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Abstract 

Heating, ventilation, air conditioning (HVAC) systems are significant consumers of 

energy, however building management systems do not typically operate them in 

accordance with occupant movements. Due to the delayed response of HVAC 

systems, prediction of occupant locations is necessary to maximize energy 

efficiency. We present an approach to occupant location prediction based on 

association rule mining, allowing prediction based on historical occupant locations. 

Association rule mining is a machine learning technique designed to find any 

correlations which exist in a given dataset. Occupant location datasets have a 

number of properties which differentiate them from the market basket datasets 

that association rule mining was originally designed for. This thesis adapts the 

approach to suit such datasets, focusing the rule mining process on patterns which 

are useful for location prediction. This approach, named OccApriori, allows for the 

prediction of occupants’ next locations as well as their locations further in the 

future, and can take into account any available data, for example the day of the 

week, the recent movements of the occupant, and timetable data. By integrating an 

existing extension of association rule mining into the approach, it is able to make 

predictions based on general classes of locations as well as specific locations. 
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1. Introduction 

1.1. Motivation 

Buildings are significant consumers of energy in industrialised countries. Recent 

figures show that commercial and residential buildings are responsible for 41% of 

total energy consumption in the US (EIA 2015) and 39% in the EU (Eurostat 2014). 

In non-domestic buildings, Heating, Ventilation and Air Conditioning (HVAC) 

systems, which control the temperature and air quality in buildings, are estimated 

to be responsible for up to 57% of energy consumption (Pérez-Lombard et al. 

2008). Traditionally buildings are controlled under the assumption of fixed 

occupancy patterns, with HVAC systems operating on a fixed schedule, regardless 

of the actual use of the building. If HVAC schedules could be set based on the actual 

occupancy patterns, energy savings of up to 40% would be possible (Nguyen et al. 

2013). 

Heating and cooling systems cannot respond instantly, so to take occupant 

movements into account when controlling the building, the occupants’ movements 

must be predicted in advance. The HVAC system may include micro level actuators 

which respond quickly, for example electric heaters, or building-wide 

heating/cooling systems which respond slower, for example overnight heating or 

cooling of the building’s thermal mass. Thus depending on the system, it may be 

necessary to make predictions into the near future, such as occupants’ next 

locations, or further into the future, such as occupants’ movements throughout the 

day tomorrow. Such a prediction system should be able to predict occupancy at the 
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bulk and individual levels. Bulk predictions are necessary as knowing the total 

number of occupants that will be in the building tells us what the total load on the 

HVAC system will be. Data on future movements of individuals on the other hand 

allows us to avoid wasting energy through unnecessary heating or cooling without 

discomforting the individual. 

Prediction of occupants’ future locations necessitates data on their current 

locations, which can be recorded to create a database of historical occupant 

locations. An increasing amount of data on occupant movement in buildings is 

becoming available, from both dedicated tracking systems and using existing 

infrastructure. Examples which can potentially provide room-level granularity 

include the use of wireless access points (Melfi et al. 2011), radio frequency 

Identification (RFID) tags (S. Li et al. 2011), passive infrared (PIR) sensors (Yun et al. 

2014), cameras (Corvee et al. 2012) and mobile phone masts (Otsason et al. 2007). 

Swipe card systems implicitly track occupants as they record entrances and exits for 

security reasons. Online calendars and room booking systems store information on 

where occupants are supposed to be in the future. Any system which can record 

occupants’ locations throughout the day is sufficient to provide the data needed to 

make predictions, though more predictions are possible if real time updates on 

occupants’ current locations and data on where occupants are going to be are also 

available. 

Occupant behaviour can depend on many factors including: Time of day, day of 

week, recent movements, earlier movements, time spent at current location, etc. 

Their behaviour can also relate to unpredictable factors, such as being summoned 

for an ad-hoc meeting or non-work-related events. An occupant prediction system 

should be able to determine which factors in the dataset correlate with occupants’ 

behaviour, individually or as a whole, and leverage that data when making 

predictions. Extra data, for example schedule data from an online calendar system, 

may also be provided, and should be incorporated into the predictions when 

available. 
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Association rule mining, introduced in (Agrawal et al. 1993), is a data mining 

technique designed to find all frequent patterns in a dataset in an unsupervised 

fashion. In the context of a dataset containing historical occupant movements, this 

approach should find any and all patterns in the occupants’ movements. This is a 

suitable basis for the approach presented in this thesis as the aim is not any one 

type of prediction – the approach may need to predict any occupant’s location at 

any time, with differing data available on which to base the prediction. Finding all 

the patterns in the dataset accommodates this. This also allows for predictions into 

both the near and distant future, assuming that there are patterns to the 

occupants’ movements which allow for such a range of predictions, because the 

difference between these types of predictions is simply the presence or absence of 

real-time tracking data. Finally, association rules are an established approach to 

data mining, with a number of extensions to find new types of patterns, which can 

easily be applied to occupant location prediction once the base approach is in 

place. 

1.2. Research Goals and Contributions 

The goal of this research is to extend association rule mining such that it can predict 

patterns of occupancy in buildings. The extended algorithm should match or exceed 

the accuracy of existing approaches, while also making a wider variety of 

predictions. The hypothesis of this thesis is as follows: 

Association rule mining can be applied to data on the past movements 

of a building’s occupants, generating rules which predict their future 

locations. Such an algorithm can be modified to take account of the 

specific attributes and metadata that occupancy data includes in order 

to reach higher accuracy. Furthermore the algorithm can be extended to 

learn more general concepts and sequences in the data to extend the 

range of patterns which are found and can be used for prediction. 
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The contributions of this research are: 

- Mining patterns specific to occupant location prediction 

Association rule mining, being an unsupervised process, can be applied to 

appropriately formatted occupancy data as-is, and will generate a set of 

rules with some degree of predictive power. However, some types of useful 

patterns will not be found, while some types of useless patterns will. This 

thesis investigates these failures and by modifying the algorithm to find 

more useful patterns, while excluding unnecessary ones, brings the 

predictive power up to par with existing approaches, while keeping the 

flexibility of the approach. 

 
- Learning pure location sequences with association rules 

While predictions are usually occupant locations at specific times of day, for 

some types of occupant their recent locations, ignoring time of day, are the 

most reliable predictor. This thesis investigates the difficulty in learning 

sequences of locations independent of the time of day with association 

rules, and modifies the association rule mining algorithm to learn these 

patterns to produce sets of rules containing both types of prediction. 

 
- Learning general location patterns 

One of the strengths of association rule mining is that there is existing work 

which extends the approach in various ways. An example is generalised 

association rules, which are designed to find general patterns which apply to 

multiple specific items. This thesis applies these generalised rules to 

occupant prediction to increase prediction accuracy by making types of 

prediction which could not be made before. 

 
- Frequency based occupant model 

Building on established work in occupant modelling, this thesis develops a 

synthetic dataset generator which is, like the prediction method, based on 

occupants’ historical location frequency throughout the day. A detailed 

evaluation is performed on a model of a set of real occupants to show that 

the model can capture realistic occupancy patterns. 
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1.3. Thesis Outline 

The rest of this thesis is structured as follows. Chapter 2 provides background and 

discusses related work in the areas of association rule mining, occupant location 

prediction and occupant modelling. 

Chapter 3 details the datasets used in evaluating OccApriori. The evaluation uses 

two collected datasets, one of which was collected externally and has been used for 

similar evaluations in the past, the other collected by several occupants in UCC for 

the purposes of this research. The chapter then develops an occupant model, 

including the structure of the model itself and an overview of the process of 

modelling the occupants from the UCC dataset, and close with an evaluation of the 

similarity of the location data generated by that model and the original dataset. 

Chapter 4 discusses the application of association rule mining to occupant 

prediction in detail, opening with an overview of the issues which arise when the 

unmodified algorithm is used for the task. It follows with a description of OccApriori 

in detail, starting with the structure applied to the occupancy data in order to be 

able to make useful predictions, and moving on to solutions to each of the issues 

identified with the unmodified algorithm. The chapter then evaluates OccApriori 

and several existing approaches on the two collected datasets, showing that 

OccApriori can match their accuracy on the type of predictions they make on one of 

the datasets. On the other dataset, the extremely variable movements of the 

occupants prove difficult for OccApriori to predict. This chapter briefly discuss this 

issue, and then closes with an evaluation of the contribution each component of 

the algorithm to the final accuracy. 

Chapter 5 addresses the issue of predicting more variable occupant movements 

introduced in the previous chapter. It starts by discussing in detail why OccApriori 

has difficulty with these occupants, while other approaches are able to predict 

them with a high degree of accuracy. With the issue identified, it proposes a new 

type of rule that encapsulates sequences of locations independent of any particular 

time of day. Such rules can capture the movement patterns of and successfully 

predict these occupants. The chapter then describes the modifications to the 
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algorithm necessary to mine these new rules, and evaluates their performance, 

finding that OccApriori can now match existing approaches on the more variable 

occupants. 

Chapter 6 discusses the application of generalised association rules to occupant 

prediction. It examines two cases in particular; one where the aim is to make a 

generalised prediction of the occupant’s future location, and another where the 

aim is to use general patterns in the past to make exact future predictions that 

wouldn’t otherwise be possible. It then details the application of generalised 

association rule mining to these problems using OccApriori, and show how the 

generalised rules allow for the extra predictions. As neither of the collected 

datasets contains sufficient examples of the two types of prediction discussed, the 

model of the UCC occupants from Chapter 3 is modified to include such examples. 

The chapter closes with an evaluation of the performance of OccApriori with and 

without the generalisation enabled, showing that OccApriori works as proposed on 

a practical example. 

Chapter 7 closes the thesis with a discussion of the work presented and of potential 

avenues of future research in this area. 

The software implemented during this research and the anonymised version of the 

collected occupant location dataset can be found at (Ryan 2015). Some of this work 

has already been published in peer-reviewed publications: 

Ryan, Conor, and Kenneth N Brown. 2012. “Occupant Location Prediction Using 
Association Rule Mining.” In Proceedings of Workshop on AI Problems and 

Approaches for Intelligent Environments, 27–32. (Ryan et al. 2012) 

This paper contains parts of Chapters 3 and 4. 

Ryan, Conor, and Kenneth N Brown. 2013. “Predicting Occupant Locations Using 
Association Rule Mining.” In Research and Development in Intelligent Systems 

XXX, 63–77. (Ryan et al. 2013) 

This paper contains parts of Chapters 4 and 5. 
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2. Related Work 

This chapter provides background and discusses existing work in the areas of 

occupant location prediction, association rule mining, and occupant modelling. 

Section 2.1 discusses the state of the art in occupant location prediction with a 

focus on approaches which, as is the aim of this thesis, can predict occupants 

further into the future than their next location or use additional context such as the 

time of day or day of week when making predictions. It also describes in detail 

several next location prediction approaches which are compared against in the 

evaluations in later chapters. Section 2.2 provides an overview of what association 

rule mining is and what it is used for. This is followed by a description of the 

association rule mining algorithm which the approach in this thesis is built on, as 

well as descriptions of some other well-known algorithms. Section 2.3 follows with 

an overview of several extensions of association rule mining which find extra types 

of rules that may be useful for occupant location prediction. Section 2.4 provides an 

overview of work on occupant modelling, focusing on models which capture the 

level of detail in occupant movements which this thesis aims to learn and predict. 

2.1. Occupant Location Prediction 

This section discusses various existing approaches to occupant location prediction. 

The priorities of these approaches vary, and so they make different types of 

prediction using different data. The approaches discussed are broken down into 

four general classes, and presented in order of relevance to the approach 

developed in this thesis. Section 2.1.1 discusses approaches which focus on 
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predicting occupant location in the future, i.e. their location significantly later on 

the current day or on future days, for example where an occupant will be tomorrow 

at 3pm. By contrast the approaches in section 2.1.2 focus more on prediction in the 

nearer future, such as an occupant’s next location after their current location, but 

use more context when making their predictions, for example prediction the next 

location based on the occupant’s duration of stay in the current location. In section 

2.1.3 older approaches are covered which focused purely on predicting the 

occupants’ next locations with limited context, and finally section 2.1.4 briefly 

discusses work which extends beyond prediction of occupants of office-type 

buildings. 

2.1.1. Future Location Prediction 

Relatively few approaches focus on predicting occupants’ locations in the future. 

One such approach is (Furey et al. 2012), which uses a discrete Bayesian filter to 

predict occupant movements as part of the HABITS occupant tracking system. The 

focus of the approach is occupant location tracking, the intention being to fill in 

gaps in imperfect existing tracking systems. For example, if tracking an occupant 

based on the wireless access points (APs) they are in proximity to, they may be 

temporarily not be in range of the number of APs required to give accurate location 

data. At this point HABITS predicts their movements to fill in the blind spot. The 

system can factor in real-time tracking data, the topology of the locations in 

question and, as the name suggests, the habitual patterns of the occupants when 

making a prediction. 

The system is also capable of making location predictions further into the future. 

The habitual element of the system is based on the concept of “preferred paths” – 

repeated journeys occupants make from one node to another (not necessarily 

adjacent) node. These preferred paths inform the system when it is trying to predict 

occupant movements in real time by determining if they are following a preferred 

path, but the system can also determine from the historical data the likelihood that 

occupants will follow these paths in the future. 
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The authors break the day down into three time periods, morning, lunch and 

evening. From the historical data, the system can learn the frequency, and 

therefore probability, with which occupants follow each preferred path in each 

time period on each day of the week. Their attempts to predict occupants on this 

basis results in an overall accuracy of 70%, varying from 55%-82% per occupant. 

In (S. Y. Kim et al. 2014) individual’s locations are predicted based on personality 

factors using a neural network. Based on previous work in (H. Kim et al. 2012), 

location data recorded by the mobile devices of five volunteers is clustered into 

significant locations, resulting in a probability profile of presence in each of three 

locations (School, House and Etc.) across the 24-hour day. For the same five 

volunteers personality factors are collected using a questionnaire. Using the 

probability profiles and associated personality factors as input, back propagation is 

then used to train a neural network to predict the probability of presence in each 

location based on the personality factors of the target individual. 

This approach is capable of predicting the likelihood of an individual being at each 

of the three locations at any given hour, as long as their personality factors are 

known. Unusually, the identity of the target occupant is not an input when making 

the prediction; individual occupant patterns are not learned, only the personality 

factors and the target time are inputs. The approach is evaluated on the same 

individuals used to train it. While no quantitative measure of accuracy is given, the 

actual and predicted profiles of presence for each participant are shown, and in 

general the predictions achieve a good fit to the source data. 

Non-linear time series analysis is applied to historical location data in (Scellato et al. 

2011) to predict future times of arrival and durations of stay at significant locations. 

For each individual, their history of visits to their significant locations is broken 

down into two time series per location, one series comprising the visit start times 

and the other the visit durations. Given a sequence of recent visit times for a 

location, future visit times are predicted by finding similar sequences of visit times 

earlier in the visit time time series, and averaging the times which follow those 

sequences. The next � visit times can be predicted, but as � increases the 
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prediction accuracy may drop. Durations are predicted by averaging the durations 

which correspond with the times used for the time prediction. 

While this approach cannot make a direct prediction of an individual’s location at a 

given time in the future, such predictions can be extrapolated as follows. For each 

of the target individual’s significant locations, a sequence of next visit times and 

durations is predicted such that the sequence extends past the target time. The 

sequences are then checked for a visit which occurs during the target time. If such a 

visit exists, its location is predicted. If multiple visits are predicted to occur at the 

target time, one of the locations is randomly selected. If no visit matches the target 

time, the occupant is predicted to not be at a significant location. 

The approach is evaluated on four datasets, each of which have their location data 

broken down into significant locations. Individuals spend a maximum average of 

15% of their time in significant locations across the four datasets. Due to this, 

accuracy is only considered for predictions of being in a significant location; with 

85%+ of the data being outside the significant locations, including predictions of 

individuals being outside their significant locations in the accuracy could skew the 

value. The approach is evaluated predicting a range of amounts of time into the 

future. It achieves over 90% accuracy on the most predictable dataset for 

predictions five minutes into the future, dropping to just under 80% at an hour. The 

longest time tested was eight hours, at which point the maximum accuracy 

achieved was approximately 50%. 

In (Burbey et al. 2008) a variable-order Markov model is used in different 

configurations to predict occupants’ next locations and future locations. A Markov 

model predicts the next element in a sequence based on the most recent � 

elements, � being the order of the model. The approach uses the Prediction-By-

Partial-Match algorithm, which lowers the order of the model if it cannot make a 

prediction at the current order. The dataset on which the model is trained and 

tested is formatted as a sequence of the form 

�����, �	
���	��, ������, �	
���	��� …, where the times are regular ten-minute 

timestamps. First-order and third-order Markov models are considered in the 
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paper. The first order model can predict an occupant’s location given a timestamp 

as context, while the third order model can predict a location given the target 

timestamp, the previous timestamp, and the previous location as context. The 

model can also fall back to a ‘zeroth-order’ where the most frequent location is 

predicted with no context, if no other prediction can be made. 

 

Figure 2-1 – Example output from the first-order Markov predictor from (Burbey et al. 2008) 

As the model is based on the sequence of (time, location) pairs, the third order 

model only predicts the occupant’s next location. However the first order model 

has no context aside from the target timestamp, and thus doesn’t differentiate 

between predicting the next location and future locations. However, as it has no 

further context, it can only predict the location that the occupant was most 

frequently in at the target time. Further context cannot be easily added, as adding 

context actually involves creating a new higher order model with a whole new set 

of possible states. 

The work is extended in (Burbey 2011) to consider the question of when an 

occupant will be in a specific location. The Markov model performs poorly (~10% 

accuracy) for this type of prediction, as when asking for a time rather than a 

location there are many more possible answers and it is harder to determine the 
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correct one. If an occupant is almost always in their office from 09:00 until 12:00 for 

example, asking where they are most likely to be at 10:00 is easily answered, but 

asking when they are most likely to be in their office would result in every 

timestamp from 09:00 to 12:00 inclusive as a an equally likely answer. 

In the same work the “Traversing the Sequence” model, also known as “SEQ” 

model, is proposed. In this model the occupant location data is a sequence of 

(arrival time, location) pairs (as opposed to arbitrary timestamps and corresponding 

locations). Rather than learning the most probable output for each possible input as 

in the case of the Markov model, the SEQ approach goes through the original 

dataset when a request for a prediction is made, searching for sequences which 

match the context given. During the search process each instance is processed by a 

short algorithm which determines if the instance matches, and what its answer is if 

it does. As with the Markov model, the SEQ model allows different items of context, 

with the algorithm varying slightly depending on the context as follows. 

The model can be zeroth order with no context, in which case instances which 

include the target location are searched for, and the times at which it occurs in each 

instance are recorded. The first order model takes a context time or location and 

searches for instances which contain the target location preceded by the context 

time/location. The first time the target location appears after the context is 

recorded. As locations can repeat, a single instance may match more than once if 

the context is a location, i.e. there are two first times location B appears after 

location A if the occupant visits A  and B twice, in which case both times would be 

recorded. The second order model takes both a context location and time. When 

considering each instance, the algorithm first checks that the target location occurs. 

It then selects the latest timestamp in the instance which is earlier than the context 

time. This fuzzy match alleviates the issue of exact timestamps not matching, for 

example the arrival times 10am and 12am are in an instance, and the context is 

11am, in which case 10am would be selected. Finally the algorithm searches for the 

context location in between the selected timestamp and the first occurrence of the 

target location after that timestamp. If all these steps are successful the instance is 

considered a match, and the aforementioned first occurrence of the target 
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location’s time is recorded. In all cases, once the times have been recorded from 

each instance which matches the context as described, the most frequent time is 

predicted. 

The first-order Markov model achieved 87% accuracy in predicting occupant 

locations on data which recorded each occupant’s location in ten minute blocks. 

The work also considers a version of the dataset which records the occupant’s 

location every minute, on which the accuracy is lower at 78%. This is because it is 

easier to predict, for example, that an occupant will be out at 07:50 and in at 08:00 

than it is to predict that they will be out at 07:58 and in at 07:59, due to the greater 

number of possible answers and greater variability in location transition time at 

one-minute granularity. The highest accuracy achieved by the SEQ model was 92% 

correct to within 20 minutes on the ten minute data with the zeroth order model, 

with the extra context provided to the higher order models lowering the accuracy. 

The highest accuracy on the one minute data was again the zeroth order model, 

getting 77% correct to within 20 minutes. 

In (Vu et al. 2011) a Naïve Bayesian classifier is used to predict individuals’ future 

locations, durations of stay and who they will come in contact with. For the location 

prediction the features used are the type of day (weekday or weekend) and the 

timeslot (2 hour timeslots starting at 00:00), with the location at that time on that 

type of day being the output of the classifier. The predicted location is then simply 

the most probable location based on the training data given an input type and time 

of day. Duration prediction outputs the mean and standard deviation of the 

distribution of duration of stay across instances where the individual is at the 

predicted location and the type and time of day match the inputs. Contact 

prediction works the same way as location prediction, but with individuals instead 

of locations. 

As with the first-order Markov model above, this approach can predict an 

individual’s location in the future given a timestamp, but in this case the context of 

the type of day is also included. This approach should be able to support further 

context as well, although this possibility is not discussed by the authors. However, 
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due to the structure of the instances, the approach is effectively limited to future 

location prediction; as each timeslot appears is a separate instance, recent 

locations cannot be referred to. While it could be asked to predict an individual’s 

location in the near future (i.e. next location), it would predict with the same 

information as if it was predicting their location tomorrow. 

The approach is evaluated on location data gathered on fifty participants using Wi-

Fi and Bluetooth tracking, with the full results available in (Vu et al. 2010). The 

evaluation consisted of ten iterations, predicting in each the location of the 

individual in each of 200 randomly selected test instances. For some instances the 

individual’s location is not known; predictions on these instances are not factored 

into the accuracy values. This evaluation resulted in an average location prediction 

accuracy of over 70% for 35% of the participants, and over 45% for 80% of the 

participants. Duration of stay prediction was considered correct if the actual 

duration fell within the predicted standard deviation from the predicted mean, and 

resulted in an average accuracy of over 60% for 80% of participants. 

2.1.2. Context-Based Prediction 

The above approaches both consider predicting occupants’ future locations, but 

have a limited ability to use extra context elements when making a prediction. 

Context is important as it defines the ability of an approach to make different 

predictions in different circumstances. Future location prediction approaches which 

can’t take any extra context elements will always predict that an occupant will be in 

the same place at the same time of day. In fact the occupant’s identity and the time 

of day are themselves context elements – as demonstrated by the zeroth order 

Markov model discussed above, without the time of day element only the most 

frequent location for the occupant is predicted. Without knowing the occupant, 

only the most frequent location in the dataset will be predicted. Just as it is 

necessary to know the occupant’s identity and the target time of day in order to 

make a good prediction, as the correct prediction depends on these factors, it is 

also important to be able to include other elements of context which influence the 

occupants’ locations. Various extra elements of context have been considered in 
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existing approaches which focus on incorporating extra context elements into their 

predictions. 

One such approach is (Petzold et al. 2005) a Bayesian Network approach is used to 

predict where an occupant will go next, when, and how long they will stay there for. 

The approach models a time slice (of arbitrary duration), which represents a stay in 

a single location, as a Bayesian network. The nodes in the network are the current 

room, current duration (i.e. length of stay), time of day and day of week, with 

current duration being dependent on the other three nodes. An occupant’s 

sequence of movements then becomes a sequence of length � of identical 

networks, where � is the number of previous locations which are considered. In 

each time slice the current room is dependent on the time of day and day of week 

of the previous time slice, and on the current room in all previous time slices. In this 

way the model predicts an occupant’s next location based on their recent locations, 

but also the current time of day and the day of the week. The duration of stay in 

both the current and predicted time slice are predicted solely off the location in the 

same time slice. 

 

Figure 2-2 – Bayesian network from (Petzold et al. 2005) 

As the structure of the network is fixed, the prediction of the occupant’s location is 

always dependent on the time of day and the day of the week, as well as their 

current location, which means that these elements of context must always be used. 

To change the context used, the structure of the network would have to be 
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restructured and the model retrained. Similarly the number of time slices used is 

fixed, resulting in all predictions being made using a fixed number of previous 

locations. As the model can train while predicting, location prediction accuracy with 

and without training on a training set was considered. For a sequence length of 

two, making predictions only when the occupant is not in their office, the approach 

achieved overall accuracy of 65% without training and 72% with training. Stay 

duration prediction was tested with networks including different combinations of 

parent nodes, and with and without training data. Using current room and time of 

day, making predictions only when the occupant is not in their own office, the 

approach achieved 70% accuracy without training and 78% with training. 

In (Koehler et al. 2014) an ensemble approach is presented which combines the 

predictions of four classifiers (decision tree, 3-nearest neighbour, support vector 

machine and gradient boost) to independently predict when an occupant will 

transition to a new location and what location that will be. The approach uses a 

variety of elements of context: current location, time of arrival at current location, 

minutes passed since arriving at current location, current time, day of week, arrival 

time in the building, number of significant locations visited thus far today, previous 

two significant locations, duration of stay at previous significant location and time 

taken to transition to current location. The approach uses ten minute timeslots and 

significant locations are those which the occupant frequently remains in for at least 

one timeslot. 

In order to determine which features from this list should be used when making a 

prediction the approach uses sequential floating forward selection (SFFS), which 

repeatedly add features to the feature set in order to improve accuracy, removing 

those which can be removed without negatively affecting accuracy. SFFS is applied 

independently for each classifier in order to find and use the best feature set for 

each. This process is repeated after each predicted day to react to changes in 

occupants’ routines. 

As mentioned, the approach predicts where an occupant will transition to and 

when. Specifically, for a given number of minutes, it predicts whether the occupant 
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will stay in their current location for that duration, and if they will not, then it 

predicts where they will go. When asked whether the occupant will transition, each 

classifier responds with 1(yes) or 0 (no). If the mean prediction is equal or greater 

than 0.5 the overall prediction is 1, otherwise it is 0. If it is 1, then the classifiers 

each vote on the location, and the majority vote is the overall prediction, with 

random selection used as the tiebreaker. As the temporal and spatial predictions 

are made separately, accuracy is calculated for a two step prediction. To be correct, 

the algorithm must first correctly predict whether the occupant will stay where 

they are. If the occupant leaves, it must also correctly predict where they go. The 

approach was tested for look-aheads of 10 to 90 minutes, achieving over 90% 

accuracy for 10 minute look-ahead, dropping monotonically to just below 80% for 

90 minutes. 

2.1.3. Next Location Prediction 

Further approaches have been applied to the problem of predicting only the 

occupant’s next location based on their recent movements. In (Petzold et al. 2004) 

a state predictor and frequency predictor are evaluated. The frequency predictor is 

similar to a variable order Markov model in that for each sequence of movements it 

records the frequencies of the following locations, predicting for a given sequence 

the most frequent follow up location. 

The state predictor is an alternative designed to retrain faster when the occupants’ 

routines change. The prediction for any given sequence is a one of a set of possible 

states. There are two states for every location which could be transitioned to after 

the sequence, a higher and lower state. When the sequence is observed, the state 

is updated as follows: if the state matches the observed location, it transitions to 

the higher state for that location, or remains in it if already there. If the observation 

contradicts the state, it either transitions from the higher state to the lower state, 

or transitions from the lower state for the ‘wrong’ location to the lower state for 

the ‘correct’ location. In this way the state predictor requires only two 

contradictory observations to revise its prediction, whereas the frequency predictor 

will need enough contradictory observations to outweigh the existing training data. 
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However, since a single contradictory observation will not change the prediction, it 

should tend to settle on the most frequent location. 

