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Highlights 

 

 Anxiety and stress responsivity phenotypes were examined in male and female mutant 

mice with simultaneous disruption of schizophrenia-associated genes NRG1 and 

DISC1 

 Mice with partial knockout of NRG1 displayed reduced anxiety-related behaviour and 

stress-reactivity 

 Disruption of DISC1, but not of NRG1, in the absence of epistasis, was associated with 

increased basal serum pro-inflammatory cytokine levels 

 Partial NRG1 deletion in combination with DISC1 mutation diminished the DISC1-

specific increases in the pro-inflammatory cytokines IL6 and TNF-α 

 

Abstract 

The complex genetic origins of many human disorders suggest that epistatic (gene × gene) 

interactions may contribute to a significant proportion of their heritability estimates and 

phenotypic heterogeneity. Simultaneous disruption of the developmental genes and 

schizophrenia risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) in 

mice has been shown to produce disease-relevant and domain-specific phenotypic profiles 

different from that observed following disruption of either gene alone. In the current study, 

anxiety and stress responsivity phenotypes in male and female mutant mice with simultaneous 

disruption of DISC1 and NRG1 were examined. NRG1 × DISC1 mutant mice were generated 

and adult mice from each genotype were assessed for pain sensitivity (hot plate and tail flick 

tests), anxiety (light-dark box), and stress-induced hypothermia. Serum samples were assayed 

to measure circulating levels of pro-inflammatory cytokines. Mice with the NRG1 mutation, 

irrespective of DISC1 mutation, spent significantly more time in the light chamber, displayed 

increased core body temperature following acute stress, and decreased pain sensitivity. Basal 

serum levels of cytokines IL8, IL1β and IL10 were decreased in NRG1 mutants. Mutation of 

DISC1, in the absence of epistatic interaction with NRG1, was associated with increased serum 

levels of IL1β. Epistatic effects were evident for IL6, IL12 and TNFα. NRG1 mutation alters 

stress and pain responsivity, anxiety, and is associated with changes in basal cytokine levels. 



 3 

Epistasis resulting from synergistic NRG1 and DISC1 gene mutations altered pro-

inflammatory cytokine levels relative to the effects of each of these genes individually, 

highlighting the importance of epistatic mechanisms in immune-related pathology. 

 

Keywords: Neuregulin-1; Disrupted-in-Schizophrenia-1; Anxiety; Stress Responsivity; 

Cytokines 

 

 

Introduction 

Despite recent advances in our understanding of the critical pathophysiological mechanisms 

underlying genetic risk for schizophrenia and other neuropsychiatric disorders [22, 24], 

elucidating the contribution of factors including genetic heterogeneity, gene × environment (G 

× E), and gene × gene (G × G) interactions remains a challenge [11, 15]. Andreasen and 

colleagues investigated the significance of G × G interactions in relation to the contribution of 

candidate susceptibility genes to the development of schizophrenia [2]. These authors 

identified 11 interactions involving 5 genes and 17 SNPs (5 of which had been previously 

identified as schizophrenia vulnerability markers or implicate cognitive deficits in 

schizophrenia) that had a significant relationship with the emergence of schizophrenia-related 

anatomical endophenotypes in at least two brain regions. These interactions included 

interactions between susceptibility genes ErbB4 and disrupted-in-schizophrenia-1 (DISC1), 

ErbB4 and PDE4B, and neuregulin-1 (NRG1) and RELN [2].  

 

Employing a preclinical genetic strategy, we have recently reported that simultaneous 

disruption of the developmental genes and schizophrenia risk factors NRG1 and DISC1 in mice 

produced a disease-relevant and domain-specific phenotypic profile different from that 
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observed following disruption of either gene alone. Specifically, co-disruption of NRG1 and 

DISC1, indicative of epistasis, produced impairment in sociability and increased social anxiety, 

with these behavioural changes accompanied by changes in hypothalamic oxytocin and 

vasopressin gene expression, two neuropeptides implicated in mammalian social behaviour 

[37]. 

