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Simulated gastrointestinal digestion of nisin and interaction between nisin and bile 1 
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Abstract 12 

Nisin, an antimicrobial peptide showing activity against many Gram positive bacteria, is widely used as a food 13 

preservative. The simulated gastrointestinal digestion of nisin (variant A) was studied using the in vitro 14 

INFOGEST digestion method. Following oral, gastric and small intestinal digestion, there was no intact nisin in 15 

the system and the nisin was primarily digested by pancreatin. After digestion, six nisin fragments (1-11, 1-12, 16 

1-20, 1-21, 1-29 and 1-32) were identified by reversed phase high performance liquid chromatography and mass 17 

spectroscopy and four of these nisin fragments (1-20, 1-21, 1-29 and 1-32) demonstrated low antibacterial 18 

activity against Lactococcus lactis HP in agar diffusion activity assays. Additionally, it was observed that bile 19 

salts form a complex with nisin.  This was examined by atomic force microscopy, turbidity and dynamic light 20 

scattering, which showed that this interaction resulted in significantly larger bile salt micelles. The presence of 21 

bile salts at physiological levels significantly altered the relative amounts of the nisin fragments 1-12, 1-20 and 22 

1-29 produced during an in vitro digestion. This study highlights the importance of including bile in simulated 23 

digestions of antimicrobial peptides in order to obtain a more accurate simulation of the in vivo digestion 24 

products and their activity. 25 

 26 

Keywords: 27 

Nisin; In vitro digestion; Bile; Antimicrobial peptide; Surfactant 28 

 29 

 30 
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1. Introduction 31 

 32 

Nisin is a 34 amino acid antimicrobial peptide produced by strains of Lactococcus lactis subsp. lactis 33 

that is active against many Gram-positive bacteria and is widely used as a food preservative (Gharsallaoui et al., 34 

2016). Nisin is extremely stable at pH 3 and can be autoclaved at this pH with < 5% loss of activity (Davies et 35 

al., 1998), whereas above pH 6 it is unstable even at room temperature (Kelly et al., 2000). 36 

The discovery that nisin is inactivated by pancreatin (Heinemann and Williams, 1966), primarily due to 37 

its chymotrypsin component (Jarvis and Mahoney, 1969), was a factor in nisin being awarded GRAS status by 38 

the FDA (U. S. Food and Drug Administration, 1988) and  the European Food Safety Authority declaring that 39 

nisin is safe for use in food (European Food Safety Authority, 2006) with its assigned E number being E 234 40 

(European Commission, 2011). It has been demonstrated more recently that nisin is also cleaved by the trypsin 41 

component of pancreatin (Chan et al., 1996). However these studies focused on pancreatic enzymes and did not 42 

take into account the other components of the digestive system such as bile. 43 

Bile salts, the major functional component of bile, are biological surfactants which are involved in the 44 

digestion and absorption of lipids in the small intestine; in particular they transport the products of lipolysis in 45 

bile salt micelles to the sites of absorption (Bauer et al., 2005). For the most common human and porcine bile 46 

salts, micelle formation takes place in two stages; hydrophobic interactions between bile salts results in primary 47 

micelles, which then interact via hydrogen bonding to form secondary micelles (Kandrac et al., 2006; Partay et 48 

al., 2007; Small, 1968). The minimum bile salt concentration required for micelle formation is termed the 49 

critical micelle concentration (CMC). As the concentration of sodium ions affects the CMC, experiments with 50 

bile salts are commonly performed in 0.15 moles/L Na+ solutions to simulate physiological conditions 51 

(Hofmann and Hagey, 2008). In a 0.15 moles/L Na+ solution, most bile salts have a CMC below 10 52 

millimoles/L (Hofmann and Roda, 1984); 10 millimoles/L is also the bile salt concentration recommended for 53 

simulating physiological conditions during in vitro digestion (Minekus et al., 2014). 54 

Previous digestion studies on nisin have focussed on pancreatic enzymes from the small intestine and 55 

those that investigated the nisin fragments produced by digestion used enzymes individually and often used 56 

digestions in excess of 20 h (Chan et al., 1996; Heinemann and Williams, 1966; Jarvis and Mahoney, 1969; 57 

