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Abstract

Nisin, an antimicrobial peptide showing activityatgst many Gram positive bacteria, is widely used éod
preservative. The simulated gastrointestinal digesif nisin (variant A) was studied using fimevitro
INFOGEST digestion method. Following oral, gasénic small intestinal digestion, there was no intésin in
the system and the nisin was primarily digestegdmcreatin. After digestion, six nisin fragmentsl(l, 1-12,
1-20, 1-21, 1-29 and 1-32) were identified by reeerphase high performance liquid chromatographynaass
spectroscopy and four of these nisin fragments)(11221, 1-29 and 1-32) demonstrated low antibadter
activity against.actococcus lactis HP in agar diffusion activity assays. Additionalywas observed that bile
salts form a complex with nisin. This was examibgdatomic force microscopy, turbidity and dynarigt
scattering, which showed that this interaction ltesuin significantly larger bile salt micelles. &lpresence of
bile salts at physiological levels significantlyeaked the relative amounts of the nisin fragmert2,11-20 and
1-29 produced during dn vitro digestion. This study highlights the importanceénafuding bile in simulated
digestions of antimicrobial peptides in order tdadto a more accurate simulation of thevivo digestion

products and their activity.

Keywords:

Nisin; In vitro digestion; Bile; Antimicrobial peptide; Surfactant
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1. Introduction

Nisin is a 34 amino acid antimicrobial peptide proed by strains dfactococcus lactis subsplactis
that is active against many Gram-positive bactenig is widely used as a food preservative (Ghasailet al.,
2016). Nisin is extremely stable at pH 3 and caadtteclaved at this pH with < 5% loss of activiDa{ies et

al., 1998), whereas above pH 6 it is unstable ex@aom temperature (Kelly et al., 2000).

The discovery that nisin is inactivated by panére@tieinemann and Williams, 1966), primarily due to

its chymotrypsin component (Jarvis and Mahoney9)9#as a factor in nisin being awarded GRAS sthijus
the FDA (U. S. Food and Drug Administration, 19885 the European Food Safety Authority declariag t
nisin is safe for use in food (European Food Safetthority, 2006) with its assigned E number beihg34
(European Commission, 2011). It has been demoadtrabre recently that nisin is also cleaved byttyyesin
component of pancreatin (Chan et al., 1996). Howthaese studies focused on pancreatic enzymesidnmbt
take into account the other components of the tigesystem such as bile.

Bile salts, the major functional component of bdeg biological surfactants which are involvedha t
digestion and absorption of lipids in the smalksitne; in particular they transport the produdtipolysis in
bile salt micelles to the sites of absorption (Baeteal., 2005). For the most common human andipetule
salts, micelle formation takes place in two staggsirophobic interactions between bile salts resualprimary
micelles, which then interact via hydrogen bondimfprm secondary micelles (Kandrac et al., 20G61a et
al., 2007; Small, 1968). The minimum bile salt cemitation required for micelle formation is terntad
critical micelle concentration (CMC). As the contration of sodium ions affects the CMC, experimenits
bile salts are commonly performed in 0.15 molesA- dblutions to simulate physiological conditions
(Hofmann and Hagey, 2008). In a 0.15 moles/L 8talution, most bile salts have a CMC below 10
millimoles/L (Hofmann and Roda, 1984); 10 millimsik is also the bile salt concentration recommerfded

simulating physiological conditions durimgvitro digestion (Minekus et al., 2014).

Previous digestion studies on nisin have focussgglamcreatic enzymes from the small intestine and

those that investigated the nisin fragments prodigedigestion used enzymes individually and ofised
digestions in excess of 20 h (Chan et al., 199@¢teann and Williams, 1966; Jarvis and Mahoney9196
Slootweg et al., 2013). In order to study how nisidigested under more physiologically relevaniditions,
the INFOGEST method, a recently developed stangedditatic method for the digestion of food (Minglet

al., 2014) was utilised. This method is the conssmg an international network of scientists anddased on
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physiological conditions with each digestion corapry an oral, gastric and intestinal stage (Minedual.,

2014). This approach would establish which nisagfnents are produced under physiological conditimms
also their biological activity. In addition, by germing versions of the digestion without individulgestion
components, the importance of non-proteolytic congmds such as bile on the digestion profile ofmégiuld

be established.

