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Abstract

In this paper we address the single-item, single-stocking point, non-stationary

stochastic lot-sizing problem under backorder costs. It is well known that the

(s, S) policy provides the optimal control for such inventory systems. However

the computational difficulties and the nervousness inherent in (s, S) paved the

way for the development of various near-optimal inventory control policies. We

provide a systematic comparison of these policies and present their expected cost

performances. We further show that when these policies are used in a receding

horizon framework the cost performances improve considerably and differences

among policies become insignificant.
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1. Introduction

The aim of lot sizing is to determine replenishment quantities and their

timings to minimise total inventory cost while balancing supply and demand

[1]. A major stream within the lot-sizing literature addresses demand uncer-

tainty in a dynamic environment, i.e. non-stationary stochastic demand. The5

stochastic nature of demand is associated with market uncertainty that could

emerge from several factors, such as pricing, advertising, channel development,

manufacturing and inventory management [2]. It may also originate from the

interdependency of end customer’s demand with supply yield [3, 4]. The short-

ening of product life cycles, on the other hand, accounts for the non-stationarity10

feature of demand: as product life cycles get shorter, demand rates are subject

to quick changes over time. Furthermore, seasonality and trend may cause de-

mand rates to change within the phases of the product life cycle. As a result

of being stochastic and dynamic, demand usually has varying probability dis-

tributions over time [5]. This fact implies that market uncertainty necessitates15

inventory control policies with time-varying parameters. As shown in [6], it is

costly to adopt stationary policies under non-stationary demand.

Our study focuses on the single-item, single-stocking point, non-stationary

stochastic lot-sizing problem under backorder costs. This is a well-studied prob-

lem in the literature. In his seminal work [7], Scarf demonstrated the optimality20

of (s,S)-type policies under this problem setting. The computation of optimal

stationary (s,S) policy parameters was investigated shortly thereafter in [8].

However, although the form of the optimal policy has been known for a long

time, computing optimal non-stationary (s,S) policy parameters still remains a

computationally challenging task. Moreover, the instability in order plans (i.e.25

nervousness) associated with this control policy is also a key concern [9].

Early heuristics that were proposed for this problem setting include [10],

which represents an extension of the classical Silver-Meal [11] algorithm to a

stochastic setting, [12] and [13]. The framework introduced by [12], which com-

prises three types of policies, static-uncertainty, static-dynamic uncertainty, and30
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dynamic uncertainty, motivated a number of follow up works, such as [14, 15]

and [16, 17]. The former studies focus on the static-uncertainty policy; whereas

the later ones focus on the static-dynamic uncertainty strategy.

This work considers only backorder costs related to shortages. Other vari-

ants of the problem investigated in the literature considered α service level35

constraints [18, 19, 20] and β (i.e. fill rate) service level constraints [21]. These

variants are left out of the scope of this work since benchmark optimal policies

are not available in the literature. In an early work [22], Bookbinder and H’ng

compared the performance of six separate lot-sizing methods for use in a rolling

schedule. To the best of our knowledge, there is no similar study focusing on40

stochastic lot sizing heuristics under backorder cost. The current manuscript

aims at filling this gap by making the following contributions to the literature:

• We present a systematic comparison on expected cost performances of

three lot-sizing strategies over different solution approaches for the single-

item, single-stocking point, non-stationary stochastic lot-sizing problem45

under backorder costs;

• We, for the first time, compare the cost performance of these solution

approaches in a receding horizon deployment [23], which is widely used in

the lot-sizing literature [i.e. 24, 25]. Receding horizon control proceeds as

follows: a replenishment plan is obtained for the entire planning horizon,50

but only the imminent replenishment decision is implemented, and a re-

planning is done at the beginning of each period for the rest of the planning

horizon.

• We derive some managerial insights; displaying to what extent the receding

horizon scheme improves the cost performances of various policies and how55

the cost performance of different policies become insignificant when they

are implemented in a receding horizon framework.

The rest of the paper is organised as follows. Section 2 gives a formal definition

of the problem under consideration. Section 3 gives a detailed overview of the

3



existing approaches in the literature. Section 4 presents the numerical study60

and the results obtained. Finally, Section 5 concludes with final remarks.

