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Abstract

Abstract

Carbon nanotubes (CNTs) are hollow tubes of sp2-hybridised carbon with diam-

eters of the order of nanometres. Due to their unique physical properties, which

include ballistic transport and high mechanical strength, they are of significant

interest for technological applications. The electronic properties of CNTs are of

particular interest for use as gas sensors, interconnect materials in the semicon-

ductor industry and as the channel material in CNT based field-effect transistors.

The primary difficulty associated with the use of CNTs in electronic applications

is the inability to control electronic properties at the growth stage; as grown

CNTs consist of a mixture of metallic and semi-conducting CNTs. Doping has

the potential to solve this problem and is a focus of this thesis. Nitrogen-doped

CNTs typically have defective structures; the usual hollow CNT structure is re-

placed by a series of compartments. Through density functional theory (DFT)

calculations and experimental results, we propose an explanation for the defective

structures obtained, based on the stronger binding of N to the growth catalyst

in comparison to C. In real electronic devices, CNTs need to be contacted to

metal, we generate the current-voltage (IV) characteristics of metal-contacted

CNTs considering both the effect of dopants and the structure of the interface

region on electronic properties. We find that substitutionally doped CNTs pro-

duce Ohmic contacts and that scattering at the interface is strongly influenced by

structure. In addition, we consider the effect of the common vacancy defects on

the electronic properties of large diameter CNTs. Defects increase scattering in

the CNT, with the greatest scattering occurring for the largest defect (555777).

We validate the independent scattering approximation for small diameter CNTs,

which enables mean free paths in large diameter CNTs to be calculated, with a

smaller mean free paths found for larger defects.

xi



Chapter 1

Introduction

Carbon nanotubes (CNTs) have been a focus of extensive research since their

discovery by Iĳima in 1991. Particularly unique are the electronic properties

of CNTs, which have attracted the attention of the semiconductor industry as

the challenges imposed by aggressive device scaling are now encountering the

physical limits of conventional designs and materials. As a result there is a

growing interest in “exotic” materials, amongst them CNTs. CNTs behave as

metals or semiconductors, depending on their precise structure. Metallic CNTs

have a high current carrying capacity and exhibit ballistic conductance; they can

carry large currents with low heating. Copper metal is currently used in the

semiconductor industry as an interconnect material, however such interconnects

fail at small dimensions due to current-induced electromigration (i.e. the current

is sufficient to move the atoms of the copper interconnect, forming voids in the

material). Metallic CNTs have the potential to solve this problem.

Possibly, the greatest challenge which is preventing use of CNTs in many

promising applications is the difficulty in generating CNTs with particular elec-

tronic properties. As-grown CNTs have diverse electronic properties, with metal-

lic and semiconducting CNTs grown alongside one another. Many prospective

CNT applications (e.g. interconnects discussed above, transistor channels, gas

sensors etc.) require CNTs with specific properties to be reliably produced. De-

1



1. Introduction 1.1 Thesis Outline

spite the extensive efforts of the past two decades, such controlled production of

CNTs has not been achieved and indeed a clear path towards such control remains

elusive.

In this thesis we are primarily concerned with challenges relating to control-

ling CNT electronic properties, with special focus placed on doping CNTs, but

the effect of defects is also considered. This work uses ab initio computational

methods to study a diverse range of topics concerned with doped and defective

CNTs. We seek to explain the reasons behind the defective structures often seen

for doped CNTs, to assess the impact of dopants and structure on the electronic

properties of metal-contacted CNTs and also to evaluate the effect of defects,

which even in high quality CNTs are unavoidable. Computational methods are

particularly useful in this type of work because the atomic level structural con-

trol offered enables specific aspects of doping and defects in CNTs to be studied

in isolation and in a controlled manner not possible experimentally with current

techniques.

1.1 Thesis Outline

This thesis is organised as follows:

Chapter 2 offers an overview of the literature related to CNTs. Following

brief sections consisting of a general introduction to the field, this chapter con-

tinues with a more detailed discussion of topics particularly relevant to the work

of this thesis including CNT growth, doping, defects and metal-CNT contacts.

Chapter 3 provides a brief introduction to the theoretical methods used

throughout this work including details of the density functional theory (DFT)

and the non-equilibirum Green’s function (NEGF) methods. Descriptions of the

calculations performed in this work are placed with their respective results and it

is intended that this chapter may act as a further explanation of our methodology

2



1. Introduction 1.1 Thesis Outline

as required.

Chapter 4 discusses our studies of the catalytic growth of nitrogen-doped

CNTs. Through consideration of theoretical and experimental results we propose

an explanation for the origin of the defective structure typically observed for

nitrogen doped CNTs.

Chapter 5 describes our investigation of the effects of doping on the electronic

properties of CNTs which have been contacted to an Al electrode. The electronic

properties of the isolated doped CNTs are first considered, followed by a discussion

of transmission and current-voltage curves for the Al-CNT interface structures.

We consider both substitutional and endohedral dopants, from which we assess

the suitablility of both dopant types to controlling CNT electronic properties.

Chapter 6 is our study of the relationship between contact structure and the

electronic properties of iron-CNT end contacts. Two distinct contact structures

are considered and we investigate how the structure impacts on charge transfer

and electron transmission.

Chapter 7 is concerned with our study of the properties of vacancy defects

in CNTs. Formation energies of defects are reported for a range of defects in

armchair and zig-zag CNTs. We study the transmission properties of these defects

and validate the independent scattering approximation which enables us to study

the mean free paths of large diameter, defective CNTs.

Chapter 8 summarises the work of this thesis and concludes based on these

results. Suggestions for future avenues of research informed by this work are

given.

3



Chapter 2

Background

2.1 Graphitic Carbon

The family of graphitic carbon consists of graphene, fullerenes, carbon nanotubes

(CNTs) and graphite. Graphene is a two-dimensional material consisting of a

monolayer of carbon atoms in a honey-comb lattice and may be considered as

the parent structure from which the three other graphitic structures may be

generated (Figure 2.1). While graphene was studied theoretically for many years,

it was thought that as a strictly 2D crystal it could not exist until its isolation

from graphite in 2004 by Geim and Novoselov [1]. Buckminsterfullerene was

discovered in 1985 by Smalley, Kroto, Curl and co-workers [2], while CNTs were

discovered by Iĳima in 1991 as a by-product of arc discharge fullerene production

[3]. CNTs with a single carbon layer - single-walled CNTs (SWNTs) - were first

reported in 1993 [4, 5].

Nanoscale graphitic carbons (i.e. fullerenes, CNTs and graphene) have gener-

ated much interest in the research community due to their unusual and in many

ways unique physical properties [7, 8]. In particular, both graphene and CNTs

have received much attention for use in nanoelectronics. Nanoelectronics ap-

plications of CNTs have been demonstrated in research laboratories (e.g. CNT

applications to non-volatile memory [9, 10], interconnects [11, 12] and transistor

4



2. Background 2.2 CNT structure and chirality

Figure 2.1: Comparison of graphitic carbon structures. Graphene can be rolled
to give fullerenes, wrapped to produce CNTs and stacked to generate the graphite
structure. Figure taken from ref. [6].

channels [13]), however widespread adoption of CNTs in technology has yet to be

realised, the reasons for which will be explained in the following sections. CNTs

are also ideally suited to the production of strong, light-weight materials [14] due

to their extraordinary mechanical strength [15–18]. The thermal transport abili-

ties of CNTs are directional and surpassed only by diamond [19], which could be

applied to thermal interface materials (TIMs) for cooling of hot-spots in micro-

electronics applications [20] while the high aspect ratio of CNTs has been applied

for use in field-emitters [21–23].

2.2 CNT structure and chirality

SWNTs have been produced with diameters as small as 0.4 nm [24], while more

typical diameters are of the order of 1-4 nm. At larger diameters, SWNTs are

expected to be unstable [25], in any case, larger diameter CNTs are usually multi-

walled CNTs (MWNTs), which simply consist of a nested array of SWNTs, with

intertube separation comparable to bulk graphite [26]. CNTs with lengths up

5



2. Background 2.2 CNT structure and chirality

to 4 cm have been generated [27]. Conceptually, a SWNT is formed when a

graphene sheet is rolled until the two ends meet to form a closed cylinder (as

illustrated in Figure 2.1). Depending on the orientation in which the sheet is

rolled, SWNTs with many different structures may be generated; this is the origin

of CNT chirality.

Figure 2.2: A graphene sheet showing the relationship between CNT structure,
chirality and electronic properties. Figure taken from ref. [28]. (b) Armchair,
zigzag and chiral CNT structures.

A SWNT can be defined by its chiral vector Ch,

Ch = na1 +ma2 ≡ (n,m),

where (n,m) is often called the chiral number or chiral index of a SWNT. The

chiral vector Ch, makes an angle θ, the chiral angle, with the zigzag direction (see

Figure 2.2). SWNTs may be classified as one of three chiralities which relate to

the way in which the hypothetical graphene sheet producing the SWNT is rolled

6



2. Background 2.3 CNT electronic properties

and is defined by the chiral angle and index. The chiral angle θ is related to the

chiral vector,

θ =tan−1
[ √

3m
m+2n

]
.

SWNTs with θ = 0◦ have chiral index (n, 0) and are zigzag while armchair SWNTs

correspond to those with θ = 30◦ and have index (n, n). All other SWNTs (i.e.

those with 0 < θ < 30◦ and index (n,m) where n 6= m 6= 0) are referred to as

chiral.

2.3 CNT electronic properties

Unsurprisingly in light of their structural similarities, the electronic properties of

CNTs and graphene are intimately related. Each carbon atom in graphene has

two 1s electrons, three 2sp2 electrons and one 2pz electron. The bonds in the

plane of the sheet are formed by the three 2sp2 electrons, with the 2pz orbital

perpendicular to the graphene sheet. The 2pz orbitals hybridise to form a delo-

calised network on the surface of graphene. The valence (π) and conduction (π*)

bands of graphene meet at six points (Figure 2.3), as a result graphene may be

considered as a semi-metal or zero-gap semiconductor.

The electronic properties of CNTs are defined by their chiralities. The cur-

vature induced by rolling the graphene sheet into a tube alters the electronic

properties, even opening a band gap for certain chiralities. All armchair tubes

are metallic, while zig-zag and chiral tubes may be semi-metallic, metallic or

semiconductors depending on their chiral vector. Tubes with (m− n) a multiple

of three are metallic or semi-metallic (depending on tube diameter), all other

SWNTs are semiconductors. Due to their quasi one dimensional structure, elec-

tronic transport in CNTs occurs ballistically, which enables them to carry high

currents with almost no heating [29, 30]. This has resulted in interest in the use

of CNTs as a replacement for metal interconnects in complementary metal-oxide
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Figure 2.3: Band structure for graphene. Figure taken from ref. [26].

semiconductor (CMOS) technology, which fail due to current-induced electromi-

gration when the wire diameter becomes small. It has also been demonstrated

that SWNTs may act as superconductors at low temperatures [31].

The reasons behind the sensitivity of the CNT electronic properties to the

chiral index are best understood from a band structure perspective [32]. Near

the Fermi level, the electronic structure of graphene is given by an occupied π

orbital and unoccupied π* orbital. These two bands, which have linear dispersion

near the K point in the Brillouin zone, meet at the Fermi energy. The valence

and conduction bands meet at six points on the corner of the Brillouin zone

(see Figure 2.3). The ideal graphene Fermi surface has three corner K points

alternating with three corner K′ points. The formation of a SWNT imposes

periodic boundary conditions in the circumferential direction which allows only

a certain set of graphene states (labelled by the crystal momentum k), which

depend on both the diameter and helicity of the SWNT. The allowed set of k-

states for three CNT chiralities are shown in Figure 2.4. If the allowed k-states

include the K (or K′) point of the graphene Fermi surface, the CNT is metallic,

in all other cases it is a semiconductor with band gap inversely proportional to
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Figure 2.4: (Top) Electronic structure of graphene showing high symmetry points.
(Bottom) Allowed ~k-vectors of (5,5), (7,1) and (8,0) tubes (metallic, metallic and
semiconducting respectively). Figure taken from ref. [32].

the diameter.

From an applications perspective, the range of CNT electronic properties

makes CNTs an exciting material - however for many electronics applications

CNTs with specific electronic characteristics are essential (e.g. metallic CNTs for

interconnects [11, 12], semiconducting CNTs for transistor channels [13]). The

difficulties in selectively growing CNTs with a desired chirality (and hence con-

trollable electronic characteristics) and post-synthesis separation [33, 34] are tech-

nologically preventing the incorporation of CNTs in nanoelectronics technology.

This research focuses on exploring doping as a means of controlling the electronic

properties of CNTs, while retaining their advantages as a uniform nanoscale ma-

terial.
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2.4 Chemical Vapour Deposition CNT Growth

A variety of methods are used to produce CNTs (for a detailed discussion of

these methods, see ref. [28]). The first CNTs were generated by Iĳima in an arc-

discharge fullerene reactor [3] using graphite electrodes. SWNTs can be produced

when a metal is added to the electrodes [4, 5]. The chemical vapour deposition

(CVD) production of CNTs is similar to the general CVD process, except that

the use of a metal catalyst is essential, for that reason the process is often referred

to as catalytic CVD (CCVD). Typically, a hydrocarbon (e.g. methane) flows into

a heated furnace at a controlled rate where it is decomposed by a metal catalyst

(commonly Fe, Ni or Co) which has been deposited on a substrate (e.g. silicon,

silica) and CNT growth results. Research into CNT growth has focused on CVD

growth, because it allows for large scale production of CNTs [35] at low cost.

2.4.1 The Vapour-Liquid-Solid Mechanism

The growth of CNTs is most commonly considered to take place via a modi-

fied vapour-liquid-solid (VLS) mechanism [36], the well-established production

method of nanowires [37]. In this mechanism, a catalyst droplet forms on the

surface of a substrate. The molten catalyst accepts material from the vapour,

which causes it to become supersaturated. Precipitation of dissolved material

(in this case carbon) causes the nanotube to grow, with the size of the molten

catalyst droplet controlling the size of the nanotube grown. This mechanism ex-

plains experimental observations such as the molten morphology often exhibited

by the metal catalyst nanoparticles after growth and also the correlation of metal

nanoparticle size and tube diameter [38, 39]. One of the main arguments against

the VLS mechanism was that typical growth temperatures are far lower than

the bulk melting points of the metal catalysts (e.g. bulk Ni has a melting point

of 1453◦C but growth of CNTs takes place at less than 800◦C). However metal
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nanoparticles melt at a temperature much lower than the bulk, an example of a

size effect; the nanoparticles are so small the interfacial energy makes a significant

contribution to the total energy and this may cause a depression in melting point

[40].

While the VLS mechanism is widely accepted as the catalytic growth mecha-

nism of CNTs, there is still some debate over the precise details of this process.

There is a lack of consensus over whether the VLS mechanism takes place in a “tip

growth” or “root growth” fashion. In the tip growth process, first described by

Baker and co-workers for carbon filaments [41], a temperature gradient is set up

in the catalyst particle which is steepest in regions next to the support. Carbon

diffuses down the thermal gradient and is deposited between the catalyst and sup-

port. This precipitation causes build up of carbon which forces the metal particle

away from the substrate. In the context of CNTs, a NT grows as the particle is

lifted off the surface. The root growth process is broadly similar, except that the

metal particle remains on the substrate and the growing nanotube grows upwards

from the catalyst as the incorporated carbon segregates towards the surface [42].

This distinction between tip and root growth becomes important when “cloning”

CNTs [43], which involves regrowth of CNTs of a specific chirality.

2.4.2 In situ Microscopy of CNT Growth

Time resolved, high resolution in situ transmission electron microscopy (TEM)

offers a unique glimpse of the growth of CNTs as it happens. A number of such

studies have appeared in recent years, offering greater understanding of the CNT

growth mechanism and the role of the transition metal catalyst in CCVD growth.

As mentioned previously, there is a strong correlation between nanoparticle

size and CNT diameter, so it is unsurprising that the nanoparticle size and shape

during growth has been investigated extensively in in situ studies. On small di-

ameter nanoparticle catalysts (Ni < 6 nm), SWNTs grow, while “nanocages” have
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been observed on larger particles [44]. The size of the nanoparticle under growth

conditions also affects its shape; smaller nanoparticles are observed to be highly

elongated, while larger ones tend to be pear shaped [45]. A similar behaviour of

the nanoparticle catalyst is seen across in situ TEM studies of growth [44–47].

Typically, the nanoparticle is spherical when growth initiates. The nanoparticle

elongates as the graphene sheets form, this reshaping aids the alignment of the

graphene into a tubular structure. The elongation continues (an aspect ratio of 4

has been observed [45]) until binding to the CNT wall no longer compensates for

the increased surface energy and it suddenly relaxes back to a spherical shape.

This elongation/contraction repeats periodically as the nanotube grows. In all

cases catalyst step-edges play an important role in the nucleation and growth of

CNTs.

In the case of MWNTs, the individual cylinders have been observed to grow

at the same rate [47], which suggests that the density of carbon must be ho-

mogeneous at the ends of the cylinders, a requirement most likely achieved by

diffusion of carbon through the catalyst rather than along the surface. Bamboo

CNT growth has been observed (instead of the typicall hollow CNT structure,

the structure consists of repeated short compartments), suggesting that surface

diffusion of carbon adatoms is important [46].

There is still disagreement in the literature as to the nature of the nanoparticle

catalyst during growth, that is, whether the catalyst is metallic or metal carbide.

While some studies conclude that the Ni catalyst is metallic based on the lattice

spacing of 0.2 nm [45, 48], which corresponds to Ni (111), this assertion has

been questioned, given this reflection is also present in Ni3(101), Ni2O3(200),

NiO(112) and graphite(101) [49]. Equally, there is disagreement in the case of

Fe. A combination of TEM and XPS data has suggested that the catalyst particle

is crystalline with a layer of surface carbide [48], there is also conflicting evidence

that the catalyst is cementite, Fe3C [47]. Possibly, the composition of the catalyst
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fluctuates during growth.

While in situ microscopy during CNT growth offers a unique view of the CNT

growth process, many questions relating to the CNT growth process remain be-

yond its purview due to the insufficient spatial and temporal resolution of the

technique. These questions include such fundamental aspects of CNT growth as

what happens at the catalyst before the CNT growth initiates and how exactly

the CNT chirality becomes fixed. It also cannot explain why some metals work as

catalysts for CNT growth and others do not. In this thesis, we explore one aspect

of CNT growth that experimental techniques can not fully explain - why bam-

boo CNT growth is favoured over typical SWNT/MWNT growth under certain

growth conditions.

2.5 Computational Studies of CNT Growth

Computational modelling offers a unique insight into the growth of CNTs at

the atomic level, enabling the understanding of CNT growth to be enhanced.

Studies in this area are concerned with explaining the role of the transition metal

catalyst in CVD growth and also investigating why some metals are successful

catalysts and predicting which metals may potentially act as catalysts for CNT

growth. Two approaches are taken in the literature to model various aspects of

CNT growth, ab initio static calculations of geometry optimised structures, which

typically focus on energy differences between structures, and molecular dynamics

(MD) studies which look at how the CNT-nanoparticle system evolves over time.

2.5.1 Classical Molecular Dynamics

Shibuta and Maruyama [50, 51] have modelled CNT growth on Ni clusters. Ni

clusters become saturated with carbon and hexagonal carbon networks form

within the cluster. Cap structures appear on the catalyst surface, with the cluster
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surface acting as a template. Some areas on the catalyst surface remain free of

carbon, enabling additional carbon atoms to flow into the metal-carbon cluster

which then deposit at the cap-cluster interface, leading to CNT growth. CNT

growth does not occur in cases where the cluster becomes encapsulated with

graphitic carbon.

Ding et al have proposed a model for CNT nucleation and growth which

expands on the VLS mechanism [52–56]. Similar to the studies of Shibuta and

Maruyama, carbon readily penetrates into the metal cluster and this carbon

subsequently sequesters, leading to CNT growth. The model is consistent with

observed experimental results such as the temperature dependence of CNT growth

and also the correlation between nanoparticle and nanotube diameter [38, 39].

As this model is based on the VLS mechanism, the supersaturation of the metal

catalyst with carbon is essential to successful growth. The nucleation and early

growth of a CNT is most conveniently discussed in three stages related to the

degree of saturation of the catalyst with respect to carbon (see Figure 2.5).

Figure 2.5: CNT growth as occurs in MD simulations. In this case the metal
cluster (purple) is Fe50 (diameter 1 nm) and the temperature was 1000 K. Figure
taken from ref. [52].