Slootweg et al., 2013). In order to study how nisin is digested under more physiologically relevant conditions, 58 

the INFOGEST method, a recently developed standardized static method for the digestion of food (Minekus et 59 

al., 2014) was utilised. This method is the consensus of an international network of scientists and is based on 60 
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physiological conditions with each digestion comprising an oral, gastric and intestinal stage (Minekus et al., 61 

2014). This approach would establish which nisin fragments are produced under physiological conditions and 62 

also their biological activity. In addition, by performing versions of the digestion without individual digestion 63 

components, the importance of non-proteolytic components such as bile on the digestion profile of nisin could 64 

be established. 65 

 66 

2. Materials and methods 67 

 68 

2.1. Materials 69 

 70 

All reagents were obtained from Sigma-Aldrich (Arklow, Ireland) unless otherwise stated. For the 71 

simulated digestions the specific Sigma-Aldrich products used were: salivary amylase (A1031), pepsin (P6887), 72 

bile (B8631) and pancreatin (P7545).  Tween® 80 was obtained from Merck Millipore (Darmstadt, Germany). 73 

The nisin preparation used was Nisaplin® (DuPont, Beaminster, UK) (nisin variant A; referred to as ‘nisin’ 74 

throughout this text). This was enriched by salting out as previously described (Gough et al., in press). 75 

 76 

2.2. Digestion 77 

 78 

Simulated oral, gastric and small intestinal digestions were performed as described in the INFOGEST 79 

method (Minekus et al., 2014). Five variations of the digestion were performed: (i) nisin with all digestion 80 

components, (ii) nisin with all digestion components except bile, (iii) nisin with all digestion components except 81 

pancreatin, (iv) nisin with all digestion components except pepsin, bile and pancreatin, (v) all digestion 82 

components but no nisin. A minimum of three replicates were performed of each of these five digestion setups. 83 

The initial nisin concentration was chosen so that the nisin concentration in the digestion product would be 84 

sufficient for quantification by reversed phase - high performance liquid chromatography (RP-HPLC). The 85 

digestion containing nisin and all digestion components was performed as follows: for the oral stage 5 mL of an 86 

8.7 mg/mL nisin solution was combined with simulated salivary fluid (SSF) and salivary amylase (75 U/mL in 87 

final oral solution) to a final total volume of 10 mL; this was incubated at 37 °C for 2 minutes. For the gastric 88 

stage, the sample pH was adjusted to 3 using dilute HCl and combined with simulated gastric fluid (SGF) and 89 

pepsin (2,000 U/mL in final gastric solution) to a final total volume of 20 mL; this was incubated at 37 °C for 2 90 
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hours. For the small intestinal stage the pH was adjusted to 7 using dilute NaOH and combined with simulated 91 

intestinal fluid (SIF) and bile (10 millimoles/L bile salts in final intestinal solution) and pancreatin (100 TAME 92 

U/mL in final intestinal volume) to a final total volume of 40 mL, this was incubated at 37 °C for 2 hours. The 93 

digestion products were snap-frozen in liquid nitrogen. 94 

 95 

2.3. Determination of the effect of the presence of bile during digestion on the activity of the digestion products 96 

 97 

To determine the effect of the presence of bile during digestion on the activity of the digestion products 98 

a simplified digestion method based on Minekus et al. (2014) was used; nisin was incubated with pancreatin in a 99 

MOPS buffer at pH 7 and 37 °C for 2 h with bile added either before or after digestion, with an equivalent 100 

volume of water added to samples that did not receive bile. The final constituents in each sample, in a total 101 

volume of 0.5 mL, were 100 µg/mL nisin, bile at a bile salt concentration of 0.3 millimoles/L, pancreatin at a 102 

concentration such that its trypsin activity was 100 TAME units per mL, 50 millimoles/L MOPS, 0.15 moles/L 103 

NaCl and the pH was 7. The digestion products were analysed by activity assay as described in section 2.6. 104 