For both approaches to making the actual prediction, the sequence on which to 

base the prediction is selected in a manner based on Prediction by Partial Matching 

(PPM): the last � locations are considered as the input sequence with � starting at 

some maximum order. If the sequence of length � is not known to the predictor, 

then the last � − 1 locations are used, and so on until a match is found. The authors 

tested a number of configurations, and achieved highest accuracies in excess of 

90% (predicting next location when the occupant is not in their office only) using 

both the frequency and state predictor with PPM with a maximum order of 5. 

In (Vintan et al. 2004) an Elman net is used for next location prediction. An Elman 

net is a neural network that includes a context layer which holds a copy of the 

values in the hidden layer from the previous time step. This allows the network to 

essentially record its previous state, so that its output is based both on the current 

inputs and the inputs one time step back, which improves performance when the 

neural network is being used to predict sequences. 

The input to the neural network in this case is a sequence of the recently visited 

locations of some fixed length, along with an identifier for the occupant in question 

if the network is being trained on all occupants (training one network per occupant 

is also considered). The locations are encoded as binary numbers, either 4 or 5 bits 

long depending on how many locations must be encoded (individual occupant 

networks do not encompass all rooms), while occupants are 2 bit numbers. The 

output is then the binary encoded prediction of the occupant’s next location. 

The authors test a number of parameters of this approach to determine the optimal 

setup, eventually settling on training a separate network for each occupant, each 

with a hidden layer containing one more neuron than the input layer and a single 

context layer, with the last two locations visited by the occupant as the input. With 

this configuration they achieved an overall 90% accuracy predicting occupants’ next 

location when they were not in their office. 
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In (Gellert et al. 2006) a Hidden Markov Model (HMM) is applied to the problem of 

next location prediction. A HMM is a Markov model in which the states are not 

directly observable, rather each state has, as well as state transition probabilities, a 

probability distribution over a set of possible outputs which are observable. In this 

context the outputs are the locations which the occupant can occupy, while the 

hidden states are states the occupant can be in which influence their choice of next 

location. 

The authors evaluate a number of possible configurations, varying the number of 

hidden states as well as considering a higher order HMM. The best configuration 

was a first order one state model, which is essentially equivalent to a zeroth order 

standard Markov model, achieving 80% overall accuracy predicting occupants’ next 

location when not in their own office. 

2.1.4. Other Approaches 

Other work includes (Voigtmann et al. 2011), in which sequence based prediction is 

improved by considering other occupants’ histories when new behaviour is 

encountered. In (Eagle et al. 2009) occupants’ patterns are broken down into a 

small number of primary patterns called eigenbehaviours, and as each occupant’s 

behaviour on any given day is likely to be only a slight deviation from one of their 

eigenbehaviours, their movements can be predicted once it is determined which 

behaviour pattern they are following. Markov models are used for next location 

prediction in (Ashbrook et al. 2003) and (Song et al. 2006), with the latter 

comparing their performance against predictors based on the Lempel-Ziv (LZ) family 

of data compression algorithms. 

Predicting the occupancy of locations is related to the locations of occupants, and is 

applied in smaller scale contexts such as a home or a single office, using similar 

methods to location prediction. In (Manna et al. 2013) Markov models are used for 

office occupancy prediction, with multiple first-order Markov models at different 

time lags applied to predict based on the occupancy state at several recent time 

points. A number of methods have been applied to occupancy prediction in smart 

homes, including neural networks (Mozer 1998) and LZ family predictors (Das et al. 
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2002). In (Scott et al. 2011) the occupancy state of the home was predicted for the 

rest of the current day by comparing the known occupancy states against the past 

occupancy data using the Hamming distance of the occupancy records, and 

averaging the five most similar days. 

Another area of research centred on the home is the detection, recognition and 

prediction of occupants’ activities. Basic activity recognition can be achieved with 

simple wearable sensors such as those build into smartphones. Examples of such 

approaches include (Kwapisz et al. 2011) and (Anguita et al. 2012). In both, the 

accelerometer data from worn smartphones is recorded as experiment participants 

perform a number of basic activities such as sitting, walking, standing, and going up 

or down stairs. A number of machine learning techniques are then applied to the 

data to allow recognition of these activities in real time. Other approaches such as 

(Kasteren et al. 2008) use sensors throughout the home to detect a wider variety of 

events, allowing the recognition of a wider range of activities including Showering, 

Sleeping, Breakfast and Dinner. To allow further detail in the detected events, the 

model of the environment can be made more detailed. In (Chen et al. 2012) the 

activities which can take place in the home are modelled in a hierarchical fashion so 

that, for example, the activity of making tea is a child of the more general activity of 

making a hot drink. If the required sensor data is available the specific activities can 

be recognised; if less sensor data is available, the more general parents are 

recognised instead. Without complete annotation of which sensor events 

correspond to which activities, there can be difficulty in determining which sensor 

events correspond to which activities, especially if activities overlap or are 

simultaneous. (Wan et al. 2015) deals with recognising which sensors relate to 

which activities by correlating which sensors tend to activate together and the time 

spans across which they activate, in order to segment a stream of incoming sensor 

events into discrete activities.  

Location prediction is also applied in larger scale contexts. In (Noulas et al. 2012) 

the next venue that an individual will check into using Foursquare is predicted using 

linear regression. Low accuracy was achieved unless tens of locations were 

returned as answers for each prediction; due to the possible answers numbering in 
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the thousands, precise prediction was not possible. In (Mathew et al. 2012) a 

hidden Markov model is used to predict the location of individuals in a dataset 

comprising 1.2 million km of movement. Again, the immense variety of possible 

locations resulted in low prediction accuracy. 

2.1.5. Summary 

Existing work on occupant location prediction is focused on next location prediction 

based on occupants’ recent locations. Relatively few works are concerned with 

predicting the occupants’ locations later on the same day or on future days, or with 

using extra context such as time of day, day of week, or ancillary data such as 

timetables. 

Of those approaches which do address future location prediction, only two answer 

the question “in which location will occupant X be at time Y tomorrow”, where the 

location can be a precise location (i.e. a particular room in a building versus which 

building) and the time is a precise timestamp (i.e. 3pm versus ‘afternoon’). These 

approaches, the first-order Markov model in (Burbey 2011) and the naïve Bayes 

classifier in (Vu et al. 2011), predict on a similar basis to OccApriori; the frequency 

with which individuals were in a location in a given timeslot in the past. However, 

these models consider limited amount of context, with the Markov model in 

particular having difficulty adding any context. Furthermore neither approach can 

take into account occupant movements on the same day if the prediction is being 

made shorter-term, such as several hours later on the same day. 

Other approaches discussed can use more elements of context when making 

predictions, in particular Indoor-ALPS (Koehler et al. 2014) can decide which 

elements of context to use independently for each of its four underlying classifiers. 

However, the approach only considers next location prediction, and the set of 

context elements available to choose from are determined in advance. No 

approaches automatically determine which elements of context to use or make 

their choice of context at prediction time. 

Given that both additional context and pure historical location frequency based 

prediction of future locations have been shown to work independently, an obvious 



22 
 

avenue to explore is an approach which combines these features, which motivates 

the selection of association rule mining as the basis of the approach presented in 

this thesis. Association rule mining has the flexibility to predict next location and 

near future locations based on recent locations, predict further in the future based 

on historical location frequencies, and will make use of any relevant context data 

available automatically. 

2.2. Association Rules 

This thesis uses association rule mining as the basis of its approach to occupant 

location prediction. A number of other machine learning approaches have been 

used, however as already discussed most existing work focuses on next location 

prediction or prediction with limited context. Two approaches in particular which 

are potentially suitable for future location prediction are classification and 

clustering, which will both be briefly compared to association rules before moving 

on to a detailed discussion of association rules themselves. 

Mostly closely related to association rules are classifiers. Classifiers use the values 

of various attributes in the dataset to predict the value of a single attribute (the 

‘class’). In the context of occupant prediction, a classifier could learn which 

attributes relate to occupants’ locations in a certain timeslot, to predict their 

location at that time. An example of such a use of a classifier is (Vu et al. 2011). 

However, as previously discussed, due to classifiers being intended to predict a 

single attribute, it is difficult for such an approach to relate timeslots to each other 

in order to use recent movements to increase prediction accuracy. The aim of this 

thesis is a prediction approach which can predict future locations, but is also 

capable of using any supplied data to improve prediction accuracy, including recent 

location data, making classifiers unsuitable. 

Clustering is a method in which similar instances are grouped together. In occupant 

location prediction, this would allow for the recognition of daily patterns by 

grouping together days which share similar patterns of locations. This is similar to 

some previously discussed work on location prediction such as (Eagle et al. 2009). 
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However, this type of approach recognises entire days of movement, rather than 

learning more specific patterns which relate to individual time slots. In existing 

work this type of approach is applied to very general locations, such as home and 

work, or simply to a binary occupancy value (whether an occupant is present or 

not). As this thesis aims to predict exact locations in datasets which may have a 

larger set of possible locations, clustering and similar approaches are unlikely to 

work with the level of specificity required. 

Association rule mining is designed to find any patterns which occur in a dataset, 

involving and predicting any attributes. Compared to classifiers, association rules 

are more amenable to predicting any attribute using any other attributes as the 

basis of the prediction, which is required for an approach intended to cover 

everything from next location prediction to future locations as far ahead as 

following days. As they find more specific patterns which relate to particular 

attributes, they allow for more precise prediction than approaches such as 

clustering which rely on recognising an entire day of patterns. Association rules are 

thus the most appropriate starting point for making the types of prediction which 

are the objective of this work. 

2.2.1. Association Rule Mining 

Association rule mining is an unsupervised approach to finding patterns in large 

datasets. They were introduced in (Agrawal et al. 1993), the original application 

being finding patterns of items which were purchased together in datasets of 

transactions. In that application items were simply strings which were either 

present or absent in each transaction, however the approach can be applied 

without modification to sets of attribute/value pairs. The Apriori algorithm, 

introduced in (Agrawal et al. 1994), is one of the original association rule mining 

algorithms. While there are newer algorithms which are more efficient, this thesis 

uses Apriori as the basis of its approach as it is the least complex algorithm and thus 

the simplest to modify, hence the name OccApriori. 
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In general association rule mining works as follows. Let � be a universe of items. A 

dataset � is a set of instances � … ��, where each instance is a set of items from �. 

An itemset � is a subset of �. The frequency and support of � are defined as: 

 ������� = |��|� ∈ �� … ��}, � ⊆ �}| (2-1) 

  !""��� = �������/|�| (2-2) 

An association rule is an implication typically written in the form � ⇒ %, where for 

some instance : � ⊆ �, % ⊆ �, � ∩ % = ∅. What the rule actually implies is 

� ⊆ � ⇒ % ⊆ �; that instances which contain � tend to also contain %. We measure 

how often a rule applies using the support, and how reliable the rule is using the 

confidence, defined as follows: 

  !""�� ⇒ %� =  !""�� ∪ %� (2-3) 

 
	���� ⇒ %� =  !""�� ∪ %�/ !""��� (2-4) 

The goal of an association rule mining algorithm is to find a set of rules which are 

above user-specified thresholds of support and confidence. The first step is to find 

all itemsets which are ‘frequent’ –the itemsets whose support is above the 

threshold. Association rules are then generated from the frequent itemsets, with 

any rules which fall below the confidence threshold being discarded. Enumerating 

the frequent itemsets is the more difficult step, as the desired itemsets must be 

found among the total 2|+| − 1 itemsets which can be generated. 

2.2.2. Apriori 

, = � 
. = �� ∈ ,| !""��� > ��� !""} 
�	��� = 2;  .12 ≠ ∅;  � + +�: 
    ,1 = �5 ∪ 6|5, 6 ∈ .12, |5 ∪ 6| = �} 
    .1 = �� ∈ ,1| !""��� > ��� !""} 
���!�� 7 .11  

Figure 2-3 – Apriori Algorithm 
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The set of all itemsets which can be generated from a given dataset can be 

arranged into an itemset lattice, in which itemsets are linked by subset/superset 

relationships. The Apriori algorithm uses breadth-first search to find all the frequent 

itemsets in the lattice. First all itemsets of size 1 are enumerated. Itemsets whose 

support is below the threshold are discarded, as any superset of an infrequent 

itemset will also be infrequent. Candidate itemsets of size 2 are generated from the 

remaining size 1 itemsets, after which infrequent itemsets of size 2 are discarded. 

This process then continues, finding frequent itemsets of size � by generating 

candidates from the frequent itemsets of size � − 1 and discarding infrequent 

itemsets, until an � where no frequent itemsets exist is reached. 

Transactions 

A, B, C, E 

A, C 

B, D, E, F 

B, C, E 

A, D, E 

Table 2-1 – Example dataset 

Table 2-1 – Example dataset contains an example dataset to which we could apply 

Apriori to find the frequent itemsets. The items in this dataset are the letters A-F, 

grouped into transactions, with each transaction being a row of the table. Assuming 

we want to find itemsets with a minimum support of 3, the algorithm starts with 

the frequent 1-itemsets {A}, {B}, {C}, and {E}. There are no 1-itemsets for items D or 

F as they only appear in two transactions each, putting them below the support 

threshold i.e. infrequent. 

The candidate 2-itemsets are now generated from the frequent 1-itemsets by 

combining them, giving us the itemsets {A,B}, {A,C}, {A,E}, {B,C}, {B,E} and {C,E}. The 

dataset is then scanned to determine the frequencies of these 2-itemsets, for 

example {A,B} is a subset of only the first transaction, narrowing the list which 

meets the minimum support to only {B,E}. As there are no candidates to generate 

from a single 2-itemset, the algorithm terminates. 
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Rule generation comes after itemset mining is complete. As a brief example, we 

may wish to generate the rules B => E or E => B based on the itemset {B,E}. These 

rules state that if one of the two items appear in a transaction, the other likely does 

as well. The rule B => E has a confidence of 100%, as every transaction which 

contains B also contains E, whereas the rule E => B has a confidence of 75%, as E 

appears in four transactions, while B appears in only three of those transactions. 

While Apriori’s approach is simple, requiring only the union of sets of items and 

scans through the set of instances to check support, and somewhat efficient, since 

it prunes itemsets with infrequent subsets, there are significantly more efficient 

approaches, two of the better known examples being Eclat (Zaki 2000) and FP-

Growth (Han et al. 2000). Two of the main problems with Apriori are the breadth-

first search resulting in a combinatorial explosion, and the repeated scans though 

the set of instances to determine the support of newly generated candidate 

itemsets. A depth-first-search based approach can avoid both of these issues. 

2.2.3. Eclat 

In (Zaki 2000) several algorithms based on a depth first approach are introduced, 

the best known of which is Eclat. Here the dataset is converted from its standard 

database representation of a set of instances each of which is a set of items 

contained by the instance, to a set of items each of which having an associated set 

of instances in which the item appears. The support of an item is then the 

cardinality of the set of instances in which it appears, and the set of instances which 

support a newly generated itemset is the intersection of the sets of instances 

supporting the itemsets from which it was generated. This is referred to as “TID list 

intersection” (i.e. transaction ID list) and means that the support of newly 

generated itemsets can be determined without rescanning the database as in 

Apriori, with the only cost being the computationally cheap intersection operation 

and maintaining the sets of supporting instances in memory. 

For an Apriori-like approach this would involve maintaining many sets of instances 

in memory, however this is paired with a depth first approach to the itemset lattice. 

Each 1-itemset is examined in turn, generating all frequent 2-itemsets containing 
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that 1-itemset. For each of these 2-itemsets in turn, the process is repeated, and so 

on. As new itemsets are generated, their supporting instances are found via set 

intersection, and old sets of instances from lower in the lattice can be discarded, 

saving memory. 

Starting with the 1-itemsets and working upwards to find the point where itemsets 

become infrequent is a bottom-up approach; the paper also considers a top-down 

approach. This starts with the largest possible itemset and works downwards 

through infrequent itemsets. When a frequent itemset is encountered, all of its 

subsets are marked as frequent as well. This is similar to how, in the bottom-up 

approach, the supersets of any infrequent items are marked as infrequent, and 

relies on the same anti-monotonicity property. Since the algorithm can stop when it 

runs out of infrequent itemsets, starting from the largest itemset and working down 

may be faster if the largest frequent itemsets are high in the lattice (i.e. closer in 

size to the largest itemset than to a 1-itemset). 

The algorithms presented in the paper mix and match bottom-up and top-down 

approaches, combining the two in a single hybrid search, along with the use of 

equivalence relations and pseudoequivalence relations (relations which are 

reflexive and symmetric but not transitive, allowing the possibility of overlap in the 

resulting subsets) to determine the most efficient way to divide the itemset lattice 

during depth-first traversal. In their tests their most efficient algorithm outperforms 

Apriori by an order of magnitude.  

2.2.4. FP-Growth 

In (Han et al. 2000) an approach is presented which avoids candidate generation 

completely. This approach builds a frequent pattern tree (FP-tree) which records 

the frequency of every pattern of items. As the nodes in the branches of a tree have 

an order, these patterns are ordered sets of items, rather than the unordered sets 

of items which make up the underlying dataset. The tree can be traversed and 

manipulated to enumerate the frequent itemsets, without ever generating 

infrequent itemsets which must be discarded. The tree can also represent the 

frequency data in a form more compact than the original dataset. 
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Each branch of the tree represents a frequent pattern. Each node in the tree refers 

to a single item, and records the frequency of the pattern which is formed by it and 

its ancestor nodes, starting with the node which is a child of the root, and ending 

with the node in question. As an item can appear in multiple patterns, there can be 

multiple nodes referring to each item, with the total frequency of the item being 

the sum of the frequencies recorded in all of that item’s nodes. Nodes which refer 

to the same item also reference each other via a linked list, allowing for efficient 

traversal of all nodes which refer to the same item. 

There is no ‘correct’ order to apply to the items when building the tree. An ordering 

is decided upon before building the tree with the aim of minimizing the size of the 

resulting tree. The order used in this work is the frequency with which each item 

appears in the dataset: the most frequent item in a given instance is first, the next 

most frequent is second, etc. Thus when an instance is added to the tree, the most 

frequent item in that instance becomes a child of the root node, the next most 

frequent becomes a child of the first item, etc. When patterns share a prefix they 

overlap in the tree, incrementing the frequency recorded in the existing nodes until 

the patterns diverge, at which point the new pattern’s branch splits off from the 

existing branch. Along with discarding infrequent items before constructing the tree 

(due to the same property Apriori relies on), this is what allows the tree to be a 

smaller representation of the frequencies than the original dataset; overlapping 

patterns reduce duplication and save space. 

Enumerating the frequent itemsets involves traversing the tree in a recursive 

manner. The frequent items are selected in reverse order of frequency (i.e. the 

reverse of the order used when building the tree). For each item, a conditional FP-

tree is constructed, which is effectively the FP-tree built from only from those 

instances which contain the target item. This is done by traversing the main tree 

and extracting those patterns which include the target item, then building an FP-

tree from the extracted patterns. Items which are frequent in the conditional FP-

tree are those which occur frequently with the target item, thus providing frequent 

2-itemsets. The conditional FP-tree process is repeated recursively for each of these 

frequent itemsets to find frequent itemsets involving those itemsets, until no 
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further frequent itemsets appear. The next item from the original reverse-order list 

is selected, and the process repeats, although ignoring the item which was already 

processed. 

In this way, using the structure of the FP-tree, all the frequent itemsets are 

enumerated without candidate generation and with only two scans of the source 

dataset required, while representing the dataset in a more compact format. The 

lack of candidate generation allows FP-Growth to avoid the combinatorial explosion 

encountered by Apriori as the support threshold decreases and the size of the 

dataset increases, making FP-Growth significantly more scalable. 

2.2.5. Algorithm Selection 

This thesis uses Apriori as the basis of the occupant location prediction approach. 

While the algorithms function differently, they all produce the same output for the 

same parameters, which means the choice of algorithm generally comes down to 

speed. However, the purpose of the work presented in this thesis is to experiment 

with modifications to the criteria applied to itemsets when considering whether to 

discard them, and so the ease of conducting such experiments is a factor as well. 

The basic representation of the space of itemsets in a dataset is the itemset lattice. 

Apriori and Eclat work directly on this representation, whereas FP-Growth 

constructs its own, more efficient, data structure, the FP-Tree. As the FP-Tree and in 

particular the algorithm which constructs and traverses it is more complex  than 

Apriori’s equivalent, experiments which involve changing the area of the lattice 

traversed would be significantly more complex to implement while providing the 

same results in terms of the rules generated. Furthermore, since its efficiency 

depends on the construction and traversal of the FP-Tree, altering the process may 

impact that efficiency, somewhat negating its advantage over Apriori. 

While Eclat is much closer to Apriori, similar concerns apply as choices must be 

made as to the order that itemsets are processed in during the traversal of the 

lattice, which again means that modifications could affect any efficiency advantage. 

These are just two of the better known association rule mining algorithms – but the 

same concerns apply to any other algorithm. Apriori, being little more than 
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enumeration of the itemsets with some pruning, provides the best starting point to 

build a new algorithm to mine a new type of dataset. As the approach in this thesis 

is built on Apriori, it shall hereafter be referred to as OccApriori – Apriori for 

Occupant (location) data. 

2.3. Extensions of Association Rules 

2.3.1. Generalised Rules 

As well as making the association rule mining process more efficient, there is also 

work on extending the types of association rules which are found. The most 

relevant to the work in this thesis is (Srikant et al. 1995), which introduces the idea 

of generalised association rules, rules whose items are members of a taxonomy. 

The standard items in the dataset become the leaves of the taxonomy tree, and the 

goal is to mine itemsets which contain items from any level in the taxonomy. 

The simplest approach is to simply add the taxonomy ancestors of each item to the 

transactions. Once added to the dataset, they can be treated as normal items, and 

Apriori or any other algorithm can be run as normal. A number of potential 

enhancements to make the enumeration of the generalised itemsets are presented 

in (Srikant et al. 1995). These include simple implementation enhancements, such 

as generating a lookup table of the ancestors each item has rather than traversing 

the taxonomy tree every time. They also include algorithm modifications, primarily 

focused on pruning unnecessary items and itemsets. Itemsets containing and item 

and an ancestor of that item can be pruned, as the support is necessarily the same 

as that itemset less the ancestor item. When checking the support of itemsets of a 

given size, more general itemsets (i.e. those containing items from higher in the 

taxonomy tree) can have their support checked first. If the general itemset is not 

frequent, the more specific itemsets will necessarily also not be frequent, and so 

they can be discarded without checking their support. Chapter 6 examines how 

generalising association rules in this manner can be applied to occupant location 

prediction to yield useful new types of predictions and more flexible occupant 

pattern recognition. 
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2.3.2. Inter-transactional Rules 

There are several other extensions of association rules in general, and Apriori 

specifically, which may be useful for occupant location prediction. Inter-transaction 

association rules (Lu et al. 2000) allow the mining of patterns which involve multiple 

instances. For example, if each instance is a set of data for a single day, standard 

association rules will find patterns such as ‘if X happens on a day, Y will as well’, 

whereas inter-transaction rules allow for patterns such as ‘if X happens on a day, Y 

will happen on the following day’. 

2.3.3. Quantitative Association Rules 

Quantitative association rules, introduced in (Srikant et al. 1996), address mining 

rules where the values in the dataset are numeric. This is problematic for standard 

association rules as each number is treated as a distinct value unrelated to any 

other, resulting in a large number of low support rules. By breaking the range of 

values down into a smaller number of intervals and mining those intervals instead, 

this task reduces to the standard association rule mining problem. 

2.3.4. Temporal Rules 

Temporal association rules consider the issue of rules which are supported in 

limited time periods within the dataset, and temporal relationships between the 

items in those rules. Several formulations exist, addressing different parts of the 

temporal aspect of datasets.  Examples include (Ale et al. 2000), wherein the period 

that an itemset appears in is addressed. Taking the example of market baskets, a 

product which was available for a limited time will appear in transactions more 

frequently during that specific time period than it will across the entire timespan of 

the dataset. In (Y. Li et al. 2001) recurring intervals are addressed by including time 

attributes which represent calendar periods. This allows for rules which apply in 

these periods, for example products which are frequently sold together only in 

December. The application of temporal semantics to association rules, discussed in 

(Rainsford et al. 1999), allows for the expression of temporal relationships between 

items, stating not only that A and B are associated but that, for example, B occurs 

during A, or before A, or after A. 
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2.3.5. Rule Updating 

In practice a dataset will likely have new data added to it, requiring an update of 

the association rules based on that dataset, an issue first addressed in (Cheung et 

al. 1996). In this work every time new data is available, the itemsets which need to 

be re-evaluated are determined based on the instances being added to the dataset. 

This avoids the need to mine the dataset from scratch every time new data is 

added. Chapter 7 discusses potential future work in this area which can make use of 

these extensions of association rule mining. 

2.3.6. Summary 

Algorithm Summary 

Apriori Relies only on anti-monotonicity property 

Inefficient compared to newer algorithms 

Eclat TID-list intersection avoids rescanning dataset 

Depth first search allows efficient TID-list intersection 

Choice of search order affects efficiency 

FP-Growth Avoids candidate generation completely 

Structure of pattern tree affects efficiency 

Table 2-2 – Summary of association rule mining algorithms 

Association rule mining is a mature field with several core algorithms for the 

association rule mining process itself, using a variety of optimisations to improve 

efficiency, and numerous extensions designed to find new types of rules. Table 2-2 

– Summary of association rule mining algorithms lists the most notable features of 

each of the discussed algorithms. With a base approach to occupant location 

prediction using association rule mining in place, these extensions can be used to 

find new types of patterns in occupant location data. As previously discussed, this 

thesis uses Apriori as the basis of the approach as it is the least complex, making it 

the simplest to modify when designing experiments. 
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2.4. Occupant Modelling 

In this section occupant modelling approaches relevant to the dataset generator 

which will be presented in Chapter 3 are discussed. These approaches take two 

basic approaches to modelling occupants: either the parameters for the modelled 

occupants are set manually by the author of the model (for example defining the 

activities the occupants engage in during the day) or the model is given historical 

movement data for the occupants, with the model being automatically generated 

based on this data. These will be referred to as parameter-based and schedule-

calibrated models respectively, each discussed in their own section. 

2.4.1. Parameter Based Models 

In (Zimmermann 2007) occupants and their environment are modelled as part of a 

multi-agent simulation. The model is intended to simulate energy consumption in 

buildings, and so there are components which model the physical layout and 

properties of the building and the heating, cooling and lighting systems. Occupants 

are modelled as agents whose movements are governed by roles and tasks. 

Occupants take on a role at the beginning of a day, and the role then dictates the 

scheduling of tasks for that occupant for that day, with the tasks then dictating the 

occupant’s activities throughout the day. Roles can also be assigned to groups, of 

which individual occupants are members, allowing for tasks which are shared 

between multiple occupants. 

Occupant activities in this model are broken down into several classes. The basic 

background activity of an occupant, such as working at their desk, is a continuous 

activity. This is the fall-back activity which an occupant does when not engaged in 

any other task. Regular activities are those which occur at fixed times with fixed 

durations, scheduled at the beginning of the day based on the occupant’s role. 

Irregular activities are also scheduled activities, but are scheduled in between the 

higher priority activities, with their start time dependent on when the occupant is 

available (e.g. ad hoc meeting). Finally, secondary activities are ancillary activities 

which have a probability of occurring when the occupant is engaged in some other 

activity. These allow for activity interrupts such as visiting the bathroom. 
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The model is built using  Specification and Description Language (SDL-92) graphical 

modelling language, whose modelling environment includes a code generator. This 

means that once the models of the building, occupants, etc. have been specified, 

the executable code to simulate that model is generated automatically. When the 

simulation starts, the occupants arrive at the workplace and move around the 

building according to their role and various tasks. Using the model of the physical 

layout of the building, the time taken to move between locations is modelled as the 

occupants change tasks. 

