requirements of the meta-model, the next step

was to transform the requirements in to specifications using the Ecore meta-

modeling language. As mentioned in section 3.3.1.2 the basic constructs of

the Ecore are the EClass, EAttribute and EDataType and EReference. In ad-

dition to these basic concepts, the EENum concept was used for the speci-

fication of the meta-model of the hazard and early warning analysis DSML.

EENum enables the definition of attributes into meta-model elements that

their values, during the user model creation, can be selected from a prede-

fined list. In the GMF meta-modeling tool these Ecore constructs are repre-

sented by the graphical symbols that are shown in Table 6.9.

64



6.2. Meta-Model Specifications

Table 6.9: Ecore concepts and their graphical representation in GMF

Figure 6.1 shows an example of the Ecore meta-model using the GMF

meta-modeling tool. In this example the concept of "Controller" has been

specified in the meta-model of the DSML using the EClass element. The

"Controller" EClass inherits the attributes of the "NamedElement", "Process-

Model" and "ControllerElement" EClasses as per requirements five and six of

Task two in Table 6.7 and requirement one in Table 6.5. The notion of inheri-

tance in the Ecore is depicted in Figure 6.1 with the symbol "-> ".

Furthermore, the "Inadequate_Control_Actions" EReference element is

assigned to the "Controller" EClass to allow the users of the DSML to selec-

tively assign one or many "inadequate control action" elements in it (i.e. note

that the concept of the inadequate control action in Figure 6.1 is defined with

an EENum) as per requirement four of Task two in Table 6.7.

In addition, the requirements that form the constraints of the DSML are

represented with an UML association. For example, the requirement eight

and eleven of Task 2 in Table 6.7, where the user should be able to connect a

controlled process only with a sensor or an actuator element has been repre-

sented in Figure 6.1 with the "ContProc_TO_Sensor_Link" and with the "Ac-

tuator_TO_ContProc_Link" EClasses. The Ecore meta-models for each task

of the analysis have been created in a manner similar to the above example.

65



6.2. Meta-Model Specifications

Figure 6.1: Ecore meta-model specifications.

Figures 6.2, 6.3 and 6.4 represent the meta-model specification of each

main task of the hazard and early warning analysis using UML annotations.

The UML class represent an EClass. The UML generalization represents the

inheritance of the EClass and the UML association represent the EReference

of the Ecore models. The "0..*" UML relations represent some constraints,

like for example in Figure 6.2 where it is used to expresses that the user should

be able to create "more than one" "Control structure diagram" as in require-

ment 1 of task 1 in the Table 6.6. The Ecore model also dictates, in a sense,

which concepts will require a concrete syntax so that to be displayed to the

users. For example, the concept of "control structure diagram" will be graph-

ically represented by its appropriate concrete syntax, whereas concepts, such

as "hierarchical level" and "role", are designed as properties of this concept

and do not require graphical representation of their own. In practice, the

domain experts where the ones who selected the constructs of the DSML

66



6.2. Meta-Model Specifications

that needed graphical icons, having as criterion, the elements that must be

"dragged and dropped" from a pallet in to a canvas when creating their user

models.

Figure 6.2: DSML meta-model specific for the first main task.

67



6.2. Meta-Model Specifications

Figure 6.3: DSML meta-model specific for the second main task.

68



6.2. Meta-Model Specifications

Figure 6.4: DSML meta-model specific for the third main task.

69



6.3. Concrete Syntax Specifications

6.3 Concrete Syntax Specifications

As mentioned at the beginning of this chapter, after the meta-model specifi-

cation step the next step is to define the concrete syntax of the meta-model

elements. In order to do this the following steps must be accomplished.

1) Identify the graphical icons that will represent the meta-model elements

to the users of the DSML;

2) Based on the results of the previous step, specify the concrete syntax of

the DSML;

3) Define the appropriate and necessary validation checks on the user in-

puts.

These, steps will be described in the following sections.

6.3.1 Selection of Graphical Icons

The following procedure was followed to identify the most appropriate set of

graphical icons, to represent the elements of the meta-model elements that

are in need of concrete syntax.

For each element a set of two graphical icons alternatives were shown into

a panel of three domain experts and were asked to select for each concept

that icon, which was most intuitive based on their perceptions to the concept

of the domain. That process was repeated with different icons four times.

The icons, which prevailed in votes during each repetition of the selection

process, were kept aside in order to be used for the formation of four distinct

sets of icon alternatives (i.e. each new icon set was not the same with any

of those set of icons which were prevailed in the selection process). These

sets were formed in two groups of two sets of icons and then each group was

shown again to the panel of domain experts in order to select the most ap-

propriate icon for each concept. This selection process produced the final

two sets of icons, which were shuffled first and then presented for selection

for the last time to the panel of experts. Tables 6.10 , 6.11 and 6.12 shows

the details of the final selection process where the fifth column in each ta-

ble indicates the prevailing icon based on the number of votes given (i.e. see

column number six) by the domain experts of the panel.

70



6.3. Concrete Syntax Specifications

Table 6.10: Selection of graphical icons for the first main task

Table 6.11: Selection of graphical icons for the second main task

71



6.3. Concrete Syntax Specifications

Table 6.12: Selection of graphical icons for the third main task

6.3.2 Concrete Syntax Specifications

After selecting the appropriate graphical icons of the meta-models the next

goal was to specify their concrete syntax with EAnnotations, which is an add-

on to Ecore meta-model tool. Figure 6.5 shows how EAnnotation constructs

were used to specify the concrete syntax of the meta-model element "Con-

troller". For example, as shown in Figure 6.5, the EAnnotation construct "la-

bel" has the value "name" in order to display the name, which a user may give

to a "Controller", whereas the "label.icon" construct has the value "true" de-

fine that the "Controller" will have a specific graphical icon as concrete syn-

tax.

Figure 6.5: Snippet of annotations specified for meta-model of ICAML.

72



6.3. Concrete Syntax Specifications

6.3.3 Validations

The last step in defining the concrete syntax of the meta-model is to define

the validations for a set of user inputs. The purpose of doing this is to add

a mechanism in to the DSML, which will inform or restrict or correct the

users whenever they enter wrong or illegal datatype inputs. Table 6.13 shows

the validations over the DSML on the user inputs. These validations were

originally devised by the designer and then enriched by the domain experts.

Each validator may be enforced to many concepts during the creation of user

models. Tables 6.14, 6.15 and 6.16 show, which validations from the Table

6.13 were applied in each domain concept.

Table 6.13: Validations over user models

Table 6.14: Enforced model validations on the domain concepts of the first

main task

73



6.3. Concrete Syntax Specifications

Table 6.15: Enforced model validations on the domain concepts of the sec-

ond main task

74



6.3. Concrete Syntax Specifications

Table 6.16: Enforced model validations on the domain concepts of the third

main task

After identifying the validation requirements of the DSML the objective

was to specify them using the EVL language. EVL comprises of three main

constructs: (1) the "Context" where the validations will be applied; (2) the

"check" where the specific code for the validation is specified (3) the "mes-

sage", which defines what will be displayed as a message when the check part

will not validate the code. Figure 6.6 depicts an example of EVL code. Assum-

ing that a user has not entered a name for a "Component" in his model, the

EVL code of the example will activate a message, as Figure 6.7 shows, which

will display "Please enter a name" so that to inform the user for his omission.

Figure 6.6: Snippet of EVL code.

75



6.4. DSML Architecture

Figure 6.7: Validation on user model.

6.4 DSML Architecture

Having the abstract and concrete syntax of the DSML defined, the point has

been reached, where the architecture of the entire DSML was ready to be

finalised. The main issue at this point was to decide if one or more meta-

models should be defined in the M2 level of the architecture, resulting in to

the creation of one or more DSMLs.

As it is shown by other works in DSML, more than one DSMLs can be

defined and then integrated to create a solution in a problem domain. In

these cases, the number of the DSMLs was dictated by the number of the

main tasks, which according to the domain experts, must be accomplished.

For example, in Genie (Bencomo, Grace, Flores, Hughes and Blair, 2008b) the

domain had two main tasks in need of modeling namely, the environment or

context variability, and the structural variability. Therefore, two DSMLs were

integrated in one solution. That accords also with (Van Deursen et al., 2000),

(Zdun, 2002) and (Lewis and Launchbury, 1998) that advocates that domain

specific language should be small and specific to the tasks of the domain.

In the case of the hazard and early warning analysis DSML, the domain

has three main tasks. Some tasks, share the same meta-model elements. For

example, the controller, sensor and actuator elements are shared between

the first and second tasks. However, in the context of the first task the pur-

pose of their existence is to represent the physical elements of the reference

system, whereas in the second task their purpose is to help the users of the

DSML to define the flaws of the feedback control processes. There is, in

essence, a different "methodological" need that must be satisfied with these

concepts in each task of the domain and therefore the elements are shared.

Thus, it was decided to define three meta-models into level M2 of the archi-

tecture of the hazard and early warning analysis DSML, each one specific to

the main tasks of analysis.

76



6.4. DSML Architecture

As a result, there will not be one hazard and early warning analysis DSML.

Instead, there will be three task oriented DSMLs that will be integrated to-

gether in one prototype software editor in order to allow the intended users

to create models of the hazard and early warning analysis tasks in a consec-

utive manner. One DSML will represent the concepts of the first task of the

hazard and early warning analysis. This DSML is called Control Structure

Modeling Language (CSML) and the UML representation of its meta-model

is depicted in Figure 6.2, the second DSML is called Inadequate Control Ac-

tion Modeling Language (ICAML) and its UML meta-model representations

is depicted in Figure 6.3 and the third DSML is called Analysis Modeling Lan-

guage (AML) and its mete-model representation is depicted in Figure 6.4.

The final architecture of the proposed solution is shown in Figure 6.8. the

M2 level contains the abstract syntax of the three DSMLs. Level M1 contains

the concrete syntax of these DSMLs. In level M0 the three DSMLs are inte-

grated in a software editor that allows the intended users to create hazard

and warning analysis models. Finally, the model transformation layer con-

tains the generated computer code from the user models.

Figure 6.8: The architecture of the proposed solution comprised by three

DSMLs.

77



6.5. Summary

6.5 Summary

This chapter described the process based on which the abstract and concrete

syntax of the three early warning sign analysis DSMLs have been defined. At

the beginning of this process the author, with the guidance of domain ex-

perts, has identified the tasks of the analysis and has listed their associated

concepts and attributes. The result of this phase was to group the tasks of

the domain into three main tasks. In the second stage of the process, the au-

thor defined the abstract syntax of the DSML. He then defined the concrete

syntax of those concepts, which should have graphical icons. The graphical

icons were selected by a panel of domain experts.

In addition, the architecture based on which the three DSMLs were de-

signed in order to enhance the creation process of hazard and early warning

analysis models has been presented. The architecture contains three meta-

models at the level M2, namely the CSML, ICAML, and AML meta-models,

each one of which is dedicated to a separate task of the domain. The purpose

of the CSML is to enable the users to define the boundaries of the reference

system and its key elements. The purpose of the ICAML is to enable users

to create models that represent the feedback control processes of the refer-

ence system and to define their inadequate control actions. The purpose of

the AML is to allow the users to create models of accident scenarios and to

define the early warning signs at each causal factor to a loss.

The level M1 of the architecture contains the concrete syntax of each meta-

model of level M2. Level M0 contains the user models of these three DSMLs

and the model transformation layer of the architecture contains the pro-

gramming code generated by the user models. In level M1 the three DSMLs

of the early warning sign analysis are integrated in a prototype software edi-

tor. The architecture of this editor, together with its mechanism for the gen-

eration of computer code from the user models, will be described in the next

chapter.

78



Good visual layout shows the logical structure of a pro-

gram.

Steve McConnell 7
Design and Architecture of the

Hazard and Early Warning Analysis

Editor

T
HE previous chapter described the requirements and specifications

of the three DSMLs, which combined, enhance the creation of haz-

ard and early warning analysis models. This chapter focuses on the

design of a prototype software editor, which was created to facilitate the cre-

ation of user models, from the constructs of the abstract syntax of the three

DSMLs. The goal of this editor is to allow safety practitioners or other pro-

fessionals, working in critical infrastructures, to conduct hazard and early

warning analysis and to generate software code as a result of their analysis.

The way in which the DSM technologies were used and combined to create

the hazard and early warning analysis editor is not claimed as contribution

in this dissertation. However, because the hazard and early warning analysis

editor was used extensively to collect the data necessary to prove the hypoth-

esis of this dissertation the description of its design and architecture deemed

necessary.

7.1 Prototype Software Editor Requirements

The design of the prototype software editor started with the identification

of its requirements. There were two types of requirements: functional and

nonfunctional. Functional requirements describe what the system should

do. According to Sommerville (Sommerville, 2011), the functional require-

ments are "statements of services the system should provide, how the system

79



7.1. Prototype Software Editor Requirements

should react to particular inputs and how the system should behave in par-

ticular situations". The non-functional requirements, are not directly con-

cerned with the specific services delivered by the system to its users, how-

ever, they usually specify the characteristics of the system as a whole, such

as performance, availability, usability (Sommerville, 2011). The functional

requirements of the hazard and early warning analysis editor are shown in

Table 7.1.

Table 7.1: Functional requirements hazard of the prototype editor

Figure 7.1: The consecutive tasks and subtasks of the domain and the three

DSMLs.