2. Materialsand methods

2.1. Materials

All reagents were obtained from Sigma-Aldrich (Anki, Ireland) unless otherwise stated. For the
simulated digestions the specific Sigma-Aldrichdurets used were: salivary amylase (A1031), pep887),
bile (B8631) and pancreatin (P7545). Tw®&0 was obtained from Merck Millipore (Darmstadgr@any).
The nisin preparation used was Nisapl{puPont, Beaminster, UK) (nisin variant A; refat® as ‘nisin’

throughout this text). This was enriched by salting as previously described (Gough et al., ingres

2.2. Digestion

Simulated oral, gastric and small intestinal diges were performed as described in the INFOGEST
method (Minekus et al., 2014). Five variationshaf tligestion were performed: (i) nisin with all eggion
components, (ii) nisin with all digestion comporseakcept bile, (iii) nisin with all digestion compents except
pancreatin, (iv) nisin with all digestion comporeekcept pepsin, bile and pancreatin, (v) all digas
components but no nisin. A minimum of three repésavere performed of each of these five diges@inps.
The initial nisin concentration was chosen so thatnisin concentration in the digestion productidde
sufficient for quantification by reversed phaseghhperformance liquid chromatography (RP-HPLC)eTh
digestion containing nisin and all digestion comgrats was performed as follows: for the oral stage Sof an
8.7 mg/mL nisin solution was combined with simutasalivary fluid (SSF) and salivary amylase (75 U/im
final oral solution) to a final total volume of 1AL; this was incubated at 37 °C for 2 minutes. fhergastric
stage, the sample pH was adjusted to 3 using dil@eand combined with simulated gastric fluid (SGRd

pepsin (2,000 U/mL in final gastric solution) tdial total volume of 20 mL; this was incubated3dt°C for 2
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hours. For the small intestinal stage the pH wasséeld to 7 using dilute NaOH and combined withudated
intestinal fluid (SIF) and bile (10 millimoles/LIbisalts in final intestinal solution) and pancie#100 TAME
U/mL in final intestinal volume) to a final totablume of 40 mL, this was incubated at 37 °C foioRis. The

digestion products were snap-frozen in liquid rgén.

2.3. Determination of the effect of the presence of bile during digestion on the activity of the digestion products

To determine the effect of the presence of biléndudigestion on the activity of the digestion puots
a simplified digestion method based on Minekud.gP814) was used; nisin was incubated with paatanen a
MOPS buffer at pH 7 and 37 °C for 2 h with bile adckither before or after digestion, with an egleint
volume of water added to samples that did not veckile. The final constituents in each sample total
volume of 0.5 mL, were 100 pg/mL nisin, bile atile Isalt concentration of 0.3 millimoles/L, pandiaat a
concentration such that its trypsin activity wa® T®ME units per mL, 50 millimoles/L MOPS, 0.15 raslL

NaCl and the pH was 7. The digestion products \waedysed by activity assay as described in se&tién

2.4. Reversed Phase - High Performance Liquid Chromatography (RP-HPLC)

RP-HPLC was carried out on a Jupiter, 5 um, C18,8®50 mm x 4.6 mm column from

Phenomenex (Macclesfield, UK) with an acetonitfii@ermo Fisher Scientific, Dublin, Ireland) gradiais

described previously (Gough et al., in press)hindase of digested nisin, fractions were colletiteaughout

the gradient to determine the nisin fragments prediby digestion.

2.5. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS)

The molecular mass of the RP-HPLC peaks were datechusing MALDI TOF MS using an Axima

TOF” mass spectrometer (Shimadzu Biotech, Kyoto, Jagmpyeviously described (Field et al., 2012).