2. Problem Definition

We focus on the single-item, single-stocking location, stochastic non-stationary

lot sizing problem; which is defined as follows. The planning horizon is finite and

it consists of N discrete time periods. Individual period demands d1, d2, . . . , dN65

are independent random variables with known probability distribution functions

not necessarily identically distributed. A holding cost, h is incurred on any unit

carried in inventory from one period to the next. Any demand that cannot be

satisfied immediately is backordered and satisfied whenever a sufficiently sized

replenishment order arrives. A penalty cost b is incurred for each unit of de-70

mand backordered per period. A fixed ordering cost K is incurred every time

an order is placed.

A mathematical formulation for the problem may be written as follows [see

e.g. 14, 16]:

min

N∑
n=1

E
{
Kzn + hx+

n + bx−n
}

(1)

subject to75

xn = xn−1 + qn − dn ∀n ∈ [1, N ] (2)

zn =

1 if qn > 0

0 otherwise

∀n ∈ [1, N ] (3)

zn ∈ {0, 1}, qn ∈ R+ ∀n ∈ [1, N ] (4)

Here zn and qn are the decision variables indicating the replenishment ac-

tion and the replenishment quantity for period n; where xn stands for the end

of period inventory position. Also, x+ = max(0, x) and x− = max(0,−x) re-80

spectively stand for the amount of excess stocks and backorders. We assume
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that inventory levels are accurate and do not include any source of uncertainty

arising from information inaccuracy (see e.g. [26], [27]).

2.1. Control policies

In [12], it is argued that the aforementioned model leads to different control85

strategies depending on when replenishment decisions zn and qn are made. They

discuss three classes of strategies: dynamic uncertainty, static uncertainty, and

static-dynamic uncertainty.

In the dynamic uncertainty strategy, the decision maker observes the current

inventory position at the beginning of each time period n, i.e. xn−1, and decides90

whether to place an order, and if so how much to order. Therefore, zn and qn

are determined at period n.

In the static uncertainty strategy, timing and quantity of orders are fixed

once and for all at the beginning of the planning horizon. Thus, all qn and zn

are determined at the outset.95

In the static-dynamic uncertainty strategy, the complete replenishment sched-

ule is determined at the beginning of the planning horizon, whereas order quan-

tities are decided at the time of replenishments. Hence, all zn are determined

at the outset but the decision on qn is postponed until period n.

Intuitively, the cost-effectiveness of an inventory control policy is positively100

correlated with the amount of demand information used at the time of making

replenishment decisions. Thus, the dynamic uncertainty strategy has a su-

perior cost performance as compared to static-dynamic and static uncertainty

strategies, since it makes replenishment decisions only after observing the actual

inventory level.105

[9] numerically analyse the cost performance of these strategies. They show

that the static-dynamic uncertainty strategy is very competitive, whereas the

static uncertainty performs rather poorly in comparison to the dynamic uncer-

tainty strategy. As we will show in our numerical study, results are substantially

different under a receding horizon deployment of these policies.110
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3. Survey of Exact and Heuristics Approaches in the Literature

We review both optimal and heuristic approaches proposed in the literature

to compute the parameters of dynamic, static and static-dynamic uncertainty

strategies for the stochastic lot sizing problem, with and without receding hori-

zon approach. For the purposes of this study, we specifically address those115

studies analysing non-stationary stochastic inventory systems operating under

a penalty cost scheme for backordered demand.

3.1. Dynamic Uncertainty Strategy

The literature on dynamic demand dates back to Wagner and Whitin’s well-

known deterministic dynamic lot sizing model [28]. In his seminal paper [7],120

Scarf characterizes the optimal control policy for the lot sizing problem under

stochastic demand; this characterization holds for stationary as well as non-

stationary demand. The optimal policy determines two critical parameters for

each period: the re-order level s and the order up-to level S; for this reason it

is named (s, S) policy. The decision maker observes the inventory position at125

the beginning of a period, and places an order if it is below the re-order level

so as to replenish the inventory up to the order up-to level. If the inventory

position is above the reorder level no order is placed. The optimal policy follows

the dynamic uncertainty strategy because both the timing and the quantity of

orders become known only at replenishment epochs.130

In [7], Scarf identified the structure of the optimal policy, but finding optimal

parameters has remained a computationally intensive task ever since. That is

because one needs to recursively compute a continuous cost function in order

to obtain the optimal re-order and order-up-to levels for each and every period

within the planning horizon. An alternative approach that can be used to135

tackle the continuity issue is to use a discrete demand distribution [see e.g. 13].

In this case, it is possible to use a discrete state space dynamic program to

obtain the optimal cost function. Nevertheless, the resulting procedure is still

complex since there is a very wide range of possible inventory levels that should
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be considered. A variety of studies address this issue [see e.g. 8, 29, 30, 31].140

However, most of these studies handle the problem under stationary demand

and an infinite planning horizon.