In the first stage the metal-carbon cluster is not fully saturated and all carbon
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atoms are dissolved in the cluster. The rate of increase of dissolved carbon atoms

is equal to the rate of carbon atom insertion into the cluster. The second stage is

key for the nucleation of the CNT. The metal-carbon cluster becomes supersat-

urated with carbon, but the amount of dissolved carbon continues to rise until

the cluster becomes highly supersaturated. Carbon precipitates on the surface of

the cluster as polygons and strings, which may act as a nucleation site for further

carbon precipitation forming graphitic islands. Large islands form by growth or

coalescence of smaller islands. The graphitic islands forms a cap, which is pushed

further from the catalyst surface as more carbon precipitates and the CNT grows.

2.5.2 DFTB and DFT Molecular Dynamics

As series of extensive density functional tight binding (DFTB) MD simulations

of CNT growth have been undertaken by groups at Kyoto University and Nagoya

University [57–64]. Inspired by the experiments carried out by Smalley’s group

which involved increasing the length of a seed nanotube while maintaining diam-

eter and chirality [43], Ohta et al simulated regrowth of a hydrogen passivated

CNT catalysed by an iron nanoparticle catalyst using DFTB [57, 58]. Regrowth of

the CNT fragment was initiated primarily via polyyne chains, which approached

the metal-stabilised dangling bonds of the CNT forming 5, 6 and 7 member poly-

gons and thus extended the CNT sidewall. The classical MD studies of Ding,

similarly found carbon “strings” (i.e. chains of carbon atoms) at the catalyst

surface to result in CNT growth. The temperature dependence was considered

by performing simulations at 1000K, 1500K and 2000K, with the highest growth

rate occurring at 1500K. Carbon atoms penetrated the metal cluster, but due to

the short simulation times, such embedded carbon did not participate in CNT

growth, which contradicts growth observed in classical MD simulations, where

carbon from within the catalyst is responsible for CNT growth.

Following on from regrowth, the CNT growth immediately following CNT cap
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nucleation was considered for Ni and Fe catalysts [60, 63]. The catalyst surface

remained “cleaner” (i.e. fewer string on carbon on the catalyst surface) for Ni

than in the Fe case, which was attributed to the longer polyyne chains which

predominated on the catalyst surface. Poorer growth (i.e. less extension along

the cap axis) was associated with the presence of individual carbon atoms and

short chains at the catalyst. The details of growth differed between the metal

catalysts. In the case of Fe, growth clearly took place via root growth at the CNT-

Fe interface. Growth of the cap structure was as a result of reactions with polyyne

chains at the rim in addition to incorporation of carbon which diffused along

the Fe surface. Ni catalysed growth however, took place via polyyne extension

followed by ring collapse close to the cap. A higher growth rate was obtained

with Ni clusters, however more defective CNTs were obtained. The large number

of defects may be as a result of the short simulations and consequent very high

rate of carbon addition. Under experimental conditions, such defects are most

likely annealed.

Growth of preformed (5, 5)-caps on larger M55 clusters (M = Ni, Fe) was also

simulated [62]. CNT growth was typified by two distinct behaviours. In some

cases, the cap lifted off the cluster surface and elongation of the carbon struc-

ture occurred, while in other cases the cluster was encapsulated and elongation

inhibited, which was also seen to prevent growth in classical MD simulations.

Encapsulation of the cluster occurred more frequently for Fe than for Ni, though

this may be a result of the initial structures, which were chosen at random. In the

case of Fe, surface C consisted mostly of individual carbon atoms or small moi-

eties, while for Ni clusters surface C was mostly in chains. Carbon penetration

into the cluster was limited for Fe and did not occur at all for Ni, this behaviour

differs significantly from that previously reported in classical MD studies where

dissolved carbon was deemed essential for CNT growth [50–54]. As with the

previously discussed studies, CNT growth was strongly associated with polyyne
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chains at the catalyst. Analysis of the structure (i.e. calculation of the Berry

parameter [65]) suggests that the Fe and Ni catalysts remain solid, at least in the

early stages of nanotube growth.

Nucleation of CNT on a bare metal cluster was also simulated [59]. C2 was

captured by the iron cluster without dissociation and polymerised on the cluster

surface forming polyyne chains. The iron cluster became less organised as more

Fe-C bonds formed but C atom penetration into the cluster was rare. The polyyne

chains formed on the cluster surface came together forming branched chains. The

polyyne chains came together on the surface by diffusion, forming polygons and

eventually a CNT cap.

Raty et al considered the growth of CNTs from Fe and Au nanoparticles

through ab initio DFT simulations [66]. Individual C atoms diffused rapidly over

the nanoparticle surface until they connected with other C atoms, forming dimers

and chains, eventually producing an sp2 bonded graphene sheet covering the

exposed catalyst surface (with pentagon and heptagons to accommodate surface

curvature). The cap was held on the surface of the nanoparticle by covalent

bonds involving under-coordinated carbon atoms. In the case of Au nanoparticle

the binding of carbon was sufficiently weak that dimers readily left the surface

and consequently a cap could not form. This result highlights the importance of

strength of the metal-carbon bond in the catalysis of CNTs.

2.5.3 DFT studies

With the success of the Fe catalyst versus the Au catalyst being attributed to the

stronger metal-carbon bond of the former in the Raty study [66], this phenomenon

has been investigated further in DFT calculations for a variety of transition metals

[67, 68]. Fe, Co and Ni clusters were chosen, since they are widely used to

successfully grow CNTs, in addition Cu, Pd and Au systems were modelled since

they are capable of decomposing carbon feedstock gas but are not commonly
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employed as catalysts in CCVD growth of CNTs. It was confirmed that the

M-C bond strengths of the widely used catalysts are stronger for the metals

studied. To understand the reasons that the M-C bond strength is so important

to successful CNT growth, the process of dissociating a SWNT from the catalyst

and forming a cap was considered. It was found that in the case of Fe, Co and

Ni, large positive enthalpies are obtained for these reactions due to their strong

M-C bonds, consequently inhibiting cap closure. Au and Cu clusters did not

have sufficiently strong M-C bonds to prevent closure, while Pd was found to be

borderline with a slightly positive enthalpy of reaction.

Bimetallic catalysts may also catalyse CNT growth, for example Cu/Mo

nanoparticles successfully catalyse bamboo CNT growth, and have been modelled

in terms of adhesion strengths [69]. For an all Cu cluster, the binding energy of

each carbon atom was calculated to be less than that of the carbon dangling bond;

an all Cu nanoparticle would thus not be expected to catalyse CNT growth. In

the all Mo cluster case, the binding energy was significantly larger than the dan-

gling bond energy, however Mo catalysts fail to produce CNTs. This failure is

probably due to Mo-C bond formation being favoured over C-C bond formation,

thus preventing CNT growth. Some bimetallic catalyst structures were found

to have carbon binding energies comparable to the carbon dangling bond en-

ergy, depending on the cluster composition, thus Cu/Mo catalysts can support

CNT growth. A similar result has been found in the case of Cu/W and Pd/Mo

nanocomposite catalysts [70].

The relative stabilities of possible CNT nucleation structures on Ni clusters

have been studied by means of DFT and TBMC (tight-binding Monte Carlo)

simulations [71]. A carbon island has a higher chemical potential than an isolated

carbon atom on the surface of the Ni cluster, such an island may only form when

the surface has a large coverage of carbon. Caps of (5, 5) and (10, 0) tubes have a

lower chemical potential than an island; such caps can form spontaneously once
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an island is formed. Formation of a cap also inhibits further island formation by

lowering the concentration of carbon atoms on the cluster surface. Since the same

island enables formation of both caps with different chiralities and the conversion

of an island to a cap is spontaneous, this study suggests it is not possible to control

CNT chirality. In any case, the difference in chemical potentials between edge

atoms for the different chiralities was found to be comparable to the thermal

energy at growth conditions and so it may not be possible to control SWNT

chirality via cluster engineering, at least in the case of (10, 0) and (5, 5) CNTs.

The relationship between tube chirality, cap structure and catalyst structure has

also been considered in detail [72–74].

Computational studies of CNT growth typically relate to the CVD produc-

tion of CNTs, since only this method enables production at industrial levels. The

catalyst support is neglected in all studies (due to computational limitations) and

so it is unsurprising that these studies either assume or support a root-growth

mechanism of CNT growth, though given that the in situ microscopy studies also

support a root-growth mechanism, the assumption of root-growth is not without

basis. Much as found by in situ microscopy studies, the MD studies support

the basic VLS model of CNT growth, while also increasing understanding of ini-

tial CNT growth which in situ techniques lack the resolution to observe. DFT

studies which explore the energetics of the catalyst CNT-interface also greatly en-

hance the understanding of the CNT growth process beyond the limits of current

experimental techniques.

2.6 Doped CNTs

Doping of carbon nanotubes can be conveniently divided into four different

classes, endohedral, exohedral, intercalation and substitutional doping. Endo-

hedral doping involves encapsulating nanostructures in the hollow cavity of the
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nanotube, while in exohedral doping nanostructures are adsorbed on the CNT

surface. Intercalation may be applied to nanotube bundles and involves inserting

molecules between the nanotubes in the bundles [75]. Substitutional doping con-

sists of replacing carbon atoms with other elements (e.g. N or B). Substitutional

and endohedral doping are discussed in more detail in this section, as they are a

central focus of this work.

2.6.1 Substitutional Doping of CNTs

The first reports of nitrogen and boron doped carbon nanotubes appear in the

literature as early as 1994 in the form of BCN (boron-carbon-nitrogen) tubes,

which were produced by the arc discharge method. This doping was achieved

by placing a mixture of elemental B and graphite in the anode, with a pure

graphite cathode and performing the arc discharge in a nitrogen atmosphere [76].

The doping levels of the CNTs were low relative to later studies (typically <

2%). Doping of CNTs has also been achieved by heat treatment of SWNTs with

B2O3 in a nitrogen atmosphere [77, 78]. This method also had the side effect of

increasing the diameter of the CNT (from 1.4 nm to 2.1-3.2 nm). This diameter

increase is caused by coagulation of NTs to eliminate dangling bonds which were

introduced by the doping process. Such diameter increase has also been observed

to occur under electron irradiation in CCVD produced SWNTs [79].

Direct substitution of nitrogen into the CNT (i.e. the replacement of carbon

by equal amounts of N) is not the only way to include N in the CNT, pyridine-like

environments may also form. In the pyridine-like configuration, a carbon atom

vacancy is formed leaving a two coordinate N. Substitutional doping by N typi-

cally leads to the formation of “bamboo” MWCNTs [79–87]. In contrast, even the

very earliest reports of boron doped CNTs suggest that it directly substitutes C in

the CNT and the typical CNT structures (i.e. SWNT/MWNT) are maintained

on doping [77, 88].
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Figure 2.6: Left: TEM of bamboo MWNTs produced by CCVD. Inset: STM
image of CNT showing holes in the lattice. Right: Tunnelling spectra taken from
three locations close to holes showing the peak at 0.18 eV in each case. Figures
taken from ref. [80].

The effect which substitutional doping has on the electronic properties of

CNTs is of great interest, since doping may offer a possibility of controlling CNT

electronic properties, bypassing the issue of chirality control. CCVD growth using

nitrogen/boron containing carbon sources (or commonly used carbon sources with

a nitrogen/boron source) is the most widely used route towards substitutional

doping of N and B into the carbon network [79–87, 89]. STM imaging shows that

there are large holes (up to 0.7 nm in diameter, see the left panel of Figure 2.6) in

the walls of N-doped CNTs, which are likely caused by the presence of pyridine-

like environments [80]. While the tunnelling spectra of undoped CNTs and N-

CNTs are similar, there are important differences, which impact significantly on

their ultimate electronic properties. In the spectra of N-CNTs, an extra electronic

feature is seen at 0.18 eV on otherwise symmetric spectra (right panel of Figure

2.6). The presence of electronic states at the Fermi level also indicates that

the N-CNTs may be metallic [79]. B-doped CNTs have also been shown to be
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metallic at room temperature [90]. Nitrogen doped CNTs with semiconducting

chirality in the absence of a substitutional dopant have also been found to be

metallic within DFT/NEGF, while incorporation of substitutional nitrogen in

an armchair CNT was found to reduce electron transmission [91]. Otherwise

semiconducting CNTs have also been found to be metallic on introduction of

boron dopants at experimentally relevant concentrations within DFT [92], while

substitutional boron dopants in already metallic CNTs were found to shorten the

mean free path for electrons [93].

In experiment, very high doping levels are achieved in substitutional doped

CNTs. This results in metallic CNT properties irrespective of CNT chirality

i.e. the “chirality problem” is by-passed, at least when metallic CNTs are re-

quired. Difficulties still remain with controlling dopant levels within the CNT

and also dopant atom fluctuations within the CNT (e.g. outer layers of MWNTs

have been reported as being more heavily doped than inner layers [94]). Tube

morphology remains a particular problem for nitrogen doped CNTs, with bam-

boo CNT structures consistently obtained; the reasons why such defective CNTs

result when nitrogen dopants are introduced during CNT growth is an issure

explored by this thesis.

2.6.2 Endohedral Doping of CNTs

Endohedral doping of CNTs offers many potential advantages over substitutional

doping and such dopants are considered alongside substitutional dopants in this

work. Encapsulation of organic molecules which have different electron affinities

and ionisation potentials offers the possibility for both n- and p-type doping of

CNTs depending on the charge transfer properties of the dopant. Endohedral

doping also overcomes problems associated with substitutional doping such as

control of doping and CNT morphology.

A wide range of molecules have been explored as endohedral dopants of CNTs,
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including fullerenes [95], metallocenes [96] and organic molecules [95, 97–101].

Takenobu and coworkers [100] studied a range of organic endohedral dopants. It

was determined that the electronic properties of the doped CNTs are strongly

influenced by the properties of the encapsulated molecule. Molecules with large

electronic affinity (EA) induce p-type doping in CNTs, while encapsulation of

those with small ionisation potential (IP) resulted in n-type doping. Importantly

from an applications perspective, many endohedral dopants were found to be

stable in atmospheric conditions.

Following this work by Takenobu et al, many groups sought to investigate the

electronic properties of endohedrally doped CNTs in more detail. Unsurprisingly,

endohedral dopants which induced n-type doping were found to donate electrons

to the CNT, while electrons were donated from the CNT to the dopant for p-

type dopants [99]. Thus dopants with small IP donate electrons to the CNT

giving n-type doping, while dopants with high electron affinity EA accept elec-

trons from the CNT resulting in p-type CNTs. The electron transfer to (from)

the CNT was found to increase with decreasing IP (increasing EA) of the dopant.

Significant differences in band structure have been found for different dopants.

Dopants which result in n-type doping add a flat band (the dopant highest oc-

cupied molecular orbital (HOMO)) close to or overlapping with the bottom of

the CNT conduction band, while dopants from which p-type doping arises add a

flat band (the dopant lowest unoccupied molecular orbital (LUMO)) overlapping

with the top of the CNT valence band [99]. In most cases, the “intercalation en-

ergy” (i.e. binding energy) of dopants (intercalation energy = complex energy -

energy of CNT - energy of dopant) which were found to be air stable by Takenobu

was negative (i.e. under ambient conditions dopants would not be expected to

escape), while it was positive for dopants which were not air stable. Thus it may

be possible to determine the likely air stability of a doped CNT before synthesis

by correlation to calculated binding energies.
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2.7 Defects in CNTs

CNTs contain defects which are introduced during the growth process or may be

introduced during post-processing (for example by ion irradiation [102] or acid

treatment [103]).The average mean free path (the average distance an electron

travels before being scattered) has been reported as ∼ 1 µm for CVD grown CNTs

[104] and indeed high quality CNTs have been found to have approximately one

defect every 4 µm, although defects were found to cluster together, meaning

average defect separation was much shorter [103]. Many different types of defects

have been reported in carbon nanotubes including vacancy defects, Stone-Wales

defects [105] and adsorption of adatoms as interstitials. This section is primarily

concerned with vacancy defects, where one or more atoms in the CNT lattice are

missing.

Experimentally it is challenging to identify defects in CNTs. TEM enables

atom resolution imaging and so unambiguous identification of defects is possible

(Figure 2.7 shows defects in graphene membranes), but is time consuming and

impractical for large scale analysis of CNT quality required for industrial level

production. Raman spectroscopy is widely used to quantify CNT crystallinity

[106], but gives no information on defect location or identity while selective elec-

trochemical deposition can be used to locate defects it is also unable to identify

their atomic structure [103].

In monovacancies, a single atom is missing at the defect site, whereas in diva-

cancies there are two missing atoms. Reconstruction at the defect site typically

leads to formation of a 5- and 9-membered ring for monovacancies, exemplified

for graphene in the right panel of Figure 2.7. The situation for divacancies is

more complex, with two possible reconstructions. In the 585 divacancy defect,

the structure at the defect relaxes to an 8-membered ring bordered by two 5-

membered rings whereas in the 555777 divacancy defect the CNT rearranges

resulting in a circular motif of alternating 5- and 7-membered rings.
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2. Background 2.7 Defects in CNTs

Figure 2.7: TEM images of defects in graphene. Left: Stone-Wales defect, with
heptagons outlined in red and pentagons in green. Right: Reconstructed mono-
vacancy, 9-membered ring outlined in red and pentagon in green. Figure taken
from ref. [107].

As a result of the difficulties in identifying defects in CNTs, much research

in CNT defects has been theoretical and includes studies on mechanical (e.g.

[108–110]) and electronic properties (e.g. [111–114]) with results much as could

be anticipated, i.e. defects reduce mechanical strength and conductivity. The

formation of a divacancy has consistently been found to be more stable than two

monovacancies [111, 113], and 585 divancancies are reported as being more stable

than 555777 divacancies in CNTs [111], whereas the 555777 defect is more stable

in graphene [115]. Due to computational limitations most theoretical studies of

CNTs focus on small diameter CNTs which have high curvature. Graphene is the

limiting zero-curvature case and so in sufficiently large CNTs the 555777 defect

must become more stable than the 585. This has been estimated to occur for

CNT diameters greater than approximately 40 Å [111].

At this time, theoretical studies are the only realistic method to study the

properties of specific defects due to the difficulties in identifying defects in situ.

Ab initio studies are confined to low diameter/high curvature CNTs. In this

thesis, we extend this work to larger diameter CNTs and thus can explore the

effects of defects on electronic properties at technologically relevant diameters

and also can confirm the relative stability of defects in such CNTs.
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2.8 CNT-Metal Contacts

Much interest in CNTs has been related to their electronic properties, discussed in

Section 2.3. For these properties to be harnessed in real electronic devices, CNTs

must be contacted to metal. The nature of the metal-CNT contact is not well

understood, and indeed experiments have often produced seemingly contradictory

results, but gradually a picture of what happens at such a contact has begun to

emerge. In this section experiment and theory will be briefly discussed to outline

the metal-CNT contact as it is currently understood.

Figure 2.8: Schottky barrier for n-type semiconductor, the work function is indi-
cated by the dashed lines. Left: Bands just before contact is made. Right: Band
bending after thermal equilibrium is reached. ΦB is the Schottky barrier height.

When a semiconductor and metal are brought together a contact is formed.

This contact may be Ohmic or Schottky depending on the materials used and

also how the contact is prepared. An Ohmic contact exhibits a linear, symmetric

current-voltage curve, while a non-linear curve (rectifying behaviour) is obtained

with a Schottky contact. A basic description of the behaviour at a Schottky

contact is given here, a detailed discussion can be found in the review by Tung

[116]. When a semiconductor and a metal are brought together, electrons are

transferred from the material with the higher work function to the material with

the lower work function until their work functions are equal, as shown in Figure

2.8 for an n-type semiconductor. A barrier layer (of height ΦB) forms in the
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semiconductor in which charge is depleted, this barrier then prevents the flow of

current asymmetrically, resulting in the rectification typical of a Schottky contact.

Whether an Ohmic or Schottky contact is required depends on the application -

CMOS interconnects require Ohmic contacts while Schottky contacts are needed

for Schottky diodes and Schottky transistors.

