
Title Modular smoothed analysis

Authors Schellekens, Michel P.;Hennessy, Aoife;Shi, Bichen

Publication date 2014

Original Citation SCHELLEKENS, M. P., HENNESSY, A. & SHI, B. 2014. Modular
smoothed analysis. Submitted to Discrete Mathematics. [Preprint]

Type of publication Article (preprint)

Link to publisher's
version

http://www.sciencedirect.com/science/journal/0012365X

Download date 2024-04-25 20:48:30

Item downloaded
from

https://hdl.handle.net/10468/1368

https://hdl.handle.net/10468/1368

Modular Smoothed Analysis1

M. Schellekens2, Aoife Hennessy3, Bichen Shi4

Abstract

Spielman’s smoothed complexity - a hybrid between worst and average
case complexity measures - relies on perturbations of input instances to deter-
mine where average-case behavior turns to worst-case. The paper proposes
a method supporting modular smoothed analysis. The method, involving
a novel permutation model, is developed for the discrete case, focusing on
randomness preserving algorithms.

This approach simplifies the smoothed analysis and achieves greater pre-
cession in the expression of the smoothed complexity, where a recurrence
equation is obtained as opposed to bounds. Moreover, the approach ad-
dresses, in this context, the formation of input instances–an open problem
in smoothed complexity.

To illustrate the method, we determine the modular smoothed complexity
of Quicksort.

Keywords: Smoothed analysis,MOQA, recursive partial permutation
model

1This grant was supported by SFI grant SFI 07/IN.1/I977. The authors are grateful
for fruitful discussions with D. Early that have improved the presentation of the paper
and support by Ang Gao in preparing the diagrams.

2Centre for Efficiency Oriented Languages(CEOL), University College Cork, Ireland,
m.schellekens@cs.ucc.ie

3Centre for Efficiency Oriented Languages(CEOL), University College Cork, Ireland,
a.hennessy@cs.ucc.ie

4Centre for Efficiency Oriented Languages(CEOL), University College Cork, Ireland,
b.shi@umail.ucc.ie

Preprint submitted to Discrete Mathematics February 3, 2014

1. Introduction

Smoothed Analysis is a framework for analyzing algorithms and heuris-
tics, partially motivated by the observation that input parameters in prac-
tice often are subject to a small degree of random noise [17]. In smoothed
analysis, one assumes that an input to an algorithm is subject to a slight
random perturbation. The smoothed measure of an algorithm on an input
instance is its expected performance over the perturbations of that instance.
The smoothed complexity of an algorithm is the maximum smoothed mea-
sure over its inputs. The area has been widely studied, following up on the
ground breaking work by Spielman and Teng on the smoothed analysis of the
simplex method [16]. For an overview of the literature, we refer the reader
to the survey paper [17].

In this paper, we focus on exploring a modular approach to smoothed
analysis. Modularity is a property of systems (hardware or software), which
reflects the extent to which it is decomposable into parts, from the properties
of which one is able to predict the properties of the whole[12]. Modularity
brings a strong advantage. The capacity to combine parts of code, where
the complexity is simply the sum of the complexities of the parts, is a very
helpful advantage in static analysis.

We will focus on exploring the question on whether a modular approach
can be achieved for smoothed analysis in the discrete context, i.e. focus on
a technique that allows one to extract the smoothed complexity of an al-
gorithm from the smoothed complexity of its components. We propose a
new modular technique and illustrate the approach on the Quicksort Algo-
rithm. The method yields a recurrence equation expressing the exact (mod-
ular) smoothed complexity TMS

QS (n, k) of the algorithms under consideration.
We obtain the following recurrence5 for the modular smoothed complexity
TMS
QS (n, k) of Quicksort:
The modular smoothed complexity of Quicksort, f(n, k), is obtained (Eq.

14) as,

f(n, k) = (n− 1) +
∑n

j=1
βn
n+1−jf(j − 1, k) +

∑n

j=1
βn
j f(j − 1, k), (1)

5Where, as discussed in the paper, we work with a perturbation probability σ approx-
imated by k/n, for a partial permutation of k elements out of n, in order to express the
smoothed complexity as a recurrence.

2

where

βn
n =

n− k + 1

n
,

and

βn
i [i 6= n] =

(k − 1)

n(n− 1)
.

Since the argument of [4] cannot rely on subproblems generated in recur-
sive calls being again random permutations (for the case of partial permuta-
tions), the authors presented an alternative argument based on randomized
incremental constructions [11]. This problem is overcome with our modular
approach and allows us to form a recursive argument.

The authors of [4] state in “Pitfalls” that “the expected running time of
quicksort on random permutations can be analyzed in many different ways.
Many of them rely on the fact that the subproblems generated by recursive
calls are again random permutations. This is not true for partial permuta-
tions . . . ”

This is consistent with our experience. As discussed in [18], algorithms
that do not preserve randomness are typically hard or impossible to ana-
lyze. A case in point is Heapsort, for which the exact average-case time is
unknown to date for all Heapsort variants [6]. Heapsort’s average time has
been obtained by the incompressibility method [10], without the constants
being determined for the linear factors. [18, 7] presents an alternative algo-
rithm, Percolating Heapsort (taking fewer comparisons than Heapsort), for
which the average-case analysis is straightforward and the constants involved
have been determined, including for the linear terms. The analysis of Per-
colating Heapsort only takes a few lines, which may be contrasted with the
argument by contradiction presented in [15] and the Kolmogorov complexity
argument of [10]. The difference arises from the fact that Percolating Heap-
sort is randomness preserving, while, as observed in [9], the selection phase
of Heapsort is not.

The situation with the smoothed analysis of Quicksort is similar. Because
there is no guarantee that subproblems generated by recursive calls are again
random permutations, for the case of partial permutations, the analysis is
hard and needs to rely on a case based analysis involving randomized incre-
mental constructions. To determine a precise asymptotic constant for one
case, the sorted list, requires an involved argument, as pointed out by the
authors in a final comment after the proof:“When we consider partial permu-
tations of a sorted sequence (the worst-case instance without permutations)

3

we are able to get closed form formulae for the X ′ijs. We distinguish 10 sub-
cases, most of them involving 7 nested sums. From these sums (involving
binomials), it is possible to get the differential equation satisfied by their
generating functions, and then the Frobenius method allows to get the full
asymptotic scale which gives a 2pnln(n) complexity. We refer the reader to
the full paper for details.”

Our approach, in contrast, involves subproblems generated by recursive
calls which are again random for the case of partial permutations. As a
result we can carry out a more fine tuned analysis, relying on very basic
combinatorial arguments.