 105 

2.4. Reversed Phase - High Performance Liquid Chromatography (RP-HPLC) 106 

 107 

RP-HPLC was carried out on a Jupiter, 5 µm, C18, 300 Å, 250 mm × 4.6 mm column from 108 

Phenomenex (Macclesfield, UK) with an acetonitrile (Thermo Fisher Scientific, Dublin, Ireland) gradient as 109 

described previously (Gough et al., in press). In the case of digested nisin, fractions were collected throughout 110 

the gradient to determine the nisin fragments produced by digestion. 111 

 112 

2.5. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS) 113 

 114 

The molecular mass of the RP-HPLC peaks were determined using MALDI TOF MS using an Axima 115 

TOF2 mass spectrometer (Shimadzu Biotech, Kyoto, Japan) as previously described (Field et al., 2012). 116 

 117 

2.6. Activity Assay 118 

 119 
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Biological activity was estimated by agar diffusion activity assays (Ryan et al., 1996) in agar plates 120 

seeded with Lactococcus lactis subsp. cremoris HP which were prepared as described previously (Gough et al., 121 

in press). Serial two-fold dilutions of the samples were performed in 0.15 moles/L NaCl, 50 millimoles/L 122 

MOPS, pH 7. In specific cases a surfactant (0.3 millimoles/L bile salts, 8 millimoles/L Tween® 80 or 0.2 123 

millimoles/L Triton™ X-100) was included in the diluent. The samples (50 µL) were dispensed into the wells 124 

and the plates incubated overnight at 30 °C. The activity of nisin resulted in zones of inhibition surrounding the 125 

wells. Activity is expressed as minimum inhibitory concentration (MIC) in terms of µg/mL (Chan et al., 1996). 126 

MIC was calculated by plotting the area of the zone of inhibition at each dilution stage against the log of the 127 

nisin concentration (Bernbom et al., 2006); these had a linear relationship and the MIC was calculated from the 128 

equation of the line. 129 

 130 

2.7. Atomic Force Microscopy (AFM) 131 

 132 

For AFM, samples comprised 10 millimoles/L bile salts, 0.15 moles/L NaCl, and 50 millimoles/L 133 

MOPS at pH 7, with or without 0.5 µg/mL nisin. The nisin concentration of 0.5 µg/mL was chosen as this is 134 

within the range that could occur in the small intestine after consumption of a nisin containing foodstuff 135 

(Delves-Broughton, 2005; Minekus et al., 2014). Aliquots (5 µL) were deposited onto freshly cleaved mica 136 

surfaces, dried in a desiccator and subsequently stored at ambient conditions to ensure equilibrated hydration. 137 

AFM images were obtained with an Asylum Research MFP-3D-AFM (Asylum Research UK Ltd., Oxford, UK) 138 

using AC-mode in ambient air. An aluminium reflex coated cantilever with a tetrahedral tip (AC 240), spring 139 

constant of 1.8 N/m (Olympus Optical Co. Ltd., Tokyo Japan), working frequency of 50-90 kHz, and scan rate 140 

of 0.5-1 Hz was used at a 512 × 512 resolution. The radius of curvature of the tetrahedral tip was 10 (± 3) nm. 141 

 142 

2.8. Turbidity 143 

 144 

Turbidity was measured at 600 nm as per (Dahmane et al., 2008) using a Cary 100 Bio 145 

Spectrophotometer with temperature control (Agilent Technologies Ireland Ltd., Little Island, Ireland). The 146 

samples were prepared at pH 7 in a 50 millimoles/L MOPS buffer containing 0.15 moles/L NaCl and analysed 147 

at 37 °C. 148 

 149 
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2.9. Dynamic Light Scattering 150 

 151 

Z-average was measured by Dynamic Light Scattering (DLS) using a Zetasizer Nano ZS (Malvern 152 

Instruments, Malvern, UK). The samples were prepared in 0.15 moles/L NaCl, adjusted to pH 7 using NaOH, 153 

filtered through a 0.22 µM PVDF filter (Gilson Scientific, Luton, UK) and analysed at 20 °C. 154 