 

Stressful events have been linked to the developmental course of schizophrenia and 

symptomatic exacerbation, although less is known about how stress reactivity interacts with 

genetic risk to promote disease trajectory [18, 27].  Higher levels of pro-inflammatory 

cytokines are associated with increased risk for schizophrenia [19], and patients with 

schizophrenia exhibit abnormal immune function, which can manifest as imbalance in basal 

cytokine levels [7, 34]. The active phase of schizophrenia is associated with chronic, low-grade 

inflammatory change that is largely attenuated by effective treatment [30]. Recent re-

conceptualisations of ‘stress-vulnerability’ models of schizophrenia have emphasized how 

early life adversity, as well as acute and chronic biological insult, and exposure to psychosocial 

stressors, at critical developmental periods, appear to interact with genetic background to 

determine risk for psychotic illness [15, 43, 44].  

 

If the relative influence of a given gene on risk for an endophenotype of the overall 

schizophrenia syndrome depends upon exposure to one or more adverse environmental 

stressor(s), behavioural phenotyping strategies in risk factor mutants need to integrate 

assessment of relevant phenotypes following acute or chronic exposure to such stressor(s). To 

that end, in the current study, we examined anxiety and stress responsivity phenotypes in male 

and female mutant mice with simultaneous disruption of NRG1 and DISC1.  
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Methods 

Mice 

NRG1 × DISC1 mutant mice were generated by intercrossing the heterozygous NRG1 mutant 

line with the DISC1 (100P) mutant line and genotyping resultant offspring, as described 

previously [37].  Heterozygous NRG1 and DISC1 mutants were crossed and offspring 

heterozygous for both NRG1 and DISC1 were then used as breeding pairs to generate the 

following experimental groups involving wildtype (WT), heterozygous (HET) and 

homozygous (HOM) genotypes: NRG1WT/ DISC1WT, NRG1WT/DISC1HET, NRG1WT/DISC1HOM, 

NRG1HET/DISC1WT, NRG1HET/DISC1HET, NRG1HET/DISC1HOM; mice homozygous for the 

NRG1 mutation, with or without disruption of DISC1, are conceived but do not survive 

postnatally due to cardiac defects. Mice were housed in groups of three to five per cage and 

maintained on a standard 12 ⁄ 12 h light ⁄ dark cycle (08:00 h on; 20:00 h off) with ad libitum 

access to food and water. For all behavioural testing, the same testing cohort was used, and 

animals were tested sequentially as follows: hot plate test, tail flick test, light-dark test, stress-

induced hypothermia. Serum cytokine analysis was completed in a separate cohort of 

experimental animals. Table 1 provides a summary of group sizes. These studies were approved 

by the Research Ethics Committee of the Royal College of Surgeons in Ireland and were 

conducted under licence from the Department of Health and Children in accordance with Irish 

legislation and the European Communities Council Directive 86/609/EEC for the care and use 

of experimental animals, and from the Environmental Protection Agency in relation to the 

contained use of genetically modified organisms. 

 

Hot plate / tail flick test 

Thermal nociception measurements were conducted using the hot plate test (model 7280, Ugo 

Basile, Comerio, Italy) and the tail flick assay (model 7360, Ugo Basile, Comerio, Italy) as 
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described previously [45]. In the hot plate test, the temperature was 55° C with a cut-off time 

of 30 s; the mouse was placed on the hot plate and latency to lick a hindpaw or jump was 

measured. In the tail flick assay, all mice were habituated to a restraint tube (60 ml syringe, 

Becton Dickinson, Dublin, Ireland) for 20 min, 24 h prior to testing. On the day of testing, mice 

were placed in the same restraint for 10 min, after which the mouse, in the tube, was placed on 

the tail flick unit such that a point on the tail approximately 15 mm from the tip was located 

above the light source. This source, set to an intensity of 90 (range 10–99), was activated by 

the investigator and latency to flick the tail away from the light beam measured, with a cut-off 

time of 8 s. For both tests, latency measures were assumed to reflect thermal pain sensitivity. 

For each mouse, the hot plate test was performed 30 min prior to the tail flick assay. All 

assessments were carried out by an investigator who was blind to genotype. 

