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Learning Dynamical Models Using Motifs

Gregory Provan

Department of Computer Science, University College Cork, Ireland
{g.provan}@cs.ucc.ie

Abstract. Automatically creating dynamical system models, M, from data is an
active research area for a range of real-world applications, such as systems bi-
ology and engineering. However, the overall inference complexity increases ex-
ponentially in terms of the number of variables in M. We solve this exponential
growth by using canonical representations of system motifs (building blocks) to
constrain the model search during automated model generation. The motifs pro-
vide a good prior set of building blocks from which we can generate system-level
models, and the canonical representation provides a theoretically sound frame-
work for modifying the equations to improve the initial models. We present an
automated method for learning dynamical models from motifs, such that the mod-
els optimize a domain-specific performance metric. We demonstrate our approach
on hydraulic systems models.

1 Introduction

Generating dynamical systems models remains a challenge for most real-world appli-
cations. For example, in systems biology, scientists aim to define genetic networks,
using data acquired from high-throughput microarray analysis to identify the dynami-
cal behaviour of gene clusters [2]. In automotive applications, engineers aim to develop
control algorithms to guarantee driving performance and safety [4].

In these applications, researchers must develop for the dynamical model (1) the un-
derlying structure (e.g., the equation form representing the structure of the gene cluster)
and (2) the model’s parameters. Among others, Voit [16] notes that structure identifica-
tion is more difficult than parameter estimation.

Estimating dynamical systems models from data is computationally intensive. As
the number of system states increases, the identification of highly coupled non-linear
systems becomes increasingly challenging. In computational terms, the overall infer-
ence complexity for estimation increases exponentially in terms of the number of vari-
ables and parameters in a system [20].

Because computational blowups typically restrict the size of the learned dynamical
system, most approaches attempt to restrict the search space. For example, in systems
biology researchers use canonical versions of ordinary differential equations (ODEs) to
transform learning arbitrary ODEs into learning parameters that characterize the ODEs
[16]; in vision, some researchers have used human prior knowledge to learn partial
differential equations (PDEs) describing the evolution of visual saliency [9].

Model libraries are widely used in systems design and engineering, and are the
standard method for hand-generating large, complex models for several applications,



ranging from HVAC [19], fluid-flow [1], power [6] to biological [11, 15] systems. Mo-
tifs [12, 18], the building blocks of libraries for complex systems, are network sub-
structures (i.e., frequently-occurring and unique sub-structures) from which large sys-
tems are built. Motifs can reduce design costs and speed up product development. How-
ever, a critical drawback is that the motif libraries are typically developed for simula-
tion and design purposes, making them significantly less useful for other tasks such as
control or diagnostics. Some tasks, e.g., control, require trading off model fidelity for
computational efficiency; other tasks require additional information, e.g., diagnostics
requires simulation behaviours for both faulty and nominal conditions.

Because design-focused motif libraries are not optimized for non-design tasks, com-
panies typically create application-specific system-level models that do not leverage
existing motif libraries. To avoid this duplication of effort, we propose an approach for
learning task-specific system-level models using motif libraries: given data D concern-
ing the selected task T , we search over the space of motif configurations and parame-
ters to generate a system model that optimises a metric µ overD. Our work differs from
prior work that learns dynamical equations purely from data, e.g., [13, 17], in that we
generate models from a pre-defined motif library, measuring the models’ performance
using statistical model-comparison techniques [10].

We solve this exponential growth problem by constraining the model search during
automated model generation, using canonical representations of pre-defined motifs. The
canonical representation significantly constrains the structure and parameter space, and
the motif libraries provide a good prior set of building blocks from which to generate
system-level models.

In this article we show how to reduce the enormous search space of model and pa-
rameter configurations by using motif-based learning. We learn task-specific motifs by
(1) imposing physical constraints over the models, and (2) using a canonical represen-
tation for non-linear dynamical equations [14] that allows us to define a clear notion of
relative model fidelity, which we use for guiding search.

Our contributions are as follows.

– We develop a task-specific method for generating system models that can trade
off model fidelity for model size, so that we can tailor models for tasks requiring
smaller (more efficient) models.