80



7.2. Architecture

A number of non-functional requirements have been reported for soft-

ware products, such as robustness, usability, security and reliability require-

ments. From the users’ perspective, the most important non-functional re-

quirement is in this case the usability. The (ISO, 1998) defines usability as:

The extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified

context of use. Table 7.2 shows the usability requirements of the hazard and

early warning analysis prototype editor.

Table 7.2: Usability requirements of the hazard and early warning analysis

prototype editor.

7.2 Architecture

The architecture of the prototype hazard and early warning analysis editor is

shown in Figure 7.2. It has a four layer architecture consisting of :

1) Dedicated editors’ layer;

2) Ecore models layer;

3) Code generation layer;

4) Database layer.

The first layer contains the editors with the appropriate graphical inter-

faces that a) enable the creation of user models and b) enables its users to

query and extract user model data. The Ecore models, which define the ab-

stract syntax of each DSML reside in the second layer. Whereas, the code

generator facilities of each DSML resides into the 3rd layer of the architec-

ture. The 4th layer contains the database facility, which is responsible for the

storage of the generated code.

Each layer of the architecture is described in detail in the following sec-

tions.

81



7.2. Architecture

Figure 7.2: The architecture of the prototype hazard and early warning anal-

ysis editor.

7.2.1 Dedicated Editors Layer

The Dedicated Editors Layer is the top layer of architecture and comprises of

four editors. The CSML Editor, ICAML Editor, AML Editor and Database Ex-

plorer Editor. The first three editors are GMF based editors and each of them

corresponds to a domain specific modeling language (i.e. CSML, ICAML, and

AML described in section 6.4 ) and the fourth editor is a database explorer

editor that enables the users to execute queries over the data stored in the

database.

The process based on which the three GMF based editors are created from

their Ecore models during runtime is shown in Figure 7.3. From a domain

model (e.g. CSML Ecore), the corresponding graphical definition model (i.e.

.gmfgraph) and tooling definition model (i.e. .gmftool) and the mapping def-

inition model (i.e. .gmfmap) are generated.

The tooling definition model provides a "blueprint" of the layout, which

the dedicated DSML editors will have. As result to this, there are some fea-

tures that are commonly available in the editors, such as the commands

"open", "save", "print", "copy", "paste and "undo" and the features such as

menu bar, buttons, dropdowns, windows and other controls to give com-

mands and enter data in each active editor.

82



7.2. Architecture

Figure 7.3: Generation of a GMF based editor from the domain model.

One additional common feature provided by the tooling definition is the

three elements that form the layout of each DSML editor. These are : 1)

Palette; 2) Editor View and 3) Property View. The Palette is the placeholder for

a set of graphical icons representing the concepts of a domain specific mod-

eling language, such as components and links. The support of drag-and-drop

feature on these editors allow users to perform "grabbing and dragging", that

is, to select a graphical icon from the palette and dropping it onto the editor

view. The editor view represents the main window of the editor, where the

user model diagrams are drawn. The property view is used to display the

properties or attributes of the graphical icons placed on the editor view of

an editor and allows user to insert, edit and delete the information on them.

The graphical definition model provides the concrete syntax of each DSML

needed for the definition of the graphical elements that will be displayed in

the editor. The mapping definition model serves for establishing a link be-

tween the graphical definition model and the tooling definition model by

creating the generator definition model (i.e. .gmfgen). The generator defi-

nition model is then used to generate the GMF editor.

Furthermore, each dedicated editor has a code generation button, as Fig-

ure 7.4 shows, that enable users to generate software code from their models.

This button is created by integrating Eclipse extension point (i.e. org.eclipse

83



7.2. Architecture

.ui.actionSets1(Gamma and Beck, 2004)) functionality in to the GMF dedi-

cated editors.

Figure 7.4: Graphical icon to generate code on the menu bar.

The database query editor was originally developed by open source project

named Eclipse SQL Explorer2 and it was integrated as plug-in to the proto-

type software editor. In order to enable queries over the user models there

was a need to store the information of the models in to a database. That was

achieved at first with Hibernate (Bauer and King, 2006). However, the users

were not always providing values into the "id" property of the elements of

their models. As consequence it was not possible to execute queries in ev-

ery case because the "id" value was needed to identify each element of the

user models and their relations. Therefore, it was decided to remove the "id"

property from the meta-model specifications of the DSMLs and to generate

xml documents that describe the user models. This document then was used

to retrieve the answers to the queries. This approach required to parse the

XML document and to insert and "id" value at the runtime to each tag of the

xml document that corresponds to the elements of the user models as shown

in the snippet of Figure 7.5. Then, the parsed XML document is saved into

the relational database by opening a JDBC connection.

Altogether three database schemas were created to store the information

from the use of each hazard and early warning analysis DSML. Figure 7.6

shows the database schema with its referential integrity constraints devel-

oped to store the information of the models created using the constructs of

AML.

1Further information available at http://help.eclipse.org/indigo/index.jsp?topic=
%2Forg.eclipse.platform.doc.isv%2Fguide%2Fworkbench_basicext_actionSets.htm,
last accessed (11th October, 2012).

2Eclipse SQL Explorer, at http://www.sqlexplorer.org/index.php, last accessed (11th

October, 2012).

84



7.2. Architecture

Figure 7.5: Snippet of the java program used to insert an "id" value.

Figure 7.6: Database schema with its referential integrity constraints .

85



7.2. Architecture

7.2.2 Ecore Model Layer

The second layer of the architecture is comprised by the three Ecore models,

which are CSML Ecore Model, ICAML Ecore Model and AML Ecore Model. As

mentioned in section 3.3.1.2. The Ecore meta-models contain the specifica-

tions on all concepts and relationships that must be depicted in the respec-

tive dedicated editors (i.e. CSML editor, ICAML editor, and AML editor). Fur-

thermore, this layer contains the model validations, which were described in

detail in section 6.3.3.

7.2.3 The Code Generation Layer

This is the third layer of the architecture and comprises mainly of three code

generators, which are the CSML Code Generator, ICAML Code Generator and

AML Code Generator. The code generators are used to generate the code

from the user models specified on their respective editors (i.e. CSML editor,

ICAML editor, and AML editor). The code generators are template based M2T

transformations and are executed when the user press the code generation

button shown in Figure 7.4.

The code generator mechanisms were defined with EGL (Kolovos et al.,

2012). EGL has two main elements the static and the dynamic section. The

contents of the static section do not change during the code generation pro-

cess and appear directly in the generated code. The contents of the dynamic

section change, similarly to a variable, which its output value in the gener-

ated code is equal to the text that the user entered in to his models.

For example, referring to Figure 7.7, the tag pair [% %] is used to delimit a

dynamic section as shown in lines 11 to 17 . Any text not enclosed in such a

tag pair is contained in a static section as shown in lines 21 to 25. The [%=expr

%] construct, appends "expr" to the output code generated by the transfor-

mation as "[%=Hazard.name%]" shown in line 6. Also, static and dynamic

sections are used together, as it is shown in lines 6 to 9 or 27 to 29 of Figure

7.7.

Executing this EGL template will produce the generated JAVA code which

is shown in Figure 7.8. The EGL template that was used to generate the XML

code is shown in Figure 7.9 and that code which is generated by this is shown

in Figure 7.10.

86



7.2. Architecture

Figure 7.7: Snippet of EGL template for generating Java code.

87



7.2. Architecture

Figure 7.8: Generated Java code.

Figure 7.9: Snippet of EGL template for generating XML code.

88



7.2. Architecture

Figure 7.10: Generated XML code.

7.2.4 The Database Layer

Lastly, the database layer of the architecture contains the PostgreSQL database

management system, which is a JDBC compliant database. The snippet in

Figure 7.11 shows an example of the code that is executed when a user presses

the code generation button shown in Figure 7.4 in order to store the XML

code generated by the user models in to the database. The code first ensures

that the database is connected, and then the SQL insert statement is exe-

cuted to store the generated code, which represents the components of the

control structure diagram, into the database.

Figure 7.11: Snippet of the java program used to store the generated code

into database.

89



7.3. Workflow

7.3 Workflow

Having described the architecture of the prototype software editor, this sec-

tion will present the workflow of conducting hazard and early warning anal-

ysis using this prototype software. The user activities, which can/should be

done with the editor, are shown in Figure 7.12.

Figure 7.12: UML Activity diagram of prototype early warning sign analysis

DSML software tool.

The AML editor is initially used by the user to define hazards that may

escalate into accidents. The user then creates the control structure of the

reference system with its feedback control processes using the CSML editor.

Figure 7.13 shows some elements of the user interface CSML dedicated edi-

tor. The palette of the CSML editor contains the graphical icons representing

the concepts of "control structure", "component" and "link", which are used

to draw control structure diagrams and feedback control processes on its ed-

itor view. The attributes of each drawn model are defined and updated using

the property view, where dropdown menus enable, in some cases, the users

to select an appropriate attribute value.

90



7.3. Workflow

Figure 7.13: The CSML editor.

If the user desires he can save the models drawn on the CSML editor and

generate the code and continue his analysis. As the analysis proceeds, the

need to assign inadequate control actions to each controller of the feedback

control processes and to define the process model for the controller is satis-

fied by the ICAML editor. Figure 7.14 shows part of the user interface ICAML

dedicated editor. The palette of the ICAML editor contains a set of graphical

icons representing the concepts of "actuator", "controlled process", "con-

troller", "inadequate control action", "sensor" and "links". These graphical

icons are used to draw feedback control processes on the editor view and to

assign inadequate control actions to their controllers. The user can select the

appropriate type of inadequate control action from a dropdown menu avail-

able at the property view. In addition, the process model of each controller

of the control structure can be defined and updated by entering data into a

text field in the property view.

91



7.3. Workflow

Figure 7.14: The ICAML editor.

Thereafter, the AML editor is used to define the possible flaws and warn-

ing signs of a feedback control process. Figure 7.15 shows the user interface

of the AML editor. The palette of the AML editor contains a set of graphi-

cal icons representing the concepts of hazard, causal factors and links. With

these graphical icons, the user can create a hazard analysis scenario where

the relations between the hazard and its causal factors are defined. The prop-

erties, which are visible from property view, enable users to select the appro-

priate type of flaw from a drop down menu and to define its associated early

warning signs.

92



7.3. Workflow

Figure 7.15: The AML editor.

The computer code can be generated from the models drawn in each

of the dedicated editors into either in XML or Java format. Furthermore, a

database explorer editor enables users to query and browse the user data. As

shown in Figure 7.16, the main components of the database explorer editor

layout include the: Connections View for managing database connections;

SQL Editor View to execute queries and displays its execution time; SQL Re-

sult View to display the results on executing Sql statements, SQL History View

to display successfully executed queries. The information about the number

of times the query is executed and the date and time of it execution is also

provided in SQL History View. The Database Structure View and Database

Detail View allow the user to explore the database tables and to view infor-

mation about the data types of its records.

93



7.4. Summary

Figure 7.16: The Database Explorer editor.

7.4 Summary

The chapter has presented the functional and non functional requirement of

the prototype hazard and early warning analysis DSML editor and provided

a detailed description of its architecture.

The architecture consists of four layers. The first layer contains the dedi-

cated editors for the DSMLs described in Chapter 6 and a database explorer

editor to enable its users to query and browse the data of their analysis. The

second layer contains the Ecore modes and the user model validators for the

three DSMLs. The third layer contains three code generators for each DSML.

Finally, the forth layer contains the database management system that is

used to save and query the generated code from the user models.

Furthermore, the workflow to construct hazard and early warning analy-

sis models using the prototype software editor was described and the layouts

of each dedicated editor were presented. A user who would like to run this

prototype editor needs to install into his/her computer the Java Runtime en-

vironment (JRE)3 and PostgreSQL in order to form the necessary software

ecosystem that will make the editor working.

3Information available at http://www.oracle.com/technetwork/java/javase/
downloads/jre-6u25-download-346243.html, last accessed (11th October, 2012).

94



Nothing resolves design issues like an implemen-

tation.

J. D. Horton 8
Evaluation

H
AVING described the architectures of the hazard and early warning

analysis DSMLs and of the prototype software editor, this chapter

will firstly present the results of a usability evaluation approach of

the DSMLs via the use of prototype software editor and secondly, the results

of its benchmark tests. The results of the usability evaluation tests were used

in order to assess the effectiveness of the DSMLs (i.e. the degree to which

the DSMLs allow the users of the prototype software editor to complete all

the tasks of the domain) as well as the satisfaction and effectiveness aspects

of usability of the prototype software editor. In order to assess the efficiency

aspect of usability of the prototype editor benchmark tests were conducted,

which measured the time required by the users to conduct the hazard and

early warning analysis with and without the prototype editor.

8.1 Overview of the Evaluation Process

The hypothesis in this dissertation is that the three graphical DSMLs de-

scribed in Chapter 6 enable experts to perform hazard and early warning

analysis in a usable manner. Thus, there are two questions that need to be

answered.

1) Does the DSMLs enable analysts to complete the tasks of the domain?

2) Is the prototype software editor presented in Chapter 7 usable?