 

Light-dark test 

Mice were placed into a test chamber (43 × 43 × 33 cm) with a white Plexiglas floor and clear 

walls (ENV-515-16; Med Associates, St Albans, VT, USA); infrared detection beams on the 

x-, y- and z-axes track the mouse position and activity over the course of the experiment as 

described previously [16]. The chamber was equipped with a light-impermeable dark box 

insert, which covered half the area of the chamber. The light and dark compartments were 

connected via a small hole in the partition wall. Each compartment was differentially 

illuminated. A LED lamp (containing 9 × white Nichia LED bulbs, > 15 lux) was placed 30 

cm above the light chamber compartment. The time spent in, entries into, and ambulatory time 

and counts in the light vs dark compartments were recorded for 10 min.  
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Stress-induced hyperthermia 

All experimental mice were single housed during 24 h prior to test, with ad libitum access to 

food and water. The procedure was adapted from that described previously [14].  Rectal 

temperature was measured in each mouse twice (T1 = 0 min; T2 = +15 min), both before and 

after an acute restraint session in a restraint tube (60 ml syringe, Becton Dickinson, Dublin, 

Ireland). Stress-induced hyperthermia is measured as the difference in temperature between T1 

and T2.  

 

Cytokine analysis                                                                                                                           Serum 

samples were analysed for IFN-γ, IL1β, TNF-α, IL6, IL8 and IL10 using a multiplex cytokine 

immunoassay (MSD® 96-Well MULTI-SPOT kit, Meso Scale Discovery, Maryland, USA) 

[17]. 25 μl of each sample was assayed in duplicate according to manufacturers’ instructions. 

Briefly, samples and standards were incubated in multi-spot wells under vigorous shaking (900 

rpm) for 2 hr at room temperature. 25 μl of detection antibody was added and incubated for a 

further 2 hr. Plates were then washed with PBS (+0.05% Tween), 150 μl of Read Buffer was 

added and plates analysed by electrochemiluminescent detection using a SECTOR Imager. 

Concentrations were extrapolated from an 8-point standard curve ranging from 0-2500 pg/ml. 

Assay detection limits for each cytokine were as follows: IFN-γ, 0.5-2 pg/ml; IL1β, 0.5-2 

pg/ml; IL6, 5-20 pg/ml; IL8, 5-20 pg/ml; IL10, 5-20 pg/ml; TNF-α, 0.5-2 pg/ml. 

 

Data Analysis 

Statistical analysis was carried using procedures similar to those described previously [37]. 

Group differences were assessed using between-subjects two-way ANOVA with main factors 

of genotype and sex. Post-hoc comparisons were carried out using independent t-tests, in which 

the p value was adjusted (p adj < 0.05) by Holm-Sidak's method. Where the data were not 
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normally distributed, analyses were conducted following square-root transformation. All 

results are presented as means ± SEM. A p value < 0.05 was considered significant. Statistical 

analyses were performed using the Statistical Package for the Social Sciences program 19.0 

(SPSS, Chicago, IL).  

 

Results 

 

Hot Plate and Tail Flick Tests. NRG1HET demonstrated increased hot plate latency, indicative 

of decreased pain sensitivity [NRG1, F(1, 81) = 6.25, p < 0.05; Fig 1A]. No effects of DISC1 

genotype, sex, or interactions, were evident for either the hot plate or tail flick tests [Fig 1B].    

 

Light-Dark Test.  In the light-dark test, where longer time in the brightly lit chamber signifies 

reduced anxiety-related behaviour, NRG1HET spent more ambulatory time in the light chamber 

[NRG1, F(1, 82) = 5.21, p = 0.02; NRG1 × sex, F(1, 82) = 5.58, p = 0.02; Fig 1C], more so in 

females than in males. No DISC1 genotypic effect, sex, or genotype × sex or interaction was 

evident.  

 

Stress-induced Hyperthermia. Stress-induced hyperthermia is a hallmark of the stress 

response in mammals. There were no genotypic differences in change in basal body 

temperature at baseline [T1]. NRG1HET demonstrated attenuation in the increase in body 

temperature following 1 h of restraint stress [NRG1, F(1,81) = 6.06, p = 0.02; Fig 1D]. No 

DISC1 genotypic effect or genotype × sex interactions were evident.  

