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Resonant interactions of rotational water waves
in the equatorial f -plane approximation

B. Basu1,a) and C. I. Martin2,b)
1School of Engineering, Trinity College Dublin, Dublin 2, Ireland
2Department of Applied Mathematics, University College Cork, Western Road,
Western Gate Building, Cork, Ireland

(Received 27 February 2018; accepted 18 September 2018; published online 8 October 2018)

We investigate here the resonance phenomenon in periodic unidirectional water waves
in flows of constant vorticity governed by the equatorial f -plane approximation.
The relevance of such water waves displaying a one dimensional wave vector is
also underlined in the paper—in the context of equatorial capillary-gravity water
waves—and serves as the basis for the resonance analysis which is carried out by
means of dispersion relations for equatorial water waves that were quite recently
derived [see the work of Constantin, Differ. Integr. Equations 26(3-4), 237–252
(2013) and Martin, Nonlinear Anal.: Theory, Methods Appl. 96, 1–17 (2014)]. We
show that, while gravity water waves do not exhibit three-wave resonance, the four-
wave resonance occurs irrespective of the vorticity. Published by AIP Publishing.
https://doi.org/10.1063/1.5027027

I. INTRODUCTION

Simulation of water wave profiles is an essential component in several engineering investigations
and applications.27,48,49,54 Time-histories derived from simulations are used for various purposes such
as vibration control of offshore platforms and floating wind turbine structures5,26 or control of wave
energy converters for maximizing power output.43 These applications necessitate that the simulated
waveforms satisfy some physical characteristics which are observed from field measurements. Hence,
an empirical approach is usually followed in engineering applications by generating the waveforms
from the average spectra represented in the frequency domain, e.g., JONSWAP (Joint North Sea
Wave Project), satisfying some stochastic criteria.

The use of an empirical approach circumvents the difficulty associated with the generation of
wave profiles based on a rigorous theoretical description requiring the satisfaction of the equations
of fluid mechanics (e.g., momentum and continuity). Even when a mechanistic based approach is
followed for describing wave profiles, mostly a linear and in some cases a higher order nonlinear
wave theory is used. However, water waves, in general (described by Euler equations), and, those of
large amplitudes, in particular, are known to be highly nonlinear with a nonlinear free surface bound-
ary condition. In addition, the presence of currents makes the flow rotational too. These nonlinear,
rotational effects are usually unaccounted for in the applications mentioned earlier. Furthermore,
since the wave spectra contain waves of several frequencies (due to their panchromatic nature), the
possibility of the presence of nonlinear resonant interactions emerges. The intention of this paper is to
investigate these nonlinear interactions in rotational water waves with a view to inform the research
on engineering applications so that these effects can be incorporated for relevant applications as
necessary.

We are concerned here with two major aspects of the water wave propagation over flows exhibiting
constant vorticity and subjected to the Coriolis force. One of them regards the dimensionality of
such flows. More precisely, we show that capillary-gravity wave trains governed by the f -plane

a)Electronic mail: basub@tcd.ie.
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approximation near the equator propagate at the free surface of a water flow of constant non-zero
vorticity over a flat bed only if the flow is two dimensional. Our qualitative result enlarges the plethora
of the new findings concerning wave-current interactions in the f -plane approximation, direction of
research initiated by Constantin13 (see also Refs. 25, 31, 32, and 34).

The wave trains in flows with constant non-zero vorticity are possible only for two-dimensional
flows is a result proven first rigorously by Constantin and Kartashova8 for capillary waves and by
Constantin11 for gravity flows. The intermediate situation of wave trains for flows driven by gravity
and surface tension was clarified in Ref. 40. Studies showing the two-dimensionality of certain water
flows with constant non-zero vorticity were also performed by Stuhlmeier51 and Wahlén.53

The scenario of two-dimensional flows is of high significance, since it allows for in-depth studies
of wave-current interactions, a phenomenon that cannot be overlooked, given the ubiquity of cur-
rents in oceans and seas. Indeed, thorough analytical investigations of rotational two-dimensional
flows have been initiated during the last two decades by Constantin and co-authors and concern the
existence of solutions to the full nonlinear water wave problem,6,10,22 the regularity of solutions,12

the particularities of the flow beneath the surface wave pertaining to particle trajectories7 or to pres-
sure,1,2,4,9,19,30,33,52 and, more recently, the incorporation of geophysical effects,13–17,20,21 the aspect
that we will also consider here. The latter aspect is of fundamental importance when analyzing ocean
flows, since the effect of the Earth’s rotation manifests differently in the two Earth hemispheres.23,24

The impact of geophysical effects on the development of tsunamis was recently analysed in Ref. 29.
Moreover, high precision numerical simulations for the travelling waves in flows with constant

non-zero vorticity over a flat bed presented in Refs. 18 and 42 raise awareness on the significant
differences that occur between these flow patterns and the irrotational water-wave propagation; see
also the discussions in Refs. 8, 11, and 41.