There are a few studies suggesting heuristic methods to compute parameters

of the dynamic uncertainty strategy. [10] proposes a heuristic method which

adapts Silver and Meal’s well-known heuristic designed for the deterministic145

version of the same problem. Askin’s heuristic first determines the cycle length,

i.e. the number of periods to be covered, and the order-up-to level for all

prospective orders through the planning horizon. The length of a replenishment

cycle is selected so as to minimize the corresponding average total cost per

period. The re-order level associated with a replenishment cycle, on the other150

hand, is myopically set to an inventory level which minimizes the costs to be

incurred during the imminent replenishment cycle. The heuristic determines

the re-order levels by means of a trade-off analysis between expected costs per

period in cases of ordering and not ordering. In particular, the re-order level

of a particular period is set to an inventory level where the difference between155

the expected costs of ordering and not ordering equals the fixed ordering cost.

[13] also propose a myopic heuristic to compute the parameters of dynamic

uncertainty strategy. This heuristic relies on the idea of approximating the non-

stationary problem by a series of stationary problems. The heuristic proceeds as

follows. First, by means of the method developed by [31], for all possible values160

of mean demand, the optimal parameters of the associated stationary problem

as well as the expected time between two consecutive orders are obtained and

tabulated. Then, for each period, the order-up-to and re-order levels are set

to the corresponding optimal parameters of a specific stationary problem which

is chosen in such a way that the cumulative mean demands of the stationary165

and non-stationary problems over the expected reorder cycle of the stationary

problem are equal to each other. The relevant values used in this procedure are

read from the table generated in the first step of the heuristic. An important

drawback of this method is that it cannot account for end-of-horizon effects

due to the underlying stationary approximation. Bollapragada and Morton [13]170
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overcome this issue by replacing the heuristic parameters with the optimal ones

for some periods at the end of the planning horizon.

3.2. Static Uncertainty Strategy

The static uncertainty strategy decides timing and quantity of replenish-

ments at the beginning of the planning horizon. It is customary in the liter-175

ature to denote the timing as R — where R denotes the length of time, in

periods, between two consecutive replenishments — and the quantity as Q; for

this reason this policy is often denoted as the (R,Q) policy. Neither timing

nor quantity of replenishments are revised in response to demand realisations

over the planning horizon. Therefore in this policy demand uncertainty is only180

considered “statically” while determining appropriate values for R and Q at

the beginning of the planning horizon, before any demand realisation is ob-

served. Despite being unable to exploit additional information obtained from

past demand realisations, the static uncertainty strategy has the advantage of

providing a completely stable production environment, which is appealing in185

industrial environments characterized by a low degree of flexibility.

Sox [14] studies this strategy and models the problem as a mixed integer non-

linear program. He provides a solution algorithm based on a network formula-

tion of the problem where each arc corresponds to a prospective replenishment

cycle. Here, arc costs are calculated by using optimal cumulative replenishment190

quantities up to and including the corresponding replenishment cycles. Sox

also derives some properties of the optimal solution which he uses to increase

the efficiency of the proposed algorithm. This algorithm can be regarded as a

stochastic extension of the Wagner and Whitin’s algorithm [28] with additional

feasibility constraints. [15] employs the same approach and shows that optimal195

replenishment quantities for a given replenishment schedule follow a critical

ratio rule. Also, he explicitly addresses the special case where demands are nor-

mally distributed, and provides a simple, yet very efficient solution algorithm

by exploiting the properties of the normal distribution.
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3.3. Static-Dynamic Uncertainty Strategy200

The static-dynamic uncertainty strategy provides a stable replenishment pat-

tern by fixing the timing of future orders in advance [16]; however, actual order

quantities are decided only after demand during periods that precede a given

replenishment have been realised. To do so, the decision maker fixes a so-called

“order-up-to-level” for each replenishment, this represents the level up to which205

inventory must be raised by the current order. It is customary in the literature

to denote the order-up-to-level as S; for this reason this policy is often denoted

as the (R,S) policy. This policy is less conservative than the static uncertainty

strategy, and it can hedge against uncertainty more efficiently [25, 9]. Because

it offers a fixed order schedule, the static-dynamic strategy is particularly ap-210

pealing in material requirement planning, joint replenishment, and shipment

consolidation environments [see 32, 1, 33, 34].

