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ABSTRACT 

This paper considers the task of providing practical advice to quality engineers and practitioners on the 

choice of values for the two parameters of a geometric CUSUM control chart.  This CUSUM chart was 

developed to enable the detection of sudden shifts from an acceptable level for a proportion (p) such as 

fraction nonconforming.  In the first part of the paper, tables are presented listing recommended parameter-

choices for each of 18 in-control levels for p in the range (0.04 to 0.001) for detection of each of five sizes 

of upward shift.  In the second part of the paper, some empirical relationships among the parameter-values 

are identified.   These relationships are used with interpolation to design geometric CUSUM schemes for 

any in-control level (pa) of p within the range covered by the tables, and with extrapolation for levels of pa 

as low as 0.0001.  Because of the equivalence between a geometric CUSUM and a Bernoulli CUSUM, the 

tables and the proposed methods of interpolation and extrapolation also provide assistance in the design of a 

Bernoulli CUSUM chart.  

Key-words: Statistical Process Control; Process Monitoring; Cumulative Sum Scheme;       

           Bernoulli CUSUM; Exponential CUSUM. 

 

 

 
 

 

 

 

 



 

1. Introduction 

 There are many circumstances where it is desired to monitor a proportion associated with a stream of 

discrete items that are generated from a repetitive process.  In the context of Quality Engineering for 

industry, the most familiar instance of this is the task of monitoring the fraction of items found to be 

nonconforming for a manufacturing process.  In many situations the volume of items produced can be quite 

large, and despite this it is often the case that 100% inspection of the items in order of production is both 

necessary and feasible. When such inspection is underway, a nonconforming item will occasionally be 

found even when the process is operating at an acceptable level (pa) for the proportion (p).  We consider 

those situations where it is feasible to maintain an ordered record of the number (Xi) of conforming items 

that are found between successive nonconforming items, and the term conforming run-length (CRL) has 

been used to refer to the Xi value.  As each item is produced and found to be conforming, the current Xi 

value is incremented by one.  If the item is found to be nonconforming, we record the most recent Xi, and 

then set Xi+1 to zero to start a new count.  It is also assumed that there is little delay between the production 

of the item and the corresponding updating of the Xi value.  (It should be noted that each nonconforming 

item found does not contribute to the Xi value.) The sequence of Xi values can be used as the data for a 

monitoring scheme: if there appears to be a reduction in value for these {Xi} this provides an indication that 

the process-proportion may have increased. On the other hand, an increase in the Xi values suggests that the 

proportion may have shifted downward.    

 There are a number of ways of using the ordered {Xi} data, and for a discussion of these and other 

related methods one may refer to Szarka and Woodall (2011).  One of the recommendations of these 

researchers is that either a geometric CUSUM chart or a Bernoulli CUSUM chart be used for detection of a 

shift of specified size for a proportion.  It is over 25 years since the first investigation of the geometric 

CUSUM chart, and since then there has been continuing interest in this chart, and it is included in many 

comparative studies of control-chart performance, particularly for very small values of a proportion.  But it 

is unclear whether this chart has been used much by many practitioners of statistical process control.  It 

seems probable that a reason for its likely under-use is the complexity of choosing parameter-values for this 

CUSUM chart. This paper seeks to aid the task of finding suitable values for these parameters.  The results 

presented here can help to bridge the gap between developments in the methodology of statistical process 

monitoring and current practice.  The importance of addressing such gaps has been highlighted in a recent 

paper (Woodall, 2017). 

 The paper is organized as follows. In the next Section we provide a brief introduction to the geometric 

CUSUM chart and its parameters k and h.  In Section 3, we consider measures of performance for the 



 

geometric CUSUM, and review the recommended design procedure for this CUSUM chart.  In Section 4, 

we consider the choice of the parameter k, and describe an investigation to aid this choice.   In Section 5, 

five tables are presented listing recommended parameter choices for CUSUM schemes to detect five 

specific shift-sizes.  In Section 6, the performance of a geometric CUSUM for detecting a range of sizes of 

upward shift is considered.  In Section 7, a series of tables is given which demonstrate some simple 

empirical relationships among the values of parameters k, h and pa, in particular the stability of the ratio h/k.  

Using estimates of this ratio, sixteen interpolations are given in Section 8 to find CUSUM schemes for 

values of pa within the range (0.04 to 0.001).   The usefulness of the ratio h/k in extrapolations to find 

CUSUM schemes for pa values below the range (0.04 to 0.001) is demonstrated in Section 9 for the 

relatively low value pa = 0.0001.  Section 10 provides a summary of the paper, and indications of areas of 

further research.  

 

2. The Geometric CUSUM Chart 

 The proposal to form a CUSUM scheme using the ordered sequence of CRL values was made in 

Bourke (1991), and this CUSUM has come to be known as the geometric CUSUM.  The CUSUM (Gi) is as 

follows: 

     Gi = max (0, k – Xi +Gi-1)        i = 1, 2 …     (2.1) 

In order to start the CUSUM, an initial value (G0) must be chosen. This is often taken to be zero, but a 

positive value (termed a head-start level) may also be used.  The quantity k is known as the reference value 

of the CUSUM and is one of the two integer-valued parameters of the scheme.  The second parameter is 

denoted by h, and is often referred to as the decision interval value.   As long as the process-proportion (p) 

remains at an acceptable level pa (or below), then we expect the computed value arising from equation (2.1) 

to rarely rise much above zero.   With p at the acceptable level, if Gi were to reach or exceed h, we say that 

the CUSUM has signalled, and an investigation should indicate that this is a false signal.  In designing a 

geometric CUSUM scheme, we wish to limit the frequency of false signals, but also to quickly signal 

sizable upward shifts from the acceptable level pa.  It is assumed in this paper that we know pa and also pr, 

the minimum size of shifted proportion that should be detected, so that pr is a rejectable level for p.  (Some 

researchers prefer the notation p0 and p1, rather than pa and pr.)   We shall also consider what may be done 

when there is uncertainty about the level of pr that should be used.                 

 Following the first paper on the geometric CUSUM, some researchers (e.g. Chang and Gan (2001), 

Szarka and Woodall (2012)) have preferred to use a slightly different formulation, where the geometric 

count value {Yi, say} is defined as the number of items observed until a nonconforming item is found, so 



 

that the count Yi would then include the nonconforming item.  Clearly, Yi = Xi + 1.  If one uses the {Yi} as 

the observed data, the relevant value of k will be one more than the value when one uses {Xi} as the 

observed data.  In this paper, we shall use {Xi} as the observed data. 

 

3. Measures of Performance for a Geometric CUSUM Chart 

 The measure average number of observations until a signal (ANOS) was recommended in Reynolds 

and Stoumbos (1999) and also in Szarka and Woodall (2011), which provides a discussion of various 

performance-measures.  The ANOS measure is particularly relevant when one wishes to make performance-

comparisons for competing monitoring schemes.   In this paper, the measure average number of 

nonconformities until a signal (ANNS) is introduced, and will be used throughout the paper.  This measure 

is defined as follows: 

ANNS(p) = E[Number of CRLs until the CUSUM signals, following a shift from pa to p]    (3.1) 

We note that ANNS(p) equals p multiplied by ANOS(p). 

 In setting up a geometric CUSUM chart (or other monitoring scheme), one would like the frequency 

of false signals to be low, while achieving speedy detection following the occurrence of a sizable 

shift.  We can express these aims in terms of the chosen measure (ANNS in this paper) by seeking 

parameter-values such that ANNS(pa) is at least some chosen high level, and so that ANNS(pr) is as small 

as possible.  It is important for any user of a monitoring scheme to be aware that there is an interplay 

between ANNS(pr) and the level chosen for ANNS(pa), and this is discussed further in Section S1 of the 

supplementary material available online.  

 It is our view that ANNS(p) can be a more suitable performance-measure for a user of a geometric 

CUSUM chart.  Consider a user who wishes to monitor a process for which pa = 0.001, with the intention of 

stopping the process as soon as possible following a shift in p to 0.003 or above.  If one is using ANOS as a 

performance-measure, the quality engineer is asked to think about (and then specify) a minimum level for 

the average number of items observed after a random starting point until the next false signal from the 

CUSUM.  This specified level can be quite large, e.g 50,000, 100,000 or even 200,000.  On the other hand, 

if one is using ANNS as a performance-measure the engineer needs to choose an acceptable minimum level 

for the average number of nonconforming items found after a random starting point until the next false 

signal, and suitable levels might be 25, 50, 100, etc.  We believe that these lower numbers can make this an 

easier specification for the engineer to make.  It will be seen in Section 7 that a significant benefit of the 

ANNS measure is that its use here has enabled the identification of the stability of the ratio h/k for a range 

of geometric CUSUM schemes for which ANNS(pa) is fixed, and the shift-size (as a multiple of pa) is fixed. 