– We show how motifs can improve the computational efficiency of learning task-
specific systems that are modelled using non-linear dynamical equations by at least
one order-of-magnitude.

– We illustrate our approach on a non-linear tank benchmark.

2 Notation

2.1 Model Representation

We represent a system as an inter-connected set of sub-systems (or components), using
notions standard within the computing and engineering literature, e.g., [3]. We assume
that for any system, we have the system topology, which specifies the component-type



connections. We further assume that we have a library of motifs (or components), where
we specify each motif using multiple levels of fidelity.

We characterize a system/motif using a graph G(V,E) of vertices and edges, and a
set EG of equations. The graph specifies the relationships among the variables in EG and
the equations specify the transformations occurring in the system/motif. For example,

a bio-system might define converting 2 units of species A into 1 unit of B:
2

A

1

B. We
can represent this using a graph consisting of vertex A connected to vertex B, with a
differential equation denoting the rate of conversion of A to B using parameters θ.

As shown in Figure 2(b), a motif consists of sets of input and output variables, vi
and vo respectively, a set θ of parameters, and a set E of equations over the variables v
and parameters θ.

A sub-system/component can consist of a hierarchical composition of sub-components.
A base-level component includes no embedded sub-components.

In most applications there is uncertainty concerning the structure and equational
form of a motif, i.e., the level of fidelity or detail of the structure/equations. We capture
that uncertainty by specifying mutiple versions of any motif, denoted λ = {λ1, ..., λk}.
we can also define a distribution over λ to denote the relative likelihood of each version
being correct.

In this article, we adopt the Modelica component-based representation [3]. A motif
corresponds to a Modelica component model, which uses the following three entities to
define a system:

1. Component library;
2. System topology (represented as a graph G);
3. A connection mechanism (with clear semantics).

Component library: The component library consists of a collection of components
of different types, e.g., resistor, capacitor, inductor, etc.

System topology: We assume that a system has an associated topology G(C,E),
where each node χ ∈ C in G defines a component χ and each edge e = (χi, χj) ∈ E
defines a connection between χi and χj .

Connection mechanism: Components are connected via the connection mecha-
nism, according to the system topology G. In Modelica, connectors define the variables
for the component communication interface, i.e., connectors are instances of connector
classes. Connectors specify external interfaces for interaction between components.

The component framework specifies a set of constraints over components and con-
nections. For example, we constrain a connection to be possible only between con-
nectors of equivalent type. We define, WLOG, input (positive) and output (negative)
connectors.

2.2 Dynamical Systems

We consider dynamical systems that can be described by a set of (noise-free) ODEs:

ẋ(t) = ψ(x(t),u(t),θ),x(t0) = x0,

y(t) = ϕ(x(t),θ), (1)



where x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the input vector, y(t) ∈ Rm is
the observation vector, and θ ∈ Rp is a vector of parameters associated with the state
transition and control dynamics, and the observation function. φx0(θ,u) denotes the
input-output mapping of the system (1) started at the initial state x0 with parameter set
θ. We use v = {x,y,u} to denote the set of system variables.

2.3 Thermo-Hydraulic Example: Tank System

Throughout this article we will use as a running example a thermo-hydraulic system:
a system of interconnected tanks. In this domain, the motifs consist of tanks, valves,
pipes, pumps, flow sources/sinks, etc. Systems comprising these motifs are used to
model several domains, including hydrology (tanks and pipes correspond to lakes and
rivers, respectively), chemical process control, and cardiovascular systems.

In this article we consider three components, tanks, valves, and pipes. Figure 1(a)
shows the three components. For each component we define a block diagram with a

Fig. 1. System components: tank, pipe and valve, and their block diagrams

single input and output, denoting inflow and outflow respectively.
We now describe in more detail the model of a single tank, which is an example

of a basic component model. Figure 2(a) shows the tank component. We model a tank
component using a set of equations over variables denoting inputs (fluid pressure pin,
and fluid flow qin) and outputs (pout, qout). The tank has cross-sectional area of A,
and outlet cross-section a. If the height h of fluid in the tank changes at a rate ḣ, then
we have A1ḣ = qin − qout. We assume that we measure only pressure, using p = gh,
where g is a gravity parameter. We could also define equations using parameters like
viscosity σ. Taken together, the tank thus comprises a motif/component with variables,
parameters and equations as shown in Figure 2(c).