 

Figure 2-4 – Experimental results from (Zimmermann 2007) 

The evaluation of the model simply provides the results of the simulation of a 

number of configurations in terms of the energy usage of the building, as shown in 

Figure 2-4. The evaluation shows that it is feasible in practice to build a model as 

outlined in the paper, generate the code and run the simulation to get results in a 

reasonable amount of time. However, it does not evaluate how closely the activities 

of the simulated occupants match the real occupants the model was based on. 

A similar breakdown of the tasks that simulated occupants undertake is used in 

(Tabak 2008), in which occupant activities are broken down into skeleton activities 

and intermediate activities. Skeleton activities are those which are determined by 

the work being done by the occupant, and are so named as they provide the basic 

structure of the occupants’ movements. These activities are broken down into 

planned and unplanned activities, where the former occur at fixed times, while the 

latter fit in around the planned activities (similar to regular and irregular activities in 

(Zimmermann 2007)). However, rather than modelling planned and unplanned 

activities as distinct types of activity, skeleton activities instead have a priority 
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attribute, which determines how likely the activity is to be interrupted or 

rescheduled. Lower priority tasks fit in the schedule around higher priority ones. 

Intermediate activities are those which are not determined by the workflow and 

are determined either by the occupant themselves, e.g. going for a break, or by the 

environment, e.g. an unexpected visitor arriving. Some of these activities have a 

simple chance of occurred at any given time based on, for example, the occupant’s 

role, however the probability of others occurring is based on an S-curve due to the 

type of activity. For instance, as time passes an occupant is more and more likely to 

take a break, until they eventually do. Thus for these types of activities the time 

since last occurrence is a major factor in when they occur, rather than a simple 

random selection of an available time. Whether an intermediate activity interrupts 

a skeleton activity depends on the utility of the intermediate activity, and the 

importance of the skeleton activity. 

Shared tasks are modelled as groups of skeleton tasks. The example given is that of 

a presentation, where one occupant will have a ‘give presentation’ task. This task 

will require that this initiator occupant is able to perform the task, but also that a 

stated number of other occupants can attend. This takes the form of other 

occupants having the ‘attend presentation’ skeleton task in their set of tasks, as 

well as their being available at the appropriate time. If these criteria are met the 

corresponding tasks are scheduled for the initiator and additional occupants. When 

selecting which of the occupants who could attend will actually attend, a random 

selection weighted by how close the occupants are to the initiator in the structure 

of the organisation is used. 

The model also includes the physical layout of the building, the available facilities in 

the building which are used when completing tasks, the organisational units which 

make up the organisation and the roles the occupants can take on. Similar to 

(Zimmermann 2007), occupants are given their tasks by having both the occupants 

and tasks be assigned to roles and organisational units, thus having occupants’ 

schedules defined by their position in the organisation and the role they fulfil. 

Occupants can be assigned multiple roles and organisational units. A series of 
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components were implemented to execute the model, each handling the execution 

of a specific part of the model. For example, there are dedicated schedulers for 

skeleton tasks, shared tasks, intermediary tasks, as well as schedule overlap and 

gap removers and a dedicated scheduler for handling the time required to move 

between locations. 

An evaluation model was calibrated using input data including a list of occupants of 

the building, their roles according to the university’s job classification system, data 

from a system in which occupants had previously recorded the time they spent on 

various activities, and finally a web based survey to determine how occupants in 

various roles prioritised differed tasks. The output of the model was compared to 

two datasets, one in which occupant movements were recorded using RFID, and 

one in which the occupants recorded their own movements using an online diary 

system, both of which were recorded in parallel. 

 

Figure 2-5 – Evaluation of similarity of workspace usage between simulated occupants and data from the 

POPI+ system from (Tabak 2008) 

The model output was tested for similarity to the collected datasets for the total 

time percentage, mean duration and mean frequency for the usage of different 

location types, time spent in intermediate tasks, time spent in task types as well as, 

for the RFID dataset, mean walking distance. Figure 2-5 shows an example of 
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evaluation of the similarity, in this case for the usage of workspaces as compared to 

the online diary system. Overall the model proved to be a highly accurate 

recreation of the modelled occupants, with notable differences only in the 

frequency of task-types being selected and (possibly as a consequence) the 

frequency of usage of workspaces (seen in Figure 2-5, primarily from the high 

variability for the mean frequency). However, knowing that tasks and locations are 

selected the same number of times and used for the same durations, does not tell 

us whether the simulated occupants were in fact doing the same things at the same 

times as the real occupants; only that they did them equally often and for equally 

long. 

2.4.2. Schedule Calibrated Models 

In the following models, rather than the model author specifying the occupants’ 

activities to determine their movements in the model, historical data of actual 

occupants is used to generate a model. 

In (Page 2007) the occupancy of locations (rather than the location of occupants) is 

modelled using a time inhomogeneous Markov chain. For each location occupancy 

is either a 1 (location is occupied) or a 0 (location is vacant). Being a Markov chain, 

the probability of a location being occupied is based solely on whether the location 

was occupied in the previous time step; however the transition probabilities can be 

different for each time step, essentially making the probability dependent on the 

time of day as well. 

The input when calibrating the model is the profile of probability of presence, the 

frequency with which the location was historically occupied in each time step. This 

alone is not enough to determine the transition probabilities, as there can be 

multiple values for the transition probabilities that agree with the probability of 

being occupied and vacant in each time step. To alleviate this, a parameter of 

mobility is defined as a function of the transition probabilities. This parameter 

essentially quantifies how likely the occupant is to move and this, combined with 

the profile of probability of presence, allows for the determination of unique values 

for each transition probability for each time step. 
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The model thus far cannot reproduce periods of extended vacancy such as the 

location’s occupant being on vacation (or rather, such a pattern is exceptionally 

improbable). Instead, the frequency and probability distribution of duration of 

extended vacancies are additional inputs to the model, which then has an explicit 

chance of beginning an extended vacancy each generated day according to those 

inputs. These days of total vacancy are then ignored when providing the model with 

the profile of probability of presence, so that the Markov chain is only modelling 

the probability of presence when the location is in fact occupied. 

 

Figure 2-6 – Profile of probability of presence for office no. 3 in the actual occupancy data (blue line) and the 

simulation (red line) from (Page 2007) 

The model is evaluated in terms of its ability to reproduce patterns of probability of 

presence, total occupancy time per day and per week, first arrival time, final 

departure time, duration of periods of presence and absence during the day, and 

frequency of change of state (occupied versus vacant). Figure 2-6 compares the 

simulated and real profile of probability of presence for one of the offices, 

demonstrating that the model successfully captures the frequency with which the 

location is occupied across the times of day. While the model had some difficulty 

correctly reflecting the frequency which with locations were completely vacant and 

the frequency with which the occupancy state changed, overall it provided an 

accurate recreation of the source data. 

A similar approach is used in (Goldstein et al. 2010b) to model the tasks occupants 

engage in rather than the occupancy of locations. In this case the objective is to 

learn the probabilities of the occupant taking each of a set of tasks, based on the 

task the occupant just completed, the time of day, and a task suspension interval. 

The task suspension interval measures the time since a task last occurred, in order 
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to recreate intervals between occurrences of tasks (for example spreading out 

breaks). 

The calibration process involves populating a set of bins which record the frequency 

with which the occupant transitioned from one activity to another at a given time 

of day with given task suspension intervals. Once populated, these histograms are 

processed so that they record the probability of a transition, rather than the 

absolute frequency. They are then analogous to the transition probabilities in (Page 

2007), in that for a simulated occupant in a given state (where the state consists of 

the time of day, previous task, and task suspension intervals), the probability of 

transition to each possible next state (which would be the possible tasks) can be 

looked up. 

Once an occupant’s next task is selected, the model considers the number of 

occupants who will be engaged in that task, and the duration of the task. When 

calibrating the number of occupants, a similar histogram method is used to 

determine the mean and variance of the number of occupants, given the task in 

question and the time of day, which are then used to select the number of 

occupants during task generation. The process for duration generation is the same, 

except that the determining factors are the task, time of day and additionally the 

number of occupants. 

 

Figure 2-7 – Desk work probability profile from (Goldstein et al. 2010b) 

The approach is evaluated in terms of its ability to recreate the desk occupancy 

profile of a real occupant whose schedules were used to calibrate the model, which 

it does with a fair degree of accuracy, as shown in Figure 2-7. It is also noted that 



40 
 

the approach recreated some of the occupant’s other patterns, such as never 

leaving and returning twice in the same day. The model did have difficulty properly 

spreading out breaks which took place in different locations, as they were different 

tasks, and so the task suspension interval did not apply. 

As all occupant schedules are generated independently, the number of occupants 

which is generated for a task is simply a number; it does not represent the number 

of simulated occupants involved in the task as the occupants do not interact. This is 

addressed in (Goldstein et al. 2010a), where the model is modified such that when 

a task which involves more than one occupant is generated, other occupants in the 

simulation are chosen to participate. 

When a number of participating occupants greater than one is generated the 

initiator, the simulated occupant for whom the task was generated, is assigned the 

task as the first participating occupant. Additional occupants in the simulation are 

then selected at random, until the generated number of participating occupants is 

reached. To address the question of whether additional occupants should 

immediately quit their current task to attend the shared task, a randomly selected 

half of the additional occupants will quit any task they are engaged in, while the 

remaining half attend only when their current task is finished. 

The work is further extended in (Goldstein et al. 2011) to consider the physical 

layout of the simulated building when selecting a location for a task to occur in, and 

when selecting additional occupants for a shared task. A task may have a fixed 

location in which it must occur (for example, breaks in which people leave the 

building must occur outside the building), or it may have a randomized location. In 

the latter case there will be a set of locations in the model of the building in which 

the task can take place. The selection of one of these locations is based on a cost 

function which incorporates both the distance between the candidate location and 

the initiating occupant’s base location, and the utilisation of the room in terms of 

the number of occupants, i.e. not choosing a three person room for a ten person 

meeting or vice versa. Additional occupants for shared tasks are selected based on 

the distance component of this cost function, with occupants whose current 
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location is closer to the base location of the initiator occupant being more likely to 

be selected. 

These two extensions of the work are concerned with combining personas, which 

are specifications of fictional occupants in terms of their arrival and departure 

tendencies, numbers of breaks per day, etc., with schedule calibration and the 

occupant and location selection methods presented in the paper. Thus the work is 

primarily evaluated in terms of its effect on the attributes of the personas, testing 

whether these more advanced methods of occupant and location selection can be 

used without unintentionally altering the behaviour of the fictional occupants. 

Simulating with the added location and occupant selection features reproduced the 

personas accurately with the exception of meeting frequency, where personas with 

a high probability of meeting could summon as additional occupants nearby low 

meeting probability personas, thus raising their meeting probability above the 

intended value. 

 

Figure 2-8 – Overall Desk work and Shared Acitivites probability profiles across six real occupants (top) and 

simualted occupants (bottom) from (Goldstein et al. 2011) 

While the original schedule calibrated model is evaluated in terms of its ability to 

reproduce the occupant’s location throughout the day, this is only done for the 

occupant’s probability of being at their desk. Furthermore the evaluation is carried 
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out on only a single occupant, and doesn’t manage a perfect recreation of that one 

occupant. The follow up work models a larger number of occupants as part of the 

evaluation; however the evaluation is focused on how the persona attributes are 

affected. All that is added to the earlier evaluation in terms of whether the 

simulated occupants’ movements match those of the real occupants are statistics 

on meeting room utilisation and overall probability of being involved in shared 

activities or desk work throughout the day across multiple occupants, as shown in 

Figure 2-8. While it shows that the model is very accurate in recreating the overall 

frequency with which the group of occupants was either at their desks or in shared 

activities, it does not verify whether the individual simulated occupants match the 

movement patterns of the original occupants. 

2.4.3. Summary 

Approach Summary 

Parameter 

Calibrated 

All occupant parameters are set as desired 

All parameters must be set manually even if based on real data 

Schedule 

Calibrated 

Model automatically calibrated using real data as input 

Applying custom occupant parameters requires additional steps 

Table 2-3 – Summary of occupant modelling approaches 

In the area of occupant modelling, there are several approaches which capture the 

level of detail needed to create test datasets to evaluate specific features. 

However, the evaluations of these models do not confirm that they accurately 

recreate occupants in this level of detail. As the goal is to predict precise occupant 

locations based on historical location frequencies, any prospective model must be 

able to recreate occupants’ precise locations and the times at which they visit 

them. The model in (Page 2007) is evaluated in terms of numerous metrics, 

including profile of probability of presence across the day. This is the level of detail 

required, unfortunately this model is for occupancy of locations rather than 

locations of occupants, and thus does not model the level of occupant location 

detail OccApriori is intend to work with. The most detailed evaluation aside from 

this is in (Tabak 2008), which confirms that the frequency, duration and total time 

spent in types of tasks matches the source dataset, but does not confirm that they 
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actually occur at the same times. However, aside from this point, it is a detailed 

evaluation which confirms that the model closely reflects the original occupants. 

Furthermore a very similar task structure is used in (Zimmermann 2007). This 

suggests that this type of model is a good starting point, but requires further 

evaluation to confirm it captures time-of-day related patterns which are required. 

2.5. Summary 

Existing work on occupant location prediction is focused on next location 

prediction. The few existing approaches to future location prediction use limited 

elements of context, with such context being used to a greater degree in next 

location prediction. The aim of the approach developed in this thesis, OccApriori, is 

to combine the advantages of these different approaches into a single algorithm. 

Thus the algorithm must be capable of predicting occupant locations in the next 

timeslot or near future timeslots, while also being able to predict further into the 

future (for example next day predictions), and be able to incorporate any available 

elements of context to increase prediction accuracy. 

Association rules are the most suitable approach to achieve this aim, as they are 

designed to find any patterns which exist in a dataset. Since they find any patterns 

which are present, they will find patterns which relate to next location, later 

locations, and distant future locations. As association rule mining operates in an 

unsupervised fashion, any elements of context which are in the dataset and 

correlate with occupant locations will automatically be included in the resulting 

association rules. Furthermore association rules have a number of existing 

extensions to the types of rules which can be mined, which can be leveraged for 

occupant prediction once the base algorithm is in place. 

Evaluating the algorithm requires test datasets which resemble the type of datasets 

the finished algorithm would be expected to be applied to. Real world data is 

essential to test the algorithm performs in practice, however to generate specific 

test cases an occupant model capable of producing custom, but realistic, datasets is 

also useful. There are several existing approaches to modelling occupants which 
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have been evaluated to show that they can produce realistic datasets. These 

evaluations do not comprehensively cover all the attributes of the generated 

dataset which are important for occupant prediction. However there are 

commonalities in the occupant models in multiple approaches, suggesting that such 

models are the ideal starting point for developing a purpose-built dataset generator 

for testing features of the occupant prediction algorithm. 
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3. Occupant Location Data Collection and 

Modelling 

This chapter describes the sources of data used to evaluate OccApriori. This consists 

of three sources: an existing published dataset which has been used for occupant 

location prediction evaluation in the past, a dataset collected internally as part of 

this research with the aid of several volunteers, and an occupant model also 

developed as part of this research which consists of a dataset generator and a 

model of specific occupants, in order to produce datasets containing specific test 

cases. 

Section 3.1 outlines the approach which is developed in this thesis in order to 

explain the features required of an evaluation dataset. Section 3.2 describes the 

existing dataset and the process of converting it into the data format used by 

OccApriori. Section 3.3 describes the internally collected dataset, and the process of 

collecting it. Section 3.4 develops a synthetic dataset generator, and in section 3.5 

describe the process of modelling the occupants in the internally collected dataset 

in order to produce a synthetic version of that dataset. Finally section 3.6 evaluates 

the similarity of the data on which the model was based and the synthetic dataset 

output by the generator using that model, demonstrating that it can accurately 

model realistic occupant movements. 

3.1. Location Prediction Outline 

The data required to predict occupant locations depends on the functioning of the 

prediction algorithm. While the operation of the algorithm and the exact 
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structuring of the dataset will be discussed in Chapter 4, this section will provide an 

outline of the algorithm and the types of predictions it makes. 

 As discussed in the previous chapter, association rule mining algorithms operate on 

datasets of transactions, with each transaction being a set of items. This means that 

occupant location data must first be broken down into transactions, which would 

represent large blocks of the time and items which are smaller blocks of time. The 

first implication of this is that the algorithm will always operate on periods of time, 

and predict where the occupant will be over a period of time. 

The actual division of the dataset used in this thesis is to have a transaction 

represent a single day, and to break days down into equal-sized periods (usually 

half an hour), with each item representing one of those periods. Thus the approach 

learns patterns based on associations between the periods during which locations 

appear across days, for instance learning that the location ‘Office’ appears every 

day at 10:00am. Associations may of course also relate to multiple items (periods) 

in single transaction (day), for example ‘Office’ being the location at 11:00am if it is 

the location at 10:00am. This results in a rule of the form 10:00=Office => 

11:00=Office. 

Based on this, the data required to develop and evaluate the approach is the 

location of sample occupants throughout the day. Precise times of arrival and 

departure are not important as the algorithm works on time periods – for each 

period, the location that the occupant spent the majority of that period in is 

sufficient. However precise locations are important – if we only know whether the 

occupant is in or out of the building for instance, only similarly coarse predictions 

will be possible. Ideally the locations should be room-level. 

Based on these requirements, the following sections describe the conversion of an 

existing dataset to the required structure, the manual collection of a new dataset 

with these specific requirements in mind, and the development of an occupant 

model capable of generated synthetic datasets in the appropriate format. 
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3.2. Augsburg Indoor Location Tracking Benchmark 

As the objective of this thesis is to predict occupant locations within smart 

buildings, the ideal test dataset would be data from an actual tracking system in 

such a building. Datasets which were considered include (McNett et al. 2003) and 

(Henderson et al. 2008), in both of which location datasets are collected on a 

college campus using Wi-Fi localisation. However, both of these datasets track 

people’s movements between multiple buildings and, due to relying on wireless 

access points for localisation, have difficulty pinpointing exact locations. In 

particular in the 2008 work, a user is only considered to have moved if they connect 

to access points more than 50m apart, as even stationary occupants could appear 

to be connecting to and disconnecting from APs in different buildings. A well known 

dataset is the Reality Mining dataset (Eagle et al. 2006), in which occupants were 

tracking using a combination of cell towers and Bluetooth sightings. As some of the 

Bluetooth devices sighted in the dataset are static, such as desktop pcs, part of the 

dataset could provide a location trace of the participants, however this would be 

limited to those locations demarked by static Bluetooth devices. 

The Augsburg Indoor Location Tracking Benchmarks (Petzold 2004) is a location 

dataset in which the exact room-level location of a set of occupants is recorded 

throughout the working day in a university department. While the data was 

collected manually, it is exactly the type of data we would expect from an occupant 

tracking system using one of the technologies discussed in section 1.1. The 

approach developed in this thesis could be applied to the other datasets referenced 

above, including predictions across multiple buildings, however as the Augsburg 

dataset provides the type of data the approach is intended for it is the external 

dataset used when evaluating the approach. 

The Augsburg dataset was collected by 4 occupants in the University of Augsburg 

via a PDA application which they used to record their movements. Every time an 

occupant changed rooms, they tapped their new room on the PDA, and the time 

was logged, resulting in a timestamped trace of the occupant’s movements. The 
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occupants gathered several weeks of data in two time periods, the summer season 

and fall season. 

Occupant Duration Locations 

A 5 weeks 4 

B 7 weeks 9 

C 6 weeks 8 

D 11 weeks 9 

Table 3-1 – Total amount of data collected by each occupant in the Augsburg dataset (5 day weeks) 

 OccApriori predicts occupants’ locations during specific timeslots, as opposed to 

approaches which predict what the occupant’s next location will be whenever they 

move. As the Augsburg dataset collected the exact times when occupants moved, it 

had to be converted into a dataset which would state the occupant’s location in 

each timeslot. The evaluations in this thesis use half-hour timeslots, and consider 

an occupant’s location in a timeslot to be the location they were in for the majority 

of that timeslot. The arrival times recorded in the Augsburg dataset were used to 

determine each occupant’s location in each timeslot and record it in a timeslot 

based format. Table 3-1 shows the total duration of the data for each occupant, and 

the number of locations per occupant, in the Augsburg dataset. The number of 

locations is lower than in the original dataset as some locations, for example 

‘kitchen’, were visited for such short durations that they did not become any 

occupant’s location in any timeslot. 

While the Augsburg dataset is the most suitable existing dataset for evaluating 

OccApriori, several attributes make it less than ideal. First and foremost it features 

a small number of occupants who collected a relatively small amount of data. While 

occupant D collected nearly 3 months of data, the other three occupants collected 

less than 2. It has been shown that the amount of data is available is sufficient for 

good next location prediction using some approaches, for example (Petzold et al. 

2006), however other approaches may prefer more training data to make these or 

other types of predictions. The data is also collected in two different seasons, 

rather than being a single contiguous dataset, requiring approaches to make 

predictions on movements in fall based in whole or in part on occupant movements 
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in the summer. Ideally predictions would be based on occupants’ recent patterns of 

movement, not those from several months before. The occupants in the dataset 

also do not tend to move in patterns which relate the time of day, which is the basis 

on which OccApriori predicts their location in the future. While it is useful to 

evaluate how OccApriori performs on datasets that do not have occupants moving 

in ideal types of patterns, it is of course also important to evaluate it on occupants 

who do have such patterns. Finally, the Augsburg dataset contains no extra data 

which may be useful for predicting the occupants’ locations. OccApriori is designed 

to be able to incorporate any extra data which can be provided, the most obvious 

example of which is schedule data for occupants who have scheduled events. While 

this extra data is not essential, it would be preferable to evaluate its effect. 

3.3. Internally Collected Dataset 

As part of this research a group of volunteers in UCC collected a dataset which 

addresses the shortcomings of the Augsburg dataset with regard to OccApriori. Six 

occupants volunteered to record their movements using Google Calendar. The 

occupants were instructed to record their location throughout the day using entries 

on the calendar which stated their location for the duration of the entry, for 

example, an entry from 09:00 to 12:00 with the location set to their office, or an 

entry from 14:30 to 15:00 with the location set to a colleague’s office, representing 

a short meeting. Occupants were to record their location when in the building from 

08:00 to 18:00 on weekdays. 

The occupants were members of UCC’s Department of Computer Science. They 

included a lecturer, a software developer, and postgraduate students. Two 

occupants had their own office, three shared an office, and one was seated in an 

open plan area.  As they were all involved in research on intelligent buildings, the 

occupants frequently visited each other offices, and also had a regular group 

meeting all the occupants in the dataset attended. The building in which the data 

was recorded is an off-campus UCC building which houses single and multi-

occupancy offices and open-plan offices for several departments, as well as lecture 

halls and labs for undergraduates. 
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Figure 3-1 – The offices in the UCC dataset 

Figure 3-1 shows the floor plan of the area in which the occupants’ offices were 

located, with the room numbers marked. 103 is the open plan area, while 104 was 

the group’s main meeting room. The other rooms in the dataset were lecture halls, 

labs, and less frequently used meeting rooms, which were located on other floors. 

A larger number of occupants would have been preferable, however the data 

gathering required manual recording of one’s location throughout the day for a 

protracted period, and so the volunteers ultimately came from the pool of people 

who would have practical use for such a dataset. 

The basic assumption made in this thesis for a tracking system which would provide 

the data for the predictor is that it would be able to track occupants with room-

level granularity (although OccApriori does not require this), so occupants were 

instructed to record their location as the room code of the room they occupied. As 

the aim was to produce a dataset with half-hour timeslots, locations were to be 

recorded with half-hour granularity, with events beginning and ending on the hour 

or on the half hour. Of course, for stays in a single location longer than half an hour, 

a single event could cover the entire stay; a calendar entry was not required for 

every single time slot, as in the example above from 09:00 to 12:00. Locations 
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outside the building were all simply recorded as ‘Away’, as the hypothetical tracking 

system the data collection was based on would not track occupants outside the 

building. Finally, occupants were instructed to record their scheduled movements 

as well, in the same format as they recorded their actual movements. Whenever 

they were scheduled for a meeting, lecture or any such event, they recorded the 

time and location of the event, as well as where they actually ended up being at 

that time. Table 3-2 shows the resulting location trace for one day for occupant B. 

Time Location 

08:00 Away 

08:30 102 

09:00 108 

09:30 108 

10:00 108 

10:30 108 

11:00 106 

11:30 106 

12:00 106 

12:30 106 

13:00 102 

13:30 102 

14:00 102 

14:30 102 

15:00 102 

15:30 102 

16:00 102 

16:30 102 

17:00 102 

17:30 Away 

18:00 Away 

Table 3-2 – A location trace for occupant B 
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As mentioned, the occupants used Google Calendar to record their movements. 

Each occupant used two calendars of their own, one for their actual movements, 

and one for their scheduled movements. Google Calendar has a feature whereby a 

private link can be provided to a calendar to allow access to anyone who is given 

the link. Using this method, the data could be collected without making any of the 

calendars publically available. The data was downloaded by exporting it from 

Google Calendar in the iCalendar (ICS) format. A script was written which could 

convert the iCalendar events from each pair of calendars (actual and scheduled 

movements) into a dataset in the Attribute-Relation File Format (ARFF) for each 

occupant, after which combining each occupants’ individual datasets gave a 

complete dataset. ARFF is the file format used by the WEKA machine learning 

toolkit (University of Waikato 2015), which includes an association rule miner used 

for the earliest testing of applying association rules to occupant prediction. As the 

format proved suitable for representing the occupant location datasets it is also 

used as the input format for OccApriori. 

While occupants were instructed to record their location over time with half-hour 

granularity, longer events were allowed considered, and the script does not assume 

that all occupants actually did record their locations with events that were a 

minimum of a half-hour long and started and ended on either an hour or a half 

hour. As with the converter for the Augsburg dataset, the ICS to ARFF converter 

uses the calendar data to determine the location in which each occupant spent 

most of each timeslot, thus allowing shorter events and events that start at smaller 

fractions of the hour to be properly accounted for.  

The occupants were given a specific format in which to record the location based 

on the room code of the room they were in. The conversion process does not 

assume that all occupants recorded the location in this exact format at all times, 

instead correcting the formatting of the room codes in the recorded data to ensure 

that each location is referred to by a unique identifier. Part of the conversion script 

lists every unique location which appeared in the dataset, allowing for examination 

of the location codes recorded. The total number of locations in this dataset was 

small enough that it was possible to manually go through the list to find locations 
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which were formatted incorrectly or which were external to the building. The 

calendars owners were consulted for any entries which were too vague to be 

certain what location they were referring to. The corrections which were made to 

the locations were written into the script which went through the dataset and 

made the appropriate adjustments to the location entries. The dataset was 

occasionally exported before data collection was complete to use for evaluations 

during the research; by storing the data cleaning in the script, existing fixes could be 

reapplied whenever the data was re-exported and re-converted. 

Occupant Duration Locations Unique Locations Base Location 

A 72 weeks 10 1 103 

B 63 weeks 31 18 102 

C 58 weeks 10 1 101 

D 29 weeks 8 2 101 

E 20 weeks 7 1 105 

F 63 weeks 9 2 107 

Table 3-3 – Total amount of data collected per occupant in the UCC dataset (5 day weeks) 

Table 3-3 shows the timespan during which each occupant collected data, the 

number of locations they visit in the dataset, the number of unique locations, and 

each occupant’s base location. The unique locations for each occupant are those 

locations which were only visited by that occupant. As the occupants were situated 

close to each other and were working on related projects, they generally visited the 

same set of locations at some point in time. The main exception is occupant B, 

whose unique locations are mostly lecture halls / computer labs. While most of the 

occupants shared most of their locations with one or more other occupants, the 

only locations shared among all occupants in the dataset are ‘Away’, the meeting 

room in which this group met (104) and occupant B’s office (102). 