 155 

3. Results and discussion 156 

 157 

3.1. Simulated digestion 158 

 159 

Oral and gastric digestion of nisin without pepsin resulted in a 6% (± 0.6, n = 3) reduction in intact 160 

nisin when measured by RP-HPLC and the inclusion of pepsin brought the total reduction to 16% (± 2.2, n = 5); 161 

this limited digestion in the oral and gastric stages correlates with published results which show that nisin is 162 

primarily digested in the small intestine (Jarvis and Mahoney, 1969). 163 

Gastrointestinal digestion without proteases or bile resulted in > 50% loss in intact nisin (Table 1). As 164 

the oral and gastric stages caused limited reduction in nisin, this reduction can primarily be attributed to the 165 

small intestinal pH of 7 and temperature of 37 °C, as above pH 6 nisin is unstable with a temperature dependent 166 

decomposition rate (Kelly et al., 2000). It was noted that pH and temperature were not entirely responsible for 167 

the reduction in detectable nisin and that the simulated intestinal fluid, in particular its sodium bicarbonate 168 

component, played a minor role (data not shown). 169 

Performing the small intestinal stage of digestion with bile and/or pancreatin resulted in no intact nisin 170 

being detectable by RP-HPLC (Table 1) and the products of digestions that included bile had greater 171 

antibacterial activity than similar digestions without bile. 172 

The highest antibacterial activity was in digestions without pancreatin; this correlates with previous 173 

reports that pancreatin is primarily responsible for nisin digestion (Heinemann and Williams, 1966). However in 174 

digestions with all components except pancreatin, there was no intact nisin detected by RP-HPLC. The high 175 

antibacterial activity implies that intact nisin was present and suggests another digestion component may be 176 

affecting the behaviour of nisin on the RP-HPLC column, thus interfering with its detection. This component 177 

appeared to be bile, as digestions without bile or proteases had detectable nisin in their products. 178 

 179 
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3.2. Analyses of nisin fragments 180 

 181 

As the products of digestions involving pancreatin demonstrated antibacterial activity that could not be 182 

accounted for by the bile or digestive enzymes, the activity was likely due to fragments of nisin. To determine 183 

which nisin fragments were produced and which of these were bioactive, the digestion products were separated 184 

by RP-HPLC and the fractions collected (Fig. 1B). The fractions were analysed using MALDI-TOF mass 185 

spectrometry and by activity assay (Fig. 2). Digestions with pancreatin produced peptides with molecular 186 

masses corresponding to the theoretical and published molecular masses of nisin fragments 1-12, 1-20, 1-21, 1-187 

29 and 1-32 and also a peptide with a molecular mass within two daltons of the theoretical mass of nisin 188 

fragment 1-11 (Table 2). 189 

Major peaks on the RP-HPLC traces (Fig. 1A and B) corresponded to nisin 1-12, 1-20, 1-29 and intact 190 

nisin, whereas nisin 1-21 gave a minor peak. Intact nisin had a shoulder region corresponding to the nisin 191 

variant [Ser33]-nisin in which the serine residue at position 33 did not undergo post-translational modification to 192 

dehydroalanine (Chan et al., 1996). The peaks corresponding to nisin fragments 1-11 and nisin 1-32 were 193 

obscured by the co-eluting bile and pancreatic components. Although the RP-HPLC peak of nisin 1-32 was 194 

completely obscured by the background, its elution point was identified by activity assay. 195 

Nisin 1-29 eluted at slightly different time points depending on whether the digestion was performed 196 

without bile (25.1 min) or with bile included (25.4 min). The peaks at 22.8 min and 26.9 min and the four major 197 

peaks between 25.5 min and 26.1 min were primarily due to bile and pancreatin and occurred in the control 198 

digestions that did not have nisin. The presence of bile in the digestion affected the peak heights of nisin 199 

fragments 1-12, 1-20 and 1-29 (Fig. 1B). 200 

RP-HPLC fractionation did not lead to pure peptide fractions due to overlap between the elution of the 201 