We define a tank sub-system to consist of three connected motifs: a tank, a valve,
and a pipe, as shown in Figure 1(b). We can control the flow through this system, and
the height of fluid in the tank, by controlling the inflow to the tank and the valve setting.

We can extend our example by defining the three-tank system shown in Fig. 3, which
consists of three connected tank sub-systems. Tank Ti has area Ai and inflow qi−1, for



Fig. 2. Model for tank component

i = 1, 2, 3. We create this system by connecting together three tank components, with
a valve Vi regulating the flow qi out of tank i, for i = 1, 2, 3.

Fig. 3. Diagram of the three-tank system.

Tank T1 gets filled from a pipe, with measured flow q0. Hence, our control input is
u = {q0}.

We assume that we don’t directly measure any flows other than the inlet flow q0.
Therefore, we use the tank heights as a proxy for deriving flows through the multi-tank
system.

Torricelli’s Law defines the flow qi out of tank i, with liquid level hi, into tank j,
as:

qi = γsign(hi − hj)
√

2g(hi − hj), (2)

where the coefficient γ models the area of the drainage hole and its friction factor
through the hole.



We can use equation 3 to derive the following equations for the three-tank system
shown in Fig. 3:

ḣ1 = q0 − c1
√
h1 − h2

ḣ2 = c2
√
h1 − h2 − c3

√
h2 − h3,

ḣ3 = c4
√
h2 − h3 − c5

√
h3, (3)

where the constants c1, · · · , c5 summarize the system parameters representing cross-
sectional areas, friction factors, gravity, etc. We measure tank pressure, whose equations
are given by pi = hig, for i = 1, 2, 3. Consequently, we define the parameter set using
Θ = {c1, c2, c3, c4, c5, g}.

3 Learning System Models

3.1 Objective

This section describes our approach for learning system models. Our objective is to
search over the space S of possible models (composed from component models of
different fidelity) to identify a model that optimizes a criterion µ:

M∗ = argmax
i:Mi∈S

µ(Mi|D) (4)

We use a statistical approach for this model search, first assigning a prior distribution
P (S) over the model space. We then use the structure defined by the canonical mod-
els to provide us with a framework for model search. Finally, we must use a stopping
criterion to identify when we have achieved an “optimal” model given (µ,D).

Our experiments test the hypothesis that our proposed approach is computationally
more efficient than and loses little simulation accuracy relative to the standard (uncon-
strained) approach.

3.2 System Architecture

Figure 4 shows the system architecture for model learning.
We adopt a two-step process for learning a target model M . We first learn the the mo-
tif/component library L; we then use this to constrain the induction of the full system
topology G. We represent each component as a set E of dynamical equations.

Motif Learning We use various system constraints to learn a motif/component library.
We map the input equations E into a canonical representation, defined over 〈z,π〉,
where z is a set of transformed variables and π is the set of canonical parameters.

System-Level Model Learning We search over π̃ to select the model that optimizes
metric µ. We use a statistical model-comparison tool [10] to determine the best
model. We ensure a computationally tractable search space by mapping 〈z,π〉 to a
subset π̃ of the full model parameter space using physical constraints.

We can search over the model space in two ways:



Fig. 4. System architecture for learning models, based on (a) learning motifs and (b) using the
motifs to constrain learning complete models.

Unconstrained Without motifs, our learning task must define the structure and param-
eters of the component model equations during the system-level learning process.
Given the variability of defining ODEs, we use a gradient-descent search that sys-
tematically modifies the set W of ODEs to achieve a targeted change in the simu-
lation performance of W .

Motif-Based Here, we assume that we use the motif/component models to constrain
system-level search. We search over all component combinations of a set of models
of different fidelity to generate a system model optimizing our metric µ. If we have
k models for every component, and a system consists of l components, then the
space of models to be searched increases exponentially with the number of com-
ponents (kl), i.e., the search space becomes prohibitively large for large systems
(l > 100).