As with the Augsburg dataset, the UCC dataset has some shortcomings. While the 

dataset provides a large amount of data for each occupant, with the lowest being 

20 weeks of data, it is limited to only 6 occupants. The dataset provides schedule 

data as well as actual location data, however only occupant B has an extensive 

schedule with many regular events per day. The other occupants used the schedule 
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for a small number of weekly events, and small numbers of once-off events. An 

ideal dataset would have a larger number of occupants, with different types of 

patterns, and more extensive use of the schedule or other extra data. 

Section 3.6 uses the collected data as part of an evaluation of a synthetic dataset 

generator presented in the following section. As the collected data appears in the 

evaluation, it also serves as an overview of the patterns of the occupants in the 

collected dataset. 

3.4. Synthetic Dataset Generator 

The development of OccApriori approach required datasets which contained 

specific test cases to evaluate the behaviour of the predictor. To this end this thesis 

includes an occupant model based on the type of task structure from (Zimmermann 

2007) and (Tabak 2008). The tasks the occupants engage in during the day are 

modelled in order to set their location in each timeslot when a dataset is generated. 

Tasks have properties such as start time, duration, probability and finally location, 

and are iterated through to decide on the occupants’ locations. The model can also 

be viewed as a Markov chain, where each state is a set of generated location 

entries, and each transition adds a new entry to the set. This work consists both of 

a general occupant model, i.e. an actual method of modelling occupants, and a 

specific occupant model, i.e. a model of some specific real occupants, so for clarity 

the former is referred to as a synthetic dataset generator. The term model 

hereafter refers only to a specific model of specific occupants, with such models 

being provided as data to the dataset generator to produce synthetic datasets. The 

rest of this section describes the dataset generator. 

Assume we have a set of agents A for whom we want to generate location data for 

a period of time. To determine which locations are set in which timeslots, we have 

a set of tasks 8. These tasks are assigned to roles, which describe general patterns 

of behaviour. From the set of roles 9, we then assign roles to agents. The 

specification of the agents, roles and tasks in the generator follows. 
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An agent is defined as 51 =< 	1, 91 > where 	1  is the name of agent 51  (i.e. which 

occupant this agent will be in the dataset), and 91 is a set of roles and probabilities 

of the form < ���, "�} … ��;, ";} >, where "� is the probability of �� being chosen. 

As 91 is a probability distribution over the possible roles, the probabilities "�…"; 

must sum to one. The same representation is used for the probability distributions 

in the rest of the generator. 

Roles are defined as 91 =< 51 , .1, �1, <1, �1, =1 , >1, ?1 >, where 51  and .1  are 

probability distributions over the possible arrival and finish times of the occupant’s 

day. Outside of these times the occupant is set to be ‘Away’ regardless of tasks. �1  
is a probability distribution over the possible durations of the role. Given a duration 

@, a new role will not be chosen for the occupant until @ days have passed in the 

simulation.  <1 is the set of days of the week on which the role is allowed to be 

chosen.  �1 is a flag indicating whether or not the occupant can attend meetings 

while in this role. Meetings are a special subset of tasks to which agents are 

assigned rather than the other way around. =1,  >1 and ?1 are sets of primary tasks, 

secondary tasks and tertiary task respectively, each task type representing a 

different type of task. 

Roles encapsulate occupants’ movements throughout a day (or several consecutive 

days if the duration property is greater than one). They are essentially a collection 

of tasks the occupant can engage in on a day, along with the probabilities of when 

they first arrive and last leave. During evaluation, when a day starts, choosing roles 

for each occupant is the first step. The occupants’ arrival and departure times are 

then generated based on the 51 , .1 properties of the role. Throughout the rest of 

the generation process, when each type of task is being evaluated, it is the =1 ,  >1 
and ?1 properties of the role selected for each occupant which dictates the tasks 

which will be evaluated for that occupant. 

Primary tasks are defined as =1 =< 81 , �1 , A1, <1, "1 >, where 81 is a probability 

distribution over the possible start times, �1  is a probability distribution over the 

possible durations, A1  is a probability distribution over the possible locations, <1 is 

the set of days of the week on which the task can occur and "1 is the probability of 
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the task occurring given that the task can occur and whether it occurs is currently 

being evaluated. When a primary task is being evaluated, the generator first checks 

if the current day in the simulation is a day on which the task can occur. If not, the 

task does not occur. If so, the values �, @ and � are chosen from 81, �1  and A1based 

on the associated probability distributions. The task is thus set to occur at time � for 

duration @ (measured in timeslots) in location �. If the occupant already has a set 

location in any of the timeslots that the task occurs in based on � and @ then the 

task does not occur, otherwise the probability of it occurring is  "1. 

Secondary tasks are similar to primary tasks except in how the time is chosen. 

Secondary tasks are defined as  >1 =< 81, �1, A1, <1, "1 >. �1  and A1  are probability 

distributions over duration and location as with primary tasks. <1 specifies the days 

on which the task can occur.  81 is again the set of times at which the task can occur, 

however for secondary tasks this is an ordered list of times at which the event can 

occur. When the task is being evaluated, if the simulation is on a day on which the 

task can occur, the times are checked in order and the first time at which the event 

can occur, i.e. the first time � for which the time slots the task will occur in 

according to � and @ are empty, is selected as the time that the task will occur. If 

the task cannot occur in any of the times due to time slots already being filled, then 

the task does not occur. If the task can occur and a time is chosen, then as with 

primary tasks "1 is the chance that the task actually will occur. 

The set of tertiary tasks is actually a probability distribution over a set of locations 

?1 =< ���, "�} … ��;, ";} >. Tertiary tasks have no properties other than a location 

and a probability. Tertiary tasks are evaluated after all other tasks to fill in 

otherwise empty timeslots with low-priority or default tasks. As such, when the 

tertiary tasks ?1 are being evaluated, every remaining empty timeslot will take 

location �B with probability "B for � ≤ D ≤ �. 

There are also types of tasks called meetings, which are tasks which involve more 

than one agent. These are similar to the existing types of tasks, they simply have 

some extra properties and, since they are not associated with any single agent, are 

evaluated at a different point in the generation process, which is discussed below. 
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Primary meetings are defined as =E1 =< 81, �1 , A1 , <1, "1, 91 , F1 >. 81, �1, A1, <1 
and "1 are the same properties as in primary meetings. 91 is a set of required 

agents, while F1 is a set of optional agents. As with primary tasks, the simulation 

must be on a day allowed by <1 for the meeting to occur, and the time, duration 

and location of the meeting are decided using the corresponding probability 

distributions. Similar to primary tasks, the meeting cannot occur if any of the 

required agents are unavailable due to the slots that the meeting occurs in already 

being filled, or one of the required agent’s role does not allow meetings. If all of the 

required agents are available and the simulation is on an allowed day, then the 

probability of the meeting occurring is "1. If the meeting occurs, any optional agents 

who are available will attend. 

Secondary meetings, defined as >E1 =< 81, �1 , A1 , <1, "1, 51, �1 >, share the 

properties 81, �1, A1, <1 and "1 with secondary tasks. In addition there is 51, the set 

of agents who may attend the meeting, and �1, the minimum number of agents 

required for the meeting to occur. The allowed days and selection of time, duration 

and location are handled in the same manner as for secondary tasks.  Checking 

whether agents from 51  are available is done in the same manner as for primary 

meetings. If sufficient agents, as defined by �1, are available for the meeting and 

the simulation is on an allowed day then the probability of it occurring is "1, if not 

enough agents are available the meeting does not occur. 

The following outlines the process of generating a dataset: 

For each day in the simulation: 

  For each agent in the simulation: 

    If current role has no duration left: 

      choose new role 

    Choose arrival and finish time based on role 

 

  For each primary meeting: 

    Check that meeting can occur on this day 

    Choose time, duration and location 

    Check all required agents are available 

    Choose whether meeting occurs 

    If all conditions met: 

      Schedule meeting for required agents 

      Schedule meeting for available optional agents 
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  For each agent: 

    For each primary task of this agent: 

      Choose time, duration, location 

      Check if agent is available 

      Choose whether task occurs 

      If all conditions met: 

        Schedule task for agent 

 

  For each secondary meeting: 

    Choose duration and location 

    For each possible start time: 

      Check how many attending agents are available 

      If available > minimum agents: 

        Select this time 

    Choose whether meeting will occur 

    If all conditions met: 

      Schedule meeting for available agents 

 

  For each agent: 

    For each secondary task of this agent: 

      Choose duration, location 

      For each possible start time: 

        If agent is free: 

          Select this time 

      Choose whether task will occur 

      If all conditions met: 

        Schedule task for agent 

 

  For each agent: 

    For each timeslot in this agent’s schedule: 

      If timeslot has nothing scheduled: 

        Choose tertiary task based on role 

        Schedule tertiary task 

3.5. Model of Internal Dataset 

To evaluate the dataset generator’s ability to model realistic occupants, and to 

provide a base model which can be altered as required for other evaluations, this 

thesis models the occupants in the internally collected dataset. The most recent 80 

instances (i.e. 16 weeks) for each occupant form the dataset used as the basis of 

the model. This represents a long enough period that the model will not ‘over fit’ to 

a small time period, i.e. the model will not exclusively model the very specific 

recent behaviours of the occupants; it will represent more general patterns of 
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movement over a protracted period. The period is also short enough that the model 

will not be confused by changes in behaviour over different time periods – 

occupant behaviour patterns may well change over long time periods, and building 

a single model using data with different patterns will result in a model which is a 

compromise between the two rather than properly modelling either.  In the case of 

occupant B the period is cut down to 65 instances (13 weeks), as the occupant had 

a change in routine during the final 80 instances, which would have caused the 

issue just discussed. Following is the process of modelling these occupants based on 

this data. 

 

Figure 3-2 – Frequency of absence per timeslot for each day for occupant C 

 

Figure 3-3 – Frequency of absence per timeslot for each day for occupant F 
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For most of the occupants, the majority of the model is concerned with when the 

occupant is ‘Away’ or not, as they are mostly in their office when they are in. We 

start by identifying patterns in the occupants’ absence. We break the analysis down 

by day, as for some occupants their pattern of absence depends on the day. Figure 

3-2 shows occupant C, whose frequency of absence varies by day, but always 

follows the same general pattern. The biggest deviation is on Thursday afternoon, 

at which time the occupant is less likely than usual to be absent – this is due to the 

group meeting at this time which all occupants in the dataset attend. Figure 3-3 

shows occupant F, whose frequency of absence depends heavily on the day – on 

Monday and Wednesday they are almost guaranteed to be absent, while they are 

often present on Thursday. We group similar patterns of absence to model together 

via an in role and an out role, for occupant C that results in one pair of roles for the 

entire week, for occupant F we require three pairs of roles. 

Each pair of roles consists of an in role and an out role for the days the roles cover – 

the out role being the role which states that the occupant is simply absent all day. 

To determine the frequency with which this role should be selected, we simply 

check the dataset to determine how frequently the occupant was absent all day on 

the corresponding days. All remaining absences, where the occupant was absent 

temporarily on a day on which they were in the building, are modelled as part of 

the corresponding in role. Continuing with the example of occupant C, we find that 

they are absent all day in 22.5% of instances. Table 3-4 shows the resulting role 

attributes for occupant C in the model. 

Attribute Value Probability 

Role Occupant_C_In 77.5% 

Role Occupant_C_Out 22.5% 

Table 3-4 – Values of the ‘role’ attribute and associated probabilities for occupant C 

The frequency of the out role gives us a minimum frequency with which the 

occupant is absent in any given timeslot over the entire dataset for the relevant 

days. The actual minimum in the dataset is generally a bit higher, which we model 

as being due to essentially random absences which occur during the day. The 

specification of the generator discussed tertiary tasks, which are used to fill in 
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timeslots which are empty once all the main tasks have been evaluated. We set the 

tertiary task for the in role to put the occupant in their office, but with a probability 

of being absent from the building based on the difference between the frequency 

of all day absences and minimum total frequency of absence in any timeslot. For 

occupant C, they are absent with a minimum frequency of approximately 30% 

across the entire week. Given a probability of being absent all day of 22.5%, a 

probability of randomly being absent in any timeslot of 9.7% in the in role results in 

the desired 30% overall probability. Table 3-5 shows the location attributes of the 

tertiary task in the role Occupant_C_In from Table 3-4. 

Attribute Value Probability 

Location 101 90.3% 

Location Away 9.7% 

Table 3-5 – Values of the ‘location’ attribute and associated probabilities for the tertiary task of the 

Occupant_C_In role 

The final cause of absence we model is the time of arrival and departure. In a role’s 

attributes we model these times as a probability distribution over the possible 

arrival and departure times. The dataset, once we account for all day and random 

absences, gives us the cumulative probability of the occupant being absent at each 

timeslot, which we must convert into a probability distribution. Accounting for the 

existing chances of being away is simply an application of Bayes theorem: 

=���|9	��G�� = =�9	��G�|��� ∗ =����=�9	��G��  

We know the overall probability of being in =���� from the data, the probability of 

being in the in role =�9	��G�� is set by us, and =�9	��G�|��� is simply 1 as the 

occupant cannot be in without being in the in role. Thus we can calculate for each 

timeslot the probability that the occupant should have set for being in within the in 

role in order to match the actual probabilities. For these calculations ‘in’ is a non-

existent location which simply means ‘not away’. Having the total probability of 

being in (and therefore, away) the occupant must have in the in role, we can then 

repeat this calculation to factor out the random chance of being away that we have 

set in the tertiary task. This final probability of being away is the probability of being 
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away due to the occupant not having arrived yet at this time slot, i.e. the 

cumulative probability of not having arrived by this time. This process can be 

repeated for all timeslots until the points are reached where the probability of 

being away is 1 (very early, occupant never arrives), or 0 (occupant always in by 

now if they come in at all). The cumulative probability of not arriving also gives us 

the cumulative probability of having arrived by each timeslot, from which we can 

calculate the original distribution as =�5��I� = =���I� − =���I2� where 

=�5��I� is the probability of arriving at time 8 and =���I� is the cumulative 

probability of having already arrived at time 8 (with all other factors removed). The 

same process can then be applied for departure times. 

For most of the occupants there is a spike in the frequency of absence in the middle 

of the day due to going for lunch. The start time and duration for lunch can vary, so 

it is not as simple as calculating a single probability that the task will occur. The 

same process used for arrival and departure times is used to determine the 

probability of being absent due to going to lunch required in each timeslot to match 

the frequencies of the original occupant. Examination of the frequencies will give a 

rough idea of probabilities required to generate a similar pattern. 

Timeslot F(Away) 

12:00 0.449275233 

12:30 0.710144859 

13:00 0.637681074 

13:30 0.173912849 

14:00 0.086956307 

Table 3-6 – Frequency with which occupant E is absent due to being at lunch in each timeslot, given that they 

are in the office to begin with 

Table 3-6 shows the frequency with which occupant E is away around lunchtime, 

once the already modelled factors are taken into account. The probability goes up 

at 12:30, and then decreases monotonically. A lunch task with a duration of two 

timeslots and a chance of starting either at 12:00 or 12:30 (or not at all) could 

explain most of these frequencies – the probability at 12:00 is simply the probability 

of the task starting at 12:00, at 12:30 it is the cumulative probability of it occurring 
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at 12:00 or 12:30, as the occupant would be out at 12:30 either way, and 13:00 is 

the probability of it occurring at 12:30, as it is only that start time which would 

affect 13:00. Using this as a starting point we can calculate the required 

probabilities, resulting in a task with the following probabilities: 

Attribute Value Probability 

Time 12:00 63% 

Time 12:30 36% 

Duration 2 55% 

Duration 3 44% 

Probability 71% - 

Table 3-7 – The values of the time, duration and probability attributes and associated probabilities for 

occupant E’s lunch task 

Matching the probabilities as closely as possible required a task which has a 

probability of occurring below one, and a probability of having duration 3. Note 

that the probabilities for the Time attribute are the probabilities of that time being 

select and thus sum to one; the actual probabilities of the task occurring at either 

time also depends on the overall probability of the task occurring at all (and on the 

previously modelled factors such as the occupant being in). 

Timeslot P(Away) 

12:00 0.45 

12:30 0.71 

13:00 0.62 

13:30 0.208 

14:00 0 

Table 3-8 – Probability with which occupant E will be absent due to being at lunch in each timeslot, given that 

they are in the ‘in’ role 

Table 3-8 shows the probabilities which result from the task in Table 3-7, again 

these being the probabilities without taking into account the previously modelled 

factors. There are close matches for 12:00, 12:30, 13:00, some error on 13:30, and 

the task ignores the small away frequency at 14:00 entirely. To properly model 

these trailing probabilities would require a significantly more complex task as 
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changing, for example, the duration to allow a small chance of the task covering 

14:00 as well would affect most of the other probabilities. 

Attribute Value Probability 

Time 09:00 1 

Duration 4 1 

Location 108 1 

Probability 0.8 - 

Day Tuesday - 

Table 3-9 – A typical primary task for a fixed event such as a lecture, this one belonging to occupant B 

The remaining elements, the primary tasks for fixed events such as lectures and the 

group meeting which the occupants all attend are trivial in comparison, involving no 

more than stating the start time, duration and day to which the task applies. Table 

3-9 shows the properties of such a task belonging to occupant B. 

To determine if the model has reached a point where it recreates the occupants’ 

location frequencies to a sufficient degree, datasets generated from it are 

evaluated in the following section. 

3.6. Evaluation of  Model 

In order to evaluate the similarity of the synthetic version of the internally collected 

dataset, this section compares statistics on occupant location throughout the day. 

The metrics used are location frequency per timeslot, arrival and departure 

frequency per timeslot, stay duration frequency per location, and finally location 

change frequency, comparing the frequencies to the corresponding frequencies 

from the original dataset to determine similarity 

 Location frequency per timeslot is the most fundamental point of comparison as it 

is the basis of both the occupant model and the occupant location prediction 

algorithm. Any error here would indicate that the model is severely lacking. Arrivals 

and departures are covered by this evaluation via the ‘Away’ location, however the 

location frequency per timeslot for the ‘Away’ location essentially gives the 

cumulative probability distribution of the occupant having arrived or departed. The 
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model attempts to capture the underlying probability distribution over the time of 

arrival or departure, thus the evaluation also includes a comparison of frequency of 

arrival or departure in each timeslot. Stay duration frequency is considered as the 

frequency of location in each timeslot could be matched independently of each 

other without properly capturing the occupants’ behaviours. For example, an 

occupant with an hour long meeting – the frequency of being in the room in each 

half hour timeslot could be matched with disjoint half hour visits in each time slot, 

but this would not properly capture the occupant’s behaviour. This is important as 

next location prediction in particular relies on the occupants’ recent locations. 

Location change frequency  is essentially the flip side of this same metric – the 

longer the occupant tends to stay in each location, the less often they will change 

location and vice versa. The evaluation includes this metric to complement the 

previous one. Combined, these metrics can tell us whether the model is capturing 

the specific aspects of the source data which were modelled as well as the general 

features which are not explicitly modelled. 

 

Figure 3-4 – Location frequency per timeslot for occupant A in the original and synthetic datasets. The bars 

representing each collected/synthetic frequency pair are adjacent and share a color. 

Figure 3-4 shows Occupant A’s location frequency per timeslot. The bars in the 

graph are paired such that for each timeslot/location combination, the original 

dataset frequency and generated dataset frequency are displayed next to each 

other in the same colour. Thus if the bars of the same colour are the same height, 

the frequencies match. In Occupant A’s case, ‘Away’ is by far the most frequent 
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location so the frequencies easily match, with the other locations which appear also 

closely matching the original dataset. The RMSE (Root Mean Square Error) across all 

locations is 1.75. 

Figure 3-5, Figure 3-6 and Figure 3-7 show the location frequencies per timeslot for 

occupants C, D and E respectively. All three of these occupants visited three main 

locations: the ‘Away’ location, their own office, and the group meeting room. The 

frequencies are therefore dominated in all three cases by ‘Away’ and their own 

office. All three occupants follow a general pattern of increasing frequency of being 

in their office as the morning progresses, followed by sharp brief drop at lunchtime, 

and then a slow decline in the evening, with the ‘Away’ frequencies displaying the 

inverse pattern. While all three occupants follow this general pattern, the exact 

shape of the frequency pattern is different for each occupant, and the model 

provides an accurate recreation in each case, with RMSE values of 2.9, 2 and 5.5 

respectively. The largest error is in the occupant E’s model, which loses track of the 

pattern in the second half of the day, resulting in a 7.8 RMSE for location 105 and a 

higher overall RMSE than the preceding two occupants. This indicates that occupant 

E has an extra factor affecting their movement from 13:30 to 16:00, which would 

require a more detailed model to capture. 

 

Figure 3-5 – Location frequency per timeslot for occupant C in the original and synthetic datasets 
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Figure 3-6 – Location frequency per timeslot for occupant D in the original and synthetic datasets 

 

Figure 3-7 – Location frequency per timeslot for occupant E in the original and synthetic datasets 

 

Figure 3-8 – Location frequency per timeslot for occupant F in the original and synthetic datasets 
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Figure 3-8 shows the location frequencies for occupant F, who similar to occupant A 

is most often ‘Away’, but who makes more regular appearances in the office. 

Occupant F’s office frequencies show the same general pattern as occupants C, D 

and E, but with much lower overall probability of being in. Again the model is able 

to correctly recreate these location frequencies, with an overall RMSE of 2.5. 

 

Figure 3-9 – Location frequency per timeslot for occupant B on Mondays in the original and synthetic datasets 

Figure 3-9 show the location frequencies for occupant B on Mondays. As occupant 

B has many scheduled events which cause them to visit a larger number of 

locations and to have much more distinct patterns on different days, only one day’s 

frequencies are shown for clarity. This occupant displays a much more rigid pattern 

of frequencies, where their schedule dictates a high frequency of being in specific 

locations at specific times. There is a constant low frequency of being away, due to 

days when the occupant does not come into the office and the day’s events do not 

occur. The general pattern adhered to by the previous occupants is not seen in this 

occupant’s location frequencies. Using day specific tasks to model the occupant 

regular schedule accurately recreates the location frequencies, with an RMSE of 

4.6. This occupant’s frequencies for Tuesday through Friday follow a similar type of 

pattern, with a similar level of accuracy in the model’s recreation. 
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Figure 3-10 – Arrival and departure time frequencies for occupant A in the original and synthetic datasets 

Figure 3-10 shows the frequency with which occupant A arrives at and departs from 

the building in each timeslot, for both the original and synthetic version of the 

dataset. The similarity in the frequencies shows that the synthetic occupant 

captures the overall pattern of the original occupant’s arrivals and departures, 

although the synthetic occupant’s frequency peaks higher for both. 

 

Figure 3-11 – Arrival and departure time frequencies for occupant E in the original and synthetic datasets 
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Figure 3-12 – Arrival and departure time frequencies for occupant B in the original and synthetic datasets 

Figure 3-11 and Figure 3-12 show the arrival and departure time frequencies of 

occupants E and B respectively. These distributions show the extremes of the 

variety of arrival and departure patterns in the dataset. Occupant B, being the 

occupant with the most scheduled events, has extremely rigid arrival and departure 

times, in particular they arrive in the same timeslot almost every day. Occupant E 

displays a similar pattern to occupant A, but at different times and with a  wider 

distribution. The synthetic dataset frequencies show that the model is able to 

capture both of these patterns. 

 

Figure 3-13 – Stay duration frequency per location for occupant C in the original and synthetic datasets 
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Figure 3-14 - Stay duration frequency per location for occupant D in the original and synthetic datasets 

Figure 3-13 and Figure 3-14 show, for occupants C and D respectively, the 

frequency with which the occupant remained in each location for each duration. 

Overall the patterns are similar, although occupant D tends to remain in their office 

for longer durations with higher frequency, whereas occupant C’s frequency 

remains the same or decreases with increasing duration. The model captures most 

the details of both occupants accurately, with the largest exception being the group 

meeting, the only non-office non-away location which appears for either occupant. 

The group meeting is modelled using the synthetic dataset generator’s meeting 

tasks, which state that the meeting will only occur when the appropriate agents are 

available. This means the meeting must have the same duration for all agents. 

However, the actual collected data for each occupant indicates a different duration, 

with occupant C often remaining for half an hour, and occupant D always remaining 

for an hour. This type of discrepancy could be caused by occupants leaving early, 

however in this case it is actually because the parts of the year covered by the 

occupants is different – in the months covered by both occupants, the meeting 

tended to last an hour, whereas in the months covered only by occupant C, the 

meeting tended to be shorter. 

Occupant B again displays a distinctly different pattern to the other occupants, as 

shown in Figure 3-15. Aside from a small and decreasing frequency of staying in 

their office for each duration, the occupant has essentially fixed durations for their 
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stays in every other location. These durations are easily matched by the model, as 

they are simply stated as the durations of the relevant tasks. 

 

Figure 3-15 - Stay duration frequency per location for occupant B in the original and synthetic datasets 

 

Figure 3-16 – Average location changes per day for each occupant in the original and synthetic datasets 

Figure 3-16 shows the average number of changes in location per day for each 

occupant. Combined with the previous comparison which shows that the synthetic 

occupants remain in each location for the correct amount of time, this graph shows 

that they also change location with the correct frequency, providing an accurate 

model of the original occupants. 
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 Orig Gen 0 Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7 

NT 83% 82% 83% 82% 83% 82% 82% 82% 82% 
ND 70% 70% 70% 70% 70% 70% 70% 70% 70% 

Table 3-10 – Percentage of correct predictions, predicting every occupant’s exact location in every timeslot, 

predicting location in the next timeslot (NT) and predicting their locations on the next day (ND) for the 

original and 8 generations of the synthetic dataset 

Since the purpose of the generated dataset is to be the basis of an evaluation 

dataset for the predictor which will be presented in Chapter 4, a comparison of the 

accuracy of the predictor on the original and generated datasets is also provided. 

This cannot tell us anything in particular about the similarity of the dataset, but will 

highlight if there are any thus far unidentified issues with the model which impact 

its output’s predictability compared to the original dataset. 

The predictor was trained on the entire dataset preceding the segment used as the 

basic for the model. The rules resulting from this training were then used to predict 

both the original data the model was based on, and the data generated by the 

model. Table 3-10 shows the overall accuracy of the predictions of each occupant’s 

location in the next timeslot (NT) and their location throughout the day the next 

day (next day). The test includes eight runs of the synthetic dataset generator to 

test the level of variance in the resulting dataset. The results show that the 

generated data has almost exactly the same level of predictability as the original 

dataset, and that the predictability varies only slightly when the dataset is 

regenerated. 

  

Figure 3-17 – Prediction accuracy from Table 3-10 broken down by occupant for original dataset and synthetic 

dataset ‘gen 0’ 

0%

20%

40%

60%

80%

100%

A B C D E F

A
cc

u
ra

cy

Occupant

NH Original NH Gen ND Original ND Gen



74 
 

  

Figure 3-18 – Prediction accuracy from Table 3-10 broken down by timeslot for original dataset and synthetic 

dataset ‘gen 0’ 

Figure 3-17 and Figure 3-18 break down the accuracy of the predictions on the 

original dataset and the generated dataset ‘Gen 0’ by occupant and timeslot. Along 

with the overall accuracy being the same, these figures show that the accuracy 

levels are similar across all occupants and timeslots as well. 

3.7. Summary 

This chapter discussed the two collected datasets used to evaluate OccApriori. The 

internally collected UCC dataset contains data of a similar type to the existing 

Augsburg dataset, but improves upon it in terms of number of the occupants, 

duration of data collection and in the inclusion of timetable data. 