Metal-CNT contacts have been found to exhibit both Ohmic and Schottky

behaviours. Ohmic contacts have been reported for CNTs contacted to Pd [104,

117, 118] and Rh [118], conversely, Schottky contacts have been reported for

Al and Ti [119]. Both Pd and Rh have high work functions (φm) (5.1 eV and

5.0 eV respectively), while Al and Ti have lower φm (both 4.3 eV), it is this

difference in φm which has been suggested to lead to very different behaviour

when a metal is brought into contact with a CNT [120]. Pd-CNT contacts have

also been reported to have a diameter dependent ΦB, contacts involving small

diameter CNTs are reported to have ΦB of up to 300 meV, while those with larger

diameter CNTs have ΦB < 100 meV [121]. This is consistent with Kim et al [117],

who found a negligible ΦB for larger diameter (> 1.6 nm) semiconducting CNTs

in contact with Pd and Rh. Additionally, metal contacts can induce doping in the

contacted CNT [122], with the different doping regimes related to the metal φm,

p-type behaviour is seen in the case of Pd and Ti; ambipolar behaviour for Mg

(φm = 3.6 eV) and n-type behaviour for Ca (φm = 2.9 eV). This behaviour can be

understood by considering the band diagrams (see Figure 2.9). In the case of Pd

and Ti, with larger φm, the Ef (Fermi energy) of the metal presumably lies close to

the valence band edge of the CNT resulting in the easy injection of holes into the

CNT, conversely for Ca with its very low φm, the Ef lies close the conduction band

edge and n-type behaviour results. The ambipolar behaviour of Mg then suggests

that the Ef lies near the middle of the CNT gap. Indeed, early computational

work on metal-CNT interfaces suggested that the metal work function could be

used to control the contact behaviour [120]. A detailed discussion of the literature
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relating to Schottky barriers at metal-CNT contacts is given in the review of

Svensson and Campbell [123].

Figure 2.9: Band diagrams at the metal CNT contacts for (a) Pd- and Ti-CNT
contacts, (b) Mg-CNT and (c) Ca-CNT. Figure taken from ref. [122].

A series of papers by Andriotis and co-workers have theoretically examined

CNT transport properties (only metal-CNT contacts will be discussed here) to

study the effect of geometry on contact properties by placing one or two Ni atoms

on the side wall of metallic (5, 5) and (10, 0) CNTs [124, 125]. It was found that

the character of the bonding and contact changed with the position of the metal,

covalent bonds, metallic conduction and low contact resistance resulted from Ni

at bridging sites (i.e. between C atoms) while ionic bonds, tunnelling conduction

and high contact resistance resulted when Ni was at an on-top site (i.e. on one

C atom). More recently, end- [126, 127] and side-contacted [126] (10, 0)-CNTs

with Ni were considered. In both cases near linear (i.e. Ohmic) IV curves were

obtained for short tube lengths, with progressively non-Ohmic IV curves when

longer (i.e. more realistic) tube lengths were used between the metal contacts.

A number of theoretical studies have considered Al-CNT interfaces for small

diameter, undoped CNTs. The earliest such study [128] considers (10, 0) CNTs

side contacted to Ca and Al surfaces, with rather different results. For Ca-CNT,

the Fermi energy is located above the isolated CNT conduction band edge and
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charge transfer from Ca to CNT takes place, while for Al-CNT the Fermi level was

found to be below (but close to) the conduction band edge and charge transfer

did not occur. This difference in behaviour is attributed to the substantial (1 eV)

difference in the metal workfunctions between the two metals. The side contacted

type regime has also been studied by Bai and co-workers [129] with a model of

“partially-” and “fully-embedded” CNTs. In the fully embedded case the end of

the CNT is fully wrapped by Al with one side of the CNT left bare in the partially

embedded case. Some rectification behaviour is found for the partially embedded

structure. A study of the end contacted Al-CNT interface [130] consisting of an

(8, 0)-CNT between two Al slabs has also been reported. An interesting aspect

of this study is in detailing exactly how far metal induced gap states (MIGS

- regions of finite DOS in the contacted semiconductor, which lie in the gap

of the isolated semiconductor, due to penetration of the metal surface states)

extend into the CNT. Sixteen repeat units of the CNT were required to correctly

reproduce the CNT DOS far from the metal interface. The electronic properties

of the interface are strongly affected by charge transfer and the resultant MIGS.

The end-contacted Al-CNT interface (with (10, 0) CNT) has also been studied

[131] but with a very short CNT (2 repeat units) used between the Al leads and

any results are most likely strongly affected by the MIGS and indeed Ohmic IV

curves were obtained (which is consistent with MIGS overlapping between the

metal contacts), much as was found by Andriotis and co-workers at short tube

lengths.

It is apparent that the behaviour of the metal-CNT contact is strongly influ-

enced by both the contact metal used and the details of the contact structure.

In this thesis, the CNT-metal contact is studied using computational methods

and so the structure of the interface can be precisely controlled. This enables the

structural dependence of the contact electronic properties to be investigated in a

controlled environment.
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2.9 Motivation for this Work

The research carried in this work is motivated primarily by the insufficient un-

derstanding of CNTs at the atomic scale and consequent difficulties in producing

CNTs with the required physical properties for many promising technological ap-

plications. In particular, the electronic properties of CNTs may be controlled at

the growth stage either through chirality controlled growth or through substitu-

tional doping - however both cases present problems. It is possible to grow CNTs

with narrow chiral distributions [132–134] (i.e. a small number of chiral indices

account for most of the CNTs grown), but full chirality control remains elusive

and may well be considered as the “Holy Grail” of the CNT community. Doping

of CNTs presents different difficulties and much work is still needed in this area,

with regard to suitable doping levels, uniform doping of tubes and tube morphol-

ogy. In electronic devices at some point the CNT must be contacted to metal and

the electronic properties are then also influenced by this contact. While much

progress has been made in in situ monitoring of CNT growth, such methods have

neither the spatial nor temporal resolution to enable atomic scale CNT growth to

be studied. Computational modelling offers the unique possibility to study CNTs

with full atom-by-atom control. Taking advantage of this atomic-scale control,

this thesis focuses on the following topics:

• The origin of the defective structures of nitrogen-doped CNTs

• The effect of dopants on the electronic behaviour of metal contacted CNTs

• The interplay between the structure of a metal-CNT interface and its elec-

tronic properties

• The effects of vacancy defects on the electronic properties of large diameter

CNTs
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This work particularly focuses on the electronic properties of doped and de-

fective CNTs. As has been discussed in this chapter, the electronic properties of

CNTs in nanoelectronics are complicated by a number of factors including how

the CNT is grown, the presence of defects and impurities in the CNT and how

the CNT is contacted and to which metal. Ultimately, this work is driven by

the need to better understand how these factors work together in nanoelectronic

devices.
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Chapter 3

Computational Methods

This chapter provides a brief introduction to electronic structure theory empha-

sising the methods used in this work.

3.1 The Schrödinger Equation

The aim of many electronic structure techniques is to calculate approximate solu-

tions to the time independent, non-relativistic Schrödinger equation [1] and thus

obtain information about the energy and other properties of molecules from

HΨ = EΨ, (3.1)

where H is the Hamiltonian operator corresponding to the total energy of a

system of electrons and nuclei, Ψ is the wave function and E is the energy of the

system. There are many acceptable values for the eigenfunctions Ψ of a molecule;

each with its own eigenvalue E. The square of the wavefunction |Ψ2| gives the

probability distribution of the electrons in the system. The Hamiltonian is a sum

of the kinetic T and potential V energy and in atomic units (~ = me = e = 1)

for N electrons and M nuclei is:
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H = −
N∑
i=1

1
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2
i −
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1
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A −
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rij
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ZAZB
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(3.2)

where ZA is the charge of nucleus A, riA = |~ri − ~RA|, rij = |~ri − ~rj|, RAB =

|~RA − ~RB| and ∇2
i and ∇2

A are Laplacian operators and involve differentiation

with respect to the coordinates of the ith electron and Ath nucleus, respectively.

The first two terms on the right hand side of 3.2 are the kinetic energy of the

electrons Te and nuclei Tn, respectively. The third term Vne describes the at-

tractive potential energy resulting from Coulombic interaction between electrons

and nuclei, while the fourth Vee and fifth Vnn terms describe the potential energy

resulting from repulsive electron-electron and nucleus-nucleus interactions.

3.2 The Born-Oppenheimer Approximation

The Hamiltonian contains pair-wise attractive and repulsive terms (no particles

move independently) and cannot be solved exactly except for simple systems

(e.g. the hydrogen atom). As a result, a series of approximations must be made

in order to simplify the problem, the first of which is the Born-Oppenheimer

approximation [2]. This approximation exploits the fact that electronic motion

occurs on a much shorter time-scale than nuclear motion due to the relative

masses of the electrons and nuclei, even in the worst case scenario of the hydrogen

atom, the nucleus is almost 2000 times more massive than the electron. The

motion of the electrons can, in most circumstances, consequently be decoupled

from that of the nuclei and electronic energies can be computed for fixed nuclear

positions. Tn is then neglected while Vnn is a constant and can be dropped

because any constant added to the energy operator H only shifts the operator

eigenvalue E; the eigenfunction Ψ is unchanged. Thus the electronic Hamiltonian
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is obtained:

Helec = −
N∑
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1
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The total energy Etot in the damped nuclei approximation is obtained by

summing Eelec (the electronic energy) and Vnn. Once the electronic problem

has been solved, the nuclear problem may then be solved using the same idea.

Because the electrons move much faster than the nuclei, the electronic coordinates

can be replaced by their average values, averaged over Ψelec (the electronic wave

function)

Hnucl = −
M∑
i=1

1
2MA
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〉
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(3.4)

The term in brackets in 3.4 is the electronic energy as a function of nuclear coor-

dinates Eelec({RA}) and together with the second term Vnn is the total electronic

energy as a function of nuclear position Etot({RA}) and 3.4 simplifies to:

Hnucl = −
M∑
i=1

1
2MA

∇2
A + Etot({RA}). (3.5)

Etot({RA}) is the potential energy surface (PES) for nuclear motion, with the

minimum of the PES corresponding to the most stable geometry for the system.

3.3 Geometry Optimisation Techinques

The simplest molecule to find the most stable structure of is a linear diatomic,

the only parameter to be varied is the bond length. If the energy as a function of
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bond length is plotted for small displacements about the equilibrium geometry, a

parabola will be obtained, with the optimal geometry at the minimum. For larger

molecules such a process would have to be carried out iteratively, bond-by-bond

and quickly becomes impractical. Ideally, the geometry should not be optimised

a single coordinate at a time, but instead move along the direction of the steepest

downward slope on the PES for all coordinates.

Optimisation methods are generalised techniques for finding the stationary

points of a function, where the gradient is zero. For many purposes it is the

minimum of the function that is of interest (i.e. where the matrix of the sec-

ond derivative (Hessian) is positive definite. The derivative of the function is

calculated with finite precision so the gradient is not reduced to zero. Instead

the optimisation is considered converged when the gradient is below a selected

threshold value. The simplest optimisation method commonly used in electronic

structure calculations is steepest descent (SD).

In the SD method, the gradient vector (g) points in the direction where the

function increases most, thus the function value is always lowered by stepping the

function in the opposite direction. A series of function evaluations are performed

in the negative gradient direction (d = −g) and once the function starts to

increase an approximate minimum can be found by interpolation. A new gradient

may then be calculated at this interpolated point and used for a new line search.

The SD method is guaranteed to always approach a local minimum, however due

to the inefficiencies of the method (each line search tends to partially undo the

previous one and the closer to the minimum the slower the convergence as shown

in Figure 3.1), it is usually used only when other methods fail.

The conjugate gradient (CG) method attempts to prevent the “partial undo-

ing” of the previous line search intrinsic to the SD method. Instead of the next

line search being perpendicular to the previous, it is carried out on a line which

is a conjugate to previous search directions, as a result successive minimisations
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Figure 3.1: Schematic of the steepest descent method, showing the “partial un-
doing” of the previous optimisation step inherent to this method. Ideally, opti-
misation should proceed steadily down the PES as indicated by the blue arrow.

do not generate gradient components along previous directions. The CG method

typically has much better convergence characteristics than SD, however the gra-

dient from the previous step must be stored but this is a trivial requirement for

modern computers.

For most of the geometry optimisations carried out in this work (pseudo-)

Newton-Raphson (NR) methods are used, which rely on a second order Taylor

expansion of the energy. The major advantage of NR methods is that the conver-

gence is second order near a stationary point i.e. convergence speeds up as the

stationary point is approached. However, NR methods have some disadvantages.

Firstly, the memory and computational requirements for NR methods are also

larger than for SD, since the Hessian must be diagonalised and stored. Because

it can be computationally very demanding to calculate the Hessian an updating

scheme can be used instead i.e. pseudo-NR methods. If there is a negative term

in the Hessian, the function value increases and the optimisation can end up at

a saddle point. If one of the Hessian eigenvalues is close to zero, the geometry

can go beyond the region where the Taylor expansion is valid. To mitigate these

issues geometry optimisations are initiated using non-Newton-Raphson methods

in this work.
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3.4 The Variational Principle

For most purposes it is the ground state (i.e. lowest energy) solution to the

time independent Schrödinger equation that is of interest, the problem is how

to improve the approximate Ψ or even to know if one is improving it. Through

application of the variational principle, an upper bound for the exact ground state

energy (Egs) can be obtained. For any normalised Ψ (which satisfies appropriate

boundary conditions):

Egs ≤ 〈Ψ|H|Ψ〉 ≡ 〈H〉 (3.6)

i.e. the expectation value of the Hamiltonian, 〈H〉, is an upper bound for the

exact ground state. The energy of the approximate wavefuction is always too

large, thus the quality of a wavefunction can be assessed by its energy: a better

wavefunction has a lower energy. Thus if you have a wavefunction with many

adjustable parameters, the parameters can be optimised to get the lowest possible

energy, i.e. the best wave function.

3.5 Density Functional Theory

Density functional theory (DFT) seeks to replace the extraordinarily complex N -

electron wavefunction with its dependence on 3N spatial and N spin coordinates

at the heart of the Schrödinger equation with a simpler quantity, the electron

density, ρ(r) dependent on 3 spatial coordinates:

ρ(r) = N
∫
...
∫
|ψ(x1, x2, ..., xN)|2ds dx2...dxN (3.7)

The electron density is an integral over all the spin coordinates (s) and the spatial

coordinates (r) of all but one electronic coordinate (Equation 3.7). The electron

density is in fact a probability density; while all the other electrons have arbi-
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trary spin and position, it determines the probability that any of the electrons

(with arbitrary spin) can be found within a volume element dr. Following the

literature, ρ(r) is hereafter referred to as the electron density. In this section a ba-

sic discussion of DFT will be outlined, including the Hohenberg-Kohn theorems,

the Kohn-Sham approach and approximations to the exchange and correlation

functional.

3.5.1 Hohenberg-Kohn Theorems

Modern DFT was introduced by Hohenberg and Kohn in their 1964 paper [3]

and the theorems therein are the basis of DFT, here the important points of

these theorems are presented; for the proofs of the theorems see ref. [3]. The first

Hohenberg-Kohn theorem, the existence theorem, is concerned with the very heart

of DFT; can the N -electron wave function be replaced by the electron density

which uniquely defines the system? The theorem proves that the ground state

electron density determines the external potential (Vext) of a system to within

an additive constant. As a result the Hamiltonian operator of the system, and

consequently all other properties (e.g. the energy), is uniquely determined by its

electron density ρ(r).

The second Hohenberg-Kohn theorem, the variation principle, is concerned

with establishing that a certain density is the true ground state density. The

proof makes use of the variational principle discussed in the previous section.

The individual components of the ground state energy must be functionals of the

density, as is the total energy from the Hohenberg-Kohn existence theorem. When

the external potential results entirely from the nuclear attraction, the ground

state energy E0[ρ0] can be partitioned as:

E0[ρ0] = T [ρ0] + Eee[ρ0] + Ene[ρ0]. (3.8)
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The contributions to the total energy can be conveniently spilt between those

which depend on the system at hand, i.e. Ene and those which are universally

valid independent of the nuclear charge and N . Ene is system dependent while

the first and second terms of Equation 3.8 are universally valid and collectively

make up the Hohenberg-Kohn functional F[ρ(r)]:

F [ρ(r)] = T [ρ(r)] + J [ρ(r)] + Encl[ρ(r)]. (3.9)

The Hohenberg-Kohn functional contains the contributions to the total energy

due to the kinetic energy T , the classical Coulomb interaction J and non-classical

part of the potential energy resulting from correlation Encl, and is valid for any

external potential Vext and any number of particles. The energy functional (3.8)

for a given potential Vext is:

E[ρ] =
∫
Vextρ(r)dr + F [ρ]. (3.10)

The second Hohenberg-Kohn theorem proves that the calculated energy (3.10)

is an upper bound for the ground state energy and only equals the ground state

energy when ρ is the true ground state density.

3.5.2 The Kohn-Sham Approach

The Kohn-Sham approach [4] seeks to compute as much of the true kinetic and

exchange and correlation energy as possible exactly and then deal with what is

left approximately. The Kohn-Sham ground state density can be represented by

a Slater determinant [5]. The resulting spin orbitals ϕi are usually referred to as

the Kohn-Sham orbitals and are determined by:

fksϕi = εiϕi, (3.11)
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where fks is the one electron Kohn-Sham operator.

The Kohn-Sham orbitals are connected to the real system by ensuring that

the moduli of the squared orbitals {ϕi} is exactly the ground state density ρ0(r):

ρs(r) =
N∑
i

∑
s

|ϕi(r, s)|2 = ρ0(r). (3.12)

This condition is imposed by correct choice of the external potential.

The exact kinetic energy of the non-interacting system Ts with the same den-

sity as the real system can be calculated using the Kohn-Sham orbitals:

Ts = −1
2

N∑
i

〈ϕi|∇2|ϕi〉 (3.13)

That Ts is not equal to the real kinetic energy is accounted for by the reformula-

tion of 3.9:

F [ρ(r)] = Ts[ρ(r)] + J [ρ(r)] + Exc[ρ(r)] (3.14)

The exchange and correlation functional Exc is introduced in 3.14. The part of

the real kinetic energy not in Ts is combined with the non-classical electrostatic

contributions to yield this functional, i.e. all terms which cannot be exactly

computed are contained within Exc.

To minimise the energy of the system with the constraint that the orbitals

are orthonormal the following condition must be fulfilled:

− 1
2∇

2 +
 ∫ ρ(r2)

r12
dr2 + Vxc(r1)−

M∑
A

ZA
r1A

ϕi
=
− 1

2∇
2 + Veff (r1)

ϕi = εiϕi.

(3.15)
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The Kohn-Sham one-electron equation (Equation 3.15) must be solved iteratively,

since Veff depends on the density through the Coulomb term and Vxc.

In principle the Kohn-Sham approach is exact; if the exact forms of Vxc and

Exc were known, the Kohn-Sham approach would lead to the exact total energy,

i.e. the correct eigenvalue in the many-electron Schrödinger equation. Of course,

the form of Exc and hence Vxc is not known and is approximated when DFT is

used, achieving better approximation to the exchange and correlation functional

is an important focus of DFT research. As a further complication, the variation

principle no longer strictly holds when approximations are made to Exc.

3.5.3 Approximations to the Exchange and Correlation

Functional

As already touched on, the accuracy of DFT depends on how well the exchange

and correlation functional Exc can be approximated. The exact form of Exc is

unknown and there is no systematic approach to achieving improved approxi-

mations. The only real guidance available is the sum rules for the exchange-

correlation hole (which can be further split into the Fermi and Coulomb holes)

[6]:

• The exchange-correlation hole contains the charge of one electron.

• The Fermi hole is negative everywhere and also integrates to -1.

• The Coulomb hole over all space has no charge but has both positive and

negative regions.

While these rules give some ideas of how the functional should be constrained, it

is also the case that functionals which do meet these requirements are not always

better than those which do not.

The simplest approximation to the Exc is the local density approximation

(LDA). It is based on the uniform electron gas, a hypothetical charge neutral
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system in which electrons of constant density move on a uniform positive back-

ground. While the uniform electron gas is very different to any realistic atoms

or molecules which have rapidly varying densities, it is the only system for which

an accurate exchange and correlation energy functional is known. The LDA Exc

is then:

ELDA
xc [ρ] =

∫
ρ(r)εxc[ρ(r)]dr, (3.16)

where εxc[ρ(r)] is the exchange-correlation energy per electron for the uniform

electron gas. The LDA can easily be extended to the unrestricted and spin

polarised cases by splitting ρ(r) into two spin densities, ρα(r) and ρβ(r). The LDA

gives surprisingly good results for structures while systemically overestimating

atomisation energies which results in overbinding. To achieve sufficient accuracy

in many applications, more sophisticated approximations to Exc are necessary.