 

3.1 Evaluation of ANNS(p): Zero-state and Steady-state Evaluations 

In early investigations of the geometric CUSUM chart, evaluations of measures such as ANOS were 

based on an assumption about the stream of CRL data from the process, and on an assumption about the 

operation of the associated CUSUM chart.  It was assumed that the CUSUM was started directly after a 

nonconforming item (with an initial CUSUM value of zero or some positive level), and was then continued 

until the CUSUM signalled.  For the stream of CRL data generated by the process, it was assumed that the 

level of the proportion p remained constant, and in evaluating ANOS two levels for p were usually 

considered: the acceptable level pa, and the minimum rejectable level pr.  These evaluations of ANOS are 

known as zero-state or initial-state evaluations.  In such evaluations, there is no consideration of the way in 

which a shift from pa to pr might occur.  In subsequent research, consideration was given to two alternative 

assumptions relating to the occurrence of a shift: 

A1: The sudden shift in the value of the proportion from pa to pr can occur at any item, conforming or 

nonconforming.  This has been termed the random-shift assumption. 

A2. The shift in the value of p can only occur directly after the occurrence of a nonconforming item.  This 

has been termed the fixed-shift assumption. 

In preparing the tables reported in Section 5 of this paper, we have chosen to make the random-shift 

assumption, and we also assume that the CUSUM has been in operation for a lengthy period with p = pa 

prior to the shift, so that the non-signalling CUSUM values at the moment of shift will have reached a 

steady-state distribution.  (Following any false signal, the CUSUM is re-set to zero.)  It is noted (on page 

58) in Szarka and Woodall (2012) that the random-shift assumption is more realistic.  In the latter paper it is 

also stated “Some authors who have studied the geometric CUSUM chart have misleadingly, in our opinion, 

applied the fixed-shift model...”  The analysis for the evaluation of ANNS for the case of the random-shift 

assumption (in conjunction with the CUSUM values having reached a steady-state distribution prior to the 

shift) is given in Bourke (2001) and is briefly reviewed in the Appendix.  The use of simulation is another 

option, and such evaluations have been reported in Szarka and Woodall (2012).  

Tables to aid the design of geometric CUSUM charts were provided in Bourke (1991) and in Chang 

and Gan (2001), but in both cases only zero-state evaluations were presented.  In Table 3 of Chang and Gan 

(2001) the parameters of geometric CUSUM schemes were provided for seven levels of pa in the range 

0.0005 to 0.00001, and for four sizes of upward shift.  In their table, the levels used for ANNS(pa) ranged 

from 4 to 15 for pa = 0.0005, and from 3 to 8 for pa = 0.00001.  (Their Table 3 refers to in-control ANIS, 

which is the same as zero-state ANOS(pa).)  The use of a table based on zero-state evaluations for situations 

where random shifts may occur can lead to misleading conclusions.  As an illustration of this, we consider 

one of the CUSUM schemes listed in Table 3 of Chang and Gan (2001) for detection of a shift from pa = 



 

0.0002 to pr = 0.0006.  They recommend a scheme with parameter values k = 2746, h = 2705.  We have 

evaluated zero-state ANOS(pa) for this scheme, and we can confirm the reported value of 50000.  We also 

found the steady-state ANNS(pr) value (at 3.625) under the random-shift assumption for this scheme to be 

about 22% above the zero-state ANNS(pr) value (2.971).  Another scheme from Table 3 of Chang and Gan 

(2001) is for detection of a shift from pa = 0.0001 to pr = 0.0002, and the recommended parameter values 

are k = 6931, h = 8267. This time the steady-state ANNS(pr) value is about 14% above the corresponding 

zero-state value.  Thus, a reliance on zero-state evaluations of ANNS(pr) can be misleading if shifts in the 

level of p can occur randomly at any item. 

 

4. Choosing a Value for Parameter k 

In Bourke (1991), the following formula, derived from the sequential probability ratio (SPR) analysis 

for detecting a shift from pa to pr, was proposed for choosing a value for k.   

    k = {ln(pr / pa)}/{ln[(1- pa)/(1- pr)]}        (4.1)
  

There is a theoretical result in Moustakides (1986) which indicates that a CUSUM scheme that uses a k 

value arising from an SPR analysis is an optimal detector of a shift.  Lucas (1994) has commented that the 

Moustakides paper is so abstract that few can read it.  In Yaschin (1993) there is a more accessible 

discussion of this result, and it is stated (page 47) that this optimality result relates to “worst-case ARL”, 

which in the present context is zero-state ANNS.  We have carried out computations to verify that if one is 

using zero-state ANNS(p), the use of a k value from equation (4.1) is optimal.  In preparing this paper, an 

extensive computational investigation was conducted to see how well this formula works when one is using 

steady-state evaluation of ANNS(p) together with the random-shift assumption.   

 In this investigation we searched for the value for k that would give the lowest value for ANNS(pr) for 

a series of geometric CUSUM schemes for which ANNS(pa) ≥ a specified level, and this was repeated for a 

range of shift-sizes.  Five levels for ANNS(pa) were considered, and these were: 25, 50, 100, 200 and 300.  

For each of these levels, five sizes of shift from pa to pr were considered, and these were: 

  pr = 1.5×pa  pr = 2×pa  pr = 3×pa  pr = 5×pa  pr = 7×pa. 

To describe this investigation, one of the cases that were considered is now presented: 

For pa = 0.002, ANNS(pa) = 100, and pr = 0.004, we searched for a range of (k, h) parameter choices for 

which ANNS(pa) closely exceeded 100. For each of these CUSUM schemes, we evaluated ANNS(pr), and 

identified the value of k for which ANNS(pr) was minimum. The best choice of k was found to be 379 (and 

the value of h was 1701).  The value of ANNS(pr) for this scheme was 12.16, which is about 1.2% below 



 

the ANNS(pr) value for the scheme (k = 346, h = 1333) where the value of k was determined using equation 

(4.1).  For each of these CUSUM schemes, the value of ANNS(pa) barely exceeds 100.  

 In all cases considered, it was found that the minimum level for ANNS(pr) occurred when k was larger 

than the value arising from equation (4.1).  The percentage by which the best choice for k exceeded the k 

value from equation (4.1) was evaluated for each of the 25 combinations of ANNS(pa) level and shift-size. 

These percentages were determined for two levels of pa (0.002 and 0.005).   It was found that the main 

influence on these percentages is the level of ANNS(pa).  While there is also a dependence on the size of 

shift, the dependence on pa is slight.  The recommended percentages are given in Table 1.   It must also be 

remarked that in all the cases considered the minima are relatively flat, and the reduction in ANNS(pr) value 

arising from using the recommended k value rather than that from equation (4.1) can range from about 1.8% 

(for schemes with ANNS(pa) = 25, for detection of small shifts) through about 1% (for schemes with 

ANNS(pa) at 50 or 100, for detection of moderate shifts).  For higher levels of ANNS(pa) and detection of 

large shifts, the corresponding reduction in ANNS(pr) is about 0.3%.  A limited earlier study on the best 

choice of value for the parameter k was reported in Bourke (2001), which provides a graphical illustration. 

TABLE 1:  Recommended Value of k:  Percentage Increase over the Value given by 

  the Sequential Probability Ratio Formula. 

____________________________________________________________________________________  

         Shift-size to be detected 

            1.5×pa                   2×pa    3×pa          5×pa       7×pa 

____________________________________________________________ 

ANNS(pa) =   25 15.9 17.1 17.7 17.7 17.7 

ANNS(pa) =   50 11.2 12.6 13.2 13.2 13.2 

ANNS(pa) = 100 8.6 9.6 10.1 10.1 10.1 

ANNS(pa) = 200 6.5 7.3 7.7 8.2 8.4 

ANNS(pa) = 300 5.5 6.2 6.7 7.1 7.3 

____________________________________________________________________________________ 

  

5. Tables of k, h values for a Geometric CUSUM Chart 

 In order to provide assistance to potential users of geometric CUSUM charts, tables of recommended 

k, h values have been developed.  The structure and range of these tables is now described.  

Table 2 provides k, h values for detecting a shift from pa to pr = 1.5×pa for schemes with each of the 

following levels for ANNS(pa):  25, 50, 100, 200, 300, across a range of values of pa from 0.04 to 0.001. 

Table 3 provides k, h values for detecting a shift from pa to pr = 2×pa for schemes with each of the following 

levels for ANNS(pa):  25, 50, 100, 200, 300, across a range of values of pa from 0.04 to 0.001. 



 

Table 4 provides k, h values for detecting a shift from pa to pr = 3×pa for schemes with each of the following 

levels for ANNS(pa):  25, 50, 100, 200, 300, across a range of values of pa from 0.04 to 0.001. 

Table 5 provides k, h values for detecting a shift from pa to pr = 5×pa for schemes with each of the following 

levels for ANNS(pa):  25, 50, 100, 200, 300 across a range of values of pa from 0.04 to 0.001. 