The chapter also presented a synthetic dataset generator based on existing 

occupant modelling approaches. It detailed the process of modelling the occupants 

in the collected dataset, and performed a detailed evaluation to show that the 

synthetic datasets generated from that model closely match the original data on a 

variety of metrics, as well as being equally predictable. This model provides a base 

onto which specific test cases can be built to test particular features of OccApriori. 
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4. Occupant Location Prediction using 

Association Rules 

Chapter 2 discussed the process of association rule mining, which involves mining 

frequent itemsets of ascending size from the dataset, then generating rules from 

the itemsets. As association rule mining is an unsupervised process it can be applied 

to occupancy data without any modification, although the occupancy data must be 

carefully structured so that the desired types of patterns will be found. The aim in 

this thesis is to find patterns which relate to specific time periods, in order to 

predict where occupants will be at those times in the future. To this end the dataset 

is arranged such that an occupant’s movements for a day becomes an instance, 

with the time periods and the occupant’s location at those time periods being the 

main attributes and values respectively. The occupant and the day that each 

instance applies to are present as values in the instance to allow patterns to be 

related to these variables. With this type of dataset structure the unmodified 

algorithm can then find patterns which repeat across multiple days, similar to how 

in the traditional usage it finds patterns which repeat across multiple market 

baskets. However, the patterns required for occupancy prediction are not the same 

patterns which the algorithm was designed to find in market baskets. The original 

application is interested in patterns which apply across all transactions, whereas for 

occupant prediction it is necessary to predict every occupant individually, so while 

overall patterns which apply to all occupants are useful, more specific patterns 

which can predict specific occupants are required. Unmodified, the algorithm will 

mainly or exclusively find the former type of pattern, resulting in low prediction 
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accuracy. OccApriori consists of a set of components which work together to focus 

the algorithm on the types of patterns required for occupant prediction. These will 

be summarised briefly before each is discussed in detail. 

The components of OccApriori are the dataset structure, iterative support 

reduction, support modification, windowing, candidate pruning, rule pruning and 

finally rule selection. As already mentioned, the dataset is structured specifically to 

allow the required types of patterns to be found. Iterative support reduction 

addresses the issue of choosing a support threshold; as each occupant may have 

different patterns of movement, different support thresholds are needed to reach 

the useful patterns while avoiding a combinatorial explosion. Support modification 

involves changing the definition of the support metric as the occupant specific 

patterns required for occupant specific predictions can have extremely low support, 

as the occupant’s data as a whole has limited frequency within the dataset. The 

windowing component targets short time windows in the data with a lower support 

threshold in order to find patterns which are distinct but rare, and therefore low-

support. Candidate and rule pruning change the generation of itemset candidates 

and association rules to avoid generating itemsets and rules which are not useful 

for occupant prediction. Finally, rule selection is simply the process of choosing a 

rule to be the output when a prediction is requested. 

Sections 4.1 through 4.6 discuss in detail the main components of OccApriori and 

how they assist the algorithm in finding occupant location patterns. Following this 

OccApriori’s performance is tested on the internally collected UCC dataset and the 

existing Augsburg dataset, evaluating how the algorithm performs at different 

times, on different occupants, and with different data available. These results are 

compared against three existing approaches on both datasets. Finally the 

contribution of each component of OccApriori to increasing prediction accuracy is 

examined. 
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4.1. Dataset Structure 

In order to apply association rule mining to occupancy data, the dataset must be 

suitably structured. The aim of OccApriori to predict occupants’ locations at times 

throughout the day based on their historical locations at those times, and so each 

instance in the dataset is defined to be a single day for a single occupant. Since the 

time at which each location appears in the day is required for predictions, and not 

merely which locations appear in the same day, the items in the instances are 

attribute/value pairs, with the initial attributes and values being times and locations 

respectively. The basic set of attributes also includes the occupant’s identity, the 

day of the week, and the occupant’s scheduled location during the day if they have 

timetable data or similar available. 

The occupant and day are direct attributes whose values simply state which 

occupant and day the instance relates to, allowing the algorithm to find patterns 

relating to specific occupants and/or days. For the location data, actual and 

scheduled, the day consists of a set of equal-length timeslots. For each timeslot 

there is an attribute for actual location during that period and another for 

scheduled location during that period, with the values stating the location. Thus the 

full set of basic attributes in the dataset is: 

 5 = J@, 	, �1, … , �B,  1, … ,  BK (4-1) 

Here @ is the day, 	 is the occupant, �� is the occupant’s location at timeslot �, and 

 � is the location they were scheduled to be in at timeslot �. Of these attributes, 

�1 … �B are the ones which the algorithm aims to predict. ‘Away’ is treated as an 

actual location which is recorded when the occupant is not in the building. The 

value for any attribute can be empty, however if absences are not explicitly 

recorded in the data then any patterns involving absences, such as departing the 

building at the end of the work day, will not be found. Table 4-1 below shows a pair 

of sample instances of this form, with the attributes listed in the table header. 
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Occupant Day 12:00 13:00 12:00 (S) 13:00 (S) 

Bob Monday Bob Office Canteen Bob Office - 

Bill Monday Bill Office Away - - 

Table 4-1 – Example instances using OccApriori’s dataset structure 

While the items in the traditional market basket dataset are all simple strings which 

are either present or absent, the attribute/value pairs in an occupant location 

dataset have some additional properties which must be considered. The timeslot 

attributes �1 … �B represent an ordered list, the ordering being the time at which 

they occur. This ordering is important as only predictions of later times will be 

useful. The attributes  1 …  B  are also ordered, however this ordering is not 

important. This is because predicting some ��  using data for some �; where � > � 

means the time � must have passed already since there is actual location data for 

time �, thus making a prediction of �� unnecessary, whereas because schedule 

data is by definition available ahead of time, any slot in  1 …  B  can be used to 

predict any slot in �1 … �B. 

The non-timeslot attributes are special in that they are actually data about the 

location data, i.e. meta-data. This has consequences for the frequency of the 

possible values as while a timeslot can, in principle, take on any location value, each 

day of the week occurs with fixed frequency, and each occupant’s data represents a 

fixed fraction of the total dataset. This in turn changes the support threshold which 

must be used to delineate frequent itemsets. Taking the example of the UCC 

dataset with 5 days and 6 occupants, assuming an even distribution of days and 

occupants across the instances, an itemset which includes a value for occupant and 

day will have a maximum support of ~0.03, which is extremely low. This will be 

addressed in section 4.4. 

As association rule mining is an unsupervised approach designed to find any 

patterns present in a dataset, any of the attributes listed above can be absent and 

the algorithm will still function. An obvious example is that the schedule data may 

be incomplete or empty simply because occupants may not have any scheduled 

activities, and the evaluation includes examining the effect of removing the 
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timetable data where it is available. Instances missing actual location data or even 

the occupant and day labels can also be handled, but will obviously be of limited 

use in terms of making predictions. New attributes can also be freely added to the 

dataset, and will be picked up by the algorithm without further intervention. 

Examples of attributes which could be added include month, date, academic term, 

weather data, etc. As with the basic attributes it must be considered whether a new 

attribute is a meta-data attribute or not. Table 4-2 shows the example dataset from 

Table 4-1 with the Month and Weather attributes added (and the schedule 

attributes remove due to space limitations). 

Occupant Day Month Weather 12:00 13:00 

Bob Monday July Rain Bob Office Canteen 

Bill Monday July Rain Bill Office Away 

Table 4-2 – Example instances using OccApriori’s dataset structure with two new attributes added – Month 

and Weather 

4.2. Iterative Support Reduction 

In choosing a support threshold for frequent itemset generation, the two concerns 

are eliminating itemsets which represent patterns which are unreliable due to their 

infrequency, and avoiding the combinatorial explosion which occurs when trying to 

enumerate every itemset that appears in the dataset. In occupancy data the 

threshold at which itemsets become unreliable or difficult to enumerate depends 

on the occupant’s patterns. To illustrate this we can look at two hypothetical 

occupants who represent the extreme of pattern frequency. 

Occupant 09:00 10:00 11:00 12:00 13:00 

Occupant 1 A A A A A 

Occupant 1 A A A A A 

Occupant 2 B C D E F 

Occupant 2 G H I J K 

Table 4-3 – Example instances for two occupants, one of whom is always in location A, the other going to a 

brand new location in every time slot 

In this example, Occupant 1 is in the same location in every timeslot in every 

instance, whereas Occupant 2 is always in a new unique location. Due to the 
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Occupant 1 staying in the same location, every itemset which includes the 

‘Occupant: Occupant 1’ item will have the same support, specifically 0.5. Above this 

support threshold we will find no frequent itemsets for Occupant 1, below it we will 

find every itemset which occurs. Contrast this with Occupant 2, whose itemsets will 

all have the minimum possible support of 1/|�|, in this case 25%. Again, above this 

threshold we find no itemsets for this occupant, and below we enumerate them all. 

These occupants represent the extreme edge cases, however any occupant is going 

to fall somewhere between completely consistent and completely inconsistent 

movements. The degree of their consistency determines at what support threshold 

the combinatorial explosion will occur. Thus, the algorithm may need to use 

different support thresholds for different occupants in order to efficiently find 

useful itemsets. To address this OccApriori replaces the fixed support threshold 

with a minimum support threshold, and iteratively drops the support threshold 

from a higher value during candidate generation as follows: 

�	� M
 !"" =  ���� !"";
 !"" ≥  ��� !"";
 !""−=  ��" O : 
  , = � 
  . = �� ∈ ,| !""��� > 
 !""} 
  �	��� = 2;  .12 ≠ ∅;  � + +�: 
      ,1 = �5 ∪ 6|5, 6 ∈ .12, |5 ∪ 6| = �} 
      .1 = .1 ∪ �� ∈ ,1| !""��� > 
 !""} 
      �� ����A�������� 	� ���	�PA�����,1� 
        ���!�� 7 .11  
���!�� 7 .11  

Figure 4-1 – Apriori Algorithm with Iterative Support Reduction 

The algorithm starts by finding frequent itemsets with a high support threshold. If 

the process finishes, i.e. it has enumerated all itemsets this frequent, it reduces the 

support threshold and starts finding frequent itemsets again. New frequent 

itemsets that are found are added to those found in previous iterations. The 
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algorithm has configurable time and memory limits which are checked when it 

steps up the length of itemsets it is searching for. If either of the limits has been 

violated, the process finishes early. If the limits are never violated, the process ends 

with a final iteration with the support threshold equal to the minimum support 

threshold. Figure 4-1 shows the algorithm with iterative support reduction in place, 

which is the main change to the flow of the algorithm; the following components 

alter the criteria under which candidate itemsets or rules are considered in this 

algorithm. 

This approach allows the algorithm to set a general minimum support threshold 

across all occupants based on the minimum frequency the user considers useful, 

while avoiding getting caught in a combinatorial explosion. While the example given 

is occupants, this issue and solution apply to all metadata attribute combinations, 

for example days and the occupant/day combination. A downside of reducing the 

support iteratively is that, due to the process of generating candidates of length � 

process requiring all frequent itemsets of length � − 1, each iteration regenerates 

the frequent itemsets already found in previous iterations. This makes the process 

take longer than if the final support threshold was instead set as a fixed threshold, 

avoiding the iteration. 

4.3. Candidate and Rule Pruning 

Not all associations in the data will be useful for occupant location prediction. The 

data may contain associations that do not relate to occupant locations at all, i.e. 

itemsets which do not contain any of �1 … �B, and may produce rules which predict 

the past, i.e. predicting �� using ���; for some � > 0. As association rule mining is 

designed to find all associations within the support and confidence limits, by default 

it will find these associations along with the useful ones. To address this OccApriori 

alters both candidate and rule generation. 

In candidate generation the algorithm discards any itemset of length 2 upwards 

which does not contain a timeslot attribute. The algorithm should predict only 

occupant locations, so any itemset lacking a timeslot item cannot produce a rule it 
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will ever use, thus it aims to remove them as early in the process as possible. The 

initial generation of 1-itemsets is performed as normal because removing the 

itemsets lacking a timeslot attribute at this point would be equivalent to simply 

removing the non-timeslot data from the dataset. The no-timeslot itemsets of 

length 2 can be removed because for any no-timeslot 2-itemset �R, P�, if this 

itemset will ever be a part of a frequent itemset containing a timeslot �R, P, ��� then 

the 2-itemsets �R, ��� and �P, ��� must also be frequent. �R, ���  and �P, ��� will not 

be removed due to containing timeslot attributes and will generate the �R, P, ��� 

itemset in a later iteration of candidate generation. Thus, removing non-timeslot 

itemsets of length 2 upwards does not remove any itemsets the algorithm is 

intended to find. This modification to candidate generation makes candidate 

generation more efficient, potentially allowing for a lower support threshold for 

any occupants whose non-timeslot data (e.g. timetable data) caused a 

combinatorial explosion, and prevents the generation of the useless rules non-

timeslot itemsets would have resulted in. 

In rule generation, from each itemset  OccApriori only generates the rule whose 

consequent is the final timeslot item in the itemset, i.e. for any itemset � it only 

generates the rule �\���} => {��}, where � ⊂ � is the set of timeslot attributes in I 

and � is the latest time which appears �. As before, the aim is to predict occupant 

locations, so only rules which predict a location are required. Furthermore, 

predicting a past location based on a later location is not useful in practice. Finally, 

in order to be able to meaningfully compare the confidences of the rules when 

predicting, the rules should predict only a single timeslot at a time. So the only rules 

from any itemset �  that are useful are the rules U\���}  => ���� where U is any 

subset of � such that |U| > 0 and � is the final timeslot in U. However if � is frequent, 

then any itemset U is also frequent, so to get the full set of rules required the 

algorithm needs only generate the single rule �\���}  => ���� from every frequent 

itemset. This increases the efficiency of rule generation and rule selection during 

prediction by reducing the number of rules. 
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4.4. Support Modification 

As discussed in section 4.1, occupancy datasets include a number of attributes 

which are actually metadata, and so cannot ever reach the maximum support value 

of 1. This means that these itemsets are less likely or impossible to appear except 

with very low support thresholds. Part of the purpose of the support threshold is to 

eliminate itemsets whose frequency is so low that they will result in unreliable 

rules, and this applies to occupancy datasets as well. However, the itemsets which 

include metadata attributes are also of more interest at lower support values than 

‘normal’ itemsets. Going back to the example in Table 4-3, consider the itemsets 

{10:00: A, 11:00: A} and {Occupant: Occupant 1, 10:00: A, 11:00: A}. Both of these 

itemsets have a support of 0.5 as they both occur in two of the four example 

instances. However one of these is a general pattern which does indeed occur half 

of the time, whereas the other is a pattern which happens in every instance which 

refers to Occupant 1; but the fact that Occupant 1 only appears in half the instances 

in the dataset results in the same support of 0.5. Since Occupant 1 follows this 

pattern 100% of the time, it would be more accurate the give it a support value of 

1. The lower support becomes an issue if our support threshold is, for example, 0.6 

as this pattern which Occupant 1 follows every day will now be discarded along 

with the less reliable general pattern. We may wish to discard the latter, but we 

must keep the former if we are to allow any occupant-specific patterns in our 

generated rules. To this end, OccApriori redefines support as: 

  !""��� = �������/��R ��������� (4-2) 

This means that rather than measuring the frequency of an item against the size of 

the dataset, it is measured against the maximum frequency the itemset could 

possibly have. In principle any timeslot items could appear in all instances, whereas 

the frequency of day or occupant items is subject to how much data is in the 

dataset for each day or occupant. Thus, for itemsets which consist only of normal 

items the support value does not change, as their maximum frequency is equal to 

the size of the dataset. For itemsets which include metadata items, the support is 

scaled such that the frequency of the metadata combination itself gives a support 
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value of 1. Going back to the example above, the timeslot-only itemset would keep 

its support value of 0.05, whereas the occupant-specific itemset would have a 

support of 1, as the timeslot values appear every time the metadata attribute 

appears. By setting a support threshold of for example 0.5, we can include patterns 

which appear 50%+ of the time overall, or which hold true for Bob in 50%+ of his 

instances, or hold true for Bob on Tuesdays in 50%+ of those instances. 

Before incorporating this redefined support metric into the algorithm its effect on 

the anti-monotonicity property, which Apriori relies on, must be considered. The 

anti-monotonicity property means that every subset of a frequent itemset must 

also be frequent, i.e. that the support of a subset of a set must be at least as high as 

the support of the set. However, if we remove a metadata item from an itemset, 

we can get a support value which is lower, which is demonstrated by the example 

itemsets above. Thus if we simply modify the support definition, the algorithm will 

discard itemsets which would later form part of a frequent itemset when combined 

with metadata attributes in candidate generation. 

Since this issue arises when metadata attributes are added to items, it can be 

avoided simply by initialising candidate generation with all the possible metadata 

itemsets. For every combination of metadata items ,, OccApriori initializes 

candidate generation with  all itemsets of size |,| + 1 which are a superset of ,. 

Within each metadata combination the anti-monotonicity property is preserved, so 

candidate generation can continue as normal from this point. This also means that 

the algorithm can do a separate pass of frequent itemset mining for every metadata 

combination, which it does in order to reduce memory requirements, as this 

redefinition of support greatly increases the area of the itemset lattice which is 

explored for any given support threshold. 

4.5. Windowing 

Some patterns that the algorithm needs to find have such low support that 

reducing the support threshold low enough to find them is not feasible, due both to 

the combinatorial explosion and including unreliable low-support patterns the 
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algorithm should not generate rules from. Table 4-4 shows the example of an all-

day absence, represented by the sequence of location A’s.  

Occupant 09:00 10:00 11:00 12:00 13:00 

Occupant 1 A A A A A 

Occupant 1 B C D E F 

Occupant 2 G H I J K 

Occupant 2 L M N O P 

Table 4-4 – Example instances in which two occupants go to a brand new location in every time slot, except 

for one instance where Occupant 1 is absent all day 

This is quite an obvious type of pattern as the locations are all identical, however if 

occupants are absent all day infrequently enough, its support will be too low for it 

to be found. In this example the support of the absence instance is 0.25; if our 

minimum support cannot be lower than 0.3 this pattern will be discarded, and the 

predictor will have no rules with which to deal with future absences. The next time 

the predictor is presented a pattern such as {Occupant: Occupant 1, 09:00: A, 

10:00: A, 11:00: A} it will not know to predict {12:00: A}, despite the pattern being 

so distinct and obvious. 

To deal with this OccApriori takes advantage of the temporal relationship of the 

timeslot items in the dataset, a feature not found in the original market basket 

application. Existing work on occupant location prediction shows that the 

occupants’ most recent movements are a reliable predictor of their next location. 

Thus for itemsets whose timeslot items occur over a short time period the 

algorithm can use a lower support threshold without generating unreliable rules. By 

targeting only itemsets with close timeslot items, it also avoids the combinatorial 

explosion which would occur the overall support threshold was lowered. 

To do this it mines subsets of the location attributes which form consecutive 

temporal windows over the location data. A window is defined as: 

 V����, �� =< @, 	, ��…��;,  1…B > (4-3) 

Here � and D denote the first and last timeslots, and � and � denote the beginning 

and length of the window respectively. In the windowing phase the algorithm 
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searches within every window of the chosen length, i.e. for every � such that � ≥ � 

and � + � ≤ D. In candidate generation for each window, it does not include any 

timeslot items which fall outside the current window in the initial itemsets. With 

the extraneous items excluded, frequent itemset mining and rule generation can 

continue as normal. 

Windowing results in rules which describe low-frequency short-duration patterns, 

going back to the example of an all-day absence a possible rule is {9:00=Away} => 

{10:00=Away}. No single itemset or rule found by windowing can describe a long 

pattern such as every timeslot item having the value ‘Away’ due to the window 

constraint applied, however in combination a set of shorter rules can describe a 

longer pattern. For example a set of rules {n=Away}=>{n+1=Away}, where n is the 

timeslot, can be found to describe an all-day absence, allowing the predictor to 

recognise the pattern throughout the day and correctly predict that the occupant 

will remain absent. 

4.6. Rule Selection 

To predict occupants’ future locations OccApriori includes a mechanism to choose 

the appropriate rules. When a prediction is required, values for any subset of the 

dataset’s attributes can be supplied in the forum of an itemset ?. The target for the 

prediction �W is also given. The algorithm searches the generated rules for all rules  

� => % where � ⊆ ? and % = ��W}; any rule which matches the data available to 

make the prediction which predicts also the desired time slot. From these it selects 

the rule with the highest confidence to make the prediction. A number of other 

metrics were evaluated for rule selection; however none provided a consistent 

benefit over confidence across all predictions. 

4.7. Evaluation of Performance 

In all of the following evaluations the exact location of every occupant in every 

timeslot is predicted. Accuracy is defined as the percentage of predictions made 

which were correct. Failure to make a prediction is considered an incorrect 

prediction. Several types of prediction are evaluated, which allow different 
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attributes from the set �@, 	, �1 … �B ,  1 …  B} to be used when making the prediction. 

Next-Slot predictions predict an occupant’s next location, they are based on any 

available data up to and including the previous timeslot, i.e. �@, 	, �1 … ��2,  1 …  B} 

where � is the current timeslot. Next-Day prediction is a general term for any 

prediction which doesn’t use recent location data, instead being based on historical 

location frequency. For these predictions �1 … �B are unavailable as the prediction is 

made before even time � has passed. A prediction that does not use �1 … �B could be 

made an arbitrary number of days into the future, or could make predictions for 

later on the same day without recent locations available (e.g. a tracking system 

whose data is not accessible in real time), but the intended use case for this type of 

prediction is providing data to overnight heating systems, so the evaluation 

considers next day predictions in particular. Both of these types of predictions can 

then be made with no timetable data (marked as ‘No TT’), in which  1 …  B are not 

used. In practice this would only be done if the timetable data were unavailable, 

but it is included here in order to evaluate the difference the timetable data makes. 

The evaluation uses two datasets, the UCC dataset and the Augsburg dataset. The 

UCC dataset contains 1524 instances distributed across 6 occupants and includes 

timetable data. The Augsburg dataset contains 109 instances distributed across 4 

occupants, and does not feature timetable data. 

In evaluating the performance of the complete algorithm the minimum support and 

confidence are set to 0.2 and 0.5 respectively. The initial support value before 

iterative reduction is 0.8, and windowing is set to a 0.05 support threshold and a 

window length of 3. 

Next-Slot Next-Day Next-Slot (No TT) Next-Day (No TT) 

86% 75% 85% 71% 

Table 4-5 – OccApriori’s accuracy for different prediction types on the UCC dataset, predicting all occupants 

at all time slots 

Table 4-5 shows the accuracy of the complete OccApriori making different types of 

predictions on the UCC dataset. The highest accuracy is achieved on Next-Slot 

predictions, which confirms that recent occupant movements, on which the existing 

approaches rely, are the most reliable predictor of an occupant’s next location. For 
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Next-Slot predictions the timetable only helps marginally. Next-Day predictions are 

significantly less accurate as they must rely solely on the occupants’ historical 

movements without any knowledge of their movements during the day. However, 

for these predictions, access to the timetable data does improve the accuracy. 

 

Figure 4-2 – OccApriori’s accuracy for different prediction types on the UCC dataset, across all times, broken 

down by occupant 

 

Figure 4-3 – OccApriori’s accuracy for different prediction types on the UCC dataset, across all occupants, 

broken down by time 

Figure 4-2 breaks the Next-Slot, Next-Day and Next-Day with no timetable 

accuracies down by occupant. Occupant A has the most homogenous movements 

of all the occupants, and so their movements are easily predicted in all 

configurations. Occupant B has the most varied movements, and those movements 

are largely determined by their timetable. This makes them the hardest to make 

accurate Next-Day predictions for, however the ability to use the timetable data in 

predictions increases the accuracy significantly. For the other occupants, whose 

0%

20%

40%

60%

80%

100%

A B C D E F

A
cc

u
ra

cy

Occupant

Next-Slot Next-Day Next Day (no timetable)

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0
8

:0
0

0
8

:3
0

0
9

:0
0

0
9

:3
0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

1
2

:0
0

1
2

:3
0

1
3

:0
0

1
3

:3
0

1
4

:0
0

1
4

:3
0

1
5

:0
0

1
5

:3
0

1
6

:0
0

1
6

:3
0

1
7

:0
0

1
7

:3
0

1
8

:0
0

A
cc

u
ra

cy

Timeslot

Next-Slot Next-Day Next-Day (no timetable)



89 
 

movements follow general time-dependent patterns with minimal scheduled 

events, their predictability is primarily contingent on the availability of real-time 

location data, resulting in one accuracy level for Next-Slot predictions and a slightly 

lower one for Next-Day predictions. 

Figure 4-3 breaks the prediction accuracies down by timeslot, averaged over all 

occupants, showing how they perform at different times of day. In general the 

accuracy levels match at the beginning and end of the day and around lunch, as 

these are the times at which the occupants are most predictable.  Outside those 

times the Next-Day prediction accuracy drops as the occupants’ activities at those 

times are more variable, and real-time information is required to maintain the 

accuracy level. Due to occupant B, Next-Day predictions are improved with the use 

of timetable data, particularly in the morning. At 17:00 and especially 17:30 Next-

Slot accuracy drops to Next-Day levels, before both types of prediction accuracy 

rises at 18:00. The exact departure time of most of the occupants in the dataset is 

somewhat random, which means that the additional same-day data used when 

making Next-Slot predictions doesn’t help in determining whether they will be in 

the office or not at 17:30 – hence the accuracy drops to Next-Day levels. These 

occupants are much more likely to be out of the office past 18:00, thus the accuracy 

rises for all prediction types in this timeslot. 

 Occ. B Office Meeting Building Away 

A
ct

u
al

   
 

Lo
ca

ti
o

n
 

Office 304 0 1 66 

Meeting 11 19 0 2 

Building 21 0 145 7 

Away 37 1 0 214 

Table 4-6 – Confusion matrix for the UCC dataset’s Occupant B when making Next-Slot predictions 

 Occ. E Office Meeting Building Away 

A
ct

u
al

   
 

Lo
ca

ti
o

n
 

Office 148 1 3 65 

Meeting 1 6 0 0 

Building 3 0 3 0 

Away 29 0 0 581 

Table 4-7 – Confusion matrix for the UCC dataset’s Occupant E when making Next-Slot predictions 
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Table 4-6 and Table 4-7 show the confusion matrices for occupants B and E 

respectively, classifying the location as in their own office (Office), in one specific 

group meeting which all these occupants attend (Meeting), any other room in the 

building (Building) or away (Away). All occupants except B show the same pattern in 

their matrices as E. The matrices show that the primary source of errors is reversing 

Office and Away, which is caused by being uncertain whether the occupant will 

actually be in. In the case of Occupant B, who has the most varied movements, 

there are also instances of failing to predict that the occupant would leave their 

office for the group meeting or events elsewhere in the building, due to lower 

certainty about their movements. For the group meeting and events elsewhere in 

the building, the occupants tend to be predicted to be in the correct location or in 

their office; recognizing that the occupant is in, but not always that they will be 

leaving their office. 

Following is the evaluation on the Augsburg dataset: 

Seasonal Fall Max Training 

56% 63% 68% 

Table 4-8 – OccApriori’s accuracy for Next-Slot predictions on three different training/test splits of the 

Augsburg dataset, predicting all occupants in all timeslots 

Table 4-8 shows the accuracy on three evaluations on the Augsburg Dataset. The 

‘Seasonal’ evaluation trains on the summer data and tests on the fall data. In this 

split of the dataset, there is a maximum of two weeks of training data for each 

occupant, with over a month of data in the test set.  The ‘Fall’ evaluation splits the 

fall data only, such that the final week is used as the test set for each occupant, 

leaving approximately a month as the training set. Finally the ‘Max Training’ 

evaluation splits the entire dataset such that the final week of the fall data is used 

as the test set for each occupant, with the remainder of the dataset used for 

training. 

The ‘Seasonal’ split of the data was used as an initial comparison to the evaluations 

performed in (Petzold et al. 2006), and shows that OccApriori has difficulty on this 

dataset, failing to provide the level of accuracy it achieves on the UCC dataset. Two 

possible causes of this low accuracy are the small size of the training set, and the 
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fact that the training and test sets are from two different times of year. The two 

extra splits of the data allow testing of the effect of these factors on OccApriori’s 

accuracy. 