In order to answer the first question affirmatively a set of analysts must be

able to complete the three main tasks and the seven subtasks of the hazard

and early warning analysis, described in section 6.1.1, with the constructs

which are provided by the three DSMLs. In order to answerer the second

question it is necessary to assess, as per the ISO definition of usability that

95



8.2. Methods

was mentioned in section 7.1, the effectiveness, efficiency and satisfaction

aspects of usability of the prototype software editor. Specifically, as described

in Table 7.2 , effectiveness implies in this case that the users of the prototype

software editor should be able to complete all the tasks of the hazard and

early warning analysis. Efficiency implies that it should take less time for the

users of the editor to complete the tasks of the analysis compared to the time

it takes to complete the analysis manually (i.e. without the use of prototype

software editor). Finally, satisfaction implies that the prototype editor should

have an easy to use interface that match their expectations.

A response to the first question can be acquired if the assessment on the

effectiveness aspect of the usability of the prototype software editor is affir-

mative. Indeed, the usage of the three DSMLs can be realised only via the

prototype editor. Thus, if the usability evaluation results of the prototype ed-

itor show that the users were able to complete all the task of the hazard and

early warning analysis this will imply that the three DSMLs described in this

dissertation are effective.

8.2 Methods

There is a number of software usability models, such as those, which will

be described in section 8.2.1. These models extract the user perception on

the usability aspects with questionnaires. The focus of the questions in the

questionnaire spans all aspects of usability. However, the assessment on the

efficiency aspect of the usability based on these models is not so precise. To

address this issue, benchmark tests were considered necessary in order to

measured the time required by the users of the prototype editor to conduct

the hazard and early warning analysis with and without it.

8.2.1 Usability Evaluation Methods

User’s perceived usability ratings is a means to assess the usability of a soft-

ware tool. These ratings are often collected using questionnaires (Vuolle et al.,

2008). A number of usability rating methods exist such as the Questionnaire

for User Interface Satisfaction (QUIS) (Chin et al., 1988), Software Usability

Measurement Inventory (SUMI) (Kirakowski and Corbett, 1993)and System

Usability Scale (SUS) (Brooke, 1996).

The QUIS is a questionnaire that was created to gauge the satisfaction as-

pect of software usability in a standard, reliable, and valid way (Akıllı, 2005).

96



8.2. Methods

It is arranged in a hierarchical format and contains: (1) a demographic ques-

tionnaire, (2) six scales that measure overall reaction ratings of the system, (3)

four measures of specific interface factors: screen factors, terminology and

system feedback, learning factors, system capabilities, and (4) optional sec-

tions to evaluate specific components of the system: technical manuals and

on-line help, on-line tutorials, multimedia, Internet access and software in-

stallation (Akıllı, 2005). Each question is rated on a scale from 1 to 9 with pos-

itive adjectives anchoring the right end and negative anchoring the left. In

addition, the "not applicable" option is listed as a choice. Additional space,

which allows the responder to make comments, is also included within the

questionnaire. The comment space is headed by a statement that prompts

the responder to comment on each of the specific interface factors. The QUIS

7.01 is the current version of the rating method and requires a license for its

use.

The SUMI is a questionnaire that provides standardised measurement of

user satisfaction with software, which can be used for the evaluation and

comparison of products (or versions of a product) and can set and track ver-

ifiable targets regarding satisfaction2. SUMI measures five aspects of user

satisfaction, namely the affect, efficiency, helpfulness, control, and learnabil-

ity (Bevan, 1995). The questionnaire contains 10 statements for each of the

five satisfaction aspects totaling the number of 50, such as "This software

respond too slowly to inputs", "I would recommend this software to my col-

leagues" to which the person who fills the questionnaire has to report if he

agrees, disagrees or if he is undecided. The developers of the SUMI recom-

mend administering the questionnaire to a group of 12 participants directly

after a test with the product and before any debriefing interview. It can also

be used in a survey, with larger groups of users. Similarly to QUIS, SUMI re-

quires a license for its use3.

The SUS is a usability questionnaire consisting of ten standard questions

(e.g. "I found the interface was easy to use" , "I think I would not like to use

this system frequently"). Each question is accompanied by a Likert’s format4

1Information available at http://lap.umd.edu/quis/, last accessed (11th October, 2012).
2Information at http://www.allaboutux.org/sumi?replytocom=2470, last accessed

(11th October, 2012).
3Information available at http://sumi.ucc.ie/index.html, last accessed (11th October,

2012).
4The Likert scale was named after Rensis Likert, who invented the scale in 1932.

97



8.2. Methods

type rating scale, that is a 5 point scale from 1 to 5, with statements rang-

ing from strongly agree, at the left of the scale, to disagree, at the right of the

scale. By marking a scale point for each question of the questionnaire the

responders indicate their degree of agreement or disagreement. The respon-

ders have an opportunity to use the system being evaluated and then fill the

questionnaire. The statements are written with positive and negative asser-

tions about the usability aspects of the software and these are listed in the

questionnaire alternately. The order of the statements in the questionnaire

is numbered. The statements with positive assertions take an even number

in the order of the list of statements in the questionnaire whereas the state-

ments with negative assertions take an odd number.

The first step in order to calculate the final SUS score of each question-

naire is to calculate the score of each of its statements. The score of the state-

ments with odd numbers (i.e. 1, 3, 5, 7, and 9) is the number of the user

rating number subtracted by one, whereas the score for the statements with

even order numbers (i.e. 2, 4, 6, 8, and 10) is five subtracted by the user rating

number. The second step is to sum the scores of all statements and multiply

the result of the summation with 2.5. The final SUS usability score of each

questionnaire ranges from 0 to 100. The higher the SUS score, the higher is

the perceived usability. If the SUS score in in the range of 70s it is acceptable,

in 80s it is considered good and in 90s it is considered as exceptional (Bangor

et al., 2009). SUS was the method which was selected to assess the users’ per-

ception upon the usability of the prototype software editor because, as men-

tioned by (Salvendy, 1997), (Zviran et al., 2006) and (Sauro and Lewis, 2011), it

is likely the most popular questionnaire for measuring attitudes toward sys-

tem usability.

8.2.2 Benchmarking Methods

Benchmarking is the process of testing the performance of a process. There is

no single benchmarking process or model. In fact, there are as many bench-

marking models as there are authors on the subject (Beatty and Kelley, 1994).

However, the benchmarking testing processes have in general similar phases.

The preparation phase, where initial tasks and the necessary planning is tak-

ing place, the data collection phase, during which the data for assessing the

benchmarking measures are collected via tests, the nature of whom depends

on what it is to be benchmarked (i.e. a process, a strategy, a software etc.),

and finally, the analysis phase where a final result is produced.

There are several forms of benchmarking depending on the objective of

98



8.3. Evaluation Approach

the benchmarking study, such as process benchmarking, strategic bench-

marking and performance benchmarking. For example, process benchmark-

ing aims at comparing the methods and practices for performing business

processes. It is used to improve the way processes performed every day and

its focuses on the day-to-day operations of an organisations (Bogan and En-

glish, 1994) (Lankford, 2000). Strategic benchmarking is a comparison of the

strategic choices and dispositions made by other companies. It deals mostly

with top management and focuses on how companies compete. This form

of benchmarking looks at what strategies the organizations are using to make

them successful in relation to best practice companies’ processes (Bogan and

English, 1994) (Lankford, 2000). Performance benchmarking is the compar-

ison of performance measures, such as reliability, quality, speed, time and

other product or service characteristics. It is used when organizations want

to look at where their product or services are in relation to competitors on

the basis of these measures (Bogan and English, 1994) (Lankford, 2000). The

approach that was followed in evaluating the prototype software editor is

similar to the one recommended by (Shikhar, 2008), for conducting a perfor-

mance benchmark of a software application. This approach has four main

phases: 1) planning; 2) test suite development; 3) performance test execu-

tion; 4) analysis and review.

The objective of the planning phase is to identify the number of users

involved, the hardware that will be used and the testing approach. At the

test suite development phase the testing environment and the performance

monitoring process are setup. For example, during this phase some testing

models and data population scripts may be created. In the performance test

execution phase the tests are executed until the performance testing objec-

tives are met and the results can be obtained. Finally, in analysis and review

phase the data collected from the previous phase are consolidated and anal-

ysed.

8.3 Evaluation Approach

The evaluation approach of the prototype software editor was conducted in

two phases. The first phase aimed at collecting the data about the satisfac-

tion and effectiveness aspect of usability of the prototype editor. The method

used during this phase was the SUS questionnaires. For the first phase it was

decided to use two SUS questionnaires instead of one. The questions of the

first questionnaire dealt with the satisfaction aspect of the usability, whereas

99



8.3. Evaluation Approach

the questions in the second dealt with the effectiveness aspect. This decision

was made because of the ten question limit of the SUS questionnaire. More

precisely, it was assessed that if one SUS questionnaire was used, with ques-

tions which will span all aspects of usability, it will not provide enough data

to answer the first question of the evaluation about the effectiveness of the

three DSMLs.

The second phase aimed at conducting the benchmarking tests to mea-

sure the efficiency aspect of the usability of the prototype editor by measur-

ing the time, a set of experts needed, to conduct the hazard and early warning

analysis manually, against the time needed to conduct it with the prototype

editor.

The requirements for proceeding with the two phases of the evaluation,

were: a) to identify a safety critical system, which will be use as a reference

for the hazard and early warning analysis models and b) to identify a set of

users/participants.

8.3.1 The Reference System

The safety critical system that selected as reference for the hazard and early

warning analysis models was the disinfection process in a drinking water

treatment works. The drinking water treatment works is located in Cork City,

Republic of Ireland and treats approximately 47,000 meters cubed of water

(10 million gallons) per day for a population of 120,000. It is operated and

managed by staff 24 hours a day, every day of the year. The water treatment

works is managed and administered by a water treatment works manager as-

sisted by a team of operators who follow a series of operating procedures and

best practice guidelines to ensure that the works is operating properly and

producing clean and wholesome drinking water at all times. In the water

treatment process, untreated water (i.e. raw water) is taken from a river (i.e.

River Lee) and is treated at the water works to supply drinking water. The var-

ious stages or processes of treatment at the water treatment works includes:

coagulation, flocculation and clarification followed by filtration, disinfection

and fluoridation. In the disinfection process, the water is disinfected using

chlorine gas before being pumped into the distribution network.

The disinfection process in water treatment is the most important step

to ensure that the water is safe for consumers to drink. Disinfection of wa-

ter means the destruction of organisms to such low levels that no infection

of disease results, when the water is used for domestic purposes including

100



8.3. Evaluation Approach

drinking (Johnson et al., 2009). Chlorine gas is the disinfection method em-

ployed at the water treatment works. The components of the water treatment

plant that are involved in the disinfection process can be broken down into

the following components: Chlorine supply, chlorine injection, disinfection

element and the water treatment works manager.

The chlorine supply unit (as shown in Figure 8.1) controls the pressure of

chlorine gas and thereby allows the infusion of regulated chlorine gas pres-

sure from the chlorine injection into the water at the disinfection element.

The disinfection element of the water chlorination process is the area where

the disinfection takes place by infusing the regulated chlorine into the un-

disinfected water present in its contact tanks. The residual chlorine monitor

located in the contact tank measures the residual chlorine reading and con-

vey this information back to the chlorine supply. This allows the chlorine

supply to control the whole water chlorination process thereby maintaining

the safety of the water. The information on the status of the whole water chlo-

rinating process is fed to the water treatment works manager who in turn is

responsible for the supervision of the entire water treatment works.

Figure 8.1: Part of the chlorination system of water treatment works.

101



8.4. 1st Evaluation Phase

8.3.2 The Participants Groups

In each evaluation phase, the prototype software editor was used by users

who were asked to create hazard and early warning analysis models. During

the first phase of the evaluation the users formed two groups. The first group

consisted of those who had well established knowledge of the hazard and

early warning analysis and the second group was comprised of members of

the staff of the drinking water treatment works (i.e. they were domain experts

in drinking water treatment plants operations). Each group was composed

of four experts. The experts in drinking water treatment plant domain had

no experience with the hazard and early warning analysis. An expert from

the first group (i.e. with established knowledge of the hazard and early warn-

ing analysis) assisted the users of the second group and in the same way, an

expert from the second group (i.e. with domain experts in drinking water

treatment plant) assisted the user of the first group. Thus, three users of each

group have used the prototype editor and complete the SUS questionnaires.

For the second phase of the evaluation, the participants were the same

four hazard and early warning analysis domain experts participated in first

phase of the evaluation.

8.4 1st Evaluation Phase

The main tasks of the evaluation at this phase were to:

1) Prepare the two SUS questionnaires with ten questions each. As men-

tioned in section 8.2.1, one questionnaire was composed of ten questions

focused mainly on the satisfaction aspect of the prototype editor, whereas

the second contained questions focused on the effectiveness of the three

DSMLs.

2) Let the user groups of the drinking water and of the hazard and early

warning analysis experts perform an analysis for the disinfection process

of the drinking water treatment works using the prototype software editor.

3) Pass both SUS questionnaires to the participants, analyse their ratings

and calculate the overall SUS score for each individual participant.

At the beginning, questionnaire have been prepared according to the SUS

guidelines. A copy of each type of questionnaire is provided in Appendix A.