The contributions in this line of research are as follows. [35] proposes a

heuristic which can be regarded as the stochastic version of [11]. As is the case in

[11], this heuristic sequentially determines the timing of the next replenishment215

period starting from the first period of the planning horizon. Here, the expected

cost per period is defined as a function of the number of periods the current

order is to cover when the associated order-up-to level is myopically determined

so as to minimize the expected costs to be incurred until the next replenishment

epoch. The procedure postpones the next replenishment period as long as the220

expected cost per period is decreasing. Penalty costs for backordered demands

are not explicitly mentioned and order quantities are rather determined to en-

sure a desired service level until the next replenishment epoch. The service

level implementation makes this solution approach lie beyond the scope of our

numerical analysis, which only considers the non-stationary stochastic lot-sizing225

problem under a penalty cost scheme.

Tarim and Kingsman [16] provide a mixed integer programming (MIP) for-

mulation of the problem. As opposed to the procedure employed by [35], their

method determines order-periods and order-up-to levels simultaneously under

the penalty cost assumption. This, however, comes with an additional difficulty230
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which stems from the interdependence between order-up-to levels and costs as-

sociated with consecutive replenishment cycles, as well as the non-linear cost

function. Tarim and Kingsman [16] overcome these issues by making the addi-

tional assumption that demands are normally distributed. This enables them

to develop a certainty equivalent mixed integer programming model in which235

a piecewise linear approximation is used to express the non-linear terms in the

objective function. Tarim and Kingsman’s formulation [16] does not allow ex-

pected order sizes to be negative. Hence, if the inventory level at the beginning

of a replenishment cycle happens to exceed the corresponding order-up-to level,

then the excess inventory is carried forward. Nevertheless, their method implic-240

itly assumes that such instances are rare events and ignores the cost of carrying

excess inventories. As such, their approach does not necessarily provide the op-

timal solution. [17] develop a stochastic constraint programming model which

is mainly equivalent to the MIP model in [16]. However, instead of employing

a piecewise linear approximation, they use the exact non-linear cost function.245

They also introduce a cost based filtering method [see e.g. 36, 37] which exploits

the convexity of the cost-function for a fixed replenishment schedule. The filter-

ing method dynamically produces bounds on the optimal total cost during the

search procedure of the constraint program for fixed values of binary variables

indicating the timing of replenishment epochs, and hence, leads to significant250

improvements in the computational performance of the proposed method. Al-

though the formulation in [17] makes use of the exact non-linear cost function, it

may not always yield the optimal policy parameters because – as is the case for

Tarim and Kingsman’s formulation [16]– it ignores the cost of carrying excess

inventories in cases where the actual inventory level exceeds the order-up-to255

level. More recently, [38] extended MIP approach in [16] to generic demand

distributions and to a number of service level measures.

3.4. Computational efficiency of existing heuristics

We briefly focus on the computational complexity of the approaches consid-

ered in our study (Table 1). With a linear complexity, Askin’s approach [10] is260
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Table 1: An overview of the methods considered in the current study; “Comb.” denotes a

combinatorial complexity.

Author(s) Abbrv. Strategy Approach Complexity

Askin [10] Ask Dynamic Heuristic O(N)

Bollapragada and Morton [13] Bol Dynamic Heuristic O(N) + O(M)

Tarim and Kingsman [16] Tar Static-Dynamic Heuristic Comb. (MIP)

Rossi et al. [17] Ros Static-Dynamic Heuristic Comb. (MIP)

Sox [14] Sox Static Optimal O(N2) (DP)

Vargas [15] Var Static Optimal Comb. (MIP)

computationally attractive; the approach processes all N periods in the plan-

ning horizon sequentially and utilises a closed form critical fractile expression

— similar to a newsvendor solution — to determine the optimal order quantity.

Bollapragada and Morton’s approach [13] is also very efficient: the heuristic

essentially boils down to a line search procedure over a pre-computed table.265

However, the precomputation of the table has pseudo-polynomial complexity,

since table elements should cover all possible values that the expected demand

may take at a given period up to the maximum expected demand M . [16], [17]

and [15] rely on MIP formulations; while [14] proposed a heuristic with quadratic

time complexity that takes the form of a forward dynamic programming (DP)270

algorithm.