The model we propose to compute the smoothed complexity is new. As
pointed out by Spielman and Teng in the survey paper “Smoothed Analysis of
Algorithms and Heuristics: Progress and Open Questions” [17]: “one must
understand the possible limitations of any particular permutation model,
however, and not overstate the practical implication of any particular analy-
sis. One way to improve the similarity-or-distance based model is to develop
an analysis framework that takes into account the formation of input in-
stances. For example, if the input instances to an algorithm A come from
the output of another algorithm B, together with a model of B’s input in-
stances, then algorithm B together with a model of B’s input instances, is the
description of A’s inputs.” We will refer to the algorithm B in the following
as the “feeder” algorithm” for A.

The above approach is precisely the model we propose in the current paper
in the context of discrete randomness preserving algorithms. Many sorting
and search algorithms are randomness preserving, including Quicksort, its
median-of-three variant, Insertionsort, Mergesort, Quickselect, Treapsort and
a variant of Heapsort, referred to as Percolation Heapsort ([18, 27]). For such
randomness preserving algorithms, the feeder algorithm B’s output instances
(the inputs for A) can be nicely captured via the notion of a random bag
[18, 22]. We will use this to formulate a novel model for smoothed complexity,
to achieve modular smoothed analysis.

Our approach relies on tracking the data throughout the computation,
where the notion of property preservation, as discussed in [17] plays a role.
Following [17]:“as a purpose of smoothed analysis is to shed light on practical
problems it is more desirable to use a perturbation model that better fits the
input instances. Thus, if all or most practical instances of an algorithm
share some common structures, such as being symmetric or being planar,
then to have a meaningful theory, one may have to consider perturbations

4

that preserve these structures . . . So far, however, the smoothed complexities
of various problems and algorithms under these perturbations remains wide
open . . . Given a property P and a basic model of perturbation, a P-preserving
perturbation of an object X is a perturbation X of X according to the basic
perturbation model, but subject to the condition P (X) = P (X). In the case
when G is a graph the basic model e.g. is the σ-perturbation of G6 The
better we can model our input data, the more accurately we can model the
performance of an algorithm.” [17].

In this spirit we will focus on modelling data throughout the computation,
where the property of “random bag representation”, a fundamental property
to ensure a modular approach [18, 22], will be preserved. Many sorting
and search algorithms are random bag preserving [18] and hence allow for a
natural representation of the data via random bags and the tracking of these
random bags throughout the computation. We will illustrate this approach
for the Quicksort algorithm below.

For these algorithms, we will illustrate that a random bag representation
of their input data is preserved under perturbations (partial permutations).
For this purpose, our analysis starts with the perturbation of input parti-
tions (as opposed to single inputs, regarded in our context as a partition of
singletons).

The input partitions and their perturbations, will be tracked through-
out the computation, where, at each stage, the newly produced outputs will
be perturbed yet again, and passed on to the next basic operation involved
in the algorithm. For Quicksort-type algorithms, the approach focuses on
tracking input partitions and their perturbations under applications of the
basic split operation involved in the recursion. That is, our natural model of
perturbation is Partial Permutations that are applied throughout the com-
putation.

Smoothed analysis, based on this approach, yields a traditional recurrence
equation.

In our model, the data will be represented as finite labelled partial orders,
or LPOs, and random structures.

A labelled partial order, or LPO, is a triple (A,⊑, l), where A is a set,
⊑ is a partial order on A (that is, a binary relation which is reflexive, anti-

6Insert every non-edge into the graph with some probability σ and delete every edge
with the same probability.

5

symmetric, and transitive), and the labeling l is a bijection from A to some
totally ordered set C which is increasing with respect to the order ⊑.

Given a finite partial order (A,⊑) and a totally ordered set C with |C| =
|A|, the random structure RC(A,⊑) is the set of all LPOs (A,⊑, l) with
l(A) = C.

As the algorithms we consider are comparison-based, the choice of the set
C is unimportant, and we will generally write a random structure as R(A,⊑),
without the subscript7.

The algorithms we consider have the property of “randomness preserva-
tion”, which means that applying any operation to each LPO in a random
structure results in an output isomorphic to one or more random structures,
which is the key to systematic timing.

Formally: a random bag is a multiset8 of random structures. We represent
random bags using the multiplicity notation for multisets, so that, for each i,
the random bag {(Ri, Ki)}i=1,...,n contains Ki copies of the random structure
Ri. A function which takes a random structure as argument is random bag
preserving if its output is a random bag {(Ri, Ki)}i=1,...,n.

In this context, any sorting algorithm transforms the random structure
with underlying discrete order of size n, i.e. a random bag containing a single
random structure R1 with multiplicity one, into the random bag containing
a single random structure R2 with underlying linear order with multiplicity
n!. Here, R1 comprises of exactly n! labelings, representing the traditional n!
input lists used in the analysis of sorting algorithms. The random structure
R2 has exactly one labeling, representing the sorted list, of which n! copies
will be produced by any sorting algorithm.

As computations proceed in our model, the partial orders underlying the
random structures will become more refined (i.e. more order is introduced)9.
For instance, any sorting algorithm will start its computation from a random
structure with underlying order the discrete partial order. It will transform
this into the sorted output, hence into the random structure with underlying

7More formally, we can consider the random structure to be the quotient of the set of
all LPOs on the partial order (A,⊑) with respect to a natural isomorphism. See [18, 22]
for a full discussion.

8I.e. a set which allows elements to occur with any integer multiplicity, rather than
only zero or one.

9Formally: A poset (X1,⊑1) is a refinement of another poset (X2,⊑2) if for all x, y ∈
X1. x ⊑2 y ⇒ x ⊑1 y.

6

partial order the linear partial order, a refinement of the discrete partial
order.

To set the stage for the analysis of Quicksort, we briefly discuss the split
operation, recursively called by Quicksort to order the data. In the traditional
version of Quicksort, a fixed pivot is chosen. Without loss of generality, we
assume this pivot is the first element in the list. The split operation reorders
a given list, placing all elements smaller than the pivot before the pivot (in
the same order as encountered in the original list) and all elements greater
than the pivot after the pivot (again in the same order as encountered in the
original list). The usual representation of the output list is a list in which
the pivot element sits in its “correct” position. I.e. if the pivot has relative
rank i among the elements in the list, the pivot will be placed in the i-th
position in the output list, all elements smaller than the pivot will occur to
its left and all pivots greater than the pivot will occur to its right.

The underlying partial order for which this output list is a labeling is the
“star-shaped order” containing a central element (to store the pivot label),
with n− i− 1 elements placed above it (to store the labels greater than the
pivot) and n− i elements below it (to store the labels less than the pivot).

n− i− 1 elements

i elements

Split is a random bag preserving operation. Here, we illustrate this fact
on lists of size 3. In a nutshell, the random bag presentation of the outputs
of split corresponds to representing the “order-information” gathered during
the execution of the split operation. The elements placed by split to the left
of the pivot, will be represented as “smaller” than the pivot, i.e. below the
pivot as labels on the above Hasse diagram. The elements placed by split
to the right of the pivot, will be represented as greater than the pivot, i.e.
above the pivot as labels on the Hasse diagram. We illustrate this with the
image below, where for each single list, the resulting labeling is displayed.