Table 6 provides k, h values for detecting a shift from pa to pr = 7×pa for schemes with each of the following 

levels for ANNS(pa):  25, 50, 100, 200, 300, across a range of values of pa from 0.04 to 0.001. 

In these tables, some combinations of ANNS(pa) level and shift-level are likely to be of lesser interest: such 

as shifts of size 1.5×pa with ANNS(pa) ≥ 100, and shifts of size 2×pa with ANNS(pa) = 300, for which the 

values of ANNS(pr) may be considered to be too large by some users. 

 In all of these tables, the choice of a value for k was made using the conclusions reported in Section 4. 

In all cases, once the value of k had been chosen, a search was conducted to find the smallest value of h 

such that ANNS(pa) was at least the chosen level (i.e. one of 25, 50 100, 200, 300).  Some consideration 

was given to the alternative search of finding the value for h which would give a value for ANNS(pa) closest 

to the target (i.e. 25, 50, etc.), but it was deemed preferable to have ANNS(pa) closely exceeding the target. 

 The question may be asked:  is there advice on the choice of parameter values for shift-sizes other 

than those listed in the tables?   In addressing this question, we consider the detection of a shift from pa = 

0.005 to pr = 4×pa, with the requirement that ANNS(pa) should be at least 100.  Interpolation between the 

entries in Table 4 (for shifts to 3×pa) and Table 5 (for shifts to 5×pa) has been considered, but there does not 

seem to be any obvious method of interpolation.   From Tables 4 and 5 we have two possible schemes: (k = 

120, h = 383) for detecting shifts to pr = 3×pa and (k = 87, h = 199) for detecting shifts to pr = 5×pa.  Both 

schemes give a detection performance (when the shift is to 4×pa) that is quite close to that of the un-tabled 

scheme (k = 100, h = 260) which was designed to detect a shift to pr = 4×pa.   The values for ANNS(pr = 

0.02) for these three schemes are 6.24, 6.20 and 6.12, respectively.  We note that the scheme for detecting pr 

= 5×pa does a little better than the scheme for detecting pr = 3×pa, when the actual shift is to pr = 4×pa.   

Investigations for other shift-sizes and other levels of ANNS(pa) show similar results.  Arising from this, it 

is recommended that for detecting shift-sizes that are not tabulated, one should use the closest shift-size that 

is tabulated.  If the shift-size of interest is midway between two tabulated shift-sizes, it is recommended that 

the scheme for detecting the larger of the two tabulated shifts be used.  It is also of interest to consider the 

performance of a geometric CUSUM chart for detection of a range of shift-sizes, and this is considered in 

the next Section. 



 

TABLE 2:   Proposed values of Geometric CUSUM parameters (k,h) for a range of values of pa, and for five levels of ANNS(pa)  

    for detecting a shift from pa to pr = 1.5×pa 

__________________________________________________________________________________________________________________________________ 

       Values of the in-control proportion pa (in percent) 

 

4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

                    

 ANNS(pa) = 25 
               k 22 30 36 46 51 58 66 77 93 103 116 133 155 187 234 312 469 939 

h 77 106 126 165 181 209 235 272 331 363 408 470 545 663 828 1101 1658 3316 

ANNS(pr) 10.05 10.05 10.11 10.10 10.10 10.10 10.13 10.12 10.13 10.13 10.12 10.14 10.14 10.15 10.14 10.15 10.15 10.15 

                   

 

ANNS(pa) = 50 

               k 21 29 35 44 49 55 63 74 89 99 112 128 149 179 224 299 450 901 

h 97 140 169 211 235 261 298 354 425 472 539 614 709 852 1065 1420 2147 4296 

ANNS(pr) 14.43 14.48 14.57 14.55 14.58 14.61 14.60 14.64 14.65 14.64 14.65 14.65 14.66 14.68 14.68 14.68 14.69 14.70 

                   

 

ANNS(pa) = 100 

               k 21 28 34 43 48 54 62 72 87 97 109 125 146 175 219 292 439 880 

h 133 171 210 269 301 337 388 442 540 606 676 780 910 1084 1355 1801 2714 5453 

ANNS(pr) 19.93 20.03 20.07 20.14 20.11 20.18 20.16 20.18 20.21 20.24 20.23 20.26 20.26 20.28 20.28 20.30 20.30 20.31 

                   

 

ANNS(pa) = 200 

               k 21 28 33 42 47 53 61 71 85 95 107 122 143 172 215 287 431 863 

h 174 222 245 321 364 410 477 548 646 732 824 929 1100 1326 1651 2203 3307 6619 

ANNS(pr) 26.37 26.38 26.58 26.61 26.66 26.69 26.68 26.75 26.76 26.79 26.81 26.81 26.84 26.84 26.85 26.87 26.89 26.91 

                   

 

ANNS(pa) = 300 

               k 20 27 33 42 46 52 60 70 84 94 106 121 142 170 213 284 427 854 

h 165 221 279 367 383 435 512 593 706 804 909 1030 1225 1451 1823 2421 3651 7273 

ANNS(pr) 30.47 30.57 30.65 30.75 30.87 30.86 30.88 30.95 30.99 31.02 31.02 31.05 31.06 31.09 31.10 31.12 31.14 31.16 

_____________________________________________________________________________________________________________ 

 

 

 



 

TABLE 3:   Proposed values of Geometric CUSUM parameters (k,h) for a range of values of pa, and for five levels of ANNS(pa)  

   for detecting a shift from pa to pr = 2×pa 

__________________________________________________________________________________________________________________________________ 

       Values of the in-control proportion pa (in percent) 

 

4 3 2.5 2 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

                   

 

ANNS(pa) = 25 

               k 19 26 31 39 44 50 57 66 80 89 100 115 134 161 202 269 405 810 

h 53 73 84 106 121 139 157 179 219 243 272 315 366 439 552 732 1105 2204 

ANNS(pr) 7.00 7.01 6.96 7.02 6.99 7.01 7.01 7.03 7.03 7.03 7.04 7.04 7.05 7.05 7.05 7.06 7.06 7.06 

                   

 

ANNS(pa) = 50 

               k 18 25 30 38 42 48 55 64 77 86 96 110 129 155 194 259 389 779 

h 64 92 108 138 150 175 201 231 277 312 342 393 463 556 696 928 1393 2787 

ANNS(pr) 9.30 9.35 9.31 9.35 9.35 9.36 9.41 9.40 9.39 9.42 9.41 9.42 9.42 9.43 9.44 9.44 9.45 9.45 

                   

 

ANNS(pa) = 100 

               k 18 24 29 37 41 46 53 62 75 83 94 107 125 151 189 252 379 759 

h 83 107 129 168 184 205 238 278 338 371 424 477 557 679 850 1129 1701 3405 

ANNS(pr) 11.87 11.91 11.97 12.01 12.01 12.08 12.08 12.10 12.08 12.11 12.12 12.11 12.12 12.13 12.15 12.15 12.16 12.17 

                   

 

ANNS(pa) = 200 

               k 17 24 29 36 40 45 52 61 73 82 92 105 123 148 185 247 371 743 

h 88 134 161 194 215 240 281 331 392 448 498 566 666 803 1000 1334 2003 4009 

ANNS(pr) 14.66 14.84 14.86 14.90 14.98 14.98 14.98 15.01 15.05 15.05 15.05 15.09 15.10 15.11 15.11 15.12 15.13 15.14 

                   

 

ANNS(pa) = 300 

               k 17 23 28 36 40 45 51 60 73 81 91 104 122 146 183 244 367 735 

h 99 133 163 218 240 269 298 354 439 484 541 616 728 864 1086 1443 2175 4353 

ANNS(pr) 16.53 16.64 16.64 16.75 16.73 16.80 16.82 16.85 16.86 16.86 16.89 16.89 16.91 16.92 16.95 16.96 16.97 16.98 

_____________________________________________________________________________________________________________ 

 

 

 



 

TABLE 4:   Proposed values of Geometric CUSUM parameters (k,h) for a range of values of pa, and for five levels of ANNS(pa)  

   for detecting a shift from pa to pr = 3×pa 

__________________________________________________________________________________________________________________________ 

       Values of the in-control proportion pa (in percent) 

  4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

ANNS(pa) = 25 

               k 15 20 25 31 35 39 45 53 63 71 80 91 106 128 160 214 322 645 

h 31 40 52 63 72 79 91 108 126 144 162 182 211 257 320 428 644 1289 

ANNS(pr) 4.89 4.91 4.95 4.97 4.98 4.99 4.97 4.99 4.99 4.99 4.99 4.98 4.99 5.00 5.01 5.01 5.01 5.01 

                   

 