2.6. Activity Assay
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Biological activity was estimated by agar diffusiactivity assays (Ryan et al., 1996) in agar plates
seeded with_actococcus lactis subspcremoris HP which were prepared as described previously@Bet al.,
in press). Serial two-fold dilutions of the samplesre performed in 0.15 moles/L NaCl, 50 millimdles
MOPS, pH 7. In specific cases a surfactant (0.8mules/L bile salts, 8 millimoles/L Twe&®B0 or 0.2
millimoles/L Triton™ X-100) was included in the dént. The samples (5Q) were dispensed into the wells
and the plates incubated overnight at 30 °C. Thigiycof nisin resulted in zones of inhibition saunding the
wells. Activity is expressed as minimum inhibitagncentration (MIC) in terms @fg/mL (Chan et al., 1996).
MIC was calculated by plotting the area of the zohimhibition at each dilution stage against the of the
nisin concentration (Bernbom et al., 2006); these & linear relationship and the MIC was calculdtedh the

equation of the line.

2.7. Atomic Force Microscopy (AFM)

For AFM, samples comprised 10 millimoles/L biletsaD.15 moles/L NaCl, and 50 millimoles/L
MOPS at pH 7, with or without 040/mL nisin. The nisin concentration of Qu§/mL was chosen as this is
within the range that could occur in the small $titee after consumption of a nisin containing fdatfs
(Delves-Broughton, 2005; Minekus et al., 2014) gabts (5uL) were deposited onto freshly cleaved mica
surfaces, dried in a desiccator and subsequewtigdsat ambient conditions to ensure equilibratgtidtion.
AFM images were obtained with an Asylum ResearciPMD-AFM (Asylum Research UK Ltd., Oxford, UK)
using AC-mode in ambient air. An aluminium refleoated cantilever with a tetrahedral tip (AC 24@yirsg
constant of 1.8 N/m (Olympus Optical Co. Ltd., Toklapan), working frequency of 50-90 kHz, and sed®

of 0.5-1 Hz was used at a 512 x 512 resolution.rédeus of curvature of the tetrahedral tip wag#8) nm.

2.8. Turbidity

Turbidity was measured at 600 nm as per (Dahmaak, &008) using a Cary 100 Bio
Spectrophotometer with temperature control (AgileathnologiedrelandLtd., Little Island, Ireland). The
samples were prepared at pH 7 in a 50 millimol&d@PS buffer containing 0.15 moles/L NaCl and anadlys

at 37 °C.



150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

2.9. Dynamic Light Scattering

Z-average was measured by Dynamic Light Scatt€idg) using a Zetasizer Nano ZS (Malvern
Instruments, Malvern, UK). The samples were pregpare.15 moles/L NaCl, adjusted to pH 7 using NaOH

filtered through a 0.22 uM PVDF filter (Gilson Setdic, Luton, UK) and analysed at 20 °C.

3. Results and discussion

3.1. Smulated digestion

Oral and gastric digestion of nisin without pepaulted in a 6% (+ 0.6, n = 3) reduction in intact
nisin when measured by RP-HPLC and the inclusigmepkin brought the total reduction to 16% (+ 2.2,5);
this limited digestion in the oral and gastric smgorrelates with published results which show tien is
primarily digested in the small intestine (Jaruisidlahoney, 1969).

Gastrointestinal digestion without proteases a k#ulted in > 50% loss in intact nisin (TableAs.
the oral and gastric stages caused limited reduatimisin, this reduction can primarily be attriéd to the
small intestinal pH of 7 and temperature of 374€above pH 6 nisin is unstable with a temperatapendent
decomposition rate (Kelly et al., 2000). It wasatbthat pH and temperature were not entirely resiptanfor
the reduction in detectable nisin and that the Eited intestinal fluid, in particular its sodiunchrbonate
component, played a minor role (data not shown).

Performing the small intestinal stage of digestigth bile and/or pancreatin resulted in no intastm
being detectable by RP-HPLC (Table 1) and the prtsdof digestions that included bile had greater
antibacterial activity than similar digestions vath bile.