Training and testing on a split of the fall data only, in the ‘Fall’ evaluation, does 

show an increase in accuracy. However, training on both the summer data and a 

split of the fall data, in the ‘Max Training’ evaluation, shows an even greater 

increase in accuracy. Since using the summer data allows the algorithm to predict 

movements in fall with greater accuracy, the fact that some data is from summer 

and some is from fall does not appear to be an issue. This suggests that the gain in 

accuracy is due to the increased size of the training set, showing that OccApriori 

requires more training data than the original split provides. However, even with 

more training data, the accuracy is still low. 

This low accuracy appears to be due to the movement patterns of the occupants in 

the dataset. While the occupants adhere to regular patterns, the patterns do not 

relate to specific times, i.e. the occupants visit rooms in particular sequences, but 

the sequences can occur at varying times of day. OccApriori cannot learn a 

sequence independent of the time it occurs, and thus has difficulty with these 

occupants. 

Day Start Finish 

Tuesday 10:00 12:30 

Thursday 14:30 15:00 

Tuesday 9:00 11:30 

Thursday 13:00 15:00 

Tuesday 15:00 15:30 

Monday 16:00 16:30 

Tuesday 9:30 10:00 

Tuesday 14:00 16:00 

Table 4-9 – The days and times that occupant B visits room 409 in the Augsburg dataset 

Table 4-9 shows an example of one of these patterns in the dataset. Occupant B 

occasionally visits room 409, and these visits are either short visits which last half 
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an hour, or long visits which last 2-2.5 hours. It should therefore be possible to 

predict that the occupant will remain in room 409 for at least another hour if they 

have been there for an hour. However, these visits all occur at different times, and 

so OccApriori has no patterns it can call on to make the correct predictions. 

4.8. Comparison to Existing Approaches 

This section compares OccApriori to three existing approaches which have 

previously been evaluated on the Augsburg dataset: a Hidden Markov Model 

(Gellert et al. 2006), an Elman net and a frequency predictor, the latter both 

evaluated in (Petzold et al. 2006).  The HMM and Elman net were evaluated using 

the respective tools in MATLAB, while the frequency predictor was implemented 

based on the frequency analysis context predictor in (Petzold et al. 2004). The 

evaluation compares on Next-Slot accuracy, as these approaches only predict 

occupants’ next locations. 

A variety of settings were tested for each approach in order to find the one which 

achieved the highest accuracy. The frequency predictor uses a maximum order of 2 

as shorter sequences proved to be more reliable predictors. The HMM uses 7-8 

hidden states depending on the dataset. The Elman net uses the MATLAB default 

settings for layer delays and hidden layer size as no other combinations of values 

tested produced higher overall accuracy. 

A feature of the frequency predictor is that it continues to train as it predicts; after 

each prediction the frequencies are updated based on the correct answer. In this 

evaluation the Elman net and the frequency predictor were allowed to retrain after 

each whole day of predictions, with the predicted day added to the training set, in 

order to maximize their accuracy. The HMM  and OccApriori predict with only the 

initial training run, as the time taken to train makes retraining after each day 

unfeasible during evaluation for these approaches. 

HMM Elman Net Freq. Predictor Mod. Apriori 

77% 86% 87% 86% 

Table 4-10 – All approaches accuracy for Next-Slot predictions on the UCC dataset, predicting all occupants at 

all time slots 
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Table 4-10 shows the accuracy of each approach for next-slot predictions on the 

UCC dataset.  The HMM performs worse than the others due to being unable to 

retrain. The other three approaches achieve approximately the same accuracy, 

including ours despite it also being unable to retrain. 

HMM Elman Net Freq. Predictor Mod. Apriori 

74% 76% 77% 56% 

Table 4-11 – All approaches accuracy for Next-Slot predictions on the Augsburg dataset, predicting all 

occupants, at all time slots 

Table 4-11 shows the accuracy of each approach for next-slot predictions on the 

Augsburg dataset. As discussed previously, OccApriori performs poorly on this 

dataset due to the type of movement patterns the occupants follow. As the other 

approaches are sequence based and do not take into account the time at which 

movements occur, they are easily able to learn and recognise the movement 

patterns of these occupants and thus perform much better. Going back to our 

example pattern, once the sequence-based approaches see any instance of 

occupant B visiting room 409 for at least 2 hours, they can predict that the 

occupant will remain that long regardless of when the visit begins. The accuracies 

for all approaches are lower on the Augsburg set due to the greater unpredictability 

of the occupants. On the whole the 4C occupants change location less and go to 

fewer different locations, leading to them being easier to predict in general for all 

approaches.  The next chapter addresses extending OccApriori to be able to learn 

these types of patterns in order to improve its accuracy on these types of 

occupants. 

4.9. Evaluation of Algorithm Components 

This section examines the contributions of OccApriori’s components to its 

prediction accuracy advantage over Apriori. The evaluation on the UCC dataset is 

repeated in several configurations, with the types of predictions being made and 

the information available to the predictor are as before. Not all components of 

OccApriori directly affect accuracy; it is windowing and support modification 

specifically which expand the area of the itemset lattice which is searched, and so 
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the change in accuracy is evaluated via the enabling and disabling of these two 

components. 

Configuration Next-Slot  Next-Day  Next-Day No Timetable 

Apriori (Baseline) 61% 61% 61% 

OccApriori - Windowing 76% 61% 61% 

OccApriori - SupportMod 80% 73% 71% 

OccApriori - Windowing + 
SupportMod 

86% 75% 71% 

Table 4-12 – Next-Slot, Next-Day and Next-Day with no timetable prediction accuracy on the UCC dataset for 

unmodified Apriori, and OccApriori’s accuracy-affecting components 

Table 4-12 shows the overall accuracy of each component of the algorithm.  The 

unmodified Apriori algorithm is included as a baseline. Without the accuracy-

affecting Windowing and Support Modification components, OccApriori gets the 

same accuracy as the unmodified Apriori, as it is performing the same search of the 

itemset lattice. 

What the baseline finds in that search, due to two of the occupants in the dataset 

primarily working from home, the remaining occupants having periods of extended 

absence, and the ‘Away’ location being one of the few which is shared between all 

occupants, is that ‘Away’ is the most frequent location in every timeslot. Thus for 

any given time it predicts this most frequent location. This is essentially the same as 

a first order Markov model using the time as the context. 

Windowing substantially increases Next-Slot accuracy due to finding low support 

patterns which relate to particular time periods throughout the day. It does not 

help with the Next-Day predictions, as rules which predict an occupant’s location 

based on their recent locations, which windowing is intended to find, do not apply 

to Next-Day predictions. The timetable makes no difference with windowing alone, 

as timetable data applies only to a specific occupant on specific days – too specific 

to be counted as frequent with windowing alone. 

Support modification alone brings the accuracy values close the final values 

produced by the complete algorithm, as all patterns related to specific occupants, 

specific days, and specific day/occupant combinations are searched for. Timetable 
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data makes some difference to the Next-Day accuracy here, as individual 

occupant/day patterns are mined and the timetable is found to be relevant. 

Finally the combination of windowing and support modification yields the accuracy 

values examined in section 4.7. There is overlap in the extra correct predictions 

made when support modification and windowing are applied independently, so the 

total increase is not the sum of their individual contributions, however the final 

accuracy achieved on Next-Slot predictions in particular is significantly higher than 

either modification achieves alone. More timetable related patterns are found and 

used than before, as specific occupant/day patterns are mined while paying 

attention to specific periods of the day. 

 

Figure 4-4 – Next-Slot accuracy on the UCC dataset for unmodified Apriori and OccApriori with Windowing, 

Support Modification, and both, broken down by occupant 

Figure 4-4 shows the accuracy of each component making Next-Slot predictions for 

each occupant in the dataset. Occupants A and F primarily work from home and are 

absent most of the time, as such Apriori’s default prediction of Away produces high 

accuracy, and there is not much improvement to be made OccApriori. Occupant A 

shows a slight increase in accuracy with both components enabled despite no gain 

in accuracy when they are applied individually; this is because windowing and 

support modification work together to find, for example, patterns which apply to a 

particular period of time for a particular occupant on a particular day. In the case of 

occupant A, this allows a couple of percentage points greater accuracy on those 
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occasions when the occupant does come in. Occupant F sees a 6 percentage point 

increase in accuracy (correcting 33% of errors) going from unmodified Apriori to the 

OccApriori with both components enabled. While the percentage point increase in 

accuracy for these occupants is low, and the individual components make little or 

no improvement on them, the consistent performance of the algorithm even when 

the search of the itemset lattice is broadened by support modification and 

windowing shows that it is successfully avoiding the combinatorial explosion which 

is associated with highly repetitive patterns in the data. 

The largest difference is seen in occupant B, who has the most complex movements 

in the dataset. The default prediction of Away does not perform well as this 

occupant is in the office most of the time. As there are a significant number of 

useful patterns to be found, both windowing and support modification provide 

substantial accuracy increases individually, and a further increase when combined. 

Occupants C, D and E show that for different occupants, different features are 

important for making accurate predictions. For occupant C both windowing and 

support modification come close to the maximum achieved accuracy, whereas most 

of the extra accuracy comes from only from support modification for occupant E. 

For occupant D the combination of features performs significantly better than 

either individually. 

 

Figure 4-5 – Next-Day accuracy on the UCC dataset for unmodified Apriori and OccApriori with Windowing, 

Support Modification, and both, broken down by occupant 
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Figure 4-5 shows the same results for Next-Day predictions. The degree to which 

the OccApriori improves accuracy on each occupant over Apriori is roughly the 

same as for Next-Slot predictions, although the gap between the two algorithms is 

smaller as only a subset of the extra patterns found are useful for Next-Day 

prediction.  Occupants A and F show no improvement over Apriori, as these 

occupants are absent so often that Apriori’s prediction of always absent remains 

the best possible prediction when predicting a day in advance. Again however, 

aside from a small anomaly when windowing is used alone on occupant F, the 

algorithm expands the search of the itemset lattice while avoiding problems 

associated with the repetitive patterns of these occupants. 

Occupant E shows no increase in accuracy, however the predictions made by the 

OccApriori are different from those made by Apriori – it predicts a pattern of being 

in the office based on the occupant’s most frequent patterns, however due to the 

occupant’s frequent and unpredictable all-day absences, these predictions (in this 

specific case) end up being almost exactly as accurate as Apriori’s always-absent 

predictions. 

In general windowing does not help for the Next-Day predictions because, as 

mentioned previously, it is designed to pick up patterns useful for shorter term 

predictions. In the case of occupant F windowing actually hurts accuracy slightly, 

due to finding less supported patterns which the occupant did not adhere to in the 

test set. This negative effect is nullified with both components enabled however. 

Figure 4-6 and Figure 4-7 show the accuracy of each modification making Next-Slot 

and Next-Day predictions respectively, broken down by timeslot. Windowing 

follows the Apriori baseline closely in Next-Day predictions due to not helping 

prediction accuracy, though the slight deviations show that it does impact the 

predictions, but it harms as much as it helps. 
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Figure 4-6 - Next-Slot accuracy on the UCC dataset for unmodified Apriori and OccApriori with Windowing, 

Support Modification, and both, broken down by timeslot 

 

Figure 4-7 - Next-Day accuracy on the UCC dataset for unmodified Apriori and OccApriori with Windowing, 

Support Modification, and both, broken down by timeslot 

For Next-Day predictions both support modification and both components 

combined manage to maintain a base accuracy of about 70%, with spikes higher at 

the beginning and end of the day, as well as at lunchtime, as these are the times at 

which the occupants are most predictable in general.  Windowing roughly follows 

this same baseline when making Next-Slot predictions, with support modification 

generally doing better and the complete algorithm beating both individual 

modifications at most times. 
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4.10. Summary 

This chapter presented OccApriori, which adapts association rule mining for 

occupant location prediction. The first step was to structure the dataset such that 

the mining process would find the required patterns. By making each instance a 

single day for a single occupant, with the timeslots as attributes and locations as 

values, it was possible to start mining rules and predicting even with the 

unmodified algorithm. 

Simply applying the existing algorithm doesn’t yield good accuracy however, as it 

does not take account of the structure in occupancy data. This chapter identified 

several key issues in the patterns the algorithm failed to find, as well as useless 

patterns it did find but should instead ignore. It described solutions to these issues 

which involved modifying Apriori to suit occupant prediction, and demonstrated 

that these modifications allow the resulting algorithm OccApriori to find more 

useful patterns and fewer useless ones, increasing accuracy. While OccApriori uses 

Apriori as its base, its differences involve modifying the support of or discarding 

itemsets based on specific criteria, and so the algorithm can potentially use any 

association rule mining algorithm as its base. 

The evaluation shows that OccApriori is very flexible in the predictions it can make, 

predicting from the occupant’s next location up to predictions of their location 

across the following day, while making use of ancillary data such as timetable data. 

It matches existing approaches on the UCC dataset for next-location prediction, 

while being able to make a wider variety of predictions. It does have difficulty with 

the occupants in the Augsburg dataset, which will be addressed in the following 

chapter. 
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5. Location Sequence Prediction using 

Association Rules 

This chapter discusses the type of movement pattern which proved difficult for 

OccApriori to predict in the Augsburg dataset. The occupants in the dataset move in 

patterns that do not strongly relate to the time of day, violating the assumption 

OccApriori has thus been based on. As sequence predictors have been shown to be 

successful on this type of pattern, this chapter describes a new type of itemset and 

rule which can capture location sequences without referring to the time of day, and 

modifications to Apriori to mine these new itemsets. These new rules are evaluated 

on the UCC and Augsburg dataset in comparison with OccApriori as described in the 

previous chapter, and repeat the comparison with the existing approaches, to show 

that the new rules fill the gap in the capabilities of the algorithm. 

5.1. Predicting time independent sequences with timeslot 

based rules 

The last chapter showed that there are some patterns of movement which 

OccApriori has great difficulty learning compared to some existing approaches. This 

is because OccApriori is timeslot-specific; it correlates the occupant’s behaviour 

with a specific time of day. If an occupant’s patterns do not relate to specific times 

of day then OccApriori will require an example of the pattern for every timeslot in 

which it may need to be predicted. This is not the case for approaches which rely 

only on the sequence of recent locations, and not on the specific time at which 

those locations are visited. 
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09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 

A A A A A A A A 

A A A A A B B A 

A A B B A A A A 

Table 5-1 – An example training set with a sequence ‘BB’ that occurs once each in two of the instances at 

different times 

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 

A A A A B B A A 

Table 5-2 – An example test instance with the sequence ‘BB’ occurring at a different time than in the training 

instances 

Table 5-1 shows example movements of an occupant who remains in location A 

except when visiting location B. These visits to location B last two hours but occur 

at different times. The ideal patterns the algorithm should find here are that the 

occupant will stay in B if they are there, unless they have been there for two hours. 

Table 5-2 shows an imaginary test set, with a single instance we would like to make 

next-slot predictions for, which includes another visit to B at a different time again. 

Timeslot Rule Confidence Correct? 

13:00 {} => {13:00 = A} 100% Incorrect 

14:00 {} => {14:00 = A} 66% Incorrect 

15:00 {14:00 = B} => {15:00 = B} 100% Incorrect 

Table 5-3 – The rules which would be used to predict by Timeslot-OccApriori in the example test instance 

Table 5-3 shows the rules that would be used to predict timeslots 13:00, 14:00 and 

15:00 if we used association rules to predict the instance in Table 5-2 based on the 

instances in Table 5-1. In the case of timeslot 13:00, in the training data the 

occupant is always in A, so any applicable rules will have a 100% confidence that 

the occupant will be in A. This means that it predicts incorrectly, but since we are 

trying to predict a visit with a random start time using only recent movements, we 

expect to fail to predict the beginning of the visit. For timeslot 14:00 the best that 

can be achieved is predicting based on the fact that the occupant has been in A in 

66% of the instances at 14:00, resulting in an incorrect prediction. When predicting 

we know that the occupant was in B at 13:00 in our test instance, but we have no 

prior example of {13:00 = B}, so we cannot use this data. However, we do have a 
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prior example for {14:00 = B}, and so we predict with 100% confidence that the 

occupant will remain in B at 15:00, as this is what they did at 15:00 in the only 

instance which features {14:00 = B}. Of course, this is incorrect. 

Timeslot Sequence Confidence Correct? 

13:00 A => A 88% Incorrect 

14:00 A, B => B 100% Correct 

15:00 B, B => A 100% Correct 

Table 5-4 – Sequences which could be used to predict in the example test instance 

Table 5-4 shows the sequences that might be used if the same predictions were 

made with a sequence-based approach. The choice of sequence used to predict 

depends the approach, in this example we keep the confidence metric used by 

association rules: the proportion of times that the body of the sequence is followed 

by the final element is the confidence. We begin again at timeslot 13:00, and the 

prediction is made based on the fact that location A occurs 20 times in Table 5-1, of 

which it is followed by another A fifteen times and followed by B twice. It is also 

followed by nothing three times due to being at the end of the dataset, we ignore 

these cases for the confidence calculation. Fifteen times out of seventeen results in 

~88% confidence, essentially saying that if the occupant is in A they will stay in A. 

This is usually correct, but for timeslot 13:00 in Table 5-2 it is incorrect. As before, 

we don’t expect to predict the beginning of the visit. However, for timeslot 14:00 

we have the sequence A, B, B, which has 100% confidence since every instance of A, 

B is followed by a B. This gives us a correct prediction. The sequence B, B, A works 

the same way for timeslot 15:00, giving us another correct prediction. 

By learning only the sequence of locations without any reference to specific 

timeslots, a sequence based method can correctly recognise that the occupant will 

remain in and then depart B, even though the pattern occurs at a new time in the 

test. Timeslot-OccApriori could also correctly predict this with enough examples, 

but it would need one for every time at which the pattern occurs in a test, with 

sufficient support that rules are generated. In cases where such an event had 

limited examples, the algorithm would achieve higher accuracy if it could find these 

kinds of timeslot-independent patterns as well. Even in a dataset where the events 
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occur at regular times, and Timeslot-OccApriori would perform well, it would be 

useful for it to be able to find timeslot-independent patterns, as it would then still 

be able to recognise the events even if their times changed. To this end, this 

chapter presents a modification of Apriori such that it mines sequences of locations 

from which timeslot-independent location-sequence-based association rules can be 

generated. 

5.2. Ordered Itemsets 

Mining sequences of locations requires a set of attributes which can represent such 

sequences in itemsets. The aim is to mine consecutive sequences of locations, as 

existing approaches demonstrate that recent locations are a reliable predictor of an 

occupant’s next location. The representation which follows could also allow for 

non-consecutive sequences, however the itemset lattice for such sequences is 

much larger without necessarily providing an increase in accuracy, so the algorithm 

focuses on consecutive sequences. 

In order to represent a sequence of locations, the attributes in a sequence must 

indicate the order of the items, without referring to specific time slots. To this end 

the itemsets use a new set of location attributes ��X … �B} which represent an 

ordered list. These attributes are similar to the location attributes ��1 … �B}, but 

rather than a set of time/location pairs, ��X … �B} is a set of order/location pairs, 

the attribute indicating which position in the sequence the value occupies. The 

individual attributes are numeric, as with the timeslot attributes, with 0 

representing the start of the sequence, and each following attribute being the 

offset from the start, so the second location has attribute 1, the next has attribute 2 

and so on. As the algorithm only deals with consecutive sequences, for any 

sequence of length D + 1 the attributes will be 0 … D. 

Ordered itemsets are itemsets of the form ��X … �B}. Table 5-5 – An example of an 

ordered itemset; the attributes state each locations position in the sequenceshows 

an example of such an itemset. Each ordered itemset is essentially the set of 

itemsets YJ�Z … �B�ZK: � ≤ [ < � − D\ represented as a single list,  where � and � 
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are the minimum and maximum timeslots in the dataset respectively, [ is the range 

of possible start timeslots for the sequence to occur, and D is the length of the 

sequence. An ordered itemset may be instantiated to a specific itemset by choosing 

a starting timeslot [ and adding [ to every attribute in the sequence, turning the 

itemset ��X … �B} into the itemset J�Z … �B�ZK for the chosen timeslot [. Table 5-6 

shows the sequence from Table 5-5 with 3 example timeslot assignments. 

0 1 2 3 

Bob Office Bob Office Lecture Hall Bob Office 

Table 5-5 – An example of an ordered itemset; the attributes state each locations position in the sequence 

9:00 10:00 11:00 12:00 

10:00 11:00 12:00 13:00 

13:00 14:00 15:00 16:00 

Bob Office Bob Office Lecture Hall Bob Office 

Table 5-6 – Example timeslot assignments to the itemset from Table 5-5 

With the attributes which replace the timeslot attributes from Timeslot-OccApriori 

in place the metadata attributes can be added back in, functioning exactly as 

before. Thus the full set of attributes is now: 

 5 = J@, 	, �X … �BK (5-1) 

Here @ and 	 are again the day and occupant, and �X … �B is the representation of a 

sequence as described here. As before, any data which could be useful can be 

added to the set of attributes and any useful correlations will be found without 

further intervention. However, in the case of mining sequences, attributes which 

are expected to have useful correlations with certain times of day will not be useful, 

as sequences do not refer to any specific time of day. This is why the timetable 

attributes  1 …  B  are not present; to be useful for sequence-based prediction, the 

presence of a timetabled event would have to positively correlate with a certain 

sequence of movements occurring at all possible times. 

0 1 2 3 12:00 

Bob Office Bob Office Lecture Hall Bob Office Lecture Hall 

Table 5-7 – An example of an ordered itemset with timetable data added 
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Table 5-7 shows the example from Table 5-5 ordered itemset with a timetable entry 

added. With timeslot-specific rules, the presence of this timetable data will likely 

increase the confidence of predicting a lecture at 12:00. With sequence based rules 

however, using this timetable data would mean we are more confident that the 

occupant will give a lecture after any and every two-hour period spent in his office, 

if he is scheduled to give a lecture at 12:00. Since this is not what the timetable 

entry means, we will not actually find such a correlation, rendering the timetable 

data useless1. 

As with standard itemsets, rules generated from ordered itemsets are implications 

of the form � ⇒ %where � and % are now ordered itemsets. These rules are 

generated in the same way as before; the antecedent contains every item except 

the last element of the sequence, which becomes the consequent. 

5.3. Confidence and Support 

As discussed, each ordered itemset essentially represents a set of timeslot itemsets, 

so the definitions of support and confidence must be considered. The definition of 

support must maintain both the anti-monotonicity property and correctly reflect 

the frequency with which patterns appear in the data. For timeslot itemsets the 

definition of support is s!""��� = �������/|�|, while �������, is the number of 

instances � in � for which � ⊆ �. This definition is clear for timeslot itemsets as 

each itemset either occurs or does not occur in each instance, either  � ⊆ � or 

� ⊈ �, but ordered itemsets can occur more than once per instance.  

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 

A A A A A A A A 

A B B C C B B A 

A A B B A C C A 

Table 5-8 – An example set of instances with a sequence ‘BB’ which occurs three times across two instances, 

and a sequence ‘CC’ which occurs twice across two instances 

                                                      
1
 It would be possible to modify timetable attributes in a similar manner to the modification of the 

timeslot attributes, this will be discussed in the final chapter as part of the future work. 
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Frequency could be defined in the same way as it is for timeslot itemsets, the 

number of instances in which the ordered itemset occurs. In this case frequency 

would be the number of instances � in � for which ∃[: �Z ⊆ �, where �Zis an 

instantiation of X such that the ordered items ��X … �B} become the timeslot items 

J�Z … �B�ZK. However, this definition ignores how often the sequence appears within 

instances. Consider the sequences BB and CC in Table 5-8, which would both have a 

frequency of two as they both occur in two of the instances, despite the fact that 

sequence BB occurs three times, while CC occurs only twice. 

In order to reflect the true frequency of ordered itemsets, frequency for an ordered 

itemset � is defined as: 

 ������� = _ ������Z�;�2B
Z`�  

(5-2) 

where n and m are the first and last timeslots in the dataset and j is the length of 

the sequence. This means that the frequency of an ordered itemset is the sum of 

the frequencies of all the possible instantiations of the sequence it represents. 

Going back to our example, this gives sequence BB a frequency of three compared 

to a frequency of two for CC, as BB occurs twice in one instance. 

This definition of frequency can result in support values greater than one, as the 

number of occurrences of the pattern may be greater than the number of instances 

in the dataset.  The maximum possible support also varies depending on the length 

of the sequence, as longer sequences cannot occur as often, for example a 

sequence which is the same length as the instance can only occur once per 

instance. However these support values correctly reflect the frequency of the 

patterns in the dataset, and the anti-monotonicity property is kept. 

We can determine that the anti-monotonicity property is kept as follows. For a pair 

of ordered itemsets � and % such that � ⊂ %, �Z ⊂ %Z for every [ for which both � 

and % can be instantiated. Since �Z and %Z are ordinary itemsets, !""�%Z� ≤
 !""��Z� for the aforementioned values of [, as that is the established anti-

monotonicity property, and it follows that the sums of the supports maintain this 

inequality. There will be one or more values of [ for which % cannot be instantiated 
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but � can, as [ must fall in the range � ≤ [ < � − D, where � and � are the first 

and last timeslots respectively and D is the length of the sequence, and D is larger for 

% than for � as % is the longer sequence. For these values of [, %Z will have a 

support of 0, while �Z may have a nonzero support, maintaining the inequality 

above. Thus when we increase the length of a sequence, the support must be the 

same or lower. 

Using this definition of frequency and support, confidence is calculated as before as 


	���� ⇒ %� =  !""�� ∪ %�/ !""���. This means that confidence of a rule 

based on ordered itemsets is the number of times it is correct compared to the 

number of times it occurs in the dataset, including multiple occurrences in a single 

instance. 

5.4. Candidate Generation 

To generate ordered itemsets the algorithm uses a modified form of Apriori’s 

candidate generation. Candidate generation works by combining every pair of 

frequent itemsets of length � to generate candidate itemsets of length � + 1, for 

increasing values of �. However, because the ordered itemsets represent 

consecutive sequences, the attributes for any ordered itemset of length D are 

��X … �B}. This means that two itemsets of the same length cannot be combined, as 

the attributes are the same. Combining them would result in an itemset which 

contained two values for a single attribute, which will always have a support of zero 

as an occupant cannot be in two places at once. Table 5-9 shows an example of two 

such sequences. If we combined these with standard candidate generation, 

attributes ‘1’ and ‘2’ would both be set to both ‘Bob Office’ and ‘Lecture Hall’. 

0 1 2 3 

Bob Office Bob Office Lecture Hall Bob Office 

Bob Office Lecture Hall Bob Office Bob Office 

Table 5-9 – Two example ordered itemsets that we wish to combine in candidate generation 

Instead of simply combining the items into a single set, for ordered itemsets the 

algorithm first increments the attributes of one of the itemsets by one, shifting the 



108 
 

sequence to the right by one timeslot, and then combines them. In order to deal 

with attribute/value conflicts like the one described above the algorithm requires 

that after shifting the sequence, every attribute and value of each sequence match 

the other, except the ones which are outside the range of the other sequence. This 

means that it combines two itemsets J�X … �BK and J�X … �BK when the following 

holds: ∀�: 1 ≤ � ≤ D − 1: ��� = ��. Table 5-10 shows this process on the example 

itemsets from Table 5-9. 

0 1 2 3 4 

Bob Office Bob Office Lecture Hall Bob Office  

 Bob Office Lecture Hall Bob Office Bob Office 

 

Bob Office Bob Office Lecture Hall Bob Office Bob Office 

Table 5-10 – The example itemsets from Table 5-9, with the second itemset shifted to the right, and the 

itemset which results from combining them 

As this example shows, the algorithm is essentially combining sequences if one of 

the sequences appears to take place one timeslot later than the other, providing an 

extra location for the end of the ‘earlier’ sequence. In the example, this is an extra 

‘Bob Office’ entry two timeslots after the lecture. 