The LDA is based on the uniform electron gas, but in real systems the elec-

tron density varies rapidly. One approach towards a more accurate functional

consequently seeks also to include the gradient of the density in Exc. The LDA

can be viewed as the first term in a functional Taylor expansion and one can

then seek to obtain better results by introducing the second term. This leads

to the gradient expansion approximation (GEA), which in many cases actually

performs worse than the LDA. By enforcing the sum rules outlined above on

the GEA, generalised gradient approximations (GGA) are obtained, which offer

improved performance with respect to the LDA. There are many different GGA

functionals (e.g. BLYP[7, 8], PW91 [9], PBE [10]) but results of similar quality

are generally obtained for all such functionals [6].

The most accurate functionals in terms of energetics are hybrid functionals.

Such functionals combine exact exchange and gradient corrected exchange and
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correlation in specific ratios, for example the hybrid function of Becke [11]:

Exc = ELSDA
XC + a0(Eexact

X − ELSDA
X ) + ax∆EB88

x + ac∆EPW91
C (3.17)

where ∆EB88
x [7] and EPW91

C [9] are gradient corrections to LSDA exchange and

correlation, respectively. The coefficients (a0, ax, ac) are determined by fitting to

experimental data and thus the hybrid functional is semi-empirical. The most

widely used hybrid functional is B3LYP, which replaces the Perdew-Wang corre-

lation functional in Equation 3.17, EPW91
c , by that of Lee, Yang and Parr [8].

3.6 Basis Sets

A set of functions which can be used to construct an unknown function is called

a basis set and can be used to represent the wave function or electron density

in electronic structure calculations. The use of basis sets is an approximation

because basis sets used in actual calculations are not complete (such a basis set

would necessitate an infinite number of basis functions). In this section plane

waves and localised atomic (or atom-like) orbital (AO) basis functions, which are

the most widely used basis functions in DFT, will be discussed.

3.6.1 Plane Waves

Modelling extended systems such as crystalline materials typically uses a unit

cell with periodic boundary conditions. Such “infinite” systems suggest also us-

ing basis functions with infinite range (as opposed to localised AO based basis

functions). In the case of a metal, the outer valence electrons behave as nearly

free electrons which suggests using solutions to the Schrödinger equation for free

electrons as a basis. For infinite systems, the energy spacing between molecu-

lar orbitals disappears and bands are formed. Electrons in bands can then be
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described by a basis set of plane waves in three dimensions:

χ(r) = ei
~k.~r. (3.18)

The number of plane waves used (k) is determined by the cut-off energy

(Ecut = 1
2k

2) and the number of basis functions can therefore be systematically

increased by increasing the cut-off energy. Plane waves are ideal for describing

delocalised, slowly varying electron density, however core electrons are strongly

localised and valence electrons close to the core also oscillate rapidly. Describing

the core region well then requires a large number of rapidly oscillating plane

waves (and so a large cut-off energy). In practice pseudopotentials and projector

augmented waves (discussed later in this chapter) can be used to describe the core

region greatly reducing the number of plane waves required. While plane waves

are suited to periodic systems, they can also be used to model finite systems

provided a sufficiently large supercell is chosen such that the system does not

interact with its periodic image. This is the approach taken in this work when

the VASP program [12–15], which uses a plane wave basis, is used with finite

structures.

3.6.2 Localised orbitals

Localised orbitals may be literal atomic orbitals or atom-like orbitals. The major

difficulties associated with AOs is that, unlike plane waves, the orbitals must

be chosen for a given system to be both efficient and accurate (i.e. there is no

unique way to make a basis larger) and issues relating to over-completeness as

basis set convergence is approached. The popularity of AO basis sets is due to

the relatively small number of basis functions required, much smaller than plane

waves, and hence their computational efficiency.

The most widely used localised basis functions consist of Gaussians multiplied

by polynomials. Gaussian type orbitals (GTOs) have the general form:
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ηGTO(r) = Nxlymznexp[−αr2]. (3.19)

N is the normalisation factor, α is the orbital exponent and determines the com-

pactness of the orbital while L = l + m + n classifies the orbital, i.e. L = 0 is

s-type, L = 1 is p-type etc. The position r is measured relative to an atomic

site for atom centred Gaussians. The popularity of Gaussians as a localised basis

is due to their efficiency in calculations since multi-centre integrals can be eval-

uated analytically when Gaussians are used. Slater type orbitals (STOs) which

are exponential functions, are typically approximated by sums of Gaussians and

commonly used as basis functions because the computationally convenient prop-

erties of Gaussians are retained while their form is closer to that of an atomic-type

orbital.

Localised orbitals can also be constructed within spherically symmetric po-

tentials. The atomic orbitals themselves could be used, but they have long range

tails which reduce accuracy in molecules and solids. Numerical orbitals are short

range orbitals based on such atomic orbitals and are strictly localised within a

given cut-off radius, eliminating numerically demanding long range tails. Nu-

merical local orbitals are particularly suited to systems with many atoms in a

simulation cell and which have large vacuum - precisely the systems to be stud-

ied in this work. In this thesis, we use the OpenMX code which implements

numerical orbitals [16]. In particular, localised orbitals are essential for the non-

equilibrium Green’s function method (discussed later in this chapter) which we

use for electron transport calculations.
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3.7 Pseudopotentials and PAW

For many applications of computational methods the core electrons are unimpor-

tant but a large number of basis functions are required to expand the associated

orbitals increasing the computational cost. This is especially severe for later el-

ements in the periodic table which have a large number of core electrons. The

fundamental idea of the pseudopotential (PP) is to replace the effects of the core

electrons and the Coulomb potential of the nucleus by an effective potential which

acts on the valence electrons. There are many ways to generate PPs, here only

those used in this work (norm-conserving PPs and ultra-soft PPs) will be dis-

cussed. The projector augmented wave (PAW) method, which is an alternative

to PPs (used in this work by the VASP code) is also introduced.

Though the PP concept has a long history, it is the norm-conservation con-

dition that enabled accurate, transferable PPs to be constructed. It is essential

that PPs be transferable so that they can be constructed in one environment

(typically an atom) and then used in other environments (ions, molecules etc.)

to correctly describe valence properties. Hamann, Schülter and Chiang give the

requirements for a good (i.e. accurate and transferable) ab initio PP [17]:

1. The all electron and pseudo valence eigenvalues are in agreement for a

chosen reference atomic configuration

2. The all electron and pseudo valence wave functions are in agreement beyond

a chosen core radius (rc)

3. The integrated charge densities inside rc are the same for the all electron

and pseudo charge densities (norm conservation)

4. The logarithmic derivatives of the all electron and pseudo wave function

agree for r > rc, as do their first energy derivatives
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While imposing norm conservation leads to accurate and transferable PPs,

there is still the problem of the smoothness of the PP (fewer basis functions can

be used with a smooth PP). The difficulty is the conflicting requirements of a

small rc required for accuracy and transferability (a “hard” PP) while a smooth

pseudofunction necessitates a large rc (a “soft” PP). Ultrasoft PPs [18] seek to

solve this conflict by relaxing the norm-conservation condition which enables a

much larger rc to be chosen than for a norm-conserving PP, while still maintaining

accuracy and transferability.

Although the norm-conserving and ultrasoft pseudopotentials are suitable for

most DFT calculations, some properties cannot be calculated without the full

wave function which is lost when these PPs are employed. The PAW method

[19] offers an alternative to these PP techniques, reducing the number of basis

functions needed while still retaining information on the wave function in the

core region. Close to the core, the wave function oscillates rapidly, while in the

bonding region it is smooth, it is these oscillations which greatly increase the

number of plane wave basis functions needed and hence the computational load.

The PAW method replaces the all-electron wave function by an auxiliary smooth

wave function. Far from the nucleus, the wave function becomes smooth (i.e.

the region of the valence electrons) and so only the wave function close to the

core, where it is not smooth (i.e. inside the “augmentation sphere”) is augmented

using auxillary partial waves and projectors.

3.8 Electron Localisation Function

The electron localisation function (ELF) identifies localised electrons in atomic

and molecular systems and is used to visualise chemical bonding. It was intro-

duced by Becke and Edgecombe in 1990 [20]. The ELF was originally formulated

for use with the Hartree-Fock method and was extended to DFT in 1992 by
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Savin and co-workers [21]. The basic idea behind the ELF is that the electron

pair probability (P σσ
cond) can be used as a gauge for electron localistion. If an

electron of spin σ is known to be located at position A (the reference point),

then the conditional probability of finding another electron (also of spin σ) at

postion B can be calculated. By consideration of the Pauli exclusion principle,

the probabilty of the second electron also being at position A must be 0, while

the total conditional probability is one less than the total number of σ electrons.

Consideration of P σσ
cond as a method to examine bonding is long established (a

summary of these efforts is given in ref [22]). Becke and Edgecombe realised that

useful information about electron localisation can be obtained from short range

behaviour as B approaches A. In this case, the second term of the spherically

averaged conditional pair probability (P σσ
cond(A, s) - where s is the separation of A

and B) is important,

P σσ
cond(A, s) = 1

3

[
τσ −

1
4

(∇ρσ)2

ρσ

]
s2 + ... (3.20)

where τσ is the positive definite kinetic energy density and ρσ is the density.

The electron localisation is related to the size of the term in square brackets in

Equation 3.20, (Dσ); if Dσ is small the electron at A is localised. Dσ is not

bounded from above and is inversely related to localisation, while Becke and

Edgecombe wanted a bounded value which was directly related to localisation.

Therefore, Becke and Edgecombe defined the ELF such that 0 ≤ ELF ≤ 1

by scaling with a suitable uniform electron gas and a large ELF corresponds to

high localisation:

ELF =
1 +

(
Dσ

D0
σ

)2
−1

, (3.21)

where D0
σ is a uniform electron gas with the same spin density as Dσ. The upper

limit of the ELF is 1 and this corresponds to perfect localisation, while an ELF
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value of 0.5 is equivalent to an electron-gas like pair probability.

3.9 Non-Equilbrium Green’s Function Method

In this thesis, the non-equilibrium Green’s function (NEGF) method is used to

calculate electronic transmission, electron current and conductivity, as well as

to generate current-voltage characteristics. A brief summary of the method for

electronic transport calculations is given here; full details of this method can

be found in the literature, e.g. ref. [23] and more specifically the OpenMX

implementation is described in ref. [24]. The infinite one-dimensional system

studied using NEGF is shown in Figure 3.2 and consists of central region C0 and

cells Li and Ri arranged semi-infinitely along the a-axis, with periodicity along

the b- and c-axes. While the cells Li and Ri need not be the same, all Li cells

must be identical to one another, as must all Ri cells. Each Li is then one repeat

unit of the left lead and each Ri one repeat unit of the right lead.

When the chemical potential is constant throughout the system (i.e. the

equilibrium state), DFT can be used to compute the electronic structure. The

system can be represented by a KS matrix equation arising from the use of an

atomic orbital expansion

H~c = εS~c, (3.22)

where ~c is a column vector of AO coefficients, ε is the eigenvalue, and H and S

are the Hamiltonian and overlap matrices, respectively; the overlap matrix results

from the non-orthogonality of the AO basis functions.

In the NEGF calculation, the central region C0 is extended by including one

repeat unit of each lead so that electronic structure in the interface regions can

relax. In addition, two conditions are imposed:
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Figure 3.2: (a) Schematic of the system to be studied with the NEGF method.
Infinite left (Li) and right (Ri) leads and a central scatterer (C0) are along the a-
axis, with periodicity on the bc place. (b) is the one-dimensional system created
by consideration of the periodic boundary condition in the bc plane and extension
of the region around C0 to include the first repeat unit of the left and right leads
within the region C. Figure taken from ref. [24].

1. The basis orbitals in the central region C0 overlap with those in L0 and R0

but must not overlap with those in L1 and R1.

2. The basis orbitals in Li and Ri must not overlap lap with basis orbitals

beyond the nearest neighbour cells.

These two conditions can be trivially satisfied by adjusting the size of the

Li and Ri unit cells because of the strictly localised AOs used. With these two

conditions satisfied, the Hamiltonian matrix in equation 3.22 can be written in

block tridiagonal form and the Green’s function G can be defined as:

G(Z)(ZS −H) = I (3.23)

where Z is a complex energy.

The Green’s function of region C in Figure 3.2 is then given by:
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GC(Z) = [ZSC −HC − ΣL(Z)− ΣR(Z)]−1 (3.24)

where ΣL(Z) and ΣR(Z) are the lead self-energies and are defined by:

ΣL(Z) = (ZSCL1 −HCL1)GL(Z)(ZSL1C −HL1C) (3.25)

for the left lead with a similar equation for the right lead. The self-energies en-

compass the effect of the semi-infinite leads on the region C. The lead self-energies

include the surface Green’s function of the lead region, which are evaluated using

an iterative method. The equilibrium Green’s function method is extended to the

non-equilibrium case - where the chemical potential is not uniform throughout the

system - by modification of the equilibrium electron density. The spin resolved

transmission Tσ(E) can then be calculated within the Landauer formalism:

Tσ(E) = 1
Vc

∫
BZ

dk3T (k)
σ (E), (3.26)

where Vc is the volume of the cell and T (k)
σ is the spin and k-resolved transmission:

Tσ(E)(k) = Tr[Σ(k)
σ,L1(E)G(k)

σ,C(Z)Σ(k)
σ,R1(E)G(k)

σ,C(Z)]. (3.27)

The current (Iσ) can then be evaluated using the transmission formula:

Iσ = e

h

∫
dE Tσ(E)∆f(E), (3.28)

where ∆f(E) is the difference in the Fermi function between the left and right

leads.
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Chapter 4

Nitrogen Doped Carbon
Nanotube Growth Mechanism

4.1 Introduction

Realising the potential of CNTs for many applications requires control over CNT

electronic properties at the growth stage, which is currently lacking. Doping

of CNTs is an alternative route to controlling CNT electronic properties [3, 4].

Suitable dopants should be incorporated into the CNT lattice without causing

excessive disruption to minimise deterioration in electronic properties due to elec-

tron scattering at defects. This suggests that the dopant atom should be a similar

size to the carbon atom which makes nitrogen an obvious dopant candidate [5].

As well as being incorporated directly into the CNT lattice as a substitutional

dopant whereby one nitrogen atom replaces one carbon atom, nitrogen can also be

incorporated in a pyridine-like fashion where nitrogen bonds only to two carbon

atoms, as in the aromatic pyridine molecule [6]. The level of nitrogen dopants in

CNTs reported in the literature is consistently high and ranges from 1-20 atom

% [7] and such doped CNTs are reported exclusively to grow with a bamboo

structure [3, 7–15].

Chemical vapour deposition (CVD) growth of CNTs occurs in a similar way

for single-walled (SWNTs), multi-walled (MWNTs) and bamboo (BCNTs) carbon
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nanotubes. A feedstock gas is cracked by a transition metal nanoparticle catalyst,

which acts as a support for further growth. The nanoparticle catalyst plays a

crucial role in CNT growth. Firstly, the CNT diameter is determined by the

size of the nanoparticle catalyst [16]. Secondly, the strength of the metal-carbon

bond has a critical role as the binding energy obeys a “Goldilocks” criterion.

If the binding energy is too low, the nascent CNT cap cannot be stabilised on

the catalyst and no CNT results, on the other hand if the binding is too high

a metal carbide is preferentially formed on the catalyst surface. However, if the

binding energy is in a window between these two extremes, CNT growth can

occur [17–20].

The precise details of the growth mechanism differ in a crucial way for BCNTs.

When SWNTs and MWNTs grow, the catalyst continuously cracks the carbon

source and the CNT grows without interruption until the catalyst is poisoned or

the supply of feedstock gas is stopped. When BCNTs grow, graphitic carbon lay-

ers found in the nanotube cap bind more strongly to the catalyst surface; such an

effect is also seen with alloy catalysts [19, 20]. As growth progresses, the molten

metal nanoparticle elongates until the nanoparticle surface energy is no longer

counteracted by the stabilisation due to binding to the CNT inner shell and the

nanoparticle retracts to a lower surface energy state [21] at which point a graphitic

carbon layer then grows across the surface of the catalyst. This elongation pro-

cess is continually repeated, resulting in the formation of the characteristic BCNT

chambers. The binding energy of nitrogen doped CNTs is calculated using density

functional theory and by comparison to similar calculations for undoped CNTs

[17, 18], it is determined that nitrogen binds more strongly to cobalt than carbon.

By consideration of the results of these simulations in conjunction with experi-

mental results, the origin of the typical nitrogen-doped CNT bamboo structure

is explained.
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4.2 Methods

The ability of a Co nanoparticle to stabilize the growing end of a nitrogen-doped

CNT was investigated by calculating the binding energy of (3,3), (5,0), (5,5) and

(10,0) SWNTs adhering to Co clusters of suitable diameter. Calculated binding

energies ∆E are compared to binding energies previously reported for undoped

CNTs [17, 18]. In each case the CNT contains one substitutional nitrogen dopant

representing doping of 1.7 to 3.5 atom %, comparable to dopant concentrations

reported in the literature. The binding energies have been calculated within den-

sity functional theory (DFT) using the VASP program [22–25]. The projector

augmented wave (PAW) method was used [26], along with the Perdew-Wang

formulation of the generalised gradient approximation (GGA) exchange and cor-

relation functional [27]. A plane wave cut-off energy of 400 eV was used for the

relaxation of the nanotube systems, followed by a single-point calculation with a

500 eV cut-off energy. The simulation box for (3,3) CNT and (3,3)-Co13 complex

was 10 x 10 x 20 Å3, for (5,0) CNT and (5,0)-Co13 complex was 10 x 10 x 30

Å3 and was 15 x 15 x 30 Å3 for (5,5) CNT, (5,5)-Co55 complex, (10,0) CNT and

(10,0)-Co55 complex. For the smaller systems a Gaussian smearing of 0.05 eV

was used, while the Methfessel-Paxton scheme [28] was used for the Co55 systems

to aid convergence to the ground state solution. Spin-polarised calculations were

performed in all cases and the structures were relaxed without symmetry con-

straints. The experimental portion of the work performed in conjugation with

the theoretical analysis presented here is described in ref. [29]; CVD was used to

grow CNTs which were analysed using Raman spectroscopy, transmission electron

microscopy and X-ray photoelectron spectroscopy.
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4.3 Simulated Structures

The optimised structures for the nanoparticle-CNT complexes with a dopant

nitrogen atom bonding directly to the nanoparticle (“Layer 1”) are shown in

Figure 4.1. The bond lengths at the interface are not strongly affected by the

introduction of the nitrogen dopant, which is expected given the similar sizes of

the nitrogen and carbon atoms. In all cases, the Co-N bond is slightly longer

than Co-C (∼1%), while the C-N bond is slightly shorter than the C-C bond

(∼2%). To simulate continued growth of a CNT after introduction of a dopant

atom, we move the nitrogen atom away from the interfaces to Layers 2, 3 and 4 as

indicated in Figure 4.1 and re-optimise the geometry of the structure, calculating

the binding energy in each case.

Figure 4.1: Structures of the (3,3) and (5,0) nanotubes bound to a Co13 metal
cluster and the (5,5) and (10,0) nanotubes bound to a Co55 metal cluster with a
nitrogen atom substituting a carbon atom in Layer 1 in each case. Layer 2, Layer
3 and Layer 4 dopant positions are as indicated. The Co atoms are coloured blue,
C grey, H white and N orange.

The bonds between the CNT and the nanoparticle are highly directional. The

C atoms at the CNT edge are typically close to two Co atoms, one is below the

C atom at a similar angle to C in the next CNT layer if the CNT were continued
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instead of terminating at the metal nanoparticle and one is behind the C atom

inside the CNT. However C atoms at the CNT edge bond only to the atom below

them in the nanoparticle and not to the Co atom behind them, even though the

distance from the CNT edge to both Co atoms is similar. This is confirmed using

the electron localisation function (ELF - described in detail in Section 3.8). An

ELF of 1 corresponds to perfect localisation, while an ELF of 0.5 corresponds

to electron-gas-like pair probability. A high ELF value therefore corresponds to

localised electrons, such as those in covalent bonds and electron lone pairs.

Figure 4.2: 0.7 isosurfaces (in yellow) of the ELF, indicating regions of localised
electrons. From Left to Right: (5,0)-complex with N in Layer 1, (5,0)-complex
with N in Layer 2, (3,3)-complex with N in Layer 1 and (3,3)-complex with N in
Layer 3. The Co atoms are coloured blue, C grey, H white and N orange.