The highest antibacterial activity was in digessiovithout pancreatin; this correlates with previous
reports that pancreatin is primarily responsiblenfigin digestion (Heinemann and Williams, 1966pwéver in
digestions with all components except pancredtiere was no intact nisin detected by RP-HPLC. Tigk h
antibacterial activity implies that intact nisin svaresent and suggests another digestion comporanbe
affecting the behaviour of nisin on the RP-HPLQuooh, thus interfering with its detection. This canpnt

appeared to be bile, as digestions without bilproteases had detectable nisin in their products.
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3.2. Analyses of nisin fragments

As the products of digestions involving pancred&émonstrated antibacterial activity that could bt
accounted for by the bile or digestive enzymesattievity was likely due to fragments of nisin. @ietermine
which nisin fragments were produced and which e$éhwere bioactive, the digestion products werarséed
by RP-HPLC and the fractions collected (Fig. 1B)eTractions were analysed using MALDI-TOF mass
spectrometry and by activity assay (Fig. 2). Digest with pancreatin produced peptides with molacul
masses corresponding to the theoretical and p@dlistolecular masses of nisin fragments 1-12, 1240, 1-

29 and 1-32 and also a peptide with a moleculasméthin two daltons of the theoretical mass ofmis
fragment 1-11 (Table 2).

Major peaks on the RP-HPLC traces (Fig. 1A andd@jesponded to nisin 1-12, 1-20, 1-29 and intact
nisin, whereas nisin 1-21 gave a minor peak. Imi&ih had a shoulder region corresponding to thiein
variant [Set’]-nisin in which the serine residue at positiondd® not undergo post-translational modification to
dehydroalanine (Chan et al., 1996). The peaks sporaling to nisin fragments 1-11 and nisin 1-32ewer
obscured by the co-eluting bile and pancreatic amapts. Although the RP-HPLC peak of nisin 1-32 was
completely obscured by the background, its elupioimt was identified by activity assay.

Nisin 1-29 eluted at slightly different time poirdspending on whether the digestion was performed
without bile (25.1 min) or with bile included (25min). The peaks at 22.8 min and 26.9 min and dke fajor
peaks between 25.5 min and 26.1 min were primdirily to bile and pancreatin and occurred in therobnt
digestions that did not have nisin. The presend#lefin the digestion affected the peak heightsisin
fragments 1-12, 1-20 and 1-29 (Fig. 1B).

RP-HPLC fractionation did not lead to pure pepfidetions due to overlap between the elution of the
fragments, for example in Fig. 2 nisin fragmentdlvgas detected in the mass spectrometry analysieof
elution peak of nisin fragment 1-11 and was md&tlyi the source of the antimicrobial activity irethctivity
assay of nisin fragment 1-11, also nisin fragmeB0was visible in the mass spectrometry analyisibeo
elution peak of nisin fragment 1-32.

Nisin fragment 1-32 was not detected in the proslo€digestion in the presence of bile; as bile
interfered with the detection of intact nisin (1}3®4 RP-HPLC, it is proposed this also occurs waitin

fragment 1-32.



209 Nisin fragments 1-12, 1-20 and 1-21 have previobsign produced by digests with trypsin or

210 chymotrypsin for a minimum of 16 hours (Chan et B996; Slootweg et al., 2013). Nisin fragment 1h28
211 been produced by an 8 hour digestion with the batigrotease thermolysin and by a 4 hour digestibtine
212 nisin variant ([Sef-nisin) with carboxypeptidase Y (Chan et al., 199isin fragment 1-32 has been produced
213 by a 6 day acid treatment (Chan et al., 1989; Gah, 1996). To the authors knowledge it hasbeain

214 previously demonstrated that these fragments cqmmdmuced under physiological conditions.

215 In Table 2 it is shown that the molecular masseoked in Fig. 2 are within two daltons of the
216 predicted masses and that the inclusion of bike dilgestion altered the proportions of the nisagients

217 produced when compared by peak height in a RP-HEHt@matogram. In this study all the nisin fragments
218 corresponding to amino acids 1-20 or longer dematest antibacterial activity againsactococcus lactis (Fig.
219 2), which is in agreement with Chan et al. (1998 decrease in nisin 1-12 and an increase in hi€@ and
220 1-29, which are observed in Fig. 1B are shown tsipeificant (Table 2). This implies that the hitgluces the
221 cleavage of nisin during digestion.