In figure 1, it is clear that the split operation maps the random structure
over the discrete partial order of size 3 (six labelings corresponding to the 3!

7

1 32

1 23

3 21

1

32

Split

Split

Split 3

21

2 31

2 13

3 12

Split
2

3

1

2

3

1

3

12

Split

Split

1

23

Figure 1: MOQA split: R(...)→ (R(∨), 1), (R(|), 2), R(∧, 1).

input lists of size 3) to the random bag consisting of three random structures.
The random structure over the ∨ shaped partial order, the random structure
over the ∧ shaped partial order and two copies of the random structure over
the linear order of size 3.

The model proposed here can be viewed as a new step to explore the
discrete case: the points in our space are the random structures (or more
generally random bags). The perturbations happening throughout the com-
putation, and acting on random structures, will become proportionally less in
relation to the amount that our data is already sorted. The sorting computa-
tion gradually “refines” (= introduce more order on) the random bags after
each operation. The perturbations will never affect already sorted elements
(in this case the pivots placed in their correct position after each split) and
ultimately, in the last step of the recursion, will not affect the sorted output.
Formally, our perturbations on a given LPO can only act on “free pairs” of
labels, i.e. labels that, when swapped result in a new LPO. For this to occur,
the swapped labels need to respect the underlying partial order.

In this paper, we define the smoothed complexity of a partition P, P =

8

{P1, . . . , Pm} of
∑

n as

T S
A(P, k) = maxi∈{1,...,m}TA(Pertk,n(Pi)),

where Pertk,n(Pi) is the set of outputs from permutations of Pi after per-
turbation of k element of the permutation of size n. We take the maximum
over the set of partitions of

∑

n, P = Partitions(
∑

n), where P ∈ P is
denoted by P = {P1, . . . Pm} and i ≤ m ≤ n! and refer to this approach of
incorporating all possible input samples in a smoothed complexity analysis
as sample-fairness.

We define the sample-fair smoothed measure as follows:

T SFS
A (n, k) = maxP∈P,P={P1,...,Pm}[T

S
A(P, k)] (2)

It is clear that the smoothed complexity is the restriction of the fair
smoothed complexity to a single partition P of

∑

n consisting of all singletons,
i.e. P = {{s1}, . . . , {sn!}}, which we refer to as the singleton base in the
following. Hence T SFS

A (n, k) ≥ T S
A(n, k).

Even though the fair smoothed complexity seems to take into account
more sample spaces and hence may yield a different result, we will show that
this is not the case.

Theorem 1. T SFS
A (n, k) = T S

A (n, k).

Theorem 4 allows us to develop our new model, where we compute the
smoothed complexity relying on a different base than the singleton base.
For this purpose we will select a new base, referred to as a modular base.
Any random bag preserving operation has a modular base, consisting of the
partition of its input data that consists of inverse images of the random
structures in its output random bag. For the split operation of Quicksort,
the modular base will consist exactly of partitions for which the elements
consist of the lists which share the same pivot element.

2. Background

2.1. Compositionality of timing measures

Let A;B represent the sequential execution of algorithm A followed by
algorithm B, where A operates on the input multiset I and produces the
output multiset A(I).

9

The worst-case time satisfies the following compositionality inequality:

(∗) TW
A;B(I) ≤ TW

A (I) + TW
B (A(I))

The average-case time satisfies the following compositionality equality
[18, 22].

(∗∗) TA;B(I) = TA(I) + TB(A(I))

For the average-case time measure, we focus on finite input sets. This
corresponds to conventions of traditional average-case analysis. Indeed, for
the discrete case, inputs are identified up to order isomorphism yielding a
finite amount of “states” used during the analysis. For the case of lists
of size n, the analysis is reduced to considering the n! cases of input lists
as opposed to the potentially infinite collection of inputs. The argument,
as usual, relies on the assumption that the algorithm under consideration
runs in the same time on lists that satisfy the same relative order between
elements. This will be the case for the algorithms we consider.

We recall the proof from [18] (where the multiset I is finite):

TA;B(I) =

∑

I∈I TA;B(I)

|I|

=

∑

I∈I TA(I) +
∑

J∈OA(I) TB(J)

|I|

= TA(I) + TB(OA(I)),

where the last equality follows from the fact that |I| = |OA(I)| (where
the collections involved are multisets).

Even though the average-case time exhibits a nice compositionality prop-
erty (an equality as opposed to a bound for the worst-case time), determining
the multiset OA(I) is a non-trivial problem. The lack of an efficient method
to track data has plagued static average-case analysis approaches. This is
illustrated by open problems in the average-case analysis of algorithms, such
as the exact average-case analysis of traditional Heapsort commented on by
Knuth in [9]. Related issues also arise for Knotts paradox for binary search
trees [9]. The root of the problem lies in the fact that these algorithms are
not randomness preserving (as pointed out in [9] for the selection phase of

10

Heapsort. This has made the exact average-case analysis of all Heasport vari-
ants impossible [6]. A resolution to the problem was obtained in [18], where
a randomness preserving version of Heapsort, Percolating Heapsort, has been
obtained for which the exact average-case analysis has been determined. For
a history of these problems we refer the reader to [18]. For randomness pre-
serving algorithms however, it is possible to represent the multiset OA(I)
as a random bag. For such randomness preserving algorithms, the following
compositionality theorem holds.

Theorem 2. (Compositionality Theorem, [18, 22]) Consider random bag
preserving programs/operations P and Q, where we execute P on a random
bag R, producing random bag R′.

• The average-case time of the sequential execution of P followed by Q
is:

T P ;Q(R) = T P (R) + TQ(R
′).

• Consider random bag R = {(R1, K1), . . . , (Rn, Kn)}, then:

T P (R) =

n
∑

i=1

Probi × TP (Ri)

where

Probi = Prob[F ∈ Ri] =
Ki|Ri|

∑n

i=1Ki|Ri|
=

Ki|Ri|

|R|

where F is any labeling belonging to the random structure Ri.

• For the particular case where R = {(R1, K1)}, the previous equality
reduces to:

T P (R) = T P (R1).

The compositionality theorem will be used to derive the modular smoothed
complexity of Quicksort.

The compositionality theorem has been fruitfully applied to design new
static average-case timing tools. We give a brief overview of the approach.
For the purposes of the present paper however, the reader interested in the
modular approach to smoothed complexity can omit reading the next part
and skip to Section 2.2.