Next, the experts from the two participant groups were gathered in the

drinking water treatment works to participate into a series of introductory

102



8.4. 1st Evaluation Phase

sessions in order to be introduced to the hazard and early warning analysis

and in to the operations of the disinfection process. During these sessions

the hazard and early warning analysis experts explained the method and in-

troduced the concepts of the analysis as well as the icons/symbols and other

features of the user interface of the prototype software editor to the drinking

water treatment works experts. They also provided notes that demonstrated

the use of the prototype software editor. The drinking water treatment works

experts, on the other hand, gave a tour of the operations of the plant and ex-

plained in detail the operations of the disinfection process. Then all together

formed a team and practiced the use of the editor.

Afterwards, one expert from each participant group was assigned to the

other group in order to assist the experts during the sessions where they will

be using the prototype software editor to create hazard and early warning

analysis models for the disinfection process. The three experts in each group

were provided with laptop computers and were asked to perform the analysis

with the prototype software editor. The three experts of each group of users

were free to ask their assistant any question about the hazard and early warn-

ing analysis or about the operation of the disinfection process during the

span of the DSML models creation sessions. However, they were not allowed

to ask for any guidance on how to create the DSML models in to the prototype

software editor. There were 13 sessions that lasted three to four hours each,

during which the experts in both groups were creating the hazard and early

warning analysis models of the disinfection process. All experts were asked

to analyse the same hazard "The water chlorination process should always

disinfect the water". Furthermore, they were asked to consider their analysis

as complete only when they manage to define at least two hierarchical levels

of the disinfection process. This practically means to define a "control struc-

ture diagram", with at least two elements having the role of controllers, two

types of "Inadequate control actions" for each controller, and two "Process

models", as well as at least four "Causal factors" associated to the "Hazard"

with at least four "Early warning signs".

Finally, the questionnaires were passed to the experts and were asked to

provide a rating to each question. What followed was the calculation of the

SUS score for each expert together with the analysis of the results.

103



8.4. 1st Evaluation Phase

8.4.1 Indicative Example

The hazard and early warning analysis models created by one of the experts

of the first group of participants during this evaluation phase are shown be-

low as indicative example of their creation process.

As previously mentioned the hazard, which all experts analysed is the

"The water chlorination process should always disinfect the water". The first

task of the expert in this case was to define the concept of "Hazard" in his

models. That was possible by interacting with the AML editor of the proto-

type editor by completing the following steps:

1. The graphical icon, which represent the concept of a "Hazard" in

the AML modeling language, was selected from the palette of the AML

editor and placed in the editor view.

2. The expert then entered the proper values of the properties of the "Haz-

ard" concept, such as its name, effects, label and description of the

"Hazard" by interacting with the property view of the user interface as

Figure 8.2 shows. In this case, for example, the value of the name of the

"Hazard" is "The water chlorination process should always disinfect the

water"

Figure 8.2: The concept of "Hazard" specified using AML editor.

Next, the expert created a model of the "Control structure diagram" of the

disinfection process by completing the following steps:

1. He selected the graphical icons , and from the palette

of CSML editor which represent the concepts of "Control structure di-

agram", "Component" and "Link" of the CSML modeling language and

created the "Control structure diagram" of the disinfection process. The

result was the control structure diagram model that is shown in Figure

8.3.

104



8.4. 1st Evaluation Phase

2. He was able then to provide the information associated to each element

of the model by entering the necessary values into the property view.

For example, Figure 8.4 depicts the property view of a "Component"

element of the control structure diagram model at the time where the

expert is ready to assigns the "Controller" value into its role attribute.

Figure 8.3: Defining a "Control structure diagram" using the CSML editor.

Figure 8.4: The property view of a component in a "Control structure dia-

gram" using the CSML editor.

Next, the expert created a model of a feedback control process by select-

ing the graphical icons , , , and , which represents

the concepts of "Controller", "Actuator", "Sensor" , "Controlled process" and

"Link" of the ICAML modeling language, from the palette of the ICAML ed-

itor. The expert then was able to define the "Inadequate control actions" in

his models by selecting first the graphical icon , which represents the

105



8.4. 1st Evaluation Phase

concept of "Inadequate control action", from the palette of the ICAML editor

and then placing it into the element of the feedback control process model

that has the role of the controller. A model of a feedback control process is

shown in Figure 8.5. The controller in this model contains an "Inadequate

control action" of the type "incorrectly provided".

He was also capable to define the values of the properties, such as their

name, description etc., of the elements in his feedback control process model

by entering them into the proper field of the property view. For example, Fig-

ure 8.6 shows the property view of the "Inadequate control action" elements

embedded into the controller of the feedback control process model. In this

figure the expert was able to specify the name of an "Inadequate control ac-

tion" as "Regulated Chlorine Gas Pressure" and to specify its type as "Incor-

rectly Provided".

Figure 8.5: Assigning "Inadequate control actions" using the ICAML editor.

Figure 8.6: The "Inadequate control action" dialogue in ICAML editor.

The expert then defined the "Process models" of each controller of his

106



8.4. 1st Evaluation Phase

feedback control process models. Figure 8.7 and depicts how this was done.

Specifically, by interacting with the property view of the controllers in the

ICAML editor the expert has been able to define the values for the "process

model inputs", "process model outputs", "process model rules" attributes of

the controller element. In addition, Figure 8.8 depicts how the domain expert

has updated the "Process model" of the "Controller" with the "Early warning

sign".

Figure 8.7: Defining the "Process model" used to control water chlorination

process.

Figure 8.8: Updating the "Process model" used to control water chlorination

process.

Next, the expert defined the hazard models for the disinfection process

of the water treatment works. In order to do this he selected the graphical

icon from the palette of the AML editor and created as many as need

"Causal factor" elements in to the editor view. He then selected the icon

from the pallet to create the links of his hazard model. He used the links to

connect the "Causal factors" elements between them and with the "Hazard"

element which was represented in to the editor view by the element with the

graphical icon . The result was a tree like hazard model as Figure 8.9

shows. He was able then to define the name, description and generic control

flaw types properties of the "Causal factor" elements as Figure 8.10 shows .

107



8.4. 1st Evaluation Phase

Figure 8.9: Assigning control process flaws using the AML editor.

Figure 8.10: Assigning of possible generic control process flaw type.

Next, the expert defined the "Early warning signs" and their attributes

for each "Causal factor" in the hazard model. In order to do this he has se-

lected the graphical icon from the palette of the AML editor and placed it into

"Causal factor" element of the hazard model for the disinfection process of

the water treatment works. As result, the hazard model has been updated

with the "Early warning signs" of each "Causal factor" of the "Hazard" as

shown in Figure 8.11. The expert has interacted with the property view of

the "Early warning signs" in the AML editor to enter the values of the "Early

warning sign" properties as Figure 8.12 shows.

108



8.4. 1st Evaluation Phase

Figure 8.11: Specifying "Early warning signs" using AML editor.

Figure 8.12: Attributes of "Early warning sign".

Next, the expert generated computer code in xml and java format by click-

ing on the code generation icon placed on the menu bar of a prototype

software editor. The snippet of the computer code generated from the hazard

model shown in Figure 8.11 is shown in Figures 8.13 and 8.14.

109



8.4. 1st Evaluation Phase

Figure 8.13: Snippet of XML code generated using AML editor.

Figure 8.14: Snippet of Java code generated using AML editor.

Next, the expert was able to store the generated XML code into the database

110



8.4. 1st Evaluation Phase

layer of the editor and was also able to query the saved information by writing

SQL statements in to the SQL Editor of the Database Explorer Editor. Figure

8.15 shows an query statement written and executed by the expert to find out

the warning signs related to the flaw "Inappropriate pressure gauge reading

on the changeover control panel for a new drum".

Figure 8.15: A Query performed using database explorer editor.

8.4.2 SUS Data Collection and Analysis

After the creation of the hazard and early warning analysis models the ex-

perts were asked to complete the two SUS questionnaires. Figures 8.16 and

8.17 depict a copy of each SUS questionnaire that have been completed by

one of the experts. What followed that was the calculation of the SUS score

of each questionnaire.

Tables 8.1 to 8.6 and 8.7 to 8.12 shows the ratings given by each expert to

the questions of the questionnaires depicted in Figures 8.16 and 8.17, as well

as the SUS score and how it was calculated.

For example, Table 8.1 shows the ratings given by the expert to each ques-

tion of the questionnaire of Figure 8.16. It also shows the question scores, as

well as the total SUS score. Finally, Tables 8.13 and 8.14 show the overall SUS

scores of each experts ratings on the satisfaction aspect of prototype editor

and of the effectiveness aspect of the DSMLs constructs.

111



8.4. 1st Evaluation Phase

Figure 8.16: User satisfaction ratings over the satisfaction aspect of the us-

ability of the prototype editor.

112



8.4. 1st Evaluation Phase

Figure 8.17: User satisfaction ratings over the effectiveness of the DSMLs

constructs.

113



8.4. 1st Evaluation Phase

Table 8.1: Calculation of the SUS score based on the User 01 ratings of the

questionnaire shown in Figure 8.16.

Table 8.2: Calculation of the SUS score based on the User 02 ratings of the

questionnaire.

114



8.4. 1st Evaluation Phase

Table 8.3: Calculation of the SUS score based on the User 03 ratings of the

questionnaire.

Table 8.4: Calculation of the SUS score based on the User 04 ratings of the

questionnaire.

115



8.4. 1st Evaluation Phase

Table 8.5: Calculation of the SUS score based on the User 05 ratings of the

questionnaire.

Table 8.6: Calculation of the SUS score based on the User 06 ratings of the

questionnaire.

116



8.4. 1st Evaluation Phase

Table 8.7: Calculation of the SUS score based on the User 01 ratings of the

questionnaire shown in Figure 8.17 - Effectiveness Aspect.

Table 8.8: Calculation of the SUS score based on the User 02 ratings of the

questionnaire - Effectiveness Aspect.

117



8.4. 1st Evaluation Phase

Table 8.9: Calculation of the SUS score based on the User 03 ratings of the

questionnaire - Effectiveness Aspect.

Table 8.10: Calculation of the SUS score based on the User 04 ratings of the

questionnaire - Effectiveness Aspect.

118



8.4. 1st Evaluation Phase

Table 8.11: Calculation of the SUS score based on the User 05 ratings of the

questionnaire - Effectiveness Aspect.

Table 8.12: Calculation of the SUS score based on the User 06 ratings of the

questionnaire - Effectiveness Aspect.

119



8.4. 1st Evaluation Phase

Table 8.13: The overall SUS scores of each expert for the satisfaction aspect

of the prototype editor.

Table 8.14: The overall SUS scores of each expert for the effectiveness of the

DSMLs constructs.

8.4.3 Discussion of the 1st Evaluation Phase

As mentioned in section 8.2.1. If the calculated SUS score is in the region of

70s it indicates that the usability is acceptable, whereas if it is in the region

of 80s the usability it is considered good and in 90s it is considered as excep-

tional.

Referring to table 8.13, which depicts the overall SUS scores of each ex-

pert for the satisfaction aspect of usability, it can be observed that the score

120



8.5. 2nd Evaluation Phase

ranged between 67.5 to 85.0 with mean value the 76.25. This indicates that

the experts were in overall satisfied with the features of the prototype editor.

Referring to table 8.14 the ratings, which the experts gave to the questions

about the effectiveness of the DSMLs produced SUS scores that ranged be-

tween 72.5 to 87.5 having a mean value of 81.25. This, indicates that the con-

structs of the DSMLs were considered appropriate for completing the tasks

of the hazard and early warring analysis.

Analysing the SUS scores derived by Tables 8.1 to 8.6 for the completeness

aspect of the usability and 8.7 to 8.12 for the effectiveness aspect of usability,

one might observe that the scores of the first three users is slightly higher to

the SUS scores of the last three users. This is due to the fact that the first three

users belong in to the group of experts with knowledge on the hazard and

early warning analysis, whereas the last three users belong in to the group of

users with the drinking water treatment works experts.

The deviation in the SUS scores for the first questionnaire was due to the

user ratings in questions seven "I feel that most non hazard experts can learn

to use this tool quickly" and in eight "I need to learn a lot of things before I

could get going with this system" as shown in Tables 8.1 to 8.6. Specifically,

the water treatment works experts rated these two questions with numbers,

which resulted in lower questions score compared to the hazards and early

warning analysis experts. That was expected because these experts needed

more effort in order to comprehend the concepts of the domain.

The deviation of the SUS scores in the second questionnaire was due to

the user ratings in question seven "I found that I was able to define the con-

cept of hazard and it causal factor elements without any difficulty" as shown

in Tables 8.7 to 8.12. The water treatment works experts rated this question

with numbers, which resulted in lower questions score compared to the haz-

ards and early warning analysis experts. This deviation can be attributed

to the fact that the drinking water treatment works experts had not many

chances of practicing the analysis as many times as the hazard and early

warning analysis experts had.

8.5 2nd Evaluation Phase

The second phase of the evaluation approach aimed at collecting and analysing

the data of the benchmark testes. These data were used to assess the effi-

ciency of the prototype software editor. This phase was concluded in four

steps.

121



8.5. 2nd Evaluation Phase

In the first step, the experts of the first user group (i.e. the four experts

with established knowledge of the hazard and early warning analysis) were

asked to participate into the benchmarking tests. For this purpose, a room

with the appropriate number of desks was arranged. Notes and photographs

of the disinfection process of the water treatment works, which was used

again as a reference system for the hazard and early warning analysis mod-

els, were available in the room. The experts were allowed to bring their own

notes about the reference system taken during their visit in to the drinking

water works. Pencils, pens with sheets of paper were provided also. Further-

more, a stop watch was given to each expert to measure the time he con-

sumed for completing each tasks of the analysis. At some point laptops with

the prototype editor installed were given to the experts. The hardware con-

figurations for these laptops were almost identical with the processor speed

ranging from 1.5GHz to 1.66 GHz, 2 GB RAM memory. All laptops were run-

ning the "Windows 7" operating system.