All the approaches, including those based on MIP formulations, are compu-

tationally very efficient and can solve realistic instances with up to 30 periods in

fractions of a second, as illustrated in the studies listed in Table 1 as well as in

related follow up works. Conversely, an exact stochastic dynamic programming275

approach has pseudo-polynomial complexity and, depending on the demand and

state space discretization/truncation adopted, may be computationally very ex-

pensive. Since differences in computational performance of all approaches listed

in Table 1 are negligible for most practical purposes, in what follows we will

only focus on their relative cost performance.280
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4. Numerical Study

This numerical study aims to present a cost based comparison of stochas-

tic lot-sizing strategies under non-stationary stochastic demand and penalty

cost assumptions on a common test bed from the literature. The list of the

approaches in the scope of this numerical experiment is given in Table 1.285

In addition to comparing the approaches as such, we also compare them

under a receding horizon deployment [23], which is widely used in the lot-sizing

literature [i.e. 24, 25]. The receding horizon control in inventory problems pro-

ceeds as follows: the replenishment plans are made over the entire planning

horizon, but only the imminent replenishment decision is implemented and a290

re-planning is done at the beginning of each period for the rest of the planning

horizon. That is, at every period n, we determine a control policy for peri-

ods {n, n+ 1, . . . , N}, but only implement the replenishment decision regarding

period n.

It is important to remark that policy parameters of the dynamic uncertainty295

strategy are independent of the inventory position; i.e. the s and S of a non-

stationary (s,S) policy remain optimal regardless of actual demand realisations.

In this policy, demand realisations are accounted for at the beginning of each

period, when inventory position is checked and, if it is found to be below s,

it is raised to S by issuing an order of appropriate size. However, the same300

does not hold for static uncertainty and static-dynamic uncertainty strategies,

for which the inventory position at the beginning of the planning horizon may

affect the timing of replenishments that are scheduled in future periods, i.e. the

R parameter in the (R,S) and (R,Q) policies. This observation motivates the

need for re-planning in the context of (R,S) and (R,Q) policies, and hence the305

numerical study carried out in this section. Our aim is essentially to explore

how the cost performance of different strategies is affected by the availability of

realized demand information.

The receding horizon control applied in this study features similarities and

differences from the conventional rolling horizon planning [1, p. 199]. In rolling310
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horizon planning a fixed length of time window is rolled forward after the im-

minent period’s decision is implemented and the demand realization occurs.

Rolling horizon planning for probabilistic demand is first implemented by [39]

and then revisited by [22] and [12]. These studies assume a long finite planning

horizon so that fixed length of time window is rolled many times. As it is the315

case in the receding horizon control, towards the end of the horizon, these stud-

ies limit the length of time window with the number of remaining periods to

capture end-of-horizon effects that are important for products featuring short

life cycles. However, as the demand unfolds, these studies revise the demand

forecasts for the rest of the planning horizon, in addition to updating the current320

inventory position.

All the approaches contrasted in our study operate under the assumption

that demands in different periods are independently distributed; under this

assumption, demand forecast update is clearly not justified. For this reason,

in our study we simply update the current inventory position for re-planning325

purposes, leaving the demand forecasts unchanged.

Since, as we remarked, policy parameters of the dynamic uncertainty strat-

egy are independent of the inventory level on hand,1 in our study we only

experiment on the receding horizon implementations of static uncertainty and

static-dynamic uncertainty strategies.330

In the following, we first present the experimental design adopted in our

work, and then we discuss the results of the numerical study.

4.1. Experimental setup

We consider a planning horizon comprising 24 periods. Some of the studies

under consideration do not immediately extend to generic demand distributions,335

e.g. [10, 14, 15] requires the cumulative demand distribution of all possible

1Note that this is not true if one updates demand forecasts at a given period, in which case

new (s,S) levels will have to be recomputed for future periods since the problem instance has

changed.
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replenishment cycles, a convolution that often cannot be obtained in closed form;

similarly, [13] only discuss the case of a Poisson demand and of a normal demand

with a fixed coefficient of variation across periods; as the authors remark, their

approach can be conceptually generalised to other distributions, however this340

requires the definition of tailor made search strategies [13, p. 578] and it is

therefore not trivial.