As with standard candidate generation the algorithm starts with ordered itemsets 

of length � = 1 and proceeds through successive values of  �, eliminating 

candidates which fall below the support threshold at each step. Section 5.3 showed 

that the anti-monotonicity property holds, so the algorithm will not remove any 

desirable itemsets in the candidate elimination step. Another consideration is 

whether it will generate all possible sequences with this generation process. 

Any frequent ordered itemset ��X … �B} can be broken down into two subsets 

��X … �B2} and J� … �BK. These in turn can be generated from the subsets 

��X … �B2b},  J� … �B2K and �� … �B2},  J�b … �BK. This can be generalised as any 

sequence � = ��X … �B} being generated from the set of sequences that are � items 

shorter than  ��� … �B2;}, for  ∀�, �: � + � = �, 0 ≤ �, � ≤ D. As you continue 

increasing �, breaking down the sequences into shorter sequences, eventually you 

will reach the point where � = D and therefore � = D − �. At this point the subsets 
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��� … �B2;} are all one item long. Since the algorithm begins the candidate 

generation with all itemsets of length one, and follow this process in reverse to 

generate candidates, any possible consecutive sequence will be generated as long 

as it is above the support threshold. 

5.5. Rule Selection 

Rule selection proceeds in the same manner as with timeslot-dependent rules, 

except that ordered rules must be instantiated to check their applicability. Given 

the prediction target �W and the data to be used in making the prediction ?, for each 

ordered rule J�X … �B2K => ��B}  we set D = � to get the rule J�W2B … �W2K =>
��W}. For each of these instantiated rules we then check whether J�W2B … �W2K  ⊆ ?. 

As before, the applicable rule with the highest confidence is chosen to make the 

prediction. Since instantiated ordered rules are just ordinary timeslot based rules, 

the two types of rules can be combined into a single rule set and used 

simultaneously. However on the test datasets simply combining them did not 

provide any advantage over selecting and using only the more appropriate rule set 

for the data. 

5.6. Evaluation of Performance 

As with the evaluation in the previous chapter, the exact location of every occupant 

is predicted for every timeslot. Accuracy is measured as the percentage of 

predictions made which were correct, failure to predict is considered an incorrect 

prediction. As this part of the approach deals with consecutive sequences of 

locations only, the predictions it makes are all next-hour, and do not use timetable 

data. The evaluation uses confidence and support thresholds just above zero in 

order to maximize the coverage of the resulting rule set. In place of a higher 

support limit, the length of generated rules is limited to 2 items as shorter 

sequences have proven to be more reliable predictors of occupants’ next locations. 
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Ordered-OccApriori Timeslot-OccApriori 

86% 86% 

Table 5-11 – Ordered and timeslot approach accuracy on the UCC dataset, making Next-Slot predictions for all 

occupants in all timeslots 

Table 5-11 shows the accuracy of Ordered-OccApriori against Timeslot-OccApriori 

from Chapter 4, making next-slot predictions for all occupants in the UCC dataset. 

On this dataset they achieve the same accuracy. 

 

Figure 5-1 – Ordered-OccApriori and Timeslot-OccApriori’s accuracy on the UCC dataset, across all times, 

broken down by occupant 

Figure 5-1 breaks the accuracies for these approaches down per occupant. This 

shows that while the overall accuracy is the same, the two approaches in fact make 

slightly different predictions, resulting in slightly lower or higher accuracies for each 

occupant. The largest difference in accuracy is on Occupant B, where Ordered-

OccApriori has noticeably lower accuracy than Timeslot-OccApriori. This is the 

occupant on whom Timeslot-OccApriori gained the most from the availability of 

timetable data, as this occupant has the most scheduled events and most varied 

movements. This indicates that for occupants whose movements are dictated by 

their schedule, their recent movements are not necessarily the best way to predict 

even their next location. For all the other occupants the accuracies are 

approximately the same, with each occupant favouring one approach over the 

other very slightly. 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

A B C D E F

A
cc

u
ra

cy

Occupant

Ordered Apriori Timeslot Apriori



111 
 

 

Figure 5-2 – Ordered-OccApriori and Timeslot-OccApriori’s accuracy on the UCC dataset, across all occupants, 

broken down by time slot 

Figure 5-2 breaks the accuracies for the two approaches down by timeslot, 

averaged over all occupants. As with the occupant breakdown there are some 

variations due to some different predictions being made, but overall the two 

approaches follow the same pattern of accuracy across the day quite closely. 

Timeslot-OccApriori already performed well on the UCC dataset, and so there are 

only minimal gains over it from Ordered-OccApriori. By contrast, Timeslot-

OccApriori performed poorly on the Augsburg dataset. Table 5-12 shows the 

accuracy on both approaches on the Augsburg dataset using the Seasonal split, 

wherein the summer data is used for training and the fall data used for testing. 

Ordered-OccApriori Timeslot-OccApriori 

76% 56% 

Table 5-12 – OccApriori’s accuracy for Next-Slot predictions on the Seasonal split of the Augsburg dataset, 

predicting all occupants in all timeslots 

Chapter 4 described how the occupants in the Augsburg datasets have movement 

patterns which recur, but recur at different times, making them difficult to learn for 

Timeslot-OccApriori and more suited to a sequence-based approach. Table 5-12 

shows that the sequence based modification to OccApriori achieves a significantly 

higher accuracy on this dataset than Timeslot-OccApriori. In fact, even when given 

most of the dataset as training data, Timeslot-OccApriori maxed out at 68% 

accuracy (as shown in Table 4-8), still lower than the accuracy achieved by Ordered-

OccApriori on the smaller amount of training data. This demonstrates both that it 
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was OccApriori’s inability to learn time-independent patterns of movement that 

made predicting the Augsburg occupants difficult, and that Ordered-OccApriori can 

successfully learn these patterns. 

 

Figure 5-3 – Ordered-OccApriori’s accuracy on the Augsburg dataset, across all times, broken down by 

occupant 

 

Figure 5-4 – Ordered-OccApriori’s accuracy on the Augsburg dataset, across all occupants, broken down by 

time 

Figure 5-3 and Figure 5-4 show the accuracy of Ordered-OccApriori on the Augsburg 

dataset across occupants and timeslots respectively. All of the occupants are 

approximately equally predictable. Across the course of the day the accuracy 

increases and decreases, however the trend is an increase as the day goes on. With 

no reliable time-of-day based predictions possible the occupants’ arrival times are 

difficult to predict, making for low early accuracy, while their departures late in the 

day make it easier to predict that they will remain away, resulting in higher 

accuracy. 
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5.7. Comparison to Existing Approaches 

This section again compares OccApriori to three existing approaches. The 

configuration of these approaches is the same as discussed in Section 4.8. That 

section explains that in order to achieve the best accuracy the frequency predictor 

and Elman net were allowed to retrain after each day of predictions, as they trained 

fast enough to this to be feasible. Ordered-OccApriori is also trains fast enough, and 

thus also retrains after each day of data to improve accuracy. 

HMM Elman Net Freq. Predictor Timeslot-

OccApriori 

Ordered-

OccApriori 

77% 86% 87% 86% 86% 

Table 5-13 – All approaches accuracy for Next-Slot predictions on the UCC dataset, predicting all occupants 

across all time slots 

Table 5-13 shows the accuracy of each approach for next-slot predictions on the 

UCC dataset. As mentioned in section 4.8, the HMM does worse as retraining it 

after every day was not feasible during evaluation. The other four all achieve 

approximately the same accuracy, despite Timeslot-OccApriori also not being able 

to retrain. 

HMM Elman Net Freq. Predictor Timeslot-

OccApriori 

Ordered-

OccApriori 

74% 76% 77% 56% 76% 

Table 5-14 – All approaches accuracy for Next-Slot prediction on the Augsburg dataset, predicting all 

occupants, at all time slots 

Table 5-14 shows the accuracy of each approach for next-slot predictions on the 

Augsburg dataset. The previous section showed that Ordered OccApriori performs 

much better on this dataset than Timeslot OccApriori; these results show that this 

improvement brings OccApriori in line with the existing approaches, achieving 

approximately the same accuracy. 

It should be noted that while the approaches compared against are only capable of 

next-location prediction, they have the advantage of maintaining smaller, simpler 

models of the dataset. In particular, the Hidden Markov Model (though its training 

performance was poor) and the Elman Net both maintain a static model in which 
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the values of a fixed set of variables (probabilities in the HMM and weights in the 

EN) are learned based on the training set. Thus the model remains the same size 

regardless of the data used as input. 

Contrasting with this, the frequency predictor and Timeslot OccApriori both 

maintain the set of consecutive patterns they have seen, meaning that their model 

grows along with the number of such patterns which appear in the dataset. 

However, consecutive patterns are only a small part of the space of all patterns, 

and so these approaches are still lightweight and fast. Timeslot-OccApriori, which 

only eliminates those patterns which are not useful for predicting occupant 

locations and keeps all others, has to search more of the space of possible patterns 

and keep a larger list of learned patterns than the other approaches, resulting in 

greater resource demands. As previously discussed, this reliance on more specific 

patterns is also which this approach has difficulty with the Augsburg occupants. 

This means that out of these approaches, Timeslot OccApriori is the one which is 

most likely to have scaling issues on larger datasets; however association rules are 

designed to operate on extremely large datasets and so there is extensive work on 

increasing the efficiency of the mining process. The future work section of the final 

chapter discusses the application of the design of OccApriori to more efficient base 

algorithms. 

5.8. Summary 

This chapter described a modification to association rule mining which allows it to 

mine pure location sequences. This allows OccApriori to learn and predict using 

patterns which occur at varying times of day. It then evaluated the performance of 

the ordered rules, and showed that they improve on the timeslot rules on the 

Augsburg dataset, matching existing sequence prediction approaches. 

The ordered rules only predict the last in a sequence of locations, and thus cannot 

be used for prediction further into the future. Occupants whose movements do not 

relate to the time of day remain unpredictable without their recent movements to 

use as a basis. However, one of the goals is an approach with the flexibility to make 
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a variety of types of prediction using whatever data is available. The addition of 

ordered rules  fills a gap in the capabilities of OccApriori compared to existing 

approaches. The ordered rules and timeslot rules can be combined into one rule 

set, so for a dataset where only some occupants’ movements relate to the time of 

day, or where each occupant’s movements relate to the time of day some of the 

time, the algorithm can generate a combined set of rules at, making each prediction 

using timeslot or ordered rules as appropriate. 
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6. Occupant Prediction Using Generalised 

Locations 

This chapter considers the application of generalised association rules to occupant 

location prediction, to increase the range of predictions OccApriori can make. By 

applying a taxonomy to the occupant locations, general classes of locations can be 

described. General locations can be predicted in cases where there are no high-

confidence predictions of a specific location, and make specific predictions based 

on general locations, such as predicting that the occupant will not return to their 

office until later based on their distance from the office. 

Section 6.1 details some example cases where generalised locations would allow 

the algorithm to make predictions it could otherwise not make. Sections 6.2 and 6.3 

describe applications of a taxonomy that allow it to make the desired predictions. 

Section 6.4 takes the model of the occupants in the UCC dataset from chapter 3, 

and modifies the patterns of one of the occupants to incorporate test cases based 

on the previously discussed examples. Finally section 6.5 evaluates the 

performance of the taxonomy-enhanced approach versus timeslot OccApriori on 

these test cases, showing that the application of the taxonomy allows it to make 

extra predictions. 

6.1. Increasing prediction flexibility with taxonomies 

Thus far OccApriori has only been concerned with predicting occupants’ exact 

future locations based on the exact locations in the past. However, there are cases 

where it would be useful to make predictions involving more general classes of 
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locations. This includes being able to make a more generalised prediction about 

where an occupant will go, for example predicting what part of a building they will 

be in, whether it will be some location involved in a certain task, or even simply 

predicting that they will be somewhere other than their current location. It also 

includes making predictions based on patterns that do not reference specific 

locations, for example predicting an occupant’s next location based on what part of 

a building they were in, or what task they were involved in. 

These ideas are represented using a taxonomy. In a taxonomy of locations, the leaf 

nodes would be the specific locations which have been learned and predicted so 

far, i.e. specific rooms. Nodes higher in the taxonomy would represent a more 

general class of locations and so are referred to hereafter as ‘generalised locations’. 

For example, if we classify rooms by their location, then rooms ‘A’, ‘B’ and ‘C’ might 

all be generalised as ‘Building_1’ as all these rooms are located in Building 1. Or, 

they may all be generalised as ‘Office’ as they are all offices. Using such taxonomies, 

it is possible to refer to occupant locations in a more general sense than exact 

locations, allowing for generalised rules and predictions, i.e. rules and predictions 

which use generalised locations instead of specific ones. 

In some cases these generalised predictions are only added-value, the algorithm 

would predict the specific location and add the general prediction to provide extra 

information. However there are cases where the ability to learn more general 

patterns would allow it to make predictions it would otherwise be unable to make. 

This chapter examines two examples of this in particular. The first is difficulties 

predicting an occupant’s location due to being unable to choose between several 

low-confidence options, i.e. knowing they will go somewhere but being unsure 

where. The second is being unable to recognise patterns which relate to classes of 

locations with few or no examples of those locations, for example an occupant who 

regularly has meetings of fixed duration, but with varying location. 
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09:00 10:00 11:00 

Office Office A 

Office Office B 

Office Office C 

Table 6-1 – An example occupant who remains in their office until 11:00, at which point they go to one of 

three locations with equal probability 

Table 6-1 shows an example dataset where an occupant stays in their office until 

11:00, at which point they go to one of three locations. As we have no data on what 

causes the occupant to go to one location rather than another, we are simply left 

with a 33% chance of the occupant going to each location. This will result in three 

rules of the form {09:00=Office, 10:00=Office} => {11:00=A}, one for each location, 

each of which will have 33% confidence. 

We can see from the data that the occupant always leaves their office at 11:00 to 

go somewhere; the only doubt is where exactly they will go. However, due to the 

fact that we are trying to predict the exact location, all we can do is make a low-

confidence prediction for one of the three locations. The low confidence is correct, 

as we don’t know with any certainty where the occupant will go, but it is an issue if 

the rule is not chosen because of its low confidence. The simplest example of this is 

if the confidence threshold is too high to allow these rules; if our confidence 

threshold is 50%, then in the example above we will make no prediction for where 

the occupant is at 11:00. 

09:00 10:00 11:00 

Office Office A 

Office Office B 

Office Office C 

Office Office Office 

Office Office Office 

Table 6-2 – An example occupant who remains in their office, with the possibility of leaving at 11:00 to go to 

one of three locations 

 Something similar would occur if we were to add two extra instances to the data in 

Table 6-1 as shown in Table 6-2; now with two examples of the occupant staying in 
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the office at 11:00, we would predict (with 40% confidence) that the occupant will 

remain in the office, even though there is a 60% chance they will leave. 

09:00 10:00 11:00 

Office Office Not-Office 

Office Office Not-Office 

Office Office Not-Office 

Office Office Office 

Office Office Office 

Table 6-3 – The same example occupant as Table 6-2, with the non-office locations replaced with a single 

generalised location 

We can avoid these failures to predict by generalising the locations outside the 

office. Table 6-3 replaces the locations A, B and C with the generalised location 

‘Not-Office’. If we were to train on this modified dataset, we would end up with 

two possible predictions for where the occupant will be at 11:00, ‘Office’ with a 

confidence of 40% and ‘Not-Office’ with a confidence of 60%. This means that we 

can now correctly predict that the occupant is more likely to leave the office, 

without saying where specifically.  

09:00 10:00 11:00 

Office Office Not-Office 

Office Office Not-Office 

Office Office Not-Office 

Table 6-4 – The example occupant from Table 6-1 with locations A, B and C generalised 

Returning to the example in Table 6-1, generalising locations A,B and C results in 

Table 6-4. We can now learn a 100% confidence rule stating  the occupant will leave 

their office, allowing us to make the prediction with any confidence threshold. 

09:00  10:00 11:00 

A A A 

B B B 

C C C 

Table 6-5 – An example training set featuring an occupant who may be in one of three locations with equal 

probability, and who will remain in that location 
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Table 6-5 shows an example of the opposite issue. In this case the occupant stays in 

the same location in all three timeslots. For each of these locations we can learn 

that the occupant will remain in that location rather than returning to the office. 

However we do not learn the general pattern that there are locations which will 

keep the occupant away from their office. 

09:00  10:00 11:00 

D D D 

E E E 

Table 6-6 – An example test set in which the occupant is in two new locations 

Table 6-6 shows an example test set which has two new locations which keep the 

occupant away from the office. We cannot predict anything regarding these 

locations as they do not appear in the training set. For example, if we wish to 

predict the occupant’s location at 11:00, we can’t as there is no data and hence no 

rules regarding locations D or E at 09:00 or 10:00. This is similar to the issue 

addressed in Chapter 5, where the algorithm needed to be able to recognise 

patterns even if the time at which they occur changed; in this case the time remains 

the same but the locations involved are changing. If we have data on these 

locations that tells us that A through E are all locations that will keep the occupant 

from their office, we would like to use that data to be able to make predictions for 

the instances in Table 6-6. 

09:00  10:00 11:00 

Not-Office Not-Office Not-Office 

Not-Office Not-Office Not-Office 

Not-Office Not-Office Not-Office 

 

Not-Office Not-Office Not-Office 

Not-Office Not-Office Not-Office 

Table 6-7 – The example training and test sets, now shown together and with the locations generalised 

Table 6-7 replaces all the locations in the example training and test sets with the 

generalised ‘Not-Office’ location. With this replacement it is trivial to learn the 

pattern that the occupant will remain out of the office if they start the day out of 
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the office. If we wish to predict the occupant’s location at 11:00 for example, the 

rule {09:00=Not-Office, 10:00=Not-Office => 11:00=Not-Office} will be available. 

The following sections discuss applying taxonomies to the data used in OccApriori in 

order to learn general patterns like these alongside the specific patterns which it 

already learns. 

6.2. Consequent-Only Taxonomy 

As shown in the example in Table 6-1 above, some problems the algorithm solves 

by generalising predictions only require that the prediction itself be generalised; the 

antecedent of the rule does not need to be modified. This means that for this type 

of prediction, it can actually apply a taxonomy during rule generation, avoiding 

extra time or memory requirements for the itemset mining process. Instead the 

rule generation process generates two rules from every itemset, resulting in a rule 

set up to twice as large. The following is an example of this process. 

09:00 10:00 11:00 

Office Office A 

Office Office B 

Office Office C 

Table 6-8 - An example occupant who remains in their office until 11:00, at which point they go to one of 

three locations with equal probability 

Table 6-8 again shows the example of an occupant who has three locations they 

may go to when they leave their office. We wish to generalise these locations into a 

single non-office location, and Table 6-9 shows such taxonomy.  

Location Generalised 

A Not-Office 

B Not-Office 

C Not-Office 

Table 6-9 – A single-level taxonomy which generalises three locations into one 

As discussed previously, during the rule generation process every frequent itemset 

is converted into a rule with the latest timeslot item as the consequence. The 
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generated rule is discarded if its confidence is below the confidence threshold. We 

now add an extra step where the location in the consequent is generalised 

according to the taxonomy above, i.e. the specific location is replaced with the 

corresponding generalised location in Table 6-9, if the specific location appears in 

the table. The confidence of the generalised version rule is checked separately from 

the original rule, and it too is discarded if its confidence is too low. Table 6-10 

shows an example of a specific rule, and the generalised rule which would be 

generated from it based on the above taxonomy, with confidence values based on 

Table 6-8. 

Rule Confidence 

{09:00=Office, 10:00=Office} => {11:00=>A} 33% 

{09:00=Office, 10:00=Office} => {11:00=>Not-Office} 100% 

Table 6-10 – Two rules which can be found using Table 6-8 as a training set, the first with a specific location, 

the second with a generalised location, and the corresponding confidences 

Calculating the confidence for a generalised rule requires checking the support of 

the entire rule, which contains both specific and generalised locations. To 

accommodate this, the algorithm simply maintains a generalised version of the 

training set along with the unmodified version. If the antecedent is supported by an 

instance, and the consequent is also supported by the generalised version of the 

same instance, then the instance supports the rule. 

The fact that the algorithm checks the confidence separately for the generalised 

rules means that they can be generated and retained even if their specific 

counterparts are not. For example, if the confidence threshold was 50% then the 

first rule in Table 6-10 would be discarded, but it would still generate and retain the 

second rule. However, as the itemset mining process is unmodified in this 

approach, the itemset on which these rules are based must have sufficient support 

to be considered frequent, otherwise neither rule will be generated. The following 

section considers generalising itemsets thus altering their support. 

When the process is complete the result is two sets of rules, the standard set 

generated without regard to the taxonomy, and the set of generalised rules which 

can be used when a generalised prediction is desired. The evaluation section will 
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discuss how predictions are made using the generalised rules to evaluate their 

accuracy. 

6.3. Full Itemset Taxonomy 

Table 6-5 and Table 6-6 presented an example where the aim was to predict based 

on a general pattern in the occupant’s movements as well as making a general 

prediction. This requires that the algorithm allow for rules which contain 

generalised locations in the antecedent as well as the consequent. To achieve this,  

the taxonomy is applied at the candidate generation stage by adding the 

generalised items into the dataset. For a given dataset �: 

 ∀c: ∃� ⊂ �: d����� = c, � = � ∪ c (6-1) 

where � and c are 1-itemsets and d���� is a function to generalise an itemset 

based on a given taxonomy. This essentially means that for every item in each 

instance which contains a location which can be generalised, an extra item is added 

with the same attribute but with the generalised location as the value. 

Table 6-11 shows the example training set from Table 6-5 with the taxonomy in 

Table 6-9 applied, which is simply that every location other than ‘Office’ is ‘Not-

Office’. It also has an extra instance with two ‘Office’ locations, which has also been 

generalised using the taxonomy. Notice that for the items which were generalised, 

locations A, B and C, there is now a duplicate item in the instance with the same 

attribute but a different value. For the ‘Office’ locations, which are not in the 

taxonomy, there is no additional item, the lack of which is represented by a blank 

cell in the table. 

09:00  10:00 11:00 09:00  10:00 11:00 

A A A Not-Office Not-Office Not-Office 

B B B Not-Office Not-Office Not-Office 

C C C Not-Office Not-Office Not-Office 

Office A Office  Not-Office  

Table 6-11 – An example training set in which all locations in the dataset are generalised according to a 

taxonomy, adding the corresponding general locations to the dataset alongside the specific locations where 

applicable 
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Multiple items with the same attribute in the same itemset have come up before, 

as a consequence of candidate generation for timeslot itemsets and ordered 

itemsets. In those cases it would mean the occupant was in two places at once, and 

so would never appear in the data, and the itemsets would always have a support 

of 0. For example, the itemset {09:00=A, 09:00=B} could never actually happen, and 

will always be discarded if it is generated. 

In this case the duplicate attributes are added into the data itself, which means 

itemsets which contain apparently contradictory values for an attribute can now be 

supported by the data, as long as one of the values is a specific location and the 

other is a generalised location. In some sense the occupant can now be in multiple 

locations at once, as we can refer to one physical location with multiple values. So 

while an itemset like {09:00=A, 09:00=B} will still never be supported, an itemset 

like {09:00=A, 09:00=Not-Office} can be, and indeed is in our example. However, 

itemsets with duplicate attributes are still discarded during candidate generation. 

If we have a pair of 1-itemsets � and c such that c = d�����, and we have applied 

our taxonomy to the dataset as in equation (6-1), then it follows for every instance 

� that if � ⊂ � then c ⊂ �. This means that the support of � and � ∪ c will be the 

same, and any rules with � and � ∪ c in the antecedent will apply in the same 

cases. For this reason itemsets which have duplicate attributes can be discarded. 

The aim is to have an itemset, and from that a rule, which either has item � and 

thus implies the presence of the generalised item c, or which has item c and thus 

encompasses the specific item � and other specific items. An itemset which 

contains both is redundant, but is a valid itemset which can be supported by the 

dataset, and so will consume time and memory in candidate generation if it is not 

discarded. Table 6-12 shows an example of this based on our example training set 

in Table 6-11. The first rule can make a general prediction from specific data, and 

the second rule can make a general prediction from general data. The third rule is 

actually the same rule as the first rule; it can only apply when 09:00=A, so the 

statement of 09:00=Not-Office is redundant. By not allowing itemsets with 

duplicate attributes, the generation of the itemset which is the antecedent of the 

third rule is avoided, as is the generation of the rule. 
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{09:00=A} => {10:00=>Not-Office} 

{09:00=Not-Office} => {10:00=>Not-Office} 

{09:00=A, 09:00=Not-Office} => {10:00=>Not-Office} 

Table 6-12 – Three versions of the same rule, predicting using a specific location, a general location, and both 

versions of the location, respectively 

As the generalised locations are now in the training data, candidate generation, 

support and confidence calculations, and rule generation all proceed as normal. The 

only addition is that, as with the consequent-only approach, the rules which predict 

specific and general locations must be separated, so that the appropriate type of 

rule can be looked up when trying to make a certain type of prediction. This is 

achieved simply by checking if the location in the consequent of each generated 

rule is specific or general, and storing it in the appropriate set. 

The goal of this approach is to make predictions based on general patterns of 

occupant movement. Table 6-13 shows the generalised version of both Table 6-5 

and Table 6-6, the first three instances being the training set and the latter two 

being the test set. All the instances have generalised items added to them per the 

taxonomy in Table 6-9. 

09:00  10:00 11:00 09:00  10:00 11:00 

A A A Not-Office Not-Office Not-Office 

B B B Not-Office Not-Office Not-Office 

C C C Not-Office Not-Office Not-Office 

 

D D D Not-Office Not-Office Not-Office 

E E E Not-Office Not-Office Not-Office 

Table 6-13 – The example training and test sets from Table 6-5, with the locations generalised according to 

the taxonomy in Table 6-9 

When we encounter the occupant movements in the test set {09:00=D, 10:00=D} 

and {09:00=E, 10:00=E}, we are still unable to predict {11:00=D} and {11:00=E} 

respectively, as these locations have not been seen before. However, we can now 

learn the pattern {09:00=Not-Office, 10:00=Not-Office, 11:00=Not-Office}, which 

applies to every instance in the dataset, and thus can be used to predict that the 
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occupant will not return to their office, even though we don’t recognise the 

location they are in. 

This approach to applying the taxonomy to the occupant location data also covers 

the capabilities of the consequent-only approach. While the consequent-only 

approach works on rules rather than itemsets, every rule it finds is essentially an 

itemset with a single generalised item. If such a correlation exists in the dataset, it 

will be found by the full-itemset approach along with all other sufficiently 

supported correlations involving generalised items. 

6.4. Generated Dataset Modifications 

As none of the available actual datasets have sufficient examples of patterns which 

could be learned only by applying a taxonomy to allow these approaches to 

significantly improve the accuracy, the evaluation instead uses a modification 

synthetic version of the 4C dataset which includes such patterns. The modified 

dataset incorporates the two types of patterns which were discussed in this chapter 

which cannot be learned without the application of a taxonomy. The following are 

the modifications made to Occupant B from the dataset, whose model was used to 

generate this dataset as they had the most suitable existing tasks. 

In the model, Occupant B has 11 tasks across the five days of the working week 

which represent lectures or labs. Each of these tasks has a fixed day, start time, and 

duration, and most have an 80%-90% chance of occurring. In the original model 

each task had a fixed location, with some tasks occurring in the same location for a 

total of 5 locations. For taxonomy testing, the locations of all 11 tasks are replaced. 

The model defines a set of 10 fictional locations. Each of the 11 tasks occurs in 

these same 10 locations, and always has an equal (i.e. 10%) chance of occurring in 

each of the locations. This configuration is the same in the training and test set. 