ANNS(pa) = 50 

               k 14 19 24 30 33 38 43 51 61 68 76 88 102 123 154 206 310 621 

h 36 49 64 79 85 100 112 134 159 177 196 230 263 319 398 533 803 1608 

ANNS(pr) 6.10 6.22 6.20 6.23 6.22 6.23 6.27 6.26 6.28 6.27 6.28 6.29 6.28 6.30 6.29 6.30 6.30 6.31 

                   

 

ANNS(pa) = 100 

               k 14 19 23 29 32 37 42 49 59 66 74 85 100 120 150 201 301 604 

h 46 62 74 93 101 120 134 156 187 211 235 270 320 383 478 642 956 1922 

ANNS(pr) 7.50 7.58 7.55 7.59 7.59 7.61 7.60 7.64 7.64 7.67 7.67 7.66 7.67 7.68 7.69 7.69 7.69 7.70 

                   

 

ANNS(pa) = 200 

               k 14 19 22 28 32 36 41 48 58 65 73 83 97 117 147 196 295 590 

h 56 75 82 105 123 138 155 181 219 248 277 312 364 441 556 739 1114 2220 

ANNS(pr) 8.92 8.97 9.02 9.05 9.03 9.08 9.07 9.07 9.08 9.11 9.11 9.12 9.13 9.14 9.15 9.15 9.16 9.17 

                   

 

ANNS(pa) = 300 

               k 13 18 22 28 31 35 41 48 57 64 72 83 97 116 145 194 292 585 

h 52 73 90 116 127 143 171 200 233 265 297 345 403 478 596 799 1204 2410 

ANNS(pr) 9.65 9.75 9.81 9.91 9.92 9.93 9.91 9.93 9.95 9.99 9.99 9.99 10.00 10.00 10.00 10.00 10.00 10.01 

________________________________________________________________________________________________________ 

 

 

 



 

TABLE 5:   Proposed values of Geometric CUSUM parameters (k,h) for a range of values of pa, and for five levels of ANNS(pa)  

   for detecting a shift from pa to pr = 5×pa 

___________________________________________________________________________________________________________________________ 

       Values of the in-control proportion pa (in percent) 

 

4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

                   

 

ANNS(pa) = 25 

               k 10 14 18 22 25 28 32 38 46 51 58 66 78 93 117 156 235 472 

h 15 21 28 33 38 42 48 57 69 76 87 98 117 138 174 231 348 698 

ANNS(pr) 3.66 3.69 3.70 3.72 3.73 3.73 3.76 3.74 3.75 3.75 3.75 3.75 3.76 3.76 3.76 3.76 3.77 3.77 

                   

 

ANNS(pa) = 50 

               k 10 14 17 21 24 27 31 37 44 49 56 64 75 90 112 150 226 454 

h 20 27 33 39 46 51 58 70 82 92 106 120 141 169 208 279 420 844 

ANNS(pr) 4.50 4.42 4.49 4.44 4.51 4.49 4.48 4.49 4.49 4.53 4.53 4.51 4.52 4.54 4.53 4.53 4.53 4.54 

                   

 

ANNS(pa) = 100 

               k 10 13 16 21 23 26 30 36 43 48 54 62 73 87 109 146 220 442 

h 24 30 37 49 53 60 69 84 99 111 124 143 169 199 249 334 503 1011 

ANNS(pr) 5.10 5.22 5.25 5.22 5.26 5.29 5.28 5.28 5.28 5.30 5.29 5.32 5.32 5.31 5.32 5.33 5.33 5.33 

                   

 

ANNS(pa) = 200 

               k 10 13 16 20 23 26 30 35 42 47 53 61 71 86 108 144 216 434 

h 29 36 44 54 63 71 82 95 114 128 144 166 192 233 293 390 583 1172 

ANNS(pr) 5.93 6.03 6.02 6.05 6.03 6.04 6.05 6.07 6.11 6.12 6.12 6.13 6.13 6.12 6.13 6.15 6.15 6.16 

                   

 

ANNS(pa) = 300 

               k 9 13 16 20 23 26 29 35 42 47 53 60 71 85 106 142 214 430 

h 26 39 48 59 69 78 85 105 125 140 158 177 211 251 311 417 630 1266 

ANNS(pr) 6.30 6.44 6.46 6.50 6.48 6.51 6.56 6.57 6.58 6.58 6.59 6.61 6.61 6.61 6.61 6.62 6.64 6.64 

_______________________________________________________________________________________________________ 

 

 



 

TABLE 6:   Proposed values of Geometric CUSUM parameters (k,h) for a range of values of pa, and for five levels of ANNS(pa)  

   for detecting a shift from pa to pr = 7×pa 

___________________________________________________________________________________________________________________________ 

       Values of the in-control proportion pa (in per cent) 
 

 

  4.0    3.0    2.5    2.0    1.8   1.6   1.4   1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

ANNS(pa) = 25 

               k 8 11 14 18 20 22 26 30 37 41 46 53 62 75 94 126 189 380 

h 10 14 18 23 25 27 32 36 45 50 56 64 75 91 114 152 227 456 

ANNS(pr) 3.16 3.25 3.25 3.25 3.24 3.27 3.25 3.25 3.25 3.27 3.28 3.27 3.28 3.28 3.28 3.28 3.28 3.28 

 

ANNS(pa) = 50 

               
k 8 11 13 17 19 21 25 29 35 39 44 51 60 72 90 121 182 366 

h 14 19 21 28 31 34 41 47 56 62 70 82 96 115 143 192 288 580 

ANNS(pr) 3.78 3.86 3.78 3.83 3.83 3.87 3.86 3.87 3.86 3.85 3.86 3.88 3.87 3.88 3.88 3.88 3.88 3.89 

 

ANNS(pa) = 100 

               
k 7 10 13 16 18 21 24 28 34 38 43 50 58 70 88 118 177 356 

h 14 19 26 31 35 41 46 53 65 72 82 96 110 133 167 224 335 674 

ANNS(pr) 4.42 4.32 4.44 4.45 4.48 4.45 4.43 4.42 4.47 4.45 4.47 4.47 4.46 4.48 4.48 4.48 4.49 4.50 

 

ANNS(pa) = 200 

               
k 7 10 13 16 18 21 24 28 34 38 43 49 57 69 86 116 174 350 

h 16 23 31 37 41 49 56 64 78 87 99 112 129 157 195 264 394 792 

ANNS(pr) 4.85 4.94 4.98 5.02 4.98 5.01 5.05 5.02 5.04 5.04 5.07 5.07 5.06 5.08 5.10 5.10 5.10 5.10 

 

ANNS(pa) = 300 

               
k 7 10 12 16 18 20 23 28 33 37 42 48 57 68 86 115 173 347 

h 18 25 30 40 45 50 57 71 81 92 104 119 142 168 213 285 428 856 

ANNS(pr) 5.27 5.24 5.37 5.32 5.33 5.41 5.41 5.43 5.39 5.44 5.42 5.45 5.44 5.45 5.45 5.47 5.47 5.47 

_____________________________________________________________________________________________________________________________ 



 

6.  The Performance of a Geometric CUSUM Chart for Detecting a Range of Shift-sizes 

 The Tables presented in Section 5 are useful when one has reliable information on the quantities pa 

and pr.  But there may be situations where one would prefer not to specify a single value (pr) for the size of 

shift to be detected.  For such situations, we will assume that it is possible to specify an interval of possible 

values for pr, and our intention is to find parameters for a geometric CUSUM scheme that will provide good 

detection performance for shifts from pa to any level in this interval.   

 It is accepted (e.g. Hawkins and Olwell (1998) page 139) that most CUSUMS are robust in the sense 

that they work quite well for detecting a moderate range of shift-sizes.  In order to investigate this for a 

geometric CUSUM chart, we considered the comparative performance of ten CUSUM schemes each 

designed to detect a specified shift, for the case of pa = 0.004, with all ten schemes having the in-control 

level ANNS(pa) = 50. Thus, ten CUSUM schemes were found for detecting ten specified shift-sizes ranging 

from 1.5×pa to 7×pa.  The ten schemes and their parameters are listed in Table 7.  This Table provides a 

tabulation of the percentage by which the ANNS(p) value for a particular scheme exceeds the lowest of the 

ANNS(p) values for the ten schemes.   By way of illustration, the value 5 in the row for p = 0.008 for the 

fourth scheme (a scheme designed to detect shifts of size 3×pa) gives the rounded percentage by which 

ANNS(p = 0.008) for the latter scheme exceeds the ANNS(p = 0.008) for the second scheme (which is the 

scheme designed to detect shifts from pa = 0.004 to pr = 0.008).   

It would seem useful to identify a range of shift-sizes for which each of the ten schemes has a 

detection performance that is not too far away from that of the best of the ten schemes, and these ranges are 

indicated in the boxed sections of Table 7.   (The boxed section for a particular scheme identifies the levels 

of p for which ANNS(p) for that scheme is within 5% of the lowest ANNS(p) for these ten schemes.)   Here 

are some observations on detection performance of the various schemes considered: 

(i) For the fourth scheme (designed for detection of a shift from pa = 0.004 to pr = 3×pa), it can be seen 

that this scheme works quite well for detecting shifts in the range pr = 2×pa to pr = 5×pa.   