To enable a comparison across all approaches surveyed, demand dn in each

period n = 1, . . . , 24 is therefore assumed to be an independently normally dis-

tributed random variable with known expected value d̃n and standard deviation345

σn = ρ · d̃n, where ρ denotes the coefficient of variation of the demand, which

remains fixed over time as prescribed in [13]. As remarked, demand distribu-

tions are never updated, as this sort of action would be in contrast with the

key assumption of demand independence over time periods, which is common

across all methods we are working on.350

We consider 6 different patterns for the expected value of the demand in each

period of the planning horizon: a stationary demand pattern (STAT); an erratic

pattern (RAND); two life cycle patterns, one with lower (LCY1) and one with

higher (LCY2) variation of the expected demand over the planning horizon; and

finally two sinusoidal patterns, one with weaker (SIN1) and one with stronger355

(SIN2) oscillations. We adapted these demand patterns from [40]; the same

patterns have been extensively used in the literature [16, 41, 19, 6]. Figure 1

graphically illustrates all demand patterns analyzed in the numerical study.

Note that the average demand per period is equal to 100 for all demand patterns.

By setting the holding cost h = 1, and by varying the coefficient of variation360

ρ ∈ {0.10, 0.20, 0.30}, the fixed ordering cost K ∈ {250, 500, 1000, 2000}, and

the penalty cost b ∈ {2, 5, 10}, we generate a total of 216 test instances.

We first obtain the optimal parameters of dynamic uncertainty strategy for

each test instance by means of the stochastic dynamic programming approach

based on the functional equation in [7]. An open source implementation of the365
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stochastic dynamic programming approach we used is available in Java2 and

Python.3 We adopted a discretization step of size one for the normal demand

and a continuity correction factor of 0.5, this led to computational times in

the order of 102 seconds for the stochastic dynamic programming approach.

However, the reader should note that, since stochastic dynamic programming370

is pseudo-polynomial, an increase of the average value of the demand or of its

standard deviation will lead to a dramatic increase of the state space boundaries

and hence of computational times.

We solved all instances by using each of the methods presented in Table 1.

We note that the heuristic proposed by [13] implicitly assumes an infinite plan-375

ning horizon, and thus, it cannot account for the so-called end-of-horizon effect.

In order to overcome this issue, the optimal policy parameters of dynamic un-

certainty strategy are used for the last 8 periods of the planning horizon as it

is done in their original study.

For methods adopting static uncertainty and static-dynamic uncertainty380

strategy [i.e. 15, 16, 17], we also investigate the effect of a receding horizon

control implementation.

We simulate the control policies obtained by implementing each of the afore-

mentioned methods. We use the common random numbers simulation strategy

[see e.g. 42] and implement a stopping rule so as to achieve an estimation error385

of ±0.1% of the expected total cost with 0.95 confidence probability. Average

costs are then compared against the average cost of the optimal policy [7] ob-

tained by the stochastic dynamic program. The differences between the two are

recorded as the percentage optimality gaps.

We carry out sensitivity analysis by fixing one parameter at a time — this390

is called the “pivot” parameter — while varying others over their respective

domains. The results of the numerical study are summarized in Table 2 where

the average optimality gap is reported for all problem instances characterized by

2http://gwr3n.github.io/jsdp/
3https://pypi.python.org/pypi/inventoryanalytics/
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Figure 1: Demand patterns

the same pivot parameter. Also, in Figure 2(a) and in Figure 2(b), we provide

a comprehensive set of boxplots for conventional and receding horizon imple-395

mentations of different methods. Note that the results regarding each method

is given under the abbreviated name of the first author of the corresponding

paper, i.e. Ask [10], Bol [13], Tar [16], Ros [17], and Sox/Var [14, 15]; and the

suffix “–R” is added to those where a receding horizon approach is adopted, i.e.

Sox/Var–R, Tar–R, and Ros–R. Note that, Vargas [15] presents a special case400

implementation of Sox [14] by assuming a normally distributed demand. So,
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in the numerical setup of the current study these two are treated as a single

method and abbreviated as Sox/Var.

4.2. Discussion

Below we first give a brief overview of the findings regarding each of the405

methods considered with and without receding horizon control. We draw some

conclusions on the effects of varying demand and cost parameters. We refer to

the results reported in Table 2, Figure 2(a) and Figure 2(b).

The results indicate that Sox/Var – in the absence of a receding horizon

control – provides the largest optimality gap. This result is rather consistent410

and it holds for all parameter settings yielding an average optimality gap of

13%. In Figure 2(a) we can see that the optimality gap may reach 60% in

the worst case. These results can mainly be attributed to the structure of the

policy. Because both the timing and the size of replenishments are fixed at

the beginning of the planning horizon, the static uncertainty strategy has no415

means to take recourse actions against demand uncertainty. Hence, uncertainty

accumulates throughout the planning horizon and leads to a large optimality

gap.