fragments, for example in Fig. 2 nisin fragment 1-29 was detected in the mass spectrometry analysis of the 202 

elution peak of nisin fragment 1-11 and was most likely the source of the antimicrobial activity in the activity 203 

assay of nisin fragment 1-11, also nisin fragment 1-20 was visible in the mass spectrometry analysis of the 204 

elution peak of nisin fragment 1-32. 205 

Nisin fragment 1-32 was not detected in the products of digestion in the presence of bile; as bile 206 

interfered with the detection of intact nisin (1-34) by RP-HPLC, it is proposed this also occurs with nisin 207 

fragment 1-32. 208 
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Nisin fragments 1-12, 1-20 and 1-21 have previously been produced by digests with trypsin or 209 

chymotrypsin for a minimum of 16 hours (Chan et al., 1996; Slootweg et al., 2013). Nisin fragment 1-29 has 210 

been produced by an 8 hour digestion with the bacterial protease thermolysin and by a 4 hour digestion of the 211 

nisin variant ([Ser33]-nisin) with carboxypeptidase Y (Chan et al., 1996). Nisin fragment 1-32 has been produced 212 

by a 6 day acid treatment (Chan et al., 1989; Chan et al., 1996). To the authors knowledge it has not been 213 

previously demonstrated that these fragments can be produced under physiological conditions. 214 

In Table 2 it is shown that the molecular masses observed in Fig. 2 are within two daltons of the 215 

predicted masses and that the inclusion of bile in a digestion altered the proportions of the nisin fragments 216 

produced when compared by peak height in a RP-HPLC chromatogram. In this study all the nisin fragments 217 

corresponding to amino acids 1-20 or longer demonstrated antibacterial activity against Lactococcus lactis (Fig. 218 

2), which is in agreement with Chan et al. (1996). The decrease in nisin 1-12 and an increase in nisin 1-20 and 219 

1-29, which are observed in Fig. 1B are shown to be significant (Table 2). This implies that the bile reduces the 220 

cleavage of nisin during digestion. 221 

 222 

3.3. Nisin interaction with bile and other surfactants 223 

 224 

As bile had been shown to increase nisin activity (Table 1) and alter its digestion (Table 2) the bile-225 

nisin interaction was further examined and compared to nisin’s interaction with other surfactants. The 226 

surfactants Tween® 80 and Triton™ X-114 were chosen for comparison as they increase the activity of nisin 227 

(Joosten and Nunez, 1995; Jozala et al., 2008). Triton™ X-100 was substituted for Triton™ X-114, as Triton™ 228 

X-114 phase separates at the incubation temperature of the activity assay (30 °C) (Bordier, 1981). Regarding the 229 

concentrations used; 10 millimoles/L bile salts is physiological concentration (Minekus et al., 2014), while 0.3 230 

millimoles/L bile salts and 0.2 millimoles/L Triton™ X-100 were the highest concentrations that did not cause 231 

antibacterial activity in activity assays. While Tween® 80 did not have an antibacterial affect at concentrations > 232 

8 millimoles/L, 8 millimoles/L was chosen because higher concentrations had a noticeable effect on viscosity. 233 

All these surfactants were at a molar excess over the nisin component (100 µg/mL nisin ≈ 0.03 millimoles/L 234 

nisin). 235 

To investigate how surfactants affected the MIC of nisin when determined by activity assays; serial 236 

dilutions were performed in a MOPS/NaCl diluent on its own and with each of the surfactants, with a starting 237 

nisin concentration of 100 µg/mL (Table 3). Bile caused a reduction in MIC compared to the control, however a 238 
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greater reduction was caused by Tween® 80 and Triton™ X-100 and both of these reduced the MIC by the same 239 

amount (Table 3). This implies that nisin interacts differently with bile compared to the other surfactants. 240 

Surfactants can increase the activity of bioactive peptides in activity assays by reducing or preventing 241 

binding to glass or polypropylene assay containers through competition with the peptides for binding sites on 242 

the container or interacting with the binding sites on the peptides, primarily through hydrophobic interactions 243 