11

The compositionality problem for average-case analysis has been addressed
via the MOQA10 language. No prior knowledge of the language is needed
for this paper. For an introduction to theMOQA language and the (semi-
)automated derivation of the average-time, we refer the reader to [18].

The fundamental concepts underlying the approach are the notion of ran-
dom bags and their preservation. These concepts intuitively capture the data
distribution and its preservation. TheMOQA language essentially consists
of a suite of data-structuring operations together with conditionals, for-loops
and recursion. As suchMOQA can be incorporated in any traditional pro-
gramming language, importing its benefits in a familiar context.

In a nutshell,MOQA enables the finitary representation and tracking of
the distribution of data states throughout computations, supporting compo-
sitional reasoning [18, 22]. This approach has been developed for discrete al-
gorithms, in particular the class of random bag preserving comparison-based
algorithms. The class encompasses many sorting and search algorithms [18]
and hence forms a useful testing ground to explore a modular approach to
smoothed complexity in the discrete case.

The time analysis for these algorithms has been given in [18].
The tracking of the data states is achieved through a finitary represen-

tation of the distribution via a random bag11 and through a careful design
of the basic operations all of which are random bag preserving. The static
average-case time is derived by relying on the Compositionality Theorem.

An extension of theMOQA language has been shown to be Turing com-
plete in [28].
MOQA offers a guaranteed average-case timing compositionality. It en-

ables the prediction of the average number of basic steps performed in a
computation.
MOQA gave rise to new algorithms, such as the sorting algorithm Perco-

lating Heapsort, resolving the open problem on the exact analysis of Heapsort
variants [18, 21] and the algorithm Treapsort, for which a smoothed analysis
has been carried out in [27]. Applicatons ofMOQA to reversible computing,
data structures and parallel computation are the topic of [3, 24, 23]. Similar
to the usefulness of a (partial) compositionality principle in a WCET con-
text, the availability of a compositionality principle for average-case time has

10MOdular Quantitative Analysis
11As observed we use the term bag and multiset interchangeably.

12

paved the way for static average-case timing tools. Two timing tools have
been explored to date: Distri-Track [18, 7] and a domain specific language
interpretation forMOQA relying on abstract evaluation to derive the timing
information. [2].

Here, we focus on exploring modular smoothed analysis, applied to the
well-known Quicksort algorithm.

2.2. Smoothed complexity and the partial permutation model

Smoothed analysis considers inputs that are subject to some random per-
mutation. The smoothed measure of an algorithm acting on a given input is
the average running time of the algorithm over the perturbations of that in-
stance, while the smoothed complexity of the algorithm is the worst smoothed
measure of the algorithm on any input instance. The degree of perturbation
is measured by a parameter σ. As σ becomes very small, the perturbations
on the input become insignificant, and the smoothed complexity tends to-
wards the worst-case running time. As σ becomes large, the perturbations
become more significant than the original instance and the smoothed com-
plexity tends towards the average-case running time.

In general, the smoothed complexity is a function of σ which interpolates
between the worst case and average case running times. The dependance on σ
gives a sense of how improbable an occurrence of the worst case input actually
is. Formally, we have the following definition for smoothed complexity:

Definition 1. [16] Given a problem P with input domain D = UnDn where
Dn represents all instances whose input size is n. Let R =

⋃

n,σRn,σ be a
family of perturbations where Rn,σ defines for each x ∈ Dn a perturbation
distribution of x with magnitude σ. Let A be an algorithm for solving P. Let
TA(x) be the complexity for solving an instance x ∈ Dn.

12

The smoothed complexity: T S
A (n) of the algorithm A is defined by:

T S
A(n, σ) = maxx∈Dn

(

Ey←Rn,σ(x)[TA(y)]
)

,

where y ←Rn,σ(x) means y is chosen according to distribution Rn,σ(x). The
smoothed complexity is the worst of smoothed measures of A on inputs of

12In our context: The algorithms will be comparison based and TA(x) will be the running
time of A input x,measured in the number of comparisonsA will carry out when computing
the output on input x.

13

size n of the expected value (average time) of algorithm A on the family of
perturbations of x, namely the set Rn,σ(x) = smoothed complexity measure.

The method of partial permutations to study the smoothed complexity
of discrete data was first proposed in [4], who defined it as follows:

Definition 2. [4] Partial Permutations: This model applies to problems
defined on sequences. It is parameterized by a real parameter σ with 0 ≤
σ ≤ 1 and is defined as follows. Given a sequence s1, s2, . . . sn each element is
selected (independently) with probability σ. Let k be the number of selected
elements (on average k = σn). Choose one of the m! permutations of m
elements (uniformly at random) and let it act on the selected elements.

Example 1. [4] For σ = 1/2 and n = 7, one might select m = 3 ele-
ments(namely s2, s3 and s7) out of an input sequence (s1, s2, s3, s4, s5, s7s7).
Applying the permutation (312) to the selected elements yields

(s1, s7, s3, s4, s5, s6s4).

As stated in the introduction, the natural model of permutation on a
sequence for recursive algorithms applies partial permutations at each call
of the recursive algorithm. The input partitions and their perturbations are
tracked throughout the computation and the newly produced outputs will
be perturbed yet again, and passed on to the next basic operation involved
in the algorithm. For this reason, we modify the partial permutation model
defined in [4] and define a new model. We refer to our model as the recursive
partial permutation model, and define it as follows:

Definition 3. Recursive Partial Permutations: This model applies partial
permutations at each successive call of the recursive algorithm.

InMOQA we typically assume that all data (LPO = labelled partial or-
der) has been created from the atomic random structures An(n ≥ 1) These
random structures can be represented (after identification up to label iso-
morphism) as the collection of permutations of the first n integers, denoted
by
∑

n
13

13Note: MOQA programs can operate on arbitrary random structures or random bags,
provided certain rules are respected. We consider in first instance An =

∑

n
in particular

since we analyze quicksort whose inputs stem from
∑

n
.

14

For the case of
∑

n we can carry out the following simplification. Defini-
tion 2 can be simplified to a random selection of k elements among an input
permutation of size n, where for sufficiently large n the number of selected
elements k will be close to nσ, i.e. n

k
≈ σ.

In essence, this simplification amounts to focusing on the expected out-
come of selecting the elements with probability σ, which in case of an outcome
of k elements is k

n
, where the expected outcome is a selection of k elements

(and other outcomes become negligible in chance.) The formalization can
be based on a similar argument as is presented in [13] relying on Chernoff
bounds. The motivation for relying in our arguments on this simplification
is that considering σ to be of the form k

n
allows for the expression of the

smoothed complexity via a recurrence equation in terms of n and k.
Taking account of the above, from here on we focus, for inputs of size n

from
∑

n, on probabilities σ = k
n
(k ≥ 0, k ≤ n) and on partial permutations

(perturbations of magnitude σ). Our definition of partial permutations now
becomes:

Definition 4. A σ-partial permutation of s is a random sequence s′ =
(s′1, s

′
2, . . . s

′
n) obtained from s = (s1, s2, . . . sn) in two steps.