It is possible to observe that Tar and Ros, which adopt the static-dynamic

uncertainty strategy, consistently yield the best cost performances among all420

methods considered, with an optimality gap around 2%. Furthermore, the devi-

ation in the cost performance of these methods is rather low. This immediately

shows that the static-dynamic uncertainty is very competitive despite the fact

that it schedules replenishments in advance.

Ask and Bol yield optimality gaps around 4% and 5% respectively. These425

gaps are better than those produced by static uncertainty heuristics; however,

they are larger than those produced by static-dynamic uncertainty heuristics.

This finding is a particularly interesting one. The dynamic uncertainty strategy

is by definition a superior strategy than the static-dynamic uncertainty strategy

because it uses more information at the time of making replenishment decisions.430

However, this is true provided optimal policy parameters are available for both
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(b) Re-planning implementations – A closer look

Figure 2: Boxplot comparison of methods considered

policies. From our study it appears that existing heuristics for the dynamic

uncertainty policy do not produce parameters of sufficient quality to outpace

the performance of state-of-the-art static-dynamic uncertainty heuristics.

We now concentrate on the effects of varying demand and cost parameters.435

The results suggest, in general, that all methods perform relatively better when

the demand pattern is rather steady. This is especially apparent when we look

at variants of the same underlying pattern characterized by small and large

oscillations. The average optimality gap of all methods significantly increase as

we move from SIN1 and SIN2, or LCY1 to LCY2. This immediately shows that440

managing inventories is more difficult when demand is heavily non-stationary.
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We observe that performance of all methods deteriorates as demand variabil-

ity increases. For instance, the optimality gap of Sox/Var gradually increases

from 5.15% to 21.17% as the coefficient of variation increases from 0.1 to 0.3.

The only exception of this is the heuristic of Bol. This method performs rela-445

tively better in higher levels of demand uncertainty. This result can mainly be

attributed to the fact that all methods except Bol are adaptations of solution

methods which were originally designed for the deterministic version of the lot

sizing problem.

If we consider performance of all methods with respect to fixed ordering450

costs, we see that performance of “static” Sox/Var, as well as that of “static-

dynamic” Tar and Ros improves when fixed ordering cost increases. This is not

the case for “dynamic” uncertainty heuristics, i.e. Ask and Bol; the performance

of these latter heuristics does not seem to be affected by variation of the fixed

ordering cost. This is likely due to the fact that a higher fixed ordering cost is455

likely to induce longer replenishment cycles; in turn, longer replenishment cycles

mean fewer and more “stable” replenishments. In this context, heuristics that

seek a “static-dynamic” as opposed to a purely “dynamic” control are likely to

produce a better outcome. When we look at the effect of stock-out penalty cost,

both Sox/Var as well as the heuristics of Tar and Ros perform worse for higher460

values of penalty cost. Ask, on the other hand, performs relatively better as the

penalty cost increases. Finally, the performance of the heuristic of Bol does not

display a clear response to penalty cost variations, but remains worse than or

comparable to Ask across all values considered.

Having summarized the results obtained from conventional implementations465

of different methods, we turn our attention on their receding horizon imple-

mentations. As remarked, we only target static-uncertainty and static-dynamic

uncertainty strategies, since a receding horizon approach is only of value if the

policy parameters are dependent on the inventory level on hand. Hence, we

experiment on Sox/Var, Tar, and Ros. We observe that the receding horizon470

approach not only significantly improves the average cost performance of all

these methods across all combinations of problem parameters considered, but
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it also reduces the dispersion in the worst-case performance (see Figure 2(b)).

In particular, we see that the heuristics of Tar and Ros perform extremely

well when deployed with a receding horizon approach and both yield optimality475

gaps around 0.25%. On the other hand, probably the most remarkable result in

our numerical experiments is that the receding horizon implementation of the

method of Sox/Var adopting static uncertainty strategy displays an excellent

performance with an optimality gap around 0.5% – slightly higher than those

of the heuristics based on static-dynamic uncertainty strategy. Note that this480

method displays an average optimality gap of 13% without the receding hori-

zon deployment. This clearly shows that the receding horizon approach makes

it possible for the static uncertainty strategy to take suitable recourse actions

against demand uncertainty.

4.3. Practical implications485

We hereby reflect on practical implications of findings presented in our nu-

merical study.