(Duncan et al., 1995; Joosten and Nunez, 1995). If nisin activity was increased by bile, through the formation of 244 

a peptide-surfactant complex, there would also be an increase in the particle size of the bile salt micelle. 245 

The effect of nisin-surfactant interaction on particle size was examined by AFM, turbidity and DLS. 246 

AFM analysis of bile with and without nisin (Fig. 3A and B) showed individual particles whose cross-sections 247 

had z-heights ranging from 20 to 190 nm, which was similar to the z-average means obtained by DLS for bile 248 

(100 nm ± 5) and bile with nisin (118 nm ± 9) (Fig. 3D) and similar to the published values for bile salt 249 

secondary micelles (50 to 200 nm) (Hildebrand et al., 2004). 250 

The turbidity of a system relates to both the size and density of particles that scatter light. In Fig. 3C, 251 

nisin was solubilised in a range of surfactants and turbidity increased with increasing nisin concentration, with 252 

the greatest turbidity increases occurring in the presence of bile. DLS (Fig. 3D) found that the z-average 253 

diameter of 10 millimoles/L bile salts with 100 µg/mL nisin was significantly larger than that without nisin (p = 254 

0.0123, n = 4). There was no significant change in particle size when nisin was in solution with Triton™ X-100 255 

or Tween® 80 (data not shown). To produce results of suitable quality by DLS, the samples were filtered and 256 

measured at 20 °C and pH 7 without a buffer. 257 

The particle size analysis (Fig. 3) suggests that nisin formed a complex with bile and this was different 258 

to its interaction with other surfactants. In the activity analysis (Table 3) bile caused less of an increase in nisin 259 

activity than the other surfactants; this could  be explained by bile forming a complex with nisin whereas the 260 

other surfactants bound to the assay container and thus reduced non-specific nisin binding in a different way. In 261 

the products of digestions which contained all digestion components except pancreatin (Table 1), nisin was 262 

detected by activity assay but not detected by RP-HPLC; nisin could be favouring hydrophobic interaction with 263 

bile over hydrophobic interactions with the RP-HPLC column. 264 

With respect to the mechanism for bile-nisin interaction, both hydrophobic and ionic interactions are 265 

possible. Bile salts are anionic with a negative charge on an amino acid that is attached to one end of the main 266 

body of the bile salt via a short hydrocarbon chain (Fig. 4) (Hofmann and Hagey, 2008; Small, 1968). Nisin has 267 

a pI of 8.5 and thus is cationic under physiological conditions with the bulk of the positive charge being in the 268 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
C-terminal domain (Fig. 4) and this is responsible for its initial interaction with its negatively charged targets 269 

(Breukink et al., 1997). The oppositely charged terminal regions of bile salts and nisin make ionic interactions 270 

likely. Bile salts are planar amphipathic molecules and thus have a hydrophobic and a hydrophilic side (Fig. 4); 271 

when forming a primary micelle they orientate their hydrophobic sides towards each other, giving the micelle a 272 

hydrophobic core (Fig. 4) (Hofmann and Hagey, 2008). Nisin is also amphipathic with the C-terminal being 273 

hydrophilic while the N-terminal is hydrophobic (Fig. 4) (Gharsallaoui et al., 2016). The hydrophobic N-274 

terminal region of nisin has been reported to interact with the hydrophobic cores of surfactants such as 275 

dodecylphosphocholine and sodium dodecyl sulphate micelles (van den Hooven et al., 1996). It is therefore 276 

possible that the hydrophobic N-terminal region of nisin also interacts with the hydrophobic core of bile salt 277 

micelles. The reduced cleavage in the N-terminal region of nisin when a simulated gastrointestinal digestion is 278 

performed in the presence of bile (Table 2) may be due to the bile salts interacting with and surrounding the N-279 

terminal region of the nisin and limiting the capacity of proteolytic enzymes to interact with the N-terminal 280 

region. 281 

Having shown that nisin formed a complex with bile salts, which altered its digestion products, it was 282 

investigated how much this affected its antibacterial activity after digestion. The loss of nisin activity during 283 

digestion is primarily due to pancreatic enzymes (Section 3.1). To look specifically at whether bile could 284 