1. k elements of s are selected at random, where k ≥ 0, k ≤ n.

2. Choose one of the k! permutations of these elements (uniformly at
random)and rearrange then in that order, leaving the positions of all
the other elements fixed.

We now adapt our notation in definition 1 according to our new definition
above:

For σ = k
n
, Rn,σ can be denoted as Rk,n, the collection of partial permu-

tations of size n that permute k out of n elements and leave the others fixed.
If s ∈

∑

n and t ∈ Rk,n(Rk,n will also be denoted as
∑

k,n) then t ◦ s denotes
the effect of carrying out the partial permutations t on the permutation s.

The average time T of an algorithm A on an input collection I ⊂ Dn (in
our case Dn =

∑

n) is

TA(I) =

∑

i∈I TA(i)

|I|
.

TA(n) = TA(Dn) =

∑

s∈
∑

n
TA(s)

n!
(3)

15

Table 1: Partial permutations for n = 3 on the set of permutations of {1, 2, 3}.
∑

3

∑

1,3

∑

2,3

∑

3,3

123 123, 123, 123 123, 123, 123 132, 231, 312
132, 213, 321 123, 213, 321

132 132, 132, 132 132, 132, 132 132, 231, 312
123, 312, 231 123, 213, 321

213 213, 213, 213 213, 213, 213 132, 231, 312
231, 123, 312 123, 213, 321

231 231, 231, 231 231, 231, 231 132, 231, 312
213, 321, 132 123, 213, 321

312 312, 312, 312 312, 312, 312 132, 231, 312
321, 132, 213 123, 213, 321

321 321, 321, 321 321, 321, 321 132, 231, 312
312, 231, 123 123, 213, 321

The definition of the smoothed complexity now simplifies:

T S
A (n, k) = maxs∈

∑
n
(TA(Pertk,n(A))) (4)

where Pertk,n(A) = {t ◦ s|s ∈ A, t ∈
∑

k,n} is a multiset.

Lemma 3. Pertk,n(
∑

n) =

{(

∑

n,
(

n

k

)

k!n!

)}

Proof. The proof is left as an exercise.

Let us now look at the two extreme cases of perturbations, that is, when
k = 1 and k = n.

Example 2. For n = 3, we consider partial permutations (“1-selections”)
on
∑

3 = {(123), (132), (213), (231), (321)}. For each input there are three
possible selections of 1 elements. The only permutation on 1 element is the
identity. Hence, Pert1,3(213) = {(213), (213), (213)}

TA(Pert1,3(213)) =

∑3
i=1 TA(213)

3
= TA(213)

so in general T S
A(n, 1) = maxs∈

∑
n
TA(s) = TW

A (n), TW
A being the worst case

time for the algorithm A.

16

Example 3. For each s ∈
∑

n Pertn,n(s) = {t ◦ s|t ∈ Rn,n =
∑

n} =
∑

n so

T S
A (n, n) = maxs∈

∑
n
(TA(

∑

n
)) = TA(n)

TA being the average case time for the algorithm A.

3. Sample-Fair Smoothed Complexity

To set the stage for our main argument, we discuss the notion of sample-
fairness. Here we consider the following generalization of the smoothed
complexity, which includes all possible smoothed measures. Formally, we
take the maximum over the set of partitions of

∑

n, P = Partitions(
∑

n),
where P ∈ P is denoted by P = {P1, . . . Pm} and i ≤ m ≤ n!. We de-
fine the smoothed complexity of a partition P, P = {P1, . . . , Pm} of

∑

n as
T S
A(P, k) = maxi∈{1,...,m}TA(Pertk,n(Pi)).
We define the sample-fair smoothed measure as follows:

T SFS
A (n, k) = maxP∈P,P={P1,...,Pm}[T

S
A(P, k)] (5)

Smoothed complexity is the restriction of the fair smoothed complexity to
a single partition P of

∑

n consisting of all singletons, P = {{s1}, . . . , {sn!}},
which we refer to as the singleton base in the following. Hence T SFS

A (n, k) ≥
T S
A(n, k).
Even though the fair smoothed complexity seems to take into account

more sample spaces and hence may yield a different result, we will show that
this is not the case.

Theorem 4. T SFS
A (n, k) = T S

A (n, k).

Proof. As observed above, T SFS
A (n, k) ≥ T S

A (n, k), hence it suffices to show
that T SFS

A (n, k) ≤ T S
A (n, k), or:

∀P ∈ P = Partitions(
∑

n
). T S

A(P, k) ≤ T S
A(n, k),

where P = {P1, . . . , Pm}.
Hence we will show: ∀i ∈ {1, . . . , m}. TA(Pertk,nPi) ≤ T S

A(n, k).
Let Pi = {sj1, . . . , sjc(i)}, where c(i) = |Pi|, then

TA(Pertk,nPi) = TA(Pertk,n(sj1) ⊎ . . . ⊎ Pertk,n(sjc(i)))),

17

where ⊎ is the multiset union.
For l ∈ {1, ..., c(i)}, let Pertk,n(sjl) = {s

l
1, . . . , s

l
f(l)}.

Then:

TA(Pertk,nPi) = TA(Pertk,n(sj1) ⊎ . . . ⊎ Pertk,n(sjc(i)))

=

∑f(1)
v=1 T (s

1
v) + . . .+

∑f(c(i))
v=1 T (s

c(i)
v)

∑c(i)
l=1 f(l)

=
f(1)

∑f(1)
v=1 T (s1v)

f(1)
+ . . .+ f(c(i))

∑f(c(i))
v=1 T (s

c(i)
v)

f(c(i))
∑c(i)

l=1 f(l)

Letmax(T (Pertk,n(sj1)), . . . T (Pertk,n(sjc(i)))) = T (Pertk,n(sjt)) for some
t ∈ {1, . . . , c(i)}, then:

TA(Pertk,nPi) ≤
f(1)T (Pertk,n(sjt)) + . . .+ f(c(i))T (Pertk,n(sjt))

∑c(i)
l=1 f(l)

= T (Pertk,n(sjt)).

QED

The singleton base has been shown to suffice for a fair representation of all
smoothed measures, however for the purpose of this paper, Theorem 4 allows
to us to consider an alternative partition as our base, without any abuse of
terminology. As motivated in the introduction, the modular smoothed com-
plexity has been formulated to reflect “modular-fairness”, where perturba-
tions are systematically applied to all inputs of each basic operation of an al-
gorithm, rather than to the algorithm’s original inputs only. In the following
we will illustrate how the choice of a different base can be used to define the
notion of a modular smoothed complexity TMS

A (n, k). Intuitively, the mod-
ular smoothed complexity is defined similarly to the traditional smoothed
complexity, for the case of recursive algorithms, with the distinction that the
definition uses an alternative partition, referred to as the modular base. We
will formalize the approach below.