(ii) For the eighth scheme (designed for detection of a shift from pa = 0.004 to pr = 5×pa) the 

 detection performance is good for shifts in the range 3×pa to 10×pa, but is poor for smaller shifts.  

(iii) If one wants to have good performance for detection of smaller shifts, the first two schemes are of 

interest: the performance of the first scheme is acceptable up to 2.25×pa but is comparatively poor for 

detecting larger shifts. The second scheme (designed for detection of a shift from pa = 0.004 to pr = 

2×pa) does quite well for shifts in the range 1.5×pa up to 3×pa and even 3.25×pa. 

A corresponding investigation for the case of pa = 0.002, with ANNS(pa) = 100, led to broadly similar 

results to those presented in Table 7. 



 

 

TABLE  7 Comparisons of Ten CUSUM Charts for Detecting Shifts from pa = 0.004 to pr = m×pa 

  The charts are designed to detect shifts for values of m = 1.5, 2.0, 2.5...,4.5, 5.0, 6.0, 7.0 

                 subject to ANNS(pa) ≥ 50. 

                 For each value of p above 0.004, the table-entries give the rounded percentages  

by which ANNS(p) for a chart exceeds the lowest value of ANNS(p) for all ten charts.  

  (The row for p = 0.004 contains the ANNS(pa) values.) 
____________________________________________________________________________________________ 

Values of m 1.5 2 2.5 3 3.5 4 4.5 5 6 7 

           CUSUM       k 224 194 171 154 141 129 120 112 100 90 

parameters   h 1065 696 506 398 330 275 237 208 171 143 

p 

          0.004 50.1 50.1 50.1 50.0 50.0 50.3 50.3 50.1 50.6 50.8 

0.005 0 6 12 16 21 25 28 30 36 41 

0.006 0 3 9 15 20 26 30 34 43 50 

0.007 0 0 4 8 13 19 23 27 37 45 

0.008 3 0 2 5 9 14 17 22 31 39 

0.009 5 0 0 2 5 9 12 16 24 32 

0.010 8 2 0 1 3 6 9 12 19 26 

0.011 11 3 0 0 1 3 6 8 14 21 

0.012 14 4 1 0 1 2 4 6 11 17 

0.013 16 6 1 0 0 1 2 4 8 13 

0.014 19 8 3 0 0 1 1 3 7 11 

0.015 21 9 3 1 0 0 1 2 5 9 

0.016 23 10 4 1 0 0 0 1 4 7 

0.017 25 12 5 2 1 0 0 0 3 5 

0.018 27 13 6 3 1 0 0 0 2 4 

0.019 29 15 7 4 1 0 0 0 1 3 

0.020 31 16 8 4 2 1 0 0 1 2 

0.024 37 21 12 7 4 2 1 0 0 1 

0.028 42 25 16 10 6 4 3 2 0 0 

0.032 47 28 19 12 8 6 5 3 0 0 

0.036 50 31 22 14 10 7 6 4 1 0 

0.040 53 33 24 15 11 9 8 5 2 0 

______________________________________________________________________________________________ 

 

A useful conclusion from this investigation is that if one has identified an interval of values for the shift-size 

to be detected, one should not take the mid-point of this interval as the level to use for pr in choosing a value 

for the parameter k, but rather a value about one third of the way from the lower end of the interval.   It 

seems likely that Tables 3,4 and 5 (for detecting shifts to 2×pa, 3×pa and 5×pa) will be of most interest.  An 



 

approach to the detection of a broader range of shift-sizes is to apply two separate geometric CUSUM 

schemes (termed a double geometric CUSUM chart) to the same stream of CRL data. This has been 

investigated by the author, and it is expected that it will be possible to make use of the tables of CUSUM 

parameter-values reported here. The disadvantage of a double CUSUM chart is its greater complexity both 

in design and operation. 

 

7. Simple Empirical Relationships among h, k, and pa  

 It is useful to consider the quantities (h×pa), and (h/k) for the CUSUM schemes listed in Tables 2,3,4, 

5, and 6.  Values of these quantities are presented in Tables 8, 9, 10, 11 and 12.  It is noticeable that there is 

a degree of stability in these values across the range of pa values in the tables.  (In fact, the stability of these 

quantities was used in guiding the searches to find many of the h values in Tables 2 to 6.)   There is even 

less variability in these quantities for values of pa below 0.01.  It is also noticeable that values of the ratio 

(h/k) have less variability than the (h×pa) values. The possibility of making use of the (h/k) ratios to find the 

parameters of geometric CUSUM schemes for values of pa other than those listed in Tables 2, 3, 4, 5, and 6 

has been investigated.  Two separate investigations have been conducted, the first for values of pa within the 

range 0.001 to 0.04 (in Section 8), and the second for a value considerably below 0.001 (in Section 9). 



 

TABLE 8:  Tabulated Illustrations of the Stability of each of (h×pa) and (h/k) for Geometric CUSUM schemes  

         for Detecting a Shift from pa to 1.5×pa 

________________________________________________________________________________________________________________________ 

     Values of the in-control proportion pa (in percent) 

4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

                   ANNS(pa) = 25  

  

Row 1: values of h×pa   Row 2: values of h/k  

       3.080 3.180 3.150 3.300 3.258 3.344 3.290 3.264 3.310 3.267 3.264 3.290 3.270 3.315 3.312 3.303 3.316 3.316 Extrapolation 

3.500 3.533 3.500 3.587 3.549 3.603 3.561 3.532 3.559 3.524 3.517 3.534 3.516 3.545 3.538 3.529 3.535 3.531 3.5308 

                    ANNS(pa) = 50 

  

Row 1: values of h×pa   Row 2: values of h/k  

       3.880 4.200 4.225 4.220 4.230 4.176 4.172 4.248 4.250 4.248 4.312 4.298 4.254 4.260 4.260 4.260 4.294 4.296 Extrapolation 

4.619 4.828 4.829 4.795 4.796 4.745 4.730 4.784 4.775 4.768 4.813 4.797 4.758 4.760 4.754 4.749 4.771 4.768 4.7681 

                   ANNS(pa) = 100  

  

Row 1: values of h×pa   Row 2: values of h/k  

       5.320 5.130 5.250 5.380 5.418 5.392 5.432 5.304 5.400 5.454 5.408 5.460 5.460 5.420 5.420 5.403 5.428 5.453 Extrapolation 

6.333 6.107 6.176 6.256 6.271 6.241 6.258 6.139 6.207 6.247 6.202 6.240 6.233 6.194 6.187 6.168 6.182 6.197 6.1992 

                   ANNS(pa) = 200  

  

Row 1: values of h×pa   Row 2: values of h/k  

       6.960 6.660 6.125 6.420 6.552 6.560 6.678 6.576 6.460 6.588 6.592 6.503 6.600 6.630 6.604 6.609 6.614 6.619 Extrapolation 

8.286 7.929 7.424 7.643 7.745 7.736 7.820 7.718 7.600 7.705 7.701 7.615 7.692 7.709 7.679 7.676 7.673 7.670 7.6818 

                   ANNS(pa) = 300  

  

Row 1: values of h×pa   Row 2: values of h/k  

       6.600 6.630 6.975 7.340 6.894 6.960 7.168 7.116 7.060 7.236 7.272 7.210 7.350 7.255 7.292 7.263 7.302 7.273 Extrapolation 

8.250 8.185 8.455 8.738 8.326 8.365 8.533 8.471 8.405 8.553 8.575 8.512 8.627 8.535 8.559 8.525 8.550 8.516 8.5435 

 

 

 

 

 

 

 



 

TABLE 9:  Tabulated Illustrations of the Stability of each of (h×pa) and (h/k) for Geometric CUSUM schemes  

           for Detecting a Shift from pa to 2×pa 
_______________________________________________________________________________________________________________________ 

     Values of the in-control proportion pa (in percent) 

4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

                   ANNS(pa) = 25 

  

Row 1: values of h×pa   Row 2: values of h/k 

       2.120 2.190 2.100 2.120 2.178 2.224 2.198 2.148 2.190 2.187 2.176 2.205 2.196 2.195 2.208 2.196 2.210 2.204 Extrapolation 

2.789 2.808 2.710 2.718 2.750 2.780 2.754 2.712 2.738 2.730 2.720 2.739 2.731 2.727 2.733 2.721 2.728 2.721 2.7269 

                   ANNS(pa) = 50  

  

Row 1: values of h×pa   Row 2: values of h/k 

       2.560 2.760 2.700 2.760 2.700 2.800 2.814 2.772 2.770 2.808 2.736 2.751 2.778 2.780 2.784 2.784 2.786 2.787 Extrapolation 