As pointed out in a number of works, see e.g. [5], to cope with demand un-

certainty, companies must use replenishment systems that adopt sophisticated

inventory control policies. In the case of non-stationary demand — which is490

almost always the norm in industries where seasonal patterns, trends, business

cycles, and limited-life items are observed — the structure of the optimal policy

has been characterised in [7], and named “dynamic uncertainty” by [12]. How-

ever, adoption of this policy is prohibitive in practice due to its implementation

complexity and associated computational challenges. This in turn implies that495

practitioners must resort to heuristic policies, since seeking optimality would

rule out any chance of successful implementation.

Because of the complexity associated with the computation of optimal policy

parameters, over the past decades research has mainly focused on the determi-

nation of near-optimal policy parameters, see e.g. [10, 13]. Unfortunately, our500

numerical experiments demonstrate these heuristics may lead to large optimality

gaps.
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In the past, researchers have not explored the option of adopting heuristic

policies, such as Bookbinder and Tan’s “static-uncertainty” or “static-dynamic

uncertainty” [12] as an alternative to an optimal policy; these policies are very505

cheap to compute, and easy to implement, but unfortunately do not appear to

be competitive with dynamic uncertainty heuristics Ask [10] and Bol [13].

Our findings, however, suggest that the picture changes under receding hori-

zon control. In this setting, both static-uncertainty and static-dynamic uncer-

tainty feature very competitive optimality gaps and fully dominate [10, 13]. In510

turn, this means that focusing on approximating a control policy that follows

the optimal form may not be advantageous in a heuristic setting, and that al-

ternative policy structures should also be considered. Alternative policies may

feature a simpler structure and may result easier to implement in practice.

According to our study, those companies that do not have the required infras-515

tructure to deal with the inherent complexity of optimal inventory management

policies may adopt a static-uncertainty policy under a receding horizon (SU-RH)

control; this solution is cheaper to implement than other well-known heuristic

policies (e.g. static-dynamic uncertainty), and features comparable optimality

gaps. Finally, SU-RH control not only produces plans that feature competitive520

average optimality gaps, but that are also very reliable (i.e., low variance in the

observed optimality gaps) and robust (i.e., stable performance over a wide-range

of cost parameters).

These sought after features of the SU-RH makes it a promising inventory

management solution for companies that (i) are exposed to non-stationary de-525

mand, (ii) cannot allocate extensive computational and human resources to

inventory management, (iii) do not have the means to acquire sophisticated

software for optimal control.

5. Conclusions

In this paper, we presented a cost-based performance evaluation of three530

lot-sizing strategies, i.e. static uncertainty, dynamic uncertainty, static-dynamic
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uncertainty, for non-stationary stochastic demand with backorder cost within a

receding horizon framework. We firstly compared six heuristics: Ask [10], Bol

[13], Tar [16], Ros [17], and Sox/Var [14, 15] on a common test bed and com-

puted their optimality gap with respect to the optimal control policy obtained535

via stochastic dynamic programming [7]. We, then carried out a similar cost

comparison for a receding horizon deployment of the static and static-dynamic

heuristics. We investigated the impact of the receding horizon scheme on the

cost performances of separate inventory control policies.

According to our numerical study the static-dynamic uncertainty strategy540

is the one that displays the closest cost performance to the optimal dynamic

uncertainty strategy. In particular, heuristic methods of Tar and Ros yield

an optimality gap around 2% as opposed to the large optimality gap of static

uncertainty strategy around 13%. Surprisingly, heuristic methods proposed for

dynamic uncertainty strategy yield a cost performance in-between the two other545

strategies. Furthermore, their cost performance is very sensitive to the parame-

ter settings and displays large dispersion against the parameter changes. These

results suggest that the heuristics based on static-dynamic uncertainty strat-

egy are strong alternatives for the optimal lot-sizing policy in the conventional

implementation.550

When it comes to receding horizon deployment, the scene completely changes.

As one would expect, the receding horizon approach improves the cost perfor-

mance of all methods considered. Though, an outstanding impact is observed

with the methods for static uncertainty strategy with an average optimality gap

of 0.5%. This shows that when deployed with a receding horizon control the555

static uncertainty policy turns out to be one of the strongest alternatives to the

optimal dynamic uncertainty strategy.

This study emphasizes the fact that receding horizon control incorporates

realized demand information and gives the opportunity to take recourse actions

for the poorly performing policies when applied in conventional form. The560

recourse actions, however, improves the cost performance against the backdrop

of higher system nervousness. Despite this, a well designed receding horizon
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implementation would still provide a fair trade off with the advantage of better

cost performances in non-stationary stochastic inventory problems under a finite

planning horizon.565
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