In the second step, the four domain experts were asked to analyse man-

ually the hazard "The water chlorination process should always disinfect the

water". They were also asked to record the time which were required to com-

plete the tasks of the analysis, by recording the start and end times using

their stop watches. During this step the experts did not had the laptops with

the prototype editor in their disposal. The outcome of this step was a set of

benchmark times for each expert.

In the third step, the four domain experts were asked to analyse the same

hazard with the use of the prototype editor and to record the time required

to finish the each task of the analysis. The result of this step was a set of test

times for each expert.

For the second and third step, the analysis of the expert was considered as

complete based on the definition of the same elements that were mentioned

in section 8.4, which include the definition of a "Control structure diagram",

with two elements having the role of controllers. At least two types of "In-

adequate control actions" and two "Process models" should be defined to

each "Controller", as well as at least four "Causal factors" associated to the

"Hazard" with at least four "Early warning signs".

Finally, in the analysis step the benchmark and test times of each expert

were analysed.

122



8.5. 2nd Evaluation Phase

8.5.1 Benchmarking Data and Analysis

The time, which the experts recorded during the second and third step of the

benchmarking test, are tabulated in Table 8.15. The table includes, the time

of each expert to complete the main tasks of the analysis manually and with

the support of the prototype software editor.

Table 8.15: Time of each expert to complete the main tasks of the analysis

with and without prototype software editor.

As Table 8.16 shows, User 03 was the fastest completing the first main task

of the analysis manually with 14 hours whereas User 04 was the slowest with

24 hours. On the other hand, User 02 and 03 were the fastest completing the

first main task of the analysis with the use of the prototype editor within five

hours. The average time for the manual completion of the first main task

123



8.5. 2nd Evaluation Phase

of the analysis was 18.5 hours whereas for the analysis with the use of the

prototype editor was six hours. Finally, the average increase of efficiency on

completing the first main task with the prototype editor is 208%. Tables 8.17

and 8.18, are depicting similar analyses for the second and third main task of

the analysis.

Table 8.16: Data analysis of the times needed to complete the first main task

of the analysis.

Table 8.17: Data analysis of the times needed to complete the second main

task of the analysis.

124



8.5. 2nd Evaluation Phase

Table 8.18: Data analysis of the times needed to complete the third main task

of the analysis.

The users benefited the most by the prototype tool during the first and the

third main tasks of the domain. Indeed, the average increase of efficiency for

the first main task was 208% whereas for the third was 281%. During the sec-

ond main task the average efficiency increased by 80% , the least compared

to the other two main tasks. A reason for that difference was that during

the manual analysis, the users created sketch models to define the "Control

structure diagram" of the reference system in a manner that resembled the

feedback control processes. That "tweak" enabled them to define the "Inad-

equate control actions" without the need to redraw detailed models of the

feedback control processes of the reference system, saving thus time.

On the other hand, the features and functionalities of the prototype soft-

ware editor, such saving and retrieving their graphical models, the undo and

redo functionalities, but more importantly the effects, which the constraints

of the DSMLs had to the creation of the models, such as the display of a list

of data with the proper values, which were already inserted by the users dur-

ing their work with other editor views, (i.e. reduced the insertion of the same

data values twice) where the main reasons to increase the efficiency.

Table 8.19 depicts the time each expert needed to conduct all tasks of the

hazard and early warning analysis, manually and by using the prototype ed-

itor. The last column of the table shows the percent of the time efficiency

when the software editor was used, whereas its last row depicts the average

time based on the gathered data as well as the average efficiency. Figure 8.18.

depicts a graph that shows the average time the users spent to complete the

125



8.5. 2nd Evaluation Phase

three main tasks of the domain with the use of prototype software editor and

manually.

Table 8.19: The time difference between manual analysis and with the use of

the prototype editor.

Figure 8.18: Average time to complete the main tasks of the domain.

The minimum time to complete the entire analysis manually was recorded

by User 03 whereas the maximum time recorded by User 04. The minimum

126



8.6. Summary

time to complete the hazard and early warning analysis via prototype edi-

tor was recorded by User 03, whereas the maximum time was recorder by

User 04. User 03 recorded the minimum time and the User 04 recorded the

maximum time in both steps of the benchmarking. That was not a surprise

because User 03 had the most experience of completing the analysis, and the

User 04 was the expert who acted as assistant to the group of drinking water

works experts during the first evaluation phase of the prototype editor and

he didn’t created on his own this specific "Hazard" before as the rest of the

users did.

8.6 Summary

This chapter described the two phased evaluation approach. During the first

phase the objective was to assess the satisfaction of those who used the pro-

totype editor and to assess the effectiveness of the three DSMLs, which were

incorporated with the editor. At the second phase, the objective was to assess

the efficiency of the prototype software editor with a benchmark test.

SUS questionnaires were used to collect and analyse the data for the first

objective and for the second objective benchmark tests that measured the

time needed by a group of experts to complete a hazard and early warning

analysis have been conducted.

The findings from the data analysis of the SUS questionnaires have shown

that the users of the prototype editor have rated its satisfaction with a mini-

mum SUS score the 67.5 and with an average SUS score 76.25, with a maxi-

mum possible value the 100, and the effectiveness of the DSMLs with mini-

mum score 72.5 and average score the 81.25. According to the SUS approach,

these numbers imply that the satisfaction of the experts for the software edi-

tor have been rated, at the worst cases, as 67.5 to 76.25 and that the effective-

ness of the DSMLs constructs have been rated from 72.5 to 81.25.

During the second phase, benchmark tests were conducted with four do-

main experts to measure the time, which they needed to complete an hazard

and early warning analysis manually and with the use of the prototype ed-

itor. These tests have shown that it took much less time by the experts to

complete the analysis with the prototype editor. Specifically, the gain in effi-

ciency was at minimum 203% to an average of 214%. The minimum increase

in efficiency was recorded by an expert who, although he was aware of the

reference system, he has never conducted a hazard and early warning analy-

sis for it before.

127



8.6. Summary

Based on the definition, which states that usability is the extent to which

a product can be used by specified users to achieve specified goals with ef-

fectiveness, efficiency and satisfaction in a specified context of use, and after

analysing the results of the evaluation phases on the satisfaction and effi-

ciency of the prototype editor and on the effectiveness of the DSMLs con-

structs it is concluded that the overall usability of the proposed DSML based

solution has been evaluated as good.

128



Learn from yesterday, live for today, hope for to-

morrow. The important thing is to not stop ques-

tioning.

Albert Einstein 9
Summary and Conclusion

T
HIS dissertation has introduced three DSMLs and presented a pro-

totype editor in an attempt to enhance the development of the risk

model elements of early warning systems. The domain of the three

DSMLs is a systems theoretic hazard and early warning analysis approach.

Each DSML contains a number of constructs, which enables its users to ap-

ply each task of the domain via the creation of graphical models in to the pro-

totype editor. The effectiveness of the DSMLs, as well as the usability of their

prototype editor, have been assessed using usability evaluation and bench-

marking tests approaches. This chapter will summarise the dissertation and

it will discuss the claimed contribution. Thereafter, it will introduce future

research directions and expand on some points of self reflection. The chap-

ter ends with final remarks.

9.1 Summary of the Thesis

The thesis began with Chapter 1 which introduced the main areas of research

undertaken. It presented the context of this research, which deals with the

creation of computer based risk knowledge elements of early warning sys-

tems dealing with critical infrastructures safety issues. The problem state-

ment, research objectives and questions were presented. In particular, se-

lecting of DSM technologies that can be helpful to create a new graphical

modeling language, which can be used by an analyst to perform hazard and

early warning analysis.

Chapter 2 introduced the concepts and the methods, which were used in

the domain of the proposed solution. Specifically, concepts such as accident,

hazard and early warning were defined. In addition, a hazard and early warn-

ing analysis approach, which integrates the executional steps of STPA hazard

129



9.1. Summary of the Thesis

analysis and EWaSAP early warning analysis was presented. The chapter also

described all those concepts of the hazard and early warning analysis ap-

proach, which are used for the creation of a DSM solution.

In Chapter 3 the fundamental concepts of DSM were described and the

difference between DSML and DSPL was clarified. In this chapter, the pos-

sible alternative strategies of developing a DSML solution were presented.

These include, the extension of an existing STPA DSML, the refinement of

the SysML meta-model (using the UML profiling mechanism) and the de-

velopment from scratch. A description of the ideas of concrete syntax and

abstract syntax was also provided together with meta-modeling and model

transformation tools and approaches.

Chapter 4 surveyed the existing DSMLs, which are using concepts related

with the domain of the problem of this dissertation. In particular, SOPHIA ,

EAST-ADL, Stream-Oriented DSML, and OpenCOM and Transition Diagrams

DSML were reviewed. From the survey it became obvious that there was not

any STPA DSML in existence. Thus, the alternative of extending an existing

DSML was eliminated. From the survey, it was also found that there was a

lack of methodological guidelines and tool support as well as of code gen-

eration mechanisms for the development of DSML with the refinement ap-

proach. Based on the findings of the literature review, it was decided to de-

velop a hazard and early warning analysis DSML from scratch.

Chapter 5 covered the software technologies such as EVL, EGL, and mod-

eling frameworks such as EMF, GEF that were used to design and develop the

hazard and early warning analysis DSML.

Chapter 6 presented the specifications of 3 DSMLs which combined en-

ables create the proposed solution to the problem. These DSMLs are the

CSML, ICAML and AML. Their combined purpose is to allow its user to com-

plete the 3 main tasks or 7 subtasks of the domain. The abstract syntax and

concrete syntax of each DSML was presented in this chapter together with

their constraints. Finally, the chapter presented an architecture of the haz-

ard and early warning analysis DSML.

Chapter 7 presented the design and architecture of the hazard and early

warning analysis editor. Its architecture consists of four layers. The first layer

130



9.2. Contribution of this Research

contains the CSML editor, ICAML editor, and AML editor and a database ex-

plorer editor. The second layer contains the abstract syntax of the hazard

and early warning analysis DSMLs and their user model validators. The third

layer contains three template based code generators, and finally the fourth

layer contains the database management system where the users models and

the generated code are saved. In addition, the chapter presented the work-

flow on how to conduct hazard and early warning analysis using prototype

software editor.

Finally, Chapter 8 presented the evaluation of the hazard and early warn-

ing analysis DSMLs. The evaluation consisted of two phases. In the first

phase, the satisfaction aspect of the usability of the hazard and early warning

analysis editor and of the effectiveness aspect of the DSMLs were assessed

using the SUS usability evaluation method. In the second phase, the effec-

tiveness aspect of the usability of the prototype software editor was mea-

sured with a benchmark test. The chapter then presented the data obtained

by each phase of the evaluation and the results of their analysis. It was con-

cluded that the overall usability on the use of hazard and early warning DSMLs

was good.

9.2 Contribution of this Research

The novel scientific contributions of this research are the CSML, ICAML and

AML modeling languages. The CSML language is comprised of the "Control

structure diagram" and "Component" elements and a "Link" relation. The

purpose of the CSML is to facilitate the analysts in creating the control struc-

ture diagram models of their reference systems and to assign the role of each

element within the model.

The ICAML language consisted by six elements, namely the "Controller",

"Actuator", "Controlled process", "Process Model", "Sensor", "Inadequate

control action" and four relations namely the "Sensor_TO_Controller_link",

"Controller_TO_Actuator_Link", "Actuator_TO_ContProc_Link", and "Cont-

Proc_TO_Sensor_Link" relations. Its purpose is twofold; the first is to facili-

tate the analysts in creating models of the feedback control processes within

the reference system and to define the "Inadequate control actions" elements

of each element who had the role of controller in the models; the second is

to enable the users of the DSMLs to define and update the "Process Models"

131



9.3. Critical Remarks

of each controller.

The AML language consists of the "Hazard", "Causal factor" and "Early

warning sign" elements and by the "Hazard_To_CausalFactors_Link" and "Link"

relations. Its purpose is to enable analysts to create the causal models of pos-

sible accidents of the reference system and to define their associated early

warning signs.

By combining these three modeling languages together under one proto-

type editor, thanks to a set of DSM technologies, the three graphical DSMLs

enabled a set of analysts, who participated in to a usability and benchmark-

ing tests, to conduct their hazard and early warning analysis models in a us-

able manner. The data, which were collected by the usability and benchmark

tests were presented in this dissertation.

In particular, during the usability tests the average SUS score for the ef-

fectiveness of the three DSMLs was 81.25, which indicates that the modeling

languages were considered as good. In addition, the average SUS score about

the satisfaction of the users who used the prototype editor was 76.25 which

indicates that the DSM technologies that were combined have developed a

satisfactory tool. Finally, the results of the benchmark test has shown that the

average increase of efficiency which the prototype editor provided was 214%.

In overall, these results support the hypothesis of this thesis.