3.556 3.680 3.600 3.632 3.571 3.646 3.655 3.609 3.597 3.628 3.563 3.573 3.589 3.587 3.588 3.583 3.581 3.578 3.5815 

                   ANNS(pa) = 100 

  

Row 1: values of h×pa   Row 2: values of h/k 

       3.320 3.210 3.225 3.360 3.312 3.280 3.332 3.336 3.380 3.339 3.392 3.339 3.342 3.395 3.400 3.387 3.402 3.405 Extrapolation 

4.611 4.458 4.448 4.541 4.488 4.457 4.491 4.484 4.507 4.470 4.511 4.458 4.456 4.497 4.497 4.480 4.488 4.486 4.4844 

                   ANNS(pa) = 200 

  

Row 1: values of h×pa   Row 2: values of h/k 

       3.520 4.020 4.025 3.880 3.870 3.840 3.934 3.972 3.920 4.032 3.984 3.962 3.996 4.015 4.000 4.002 4.006 4.009 Extrapolation 

5.176 5.583 5.552 5.389 5.375 5.333 5.404 5.426 5.370 5.463 5.413 5.390 5.415 5.426 5.405 5.401 5.399 5.396 5.4048 

                   ANNS(pa) = 300 

  

Row 1: values of h×pa   Row 2: values of h/k 

       3.960 3.990 4.075 4.360 4.320 4.304 4.172 4.248 4.390 4.356 4.328 4.312 4.368 4.320 4.344 4.329 4.350 4.353 Extrapolation 

5.824 5.783 5.821 6.056 6.000 5.978 5.843 5.900 6.014 5.975 5.945 5.923 5.967 5.918 5.934 5.914 5.926 5.922 5.9282 

 

 

 

 

 

 

 



 

TABLE 10:  Tabulated Illustrations of the Stability of each of (h×pa) and (h/k) for Geometric CUSUM schemes  

             for Detecting a Shift from pa to 3×pa 

________________________________________________________________________________________________________________________ 

     Values of the in-control proportion pa (in percent) 

4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

                   ANNS(pa) = 25  

  

Row 1: values of h×pa   Row 2: values of h/k  

       1.240 1.200 1.300 1.260 1.296 1.264 1.274 1.296 1.260 1.296 1.296 1.274 1.266 1.285 1.280 1.284 1.288 1.289 Extrapolation 

2.067 2.000 2.080 2.032 2.057 2.026 2.022 2.038 2.000 2.028 2.025 2.000 1.991 2.008 2.000 2.000 2.000 1.998 2.0010 

                    ANNS(pa) = 50 

  

Row 1: values of h×pa   Row 2: values of h/k  

       1.440 1.470 1.600 1.580 1.530 1.600 1.568 1.608 1.590 1.593 1.568 1.610 1.578 1.595 1.592 1.599 1.606 1.608 Extrapolation 

2.571 2.579 2.667 2.633 2.576 2.632 2.605 2.627 2.607 2.603 2.579 2.614 2.578 2.593 2.584 2.587 2.590 2.589 2.5873 

                    ANNS(pa) = 100 

  

Row 1: values of h×pa   Row 2: values of h/k  

       1.840 1.860 1.850 1.860 1.818 1.920 1.876 1.872 1.870 1.899 1.880 1.890 1.920 1.915 1.912 1.926 1.912 1.922 Extrapolation 

3.286 3.263 3.217 3.207 3.156 3.243 3.190 3.184 3.169 3.197 3.176 3.176 3.200 3.192 3.187 3.194 3.176 3.182 3.1845 

                   ANNS(pa) = 200  

  

Row 1: values of h×pa   Row 2: values of h/k  

       2.240 2.250 2.050 2.100 2.214 2.208 2.170 2.172 2.190 2.232 2.216 2.184 2.184 2.205 2.224 2.217 2.228 2.220 Extrapolation 

4.000 3.947 3.727 3.750 3.844 3.833 3.780 3.771 3.776 3.815 3.795 3.759 3.753 3.769 3.782 3.770 3.776 3.763 3.7700 

                   ANNS(pa) = 300  

  

Row 1: values of h×pa   Row 2: values of h/k  

       2.080 2.190 2.250 2.320 2.286 2.288 2.394 2.400 2.330 2.385 2.376 2.415 2.418 2.390 2.384 2.397 2.408 2.410 Extrapolation 

4.000 4.056 4.091 4.143 4.097 4.086 4.171 4.167 4.088 4.141 4.125 4.157 4.155 4.121 4.110 4.119 4.123 4.120 4.1270 

 

 

 

 

 

 



 

TABLE 11:  Tabulated Illustrations of the Stability of each of (h×pa) and (h/k) for Geometric CUSUM schemes  

             for Detecting a Shift from pa to 5×pa 

________________________________________________________________________________________________________________________ 

     Values of the in-control proportion pa (in percent) 

4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

                   ANNS(pa) = 25  

  

Row 1: values of h×pa   Row 2: values of h/k   

       0.600 0.630 0.700 0.660 0.684 0.672 0.672 0.684 0.690 0.684 0.696 0.686 0.702 0.690 0.696 0.693 0.696 0.698 Extrapolation 

1.500 1.500 1.556 1.500 1.520 1.500 1.500 1.500 1.500 1.490 1.500 1.485 1.500 1.484 1.487 1.481 1.481 1.479 1.4835 

                   ANNS(pa) = 50   

  

Row 1: values of h×pa   Row 2: values of h/k   

       0.800 0.810 0.825 0.780 0.828 0.816 0.812 0.840 0.820 0.828 0.848 0.840 0.846 0.845 0.832 0.837 0.840 0.844 Extrapolation 

2.000 1.929 1.941 1.857 1.917 1.889 1.871 1.892 1.864 1.878 1.893 1.875 1.880 1.878 1.856 1.860 1.858 1.859 1.8684 

                   ANNS(pa) = 100   

  

Row 1: values of h×pa   Row 2: values of h/k   

       0.960 0.900 0.925 0.980 0.954 0.960 0.966 1.008 0.990 0.999 0.992 1.001 1.014 0.995 0.996 1.002 1.006 1.011 Extrapolation 

2.400 2.308 2.313 2.333 2.304 2.308 2.300 2.333 2.302 2.313 2.296 2.306 2.315 2.287 2.284 2.288 2.286 2.287 2.2919 

                   ANNS(pa) = 200   

  

Row 1: values of h×pa   Row 2: values of h/k   

       1.160 1.080 1.100 1.080 1.134 1.136 1.148 1.140 1.140 1.152 1.152 1.162 1.152 1.165 1.172 1.170 1.166 1.172 Extrapolation 

2.900 2.769 2.750 2.700 2.739 2.731 2.733 2.714 2.714 2.723 2.717 2.721 2.704 2.709 2.713 2.708 2.699 2.700 2.7087 

                   ANNS(pa) = 300   

  

Row 1: values of h×pa   Row 2: values of h/k   

       1.040 1.170 1.200 1.180 1.242 1.248 1.190 1.260 1.250 1.260 1.264 1.239 1.266 1.255 1.244 1.251 1.260 1.266 Extrapolation 

2.889 3.000 3.000 2.950 3.000 3.000 2.931 3.000 2.976 2.979 2.981 2.950 2.972 2.953 2.934 2.937 2.944 2.944 2.9499 

 

 

 

 

 

 



 

TABLE 12:  Tabulated Illustrations of the Stability of each of (h×pa) and (h/k) for Geometric CUSUM schemes  

             for Detecting a Shift from pa to 7×pa 

________________________________________________________________________________________________________________________ 

     Values of the in-control proportion pa (in percent) 

4.0 3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

                   ANNS(pa) = 25    

  

Row 1: values of h×pa   Row 2: values of h/k    

       0.400 0.420 0.450 0.460 0.450 0.432 0.448 0.432 0.450 0.450 0.448 0.448 0.450 0.455 0.456 0.456 0.454 0.456 Extrapolation 

1.250 1.273 1.286 1.278 1.250 1.227 1.231 1.200 1.216 1.220 1.217 1.208 1.210 1.213 1.213 1.206 1.201 1.200           1.2085 

                   ANNS(pa) = 50  

  

Row 1: values of h×pa   Row 2: values of h/k    

       0.560 0.570 0.525 0.560 0.558 0.544 0.574 0.564 0.560 0.558 0.560 0.574 0.576 0.575 0.572 0.576 0.576 0.580 Extrapolation 

1.750 1.727 1.615 1.647 1.632 1.619 1.640 1.621 1.600 1.590 1.591 1.608 1.600 1.597 1.589 1.587 1.582 1.585           1.5914 

                   ANNS(pa) = 100    

  

Row 1: values of h×pa   Row 2: values of h/k    

       0.560 0.570 0.650 0.620 0.630 0.656 0.644 0.636 0.650 0.648 0.656 0.672 0.660 0.665 0.668 0.672 0.670 0.674 Extrapolation 