222

223 3.3. Nisin interaction with bile and other surfactants

224

225 As bile had been shown to increase nisin activigble 1) and alter its digestion (Table 2) the-bile
226 nisin interaction was further examined and compawoatsin’s interaction with other surfactants. The

227  surfactants Tweéh80 and Triton™ X-114 were chosen for comparisothag increase the activity of nisin
228 (Joosten and Nunez, 1995; Jozala et al., 2008pri X-100 was substituted for Triton™ X-114, agdm™
229  X-114 phase separates at the incubation temperattine activity assay (30 °C) (Bordier, 1981). Reting the
230 concentrations used; 10 millimoles/L bile saltpliysiological concentration (Minekus et al., 202hjle 0.3
231 millimoles/L bile salts and 0.2 millimoles/L Tritd¥ X-100 were the highest concentrations that didcaose
232 antibacterial activity in activity assays. While @&f 80 did not have an antibacterial affect at conegions >
233 8 millimoles/L, 8 millimoles/L was chosen becaugghler concentrations had a noticeable effect ocogisy.
234  All these surfactants were at a molar excess denisin component (100 pg/mL nisirD.03 millimoles/L
235 nisin).

236 To investigate how surfactants affected the MI@isin when determined by activity assays; serial
237 dilutions were performed in a MOPS/NaCl diluentitsrown and with each of the surfactants, withaatstg

238 nisin concentration of 100g/mL (Table 3). Bile caused a reduction in MIC camed to the control, however a
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greater reduction was caused by Twe8a and Triton™ X-100 and both of these reducedvth@ by the same
amount (Table 3). This implies that nisin interadifferently with bile compared to the other sutéats.

Surfactants can increase the activity of bioagtigptides in activity assays by reducing or preventi
binding to glass or polypropylene assay contaittexsugh competition with the peptides for bindiiigs on
the container or interacting with the binding sit@sthe peptides, primarily through hydrophobi@iattions
(Duncan et al., 1995; Joosten and Nunez, 1998)silfi activity was increased by bile, through tbenfation of
a peptide-surfactant complex, there would alsorbmerease in the particle size of the bile saltatié.

The effect of nisin-surfactant interaction on paetisize was examined by AFM, turbidity and DLS.
AFM analysis of bile with and without nisin (FigA3and B) showed individual particles whose crossieas
had z-heights ranging from 20 to 190 nm, which giaslar to the z-average means obtained by DL Siler
(100 nm % 5) and bile with nisin (118 nm + 9) (F&P) and similar to the published values for bad s
secondary micelles (50 &D0 nm)(Hildebrand et al., 2004).

The turbidity of a system relates to both the simé density of particles that scatter light. In.F2@,
nisin was solubilised in a range of surfactants tandidity increased with increasing nisin concatitm, with
the greatest turbidity increases occurring in ttesence of bile. DLS (Fig. 3D) found that the zrage
diameter of 10 millimoles/L bile salts with 1@@/mL nisin was significantly larger than that withanisin (p =
0.0123, n = 4). There was no significant changgsiriicle size when nisin was in solution with Tnty X-100
or Tweeff 80 (data not shown). To produce results of suétajpiality by DLS, the samples were filtered and
measured at 20 °C and pH 7 without a buffer.

The particle size analysis (Fig. 3) suggests tisih fiormed a complex with bile and this was diéfer
to its interaction with other surfactants. In tletiaty analysis (Table 3) bile caused less ofreréase in nisin
activity than the other surfactants; this couldelplained by bile forming a complex with nisin wéas the
other surfactants bound to the assay containetharsdreduced non-specific nisin binding in a défgrway. In
the products of digestions which contained all slign components except pancreatin (Table 1), misis
detected by activity assay but not detected by RIRE] nisin could be favouring hydrophobic interantivith
bile over hydrophobic interactions with the RP-HPt&umn.