9.3 Critical Remarks

One critical remark of the proposed DSMLs and of their prototype editor is

that of the previous theoretical knowledge. Specifically, the users should have

a very good understanding of the STAMP accident model as well as of the

STPA and EWaSAP approaches. A user who does not have this prior knowl-

edge, will not comprehend the meaning of the constructs of the modeling

languages.

Another remark is that the attributes of the elements of the DSMLs and

their values are predefined. This means that the users neither can customise

or create new properties other than what was defined in the meta-models

of the languages, nor can they change the predefined set of values from the

attributes of the elements. On the other hand, this can be addressed by those

who have the skills to modify the meta-models of the modeling languages.

In reality, a system which is described by one control structure diagram

and a set of feedback control processes may have more than one hazards.

The limitation of the prototype editor, in its current version, is that it enables

132



9.4. Future Research Directions

its users to define just a single and not multiple hazard models using the AML

modeling language. This, however, can be addresses by a major customisa-

tion of the GMF framework.

9.3.1 On the Potential Usefulness of the Research

As described in sections 7.2.3 and 8.4.1 the models created by using the con-

structs of the three DSMLs can generate computer code. Indeed, the code

generation feature was in fact a major factor for selecting a DSM based solu-

tion to the problem of defining the risk knowledge element of early warning

systems. Specifically, Figures 8.13 and 8.14 have shown the snippet of XML

and JAVA code generated by the hazard analysis model which was created

by the constructs of the DSMLs that this dissertation has introduced. Thus,

it has been shown that the three DSMLs have successfully raised the level

of abstraction of the problem domain from the code level to the graphical

model level. Therefore, the three DSMLs that were introduced in this dis-

sertation and their prototype software editor may provide useful services in

the creation process of the risk knowledge element of computer based early

warning systems.

Another useful aspect of the results of this research is that the prototype

software editor of the DSMLs is the first that supports the graphical creation

of hazard analysis models based on STPA systems theoretic hazard analysis

technique. As mentioned in section 1.2. One contributing factor for not using

contemporary techniques is the fact that these have only been in existence

for a few years and, hence, have not been fully comprehended and adopted

by the majority of analysts. Another contributing factor may be the absence

of software editors for the contemporary hazard analysis. Indeed, there are

no software editors for the STPA hazard analysis nor for the hazard and early

warning analysis (i.e. the combination of STPA with EWaSAP). On the other

hand it was shown, with the results of the benchmark tests, that the efficiency

of the experts who used the prototype editor to create hazard and early warn-

ing analysis models has increased by 214% per average. Thus, the prototype

editor presented herein and it future research can contribute in making STPA

and EWaSAP approaches more popular among professionals in this domain.

9.4 Future Research Directions

Three DSMLs were introduced in this dissertation, which combined allow

analysts to conduct the steps of the hazard and early warning analysis in a

133



9.4. Future Research Directions

usable and effective manner. This proposed DSM solution has paved the way

to the following future research directions.

9.4.1 Web Based Accessibility of the DSMLs

The hazard and early warning analysis DSML presented in this research are

meant to be used by domain experts after installing and configuring the pro-

totype software editor on their local computer machine. However, the pos-

sibility of accessing their work from the internet will enable its users to work

from different locations with different computers.

One way of achieving this is by changing the design of the prototype haz-

ard and early warning analysis editor by integrating the Rich Ajax platform

(RAP) (Lange, 2008). RAP is an open source framework developed by the

Eclipse Foundation, which can be used to develop web applications based

on existing Eclipse technologies. RAP utilise the RAP Widget Toolkit (RWT)

libraries that replaces the SWT, which is used as a base for the Draw2D frame-

work that is a part of GEF. The same Java application code that was origi-

nally developed for SWT can also run with RWT, but instead of creating a

display on the local computer screen, the RAP application is acting as a web

server. Web clients that connect to this web server will see a display in their

web browser that mimics the original SWT display. The RAP application is

typically installed in a web container like Tomcat. The RWT library creates

HTML and Java Script code for the web client to send updates to the web

client (Kasemir et al., 2011). In addition, a setup of multi-tenant database

over traditional single tenant database would share the same resources for

each user of the DSMLs.

9.4.2 Creating Hazard and Early Warning Analysis Models in

a Collaborative Manner

Another important future research direction is to design and develop the

necessary technologies, which will enable many analysts who are scattered in

different geographical locations to work simultaneously on the same DSML

model over the internet. With the integration of such technologies the haz-

ard and early warning analysis editor could be used as a collaborative tool.

Currently such DSM technologies do not exist. One way of achieving this

is by adapting Operational Transformation (OT) (Ellis and Sun, 1998) tech-

nologies along with other web technologies. The OT techniques can allows

concurrent operations to be executed in any orders by distributed users, and

134



9.4. Future Research Directions

their final effects are identical. The use of OT techniques does not provide

all the required features, however, it can be used as basis for the creation of

such a prototype software editor which an be used by different users from

their local machine to create models using hazard and early warning DSMLs.

9.4.3 Compare the Updating Process of the Risk Knowledge

Element of a Real Early Warning System

This dissertation has shown that the DSMLs enable analysts to define haz-

ard and early warning analysis manner in a usable manner. A future research

direction is to measure weather the performance of updating the risk knowl-

edge element of a real early warning system will be increased with the use

of the proposed DSMLs. One way of doing this is by setting a benchmark of

the updating risk knowledge element process of a real early warning system

without using the DSMLs and then testing the updating process, this time

with the DSMLs, against these benchmarks.

9.4.4 Reasoning Support

Another future research direction is to provide a reasoning support in to the

prototype software editor in order to enable its users to assess the likelihood

of a hazard given specific data over their created models. This can be address

by integrating a Bayesian Network (BN) (Jensen, 1996), Hidden Markov Mod-

els (Rabiner and Juang, 1986) or Artificial Neural Network (Hsu et al., 1995)

modules in to the prototype software editor. For example, in the case of in-

tegrating a BN reasoning engine the user will be able to insert conditional

probability values in each causal factor in to his AML models in order to cal-

culate the likelihood of the occurrence of the hazard in his models, given the

presence of a set early warning signs, which may be interpreted by the BN as

evidence. It would be interesting to find out which reasoning module, or a

combination of these, will help analysts to better understand the omissions

of their models by studying the outcome of the reasoned modules.

135



9.5. Concluding Remarks

9.5 Concluding Remarks

The thesis addressed two key research questions. The first question was about

the way of integrating DSML technologies in order to create an effective haz-

ard and early warning analysis tool with code generation support. The sec-

ond question was about the number of the DSML languages and their con-

structs, which are required so that to enable analysts to complete the tasks of

the hazard and early warning analysis.

The first question was addressed in Chapter 5, which presented a set of

open source software technologies that were integrated for the creation of

prototype hazard and earl warning analysis editor. The second question was

addressed in Chapter 6, which presented an architecture of three graphical

modeling languages which consists of ten of elements and seven relations.

The author envisages that future advancements in DSM technologies will

further improve the model creation, code generation and integration of the

hazard and early warning analysis DSMLs, which were presented in this dis-

sertation. The author hopes that the proposed DSMLs with their prototype

editor will influence safety analysts in their work by making STPA and EWaSAP

techniques more easy to work with. Furthermore, he hopes that this disser-

tation will motivate new researchers to develop novel and efficient ways in

creating the risk knowledge elements of early warning systems.

136



Glossary
Glossary

AML Analysis Modeling Language.

BN Bayesian Network.

CSML Control Structure Modeling Language.

CSS Cascading Style Sheets.

DSL Domain Specific Language.

DSM Domain Specific Modeling.

DSML Domain Specific Modeling Language.

DSPL Domain Specific Programming Language.

EGL Epsilon Generation Language.

EMF Eclipse Modeling Framework.

EMOF Essential Meta-object Facility.

ETL Epsilon Transformation Language.

EVL Epsilon Validation Language.

EWaSAP Early Warning Sign Analysis Using STPA.

GEF Graphical Editing Framework.

GME Generic Modeling Environment.

GMF Graphical Modeling Framework.

GPL general-purpose language.

HTML Hyper Text Markup Language.

ICAML Inadequate Control Action Modeling Language.

IDE Integrated Development Environment.

IDEF0 Integration Definition for Function Modeling.

ISO International Organization for Standardization.

137



Glossary

JDBC Java DataBase Connectivity.

MDA Model Driven Architecture.

MDD Model Driven Development.

MOF MetaObject Facility.

MS Microsoft.

OMG Object Management Group.

QUIS Questionnaire for User Interface Satisfaction.

RAP Rich Ajax platform.

RWT RAP Widget Toolkit.

SQL Structured Query Language.

STAMP Systems Theoretic Accident Models and Processes.

STPA STAMP-Based Hazard Analysis.

SUMI Software Usability Measurement Inventory.

SUS System Usability Scale.

SWT Standard Widget Toolkit.

SysML Systems Modeling Language.

UML Unified Modeling Language.

XML eXtensible Markup Language.

XPath XML Path Language.

138



Glossary

139



A
Questionnaires

T
HIS appendix presents the answers to the two questionnaire that was

presented to all six experts who participated in evaluation on the sat-

isfaction aspect of the prototype editor on the effectiveness of the

three hazard and early warning analysis DSMLs as mentioned in section 8.4.2.

140



Figure A.1: User 01 ratings of the SUS questionnaire on satisfaction aspect of

prototype software editor.

141



Figure A.2: User 01 ratings of the SUS questionnaire satisfaction aspect of

prototype software editor (Page 2).

142



Figure A.3: User 01 ratings of the SUS questionnaire on the effectiveness as-

pect of the three hazard and early warning analysis DSMLs.

143



Figure A.4: User 01 ratings of the SUS questionnaire on the effectiveness as-

pect of the three hazard and early warning analysis DSMLs (Page 2).

144



Figure A.5: User 02 ratings of the SUS questionnaire on satisfaction aspect of

prototype software editor.

145



Figure A.6: User 02 ratings of the SUS questionnaire on satisfaction aspect of

prototype software editor (Page 2).

146



Figure A.7: User 02 ratings of the SUS questionnaire on the effectiveness as-

pect of the three hazard and early warning analysis DSMLs.

147



Figure A.8: User 02 ratings of the SUS questionnaire on the effectiveness as-

pect of the three hazard and early warning analysis DSMLs (Page 2).

148



Figure A.9: User 03 ratings of the SUS questionnaire on satisfaction aspect of

prototype software editor.

149



Figure A.10: User 03 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2).

150



Figure A.11: User 03 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs.

151



Figure A.12: User 03 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs (Page 2).

152



Figure A.13: User 04 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor.

153



Figure A.14: User 04 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2).

154



Figure A.15: User 04 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs.

155



Figure A.16: User 04 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs (Page 2).

156



Figure A.17: User 05 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor.

157



Figure A.18: User 05 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2).

158



Figure A.19: User 05 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs.

159



Figure A.20: User 05 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs (Page 2).

160



Figure A.21: User 06 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor.

161



Figure A.22: User 06 ratings of the SUS questionnaire on satisfaction aspect

of prototype software editor (Page 2).

162



Figure A.23: User 06 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs.

163



Figure A.24: User 06 ratings of the SUS questionnaire on the effectiveness

aspect of the three hazard and early warning analysis DSMLs (Page 2).

164



References
References

Akıllı, G. (2005). User satisfaction evaluation of an educational website, The

Turkish Online Journal of Educational Technology-TOJET 4(1): 85–92.

Ansorg, R. and Schwabe, L. (2010). Domain-specific modeling as a pragmatic

approach to neuronal model descriptions, Brain Informatics pp. 168–

179.

Artan, G., Restrepo, M., Asante, K. and Verdin, J. (2002). A flood early warning

system for southern africa, Proc., Pecora 15 and Land Satellite Informa-

tion 4th Conf.

Atkinson, C. and Kuhne, T. (2003). Model-driven development: a metamod-

eling foundation, Software, IEEE 20(5): 36–41.

Balagtas-Fernandez, F. and Hussmann, H. (2009). Applying domain-specific

modeling to mobile health monitoring applications, Information Tech-

nology: New Generations, 2009. ITNG’09. Sixth International Conference

on, IEEE, pp. 1682–1683.

Bangor, A., Kortum, P. and Miller, J. (2009). Determining what individual sus

scores mean: Adding an adjective rating scale, Journal of usability stud-

ies 4(3): 114–123.

Bauer, C. and King, G. (2006). Java Persistance with Hibernate, Dreamtech

Press.

Beatty, W. and Kelley, D. (1994). Demonstration of a benchmarking technique

to compare graduate education level of air force project managers and

selected benchmarking partners, Technical report, DTIC Document.

Bencomo, N. (2008). Supporting the Modelling and Generation of Reflective

Middleware Families and Applications using Dynamic Variability, PhD

Thesis, PhD thesis, Computing Department, Lancaster University, Lan-

caster, United Kingdom.

Bencomo, N., Grace, P., Flores, C., Hughes, D. and Blair, G. (2008a). Genie

- supporting the model driven development of reflective, component-

based adaptive systems, pp. 811–814.

Bencomo, N., Grace, P., Flores, C., Hughes, D. and Blair, G. (2008b). Genie

- supporting the model driven development of reflective, component-

based adaptive systems, pp. 811–814.

165



References

Bencomo, N., Sawyer, P., Blair, G. and Grace, P. (2008). Dynamically adaptive

systems are product lines too: Using model-driven techniques to cap-

ture dynamic variability of adaptive systems, 2nd International Work-

shop on Dynamic Software Product Lines (DSPL 2008), Limerick, Ireland,

Vol. 38, p. 40.