The other facet that undergoes our investigation (and which becomes easier to be dealt with
due to the first aspect concerning dimensionality) is the resonant interaction between two or more
waves that combine to build a new one. This process, of resonant interaction, is one of the most
fundamental nonlinear phenomena that can happen between waves. It has a profound influence on
the waves evolution through the significant energy transfer among the dominant wave trains and
provides insights into the effects of weak turbulence, as emphasized in the studies of Pushkarev
and Zakharov45,46 and in the paper by Pushkarev, Resio and Zakharov47, for the context of
irrotational flows. A pioneering investigation on three-wave resonances in rotational water waves
was performed by Constantin and Kartashova,8 whose upshot was that rotational capillary waves do
exhibit three wave resonances. The latter does not occur in irrotational capillary waves, cf. Ref. 35.
The previous work was extended to rotational capillary-gravity water waves in Ref. 40. The resonance
problem for geophysical water waves in the equatorial f -plane approximation is considered in Sec. IV
of this paper following the discussion in Sec. III which shows the two-dimensionality of capillary-
gravity wave trains of constant vorticity in the equatorial f -plane approximation. We show that, while
gravity water waves do not exhibit three-wave resonance, the four-wave resonance occurs for arbitrary
values of the (constant) vorticity. The latter type of resonance has received constant attention over
the last decades.38,50 For a recent confirmation (of experimental nature) of the existence of four wave
resonances among gravity waves, we refer the reader to Ref. 3. A comprehensive account on water
wave resonances can be found in Refs. 36 and 37.

II. THE PHYSICS OF THE PROBLEM

This section is concerned with presenting the governing equations for equatorial capillary-gravity
water waves arising as the free surface of a rotational water flow of constant vorticity, of finite depth
d which is governed by the equatorial f -plane approximation, cf. Ref. 44. We choose a rotating
framework with the origin at a point on the Earth’s surface, with the x axis pointing horizontally
due East, the y-axis horizontally due North, while the z-axis is oriented upward. We will consider
here regular wave trains of water waves propagating steadily in the direction of the horizontal x axis,
periodic (of period L) in the variable x, and exhibiting no variation in the y direction. The latter
assumption does not mean that we consider two dimensional flows; this feature will emerge as a
consequence of the analysis performed hereafter.
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Consequently, the fluid domain is bounded below by the impermeable flat bed z = �d and above
by the free surface z = η(x � ct), where the function η gives the wave profile and c > 0 is the wave
speed. We will also assume that η has mean zero over one period, that is,∫ L

0
η(s) ds= 0. (1)

Without loss of generality, we may also assume that the wave crest is located at x = 0, which
corroborated with (1) yields η(0) > 0.

The governing equations in the f -plane approximation near the equator are the equation of
momentum conservation

ut + uux + vuy + wuz + 2ωw =− 1
ρPx,

vt + uvx + vvy + wvz =−
1
ρPy

wt + uwx + vwy + wwz − 2ωu =− 1
ρPz − g

(2)

and the equation of mass conservation

ux + vy + wz = 0. (3)

Here (u, v , w) is the velocity field, t is the time variable, P represents the pressure in the fluid, ρ
denotes the density, g is the constant acceleration of gravity, and ω = 73 × 10�6 rad/s is the constant
rotational speed of the Earth round the polar axis.

To single out the water wave problem from a vast range of the hydrodynamical ones, we impose
the kinematic boundary conditions

w = (u − c)ηx on z= η(x − ct) (4)

and
w = 0 on z=−d, (5)

together with the surface boundary condition

P=Patm − σ
ηxx

(1 + η2
x )3/2

on z= η(x − ct). (6)

An essential feature of most water flows—especially of those in the equatorial zone of the
ocean—is the presence of vorticity Ω(x, y, z, t), defined as the curl of the velocity field, that is,

Ω= (wy − vz, uz − wx, vx − uy). (7)

Taking the curl in (2), we obtain the following evolution equation for the vorticity:

Ωt + (u · ∇)Ω − 2ω
(
uy, vy, wy

)
= (Ω · ∇)u. (8)

Remark II.1. Throughout the paper, we shall work under the assumption that Ω2 + 2ω , 0. This
is a reasonable assumption, sinceω ≈ 0.73× 10�4 rad/s, while a typical value for Ω2 in the equatorial
Pacific is 25 × 10�3 s�1, cf. Ref. 13.