3.3 Tank System Canonical Representation

This section describes how we define a canonical representation for our tank model. We
first define the representation, and then use our tank model as an example. We adopt
a Power-Law Canonical Representation, also called S-systems [14], for constraining
model search. This representation is general, since almost all non-linear models can
be exactly recast into power-law models through a transformation using auxiliary vari-
ables, as specified in Theorem 1. This mapping generates m− n additional constraints
beyond the n original equations: see [14] for details.

Theorem 1 ([14]). Let

ẋi = fi(x1, x2, ..., xn), xi(0) = xi0, i = 1, 2, ..., n (5)

be a set of differential equations where each fi consists of sums and products of ele-
mentary functions, or nested elementary functions of elementary functions. Then there
is a smooth change of variables x → z that recasts Equations 6 into a power-law (or



S-) system 〈z = {z1, ..., zm+n},π〉:

żi = αi

n∏
j=1

z
γij
j − βi

n∏
j=1

z
ζij
j , zi(0) = zi0, i = 1, 2, ...,m (6)

where zi are real non-negative variables, and the parameters π = {αi, βi, γij , ζij}
are such that αi, βi are real non-negative and γij , ζij are real.

In the following we will show how this representation, together enforced physical
constraints, can significantly reduce the search space for learning dynamical systems,
through a principled control of the power-law system variables and parameters.

We now show how we can transform the tank model into a power-law model. We
transform the state equations (Eq. 4) for this 3-tank system to a power-law model by
making the following substitutions:

x0 ← q0

x1 ← h1

x2 ← h2

x3 ← h3

x4 ← h1 − h2
x5 ← h2 − h3

This can be expressed in the general formula as follows:

ẋ1 = x0 − β1xζ114

ẋ2 = α2x
γ21
4 − β2xζ215

ẋ3 = α3x
γ31
5 − β3xζ313

ẋ4 = (α41x
γ41
5 + x0)− β4xζ414

ẋ5 = α5x
γ51
6 − β5xζ515

ẋ6 = α6x
γ61
4 − β6xζ615 (7)

where most γij and ζij are 1
2 . We assume that x(0) = (0, 0, 0, 0, 0, 0).

In this transformation, the equations for ẋ1, ẋ2, ẋ3 comprise the transformed state
equations, and the latter 3 equations are constraints. We can see that each state equation
(corresponding to a tank equation) specifies an (inflow - outflow) representation.

3.4 Constraints on the Model Search Space

We must search over a vast space of models if no constraints are imposed. If we fix the
variable specification (x, denoting the xi’s) in equation 1, a search over the space of
models must consider the entire parameter space, in the worst case. If we modify the
variable specification (x), then we must consider the parameter space for every setting
of variables x. In a power-law model, for each component/system, the parameters are
θ = {α,β,γ, ζ}, where αi, βi are real non-negative, γij , ζij are real.



We can significantly reduce the search space by using well-known physical con-
straints, transforming this space from a multi-dimensional continuous-valued space to
a finite discrete-valued space. As an example, consider the tank system: component i,
i = 1, 2., , ,, has 4 parameters in the canonical model, θ = {αi, βi,γ, ζ}, of which two
(αi, βi) are multiplicative parameters, and two (γ, ζ) are exponents for variables.

Given an assignment of (γ, ζ), the estimation of the multiplicative parameters given
data D is a well-known, highly-studied process, e.g., [21, 8]. It is the exponent-based
parameters (γ, ζ) that create a difficult search problem, a problem that has received
relatively little attention. Without any constraints, we must search over the real-valued
space of γ × ζ. However, we use physical (or model-based) constraints to prune the
search space significantly. Consider the tank example: the physics-based model is non-
linear, and corresponds to setting all γij and ζij to be 1

2 for i = 1, ...5 and to − 1
2 for

i = 6. Other versions of this model that are typically analysed are constant, obtained
by setting all γij and ζij to be 0, or linear, obtained by setting all γij and ζij to be 1:

ẋ1 = x0 − β1x4
ẋ2 = α2x4 − β2x5
ẋ3 = α3x5 − β3x3
ẋ4 = (α41x5 + x0)− β4x4
ẋ5 = α5x6 − β5x5
ẋ6 = α6x4 − β6x5

If we want to search over a tank component, this is equivalent to searching over
the space described by the equation for ẋ2: α2x

γ21
4 − β2xζ215 . The three most typical

classes of model, constant, non-linear and linear, correspond to setting each of (γ, ζ) to
{0, 12 , 1}, i.e., 0 corresponds to constant, 1

2 to non-linear, and 1 to linear. Table 1 shows
these different models.