attenuate the loss of nisin activity due to pancreatin, a simplified digestion was performed with pancreatin in 285 

buffer and bile added at the beginning or end of the digestion and the activity of the product determined by 286 

activity assay. The final concentration of bile salts was 0.3 millimoles/L so that the antibacterial activity of bile 287 

salts would not distort the results of the activity assay. The MOPS/NaCl buffer (pH 7) that was used as a diluent 288 

for the activity assay contained 0.3 millimoles/L bile salts, so that the surfactant effect would be consistent at all 289 

stages of the assay. The addition of bile before or after a 2 h digestion resulted in MICs of 11.8 µg/mL (± 0.3, n 290 

= 3) and 12.7 µg/mL (± 0.2, n = 3) respectively. Although statistically significant (p = 0.01), the difference in 291 

activity was slight. 292 

Although the presences or absence of bile in a static in vitro digestion had a significant effect on the 293 

nisin fragments produced, this in turn had a negligible effect on antibacterial activity. As nisin fragments 1-12, 294 

1-20 and 1-29 have low antibacterial activity (< 6% the activity of intact nisin against L. lactis (Chan et al., 295 

1996)) it is assumed that increases or decreases in their amount had a minimal effect on overall antibacterial 296 

activity. 297 

 298 
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4. Conclusions 299 

 300 

Nisin was digested by intestinal proteases as has been previously highlighted (Heinemann and 301 

Williams, 1966; Jarvis and Mahoney, 1969) although intestinal pH and temperature by themselves also caused 302 

significant loss in nisin. The digestion products include six nisin fragments, four of which have limited 303 

antibacterial activity. Although nisin fragments have been previously identified (Chan et al., 1996; Slootweg et 304 

al., 2013), this is the first time that fragments generated during an in vitro digestion under physiological 305 

conditions have been identified. Nisin interacts with bile, forming a complex that alters the relative amounts of 306 

the nisin fragments produced by digestion. This study highlights the importance of including bile in simulated 307 

digestions of antimicrobial peptides regardless of the presence or absence of a lipid component in the test 308 

samples.  309 
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Table 1 
Products of in vitro gastrointestinal digestions of nisin. 
Starting material Oral, gastric and small intestinal digestion                  Analysis of digestion products 

% nisin (RP-HPLC) MIC (or MIC equivalent) 

Nisin solution All components 0% (± 0) 22 µg/mL (± 5) 

Nisin solution All components except bile 0% (± 0) 41 µg/mL (± 2) 

Nisin solution All components except pancreatin 0% (± 0) 0.9 µg/mL (± 0.2) 

Nisin solution All components except pepsin, bile and pancreatin 48% (± 2) 2.9 µg/mL (± 0.5) 

H2O (no nisin) All components n/a 82 µg/mL (± 21) 

Nisin solution Not digested 100% 1.8 µg/mL (± 0.1) 
The digestion products were analysed by RP-HPLC and agar diffusion activity assay. The amount of nisin detected by RP-HPLC is 
expressed as a % of the total initial nisin. Activity is expressed as minimum inhibitory concentration (MIC, µg/mL). An equivalent 
MIC is given for the products of digestions without nisin; SD in brackets, n ≥ 3. 
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Table 2 
Nisin fragments detected in the products of digestion. 

Nisin fragment 
Observed / predicted 
molecular mass 

Antibacterial 
activity 

Effect of inclusion of bile in digestion on height of corresponding 
peak in RP-HPLC chromatogram 

1-11 1023 / 1021 None detected 
Peak height not determinable due to background interference 
from co-eluting bile and pancreatin 

1-12 1151 / 1150b None detected 1.9 (± 0.3) fold decrease (p = 0.0009) 

1-20 1881 / 1881a Yes 1.4 (± 0.1) fold increase (p = 0.02) 

1-21 2013 / 2012b Yes Not significant (p = 0.06) 

1-29 2810 / 2809a Yes 3.5 (± 0.3) fold increase (p < 0.0001) 

1-32 3159 / 3157a Yes 
Peak height not determinable due to background interference 
from co-eluting pancreatin 

Mean fold increases and SD are derived from three sets of replicates; p values are in brackets. 

aChan et al. (1996). 
bSlootweg et al. (2013). 
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Table 3 
Effect of surfactants on the minimum inhibitory concentration 
(MIC, µg/mL) of nisin in agar diffusion activity assays (SD in 
brackets, n =3). 