III. THE RELEVANT DIMENSION FOR EQUATORIAL CAPILLARY-GRAVITY WAVE TRAINS

With the considerations of Sec. II in mind, we can formulate the following result on the
dimensionality of capillary-gravity wave trains:

Theorem III.1. Capillary-gravity wave trains propagate at the free surface of a water flow over
a flat bed governed by Eqs. (2)–(6) exhibiting a constant vorticity only if the flow is two dimensional.
More precisely, the velocity field (u, v , w) and the pressure P are independent of the variable y, and
Ω1 = Ω3 = 0.

a. Proof. The assumption of constant vorticity and Eq. (8) provides us with the equation

(Ω · ∇)u + 2ω(uy, vy, wy)= 0. (9)
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Our intention in the first step is to prove that Ω3 = 0. We assume for the sake of contradiction that
Ω3 , 0. Arguing similarly as in Ref. 11, using (9) and the kinematic boundary condition (5), we
obtain that w = 0 throughout the fluid domain. Hence, from (7), it follows that the identities

uz =Ω2 and vz =−Ω1 (10)

hold within the fluid domain. Integrating in (10) with respect to z, we infer the existence of two
functions u= u(x, y, t) and v = v(x, y, t) such that

u(x, y, z, t)= u(x, y, t) +Ω2z,
v(x, y, z, t)= v(x, y, t) −Ω1z.

(11)

With the help of (3), we see that u, v satisfy

ux + vy = 0,

a relation which provides us with a function ψ(x, y, t) satisfying

u=ψy, v =−ψx. (12)

We further deduce that
ψxx + ψyy =−Ω3 (13)

and
Ω1ψxy + (Ω2 + 2ω)ψyy +Ω2Ω3 = 0,
−Ω1ψxx − (Ω2 + 2ω)ψxy −Ω1Ω3 = 0.

(14)

Equations (13) and (14) yield

ψxx =
−Ω2

1Ω3 − 2ω(Ω2 + 2ω)Ω3

Ω2
1 + (Ω2 + 2ω)2

, (15)

ψxy =−
Ω1Ω2Ω3

Ω2
1 + (Ω2 + 2ω)2

, (16)

ψyy =−
Ω2(Ω2 + 2ω)Ω3

Ω2
1 + (Ω2 + 2ω)2

. (17)

Therefore, the function ψ has the following structure:

ψ(x, y, t)=Ax2 + Bxy + Cy2 + a(t)x + b(t)y + c(t), (18)

where

A=
1
2
·
−Ω2

1Ω3 − 2ω(Ω2 + 2ω)Ω3

Ω2
1 + (Ω2 + 2ω)2

,

B=−
Ω1Ω2Ω3

Ω2
1 + (Ω2 + 2ω)2

,

C =−
1
2
·
Ω2(Ω2 + 2ω)Ω3

Ω2
1 + (Ω2 + 2ω)2

,

and a, b, and c are the functions depending only on t. Consequently, using the kinematic boundary
condition (4), we obtain that the equation[

−c + Bx + 2Cy + b(t) +Ω2η(x − ct)
]
η ′(x − ct)= 0 (19)

is valid for all x, y, and t. Owing to the free surface being non flat, we immediately conclude from
the above that C = 0. The latter and the assumption from Remark II.1 yield that

Ω2 = 0, B= 0, and A=−
Ω3

2
.

Referring to Eq. (19), we see that the function b equals identically the constant wave speed c. This
renders the velocity field in the form

u(x, y, z, t) = c,
v(x, y, z, t) = Ω3x −Ω1z − a(t),
w(x, y, z, t) = 0,

(20)
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for all x, y, z that belong to the fluid domain at time t. The third equation in (2) yields that the pressure
P can be written as

P(x, y, z, t)= p(x, y, t) + ρ(2ωc − g)z, (21)

for some function p(x, y, t), which, owing to the first and second equations in (2), satisfies

px =Px ≡ 0 and py =Py = ρ(a′(t) − cΩ3).