 

Serum Cytokine Levels. Basal serum levels of cytokines IL8 and IL10 were decreased in 

female NRG1HET [IL8: NRG1 × sex, F(1,52) = 12.66, p < 0.001; IL10: NRG1 × sex, F(1,52) 
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= 8.45, p < 0.005]. IL1β levels were selectively decreased in male NRG1HET [NRG1 × sex, 

F(1,52) = 30.42, p < 0.001], and decreased in DISC1 mutants of both sexes [DISC1, F(2,52) = 

11.16, p < 0.001]. While levels of IL6 were reduced in female NRG1HET but not in those with 

disruption of DISC1, the change in IL6 levels in female NRG1HET varied with extent of co-

disruption of DISC1 [NRG1 × DISC1 × sex, F(2,52) = 14.70, p < 0.001]. A decrease in levels 

of IL12 in male DISC1 mutants was reversed to an increase on co-disruption of NRG1 [NRG1 

× DISC1 × sex, F(2,49) = 6.02, p < 0.005]. While TNF-α levels were increased in female 

NRG1HET but decreased in male NRG1HET [NRG1 × sex, F(1,52) = 25.15, p < 0.001], an 

increase in levels of TNF-α in male DISC1 mutants was reversed to a decrease on co-disruption 

of NRG1 [NRG1 × DISC1 × sex, F(2,52) = 15.23, p < 0.001; see Table 2]. 

 

Discussion 

 

Mice containing the NRG1 mutation displayed reduced anxiety-related behaviour and stress-

reactivity across several measures; these data are consistent with reports that NRG1 variation 

modulates behavioural and neuroendocrine responses to acute or chronic exposure to both 

physical and psychological stressors [17, 28, 41, 42]. The reduced heat pain sensitivity 

demonstrated by mice with disruption of NRG1, as indicated by increased latency in the hot 

plate test, is also in accordance with a previous report [45] and confirms that NRG1 has pro-

nociceptive functions. 

 

There is accumulating evidence that NRG1 also plays an important regulatory and 

neuroprotective role in the peripheral and central immune system [33, 46]. It has been shown 

that a schizophrenia-associated missense mutation [valine to leucine] within the 

transmembrane region of NRG1 is associated with increased IL6, TNF-α, and IL8 protein 

secretion levels in mutation carriers relative to controls [33].  Similarly, investigations into 
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interactions between DISC1 point mutations and gestational exposure to immune system 

insults suggest an important role for pro-inflammatory cytokines, particularly IL6, in the 

pathophysiology that leads to exacerbation of schizophrenia-related behaviours in these 

mutants [31]. In the present study, basal IL6, IL8 and TNF-α, as well as IL1β, IL2, and IL10, 

protein levels were altered in NRG1 mutants. Exposure to aversive situations and negative 

social interactions has been linked with higher pro-inflammatory cytokine levels, notably 

increased IL6 and the type II soluble receptor for TNF-α [10]. In the present study decreased 

stress reactivity, pain sensitivity and an anxiety-like profile in NRG1 mutants was accompanied 

by decreased basal pro-inflammatory cytokine levels. Evidence from human and animal studies 

suggests that inflammatory mechanisms and stress vulnerability may interactively determine 

the course of psychopathology [3, 9, 20, 25], including impacting on specific dimensions of 

pathology such as pain sensitivity [29]. In humans, higher levels of negative affect were 

associated with lower tolerance to pain during vaccine-induced low-grade inflammation [29], 

suggesting that changes in basal pro-inflammatory cytokine levels may also contribute to the 

reduced pain sensitivity and blunted stress responsivity observed in NRG1 mutant mice.  

 

Disruption of DISC1, but not of NRG1, in the absence of epistasis, was associated with 

increased basal serum pro-inflammatory cytokine levels in this model; that IL1, IL6, and TNF-

α levels were altered in DISC1 mutants may reflect the observed reduction in interaction 

between DISC1 and GSK3ß, as the latter plays an important role in the innate and adaptive 

immune response [5]. In contrast to NRG1-mediated decreases in basal cytokine levels, DISC1 

mutants displayed elevated basal IL6 levels which are consistent with the reported increase in 

the vulnerability to the behavioural and physiological effects of various stressors and immune 

insults in DISC1 mutant mice [1, 23, 31]. Of the pro-inflammatory cytokines shown to be 

increased in schizophrenia, IL-6 appears to play a central role in the inflammatory process and 
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has been associated with both the duration of the disorder and the resistance of patients to 

antipsychotic treatment [47]. 