18

4. Modular smoothed complexity of Quicksort

First, we recall some basic facts about theMOQA split operation, the cen-
tral operation in Quicksort. For more details, we refer the interested reader
to [22]. When split is executed on the labelings of the discrete order of size
n, it produces a random bag for which each partial order is order isomorphic
to one of the orders P [i, j] (where n = i+ j+1, i, j : 0, . . . n−1) of the shape

n− i− 1 elements

i elements

We assume the pivot to be the first list element

Split : R(∆n) −→ {R(P [n− 1, 0], K0), . . . R(P [0, n− 1], Kn)}

where Ki =
(

n−1
i

)

, i = 0, . . . n− 1
Note that the Random bag {(R0, K0), . . . (Rn, Kn)} (where Rk = R(P [k, n−

1])) is a uniform random bag where

K0.|R0| = K1.|R1| = . . .Kn.|Rn|.

See [18] for further details.
Next we analyze the effect of carrying out the split operation on partial

permutations of inputs. Firstly some observations. In [4] it is shown that
partial permutations on inputs do not have the typical property that recur-
sive calls of quicksort(ie Split) result in subproblems that are again random
permutations (See “pitfalls” on page 4 in [4]). For this reason we will focus on
identifying collections of inputs on which partial permutations are guaranteed
to lead to random subproblems on which split can be called. These random
subproblems will be random bags. This is a generalization of the definition
of smoothed complexity, where we will consider a partition of the inputs

∑

n

say P1, . . . Pl, (P1 ∪ · · · ∪ Pl) =
∑

n and ∀i, j, i 6= j =⇒ Pi ∩ Pj = φ.
We will generalize the smoothed complexity as follows:

T S
A (n, k, P) = maxi∈{1,...,l}(TA(Pertk,n(Pi))) (6)

19

We obtain the standard smoothed complexity by picking the partition
Pi = {si}, i ∈ {1, . . . n!} (partition of singleton sets of

∑

n)
Each random bag preserving MOQA operation φ can be viewed as a

transformation (function) from a random structure to a random bag14.

φ : R −→ {(R1, K1), (R2, K2), . . . (Rn, Kn)}

The definition of Random Bag preservation means that there exists a
partition {P1, . . . Pn} of R such that

φ : Pi −→ {(Ri, Ki)}

Definition 5. The partition {Pi, . . . Pk} as defined above is called “the base”
of the operation φ

Hence for MOQA operations with base P = {P1 . . . Pk} we can define
the smoothed complexity as in Eq. 6.

TMS
φ (n, k, P) = maxi∈{1,...l}TA(Pertk,n(Pi)) (7)

where φ is a random bag preserving operation and {P1, . . . Pl} is a base
for the operation. We note that we will later adapt this for the purpose of
our recursive calculation of Quicksort.

As split is the central operation in Quicksort we will now focus on com-
puting TMS

split(n, k). Firstly we re state that the pivot of split is the first list
element (first elements of input sequence s ∈

∑

n) The base of split, as

referred to in the last section is the partition (
∑i

n)i∈{1,...n} where

Pi =
∑i

n
= {s ∈

∑

n
|s1 = i}

We will show that split is a random bag preserving operation on each
perturbation of

∑i

n(base element). As
∑i

n strictly speaking yields a set of
perturbations that is not immediately representable as a random bag, we
abuse our terminology. Instead we will relax the terminology as follows: An
operation A is “random bag inducing” on a collection of inputs I when the
output multiset yields a random bag R, A : I → R. We now present the
following theorem:

14The operation φ can be extended to random bags by having the operation act on each
random structure in the random bag [18, 22].

20

Theorem 5. Split is random bag inducing on each of its perturbations of
base elements i.e on each multiset Pertk,n(

∑i

n) where i ∈ {1, . . . n}. More
precisely,
Split: Pertk,n(

∑i

n) −→ {(R(P [n− 1, 0]), Ki
1), . . . (R(P [0, n− 1]), Ki

n)}
where

Ki
j =

(n− 2)!(k − 1)

(n− k)!

(

n− 1

j − 1

)

, i 6= j (8)

Ki
i =

(n− 1)!(n− k + 1)

(n− k)!

(

n− 1

i− 1

)

, i = j (9)

Our counting argument can be found in Appendix A
We note that in the rest of this paper, we use an abbreviation recording

only the multiplicities and shorthand Rk for R(P [k − 1, n − k]). It is clear
from above that split on Pertk,n(

∑i

n) produces non-uniform random bags.
Now that we have established the effect of split on our base elements, we
now return to solving the following equation:

TMS
QS (n, k) = maxi∈{1....n}(TQS(Pertk,n(

i
∑

n

))) (10)

We note that we will follow the approach as presented in [21]. Firstly, we
recall some of the notation needed in this section.

QS(X) = Split(X); Quicksort(Y1); Quicksort(Y2)
X stores labelings from R(∆n) i.e elements from

∑

n . Y1 stores labelings
that correspond to the restriction of the labeling Split(X) to ILower, where
ILower is the lower part of Rj = R(P [j − 1, n − j]). Similarly Y2 stores the
restriction of Split(X) to IUpper. Split(X) is a labeling on P [j − 1, n− j].

n− j elements(IUpper)

j − 1 elements(ILower)

We have the following lemma from [21]

21

Lemma 6. When X ranges over
∑

n, the multiset of restrictions of Split(X)
to ILower is a Random Bag

{R(∆j−1), (j − 1)!} =

{

∑

j−1
, (j − 1)!

}

by a labeling isomorphism. Similarly for IUpper:

{(R(∆n−j), (j − 1)!)} =

{

∑

n−j
, (j − 1)!

}

.