The latter equation and (21) yield the quite explicit formula for the pressure

P(x, y, z, t)= ρ(a′(t) − cΩ3)y + ρ(2ωc − g)z + p(t), (22)

for some function p. By means of the free surface boundary condition (6), we see that the relation

Patm + ρ(g − 2ωc)η(x − ct) − σ
ηxx(x)

(1 + η2
x (x))3/2

= ρ(a′(t) − cΩ3)y + p(t) (23)

holds true for all x, y, t. Thus, a′(t) � cΩ3 = 0, and

ρ(g − 2ωc)η(x − ct) − σ
ηxx(x)

(1 + η2
x (x))3/2

= p(t) − Patm, (24)

for all x and t. Using the periodicity of the function

x→
ηx(x)√

1 + η2
x (x)

and taking into account the zero mean property of η from (1), we obtain upon integration from 0 to
L in (24) that

ρ(g − 2ωc)η(x)=σ
ηxx(x)

(1 + η2
x (x))3/2

for all x. (25)

We use the continuity of η and conclude from η(0) > 0 that η(x) > 0 in a neighborhood centered
about the wave crest located at x = 0. Using g � 2ωc > 0, we deduce from (25) that ηxx > 0 in a
neighborhood of x = 0. The latter yields that η is convex in a neighborhood of x = 0, which contradicts
the maximality of η at the crest. The latter contradiction implies that Ω3 = 0. Hence,

vx − uy = 0,

which implies the existence of a function ϕ(x, y, z, t) with

ϕx = u, ϕy = v .

In addition, using Ω1 = wy � vz and Ω2 = uz � wx, we infer the existence of a function ϕ(x, y, z, t)
such that

w = ϕz +Ω1y −Ω2x, u= ϕx, and v = ϕy. (26)

The equation of mass conservation (3) transforms, by means of (26), to

ϕxx + ϕyy + ϕzz = 0, (27)

which, differentiated with respect to z, renders w a harmonic function. This discussion is targeted at
showing Ω1 = 0. We will assume, as before, that Ω1 , 0. This immediately implies that the vectors
(Ω1, Ω2 + 2ω, 0) and (0, 1, 0)—the latter giving the direction of the trough line,

LB {(x0, y, η(x0, t0)) : y ∈R},

located at some position x0 at some moment t0—are orthogonal and thus linearly independent. Since
ηx(x0) = 0, we have from the kinematic boundary condition (4) that w = 0 along the line L. Using
Ω3 = 0, we can write the third equation in the vorticity equation (9) as

Ω1wx + (Ω2 + 2ω)wy = 0, (28)

which is a restatement of the fact that w is constant along the vector (Ω1, Ω2 + 2ω, 0). The previous
considerations now show that w = 0 at all points of the plane z = η(x0, t) which is parallel to the flat
bed and completely contained in the fluid domain. By means of the Phragmen-Lindelöf maximum
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principle, cf. Ref. 28—since w vanishes on z = �d and on z = η(x0, t)—we conclude that w = 0 in the
region of the fluid domain bounded below by the bed and above by the plane z = η(x0, t). Moreover,
since w is harmonic, it is also real-analytic at any instant t, cf. Ref. 28. Thus, since w = 0 on an open
set, it must vanish on the whole fluid domain. A first consequence of the vanishing of w is that we
have again a splitting of the velocity components u and v of the kind from (11). Moreover, a similar
argument as in the beginning of the proof yields the existence of a function ψ(x, y, t) satisfying

ψxx + ψyy = 0, (29)

and
Ω1ψxy + (Ω2 + 2ω)ψyy = 0,
−Ω1ψxx − (Ω2 + 2ω)ψxy = 0,

(30)

relations that give
ψxx =ψxy =ψyy = 0

within the fluid domain. Hence, there are functions A(t), B(t), and C(t) such that

ψ(x, y, t)=A(t)x + B(t)y + C(t) for all x, y, t. (31)

The kinematic condition (4) delivers for all x and t the equation

[B(t) +Ω2η(x − ct) − c]η ′(x − ct)= 0,

from which we readily infer that B(t) ≡ 0 and Ω2 = 0. Using the latter two facts and (11), we deduce
that

u≡ c and v =−A(t) −Ω1z. (32)

The previous considerations lead to equations similar to those in (24) and (25) that drive us to a
contradiction. This contradiction implies now that Ω1 = 0. We are now ready to prove that the y
component of the velocity field is in fact constant. To this end, notice first that the vorticity equation
(9) appears like

(Ω2 + 2ω)uy = (Ω2 + 2ω)vy = (Ω2 + 2ω)wy = 0, (33)

which, in conjunction with Remark II.1, implies that

uy = vy = wy = 0.

Since
Ω1 = wy − vz = 0, Ω3 = vx − uy = 0,

we also infer [using (33)] that
vx = vz = 0.