 

Gene × gene interactions between NRG1 and DISC1 were detected on basal cytokine 

concentrations, where NRG1 mutation in combination with DISC1 deletion diminished the 

DISC1-specific increases in the pro-inflammatory cytokines IL6 and TNF-α observed in the 

absence of NRG1 mutation, but normalised DISC1-specific decreases in IL12. Although 

epistatic effects were not observed on pain sensitivity or stress-responsivity in the present 

study, the opposing effects of NRG1 × DISC1 epistasis on different cytokines may provide 

some insight into the divergent effects of these gene mutations on other physiological and 

behavioural pathological phenotypes. The balance between activation of Th1 (promoting cell-

mediated immunity and including IL12, IFN-γ, TNF-α) and Th2 (promoting humoral immunity 

and including IL6) immune cells determines the type of immune response and has been 

implicated to varying extents in immune-related pathology in schizophrenia. However, 

inconsistent reports relating to Th2 cytokine increases in schizophrenia patients has meant that 

the importance of Th1/Th2 balance in the pathophysiology of schizophrenia is still a matter of 

debate [30, 35, 39]. It is possible that the contradictory reports of Th1 and Th2 imbalances in 

schizophrenia may be partially linked to the varying contributions of schizophrenia risk genes 

in sampled human populations and the respective effects of these genes on the different 

populations of T helper cells and associated cytokines. Interestingly, first episode psychosis 

patients with depression have been shown to exhibit greater Th2 cytokine activation relative to 

those without depression [36] and may result from mutations of the DISC1 gene which is well-

established to impart phenotypes relevant to affective disorders [6]. 
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The genes associated with risk for schizophrenia display notable overlap with other psychiatric 

disorders, including candidate genes for anxiety and bipolar disorder [4, 12, 13, 21]. This 

provides a molecular genetic basis for clinical co-morbidity and symptom overlap, and may 

suggest cross-utility of pharmacological agents. It has been suggested that the overlap between 

schizophrenia and anxiety [8, 38] may have to do with reactivity and stress reactivity [4]. 

Immune system imbalances have also been implicated in the pathophysiology of these 

overlapping disorders where altered expression of neuro-immune genes and increased levels 

of cytokines are observed, especially in schizophrenia patients with comorbid depression [36]. 

Specifically, patients with first episode psychosis and comorbid depression exhibit increased 

circulating levels of IL-6 which are associated with lowered AKT1 expression, an interacting 

genetic partner of NRG1 [26], suggesting a direct correlation between neuro-immune genes, 

emotionality and cytokine profiles in these subsets of schizophrenia patients [36].  

 

In summary, these data suggest that the schizophrenia risk gene NRG1 impacts on stress-

responsivity, pain sensitivity and anxiety phenotypes in a manner that is independent of DISC1 

gene deletion, and correlates with effects on basal cytokine levels in these mice. Importantly, 

epistasis resulting from synergistic NRG1 and DISC1 gene mutations alters pro-inflammatory 

cytokines levels relative to the effects of each of these genes on inflammatory markers in 

isolation, highlighting the importance of epistatic mechanisms in immune-related pathology. 

Further investigation into NRG1 × DISC1 interactions on the immune system following more 

prolonged stress/immune challenge and the identification of common signalling pathways 

implicated in immune system dysregulation by these schizophrenia risk genes are warranted.  
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Figure and Table Legends 

Figure 1: (A) Increased hot plate latency in NRG1HET (* effect of NRG1 genotype, P < 0.05). 

(B) Latency to tail flick (TF). Data are expressed as means ± SEM. (C) Percentage (%) total 

time spent in the light chamber during the light-dark test in NRG1WT/ DISCWT, 

NRG1WT/DISC1HET, NRG1WT/ DISC1HOM, NRG1HET/DISC1WT, NRG1HET/DISC1HET, 

NRG1HET/ DISC1HOM. Increased % total time in the light chamber in NRG1HET, more 

pronounced in females (* effect of NRG1 genotype, P < 0.05). Data are expressed as means ± 

SEM. (D) Rectal temperature measure on two occasions: T1 (baseline), T2 (10-min post-

restraint stress). Attenuation in restraint stress-induced increase in body temperature in 

NRG1HET (* effect of NRG1 genotype, P < 0.05). Data are expressed as means ± SEM. Group 

sizes are detailed in Table 1. 
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Table 1: Group sizes and sequence of testing. In order to minimise potentially confounding 

litter effects, no more than 2 experimental mice of a single sex and genotype were drawn from 

the same litter. 