The 0.7 isosurface of the ELF for the (5,0)- and (3,3)-complexes are shown

in Figure 4.2. It is clear that each interface CNT atom bonds covalently to the

nanoparticle via a single bond to the Co atom below it. Thus there are 5 CNT-

Co bonds at the (5,0)-complex interface, 6 at the (3,3)-complex interface and 10

bonds at the (10,0)- and (5,5)-complex interfaces, as discussed in the preceding

section. The nitrogen lone pairs in all cases are directed outward from the CNT,

which is as expected; due to the curvature of the CNT, this position minimises

the repulsion between the electron lone pair and the electrons in the C-N/Co-N

bonds.
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4.4 Binding Energies

The binding strength of a CNT to a metal catalyst has previously been shown

to be of extreme importance to successful catalysis and CNT growth [17–20, 30].

If this binding strength is too low growth will not occur, while if the binding is

too strong carbon-carbon bond formation is less favourable and metal carbide

formation occurs. We calculate the dissociation energies of N-doped CNT-metal

complexes and thus calculate the binding energy ∆E per bond.

n∆E = Ecomp − (Ecluster + ECNT ) (4.1)

where Ecomp is the total energy of the complex, Ecluster is the total energy of

the isolated metal nanoparticle, ECNT is the total energy of the isolated CNT

fragment and n is the number of CNT-cluster bonds at the interface, which is

5 for the (5,0)-complex, 6 for the (3,3)-complex and 10 for both the (10,0)- and

(5,5)-complex, as discussed. We will compare these values to those previously

reported in the literature for the undoped complexes.

In most cases the introduction of the nitrogen dopant in Layers 2-4 does not

strongly affect the strength of the CNT-nanoparticle interaction; once the nitro-

gen dopant no longer bonds to the nanoparticle surface, it has minimal effect

on the metal-CNT interface. However, in all Layer 1 cases the ∆E values are

consistently less favourable than the equivalent undoped cases, which suggests

that the metal-CNT interaction is in fact weakened by incorporation of nitrogen

at the interface. This results from using the calculation of binding energies - the

energy differences between the complexed nanotube and the isolated nanotube

and cluster fragments i.e. dissociation energies - as a measure for bond strength.

Consequently, any differences in the stabilisation of the individual tube and clus-

ter fragments is also necessarily included in the calculated ∆E. Each sequence

of nitrogen doped structures differs only in the position of the nitrogen atom and
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Table 4.1: Total energies for all cobalt nanoparticle/CNT complexes and the
corresponding unbound tube fragments with nitrogen replacing one carbon atom
in Layer 1-4 (see Figure 4.1) and CNT binding energies ∆E. The total energy of
the Co13 cluster and Co55 clusters are -66.90 eV and -329.09 eV respectively. The
“Undoped” data are reproduced from Larsson et al [18].

Co13-(3,3) Co13-(5,0)
ECNT (eV) Ecomp (eV) ∆E (eV) ECNT (eV) Ecomp (eV) ∆E(eV)

Layer 1 -326.55 -403.86 -1.74 -264.46 -345.57 -2.84
Layer 2 -324.58 -403.24 -1.96 -263.00 -345.24 -3.07
Layer 3 -324.62 -402.99 -1.91 -262.87 -345.19 -3.08
Layer 4 -324.66 -403.05 -1.91 -262.69 -345.35 -3.15
Undoped -326.32 -404.19 -1.87 -264.27 -346.21 -3.02

Co55-(5,5) Co55-(10,0)
ECNT (eV) Ecomp (eV) ∆E (eV) ECNT (eV) Ecomp (eV) ∆E(eV)

Layer 1 -558.69 -904.44 -1.67 -548.61 -905.13 -2.74
Layer 2 -556.82 -903.42 -1.75 -546.91 -904.42 -2.84
Layer 3 -556.78 -903.57 -1.77 -545.47 -904.07 -2.95
Layer 4 -556.73 -903.35 -1.75 -546.37 -904.20 -2.87
Undoped -558.39 -905.07 -1.76 -549.53 -905.35 -2.67

the total energies of the complexes Ecomp can be directly compared for a given

chirality in this case. As seen in Ecomp, the incorporation of nitrogen at the in-

terface strengthens the metal-CNT interaction; the total energy of the Layer 1

complexes are consistently lower than the corresponding Layer 2-4 energies. The

Layer 1 complex is 0.62 eV lower in energy for the (3,3)-complex and 0.33 eV,

1.12 eV and 0.71 eV lower for the (5,0)-, (5,5)- and (10,0)-complexes, respectively.

In the case of the Layer 1 ∆E, the stronger binding in the complexes is

counteracted by a large fragment stabilisation of the Layer 1 dissociated tubes

(Figure 4.3), where the nitrogen atom bonds only to two other atoms, as opposed

to three other atoms in the Layers 2-4 nanotube fragments. The Layer 1 total

energies for the nanotube fragment (ECNT ) are 1.97 eV, 1.46 eV, 1.87 eV and 1.70

eV lower than the corresponding Layer 2 fragments for (3,3), (5,0), (5,5) and (10,0)

nanotubes, respectively. The fragment stabilisation energies for the dissociated

nanotube fragments are larger than the decrease in the Layer 1 complex energies
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Figure 4.3: Energy levels showing the relative stabilities of nitrogen in Layer 1
compared to Layer 2 for the Co55-(5,5) complex (left) and the dissociated products
(right). The stabilisation of the dissociated products is much larger when nitrogen
is in Layer 1 than in Layer 2 which is due to the difference in the N-doped tube
fragment. This effect results in the smaller dissociation energy for Layer 1 even
though the CNT bonds more strongly in this case, which is evident in the total
energies of the complexes. Co atoms coloured blue, C grey, H white and N orange.

relative to Layer 2. Therefore, while the Layer 1 complex is lower in energy

than the Layer 2 complex, the dissociated Layer 1 products are lower still in

energy than those for Layer 2. These differences in relative energies are shown

schematically in Figure 4.3 for the case of Co55-(5,5). Compared to Layer 2,

the “product energy stabilisation” is always larger than the “complex energy

stabilisation” for nitrogen in Layer 1 due to the difference in the environment

of the nitrogen in the tube fragments. The nitrogen in Layer 1 is in a very

stable environment on the tube edge bonded to only two other atoms, i.e. a

pyridine-like environment. Thus a nitrogen atom on the tube edge decreases the

dissociation energy, which is reflected in the calculated binding energies. The

strongest binding of the CNT to the metal therefore occurs when nitrogen bonds

directly to the metal, as reflected in the Ecomp values in Table 4.1.
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4.5 Analysis of the Growth Mechanism

Typical SWNT and MWNT growth can be conveniently divided into three dis-

tinct stages. During the first stage graphitic carbon “flakes” form a cap on the

surface of the catalyst which increases the stability of the nanoparticle surface

atoms. Growth enters stage two with elongation of the catalyst due to this stabil-

isation in conjunction with deposition of carbon at the cap edge. As the nanopar-

ticle elongates, metal-metal bonds are lost in favour of more and more surface

atoms, which are stabilised by the cap and sidewalls of the nascent CNT. At some

point, the stabilisation of the metal surface atoms by the innermost carbon layer

no longer counteracts the increase in surface energy of the elongated nanoparticle

and the nanoparticle contracts to a more stable spherical shape. After this con-

traction, growth enters a third phase with carbon from the nanoparticle added to

the nanotube growth edge and the growth of a typical hollow CNT occurs. The

CNT growth mechanism is illustrated schematically in Figure 4.4. When nitro-

gen is introduced during CNT growth, this third growth phase is not attained.

Instead, the first two stages of growth continually repeat leading to formation of

a bamboo CNT.

High resolution transmission electron microscopy (HRTEM) images (Figure

4.5) show that nitrogen-doped CNTs adopt a bamboo structure. The number

of carbon layers in the bamboo CNT chambers differ through the chamber -

at the chamber tip there are a larger number of layers than at the base. The

bamboo CNTs imaged have 12 carbon layers in the tip, 20 carbon layers in the

sidewall near the tip while at the base of the chamber there are typically 7 carbon

layers. Previous in situ TEM studies have shown the the number of layers in

a nanotube structure is related to the time the metal catalyst nanoparticle is

resident at that position in the structure [21, 31]. It is the bamboo CNT structure

that forms instead of the more crystalline MWNT structure when nitrogen is

introduced at the growth stage due to the greater binding of nitrogen doped
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Figure 4.4: Schematic of CNT growth process. In stage one of CNT growth
graphitic carbon nucleates on the catalyst surface. Stage two follows with defor-
mation of the nanoparticle catalyst. Stage two growth repeats continually when
“pin-pointing” occurs at the catalyst, resulting in BCNT growth. In the absence
of “pin-pointing” growth enters stage three and SWNT/MWNT growth results.

graphitic structures to the nanoparticle catalyst than undoped structures. As

discussed in the previous section, the nitrogen-cobalt bond is stronger than the

carbon-cobalt bond. Nitrogen-cobalt bonds consequently cause local pinning of

the nanoparticle catalyst to the interior of the nanotube, which increases residency

time and ultimately leads to compartment and bamboo CNT formation.

Due to the CNT growth mechanism, the tip of the bamboo CNT is formed

before the sidewalls, resulting in longer residency times at the tip and hence

the disparity in the number of carbon layers through the typical bamboo CNT

chamber. The chamber sidewalls are thicker near the tip of the chamber than

the base because the deformation of the catalyst during growth means that the

sidewalls near the tip receive more carbon. Each subsequent chamber tip has

the same thickness as the tip of the first bamboo CNT chamber, which strongly

suggests that stage two CNT growth involving catalyst elongation/relaxation
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Figure 4.5: TEM images of N-doped bamboo-structured carbon nanotubes. Fig-
ure take from ref. [29].

repeats at regular intervals when a bamboo CNT forms. The third stage of CNT

growth which produces the more typical SWNTs and MWNTs does not occur

when nitrogen is incorporated in the CNT due to pinning at the catalyst surface.

The bamboo structure typical of nitrogen doped CNTs is also seen when alloy

catalysts are employed in CNT growth [19, 20]. Use of alloy catalysts also alters

the binding energy at the metal-CNT interface compared to use of a homogeneous

catalyst. The commonality shared between nitrogen doped CNT growth and

growth of CNTs from alloy catalysts is non-uniform nanoparticle-nanotube bond

strengths. For nitrogen doped CNT growth the increase in ∆E is attributable

to nitrogen; the nitrogen-metal bond is stronger than the carbon-metal bond.

Similarly, when alloy catalysts are used, the binding strength is not uniform at the

catalyst-CNT interface due to carbon bonding to different elements, e.g. stronger

binding to Mo in Cu/Mo catalysts. The formation of bamboo CNTs has been

observed when nitrogen is incorporated into the nanotube with growth conditions

that produce SWNTs in the absence of nitrogen. The binding energies discussed

show that nitrogen acts as a local pin-pointing agent between the nanoparticle

and the CNT during growth and it is this effect which is directly responsible for

75



4. Nitrogen Doped Carbon Nanotube Growth
Mechanism 4.6 Conclusion

the bamboo CNT stucture of nitrogen doped CNTs.

4.6 Conclusion

In this chapter, theory and experiment are combined to offer an explanation of

the bamboo CNT growth mechanism. DFT calculations show that the nitrogen-

cobalt bond is stronger than the carbon-cobalt bond. This difference in bond

strength results in points of increased interaction strength between the growing

CNT and the nanoparticle, which results in elongation of the nanoparticle during

growth. Repeated cycles of elongation and contraction of the nanoparticle are a

direct result of the “pin-pointing” by nitrogen at the catalyst surface and are pro-

posed as the cause of the experimentally observed bamboo structure of nitrogen

doped CNTs [29].
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Chapter 5

Aluminium-Carbon Nanotube
Interface Electronic Properties:
The Effect of Dopants

5.1 Introduction

In order for CNT potential applications to be realised, CNTs must be contacted

to metals and so it is imperative that the metal-CNT contact is understood at

a fundamental level. There are two major configurations into which CNT-metal

contacts may be categorised: side contact and end contact. In the side contact

configuration, the CNT side wall makes contact with the metal [8], while the

CNT is terminated by the metal in the end contact configuration [12]. In this

work, focus is placed on the end contact configuration.

The metal used in the contact profoundly affects the nature of the contact

formed, with Ohmic or Schottky contacts formed depending on the metal used

[13]. The contrasting behaviours resulting from contact with different metals

is presumed to be caused by differences in the metal work function φm; Ohmic

contacts result when high φm metals are used conversely, a low φm is associated

with Schottky contacts [14]. The major advantage of the end contact configura-

tion is that it enables stronger bonding between the CNT and metal, which has
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been implicated as the source of the better transport behaviour in Pd than Au,

despite their identical φm [15]. While consideration of φm has some success as

a simple prediction of contact behaviour, it clearly cannot account for the more

subtle aspects of the contact such as the interface structure. Early tight binding

molecular dynamics studies indicate the importance of understanding the detailed

CNT-interface geometry by showing the position on the CNT where Ni-C bonds

formed dramatically impacted the CNT properties [16, 17].

The Al-CNT contact has been previously studied theoretically by Bai [18],

Okada [19], Odbadrakh [20], Vitale [21] and Gao [22]. The Okada study consid-

ers a side contact configuration, while Bai considers side and end-type contacts.

The works of Odbadrakh, Vitale and Gao study the end contact configuration

exclusively, using structures most similar to those considered in this work. In par-

ticular, these studies highlight the importance of considering the metal induced

gap states (MIGS) or regions of finite DOS in the gap of the isolated semicon-

ductor which are induced upon contact to a metal. If the device region used in

calculations is too short, semi-conducting CNTs appear metallic due to slowly

decaying MIGS.

At this time it is not possible to selectively grow CNTs of a particular chiral-

ity and hence with specific electronic properties; despite extensive research efforts

only preferential growth of certain chiralities has been achieved [23–25]. Doping

CNTs offers an alternative path towards control of electronic properties. Sub-

stitional doping by boron or nitrogen results in metallic CNTs [26–29], but also

introduces additional problems. The electronic properties of intrinsically metallic

CNTs degrade on incorportation of substitutional dopants [30, 31] and in addition

it is difficult to precisely control the level of dopants within the CNT and dopant

atom fluctuations [32] will necessarily impact on achieving reproducible electronic

properties. As CNTs are hollow, it is also possible to incorporate dopants within

the CNT i.e. endohedral doping. Endohedral dopants such as fullerenes [33],
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metallocenes [34] and organic molecules [33, 35–39] have been studied in the lit-

erature, with significant effects found for the electronic properties of the doped

CNTs. Endohedral dopant molecules with large electron affinities induce p-type

doping while those with small ionisation potentials result in n-type doping of the

CNT.

This work focuses on end contacts between aluminium and doped (16,0)-

CNTs, previous studies of the end contact configuration consider smaller diam-

eter, less realisitic CNTs. Idealised nitrogen and boron doped CNTs (i.e. we

assume no additional defects) are considered along with the endohedral dopant

tetrathiafulvalene (TTF) which is known to induce n-type doping in CNTs and to

be air stable as an endohedral dopant [38]. To the best of our knowledge, doped

CNTs have not before been studied theorectically in conjunction with metal con-

tacts. In each case, we study the system under zero and finite source-drain bias

using first principles non-equilibrium Green’s function (NEGF) calculations.

5.2 Methods

Density functional theory (DFT) and NEGF [40] as implemented by the software

package OpenMX [41] are used to calculate the transport characteristics of the

Al-CNT interface. All calculations use the PBE [42] formulation of the gener-

alised gradient approximation (GGA) exchange and correlation functional, along

with normconserving pseudopotentials [43]. The Al-CNT interface is modelled

by bonding a (16,0)-CNT (pristine; substitutionally doped with N and B; and

endohedrally doped with TTF) to a (111) Al slab. In each case full structural

optimisations are carried out for the interfaces (with the exception of the Al back

plane, which is frozen) and for the Al and CNT lead units until all forces are less

than 5x10−4 Hartree/Bohr. The OpenMX code employs a linear combination

of pseudo atom orbitals method [44, 45], the pseudoatomic orbitals chosen for
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geometry optimisations are as stated in Table 5.1. An energy cut-off of 150 Ry

is used for numeric integration and supercells were chosen such that there was a

minimum vacuum of 1 nm in all non-periodic directions.

Table 5.1: Basis sets used for geometry optimisations and NEGF calculations.
The first part of the basis set notation, i.e. the number, is the cut-off radius of
the PAO in Bohr, the second part indicates the number of orbitals used for the
valence electrons. For example, S 6.0-s2p2 implies a cut-off of 6.0 Bohr and a
total of 8 basis functions (2 s functions and 6 p functions)

Element Geometry NEGF
H 4.0-s2 4.0 s2
B 4.5-s2p2 4.5-s1p1
C 4.5-s2p2 4.5-s2p1
N 4.5-s2p2 4.5-s1p1
Al 6.0-s2p3 6.0-s1p2
S 6.0-s2p2 6.0-s2p2

The NEGF method is used to generate the transport characteristics. The ba-

sis sets used in the NEGF calculations are as given in Table 5.1. A 128x128x128

grid is used for numeric integration and the cell size is again chosen to have 1

nm of vacuum, in this case in all directions perpendicular to the transport direc-

tion. The calculations are considered converged when the norm of the residual

density matrix was below at least 1x10−4 and ideally below 1x10−6, although this

stricter convergence criterium has negligible impact on the electronic properties.

Transmission curves are obtained as follows: first, band structure calculations

are performed for the left (Al) and right (CNT) leads using the same basis sets

to be employed in the NEGF calculations to generate the lead Hamiltonians;

next NEGF calculations are performed for structures consisting of these leads

and a central scattering region which together form the interface; finally NEGF

results are used to generate the transmission with the TranMain code. As well

as calculating transmission at zero bias, we calculate the transmission at finite

source-drain biases, with the bias applied to the right (CNT) electrode. In the

case of the pristine CNT, a full NEGF calculation is performed in steps of 0.1
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V between -1.0 V and 1.0 V. We then use the OpenMX interpolation scheme

between 0 bias and 1 V and -1 V to generate the other data points which allows

us to assess the applicability of the interpolation scheme in general for the study

of the Al-CNT systems. For all other Al-CNT interfaces, full NEGF calculations

are performed for 0 bias, 1 V and -1 V with interpolation used to generate ad-

ditional data points. In each case we check the interpolation by performing full

NEGF calculations for two additional data points.

5.3 Electronic Structure of the CNT leads

The structures of the CNT lead unit principle layers are shown in Figure 5.1.

The pristine CNT lead consists of single repeat unit of the (16,0)-CNT unit

cell containing 64 carbon atoms. The B- and N-doped leads consist of three

repeat units of the pristine CNT lead cell with two substitutional dopants with

the same doping profile used in both dopant cases. The substitutional dopant

concentration is 1 at. %, a relatively low level for N- and B-dopants in CNTs,

which range up to 20 at. % experimentally. The TTF@CNT structure contains a

TTF molecule per unit cell of the (16,0)-CNT; this dopant concentration has been

previously reported by Lu et al [37] to be necessary for doping of the CNT by the

encapsulated TTF to occur. The TTF@CNT lead used for transport calculations

consists of three such unit cells. Mulliken populations analysis shows that TTF

donates electronic charge to the CNT, which is anticipated for an endohedral

dopant with a small ionisation potential. Encapsulated TTF is found to have a

net positive charge of 0.09|e| hence TTF donates 0.09 electrons to the CNT in

reasonable agreement with the value of 0.12|e| estimated by Lu [37], well within

the error inherent in Mulliken population analysis.

The band structures of the CNT-leads are given in Figure 5.2. The pristine

(16,0)-CNT has a band gap of ∼0.5 eV, which is consistent with literature DFT
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Figure 5.1: Optimised (16,0)-CNT Lead structures (carbon is grey, hydrogen is
white, boron is pink and sulfur is yellow). (a) Side view of pristine (16,0)-CNT
lead. (b) Side view of B-CNT lead (an identical dopant profile is used in the
N-doped lead). Side (c) and top (d) view of TTF@CNT lead.

values for this chirality [46]. Already, at the relatively low substitutional doping

concentration for CNTs used in this study, the B-doped and N-doped band struc-

tures clearly show that the CNT is metallic, with bands crossing the Fermi level.