We are going to prove that v is also independent of t. To this end, we assume for a moment that
v is a function of t. We consider the second equation in (2) and derive that the pressure function
satisfies

P(x, y, z, t)=−ρvt(t)y + f1(x, z) + f2(t).

From the dynamic boundary condition (6), we infer that the equality

−ρvt(t)y + f1(x, η(x, t)) + f2(t)=Patm − σ
ηxx

(1 + η2
x (x))3/2

holds true for all x, y, and t. Consequently, vt(t) = 0 for all t. From the second equation in (2), we
conclude that Py = 0. ◽

IV. RESONANCES FOR EQUATORIAL GRAVITY WAVES
IN THE f -PLANE APPROXIMATION

We are concerned in this section with the three-wave resonance problem for rotational flows
and incorporating geophysical effects. While the geophysical effects were not considered before, the
vorticity was taken into account in the resonance problem also very recently in Refs. 8 and 40 for
capillary and capillary-gravity water waves, respectively. Another upshot of the previous studies was
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that the number of positive vorticities that trigger a resonance is countable and the size of such a
positive constant vorticity is not too small.

We start by recalling from Ref. 39 the dispersion relation for capillary-gravity water waves in the
f -plane approximation which propagate at the free surface of a water flow of mean depth h > 0, of
constant non-vanishing vorticity γ, and of constant density ρ = 1 and exhibiting a current of strength
u0 at the bed. It states that the frequency corresponding to the wave number k is

f(k)B (u0 + γh)k −
(
ω +

γ

2

)
tanh(kh)

+
1
2

√
(2ω + γ)2 tanh2(kh) + 4[k(g − 2ω(u0 + γh)) + k3σ] tanh(kh), (34)

provided we bear in mind that the preferred East-West direction of propagation of the surface wave in
the equatorial regime. In the above formula, g is the gravitational acceleration, σ > 0 is the coefficient
of surface tension, and k B |k| is the length of the wave vector.

A. Three-wave resonances

Considering gravity water waves, a vanishing underlying bottom current, and realistic ocean
depths h [for which tanh(kh) u 1], the formula for the frequency we will effectively work with is

f(k)B γhk −
(
ω +

γ

2

)
+

1
2

√
(2ω + γ)2 + 4k(g − 2ωhγ). (35)

The three-wave resonance problem amounts to showing that the system

f(k1) + f(k2) = f(k3),
k1 + k2 = k3

(36)

admits solutions of the dispersion relation (35). Relying on the main result of Sec. IV, we will assume
here that the wave vectors we work with are one dimensional, which amounts to setting k = k. Thus,
the system (36) becomes equivalent to√

(2ω + γ)2 + 4k1(g − 2ωhγ) +
√

(2ω + γ)2 + 4k2(g − 2ωhγ)
= 2ω + γ +

√
(2ω + γ)2 + 4k3(g − 2ωhγ),

k1 + k2 = k3.
(37)

By squaring the first relation in (37) and taking into account the second one, we obtain
[
(2ω + γ)2 + 4k1(g − 2ωhγ)

]
·
[
(2ω + γ)2 + 4k2(g − 2ωhγ)

]
= (2ω + γ)2

[
(2ω + γ)2 + 4k3(g − 2ωhγ)

]
,

a relation that is equivalent to
16k1k2(g − 2ωhγ)2 = 0,

which does not hold, given the size of the physical quantities g, ω, h, γ. Thus, the three-wave
resonances of equatorial gravity water waves in the f -plane approximation are not possible.

B. Four-wave resonances

The four-wave resonance problem amounts to find positive integers k1, k2, k3, k4 satisfying

f(k1) + f(k2) = f(k3) + f(k4),
k1 + k2 = k3 + k4,

(38)

which is equivalent to√
(2ω + γ)2 + 4k1(g − 2ωhγ) +

√
(2ω + γ)2 + 4k2(g − 2ωhγ)

=
√

(2ω + γ)2 + 4k3(g − 2ωhγ) +
√

(2ω + γ)2 + 4k4(g − 2ωhγ),
k1 + k2 = k3 + k4.

(39)

Squaring the first relation in (39) and using the second one, we find out that the above system is
equivalent to the system

k1k2 = k3k4 and k1 + k2 = k3 + k4,

which has (regardless of the vorticity γ) the tuples (k1, k2, k1, k2) and (k1, k2, k2, k1) as the only
possible solutions, with k1, k2 positive integers.
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C. Remark

It is observed that a four wave resonance is feasible for gravity water waves irrespective of
vorticity. Hence, this can impact on the panchromatic wave profiles (with multiple frequencies), and
this nonlinearity should be accounted for in simulations from the empirical spectra.
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