We note here that we will break with the convention of that in eq. 10
where the recurrence equation is not a true recurrence, in the sense that
the right hand side of the equation takes the maximum over the bases of
the average running times after perturbation of the inputs. This approach
holds with the conventional approach to Quicksort. However, in MOQA
compositionality is key. For this reason we apply the recursive partial per-
mutation model, so as to truly merge modularity and smoothed complexity.
That is, we apply perturbations, not only on the inputs but on each atomic
substructure involved in a recursive call. Thus, we now have

TMS
QS (n, k) = maxi∈{1,...n}T

MS
QS

(

Pertk,n(
∑i

n
)
)

where

TQS

(

Pertk,n(
∑i

n
)
)

= T Split

(

Pertk,n(
∑i

n
)
)

+ TQS({(R(∆0), Ni), . . . (R(∆n−1), N
i
n)})

+ TQS({(R(∆n), Ni), . . . (R(∆0), N
i
1)})

where N i
j = Ki

jLj and Lj = (n− j)!.
We recall from Theorem 25 in [21] if R = {(R1, K1), . . . (Rp, Kp)} is a random
bag, we have

T p(R) =
∑p

i=1
probiT p(Ri) (11)

where

Probi = Prob[F ∈ Ri] =
Ki|Ri|

|R|

22

We also note that split takes n−1 comparisons on every permutations of
size n, thus:

T Split

(

Pertk,n(
∑i

n
)
)

= n− 1 (12)

We now have TQS(Pertk,n(
∑i

n)) defined as

maxi∈{1,...n}

[

(n− 1) +
∑n

j=1
βn
n+1−jTQS(

∑

j−1
) +

∑n

j=1
βi
jTQS(

∑

j−1
)

]

where

βi
j =

N i
j |
∑

j−1 |

|Pertk,n(
∑i

n)|

is the probability that a labeling belongs to R(∆j−1) in the random bag
{(R(∆0), N

i
1), . . . (R(∆0), N

i
n)} Recall, |Pertk,n| = |P

k
i | so for i 6= j we have

βi
j =

N i
j |
∑

j−1 |

|P k
i |

=
(k − 1)

n(n− 1)

and i = j we have

βi
i =

N i
i |
∑

i−1 |

|P k
i |

=
n− k + 1

n

To summarize:

TMS
QS (n, k) = maxi∈{1,...n}

[

(n− 1) +
∑n

j=1
βi
n+1−jT

MS
QS

(

Pertk,n(
∑

j−1
)

)

+

∑n

j=1
βi
jT

MS
QS

(

Pertk,n(
∑

j−1
)

)]

where

βi
i =

n− k + 1

n

and

βi
j =

(k − 1)

n(n− 1)

23

Let f(n, k) = TMS
QS (n, k). We now have the following recurrence equation

f(n, k) = maxi∈{1,...n}

[

(n−1)+
∑n

j=1
βi
n+1−jf(j−1, k)+

∑n

j=1
βi
jf(j−1, k)

]

(13)

Lemma 7.

maxi∈{1,...n}

[

∑n

j=1
βi
jf(j − 1, k)

]

=
∑n

j=1
βn
j f(j − 1, k)

Proof. The proof is left as an exercise

The modular smoothed complexity of Quicksort, f(n, k), is defined as,

f(n, k) = (n− 1) +
∑n

j=1
βn
n+1−jf(j − 1, k) +

∑n

j=1
βn
j f(j − 1, k), (14)

where

βn
n =

n− k + 1

n
,

and

βn
i [i 6= n] =

(k − 1)

n(n− 1)
.

5. Results and conclusion

Here we have presented a closed form equation for measuring the smoothed
complexity of a randomness preserving algorithm. We have chosen Quick-
sort to illustrate this. From this equation we can find more precise bounds
for the timing of such randomness preserving algorithms. Figure 2 shows
the modular smoothed complexity of Quicksort for permutations of length
1 ≤ n ≤ 50 for increasing values of the k. Figure 3 shows the timing for
n = 50, 100, 150 and 200. In [2], the results presented in this paper were
used to semi-automate the smoothed analysis of Quicksort. These results
have been integrated into the interpreter analyzer for theMOQA language.
Further details of this can be found in [2]

24

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394

0

200

400

600

800

1000

1200

1400

Smoothed analysis for Quicksort on permutations from size 3 to 50

Number of perturbed elements k

T(n)

Figure 2: The modular smoothed complexity of Quicksort, for 1 ≤ n ≤ 50, for increasing
k

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2

0

5000

10000

15000

20000

25000

Smoothed analysis for Quicksort on permutations n = 50,100,150 and 200

Number of perturbed elements k

T(n)

n = 200

n = 150

n = 100

n = 50

Figure 3: The modular smoothed complexity of Quicksort, for n = 50, 100, 150 and 200
for increasing k

6. Future work

As suggested in by Daniel Spielman in his commentary on [4], we will
take a modular approach to median of three Quicksort, as an alternative
to Quicksort. We compare and contrast these smoothed results with those
presented above.

Appendix A.

Here we present counting arguments to prove eq. 8 and eq. 9 from Theo-
rem 5. Firstly, we note that perturbations generated from a pivot will lead to
more permutations with that pivot than any other pivot. This happens in all
cases except where all elements are involved in the permutation(ie. k = n).
All other pivots arise equally. For this reason, we proceed to count partial
permutations of a permutation that keep the original pivot all other pivots
separately.

Proof. Consider
∑i

n where each s ∈
∑i

n is of the form s = (i, s2, . . . sn) so
∑i

n = {i}
∑

n−1

26

Computation of Ki
j , where j 6= i :

Here we count the permutations with pivot j after permutation where
pivot i is the pivot(i 6= j) before perturbation. Pertk,n(

∑j

n) can be counted
as follows:

• Pivot i is always chosen as one of k perturbed elements(ie i has to
move, for the pivot to become j).

• We count the permutations after perturbation that include the pivot
i and j, where the choice is restricted for j, as this becomes the new
pivot, resulting in (k − 1)! integers free, thus we count

(

n−2
k−2

)

(k − 1)!.

• (n− 1)! permutations have the same pivot.

Following the above counting argument we now have

Mj =

(

n− 2

k − 2

)

(k − 1)!(n− 1)!

=
(n− 2)!(k − 1)

(n− k)!
(n− 1)!

A closer look at the previous argument shows that each sequence s′ ∈
∑j

n

has the same chance to be formed. Hence, the multiset Pertk,n(
∑i

n) contains∑j
n Mj

|
∑j

n |
. Split maps each

∑j

n so we obtain the bijection,

Split:
∑j

n −→ R(P [j−1, n−j]), thus, for each j 6= i, the multiset Pertk,n(
∑i

n)
contains

{(

R(P [j − 1, n− j]),
Mj

(j − 1)!(n− j)!

)}

hence

Ki
j =

Mj

(j − 1)!(n− j)!
=

(n− 2)!(k − 1)

(n− k)!

(

n− 1

j − 1

)

.

Computation of Ki
i where j = i

ForKi
i we consider the random structure P [i−1, n−i]. Split will transform

any element of
∑i

n to a labeling of P [i− 1, n− i] so we will determine how

27

many elements of the multiset Pertk,n(
∑i

n) remain in
∑i

n . If s ∈
∑i

n then
s1 = i so s = {i, s2, . . . sn}.
The permutations after perturbation with pivot i can be counted as follows:

• Firstly, we count the permutations arising when the pivot is not chosen
as one of the k integers to permute. These permutations are counted
as
{(

n

k

)

−
(

n−1
k−1

)}

k!.