Table 6-14 shows the properties of the tasks aside from the location. 
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Task ID Day Time Duration 

273 Monday 10:00 2hrs 

274 Monday 14:00 1hr 

275 Tuesday 09:00 2hrs 

276 Tuesday 11:00 2hrs 

277 Wednesday 02:00 1hr 

278 Wednesday 15:00 1hr 

279 Wednesday 16:00 1hr 

280 Thursday 09:00 2hrs 

281 Thursday 11:00 1hr 

282 Thursday 16:00 1hr 

283 Friday 15:00 1hr 

Table 6-14 – Occupant B’s tasks, showing the day they occur on, the time at which they commence and their 

duration 

The result of this modification is that while the set of locations in which these 11 

tasks can occur is known, which location will be chosen each time one of the tasks 

occurs is random, and so cannot be predicted. Since the set of locations is known 

however, it should be possible to able to apply a taxonomy which generalises these 

10 locations into a single lecture-type location, where these 11 lecture-type tasks 

occur. The consequence-only approach should be sufficient to make the general 

prediction that the occupant will be in this lecture-type location at the times at 

which these tasks occur. 

Occupant B has 5 existing roles which group their activities across the days of the 

week. To these 2 new roles were added which model the occupant being abroad. 

These 2 roles have a total of 11% chance between them of being selected as the 

role for any given day. When in one of these roles, the occupant will start the day in 

abroad one of 5 countries, randomly selected, with each country having an equal 

(i.e. 20%) chance of being selected. One of these two roles keeps the occupant in 

the country for the entire day. The other role has the occupant return to their office 

at 13:00, the concept being that they completed their return trip from being abroad 

that morning, and have returned to the office. Within the 11% chance of the 



128 
 

occupant being abroad, two configurations are evaluated, one in which the 

occupant has a 75% chance of remaining abroad, and one in which the occupant 

has a 75% chance of returning. The configuration is the same in the training and 

test set except that the 5 countries are replaced with 5 new countries in the test 

set. Table 6-15 shows an overview of the configuration of these roles. 

Role ID Location Return Time 

Training Set 

296 Countries 1…5 N/A 

300 Countries 1…5 13:00 

Test Set 

297 Countries 6…10 N/A 

301 Countries 6…10 13:00 

Table 6-15 – The two roles added to Occupant B to model going abroad to a random country, with the first 

two roles being used when generating the training set, and the latter two being used when generating the 

test set 

The result of this modification is that when the occupant goes abroad in the test 

set, their location is not recognised as it does not appear in the training set. As 

illustrated by the example in section 6.3, this means a prediction cannot be made 

without the application of a taxonomy. Since the pattern of staying abroad or 

returning is consistent, it should be possible to make a prediction with a taxonomy 

applied. The probability of the occupant returning during the day if they are abroad 

in the morning is varied in the model; whether the occupant actually stays abroad 

or returns is random, however in each configuration one or the other is far more 

likely, and so if the algorithm is correctly learning the occupants patterns it should 

be able to predict the more likely outcome. 

The days that the occupant goes abroad are randomly selected, so it will not be 

possible to make accurate next day predictions, as there is no basis on which to 

predict that the occupant will be abroad. To deal with this there is an additional 

attribute similar to a timetable entry which states that the occupant will be abroad 

on the days that an abroad role is chosen, in order to allow next day predictions 

regarding the occupant staying abroad or returning. This extra attribute only states 
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that the occupant will be abroad, not the specific location they will be in, and is only 

used when evaluating next-day predictions. 

6.5. Evaluation of Performance 

As with the previous evaluations, the accuracy of OccApriori is evaluated by having 

it predict the exact location of every occupant in every timeslot for every instance 

in the test set.  In this case the prediction has two components, a prediction of the 

occupant’s specific location, and a prediction of the occupant’s general location.  

The general component is a second chance for the predictor to predict correctly; 

the base accuracy for the general prediction evaluation is the accuracy the 

approach achieves without using the taxonomy, i.e. if the specific prediction is 

correct the whole prediction is simply considered correct. Accuracy is increased in 

cases where the use of the taxonomy allows for the recognition of extra patterns, 

and correct general predictions are available to replace incorrect specific 

predictions. 

When making a generalised prediction both the general and specific rules are 

included in the rule set used to predict. The evaluation taxonomy only has two 

locations, ‘Lecture’ and ‘Abroad’; without additional specific locations such as the 

office and ‘Away’ to choose from, the predictor will simply guess one of these two 

general locations for every timeslot. Due to the inclusion of the specific rules as 

well, the predictor will only predict one of the general locations if it has a higher 

confidence than the specific prediction. If the generalised prediction is actually a 

specific location it has no effect on the accuracy, because any prediction where the 

specific component was correct is counted as a correct prediction anyway. 

 Next Timeslot Next Day 

No Taxonomy 58% 41% 

Taxonomy 64% 54% 

Table 6-16 – Accuracy of OccApriori on the synthetic test set with and without consequent-only location 

generalisation 
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Table 6-16 shows the accuracy of the consequent-only approach versus using no 

taxonomy on the synthetic test set. It shows an increase in accuracy for both next 

timeslot and next day predictions when the taxonomy is used. 

Timeslot Actual Location No Taxonomy Taxonomy 

08:30 102 102 102 

09:00 FL5 102 Lecture 

09:30 FL5 FL5 Lecture 

10:00 FL5 FL5 Lecture 

10:30 FL5 FL5 Lecture 

11:00 FL3 NOPRED Lecture 

11:30 FL3 NOPRED Lecture 

12:00 FL3 102 Lecture 

12:30 FL3 102 Lecture 

13:00 102 102 102 

13:30 102 102 102 

Table 6-17 – An example instance from the test set, showing the next-timeslot predictions made with and 

without consequent-only location generalisation 

Table 6-17 shows an example instance and the corresponding next-timeslot 

predictions where the use of the taxonomy improves prediction accuracy. The 

‘Actual Location’ column shows that the occupant is in their office at the beginning 

and end of the time period, and visits two of the randomly selected locations in the 

intervening time. Without the use of the taxonomy, the predictor gets the time 

slots spent in the office correct. For the 09:00-12:00 event, it gets three of the 

timeslots correct. The predictor observes that the occupant moves to FL5 at 09:00 

and has rules with sufficient support and confidence which predict that the 

occupant will remain there. The same is not true for FL3, for the 11:00-13:00 event 

it varies between predicting that the occupant will be in their office, and making no 

prediction at all. This is due to the rules which relate to this location having too low 

confidence. Applying the taxonomy, OccApriori correctly predicts the occupant’s 

location in every timeslot, as the generalised rules have much higher confidence, 

similar to the example in section 6.2. As the specific location rules are available 
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when making generalised predictions, it is still able to correctly predict that the 

occupant is in their office in the cases where the generalised locations do not apply. 

Timeslot Actual Location No Taxonomy Taxonomy 

08:30 102 102 102 

09:00 FL5 NOPRED Lecture 

09:30 FL5 NOPRED Lecture 

10:00 FL5 NOPRED Lecture 

10:30 FL5 NOPRED Lecture 

11:00 FL3 NOPRED Lecture 

11:30 FL3 NOPRED Lecture 

12:00 FL3 NOPRED Lecture 

12:30 FL3 NOPRED Lecture 

13:00 102 NOPRED NOPRED 

13:30 102 102 102 

Table 6-18 – An example instance from the test set, showing the next-day predictions made with and without 

consequent-only location generalisation 

Table 6-18 shows the same example instance and the corresponding next-day 

predictions. In this case the predictor fails to make any prediction for the two 

events with randomised locations. As it does not have the occupant’s recent 

movements available, all the possible rules are too low confidence to be included in 

the rule set, and so it cannot predict anything. Again, the addition of the taxonomy 

allows the algoirhtm to make correct general predictions. As the events occur at 

fixed times, the occupant’s recent movements are not required to make the 

prediction, and with the generalisation of the location the confidence of the rules is 

high enough for them to be included. 

 Next Timeslot Next Day 

No Taxonomy 63% 48% 

Taxonomy 93% 83% 

Table 6-19 – Accuracy of OccApriori on the synthetic test set configured for a low return chance, with and 

without full-itemset location generalisation 
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Table 6-19 shows the accuracy of the full-itemset approach versus using no 

taxonomy on the on the synthetic test set configured such that the occupant has a 

75% chance of remaining abroad on the days on which they are abroad. The 

random location lectures are still present in the dataset, and are predicted using 

generalised rules as with the consequent-only approach. In addition, with this 

application of the taxonomy, the algorithm can now predict that the occupant will 

remain abroad, increasing the accuracy further. 

Timeslot Actual Location No Taxonomy Taxonomy 

09:00 country6 102 Abroad 

09:30 country6 102 Abroad 

10:00 country6 country1 Abroad 

10:30 country6 country1 Abroad 

11:00 country6 102 Abroad 

11:30 country6 102 Abroad 

12:00 country6 102 Abroad 

12:30 country6 102 Abroad 

13:00 102 102 Abroad 

13:30 102 102 102 

14:00 102 102 102 

Table 6-20 – An example instance from the test set, low return chance configuration, showing the next-

timeslot predictions made with and without full-itemset location generalisation 

Table 6-20 shows an example instance in which the occupant is abroad and returns 

part way through the day, which in this configuration is the less likely occurrence, 

with a 25% chance given that the occupant was abroad in the first place. As this 

approach applies the taxonomy to the dataset itself, the instance also contains the 

generalised versions of the locations where applicable, which in this case is 

generalising ‘country6’ to ‘Abroad’. The table also shows the next-timeslot 

predictions with and without the use of the taxonomy. 
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Without the taxonomy the predictor primarily predicts that the occupant is in their 

office, as that is their most common location. As these are next-timeslot 

predictions, the predictor knows that the occupant is in ‘country6’, however there 

are no relevant rules as this location does not appear in the training set. The 

predictor also knows that the occupant is in the general location ‘abroad’, however 

due to the various countries it has to choose from in the training set, the best it can 

do with this information is to guess ‘country1’ in two timeslots. 

When the taxonomy is applied the predictions correctly reflect that the occupant is 

abroad. As the entire dataset has the taxonomy applied to it, it is trivial for the 

predictor to make predictions such as {09:00=Abroad => 10:00=Abroad}. The 

occupant is predicted to remain abroad at 13:00 as in this configuration the 

occupant does in fact remain abroad more often than not, though they return in 

this example. This error is corrected in the next timeslot, as these are next-timeslot 

predictions and the predictor can see that the occupant has returned. 

Timeslot Actual Location No Taxonomy Taxonomy 

09:00 country6 102 Abroad 

09:30 country6 102 Abroad 

10:00 country6 country1 Abroad 

10:30 country6 country1 Abroad 

11:00 country6 102 Abroad 

11:30 country6 102 Abroad 

12:00 country6 102 Abroad 

12:30 country6 102 Abroad 

13:00 102 102 Abroad 

13:30 102 102 Abroad 

14:00 102 104 Abroad 

Table 6-21 – An example instance from the test set, low return chance configuration, showing next-day 

predictions made with and without full-itemset location generalisation 

Table 6-21 shows the same example instance with the Next-Day predictions. The 

predictions without the taxonomy are the same as the next-timeslot predictions 
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made without the taxonomy in Table 6-20. This is because the predictor knows 

based on the timetable attribute that the occupant is abroad, but again has no basis 

on which to choose between the countries in the training set, and so defaults to the 

occupant’s most common location in most timeslots. With the taxonomy, it predicts 

that the occupant is abroad all day. In this configuration the occupant remains 

abroad more often than not, and so without data from previous timeslots on the 

same day to show that the occupant has returned, the more likely case is that the 

occupant remains abroad. 

 Next Timeslot Next Day 

No Taxonomy 72% 59% 

Taxonomy 94% 86% 

Table 6-22 – Accuracy of OccApriori on the synthetic test set configured for a high return chance, with and 

without full-itemset location generalsation 

Table 6-22 shows the accuracy of the full-itemset approach as in Table 6-19, except 

that in this configuration the occupant has a 75% chance of returning on days they 

are abroad. Other than the return probability, the occupant model is unchanged. 

The biggest change is an increase in both next-timeslot and next-day accuracy when 

not using the taxonomy. This is because the predictor defaults to predicting the 

occupant will be in their office when it does not have the help of the taxonomy, and 

since the occupant returns to their office more often in this configuration, this 

default prediction is correct more often. 

Table 6-23 shows an example instance in which the occupant is abroad and returns 

part way through the day, which in this configuration is the more likely occurrence, 

with a 75% chance given that the occupant was abroad at all. As before the instance 

also contains the generalised locations where applicable. The predictions in the 

table are the next-timeslot predictions with and without the use of the taxonomy. 
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Timeslot Actual Location No Taxonomy Taxonomy 

09:00 country6 country4 Abroad 

09:30 country6 country4 Abroad 

10:00 country6 country4 Abroad 

10:30 country6 country4 Abroad 

11:00 country6 country4 Abroad 

11:30 country6 country4 Abroad 

12:00 country6 102 Abroad 

12:30 country6 102 Abroad 

13:00 102 102 102 

13:30 102 102 102 

14:00 102 102 102 

Table 6-23 – An example instance from the test set, high return chance configuration, showing the next-

timeslot predictions made with and without full-itemset location generalisation 

 

Timeslot Actual Location No Taxonomy Taxonomy 

09:00 country6 country4 Abroad 

09:30 country6 country4 Abroad 

10:00 country6 country4 Abroad 

10:30 country6 country4 Abroad 

11:00 country6 country4 Abroad 

11:30 country6 country4 Abroad 

12:00 country6 102 Abroad 

12:30 country6 102 Abroad 

13:00 102 102 102 

13:30 102 102 102 

14:00 102 102 102 

Table 6-24 – An example instance from the test set, high return chance configuration, showing the next-day 

predictions made with and without full-itemset location generalisation 
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As in Table 6-20, the next-timeslot predictions without the taxonomy vary between 

predicting an arbitrary country and the occupant’s office, although a country 

happens to be chosen more often in this example. This is again because without the 

taxonomy, the predictor has no reliable way to select between the countries in the 

training set, and cannot predict the new countries in the test set anyway.  The 

predictions using the taxonomy are similar to the predictions in Table 6-20, the only 

difference is that in this case it does not incorrectly predict the occupant is abroad 

for one timeslot after they return. This is because in this configuration they usually 

return at this time, so it predicts that they will return based on their historical 

patterns. 

Table 6-24 shows the same example instance along with the next-day predictions 

with and without the taxonomy. Again there is an additional timetable attribute 

which indicates that the occupant will be abroad so that the predictor can make 

predictions regarding the occupant being abroad. The resulting predictions are the 

same as those in Table 6-23. In the case of the predictions without using the 

taxonomy, this is for the same reason as in Table 6-20 and Table 6-21, the 

availability or lack of same day occupant data makes no difference as the predictor, 

lacking reliable rules regarding the specific countries, must fall back on what are 

essentially guesses. The predictions with the taxonomy are the same because in 

both cases the predictor used historical patterns to predict the occupant would 

return, and as the occupant actually did return in this case, no correction was made 

based on the same day data available in Table 6-23. 

6.6. Summary 

This chapter described example cases where generalising the occupant locations in 

the dataset would allow the algorithm to make extra predictions. It went on to 

describe two approaches to using these generalisations, a simple consequent-only 

application for making generalised predictions alongside specific predictions, and a 

full-itemset application for using general patterns to make the prediction as well as 

to generalise the prediction itself. The model of a real occupant was modified to 

incorporate test cases, to evaluate whether the algorithm could learn these types 
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of patterns in practice, and the evaluation demonstrated that where these patterns 

exist, the addition of the taxonomy does indeed allow OccApriori to make the extra 

predictions. 

Generalised association rules are an established extension to association rule 

mining. This chapter demonstrated that, with the core OccApriori approach in 

place, they can be applied to enable new types of predictions of occupant locations 

to be made. The same is true of other existing extensions of association rules; 

building on OccApriori, they all offer new potential types of prediction which may 

be useful depending on the patterns in the occupancy data, increasing the flexibility 

of OccApriori even beyond what the core algorithm offers. The future work section 

discusses the potential applications of several of these extensions. 
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7. Conclusions and Future Work 

7.1. Summary 

The contributions of this work in terms of occupant prediction can be broken down 

into three components. Chapter 4 develops an algorithm based on Apriori which 

features superior accuracy in occupant prediction to the degree that it can match 

existing approaches at next location prediction, achieving 86% accuracy on the UCC 

dataset. OccApriori makes no hard distinction between next location prediction, 

location prediction on the following day, or anything in between (e.g. predicting 3 

hours in advance); it is simply a matter of which data is available when predicting. 

Due to this, for occupants for whom it can make accurate next-location predictions, 

accurate next-day predictions are available from the same set of rules, achieving 

75% accuracy in the case of the UCC dataset. These values compare to 61% 

accuracy achieved for both next-slot and next-day predictions by unmodified 

Apriori. Breaking down the modifications made to the algorithm, the results show 

that depending on the occupant, the individual modifications have varying degrees 

of effect, but that the complete algorithm is at least as accurate as any other 

configuration, and more accurate in most cases. 

Chapter 5 examines the issue of occupants whose movements do not fit the 

algorithm’s assumption that occupant movements will relate primarily to the time 

of day. For these occupants, existing approaches based on time-independent 

sequences of locations have proven effective. This chapter defines a new type of 

itemset and rule which can encapsulate these sequences, and develops a 
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modification to OccApriori to mine them. The result is a set of rules which achieves 

accuracy of 76%, compared to 56% achieved by the time-of-day based OccApriori, 

matching existing sequence based approaches. The sequence based rules can be 

used along with the time of day based rules to leverage both types of pattern. 

Chapter 6 examines the extra types of predictions which can be made by using one 

of the existing extensions of association rules, generalised association rules, in 

OccApriori. While OccApriori was concerned only with specific locations to this 

point, by applying a taxonomy to the dataset it can be made to use generalised 

locations alongside the specific locations. This allows for both extra predictions of 

specific locations by relying on general patterns and making higher confidence 

predictions of an occupant’s general location alongside the prediction of their 

specific location. Evaluation on a synthetic test set based on a real occupant 

showed a significant increase in accuracy with the application of the taxonomy, 

demonstrating the algorithm’s ability to find and use both types of pattern. 

An additional contribution an occupant model based on the previous assumption 

that occupant movements relate to the time of day. Chapter 3 describes this model 

and the process of modelling actual occupants based on their historical location 

data. The chapter evaluates the output of the model compared to the data it was 

based on under a variety of metrics to show that an accurate reproduction of the 

original occupants is possible using this model. 

7.2. Conclusions 

The hypothesis defended in this work is: 

Association rule mining can be applied to data on the past movements 

of a building’s occupants, generating rules which predict their future 

locations. Such an algorithm can be modified to take account of the 

specific attributes and metadata that occupancy data includes in order 

to reach higher accuracy. Furthermore the algorithm can be extended to 

learn more general concepts and sequences in the data to extend the 

range of patterns which are found and can be used for prediction. 
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The hypothesis states that association rule mining can be used to predict occupant 

movements, and with modification, can match or exceed the accuracy of existing 

approaches, while making a wider variety of predictions. This thesis has shown that 

OccApriori does in fact match existing approaches for next location prediction. With 

regard to the variety of predictions it can make, OccApriori is capable of next 

location prediction, prediction further into the future, and prediction of general 

locations, and when making those predictions can use time-of-day based location 

frequency or time-independent location sequences, incorporating whatever data is 

made available including recent location data, timetable data and instance 

metadata. The following section discusses further types of predictions that could be 

made with other extensions to OccApriori.  

For the intended application, more efficient heating in buildings, next day 

prediction of occupant locations can be more important than next location 

prediction. The few existing approaches which are designed to predict that far into 

the future use very limited context when making their predictions. OccApriori on 

the other hand will use any extra data which is provided, the main example 

examined in this thesis being timetable data. On the UCC dataset, the use of 

timetable data increased accuracy to 75% for next-day predictions, from the 71% 

possible without using the timetables. 

As illustrated by the Augsburg dataset, for some occupants the assumption that 

movements relate to time of day simply doesn’t hold. This undoes the predictive 

power of all current approaches which can predict further into the future, including 

OccApriori. One option to predict such occupants is to add any additional data 

which affects their movements, such as a timetable, which OccApriori  can then 

use. On the most difficult to predict occupant in the UCC dataset OccApriori 

achieved a 23 percentage point gain in accuracy with the addition of timetable 

data. If there is no such data, if occupants decide on their movements on-the-fly 

throughout the day or decide on some basis unavailable to the predictor, then 

prediction of their specific location further into the future may not be possible. 

However, for the application intended in this thesis, a prediction of the number of 

hours each occupant is likely to be in each location may suffice, as such predictions 
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would describe the total heat load on the building just as well as more specific 

predictions. This too is a potential extension of OccApriori which will be discussed in 

the future work section. 

Compared to existing work, the approach presented in this thesis has a greater 

focus on the flexibility to learn a variety of patterns, to use a variety of data, and to 

make a variety of predictions. Association rules naturally provide a greater flexibility 

than the methods used in existing approaches; by building on this foundation and 

extending it with occupant prediction in mind, this thesis develops an approach 

which is able to make the different types of predictions offered by various existing 

approaches, with the same accuracy they achieve, while simultaneously being 

capable of making many more types of prediction, with significant potential for 

further extension in the future. 

7.3. Future Work 

Potential future work on this topic falls mainly into three areas: Further expanding 

the range of patterns which can be found and predictions which can be made, 

addressing issues which will arise when applying this approach in a real control 

scenario, and further development of the occupant model. 

A limitation of OccApriori in its present form is that while it predicts based on the 

occupant’s historical movements, it cannot predict based on specific past events. 

While it may learn an occupant’s patterns on Wednesdays and Thursdays, it cannot 

predict an occupant’s location on a particular Thursday based on the preceding 

Wednesday. Similarly it can’t predict, for example, that one occupant won’t attend 

a meeting due to the occupant who called the meeting being absent. There is 

existing work on extending Apriori to mine patterns between instances. Given the 

structure OccApriori applies to the occupant location dataset, finding these 

patterns would allow it to make these extra types of predictions.  

Similarly, there is existing work on mining quantitative association rules, in which 

the values of attributes take on one from a range of values, so that patterns 

involving interval data can be learned. Applied to OccApriori, this could be used to 
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learn duration of stay in the previously discussed case where there are occupants 

for whom next day predictions are particularly difficult. By extending OccApriori in 

this manner, and recording in the instances the duration of stay in each location as 

well as location in each timeslot, it could learn patterns in the duration each 

occupant says in each location. If, for example, it can’t predict exactly when an 

occupant will be in their office, it may instead be able to predict how many hours 

they will spend in their office. 

Another alterative type of prediction would be the occupants’ locations in time 

periods. In this case rather than dealing only with specific timeslots, the algorithm 

would include attributes which record the occupants’ location across more general 

periods such as the morning or afternoon. This could be achieved simply by adding 

attributes which record where the occupant was for the majority of each time 

period, then mining the dataset as usual. Specific timeslot and general period 

predictions could then be offered, with confidence values determining when period 

predictions should be taken over more specific predictions. 

In a similar vein it may be desirable to predict arrival to and departure from the 

building. Several of the occupants in the UCC dataset displayed a pattern wherein 

they have a period of increasing chance of arriving in the morning, a similar period 

of increasing chance to leave in the evening, and a high probability break in the 

middle of the day for lunch. Aside from these, absences are short and fairly 

random. This is just one example of a case where predicting the initial arrival and 

final departure would likely be sufficient. As OccApriori already produces rules 

which describe the probability of arrival and departure across the day, these events 

could potentially be predicted in a number of ways, for example predicting arrival 

time as the earliest timeslot in which the confidence that the occupant is out drops 

below a given threshold. Such an approach could also be applied to other locations, 

allowing for predictions of first arrival in any location, similar to (Burbey 2011). 

In the evaluation of the timeslot and ordered rules compared to each other on the 

UCC dataset, where both approaches are successful, the results showed that while 

they achieve virtually identical overall accuracy, there were variations on specific 
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occupants and at specific times. This reveals that the two approaches are making 

slightly different predictions, with one or the other being more accurate in different 

cases. If the algorithm could identify the cases where one or the other rule set is 

better, it could explicitly select the better type of rule in every case, and achieve 

higher accuracy with the combined rule set than either rule set achieves alone. 

Chapter 5 mentioned the possibility of modifying timetable attributes similarly to 

how the timeslot attributes were modified, in order to allow timetable entries to be 

used with sequence-based prediction. By having a parallel set of positions in the 

ordered itemsets for timetable entries, in the same manner as with the ordinary 

itemsets, the algorithm could learn sequences which state that an occupant is in 

their office for two hours and then scheduled to be at a meeting in the third hour. 

This would then match anywhere in the historical data where the occupant was in 

their office for two hours, and had a meeting scheduled in the following hour, 

regardless of what specific time of day was involved, and could be used to predict in 

similar matching cases. This would require a modification of candidate generation 

to generate sequences including the parallel timetable entry ordering. 

Looking towards a real deployment of the system, the first thing to consider may be 

re-implemented OccApriori using newer, more efficient algorithms for mining 

association rules as the starting point. Since the main modifications are defined in 

terms of modifying the calculation of support and restricting which candidate 

itemsets are considered acceptable, they are in principle applicable to any of the 

other algorithms. However, Eclat and its related algorithms achieve their efficiency 

using pseudo equivalence relations to divide the dataset, while FP-Growth requires 

the selection of an ordering over the items. Since occupant location data has a 

natural ordering over the items that the algorithm is most interested in, there may 

be further efficiency gains to be had using modifications specific to these 

algorithms. 

In a real system the building’s tracking system will continue to provide new data on 

occupants’ movements, requiring updates to the previously mined rules to 

incorporate it. OccApriori as presented would have to retrain from scratch every 
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time, however there is existing work on updating an existing set of association rules 

based on the content of the new instances, without starting from scratch. This 

could be integrated into OccApriori, allowing it to integrate new data as it came in. 

One issue that OccApriori currently does not address is that occupants’ patterns 

change over time. If it produces a rule set based on months or years of data, it is 

probable that rules based on more recent data will be better predictors than rules 

which find their support in older patterns.  To address this, methods for weighting 

rule selection based on the age of their supporting instances should be 

investigated. A simple approach would be to only train on the most recent n 

months of data – this guarantees that predictions are made based on recent 

patterns, however in the process is throws away any useful knowledge that may be 

contained in the original data. Rather than pure age, it may be worth considering 

dividing the dataset into time periods, and then selecting rules along those lines. 

For example, in an academic institution, occupancy patterns will change in and out 

of term time. If these time periods were explicitly identified in the dataset, term 

time predictions could be made using rules based on past term time, and similar for 

out of term time. Several formulations of temporal association rules exist, which 

address this issue from different angles, and could potentially be applied. 

Finally there are some avenues to explore with the occupant model presented in 

chapter 3. First and foremost, some or all of the process of modelling occupants 

could be automated. The process of determining the basic patterns for each 

occupant, arrival and departure probabilities for each time, and probability of all 

day absence, are simply a step by step application of Bayes theorem to the source 

data, as described in Chapter 3. Breaking other occupant activities down into 

explicit tasks is more of an intuitive task when done by hand, but still essentially 

consists of analysing the frequency of locations across timeslots, thus full 

automation of the process is certainly a possibility. 

In terms of the features this model possesses compared to existing occupant 

models, the most obvious gap is dependence between tasks on the same day. 

Currently the only way tasks interact in the model is that a task which is scheduled 
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earlier may take the timeslot a later scheduled task wants, causing the latter to not 

be scheduled. Existing occupant models include various approaches to having tasks 

affect each other more directly – for example tasks which model taking a break 

have a higher probability of occurring as the time since the last break increases. 

While the assumption that occupant location patterns relate to the time of day 

primarily is important in this thesis as it underlies OccApriori, there are occupants 

for whom this doesn’t hold, and so developing the model toward including these 

extra relationships between tasks would potentially make it more generally 

applicable. 
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