2.000 1.900 2.000 1.938 1.944 1.952 1.917 1.893 1.912 1.895 1.907 1.920 1.897 1.900 1.898 1.898 1.893 1.893             1.8988 

                   ANNS(pa) = 200    

  

Row 1: values of h×pa   Row 2: values of h/k    

       0.640 0.690 0.775 0.740 0.738 0.784 0.784 0.768 0.780 0.783 0.792 0.784 0.774 0.785 0.780 0.792 0.788 0.792 Extrapolation 

2.286 2.300 2.385 2.313 2.278 2.333 2.333 2.286 2.294 2.289 2.302 2.286 2.263 2.275 2.267 2.276 2.264 2.263           2.2720 

                   ANNS(pa) = 300    

  

Row 1: values of h×pa   Row 2: values of h/k    

       0.720 0.750 0.750 0.800 0.810 0.800 0.798 0.852 0.810 0.828 0.832 0.833 0.852 0.840 0.852 0.855 0.856 0.856 Extrapolation 

2.571 2.500 2.500 2.500 2.500 2.500 2.478 2.536 2.455 2.486 2.476 2.479 2.491 2.471 2.477 2.478 2.474 2.467 2.4758 

 



 

8. Finding Geometric CUSUM Schemes by Interpolation for pa in the Range 0.001 to 0.04 

 In this Section, it is shown that one may use interpolation to find geometric CUSUM schemes for any 

pa within the range 0.001 to 0.04.  The CUSUM schemes that may be found by the following method are 

limited to the set of ANNS(pa) values (i.e. 25, 50, 100, 200 and 300) and also the specified shift-sizes 

(1.5×pa, 2×pa, 3×pa, 5×pa and 7×pa) that were used in searching for the schemes listed in Tables 2 to 6.  It 

was decided to use the stability of (h/k) in the interpolations.   

 The results of this investigation are given in Table 13.  Section A of Table 13 shows the combinations 

of ANNS(pa) levels, shift-sizes and values of pa for each of which we wished to find a geometric CUSUM 

scheme. Thus, the intention was to find the parameters of 16 geometric CUSUM schemes by interpolation 

among the schemes listed in Tables 2 to 6. 

 We will describe the interpolation procedure by presenting the following application: 

Example:  As part of the manufacturing process for solid-state drives (SSDs) each SSD is given a functionality 

test, and is declared conforming or nonconforming.  The result of each test is available shortly after testing, and 

it is feasible to maintain the test results as an ordered stream.  Based on the most recent experience of the 

process, the quality engineer with responsibility for the process has concluded that the in-control fraction 

nonconforming (pa) is about 0.0025.   The quality engineer wishes to find the parameters of a geometric 

CUSUM chart so that upward shifts to pr = 3×pa and above can be detected quickly.  In quantifying an 

acceptable rate for false-signals, it has been decided to have a target-level of 100 for ANNS(pa).  

Step 1:  In finding the value of k, we begin by using equation (4.1).  The resulting value (218.62) is 

then increased by the appropriate percentage from Table 1 (in this case 10.1) taking account of the 

results of the investigation in Section 4.  We round this to the nearest integer, giving the value of 241 

for k.  

Step 2:  We interpolate the value of the ratio (h/k) by using 6 values (or 4 or even 2, if 6 are 

unavailable) from the relevant section of Table 10. The 6 values are chosen so that 3 values are on 

either side of the target pa value.  In this case (with the target pa = 0.0025), 4 values were used: 3.187, 

3.194, 3.176, 3.182.  We then multiply the average of these 4 values by the k value from step 1, and 

round to the nearest integer to get the value of parameter h, which turns out to be 768.  Thus the 

parameters of the geometric CUSUM chart for this application are k = 241 and h = 768.  In starting 

this CUSUM, one could take h/2 as the initial value of the CUSUM, and if the proportion is already 

shifted from pa = 0.0025 then this will speed up the occurrence of a signal from the CUSUM chart.  

But if the proportion has not shifted, this head-start value for the CUSUM will have a negligible effect 

in producing a false alarm.   



 

TABLE 13:  Results of Interpolation to find Parameters of Geometric CUSUM Schemes 

_________________________________________________________________________________ 

Section A:  Specifications of each of 16 CUSUM Schemes (each entry in the table is the level of pa) 

         Shift-size to be detected 

     ________________________________________________________ 

        2×pa     3×pa     5×pa     7×pa  

     ________________________________________________________ 

 ANNS(pa) =  25   0.017   0.0078  0.0035  0.013 

 ANNS(pa) =  50   0.0075  0.023   0.0078  0.035 

 ANNS(pa) = 100   0.028   0.0025  0.017   0.0086 

 ANNS(pa) = 200   0.0052  0.013   0.028   0.0053 

________________________________________________________________________________ 

 

Section B:  Parameter-values (k, h) found by interpolation for each specification in Section A 

         Shift-size to be detected 

     ________________________________________________________ 

        2×pa      3×pa   5×pa    7×pa  

     ________________________________________________________ 

 ANNS(pa) =  25   47, 129   82, 165        134, 199  28, 34 

 ANNS(pa) =  50   103, 370   26, 68  57, 107  9, 16   

 ANNS(pa) = 100   26, 117          241, 768  25, 58  40, 76   

 ANNS(pa) = 200   142, 768  44, 167  14, 39  65, 148 

_______________________________________________________________________________  

Section C:  Evaluations of ANNS(pa) for each CUSUM scheme in Section B      

   

         Shift-size to be detected 

     _______________________________________________________ 

       2×pa   3×pa   5×pa   7×pa  

     _______________________________________________________ 

 ANNS(pa) =  25   24.5   24.9    25.1   25.2   

 ANNS(pa) =  50   50.0   49.4    51.0   66.8   

 ANNS(pa) = 100   99.5          100.3    99.7          100.7    

 ANNS(pa) = 200         201.0          211.3         231.3          202.7 

_________________________________________________________________________________ 

 



 

It is hoped that the resulting geometric CUSUM scheme with parameters k = 241, and h = 768 will 

yield a value for ANNS(pa) that is close to 100, but exceeds it.  Using the evaluation procedure presented in 

the Appendix, we found that ANNS(pa) = 100.3 for this scheme.  This is an encouraging result, but other 

checks are necessary: further results from this interpolation procedure are presented in Table 13.   

In most cases, the procedure leads to (k, h) parameter values that come close to yielding the desired 

ANNS(pa) specification.  

 There are two exceptions to this in Table 13, both associated with relatively large values of pa.  The  

scheme (k = 9, h = 16) for pa = 0.035 and pr = 7×pa, resulted in ANNS(pa) = 66.8, which is considerably  

larger than the ANNS(pa) specification of 50.  This scheme has relatively small values for k and h, and such 

values arise for larger values of pa (and also for detection of larger shifts).  CUSUM specifications that lead 

to small values of k and h have the consequence that ANNS(pa) is less likely to fall close to its target, as in 

this case.  It is noted that in interpolating for this scheme (k = 9, h = 16), the value (0.035) for pa has only 

one value (i.e. pa = 0.04) above it in Table 12.  So, in this case the interpolation for the ratio (h/k) was based 

on only 2 values (1.750, 1.727) rather than on 4 or 6 values.  A direct search (using exact steady-state 

evaluation of ANNS) yielded the scheme (k = 9, h = 15) for which ANNS(pa) = 54.0. 

 It is suggested that the interpolation procedure (and also the extrapolation considered in Section 9) 

could be conveniently implemented using a spreadsheet system containing the (k,h) values in Tables 2 to 6. 

A spreadsheet version of these tables is provided in the supplementary material available online. 

 

9. Finding Geometric CUSUM Schemes by Extrapolation  

   In this Section, we investigate the possibility of using the stability of the (h/k) ratio to find CUSUM 

schemes for a value of pa (0.0001) much lower than 0.001.  As for the case of interpolation considered 

earlier, there are two steps in the procedure. The first step (finding a value for k) is carried out in the same 

manner as described earlier.  In the second step (finding a value for h) a simple extrapolation procedure is 

used.  By inspecting the entries for the ratio (h/k) in Tables 8 to 12, it may be noted that this ratio becomes 

more stable for the lower values of pa, and this is because the geometric CUSUM is tending to converge 

toward the exponential CUSUM. (There is further consideration of this in Section S2 of the supplementary 

material available online),  

 For each of the extrapolations, it was decided to use the set of 8 values for (h, k) arising from the pa 

values 0.008, 0.007,...,0.001. The largest and smallest of the 8 ratios (h/k) were discarded and the average of 

the 6 remaining ratios was evaluated in each case. (These averages are given under the heading 

Extrapolation in Tables 8 to 12, on the right-hand side.)  The value of k (from step 1) was multiplied by the 

relevant average, and the resulting value was rounded to the nearest integer to provide the value for h.  