Bevan, N. (1995). Measuring usability as quality of use, Software Quality Jour-

nal 4(2): 115–130.

Beydeda, S., Book, M. and Gruhn, V. (2005). Model-driven software develop-

ment, Springer Verlag.

Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I. and Piers, W. (2005). Bridging

the ms/dsl tools and the eclipse modeling framework, Proceedings of the

International Workshop on Software Factories at OOPSLA.

Blom, H., Bakker, G., Blanker, P., Daams, J., Everdij, M. and Klompstra, M.

(2001). Accident risk assessment for advanced air traffic management,

Progress in Astronautics and Aeronautics 193: 463–480.

Bogan, C. and English, M. (1994). Benchmarking for best practice: Winning

through innovative adaptation, New York .

Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The unified modeling lan-

guage user guide, Addison-Welsley .

Boutekkouk, F., Benmohammed, M., Bilavarn, S., Auguin, M. et al. (2009).

Uml2. 0 profiles for embedded systems and systems on a chip (socs),

JOT (Journal of Object Technology) 8(1): 135–157.

Brooke, J. (1996). Sus-a quick and dirty usability scale, Usability evaluation

in industry pp. 189–194.

Brosnan, T. (1999). Early warning monitoring to detect hazardous events in

water supplies, ILSI Risk Science Institute Workshop Report.

Budinsky, F. (2004). Eclipse modeling framework: a developer’s guide,

Addison-Wesley Professional.

Budinsky, F. and Brodsky, S. (2003). Merks, eclipse modeling framework.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R. and Grose, T. (2003). Eclipse

Modeling Framework, Addison Wesley Professional.

166



References

Burgess, M. (2004). Fault tree creation and analysis tool: user manual, Pub-

lished online at http://www.iu.hio.no/FaultCat, last accessed 11th Oc-

tober, 2012.

Bussiere, M. and Fratzscher, M. (2006). Towards a new early warning sys-

tem of financial crises, Journal of International Money and Finance

25(6): 953–973.

Cancila, D., Terrier, F., Belmonte, F., Dubois, H., Espinoza, H., Gérard, S. and

Cuccuru, A. (2009a). Sophia: a modeling language for model-based

safety engineering, MoDELS, Vol. 9, pp. 11–25.

Cancila, D., Terrier, F., Belmonte, F., Dubois, H., Espinoza, H., Gérard, S.

and Cuccuru, A. (2009b). Sophia a modeling language for model-based

safety engineering.

Carminati, B., Ferrari, E. and Bertino, E. (2005). Securing xml data in third-

party distribution systems, Proceedings of the 14th ACM international

conference on Information and knowledge management, ACM, pp. 99–

106.

Chen, Z. and Marx, D. (2005). Experiences with eclipse ide in programming

courses, Journal of Computing Sciences in Colleges 21(2): 104–112.

Chin, J., Diehl, V. and Norman, K. (1988). Development of an instrument

measuring user satisfaction of the human-computer interface, Proceed-

ings of the SIGCHI conference on Human factors in computing systems,

ACM, pp. 213–218.

Clark, T., Evans, A., Sammut, P. and Willans, J. (2004). An executable meta-

modelling facility for domain specific language design.

Claypool, D., McNevin, T., Liu, W. and McNeill, K. (2009). Automated software

defined radio deployment using domain specific modeling languages,

Mobile WiMAX Symposium, 2009. MWS’09. IEEE, IEEE, pp. 157–162.

Cohen, S., Hess, J., Kang, K., Novak, W. and Peteron, A. (1990). Feature-

oriented domain analysis (foda) feasibility study, Technical Report

CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon

University.

Colombo, P., Lavazza, L., Coen-Porisini, A. and del Bianco, V. (2009). Towards

a meta-model for problem frames: Conceptual issues and tool building

167



References

support, Software Engineering Advances, 2009. ICSEA’09. Fourth Inter-

national Conference on, IEEE, pp. 339–345.

Cook, S., Jones, G., Kent, S. and Wills, A. (2007). Domain-specific development

with visual studio dsl tools, Addison-Wesley Professional.

Cooperation, R. (2003). . fmea software.

Cuadrado, J. and Molina, J. (2007). Building domain-specific languages for

model-driven development, IEEE software 24(5): 48–55.

Dehlinger, J. and Lutz, R. (2006). Plfaultcat: A product-line software fault tree

analysis tool, Automated Software Engineering 13(1): 169–193.

Demir, A. (2006). Comparison of model-driven architecture and software fac-

tories in the con-text of model-driven development, Model-Based Devel-

opment of Computer-Based Systems and Model-Based Meth-odologies for

Pervasive and Embedded Software, 2006. MBD/MOMPES 2006. Fourth

and Third International Workshop on, Ieee, pp. 9–pp.

Di Ruscio, D., Lämmel, R. and Pierantonio, A. (2011). Automated co-

evolution of gmf editor models, Software Language Engineering pp. 143–

162.

Dokas, I., Feehan, J. and Imran, S. (2012). Ewasap: An early warning sign

identification approach based on stpa.

Dokas, I., Karras, D. and Panagiotakopoulos, D. (2009). Fault tree analysis and

fuzzy expert systems: Early warning and emergency response of landfill

operations, Environ. Model. Softw. 24(1): 8–25.

Dokas, I., Wallace, R., Marinescu, R., Imran, S. and Foping, F. (2009). Towards

a novel early warning service for state agencies: A feasibility study, In-

formation Technologies in Environmental Engineering pp. 162–175.

Dulac, N. and Leveson, N. (2004). An approach to design for safety in com-

plex systems, Int. Symposium on Systems Engineering (INCOSE).

Dybvig, R. (2003). The SCHEME programming language, The MIT Press.

Ellis, C. and Sun, C. (1998). Operational transformation in real-time group

editors: issues, algorithms, and achievements, Proceedings of the 1998

ACM conference on Computer supported cooperative work, Citeseer,

pp. 59–68.

168



References

Erdik, M., Fahjan, Y., Ozel, O., Alcik, H., Mert, A. and Gul, M. (2003). Istan-

bul earthquake rapid response and the early warning system, Bulletin of

Earthquake Engineering 1(1): 157–163.

Espinoza, H., Cancila, D., Selic, B. and Gérard, S. (2009). Challenges

in combining sysml and marte for model-based design of embed-

ded systems, Model Driven Architecture-Foundations and Applications,

Springer, pp. 98–113.

Esser, R. and Janneck, J. (2001). A framework for defining domain-specific

visual languages, Workshop on Domain Specific Visual Languages, ACM

Conference on Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA-2001).

Ewert, J., Guffanti, M., Murray, T. and (US), G. S. (2005). An Assessment of Vol-

canic Threat and Monitoring Capabilities in the United States: Frame-

work for a National Volcano Early Warning System NVEWS, US Geologi-

cal Survey.

for Software Integrated Systems, I. (2005). Gme 5 users manual (v5.0), Van-

derbilt University, at: http://w3.isis.vanderbilt.edu/Projects/gme/

GMEUMan.pdf, last accessed 11th October, 2012.

Frakes, W., Prieto-; Diaz, R. and Fox, C. (1998). Dare: Domain analysis and

reuse environment, Annals of Software Engineering 5(1): 125–141.

Friedenthal, S., Moore, A. and Steiner, R. (2011). A practical guide to SysML:

the systems modeling language, Morgan Kaufmann.

Furtado, A. and Santos, A. (2006). Using domain-specific modeling towards

computer games development industrialization, 6th OOPSLA Workshop

on Domain-Specific Modeling (DSM’06).

Gamma, E. and Beck, K. (2004). Contributing to Eclipse: principles, patterns,

and plug-ins, Addison-Wesley Professional.

García-Magariño, I., Fuentes-Fernández, R. and Gómez-Sanz, J. (2009).

Guideline for the definition of emf metamodels using an entity-

relationship approach, Information and Software Technology

51(8): 1217–1230.

Giachetti, G., Marín, B. and Pastor, O. (2009). Using uml as a domain-specific

modeling language: A proposal for automatic generation of uml profiles,

Advanced Information Systems Engineering, Springer, pp. 110–124.

169



References

Greenfield, J. and Short, K. (2003). Software factories: assembling applica-

tions with patterns, models, frameworks and tools, Companion of the

18th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, ACM, pp. 16–27.

Greenfield, J. and Short, K. (2004). Software factories: Assembling applica-

tions with patterns, frameworks, models and tools.

Hailpern, B. and Tarr, P. (2006). Model-driven development: The good, the

bad, and the ugly, IBM systems journal 45(3): 451–461.

Heinrich, H. (1931). Industrial accident prevention, McGraw-Hill, New York.

Hollnagel, E. (2004). Barriers and accident prevention, Ashgate Pub Ltd.

Holzner, S. (2004). Eclipse: A Java Developer’s Guide, O’Reilly & Associates,

Inc.

Hsu, K., Gupta, H. and Sorooshian, S. (1995). Artificial neural network model-

ing of the rainfall-runoff process, Water resources research 31(10): 2517–

2530.

Hudson, R. (2003). Create an eclipse-based application using the graphical

editing framework, IBM developerWorks, July .

Hudson, R. and Shah, P. (2005). Gef in depth, tutorial slides.

Imran, S., Dokas, I., Feehan, J. and Foping, F. (2010). A new application of

domain specific modeling towards implementing an early warning ser-

vice.

Imran, S., Foping, F., Feehan, J. and Dokas, I. (2010a). Domain specific mod-

eling language for early warning system: Using idef0 for domain analy-

sis, International Journal of Computer Science Issues(IJCSI) 7(5): 10–17.

Imran, S., Foping, F., Feehan, J. and Dokas, I. (2010b). Domain specific mod-

eling language for early warning system: Using idef0 for domain anal-

ysis, IJCSI International Journal of Computer Science Issues 7(5): 1694–

0814.

Ishimatsu, T., Leveson, N., Thomas, J., Katahira, M., Miyamoto, Y. and Nakao,

H. (2010). Modeling and hazard analysis using stpa, Proceedings of the

International Association for the Advancement of Space Safety Confer-

ence, Huntsville, Alabama (May 2010).

170



References

ISO, W. (1998). 9241-11. ergonomic requirements for office work with visual

display terminals (vdts), The international organization for standardiza-

tion .

Jensen, F. (1996). An introduction to Bayesian networks, Vol. 36, UCL press

London.

Johnson, K. M., Ratnayaka, D. D. and Brandt, M. J. (2009). Twort’s Water Sup-

ply, Butterworth-Heinemann.

Jouault, F. and Kurtev, I. (2006). On the architectural alignment of atl and qvt,

ACM symposium on Applied computing, ACM.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M. and Völkel, S.

(2009). Design guidelines for domain specific languages, The 9th OOP-

SLA workshop on domain-specific modeling, Citeseer.

Kasemir, K., Chen, X., Purcell, J. and Danilova, K. (2011). Sns online display

technologies for epics.

Kelly, S. (2004). Comparison of eclipse emf/gef and metaedit+ for dsm,

19th Annual ACM Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, Workshop on Best Practices for Model

Driven Software Development.

Kelly, S., Lyytinen, K. and Rossi, M. (1996a). Metaedit+ a fully configurable

multi-user and multi-tool case and came environment, Advanced Infor-

mation Systems Engineering, Springer, pp. 1–21.

Kelly, S., Lyytinen, K. and Rossi, M. (1996b). Metaedit+ a fully configurable

multi-user and multi-tool case and came environment, Advanced Infor-

mation Systems Engineering, Springer, pp. 1–21.

Kelly, S. and Pohjonen, R. (2009). Worst practices for domain-specific mod-

eling, Software, IEEE 26(4): 22–29.

Kelly, S. and Tolvanen, J. (2008). Domain-specific modeling: enabling full code

generation, Wiley-IEEE Computer Society Press.

Kent, S. (2011). Is model driven development feasible?, MDSN Blogs,

at http://blogs.msdn.com/b/stuart_kent/archive/2011/04/07/

is-model-driven-development-feasible.aspx, last accessed 11th

October, 2012.

171



References

Kirakowski, J. and Corbett, M. (1993). Sumi: The software usability measure-

ment inventory, British journal of educational technology 24(3): 210–

212.

Kleppe, A. (2007). A language description is more than a metamodel, Fourth

International Workshop on Software Language Engineering, Nashville .

Kolovos, D., Paige, R. and Polack, F. (2008). The epsilon transformation lan-

guage, 1st International Conference on Model Transformation, Zurich .

Kolovos, D., Rose, L. and Paige, R. (2012). The epsilon book.

Krahn, H., Rumpe, B. and Völkel, S. (2007). Integrated definition of abstract

and concrete syntax for textual languages, Model Driven Engineering

Languages and Systems 4735: 286–300.

Lange, F. (2008). Eclipse Rich Ajax Platform: Bringing Rich Client to the Web,

Springer.

Lankford, W. (2000). Benchmarking: Understanding the basics, Coastal Busi-

ness Journal 1(1): 57–62.

Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J. and

Karsai, G. (2001). Composing domain-specific design environments,

Computer 34(11): 44–51.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nord-

strom, G., Sprinkle, J. and Volgyesi, P. (2001). The generic modeling envi-

ronment, Workshop on Intelligent Signal Processing, Budapest, Hungary.

Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P. and Maroti, M. (2001). On

metamodel composition, IEEE International Conference on Control Ap-

plications, 2001,(CCA’01)., IEEE, pp. 756–760.

Leveson, N. (1995). Safeware: system safety and computers, ACM.

Leveson, N. (2002a). A new approach to system safety engineering,

Manuscript in preparation, draft can be viewed at http://sunnyday. mit.

edu/book2. pdf .

Leveson, N. (2002b). System safety engineering: Back to the future, Mas-

sachusetts Institute of Technology .

Leveson, N. (2004a). Model-based analysis of socio-technical risk, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA, Tech. Rep. ESD-

WP-2004-08 .

172



References

Leveson, N. (2004b). A new accident model for engineering safer systems,

Safety Science 42(4): 237–270.

Leveson, N. (2004c). A systems theoretic approach to safety in software in-

tensive systems, Dependable and Secure Computing, IEEE Transactions

on 1(1): 66–86.

Leveson, N. (2012). Engineering a safer world: Systems thinking applied to

safety, MIT Press (MA).

Leveson, N., Daouk, M., Dulac, N. and Marais, K. (2003). Applying stamp

in accident analysis, NASA CONFERENCE PUBLICATION, NASA; 1998,

pp. 177–198.

Leveson, N., Dulac, N., Zipkin, D., Cutcher-Gershenfeld, J., Carroll, J. and

Barrett, B. (2006). Engineering resilience into safety-critical systems,

Resilience Engineering–Concepts and Precepts. Ashgate Aldershot pp. 95–

123.

Lewis, J. and Launchbury, J. (1998). Initial suite of small language definitions

and implementations for dsdl, Technical report, DTIC Document.

MARTE, O. (2008). A uml profile for marte: Modeling and analysis of real-

time embedded sys-tems, beta 2, ptc/2008-06-09.

Mattsson, A., Lundell, B., Lings, B. and Fitzgerald, B. (2009). Linking model-

driven development and software architecture: A case study, Software

Engineering, IEEE Transactions 35(1): 83–93.

Mernik, M., Heering, J. and Sloane, A. (2005). When and how to develop

domain-specific languages, ACM Computing Surveys (CSUR) 37(4): 316–

344.

Miller, J., Mukerji, J. et al. (2003). Mda guide version 1.0. 1, Object Manage-

ment Group 234: 51.

Miotto, E. and Vardanega, T. (2009). On the integration of domain-specific

and scientific bodies of knowledge in model driven engineering, In:

Procs. of STANDRTS’09, Dubline, Ireland .

Moore, B., Organization, I. B. M. C. I. T. S. and (Firme), S. B. O. (2004). Eclipse

development using the graphical editing framework and the eclipse mod-

eling framework, IBM, International Technical Support Organization.

173



References

Nordstrom, G., Sztipanovits, J., Karsai, G. and Ledeczi, A. (1999).

Metamodeling-rapid design and evolution of domain-specific modeling

environments, Proceedings of the IEEE ECBS’99 Conference, IEEE, pp. 68–

74.

Northover, S. and Wilson, M. (2004). Swt: the standard widget toolkit,

Addison-Wesley.

Oberortner, E., Zdun, U. and Dustdar, S. (2009). Tailoring a model-driven

quality-of-service dsl for various stakeholders, Modeling in Software En-

gineering, 2009. MISE’09. ICSE Workshop on, IEEE, pp. 20–25.

Olumofin, F. and Mišic, V. (2006). Preserving architectural knowledge through

domain-specific modeling, 6th OOPSLA Workshop on Domain-Specific

Modeling (DSM’06), pp. 98–104.

OMG, M. (2005). Qvt final adopted specification.

Pahl, C. and Barrett, R. (2007). Semantic model-driven development of

service-centric software architectures, Software Engineering Methods for

Service-Oriented Architecture 2007 (SEMSOA 2007) .

Pitkänen, R. and Mikkonen, T. (2006). Lightweight domain-specific model-

ing and model-driven development, OOPSLA 6th Workshop on Domain

Specific Modeling, pp. 159–168.

Prieto-Díaz, R. (1990). Domain analysis: an introduction, ACM SIGSOFT Soft-

ware Engineering Notes 15(2): 47–54.

Qureshi, Z. (2008). A review of accident modelling approaches for complex

critical sociotechnical systems, Technical report, DTIC Document.

Rabiner, L. and Juang, B. (1986). An introduction to hidden markov models,

ASSP Magazine, IEEE 3(1): 4–16.

Rasmussen, J. and Svedung, I. (2000). Proactive risk management in a dy-

namic society, Swedish Rescue Services Agency Karlstad, Sweden.

Ráth, I., Ökrös, A. and Varró, D. (2010). Synchronization of abstract and con-

crete syntax in domain-specific modeling languages, Software and Sys-

tems Modeling 9(4): 453–471.

Rath, I. and Varro, D. (2006). Declarative specification of domain specific vi-

sual languages, PhD thesis, Master’s thesis, Budapest University of Tech-

nology and Economics.

174



References

Reason, J. and Reason, J. (1997). Managing the risks of organizational acci-

dents, Vol. 6, Ashgate Aldershot.

Rivera, J., Durán, F. and Vallecillo, A. (2009). Formal specification and analysis

of domain specific models using maude, Simulation 85(11-12): 778–792.

Robert, S., Gérard, S., Terrier, F. and Lagarde, F. (2009). A lightweight approach

for domain-specific modeling languages design, Software Engineering

and Advanced Applications, 2009. SEAA’09. 35th Eu-romicro Conference

on, IEEE, pp. 155–161.

Rudloff, A., Lauterjung, J., Münch, U. and Tinti, S. (2009). The gitews project

(german-indonesian tsunami early warning system), Nat. Hazards Earth

Syst. Sci 9: 1381–1382.

Sadilek, D. (2007a). Prototyping and simulating domain-specific languages

for wireless sensor networks.

Sadilek, D. (2007b). Prototyping domain-specific languages for wireless sen-

sor networks, Proc. of the 4th Int. Workshop on Software Language Engi-

neering, pp. 76–91.

Salvendy, G. (1997). Handbook of human factors and ergonomics, John Wiley

& Sons New York, NY.

Sauro, J. and Lewis, J. (2011). When designing usability questionnaires, does

it hurt to be positive?, Proceedings of the 2011 annual conference on Hu-

man factors in computing systems, ACM, pp. 2215–2224.

Schauerhuber, A., Wimmer, M. and Kapsammer, E. (2006). Bridging existing

web modeling languages to model-driven engineering: a metamodel for

webml, Workshop proceedings of the sixth international conference on

Web engineering, ACM, p. 5.

Selic, B. (2003). The pragmatics of model-driven development, Software,

IEEE 20(5): 19–25.

Selic, B. (2006). Model-driven development: Its essence and opportuni-

ties, Ninth IEEE International Symposium on Object and Component-

Oriented Real-Time Distributed Computing (ISORC 2006), IEEE Com-

puter Society, pp. 313–319.

175



References

Selic, B. (2007). A systematic approach to domain-specific language design

using uml, Object and Component-Oriented Real-Time Distributed Com-

puting, 2007. ISORC’07. 10th IEEE International Symposium on, Ieee,

pp. 2–9.

Selic, B. (2011). The theory and practice of modeling language design for

model-based software engineering-a personal perspective, Generative

and Transformational Techniques in Software Engineering III pp. 290–

321.

Shikhar, P. (2008). Recommendations for performance benchmarking, White

Paper, Infosys - Building tomorrows enterprise .

Silingas, D., Vitiutinas, R., Armonas, A. and Nemuraite, L. (2009). Domain-

specific modeling environment based on uml profiles, Targamadze, A.,

Butleris, R., Butkiene, R.(eds.), Information Technologies pp. 167–177.

Sivonen, S. (2008). Domain-specific modelling language and code generator

for developing repository-based eclipse plug-ins.

Sommerville, I. (2011). Software Engineering - Ninth Edition, Addison-

Wesley.

Spinellis, D. (2001). Notable design patterns for domain-specific languages,

Journal of Systems and Software 56(1): 91–99.

Spivey, J. (1992). The Z notation: a reference manual, Prentice Hall Interna-

tional (UK) Ltd.

Stahl, T., Völter, M. and Czarnecki, K. (2006). Model-driven software develop-

ment: technology, engineering, management, John Wiley & Sons.

Steinberg, D., Budinsky, F., Paternostro, M. and Merks, E. (2009). Emf: Eclipse

modeling framework (eclipse).

Stringfellow, M. (2011). Accident analysis and hazard analysis for human and

organizational factors, PhD thesis, Massachusetts Institute of Technol-

ogy, Department of Aeronautics and Astronautics.

Stringfellow, M., Leveson, N. and Owens, B. (2010). Safety-driven design for

software-intensive aerospace and automotive systems, Proceedings of

the IEEE 98(4): 515–525.

176



References

Taentzer, G. (2006). Towards generating domain-specific model editors with

complex editing commands, Proc. International Workshop Eclipse Tech-

nology eXchange (eTX), Satellite Event of ECOOP.

Tairas, R., Mernik, M. and Gray, J. (2009). Using ontologies in the domain

analysis of domain-specific languages, Models in Software Engineering

pp. 332–342.

team, S. (2008). Omg systems modeling language(sysml)version 1.1.

Thomas, D. (2004). Mda: Revenge of the modelers or uml utopia?, Software,

IEEE 21(3): 15–17.

Tolvanen, J. (2004). Metaedit+: domain-specific modeling for full code gen-

eration demonstrated [gpce], Companion to the 19th annual ACM SIG-

PLAN conference on Object-oriented programming systems, languages,

and applications, ACM, pp. 39–40.

Tolvanen, J., Pohjonen, R. and Kelly, S. (2007). Advanced tooling for domain-

specific modeling: Metaedit+, 7th OOPSLA workshop on Domain-

Specific Modeling.

Tranoris, C. and Denazis, S. (2010). Federation computing: A pragmatic

approach for the future internet, Network and Service Management

(CNSM), 2010 International Conference on, IEEE, pp. 190–197.

Tung, W., Quek, C. and Cheng, P. (2004). Genso-ews: a novel neural-fuzzy

based early warning system for predicting bank failures, Neural Net-

works 17(4): 567–587.

UML, O. (2003). 2.0 infrastructure specification. object management group.

UN/ISDR (2006). Developing early warning systems: A checklist„ Third In-

ternational Conference on Early Warning, From concept to action (EWC

III) .

Valerio, A., Succi, G. and Fenaroli, M. (1997). Domain analysis and

framework-based software development, ACM SIGAPP Applied Com-

puting Review 5(2): 4–15.

Van Deursen, A., Klint, P. and Visser, J. (2000). Domain-specific languages:

An annotated bibliography, ACM Sigplan Notices 35(6): 26–36.

Van Rossum, G. and Drake, F. (2003). Python language reference manual, Net-

work Theory Limited.

177



References

Vidal, J., De Lamotte, F., Gogniat, G., Soulard, P. and Diguet, J. (2009). A co-

design approach for embedded system modeling and code generation

with uml and marte, Design, Automation & Test in Europe Conference &

Exhibition, 2009. DATE’09., IEEE, pp. 226–231.

Vuolle, M., Aula, A., Kulju, M., Vainio, T. and Wigelius, H. (2008). Identifying

usability and productivity dimensions for measuring the success of mo-

bile business services, Advances in Human-Computer Interaction 2008.

Weiss, D. and Lai, C. (1999). Software product-line engineering: A family-

based software development process author: David m. weiss, chi tau

robert lai.

WHO (2006). Guidelines for disease surveillance/early warning and response

- middle east crisis, Communicable Diseases Working Group on Emer-

gencies, World Health Organization WHO/CDS/NTD/DCE/2006.6 .

Williams, S. and Kindel, C. (1994). The component object model: A technical

overview, Technical report, Microsoft Technical Report.

Woocher, L. (2006). Developing a strategy, methods and tools for genocide

early warning, Report prepared for the Office of the Special Adviser to the

UN SecretaryGeneral on the Prevention of Genocide, Center for Interna-

tional Conflict Resolution, Columbia University, New York .

Woods, D. (2009). Escaping failures of foresight, Safety science 47(4): 498–501.

Yet-Pole, I. (2003). Development and applications of casehat–a multipurpose

computer aided hazard analysis automation system used in semicon-

ductor manufacturing industry, Journal of Loss Prevention in the Process

Industries 16(4): 271–279.

Zan, L., Latini, G., Piscina, E., Polloni, G. and Baldelli, P. (2002). Landslides

early warning monitoring system, Geoscience and Remote Sensing Sym-

posium, 2002. IGARSS’02. 2002 IEEE International, Vol. 1, IEEE, pp. 188–

190.

Zdun, U. (2002). Domain-specifically tailorable languages and software ar-

chitectures, University of Essen, Germany .

Zenko, M. and Friedman, R. (2011). Un early warning for preventing conflict,

International Peacekeeping 18(1): 21–37.

178



References

Zisman, A. (2000). An overview of xml, Computing & Control Engineering

Journal 11(4): 165–167.

Zschau, J. and Küppers, A. (2003). Early warning systems for natural disaster

reduction, Springer Verlag.

Zviran, M., Glezer, C. and Avni, I. (2006). User satisfaction from commer-

cial web sites: The effect of design and use, Information & Management

43(2): 157–178.

179