With respect to the mechanism for bile-nisin int&ien, both hydrophobic and ionic interactions are
possible. Bile salts are anionic with a negativergk on an amino acid that is attached to one &tigkanain
body of the bile salt via a short hydrocarbon cl{iig. 4) (Hofmann and Hagey, 2008; Small, 1968iiNhas

a pl of 8.5 and thus is cationic under physiologémanditions with the bulk of the positive chargarg in the
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C-terminal domain (Fig. 4) and this is responsfbleits initial interaction with its negatively ciged targets
(Breukink et al., 1997). The oppositely chargediieal regions of bile salts and nisin make ioniefactions
likely. Bile salts are planar amphipathic molecudesl thus have a hydrophobic and a hydrophilic @it 4);
when forming a primary micelle they orientate thgidrophobic sides towards each other, giving tieele a
hydrophobic core (Fig. 4) (Hofmann and Hagey, 20083in is also amphipathic with the C-terminalrigi
hydrophilic while the N-terminal is hydrophobic ¢-i4) (Gharsallaoui et al., 2016). The hydrophd¥ic
terminal region of nisin has been reported to adewith the hydrophobic cores of surfactants sagh
dodecylphosphocholine and sodium dodecyl sulphatell®s (van den Hooven et al., 1996). It is theref
possible that the hydrophobic N-terminal regiomisin also interacts with the hydrophobic core ité balt
micelles. The reduced cleavage in the N-termingibreof nisin when a simulated gastrointestinakgign is
performed in the presence of bile (Table 2) magieto the bile salts interacting with and surrangdhe N-
terminal region of the nisin and limiting the caipaof proteolytic enzymes to interact with the &kninal
region.

Having shown that nisin formed a complex with lsigdts, which altered its digestion products, it was
investigated how much this affected its antibaatexctivity after digestion. The loss of nisin &t during
digestion is primarily due to pancreatic enzymesc{ion 3.1). To look specifically at whether bileutd
attenuate the loss of nisin activity due to pantmea simplified digestion was performed with pegatin in
buffer and bile added at the beginning or end efdigestion and the activity of the product deteediby
activity assay. The final concentration of biletsavas 0.3 millimoles/L so that the antibacterizthaty of bile
salts would not distort the results of the actiéssay. The MOPS/NaCl buffer (pH 7) that was usea @diluent
for the activity assay contained 0.3 millimolesilelsalts, so that the surfactant effect would teststent at all
stages of the assay. The addition of bile beforafter a 2 h digestion resulted in MICs of 1jigmL (x 0.3, n
=3) and 12.1ig/mL (= 0.2, n = 3) respectively. Although statistly significant (p = 0.01), the difference in
activity was slight.

Although the presences or absence of bile in &statitro digestion had a significant effect on the
nisin fragments produced, this in turn had a ndégkgeffect on antibacterial activity. As nisin fraents 1-12,
1-20 and 1-29 have low antibacterial activity (< 6% activity of intact nisin againkt lactis (Chan et al.,
1996)) it is assumed that increases or decreagbsimamount had a minimal effect on overall aamtiierial

activity.
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4. Conclusions

Nisin was digested by intestinal proteases as &as previously highlighted (Heinemann and
Williams, 1966; Jarvis and Mahoney, 1969) althoirgastinal pH and temperature by themselves alaseth
significant loss in nisin. The digestion productslide six nisin fragments, four of which have lieci
antibacterial activity. Although nisin fragmentsvbabeen previously identified (Chan et al., 1996p&veg et
al., 2013), this is the first time that fragmenesigrated during am vitro digestion under physiological
conditions have been identified. Nisin interactthvigile, forming a complex that alters the relat@reounts of
the nisin fragments produced by digestion. Thigstighlights the importance of including bile imsilated
digestions of antimicrobial peptides regardlesthefpresence or absence of a lipid component itedte

samples.
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Tablel
Products ofn vitro gastrointestinal digestions of nisin.

Starting material Oral, gastric and small intedtdigestion Analysis of digestiproducts
% nisin (RP-HPLC) MIC (or MIC equivalent)
Nisin solution All components 0% (x 0) 22 pg/mLR}¥
Nisin solution All components except bile 0% (x0) 41 pg/mL (£ 2)
Nisin solution All components except pancreatin @90) 0.9 ug/mL (£ 0.2)
Nisin solution All components except pepsin, bike @ancreatin 48% (+ 2) 2.9 pg/mL (x 0.5)
H2O (no nisin) All components n/a 82 pg/mL (£ 21)
Nisin solution Not digested 100% 1.8 pg/mL (£ 0.1)

The digestion products were analysed by RP-HPLCagad diffusion activity assay. The amount of ni#ected by RP-HPLC is
expressed as a % of the total initial nisin. A¢jivs expressed as minimum inhibitory concentrafidiC, ug/mL). An equivalent
MIC is given for the products of digestions withamigin; SD in brackets, » 3.