The gap of the pristine CNT persists but is narrowed by 0.1 eV and shifted to

higher (lower) energies by ∼0.5 eV for B-(N-)dopants. These results are consistent

with previous literature reports [30, 47, 48]. The band structure of TTF@CNT

is consistent with n-type doping of the CNT, the flat dopant band meets the

conduction band of the CNT close to the Fermi level. This flat dopant band con-

trasts greatly with the curved bands seen for N and B dopants and implies that

the TTF states remain very localised and there is little interaction between the

dopant molecules. This difference is unsurprising, given N and B and incorpo-
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Figure 5.2: Band structures for the pristine and doped (16,0)-CNT lead struc-
tures. The Fermi level is at 0 eV in all cases.

rated into the CNT sidewall, while the endohedral dopants are merely physisorbed

inside the CNT. The study by Lu et al finds a relatively curved dopant band for

TTF@CNT when there is one CNT unit cell for each TTF molecules and con-

versely finds an almost flat band when there are two CNT unit cells for each TTF

molecule. The origin of this discrepancy in band structure is not known.

While the introduction of N and B in the CNT lattice clearly results in heavy

doping of the CNTs as is seen in the band structures in Figure 5.2, these dopant

atoms also act as defects in the CNT lattice. Before contacting these CNTs to

Al, we assess the scattering which results from these defect atoms by considering

the transmission of the periodic CNT structures, which are shown in Figure

5.3. At positive energies, a considerable deviation from the characteristic CNT

stepped transmission is seen for the N-doped CNT and similarly at negative

energies a deviation is seen for the B-doped CNT, therefore significant electron
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Figure 5.3: Transmission of the doped CNTs. (a) The Fermi level is energy is
0 eV for all CNTs, the TTF@CNT curve is only shifted by ∼0.35 eV relative
to the pristine CNT and has been omitted for clarity. (b) The transmissions of
the doped CNTs have been shifted to coincide with the transmission gap of the
pristine CNT, to emphasize the scattering relative to the pristine CNT.

scattering occurs when there are N and B dopants in the CNT lattice, particularly

in the conduction band for N-doping and in the valence band for B-doping. We

have a low dopant concentration relative to many experimentally generated N-

and B-doped CNTs and so an even greater scattering would be anticipated for

such CNTs. In the case of TTF@CNT the transmission is only shifted relative

to the pristine CNT (as would be expected from the band structures) without

significant scattering. The preservation of the ideal CNT lattice and resultant

lack of scattering is one of the primary advantages endohedral doping has over

substitutional doping.

5.4 Al-CNT Interfaces

The structure used in the NEGF calculations is shown in Figure 5.4 for the

interface between Al and the pristine CNT. A similar structure is used for the

calculations involving the doped leads. In the case of the pristine CNT there

are a total of 7 CNT repeat units in the extended scattering region; see Figure

3.2. We find significant metal induced gap states (MIGS) - states in the band

gap of a semiconductor resulting from contact to a metal - in the CNT repeat
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Figure 5.4: Structure of the pristine Al-CNT interface (n=4), labelled as described
in Figure 3.2. An adapted version of this structure is used for the interfaces
between Al and the doped CNTs.

unit which bonds to the Al, labelled as “Repeat 1” in the inset of Figure 5.5

(a). The MIGS are found to drop off in an exponential fashion in Figure 5.5

(a), with low MIGS for repeat unit 7 (“Repeat 7”). This result is consistent

with that previously reported by Odbadrakh for the interface between (8,0)-CNT

and Al metal [20] and highlights the importance of considering sufficiently large

structures in NEGF calculations of metal-CNT interfaces. The study of Al-CNT

and Pd-CNT interfaces by Gao et al [22] used only two CNT units between the

metal leads, consequently, although the semi-conducting (10,0)-CNT was studied,

they found no gap in transmission and an Ohmic contact. A similar effect is seen

in the case of the doped CNT-Al interfaces, except that the CNT gap is displaced

from the Fermi energy, as already seen for the doped CNT lead band structures.

Figure 5.5 (b) plots the average charge found on the atoms in the layers of

the structure in Figure 5.4 by Mulliken population analysis, clearly charge is

transferred from the Al nanowire to the CNT, i.e. a surface dipole forms, with

a total of 2.9 electrons donated to the CNT. The charge in the CNT layers far

from the interface oscillate and there is no net charge transfer to the CNT outside

of the carbon layer involved in bonding at the interface, this result is consistent
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Figure 5.5: (a): Decay in CNT gap states with distance from the interface for the
pristine CNT. (inset): DOS of each CNT repeat unit in the scattering region of
the pristine CNT, notice the reappearance of the CNT gap. (b): Average Mulliken
charge per layer for the Al-CNT interface. Electronic charge is transfered from
Al to C at the interface.
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with that previously reported for the interface between Al and a (10,0)-CNT [21].

A similar direction of charge transfer is found for the interfaces between Al and

the doped CNT structures, with a transfer of 2.5e, 1.6e and 1.5e found for the

B-doped CNT, N-doped CNT and TTF@CNT respectively.

Figure 5.6: Transmission of Al-Pristine CNT interface for bias voltages for se-
lective negative (a) and positive (b) source-drain bias voltages. The curves have
been displaced along the y-axis for clarity.

In Figure 5.6, the transmission for the interface between the pristine CNT

and Al at zero bias and selected negative and postive source drain biases is given,

with the bias applied to the right (CNT) electrode. The zero-bias transmission

matches up with the DOS plotted in the inset of Figure 5.5 (a) as is to be expected,

since if there is zero DOS, transmission cannot occur. The transmission is lower

than that of the periodic CNT (Figure 5.3) implying that significant electron

scattering takes place at the Al-CNT interface. The primary affect of applying

a source drain bias is to shift the obtained transmission, as shown in Figure

5.6. A negative applied bias pushes the Fermi energy above the transmission

gap associated with the CNT, while a positive applied bias has the opposite

effect, with the Fermi energy moving below the region of zero transmission. As

described in Section 3.9, the current is obtained by integrating the transmission

over a voltage bias window. At zero applied bias, there is no current. As a

negative bias is applied, the transmission at the Fermi energy becomes non-zero

for -0.3 V as seen in Figure 5.6 (a), therefore a current is to be expected at such a
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bias. If instead a positive bias is applied, the transmission is still zero for 0.3 V as

seen in Figure 5.6 (b), but is clearly non-zero for an applied bias of 0.6 V, thus we

can anticipate that the current will become non-zero at biases larger than 0.3 V

and an asymmetric current-volatge (IV) curve is hence expected for the contact

between the pristine CNT and Al.

Figure 5.7: (a) Comparison of NEGF and OpenMX interpolation scheme for the
IV characteristics at the interface of pristine CNT and Al. (b) Comparison of
NEGF and interpolated transmission for an applied bias of 0.9 V. (c) Log scale
plot of IV.

The IV curve we obtain for the pristine CNT-Al contact is given in Figure

5.7 (a). The IV curve is consistent with our analysis of the transmission results.

There is marked asymmetry between current at positive and negative source drain

biases and diode-like behaviour caused by the position of the Fermi energy being

close to the CNT conduction band edge after contact is made with Al. We also in-

clude the IV curve obtained by interpolating between the zero bias result and 1.0

and -1.0 results, showing the excellent agreement between these two techniques
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Figure 5.8: (a) Transmission of the pristine, N-doped and TTF@CNT contacts
with Al. For clarty, the transmissions of the doped interfaces have been shifted
along the y-axis. (b) Transmission of the pristine and B-doped CNT interfaces.
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for calculating IV curves. Figure 5.7 (b) compares the transmission for 0.9 V bias

(among the IV points showing poorest agreement between NEGF and interpola-

tion) and again see very good agreement between the NEGF and interpolation

scheme results. We consider the interpolated results to be sufficiently accurate

to be employed for generating the IV curves of the interfaces between the doped

CNTs and Al, with checks on the interpolated IV curve performed as described in

the methods section. Odbadrakh and co-workers [20] have previously calculated

the IV curve at postive bias for the Al/(8,0)-CNT contact and also found currents

of the order of µA.

Figure 5.8 (a) and (b) plot the zero bias transmission for the pristine and

doped CNT interfaces with Al. The shifting and narrowing of the CNT gap seen

on doping with N and B is preserved when the CNT is contacted to metal. The

transmission of the N- and B-doped contacts with Al is generally less than that

of the pristine CNT; the scattering which results from substitutional dopants has

an impact and is visible in the transmission curve even after scattering due to a

metal-CNT interface occurs. For example, there is a sharp dip in transmission

for the B-doped CNT interface at ∼-0.9 eV which corresponds to a similar dip

seen for the B-doped CNT by itself (see Figure 5.3 (a)), a similar sharp drop

in transmission which can be attributed to scattering at the dopant atom can

be seen at ∼0.7 eV in the case of the N-doped CNT. The dopant “defect” will

clearly have an impact on the IV characteristics of the interfaces studied. In

the case of TTF, the transmission closely follows the transmission of the pristine

CNT-Al interface, again illustrating that the endohedral dopant does not cause

significant scattering because it does not disrupt the CNT lattice in the way the

substitutional dopants do. As discussed for the CNT lead structures, the primary

effect of doping with TTF is to shift the Fermi level by ∼ 0.3 eV with respect to

the pristine CNT.

The current-voltage characteristics of the pristine and doped CNT-Al inter-
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Figure 5.9: Current-Voltage graph of the pristine and doped Al-CNT interfaces.

faces are shown in Figure 5.9. As already discussed, there is no current through

the pristine CNT-Al interface at low source-drain biases and there is an asymmet-

ric IV behaviour due to the Fermi level aligning closer to the conduction band of

the CNT. This contrasts greatly with the behaviour of the interfaces between the

metallic B- and N-doped CNTs and Al. Similar IV curves are obtained for both

substitutional dopants, with a linear IV at low bias, indicating an Ohmic contact

is formed as anticipated by the non-zero DOS at the Fermi level for these cases.

At larger negative biases, the transmission gap due to the CNT band gap is en-

countered for the B-doped interface which results in a flattening of the IV curve.

A similar behaviour is seen for the N-doped interface, but this time at positive

bias voltages. However, a flattening of the IV curve is also seen at biases which

do not encounter the transmission gap in Figure 5.8 for both B- and N-doped

CNTs. We attribute this flattening of the IV curve at positive(negative) biases

for B(N) to scattering at the substitutional dopant atoms. At low bias voltages,
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doped CNTs may offer a route to exclusively metallic CNTs and Ohmic metal-

CNT contacts. In this work we find that the (16,0)-CNT becomes metallic when

substitutionally doped, additional investigation is needed to ascertain the con-

ducting behaviour of doped armchair and chiral CNTs and the nature of contacts

between metal and such CNTs to confirm this behaviour holds in general.

Figure 5.10: (a) Comparison of NEGF and linear response IV curves at low
bias for the Al-B-doped CNT interface. (b) Linear response IV curve for Al-
TTF@CNT interface.

Figure 5.10 (a) compares the IV curve obtained from NEGF calculations and

a linear response method which uses the zero-bias transmission only for the Al-

B-doped CNT interface and shows that at low bias voltages there is a reasonable

agreement between these results particularly for negative bias voltages. In Figure

5.10 (b), the linear response IV curve for the Al-TTF@CNT interface obtained

from the zero-bias transmission results of Figure 5.8 (a) is shown. At very low

biases the IV curve is linear and at negative applied bias this linearity is main-

tained. However, at a small positive bias of 0.1 V, the IV curve begins to flatten

as the CNT transmission gap is encountered in an analogous fashion to the inter-

face with the N-doped CNT, though at a lower bias (see Figures 5.8 (a) and 5.9).

As already discussed, endohedral TTF dopes the CNT with minimal scattering,

therefore it can also be anticipated that even at higher applied negative biases,

the IV will remain linear. Thus, the contact has a diode-like behaviour. At pos-

tive applied biases, the CNT gap is encountered at low bias (< 200 mV) and
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the current saturates at ∼ 8 µA, while at negative biases a linear current-voltage

relationship is maintained.

5.5 Conclusion

Substitutional doping by boron and nitrogen at concentrations of 1 at. % makes

the (16,0)-CNT metallic. Boron and nitrogen act as defects in the CNT lattice

resulting in a reduction in transmission relative to the undoped CNT whereas

endohedral doping of the CNT does not cause significant scattering compared

to the pristine CNT. The interface between the CNTs and Al is also a source of

significant scattering. A slightly asymmetric IV curve occurs for the Al-contacted

undoped CNT with little current at low source-drain biases. Similar IV charac-

teristics occur for Al-contacted B- and N-doped CNTs, with a linear IV occurring

at low bias, indicative of an Ohmic contact, however at larger biases the IV

curve becomes non-linear because the shifted CNT gap is encountered and due

to scattering off the B/N atoms in the CNT. A linear IV is also obtained for

the Al contacted TTF@CNT for low biases, however due to the position of the

Fermi level, the CNT gap is encoutered at small positive biases and a diode-like

behaviour is anticipated.
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Chapter 6

Effect of Structure on Electronic
Properties of the Iron-Carbon
Nanotube Interface

6.1 Introduction

A detailed introduction to the current literature of metal-CNT interfaces is given

in the Chapter 5 and in Section 2.8 of Chapter 2 to which the reader is referred for

an in depth discussion. In this study we consider end contacts between the semi-

conducting (10,0)-CNT and several different iron electrode structures. Previous

studies have considered the CNT embedded in the metal contact [1], we take a

different approach and instead contact the CNT to a raised “bump” on the metal

surface. We specifically choose iron as the metal contact because it is a commonly

used CNT growth catalyst and such a configuration has previously been assessed

experimentally for the frequently used growth catalyst Ni [2]. Additionally, we

consider the B-doped (10,0)-CNT interface, again in end contact with iron metal.

6.2 Methods

Density functional theory (DFT) and the non-equilibrium Green function

(NEGF) [3] method as implemented by the software package OpenMX [4] are
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used to calculate the transport characteristics of the Fe-CNT interface. All cal-

culations use the PBE [5] formulation of the generalised gradient approximation

(GGA) exchange and correlation functional, along with norm conserving pseu-

dopotentials [6]. We model the Fe-CNT interface by bonding directly a (10,0)

CNT (pristine and boron doped (B-doped)) to an Fe slab. The Fe slabs consists

of 7x7 (111) Fe, with an additional raised Fe “dock”, used to sample varying con-

tact configurations. In addition we consider two model systems: an iron nanowire

and a small diameter CNT contacted to an iron nanowire. Full structural opti-

misations are carried out for all interfaces and the Fe and CNT leads, with the

exception of Fe back plane, which is frozen for all interfaces until all forces are less

than 5x10−4 Hartree/Bohr. The OpenMX code employs a linear combination of

pseudoatomic orbitals method [7, 8], the pseudoatomic orbitals chosen for geom-

etry optimisations are Fe6.0-s2p2d2 for iron, C4.5-s2p2 for carbon, B4.5s2p2 for

boron and H4.0s2 for hydrogen. An energy cut-off of 150 Ry is used for numerical

integration and supercells were chosen such that there was a minimum vacuum

of 1 nm in all non-periodic directions.

The NEGF method is used to generate the transport characteristics. The

basis sets used are Fe6.0-s2p2d1 for iron and C4.5-s2p1 for carbon, with B as

before. A 128x128x128 grid is used for the numerical integration and the cell

size is chosen such that there was 1 nm of vacuum in all directions perpendicular

to the transport direction. The calculations are considered converged when the

norm of the residual density matrix was below at least 1x10−4 and ideally below

1x10−6, although this stricter convergence criterium has negligible impact on the

electronic properties. Transmission curves are obtained as follows, first, band

structure calculations are performed for the left (Fe) and right (CNT) leads,

generating the lead Hamiltonians. Next, the NEGF calculations are performed

for structures consisting of theses leads and a central scattering region describing

the interface. Finally NEGF results are used to generate the transmission with
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the TranMain code. Additionally, we use the linear response method (assessed in

Chapter 5) to generate IV characteristics for the Fe-B-doped CNT interface.

6.3 Model Systems

It is essential that the effect of spin polarisation, particularly in the vicinity of the

Fermi level, on calculations involving iron are understood before drawing conclu-

sions from closed shell calculations. Open-shell calculations greatly increase the

cost of calculations, both in terms of memory requirements and computational

time. Two model systems - a 6 Å diameter iron nanowire (FeNW) and the inter-

face between a (5,0)-CNT and FeNW - are considered to study the importance

of spin polarisation on the calculation of electron transport.

6.3.1 Iron Nanowire

Figure 6.1: Side (left) and top (right) view of the FeNW structure, the Fe-Lead
structure is equivalent to L0 and the side view is labelled as in Figure 3.2

The FeNW structure is as illustrated in Figure 6.1. The FeNW-Lead structure

which is used in the SCF calculations contains 36 iron atoms, while the full FeNW,

used in NEGF calculations contains 3 FeNW-Lead repeat units consisting of 108

atoms. The band structures in Figure 6.2 show that the NW is metallic, as

expected. Low lying bands near -50 eV are due to the 3p orbitals of iron. The

full band structures indicate that the up and down spin bands of the open shell

103



6. Effect of Structure on Electronic Properties
of the Iron-Carbon Nanotube Interface 6.3 Model Systems

Figure 6.2: Band structure of open shell Fe Lead. (a) is the full band structure,
showing that the up and down spin are shifted relative to one another. (b) is the
band structure close to the Fermi level (0 eV), most bands crossing the Fermi
level are of one spin.

calculation are similar to the closed shell case, with the notable difference that

they are shifted with respect to each other. The band structures close to the

Fermi energy indicate that the up bands are shifted down with respect to the

closed shell case, while conversely the down bands are shifted to higher energy.

The result is that at the Fermi energy, the majority of the bands are of a single

spin in the open shell case.

Figure 6.3 shows the DOS close to the Fermi level for the FeNW-lead (SCF)

and Fe-NW (NEGF) for the closed shell calculation, the corresponding open shell

results are shown in Figure 6.4. The DOS resembles the band structure i.e. areas

with dense bands have high DOS and vice versa. The shift seen in the band

structures for open shell calculations is again seen in the DOS; the up DOS is

shifted down by around 1 eV relative to the closed shell DOS, while the down

DOS is conversely shifted up in energy by approximately the same amount. The

DOS shows a peak around -55 eV, which totals 216 electrons (not seen Figures 6.3

and 6.4 as focus is placed on the region about the Fermi level), the total number

of 3p electrons in the FeNW-lead confirming that the low lying bands are due to

the 3p electrons.

From test calculations using large basis sets up to Fe6.0-s3p3d3f2 and VASP
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Figure 6.3: DOS of closed shell FeNW-Lead (SCF) and Fe-NW (NEGF) around
the Fermi energy (0 eV). The NEGF DOS has been scaled to account for the
differing number of Fe atoms in FeNW and FeNW-lead the calculations.

plane wave results, a spin per Fe atom of 2.8-2.9 was anticipated. In the case

of the open shell FeNW-lead, we find an average spin of 2.85 (varying from 2.6

to 3.2) so in spite of restricted basis set size (s2p2d1), the spin is well described.

Again, in the spin polarised NEGF FeNW calculation, the Fe spin is well described

with an average spin of 2.86, ranging from 2.6 to 3.3. Obtaining NEGF results

(closed shell and polarised) with similar DOS to the SCF FeNW-lead proved

more difficult than had been anticipated. Initially, very different DOS results

were obtained for NEGF than in the lead calculations and in addition the Fe

spin was incorrect. Adjusting input parameters to increase the accuracy of the

calculation by increasing the grid size for numerical integration resulted in correct

spin for the spin polarised NEGF calculation and also good agreement in DOS

for the SCF and NEGF calculations. The most important input parameters in

OpenMX for controlling the accuracy of the calculation are “NEGF.NUM.Poles”
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Figure 6.4: (a) Total DOS for open shell Fe-Lead SCF and Fe-NW NEGF calcu-
lations. (b) Contribution to total DOS from each spin for both calculations. The
Fermi energy is at 0 eV and the NEGF DOS has been scaled to account for the
different number of atoms in the Lead and NW structures, which are calculated
using periodic boundary conditions and self-enegeries, respectively.
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and “scf.Ngrid” which control the number of poles in the calculation of the Fermi-

Dirac function and and the size of the numerical integration grid, respectively.

6.3.2 FeNW-(5,0)-CNT Interface

Figure 6.5: Structure of the (5,0)-FeNW scattering region, the labelling is as
explained in Figure 3.2. Fe is purple and C is grey.