Surfactant MIC (µg/mL) 

No surfactant  1.81 (± 0.11) 

0.3 millimoles/L bile salts 0.05 (± 0.01) 

8 millimoles/L Tween® 80 0.008 (± 0.001) 

0.2 millimoles/L Triton™ X-100 0.008 (± 0.001) 
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Fig. 1. RP-HPLC chromatograms of (A) undigested nisin and (B) the products of nisin digestion without bile (―) and with bile 

included (‐‐‐‐). Regions where nisin fragments and intact nisin eluted are highlighted. The effect of including or excluding bile from 
a digestion with respect to the amount of nisin fragments 1-12, 1-29 and 1-20 produced is highlighted. 
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Nisin fragment 1-11 Nisin fragment 1-12 

  

Nisin fragment 1-20 Nisin fragment 1-21 

  

Nisin fragment 1-29 Nisin fragment 1-32 

  

Intact nisin (1-34) from control digestion 

Fig. 2. Mass spectrometry analysis and well diffusion activity assay (inserts) of nisin fragments produced by the digestion of nisin. 
Analysis of intact nisin from the products of the control digestion is included for comparison in which 3354.70 Da correlates with 
the predicted molecular mass of intact nisin (3355.12 Da) (Chan et al., 1996) and 1678.14 Da correlates with the molecular mass of 
doubly charged intact nisin. 

0

20

40

60

80

100

900 1550 2200 2850 3500

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

m/z

0

20

40

60

80

100

900 1550 2200 2850 3500

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

m/z

0

20

40

60

80

100

900 1550 2200 2850 3500

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

m/z

0

20

40

60

80

100

900 1550 2200 2850 3500

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

m/z

0

20

40

60

80

100

900 1550 2200 2850 3500

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

m/z

0

20

40

60

80

100

900 1550 2200 2850 3500

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

m/z

0

20

40

60

80

100

900 1550 2200 2850 3500

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

m/z

1880.96 

1022.88 

2808.63 

1151.28 

2012.74 

2809.49 1882.65 

3159.04 

3354.70 

1678.14 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 

 

 

 

 

Fig. 3.  Effect of nisin-surfactant interaction on particle size as examined by Atomic Force Microscopy AFM (A and B), Turbidity 
(C) and Dynamic Light Scattering (DLS) (D). AFM: AFM of bile (A) and AFM of bile with nisin (B). Turbidity (C): � 10 
millimoles/L bile salts, � 0.3 millimoles/L bile salts, ▲ 0.2 millimoles/L Triton™ X-100, � 8 millimoles/L Tween® 80 and ▬ No 
surfactant (± SD, n = 4). DLS (D): ≡ 10 millimoles/L bile salts and ||| 10 millimoles/L bile salts with 100 µg/mL nisin (± SD, n = 4). 
Difference in particle size determined by DLS (D) is significant (p = 0.0123, n = 4). 
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Fig. 4. Schematics of a bile salt, a bile salt primary micelle and a nisin peptide. A bile salt molecule is 2 nm long (Small, 1971) and 
a nisin peptide is 5 nm long (Sahl, 1994). Drawings of a bile salt and primary micelle are based on those of Small (1968). Bile salt 
primary micelles can consist of 2 to 10 bile salts (Li et al., 2009).  The image of nisin was produced using Protein Database entry 
1WCO (Hsu et al., 2004) in conjunction with the NGL Viewer (Rose & Hildebrand, 2015). 
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In vitro digestion of nisin under physiological gastrointestinal conditions. 

Six nisin fragments produced, four of which are bioactive. 

Bile forms a complex with nisin. 

Bile alters the relative amounts of the nisin fragments produced by digestion. 