γ21 ζ21 ẋ2 Original Type
0 0 α2 − β2 α2 − β2 constant
1 1 α2x4 − β2x5 α2(h1 − h2)− β2(h2 − h3) linear
1
2

1
2

α2x
1
2
4 − β2x

1
2
5 α2(h1 − h2)

1
2 − β2(h2 − h3)

1
2 non-linear

Table 1. Hierarchy of equations for tank 2

We can create a hierarchy by fixing (α, β) and varying (γ, ζ), as shown in Table 1.
In this table, we show the plausible values of these parameters, namely {0, 12 , 1}, cor-
responding to constant, non-linear and linear equations. We could, in theory, examine
model combinations with all discrete combinations of (α, β), or the infinite combina-
tions of real-valued pairs, if (α, β) are both reals. However, by enforcing a restriction
to constant, non-linear and linear equations, we obtain a lattice-structured search space
with a relatively small, finite number of (α, β)-combinations to search.

The lattice defines a clear notion of relative model fidelity. A directed edge from
model A to model B means that model B has one component whose equations are



more complex (and probably lead to higher-fidelity inference) than those in model A.
Traversing the lattice thus entails traversing the model space, exploring models with
well-defined differences in relative model fidelity.

4 Empirical Analysis

This section describes our empirical analysis of the proposed power-law framework.

4.1 Experiments: Motif-Constrained Search

We have run experiments on the 3-tank system, using a collection of models for tanks
and valves, namely constant, linear and non-linear instances of each, giving a search
space of 729 possible models, each with a very large parameter space. We used the fully
non-linear model as the gold standard model M∗, with parameters specified in [7], to
simulate data that we used for learning. We computed the sum-of-squared-error (SSE)
difference between M∗ and learned model. We tested both breadth-first and depth-first
search algorithms in the parameter lattice, starting from the constant model as the root
of the search tree. The results indicate that the depth-first search algorithm is more
efficient.

Fig. 5. Comparison of SSE and AIC scores for composed models

However, when we penalize a model for its number of parameters in addition to pe-
nalizing a relative lack of accuracy, as in the AIC metric [5], the mixed linear/nonlinear
model scores best. Figure 5 compares the AIC scores for composed models of the 3-tank
system.

4.2 Experiments: Unconstrained

We ran experiments in which we modified the canonical equation structure in a con-
tinuous manner. We can simplify the the initial set of equations (8) by setting various
γ and ζ parameters to zero, or we can extend the equations by increasing the order of



various γ and ζ parameters or by adding multiplicative xj variables into the equations.
The benefits of the canonical equation structure is that it constrains how to modify the
equations, and it provides a clear framework to simplify or extend a set of equations.

Figure 6 compares the AIC scores for composed models of the 3-tank system, when
we generate models by model extension. Here, we also create higher-order nonlinear
models, which are increasingly penalized by the AIC metric due to their increasing
number of parameters outweighing the improved model simulation accuracy.

Fig. 6. Comparison of AIC scores for extended models

4.3 Discussion

Our results show the tradeoffs we can study by automatically generating models. Al-
though the simulation accuracy increases for the nonlinear models over simpler models,
then parameter estimation may possibly be too costly. The AIC metric provides a mea-
sure that addresses this trade-off.

A second outcome is that the model extension approach is significantly more expen-
sive computationally than the composition approach. In the hydraulic domain studied
model extension did not create significantly more accurate models than those composed
from the multi-fidelity library, although this is probably domain-dependent.

5 Conclusions

This article has illustrated a system that uses a library of motifs to create a computa-
tionally efficient system for learning task-specific ODE models from data. In particular,
our approach can trade off model fidelity for model size (which typically corresponds
to inference complexity) on a task by task basis.
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