 

These extrapolations were carried out for a single value of pa (i.e. 0.0001) and for four levels of ANNS(pa), 

and four sizes of shift above pa.  The 16 schemes found using this extrapolation procedure are presented in 

Table 14.  One would hope that these schemes come close to achieving the specified levels for ANNS(pa).  

Unlike the interpolations in Section 8, it was not possible to get exact evaluations of ANNS(pa) because the 

values of h for these 16 schemes are too large to allow the matrix inversions referred to in the Appendix.  It 

was necessary to use simulation to evaluate ANNS(pa), and this was done using five million repetitions for 

each of the 16 schemes.  The resulting values for ANNS(pa) are presented in Section B of Table 14 showing 

that the ANNS(pa) specifications have been met quite well.  This is encouraging and indicates that the 

stability of the (h/k) ratio may be relied upon to find geometric CUSUM schemes for a level of pa  which is 

considerably lower than the levels for which exact ANNS evaluations are possible. 

TABLE 14:  Results of Extrapolation to find Parameters of Geometric CUSUM Schemes  

____________________________________________________________________________________ 

Section A:  Parameter-values (k, h) found by extrapolation for four levels of ANNS(pa) 

  and four shift-sizes.  All 16 CUSUM schemes are for pa = 0.0001. 

        Shift-size to be detected 

   ____________________________________________________________________ 

     1.5×pa           2×pa       3×pa     5×pa   

   ____________________________________________________________________ 

ANNS(pa) =  25    9398, 33182  8116, 22131           6464, 12934           4734, 7023  

ANNS(pa) =  50    9016, 42989  7804, 27950     6217, 16085           4553, 8507  

ANNS(pa) = 100    8806, 54590  7596, 34064           6047, 19257       4429, 10151 

ANNS(pa) = 200    8635, 66332  7436, 40190       5915, 22300          4352, 11788 

___________________________________________________________________________________  

Section B:  Simulation evaluations of ANNS(pa) for each CUSUM scheme in Section A 

        Shift-size to be detected 

   _____________________________________________________________________ 

     1.5×pa        2×pa     3×pa     5×pa  

   _____________________________________________________________________ 

ANNS(pa) =  25   25.0       25.1   25.1     25.2   

ANNS(pa) =  50   50.1       50.0   50.1     50.8  

ANNS(pa) = 100          100.4     100.3         100.7                  100.9   

ANNS(pa) = 200          201.9     201.8         201.0                  203.5  



 

It should be pointed out that, despite the fact that the geometric CUSUM chart is often listed as a 

method for monitoring “high quality processes” this chart is also very efficient for monitoring proportions 

that are not small.  As might be expected, an extrapolation procedure for values of pa above 0.04 does not 

work well.  For example, for pa = 0.10 and pr = 0.20, where we would like ANNS(pa) to be at least 100, one 

finds by extrapolation that the parameters turn out to be (k = 6, h = 27) with ANNS(pa) = 129.8.  Using 

exact evaluations, the scheme (6,25) is found for which ANNS(pa) = 101.6.  Other attempts at extrapolation 

are more inaccurate, so that we cannot recommend extrapolation for pa on the upper side of the range (0.04 

to 0.001). 

 

10. Summary and Discussion 

 The problem of providing a convenient method for choosing values for the parameters (k, h) of a 

geometric CUSUM chart has been considered.  Investigations have been conducted on the best choice of the 

parameter k, and it is recommended that a percentage increase be applied to the value of k computed from 

the sequential probability ratio formula.  The size of the percentage increase depends on both the chosen 

level of the false-signal rate (quantified by ANNS(pa)), and the size of shift to be detected.  Tables of 

proposed values for k and h have been developed for 18 levels of the in-control proportion (pa) in the range 

(0.04 to 0.001), for five sizes of upward shift above pa, and for five levels of the occurrence-rate of false 

signals, so that parameter-sets for 450 CUSUM schemes are listed over five tables.  Using these tables, 

some simple empirical relationships among the quantities k, h, and pa have been identified.  The stability of 

the ratio (h/k) has been used to interpolate a value for h for any value of pa within the range (0.04 to 0.001).  

It is also shown that this stability may be used to design geometric CUSUM schemes for values of pa as low 

as 0.0001.  The reason for the stability of the ratio is that, for quite small values of pa, the geometric 

distribution converges toward the exponential distribution.  In a supplementary section available online, the 

relationship between the exponential CUSUM and geometric CUSUM is illustrated by using an 

extrapolation approach to find the parameters of five exponential CUSUM schemes.   

Consideration has also been given to detection of a shift from an acceptable level (pa) to any level in 

an interval, and it is recommended that, in finding a value for the parameter k, one should use a value for pr 

about one-third of the way from the lower end of this interval. 

 Although the results presented here relate to the design of a geometric CUSUM chart, these results are 

also useful for the design of a Bernoulli CUSUM chart, bearing in mind the equivalence between these two 

CUSUM schemes as pointed out by a number of researchers, and most recently in Szarka and Woodall 

(2012).  The connection between the two sets of CUSUM parameters is as follows: 



 

  kB = 1/(kG+1)   and   hB = (hG + kG)/(kG+1)         (for kG ≥ 1, hG ≥ 2)   (10.1) 

where (kB, hB) are the parameters of a Bernoulli CUSUM scheme, and (kG, hG) are the integer-valued 

parameters of a geometric CUSUM scheme as defined in this paper.  Thus, if one wished to use a Bernoulli 

CUSUM scheme to detect an upward shift for a proportion, one could use the methods presented here to 

design a geometric CUSUM chart, and then convert the geometric CUSUM parameter-values to the 

corresponding levels for a Bernoulli CUSUM scheme.  However, this is possible only for the five chosen 

shift-sizes, and for the five specified levels for ANNS(pa).   

 The geometric CUSUM chart and the Bernoulli CUSUM chart are also useful for detecting downward 

shifts in a proportion, and a corresponding paper to aid parameter-choice in this case is in preparation.  

Progress has been made on the design of a double geometric CUSUM scheme using the tables presented 

here to broaden the range of shift-sizes that can be efficiently detected. 
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Appendix:  Evaluation of ANNS(p) for a Geometric CUSUM Chart 

 When a shift in the value of p occurs, it can happen in either of the following ways, each requiring a separate 

method for evaluating ANNS: 

1. A shift can happen immediately after a conforming item (because of the random-shift assumption).  This gives 

rise to a mixed or cross-over CRL consisting of two parts: the first part from the in-control process with p = pa, and 

the second from a shifted process with p = pr.  We refer to the associated evaluation of ANNS(p) as  

ANNS(p, with cross-over CRL). 

2. A shift can happen immediately after a non-conforming item, so that there is no cross-over CRL.  We refer to 

the associated evaluation of ANNS(p) as ANNS(p, no cross-over CRL). 

Taking account of the methodology presented in Bourke (2001) we have 

      ANNS(p) = (p)ANNS[p, no cross-over CRL] + (1 − p)ANNS[p, with cross-over CRL]      (A1)  

In order to evaluate each of the ANNS terms on the right-hand side of equation (A1), the first step is to find the 

steady-state distribution of CUSUM values when p = pa.  An important element in finding this steady-state 

distribution is to build a transition matrix that causes the CUSUM value to be re-set to zero whenever a false signal 

occurs from the CUSUM.  The methodology for doing this has been developed by Crosier (1986) and Lucas and 

Saccucci (1990).  We denote the resulting steady-state distribution as pss, whose elements give the relative frequencies 

of the non-signalling CUSUM values 0,1,2,...(h-1) prior to the occurrence of the shift from pa to p.  

 If we consider the following equation from Brook and Evans (1972) 

      µ = (I – R)−11                                     (A2)  

where R is the transition matrix for the non-signalling CUSUM states, it may be seen that (for a geometric CUSUM) 

the elements of the vector µ give the average number of CRLs until a signal occurs for a CUSUM starting out from 

each of the possible initial states 0, 1, 2,..., (h-1).  (The structure of R is given in Bourke (1991) and the value of p that 

is relevant here is pr.)   

 We can now get the first term in equation (A1) as follows: 

    ANNS[p, no cross-over CRL] =  pss
Tµ                 (A3) 

In order to evaluate the second ANNS term on the right-hand side of equation (A1) we need to consider that a revision 

of the steady-state distribution (pss) over the non-signalling CUSUM states is necessary because of the cross-over 

CRL. This revised distribution is as follows 

      rss = pssK          (A4) 

where K is the transition matrix for the cross-over CRL, and is given in Bourke (2001).  We then have 

  ANNS[p, with a cross-over CRL] = [1 − ∑( rss)i] + (rss)T(1+µ)      (A5)  

The term in square brackets on the right-hand side of equation (A5) is the probability of a signal from the cross-over 

CRL. 

 