The Fe-(5,0)-CNT interface provides a more realistic model of the Fe-(10,0)-

CNT interface we wish to study than the Fe-NW while still being computationally

tractable for both closed and open shell calculations. The pristine (5,0)-CNT

exhibits a vanishingly small band gap. This result is not unexpected as CNT

electronic properties contrary to the simple zone-folding picture which predicts

that the (5,0)-CNT should be a semi-conductor have previously been reported for

narrow diameter CNTs [9, 10]. The total DOS of the Fe-CNT interface is domi-

nated by iron and as a result closely resembles the DOS of the FeNW (compare

Figure 6.6 (a) with Figures 6.3 and 6.4). Spin polarisation of the CNT atoms

is negligible even at the interface, although up and down spin DOS do differ

slightly at the Fermi level for carbon bonded to iron. Far from the interface up

and down spin DOS are very similar and the open and closed shell DOS agree

closely (Figure 6.6 (b)). Transmission close to the Fermi level is relatively low for

both the open and closed shell cases (Figure 6.7) and is similar in both cases. In

addition the transmission results are dominated by the CNT. Figure 6.8 shows

the IV curves obtained using the linear response method for the closed and open
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Figure 6.6: (a) Total DOS for the (5,0)-FeNW system for polarised (open shell)
and unpolarised (closed shell) NEGF calculations. (b) DOS for the repeat unit
of the CNT furthest from the interface for the polarised and unpolarised case.
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Figure 6.7: Transmission of the (5,0)-FeNW system. (a) Transmission per spin
channel for closed and open shell calculations of the (5,0)-FeNW system. (b)
Total transmission for both open and closed shell calculations.
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shell calculations. There is good agreement between the closed and open shell

currents, with the closed shell current less than 40% larger. These results suggest

that, provided the iron DOS is larger than the CNT DOS close to the Fermi

level, closed shell calculations provide a reasonable approximation to open shell

transmission calculations in the vicinity of the Fermi level.

Figure 6.8: (Comparison of the IV curves obtained for the closed and open shell
(5,0)-FeNW using (a) linear scale and (b) log scale.

6.4 Fe-(10,0)-CNT Interface

Structures for varying Fe-CNT interfaces are given in Figure 6.9. Following the

discussion of the previous section, all calculations of the Fe-(10,0)-CNT interfaces

are spin unpolarised. In spite of the differing structures of interface 1 and 2

(rounded and flat respectively), the average length of the Fe-C bonds is similar

being 1.960 Å for interface 1 and 1.924 Å for interface 2. The range of Fe-C

bonds lengths is larger for interface 2 than for interface 1, thus the interface

structure is less uniform for interface 2. The structure of the B-doped CNT/Fe

interface is based on interface 1 and unsurprisingly, the bonding at this interface

is very similar to interface 1, with an average bond length of 1.972 Å. In all cases

Mulliken population analysis shows that charge is transferred from Fe to the

CNT. A larger charge transfer takes place for interface 1 (∼2.1e) than interface

2 (∼1.4e), which is presumably due to the differences in the interface structures.
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Figure 6.9: Structure of the (10,0)-Fe scattering region, the labelling is as ex-
plained in Figure 3.2. The top figure is the B-doped interface. The middle figure
is Interface 1 and the bottom figure is Interface 2. Fe is purple, C is grey and B
is pink.
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Two of the carbon atoms at the interface between the B-doped CNT and Fe also

bond to boron, which complicates the charge transfer at this interface, however

total charge transfer to the CNT (∼2.2e) is very similar to interface 1, as would

expected given the structural similarities.

Figure 6.10: Transmission of the (10,0)-FeNW systems. The Fermi energy is 0
eV.

The size of the CNT gap and the position of the Fermi energy appear to be

relatively insensitive to the exact structure of the interface. This can be seen in

the zero-bias transmissions of interface 1 and interface 2 shown in Figure 6.10,

where the gaps in transmission associated with the isolated CNT gap coincide.

Up to ∼-2 eV below the Fermi energy, the transmissions for interface 1 and 2 are

similar, beyond this point they differ with transmission for interface 1 becoming

larger than interface 2 at lower energies. Above the Fermi energy transmission for

interface 1 is at the majority of points greater than interface 2. In particular, close

to the Fermi energy we see significantly larger transmission for interface 1. This

difference in transmission is presumed to be related to the differences in structure
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and charge transfer at the interfaces. From this result, it is to be anticipated that

structural changes may lead to alteration of the IV characteristics of Fe-CNT

devices.

Figure 6.11: Linear Response IV curve for B doped-CNT Fe interface around the
Fermi energy (0 eV), corresponding to a resistance of R ≈ 6 kΩ

Much like the behaviour of the B-doped (16,0)-CNT in Chapter 5, the B-

doped (10,0)-CNT is metallic, with gap of the undoped CNT pushed above the

Fermi energy and also reduced slightly in extent, this is reflected in the transmis-

sion of the B-doped CNT seen in Figure 6.10. The transmission of the B-doped

interface is lower than that of interface 1 through most of the region close to

the Fermi energy with the exception of region of zero transmission for interface

1 which results from the CNT band gap. There are no significant differences in

the interfacial structures or charge transfer and thus this difference in transmis-

sion is caused by the presence of B in the CNT, which acts as a defect in the

ideal CNT structure. This reduced transmission on incorporation of a substitu-

tional dopant is consistent with literature reports of poorer electronic properties
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of substitutionally doped CNTs [11, 12].

As discussed in Chapter 5, there is a reasonable agreement between NEGF and

linear response IV curves. The voltage region found to give reasonable accuracy is

in the range of zero transmission for interface 1 and 2 and so the linear response IV

is considered for the B-doped CNT/Fe interface only as shown in Figure 6.11. A

linear IV curve is obtained which is suggestive of Ohmic contact formation at this

interface. Thus, it may indeed be possible to reliably produce Ohmic contacts

with CNTs through doping, although further research for doped armchair and

chiral CNTs is necessary to establish this point explicitly for a wider range of

CNTs chiralities.

6.5 Conclusion

We have found spin polarisation not to be critical for transmission or linear re-

sponse IV close the the Fermi level for the Fe-CNT junction. The exact structure

of the Fe-CNT end contact is found to affect neither the position of the Fermi

energy nor the extent of the region of zero transmission for the interfaces studied.

However, changes in the structure of the interface are found to impact on the

transmission of the Fe-CNT interface. On doping with boron, the (10,0)-CNT

is found to become metallic but overall transmission is reduced relative to the

undoped CNT. We obtain a linear IV curve for the interface between the boron

doped CNT and iron nanowire which demonstrates the formation of an Ohmic

contact and at the Fermi level we find a resistance of 6 kΩ.
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Chapter 7

Divacancies in Carbon
Nanotubes and their Influence on
Electron Scattering

7.1 Introduction

Nanosize materials have received much interest in recent years from both a sci-

entific and technological standpoint. Quasi one-dimensional materials, including

carbon nanotubes (CNTs), are an exciting prospect because the large aspect ratios

associated with such materials are ideally suited to use in a range of technological

applications. In particular, CNTs exhibit ballistic conductance and nearly defect

free structures which ideally suits them for use in nanoelectronics, for example as

interconnects [1–3]. The low dimensionality responsible for the excellent proper-

ties of CNTs is however not without challenges. Dramatic changes in physical and

chemical properties can manifest due to the introduction of defects. Additionally,

even high quality CNTs have one defect on average every 4 µm [4]. Such changes

in properties are not necessarily detrimental. Enhanced surface reactivity is of-

ten found in defective CNTs, which has led to interest in their use as gas sensors

[5–7]. Defect mediated modification of CNT mechanical strength has also been

reported [8–10]. Defects occur during the CNT growth process but can also be
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induced during post-processing by ion irradiation and acid treatment and thus

CNT properties may be tailored [11] if the effects of defects are well understood.

The low dimensionality of CNTs means propagation occurs almost exclusively

along the tube axis because the charge carriers are strongly confined and as a

consequence scattering at defects is unavoidable. CNT resistance has been shown

to increase exponentially as CNT length increases [12, 13] and occurs when device

lengths are a multiple of the mean free path (λ - the average distance travelled

by an electron between scattering events). This is a manifestation of the metal-

insulator transition due to Anderson Localisation [14], which is due to the effect

of disorder on electron transport in low dimensional systems.

Following ion irradation, the most commonly observed defects in CNTs are

vacancies [15]. Large vacancies are energetically unstable in CNTs and tend to

split into pentagon-heptagon pairs [16] and so we focus in this work on mono-

vacancies and divacancies where one or two carbon atoms are missing from the

CNT lattice respectively. Mono- and divacancies in small diameter CNTs have

been studied in detail within density functional theory (DFT). The divacancy de-

fect has been found to be more stable than two isolated monovacancies [17, 18],

which taken with the relatively low barrier to migration of monovacancies [19],

suggests a tendency towards monovacancy coalescence. In CNTs and graphene,

the monovacancy defect relaxes from an initial twelve-membered ring into a five-

and nine-membered ring pair [17, 18, 20, 21]. The divacancy defect can adopt

several configurations in CNTs and graphene including the 585 and 555777 struc-

tures. Initially, the ruptured CNT sidewall on divacancy formation relaxes to a

585 defect consisting of an octagon bordered by two pentagons. A bond rotation

in the 585 defect (similar to the formation of a Stone-Wales defect in a pristine

CNT) results in formation of the 555777 defect consisting of a circular motif of

alternating pentagons and heptagons. In planar graphene, the 555777 defect is

more stable than the 585 [22]. The curvature of the CNT complicates this picture,
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with the 585 defect being the more stable for the narrow diameter CNTs previ-

ously studied [17]. Using molecular mechanics calculations the 555777 divacancy

has been predicted to become more stable than the 585 at diameters above 40 Å

for armchair CNTs [17].

In this work, we extend ab initio knowledge of vacancy defects in CNTs to

large diameter CNTs of up to 40 Å diameter not previously studied within DFT.

Formation energies of the defects are calculated and the cross-over in stability of

the 585 and 555777 defects is confirmed from first principles to occur at diameters

above 40 Å. For these systems, the electronic properties including electron trans-

mission, mean free path and resistance of defects in technologically important

large diameter CNTs are calculated.

7.2 Methods

7.2.1 Electronic Structure Calculations

Electronic structure calculations and geometry optimisations are performed using

DFT as implemented by the OpenMX package [23]. We use the Ceperley-Alder

formulation [24] of the local density approximation (LDA) for the exchange and

correlation functional. A numerical pseudo-atom orbital (PAO) [25] basis along

with norm-conserving pseudopotentials [26] are used to describe the electrons.

Carbon PAOs with a cut-off radius of 5.5 Bohr optimised to the CNT envi-

ronment are generated for the pristine (5, 5)- and (10, 0)-CNTs and used for all

armchair and zigzag CNTs, respectively. The supercell size was chosen such that

the vacuum in the non-periodic directions was at least 1 nm leading to cell cross

sections of 18 Å x 18 Å to 53 Å x 53 Å for armchair CNTs and from 21 Å x

21 Å to 37 Å x 37 Å for zigzag CNTs. A 4x1x1 Monkhorst-Pack grid along the

CNT axis is used for k-point sampling [27] and geometries are optimised until

the maximum force is below 0.005 eV/Å. The armchair CNTs used in this study
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are (5, 5), (7, 7), (10, 10), (20, 20) and (30, 30) and the zigzag CNTs chosen are

(10, 0), (20, 0), (30, 0). Defects are introduced by removing the carbon atoms

before geometry optimisation and, in the case of the 555777 defect, the atoms at

the defect site are also rearranged before geometry optimisation.

7.2.2 Calculation of Transport Properties

The TIMES (Transport In MEsoscopic Systems) [28–30] package is used to cal-

culate transmission in the defective CNTs using the matrix representations of

the electronic structures obtained from OpenMX calculations. TIMES uses a

Green’s function method to calculate the total channel transmission from the

quantum mechanical scattering matrix and within the Landauer formalism used,

the transmission is the low-bias, low-temperature conductance in units of 2e2/h.

This conductance can be used to calculate the mean free path (MFP) for defect

scattering [30, 31], as described in the Section 7.2.3.

Figure 7.1: Transmission (a) and band structure (b) of the (10,0)-CNT for single
and double zeta basis sets

The supercells used in the single point calculations for the (n, 0) and (n, n)

CNTs to generate the Hamiltonian for TIMES contain 13 CNT units cells when

m ≤ 10 and 7 CNT unit cells when m ≥ 20, with the defect at centre of the cell.

As a result, the full scattering region extends to at least three times the size of
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an individual defect. The number of atoms in the simulation cell ranges from less

than 500 atoms for the small diameter CNTs to more than 1300 atoms for the

largest CNTs considered in this study. Calculations involving the large diameter

CNTs are computationally demanding both in terms of memory requirements and

runtime. We therefore use a single zeta quality basis set in OpenMX to obtain

the matrix representation of the electronic structure for TIMES to reduce the

computational overhead of these simulations. To justify the use of the minimal

basis set for transport calculations, the transmission and band structure are cal-

culated using single and double zeta basis sets for the (10,0)-CNT with similar

results obtained for the basis sets (Figure 7.1). The validity of the approach of

using a minimal basis set for transmission calculations while using a larger basis

set for geometry optimisation has previously been reported in the literature for

CNT/graphene systems [32].

7.2.3 Estimation of Mean Free Path

To calculate the mean free path λ as a function of distance between defects ld

from the electronic transmission T results from individual defects, the method

proposed by Markussen and co-workers is followed [33]. The ratio of λ to the

length of a conductor L is proportional to T in the diffusive regime. This ratio

(to a first approximation) is the transmission probability of each channel and for

Nch channels:

T = Nch

(
λ

L

)
(7.1)

when L >> λ. The resistance of such a conductor (R) is proportional to the

inverse of T and
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R = Rc

(
L

λ

)
, (7.2)

where Rc is the quantum unit of resistance times the number of channels and is

given by:

Rc =
(
h

2e2

)
Nch. (7.3)

The independent scattering approximation (ISA) assumes that scattering resis-

tances from individual defects can simply be added together classically as per

Ohm’s Law. Then, if each defect has the same scattering resistance Rs, the total

conductor resistance becomes:

R = Rc +Rs

(
L

ld

)
≈ Rs

(
L

ld

)
(7.4)

where L/ld is the number of defects in the conductor. Finally, comparison of

equations 7.2 and 7.4 yields an expression for λ as a function of ld :

λ =
(
Rc

Rs

)
ld (7.5)

with

Rs =
(
h

2e2

)
1
T
−
(
h

2e2

)
1
Nch

. (7.6)

All terms in equations 7.5 can be obtained from ab initio electron transport

simulations and thus the mean free path as a function of distance between defects

can be calculated.
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7.3 Defective CNT Structures

7.3.1 Defects in Zig-Zag CNTs

The defects considered in the (10, 0)-, (20, 0)- and (30, 0)-CNTs are the monova-

cancy (mv) defect and two orientations of the 585 divacancy defect - the lateral

divacancy (ldv) and vertical divacancy (vdv). The difference in the two 585 struc-

ture is in the location of the two removed carbon atoms. In the lateral divacancy

they are adjacent to each other along the tube axis whereas they are adjacent

perpendicular to the tube axis in the vertical divacancy as illustrated in Figure

7.2. The rearranged 555777 divacancy defect is not considered for the zig-zag

CNTs because it is predicted [17] to become more stable than the 585 defect at

diameters above 57 Å in zigzag CNTs and such structures are larger than we

can practically study within DFT. In all cases, the zigzag CNT does not devi-

ate strongly from its cylindrical structure on introduction of the vacancy defects

studied, although there is a localised reduction in CNT diameter in the vicinity

of the vacancy defect. Local diameter reduction due to the presence of vacancy

defects has also been reported in the literature for the (5,5) and (10,10) armchair

CNTs [34].

The monovacancy defect exhibits a similar pattern of bonding in all three

zigzag CNTs - it reconstructs to a 5- and 9-membered ring pair, as illustrated

for the (10,0)-CNT in Figure 7.2. The sides of the pentagon are not uniform in

length. The side perpendicular to the tube axis, which is also part of the nine-

membered ring, is longest and the length of this bond increases as CNT diameter

increases. Due to the plane of symmetry passing perpendicular to this bond, all

other bonds in both the 5- and 9-membered ring occur in pairs of similar length.

The average bond length in the pentagon decreases as CNT diameter increases,

while those in the nine-membered ring increase. Bonds between atoms which

are part of the defect (marked yellow in Figure 7.2) to the rest of the CNT are
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(10,0): Monovacancy 

(20,0): Lateral Divacancy 

(30,0): Lateral Divacancy 

Figure 7.2: Defects in zig-zag CNTs. The monovacancy defect is shown in the
(10, 0)-CNT, the lateral divacancy in the (20, 0)-CNT and the vertical divacancy
in the (30, 0)-CNT.

broadly similar in all cases and the size of the defect does not vary significantly

with CNT diameter.

The lateral divacancy has two planes of symmetry, one passes along its length

parallel to the CNT axis and the other passes through the 8-membered ring

perpendicular to the CNT axis. For the CNTs studied, the bonding within the

defect reflects this symmetry well. Like the monovacancy, the C-C bonds shared

by the rings are elongated (although to a lesser degree than in the monovacancy),

the average bond length in the 8-membered rings decreases with CNT diameter

while that in the 5-membered ring is independent of diameter. Again, the bonds
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to atoms outside the defect are similar as is the extent of the defect irrespective

of chirality.

The vertical divacancy makes an angle with the CNT axis (as can be seen

in Figure 7.2) and as a result the symmetry of the bonds seen in the vertical

divacancy is lost. The average bond length in the 5-membered rings this time

increases slightly with CNT diameter while that in the 8-membered ring is almost

constant. The bonds from atoms in the defect to the rest of the CNT are again

much the same for all diameters. Note that the local diameter reduction clearly

visible in Figure 7.2 for the lateral divacancy does not occur for the vertical

divacancy.

7.3.2 Defects in Armchair CNTs

The monovacancy and all three divacancy - lateral, vertical and 555777 - are

studied in the armchair CNTs. Unlike the zig-zag CNTs, the small diameter

armchair CNTs are deformed by the addition of the vacancy defect. This is

most severe in the (5, 5)-CNT with the monovacancy and vertical divacancy as

in Figure 7.3, but also occurs for the (7, 7)-CNT. However the bonding at the

defects remains similar for all chiralities despite this deformation.

Due to its orientation to the CNT axis, the monovacancy loses symmetry

unlike in the zig-zag CNTs. As before, the bond shared between the 5- and 9-

membered rings is elongated and it lengthens further as CNT diameter increases.

The average bond length in both the 5- and 9-membered rings increases as the

diameter increases and again the bonds between defect atoms and the rest of the

CNT are not strongly influenced by CNT diameter.

The lateral divacancy presents a more complicated picture, the general trend

is that bonds in both the 5- and 8-membered ring elongate as the CNT diameter

increases. The lengths of the bonds shared with the 8-membered ring also increase

with CNT diameter and once again the bonds joining the rest of the CNT are
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(5,5): 

Monovacancy 

(7,7): 

Monovacancy 

(10,10): Lateral 

Divacancy 

(20,20): Vertical Divacancy 

(30,30): 555777 Divacancy 

Figure 7.3: Defects in armchair CNTs. The monovacancy defect is shown in
the (5, 5)- and (7, 7)-CNT, the lateral divacancy in the (10,0)-CNT, the vertical
divacancy in the (20,0)-CNT and the 555777 divacancy in the (30,30)-CNT

not influenced by the CNT diameter. Like the lateral divacancy in the zig-zag

CNTs, the vertical divacancy has two symmetry planes within the CNT and

the structure of the defect is as a result highly symmetric. The average bond

lengths within the 5- and 8-membered rings follow a similar pattern; average

bond length increases and reaches a maximum for the (10, 10)-CNT before again

decreasing. A similar pattern is seen for the carbon bonds shared by the rings.

The unusual bonding pattern is possibly related to the deviation from the ideal

cylindrical CNT structure for the (5, 5)- and (7, 7)-CNT. The 555777 defect has
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similar symmetry within the armchair CNT as the vertical divacancy and, as with

previous symmetric defects, exhibits a symmetric bonding pattern.

7.3.3 Defects in Graphene

The monovacancy defect does not reconstruct to the 5- and 9-membered ring

seen in the CNTs. TEM imaging has shown this reconstruction does take place

in graphene [21]. There are a number of possible reasons why we do not see

this reconstruction in our calculations for graphene. The real graphene structure

is not completely planar, i.e. there are bumps and dips in the structure. It is

not possible to include such non-periodic behaviour in our periodic calculations.