Table2
Nisin fragments detected in the products of digesti

Observed / predicted Antibacterial Effect of inclusion of bile in digestion on heighftcorresponding
molecular mass activity peak in RP-HPLC chromatogram

Peak height not determinable due to backgroundfarence

Nisin fragment

111 102371021 None detected ¢, co-eluting bile and pancreatin

1-12 1151 /1150 None detected 1.9 (£ 0.3) fold decrease (p = @pP0O0

1-20 1881/1881 Yes 1.4 (£ 0.1) fold increase (p = 0.02)

1-21 2013 /2012 Yes Not significant (p = 0.06)

1-29 2810/ 2809 Yes 3.5 (£ 0.3) fold increase (p < 0.0001)

1-32 3159 / 3157 Yes Peak height not determinable due to backgroundfarence

from co-eluting pancreatin

Mean fold increases and SD are derived from theeedf replicates; p values are in brackets.
&Chan et al. (1996).
PSlootweg et al. (2013).



Table3

Effect of surfactants on the minimum inhibitory centration
(MIC, pg/mL) of nisin in agar diffusion activity assayd$
brackets, n =3).

Surfactant MIC gg/mL)
No surfactant 1.81 (£ 0.11)
0.3 millimoles/L bile salts 0.05 (£ 0.01)
8 millimoles/L Tweeff 80 0.008 (+ 0.001)

0.2 millimoles/L Triton™ X-100 0.008 (+ 0.001)




A Intact
nisin

B Nisin Nisin Nisin Nisin Nisin Nisin
1-12 1-29 111 1-32 1-20 1-21

Absorbance at 214 nm

22.5 23 235 24 24.5 25 25.5 26 26.5 27 27.5 28
Elution time (min)
Fig. 1. RP-HPL C chromatograms of (A) undigested nisin and (B) the products of nisin digestion without bile (—) and with bile

included (----). Regions where nisin fragments and intact nisin eluted are highlighted. The effect of including or excluding bile from
a digestion with respect to the amount of nisin fragments 1-12, 1-29 and 1-20 produced is highlighted.
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Fig. 2. Mass spectrometry analysis and well diffusion activity assay (inserts) of nisin fragments produced by the digestion of nisin.
Analysis of intact nisin from the products of the control digestion isincluded for comparison in which 3354.70 Da correlates with
the predicted molecular mass of intact nisin (3355.12 Da) (Chan et al., 1996) and 1678.14 Da correlates with the molecular mass of

doubly charged intact nisin.
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Fig. 3. Effect of nisin-surfactant interaction on partisige as examined by Atomic Force Microscopy AFMa@d B), Turbidity
(C) and Dynamic Light Scattering (DLS) (D). AFM: AFof bile (A) and AFM of bile with nisin (B). Turldity (C): ¢ 10
millimoles/L bile salts® 0.3 millimoles/L bile saltsA 0.2 millimoles/L Triton™ X-100x 8 millimoles/L Tweefi 80 and— No
surfactant (+ SD, n = 4). DLS (D 10 millimoles/L bile salts and ||| 10 millimolediile salts with 10Qug/mL nisin (+ SD, n = 4).
Difference in particle size determined by DLS (B}ignificant (p = 0.0123, n = 4).
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Fig. 4. Schematics of abile salt, abile salt primary micelle and anisin peptide. A bile salt moleculeis 2 nm long (Small, 1971) and
anisin peptideis 5 nmlong (Sahl, 1994). Drawings of abile salt and primary micelle are based on those of Small (1968). Bile salt
primary micelles can consist of 2 to 10 bile salts(Li et al., 2009). The image of nisin was produced using Protein Database entry
IWCO (Hsu et a., 2004) in conjunction with the NGL Viewer (Rose & Hildebrand, 2015).



In vitro digestion of nisin under physiological gastrointestinal conditions.
Six nisin fragments produced, four of which are bioactive.
Bile forms a complex with nisin.

Bile alters the relative amounts of the nisin fragments produced by digestion.