Table 1 

 

Cohort 

Procedure and 
Sequence 

NRG1 / DISC1 Genotype 

WT / WT WT / HET WT / HOM HET / WT HET / HET HET / HOM 

1 Hot Plate 

Tail flick 

Light dark test 

Stress-induced 
hypothermia 

9 m / 5 f 

9 m / 4 f 

10 m / 8 f 

9 m / 5 f 

8 m / 7 f 

6 m / 6 f 

7 m / 10 f 

8 m / 7 f 

7 m / 8 f 

7 m / 8 f 

6 m / 8 f 

7 m / 8 f 

8 m / 8 f 

6 m / 5 f 

7 m / 9 f 

8 m / 8 f 

9 m / 10 f 

10 m / 9 f 

8 m / 8 f 

9 m / 10 f 

9 m / 7 f 

8 m / 4 f 

7 m / 5 f 

9 m / 7 f 

2 Plasma Cytokine 
analysis 

4 m / 6 f 4 m / 6 f 5 m / 6 f 5 m / 6 f 6 m / 6 f 4 m / 6 f 
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Table 2: Concentrations (pg/ml) of serum cytokine levels in male and female 

NRG1WT/DISCWT, NRG1WT/DISC1HET, NRG1WT/DISC1HOM, NRG1HET/DISC1WT, 

NRG1HET/DISC1HET, NRG1HET/ DISC1HOM. Data are expressed as means  SEM. # # P < 0.01, 

effect of DISC1 genotype; ** P < 0.01, effect of NRG1 genotype; ‡ P < 0.01, NRG1 × DISC1 

interaction. 

Table 2 

NRG1 / 

DISC1  
WT / WT WT / HET WT / HOM HET / WT    HET / HET HET / HOM 

Females  (n=4) (n=4)  (n=5)  (n=5)  (n=6)  (n=4) 

IL10 153.4  34.6 103.6  36.15 47.0  19.1  22.1  2.3 ** 21.0  2.7
 
** 26.3  3.1

 
** 

IL1β 7.4  2.3 2.0  0.3 ## 2.5  0.2 ## 5.9  0.3
 
 5.2  0.3

 
 4.2  1.5

 
 

IL6 41.0  34.5 73.8  25.5 38.8  14.0 17.2  7.1
 
** 6.9  1.7 ** 

‡
 30.0  15.8 **

 ‡
 

TNF-α 2.1  0.6 1.1  0.2 1.3  0.2 2.1  0.3 2.3  0.1 2.0  0.3 

IFN-γ 1.7  0.4 6.5  2.2  3.2  1.1 2.8  0.3
 
 2.5  0.4

 
 2.7  0.5

 
 

IL8 41.9  3.3 59.9  1.7 68.3  7.2 44.8  6.7
 
** 39.0  1.4

 
** 55.9  11.1

 
** 

IL12 251.5  21.5 220.7  86.3 78.7  44.9 19.6  4.1
 
** 15.2  3.7

 
** 20.8  5.2

 
**

 

Males  (n=6) (n=6)  (n=6)  (n=6)  (n=6)  (n=6) 

IL10 32.9  6.9 25.6  3.6 21.9  1.2 26.9  8.0 29.4  5.0 31.7  1.3 

IL1β 4.9  2.0 6.5  0.7 6.9  0.6 5.4  0.1 ** 2.8  0.5 ** 2.9  0.4 ** 

IL6 17.5  4.3 25.8  17.1 22.7  10.0 11.5  5.3 23.2  3.0 22.4  6.0 

TNF-α 1.9  0.4 2.8  0.2 2.8  0.3 2.3  0.1 ** 1.3  0.2 ** 
‡ 

 1.7  0.2 ** 
‡
 

IFN-γ 7.3  4.1 2.9  0.2 2.6  0.2 3.5  0.6 2.5  0.2 2.7  1.2 

IL8 56.2  6.2 38.2  4.8 37.8  5.0 62.1  15.7 55.3  2.8 69.3  11.9 

IL12 45.1  15.6 23.9  5.2  18.4  3.3  30.6  19.1 32.6  13.8 ‡ 46.3  18.4 
‡

 

 

 

 

 