We use a cell size of 34 Å x 34 Å for all the graphene calculations, this could

prevent relaxation of the defect structure by preventing localised “shrinkage” of

the graphene near the defect in an analogous fashion to the localised diameter

reduction we see for the CNTs. In the planar graphene structure the lateral

and vertical divacancies are reduced to a single 585 divacancy. The bonding in

this divacancy follows a similar pattern to that seen in the 585 divacancies in

the CNTs. The bond lengths within the divacancy are similar to those found

in the divacancies in the larger diameter CNTs with the exception of the bonds

between the bridgehead carbon atoms, which are consistently shorter in the lateral

divacancy than in the vertical divacancy and the 585 divacancy in graphene. The

555777 defect has greater symmetry in the planar graphene structure than in the

armchair CNT; the 5- and 7-membered rings are identical by symmetry. As a

result the bonding is more symmetric than found in the armchair CNTs, with the

greatest differences in bonding unsurprisingly occurring for the high-curvature,

small-diameter CNTs.
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7.4 Defect Formation Energies

The formation energies of each defect in the CNTs and in graphene are calculated,

in addition we calculate the relative stabilities of the various defects. We calculate

formation energies in two different ways. Firstly, we calculate the formation

energy in the manner used in the literature for armchair CNTs up to (10,10)

[17, 18] and zigzag CNTs up to (18,0) [17]. This formation energy (∆EC) is

found by considering the difference in energy between the pristine CNT and the

defective CNT and n carbon atoms where n is 1 for monovacancies and 2 for

divacancies:

∆EC = |Epristine − (Edefect + nEcarbon)|. (7.7)

A smaller formation energy therefore implies that a particular defect is more

stable. However the fragmentation process of C60 and other larger fullerenes is

known to proceed via desorption of a carbon dimer [35]. Thus we also calculate

the formation energy ∆EC2 of the divacancy defects using a dissociated state

consisting of C2 and the defective CNT:

∆EC2 = |Epristine − (Edefect + EC2)|. (7.8)

While the formation energies of the divacancy defects can be directly com-

pared, comparison of the relative stabilities of the monovacancy and divacancy

defects requires an additional step. The formation energy of a single divacancy

with respect to two independent monovacancies (∆) is thus calculated:

∆ = |∆Edivacancy − 2∆Emonovacancy|. (7.9)

Finally, the difference in the formation energies of the 585 defects (d∆) is calcu-

lated. The formations energies and relative stabilities of the defects are given in
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Tables 7.1 and 7.2 for the zig-zag and armchair defects respectively. Information

on defect energetics in graphene is included in Table 7.1 for comparison.

Table 7.1: Formation energies of defects in zig-zag CNTs and graphene in eV.
(10,0) (20,0) (30,0) Graphene

∆Emv (eV) 18.22 18.98 22.98 25.80
∆Eldv,C (eV) 27.58 28.99 36.79 39.83
∆Eldv,C2 (eV) 17.60 19.02 26.82 29.86
∆Evdv,C (eV) 32.27 32.66 38.36 39.82
∆Evdv,C2 (eV) 22.29 22.69 28.38 29.85
∆E555777 (eV) - - - 39.49
∆E555777,C2 (eV) - - - 29.51
∆ldv,C (eV) 8.85 8.98 9.15 11.78
∆ldv,C2 (eV) 18.83 18.95 19.13 21.74
∆vdv,C (eV) 4.17 5.31 7.59 11.77
∆vdv,C2 (eV) 14.14 15.28 17.57 21.75
d∆ (eV) 4.69 3.67 1.56 0.01

Table 7.2: Formation energies of defects in armchair CNTs in eV. Literature
values taken from Biel et al [18].

(5,5) (7,7) (10,10) (20,20) (30,30)
∆Emv (eV) 17.94 17.99 19.75 20.82 24.39
∆Eldv,C (eV) 27.52 30.00 30.85 31.40 37.84
∆Eldv,C2 (eV) 17.54 20.03 20.87 21.43 27.86
∆Evdv,C (eV) 31.49 33.16 33.22 33.47 39.73
∆Evdv,C2 (eV) 21.52 23.19 23.25 23.49 29.75
∆E555777,C (eV) 34.10 34.19 34.50 35.02 36.17
∆E555777,C2 (eV) 24.12 24.21 24.53 25.04 26.20
∆ldv,C (eV) 8.36 5.97 8.65 10.24 10.95
∆ldv,C2 (eV) 18.33 15.97 18.62 20.22 20.92
∆vdv,C (eV) 4.39 2.81 6.27 8.18 9.06
∆vdv,C2 (eV) 14.36 12.79 16.24 18.15 19.03
d∆ (eV) 3.97 3.16 2.38 2.06 1.89
Literature ∆ldv,C (eV) 6.5 6.7 6.7 - -
Literature ∆vdv,C (eV) 4.3 4.8 4.2 - -

The formation energies of lateral divacancies are smaller than that of vertical

divacancies for both the zig-zag and armchair CNTs. This difference in relative

stabilities of the 585 defects results from shortening of bonds perpendicular to

the CNT axis, which is better accommodated by local diameter reduction in
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the case of the lateral divacancy. This is particularly evident in the length of

the bridgehead bond - the bond is shorter in the lateral divacancy than in the

vertical and also the 585 defect in graphene. Both 585 defects are more stable

than two isolated monovacancies i.e. ∆Eldv < ∆Evdv < 2∆Emv. This result is

consistent with previous reports for low diameter CNTs [17, 18]. For the (5,5)-

CNT we find the lateral divacancy to be more stable by approximately 4 eV (d∆

in Table 7.2), which is in good agreement with the value 3.5 eV reported in the

literature by Amorim et al [17]. The d∆ value can also be calculated from the

work of Biel and co-workers [18] with the required values are reproduced in Table

7.2 and a value of 2.2 eV obtained, which is lower than values obtained by us

and also Amorim et al. As the CNT diameter increases, the difference in d∆

is reduced, this reduction in d∆ was anticipated given the two 585 defects are

identical in graphene and CNT curvature reduces with diameter. Such a trend

in d∆ values does not appear in Biel’s work, however the CNT size at which

the lateral and vertical 585-divacancies become energetically indistinguishable is

larger than those considered by their study.

The formation of the 555777 defect is found to be more favourable than the 585

defect in graphene, as already reported in the literature. Amorim et al [17] have

reported the 555777 defects become more stable than the 585 defects for (30,30)

armchair CNTs and (117,0) zigzag CNTs. However, these results were obtained

from molecular mechanics calculations. Using ab initio DFT, we confirm that

the 555777 defect is indeed more stable than the 585 defect in the (30,30)-CNT,

while the 585 defect is found to be more stable for the smaller diameter armchair

CNTs.
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7.5 Electronic Transport Properties

The transmission spectra for the large diameter zigzag and armchair CNTs are

shown in Figures 7.5 and 7.6. The introduction of vacancy defects does not affect

the size of the CNT band gap in the semi-conducting CNTs studied and does not

open up a band gap in the metallic CNTs. In all cases as anticipated, the intro-

duction of a defect results in a reduction in transmission relative to the pristine,

defect-free CNT. The monovacancy and 585-divacancies exhibit a similar sup-

pression of transmission, while a more marked reduction in transmission occurs

for the 555777 divacancy defect. In particular, the transmission spectra for the

555777 defect shows a trough where transmission drops to 0.1 close to the Fermi

level at -0.15 eV and -0.11 eV for the (20,20) and (30,30) CNTs, respectively.

Figure 7.4: Average LDOS in 555777 defect, and LDOS of atoms S and U com-
pared to LDOS of defect free CNT for the (30,30)-CNT. Inset: Labels of the defect
atoms. Note that atoms S and T are equivalent by symmetry and therefore have
the same LDOS.
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Figure 7.5: Transmission spectra for the (20,0)-CNT (a) and (30,0)-CNT (b). The
monovacancy and both the divacancy defects reduce transmission by a similar
amount compared to the pristine, defect free CNT.
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Figure 7.6: Transmission spectra for the (20,20)-CNT (a) and (30,30)-CNT (b).
Similar transmissions are obtained for the monovacancy and 585-divacancies. The
555777 defect results in a more marked reduction in transmission relative to the
pristine CNT than the monovacancy and 585 divacancies.
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This pronounced dip in transmission on the introduction of a 555777 defect

has a number of important consequences. The first implication is that localised

electronic states are formed at the 555777 defect; such localised states should

be observable experimentally making it possible to distinguish 555777 defects

from other vacancy defects. The local density of states (LDOS) of atoms in the

555777 defect show that a peak in DOS occurs at the same energy as the dip

in transmission; see Figure 7.4 for the (30,30)-CNT. These states are localised

on atoms S, T and U close to the centre of the defect, for which there is a

substantial increase in DOS close to the Fermi level relative to both the average

of the defect atoms and a carbon atom in a pristine (30,30)-CNT. In addition,

the substantial scattering from the 555777 defect needs to be considered when

using large diameter CNTs in applications, since this defect becomes more stable

than the 585 defects in such CNTs. Large diameter CNTs in particular are being

considered as a replacement for copper interconnects because at large diameters

the band gaps of even ostensibly semi-conducting CNTs become vanishingly small

[36].

A zone-folding picture of CNT electronic properties predicts that the (30,0)-

CNT is metallic because (n−m)
3 is an integer. As can be seen in the transmission

results in Figure 7.5, a small band gap of ∼30 meV opens up for all (30,0)-CNTs

we study. Most likely this is because the simple zone-folding picture does not

take account of the CNT curvature and resultant π-σ hybridisation [37–40]. This

finite gap in the (30,0)-CNT was found by us to persist in plane waves calculations

using Quantum Espresso [41], confirming that this gap is not caused by the small

basis set size used in our transport studies.

As a starting point, the independent scattering approximation (ISA), de-

scribed in Section 7.2.3 is used to estimate mean free path λ. This approximation

results in a linear relationship between λ and the separation between defects ld,

as given by Equation 7.5. This relationship between λ and ld is plotted in Figure
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Figure 7.7: The mean free path as a function of defect separation for zigzag (a)
and armchair (b) CNTs.
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7.7 for the armchair and zigzag CNTs. Beenakker [31] has previously shown that

the localisation length ξ in quasi-one-dimensional systems can be approximated

by:

ξ = (Nch + 1)λ = (Nch + 1)
(
Rc

Rs

)
ld. (7.10)

Using more elaborate approaches which account for the interference effects which

result from scattering between defects has also resulted in a linear relationship

between ξ and ld [13, 42]. The calculated values of (Nch + 1)λ for each defect in

the CNTs studied are given in Table 7.3.
Table 7.3: Proportionality constant between localisation length ξ and the distance
between defects ld in the relation ξ = const x ld

(Nch + 1)RC/RS
mv vdv ldv 555777

(10,0) 10.44 6.79 5.54 -
(20,0) 19.88 19.10 18.69 -
(30,0) 75.97 24.96 61.49 -
(5,5) 9.03 3.11 3.40 1.88
(7,7) 24.44 4.27 6.78 3.41
(10,10) 55.42 14.61 9.61 8.10
(20,20) 388.70 34.09 42.10 5.07
(30,30) 9995 70.30 59.68 22.90

The ratio of ξ to ld has been reported in the literature from theory as 5.2, 6.4

and 8.4 for the lateral divacancy in the (5,5), (7,7) and (10,10) CNTs respectively

[13], while experimental values of 5.1 and 4.1 have been reported respectively for

the (5,5) and (10,10) CNTs, again for the lateral divacancy [13, 42]. We obtain

values of 3.4, 6.8 and 9.6 for the value of ξ for the lateral divacancies in (5,5), (7,7)

and (10,10) CNTs. These results are in reasonable agreement with the literature

results and justify our use of the ISA, furthermore interference effects between

defects are expected to be less important in larger diameter CNTs with similar

defect concentrations. Use of the ISA enables analysis of λ to be extended to

larger diameter CNTs than have been previously studied.
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Figure 7.8: The defect resistance as a function of CNT diameter for zigzag (a)
and armchair (b) CNTs.
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As can be seen in Figure 7.7, as CNT tube diameter increases, mean free

path extends significantly at fixed defect separations. We attribute this effect to

diminished defect scattering resistance as relatively, the defect takes up a smaller

proportion of the CNT side wall as tube diameter increases. The effect of mono-

vacancies and divacancies on scattering depends on the electronic properties of

the CNTs. Monovacancies have a much smaller impact on λ in metallic CNTs

than divacancies, while a similar effect is seen for both monovacancies and di-

vacancies in semi-conducting CNTs. This result is consistent with reports that

monovacancies show little scattering at the Fermi level [12, 18]. The 555777 de-

fect has the greatest impact on the mean free path for all the armchair CNTs,

which is expected given the greater depression of transmission and the formation

of localised states close the the Fermi level. Figure 7.8 shows the resistance of

each defect as a function of CNT diameter.

As CNT diameter increases, the defect resistance decreases in almost all cases

(the notable outlier is the 555777 defect in (20,20), which is larger than in (10,10)).

In addition, the differences between the resistances of the monovacancy and di-

vacancy defects for a specific diameter also decreases for larger CNTs, this is

particularly evident for zigzag CNTs, which already for the (20,0) CNT has al-

most identical resistances for all the defects. For the armchair CNTs, the largest

defect resistance occurs in all cases for the 555777 defect which is expected given

the results already discussed and even at 40 Å diameter, is significantly larger

than the 585 divacancy defects.

7.6 Conclusion

It is confirmed that the 585 lateral divacancy defect is more stable than the 585

vertical divacancy and the monovacancy defect in armchair and zigzag CNTs.

In addition, the 555777 defect is found from first principles calculations to be-
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come more stable than both 585 defect at an armchair CNT diameter of 40

Å. The independent scattering approximation has been validated by comparison

to experimental results and transport calculations which used a more rigorous

scattering formalism. Adoption of the independent scattering approximation has

enabled localisation length to be studied in large diameter CNTs. The localisa-

tion length increases with CNT diameter, however strong scattering is observed

from the 555777 defect configuration, which may have implications for the use of

large diameter CNTs in electronic applications.
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Chapter 8

Conclusion

In Chapter 4 the reasons behind the characteristic defective structure of N-doped

CNTs were explained through the results of our DFT calculations, the exper-

imental work of our collaborators and consideration of in situ TEM studies.

The nitrogen-cobalt bond was found to be stronger than the carbon-cobalt bond

through DFT calculations and it is this difference in binding strength at the

nanoparticle catalyst that leads to the formation of bamboo CNTs. The CVD

growth of CNTs follows a three stage process, as has been observed in in situ

TEM studies [1, 2]. First, the carbon source is cracked by the nanoparticle cata-

lyst, where it deposits forming a graphitic flake. Next as carbon is continuously

deposited at the flake the catalyst particle elongates until its surface energy is

larger than its stabilisation due to interaction with the growing CNT sidewalls

at which point it contracts to a more spherical shape. Finally, further carbon is

added to the CNT growth edge, increasing the CNT length and forming a hollow

CNT. In the case of nitrogen doped CNTs, this last growth stage is not attained

and instead the first and second stages repeat continuously because the stronger

nitrogen-cobalt bond results in repeated elongation of the catalyst particle.

Chapter 5 is concerned with the IV characteristics of contacts between Al and

CNTs. Contacting the (16,0) CNT to Al results in shifting of the Fermi energy

towards the CNT conduction band edge, resulting in an asymmetric IV curve. No
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current occurs at low biases because of the CNT band gap. Boron and nitrogen

dopants make the semi-conducting (16,0)-CNT metallic and these doped CNTs

form Ohmic contacts with Al, however the dopant atoms behave as defects in the

CNT structure which results in significant scattering and non-linear IV at larger

bias voltages. While this result suggests that substitutional doped CNTs may

be suited to generating reliably metallic CNTs which form Ohmic contacts with

metal, the scattering at larger bias is problematic as it negates one of the primary

advantages of CNTs for electronic applications i.e. ballistic transport. As a result,

we consider the endohedral dopant TTF, which dopes the CNT without affecting

the CNT sidewall structure and find it to alter the position of the Fermi energy

without significant scattering.

Chapter 6 also considers metal-CNT interfaces, in this case the interface be-

tween Fe and (10,0)-CNT and the focus of the research is shifted to study of the

effect of interfacial structure on electronic properties. Two interface structures

are studied, in the first structure there is a raised metal dock, the tip of which

is inside hollow CNT while the second structure presents a flat Fe surface for

the contact. Neither the CNT band gap nor the position of the Fermi energy

is sensitive to the structure, however the exact structure of Fe at the interface

does effect the transmission, with a larger transmission occurring for the interface

with the dock. Additionally, we study a boron doped CNT in contact with Fe,

as in the work of the previous chapter, the CNT becomes metallic and an Ohmic

contact is formed.

Finally, in Chapter 7 vacancy defects are studied in CNTs for a range of chirali-

ties. The order of stability of vacancy defects in small diameter CNTs is confirmed

to occur as previously reported in the literature i.e. divacancies are more stable

than two isolated monovacancies and the 585-divacancy is more stable than the

555777 divacancy [3, 4]. We extend this work to larger diamater CNTs and from

first principles confirm that the 555777 defect becomes more stable than the 585
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defects for the (30,30)-CNT, as predicted by molecular mechanics calculations [3].

All defects cause electron scattering, with the most severe scattering occurring for

the 555777 defect near the Fermi energy, which is due to highly localised states

in this defect. Use of large diameter CNTs in electronics applications (e.g. inter-

connects) would have to consider this affect, as it is in precisely such CNTs that

this defect is stable. The independent scattering approximation is successfully

validated with reference to more rigorous approaches for small diameter CNTs

and thus we can calculate mean free path in larger CNTs than have previously

been considered. Mean free path extends with CNT diameter for fixed defect

separation and shortest mean free paths occur for the 555777 defect.

This thesis has shown that substitutional doped zigzag CNTs become metallic

at dopant concentrations as low as 1 at. % and form Ohmic contacts with Al

and Fe metal. Potentially, substitutional doping of CNTs may offer a path to

reliably Ohmic metal-CNT contacts; further research into armchair, chiral and

metallic zigzag CNTs is needed to confirm that substitutionally doped CNTs in

general form Ohmic contacts. Additionally, further work is needed to explore

the properties of interfaces using other endohedral dopants, particularly p-type

dopants such as tetracyano-p-quinodimethane (TCNQ). The interfacial structure

of the metal-CNT end contact is found to affect transmission and therefore is

expected to impact on IV characteristics, future work could consider additional

interface structures to expand our understanding of the relationship between con-

tact structure and electronic properties.
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Appendix A

A.1 Acronyms

AO - Atomic Orbital
BCNT - Bamboo Carbon Nanotube
CG - Conjugate Gradient
CMOS - Complementary Metal Oxide Semiconductor
CNT - Carbon Nanotube
(C)CVD - (Catalytic) Chemical Vapour Deposition
DFT - Density Functional Theory
DOS - Density of States
DFTB - Density Functional Tight Binding
EA - Electron Affinity
ELF - Electron Localisation Function
FET - Field Effect Transistor
GEA - Generalised Expansion Approximation
GGA - Generalised Gradient Approximation
GTO - Gaussian Type Orbital
HOMO - Highest Occupied Molecular Orbital
IE - Ionisation Energy
ISA - Independent Scattering Approximation
IV - Current-Voltage
KS - Kohn-Sham
LDA - Linear Density Approximation
LDOS - Local Density of States
ldv - Lateral Divacancy
LUMO - Lowest Unoccupied Molecular Orbital
MD - Molecular Dynamics
MFP - Mean Free Path
MIGS - Metal Induced Gap States
mv - Monovacancy
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MWNT - Multi-Walled Carbon Nanotube
NEGF - Non-Equilibrium Green’s Function
NR - Newton-Raphson
NT - Nanotube
NW - Nanowire
PES - Potential Energy Surface
PAW - Projector Augmented Wave
PAO - Pseudo Atomic Orbital
PP - Pseudopotential
SCF - Self Consistent Field
SD - Steepest Descent
STO - Slater Type Orbital
SWNT - Single-Walled Carbon Nanotube
TBMC - Tight Binding Monte Carlo
TCNQ - Tetracyano-p-quinodimethane
(HR)TEM - (High Resolution) Transmission Electron Microscopy
TIM - Thermal Interface Material
TTF - Tetrathiafulvalene
vdv - Vertical Divacancy
VLS - Vapour-Liquid-Solid
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