• When the pivot is chosen as one of the k integers for perturbation, we
count the number of the permutations after perturbation that result in
the pivot staying in place. This is counted by

(

n−1
k−1

)

(k − 1)!.

• Both terms above are summed for the (n − 1)! permutations with the
same pivot.

Following the above counting argument we now have

Mi =

(

{(

n

k

)

−

(

n− 1

k − 1

)}

k! +

(

n− 1

k − 1

)

(k − 1)!

)

(n− 1)!

=
(n− 1)!(n− k + 1)

(n− k)!
(n− 1)!

Finally, each such sequence s gives rise to

(n− 1)!(n− k + 1)

(n− k)!
(n− 1)!,

so the multiset Pertk,n(
∑i

n) contains

Mi =
(n− 1)!(n− k + 1)

(n− k)!
(n− 1)!

elements of
∑i

n .
We note that each of the above have the same probability of occurring, so
once again

Ki
i =

Mi

(i− 1)!(n− i)!
=

(n− 1)!(n− k + 1)

(n− k)!

(

n− 1

i− 1

)

.

28

References

[1] A.Aho, J.Hopcroft and J. Ullman, Data Structures and Algorithms,
Addison-Wesley Series in Computer Science and Information Process-
ing, Addison-Wesley, 1987.

[2] A. Gao. Modular Average Case Analysis: Language Implementation
and Extension, PhD thesis, University College Cork, 2013.

[3] A. Gao, K. Rea, and M. Schellekens, Static Average Case Analysis
Fork-Join Framework Programs Based OnMOQAMethod, 6th Inter-
national Symposium on Parallel Computing in Electrical Engineering,
accepted for publication, Luton, UK, April 2011.

[4] C. Banderier, R. Beier, and K. Mehlhorn. Smoothed analysis of
three combinatorial problems. In the 28th International Symposium on
Mathematical Foundations of Computer Science, pages 198207, 2003.

[5] Hoare, C.A.R. Partition: Algorithm 63; Quicksort: Algorithm 64 and
Find: ALgorithm 65 Comm. ACM 4, 7 (July 1961), 321–322.

[6] S. Edelkamp, Weak-Heapsort, ein schnelles sortierverfahren, Diplomar-
beit Universität Dortmund, 1996.

[7] D. Hickey, Distritrack: Automated Average-Case Analysis, in the pro-
ceedings of the Fourth International Conference on the Quantatative
Evaluation of Systems (QEST 2007), 17-19 September 2007, Edin-
burgh, Scotland, UK.

[8] D. Hickey, D. Early and M. Schellekens, A Tool for Average-Case and
Worst-Case Execution Time Analysis, in proceedings of the Worst-Case
Execution Time Workshop, satelite event of the Euromicro conference
on Real-Time Systems, Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (publisher), Germany, 2008.

[9] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, 1998.

[10] M. Li, P. Vitanyi, An introduction to Kolmogorov Complexity and its
Applications, Texts and Monographs in Computer Science, Springer
Verlag, 1993.

29

[11] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[12] T. Maibaum, Mathematical Foundations of Software Engineering: a
roadmap, Proceedings of the Conference on The Future of Software
Engineering, ICSE00, 161 - 172, 2000.

[13] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized
Algorithms and Probabilistic Analysis, Cambridge University Press,
Cambridge, 2005.

[14] R. Sedgewick, Implementing quicksort programs, Comm. ACM 21 (10),
847–857, 1978.

[15] R. Schaffer and R. Sedgewick, The Analysis of Heapsort, Journal of
Algorithms 15(1), 76–100, 1993.

[16] D. Spielman, S. Teng, Smoothed Analysis: Why The Simplex Algo-
rithm Usually Takes Polynomial Time, Journal of the ACM, Vol 51
(3), pp. 385 - 463, 2004.

[17] D. Spielman, S. Teng, Smoothed Analysis of Algorithms and Heuristics,
Foundations of Computational Mathematics Santander 2005, London
Mathematical Society Lecture Note Series, no. 331, Cambridge Univer-
sity Press, 274 - 342, 2006.

[18] M. P. Schellekens,“A Modular Calculus for the Average Cost of Data
Structuring”, Springer book, published in August, 2008.

[19] M. P. Schellekens, MOQA Unlocking the potential of compositional
average-case analysis, Journal of Logic and Algebraic Programming,
Volume 79, Issue 1, January 2010, Pages 61-83.

[20] D. Spielman, Commentary on Smoothed Analysis of
Three Combinatorial Problems, published electronically at
http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis,
2003.

[21] M. Schellekens, G. Bollella and D. Hickey. MOQA a Linearly-
Compositional Programming Language for (semi-) automated Average-
Case analysis, IEEE Real-Time Systems Symposium - WIP Session,
2004.

30

http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis

[22] M. Schellekens, MOQA Unlocking the potential of compositional
average-case analysis, Journal of Logic and Algebraic Programming,
Volume 79, Issue 1, January 2010, Pages 61-83.

[23] Diarmuid Early, Ang Gao and Michel Schellekens. ”Frugal encoding
in reversible MOQA a case study for Quicksort”. 4th Workshop on
Reversible Computation, Copenhagen, Denmark, 2012.

[24] Ang Gao, Aoife Hennessy, Michel Schellekens: ”MOQA Min-Max
heapify: A Randomness Preserving Algorithm”. 10th International
Conference Of Numerical Analysis And Applied Mathematics, Kos,
Greece, 2012.

[25] Kopetz, H.; Fohler, G.; Grnsteidl, G. et al.: RealTime Systems De-
velopment: The Programming Model of MARS, in Proceedings of the
International Symposium on Autonomous Decentralized Sys- tems, pp.
190 199, Kawasaki, Japan, March. 1993.

[26] Erik Yu-Shing Hu, Guillem Bernat, Andy Wellings, A Static Tim-
ing Analysis Environment Using Java Architecture for Safety Critical
Real-Time Systems, Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, p. 0077, 2002.

[27] D. Early, M. Schellekens, Running time of the Treapsort al-
gorithm, Theoretical Computer Science, in press, accepted
manuscript, available online from Springer Marh 25, 2013 at:
http://www.sciencedirect.com/science/article/pii/S0304397513002132.

[28] D. Early, A Mathematical Analysis of the MOQA language, PhD
thesis, University College Cork, 2010.

[29] D. Spielman, Smoothed Analysis Homepage,
http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis/.

31

	Introduction
	Background
	Compositionality of timing measures
	Smoothed complexity and the partial permutation model

	Sample-Fair Smoothed Complexity
	Modular smoothed complexity of Quicksort
	Results and conclusion
	Future work
	

