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Abstract—Virtual Reality is a rapidly growing form of media,
with uses in entertainment, industry and education. By generat-
ing a real-time feedback loop based on a user’s emotional state we
can tailor experiences in such a way that it maintains the user’s
engagement, ensuring they learn more in an educational system,
or play longer in a gaming scenario. Biosensors can be used to
acquire physiological data from the user in real time, this data
can then be used to determine the user’s current emotional state.
To determine whether creating such a feedback loop is viable in
Virtual Reality we developed a simple pattern replication game
for the Oculus Rift which uses two biosensor devices to read
three different biosignals. We conducted a study with 53 total
participants. We present some preliminary findings and a plan
for the next phase of the study.

Index Terms—VR, EEG, ECG, Secondary Input, Biosignals,
Memory, Cognition, Education

I. INTRODUCTION

The incorporation of biosensors and physiological signals
into a Virtual Reality (VR) experience opens up the possibility
of creating adaptive, dynamic and personalised experiences by
generating a real-time feedback loop which tailors the player’s
experience, maintaining the user’s engagement [1]. This would
be particularly suitable to VR as the goal of VR is to immerse
the user in a virtual environment where they can experience a
sense of presence. Biosignals provide objective measures of a
user’s reactions to a system, event, or a set of events in real-
time. These in turn can be used to dynamically change the VR
experience to achieve the intended goals of the VR application,
e.g. maintain concentration in an educational experience, keep
the user focused on a task within a VR training environment,
or maintain the complexity of a game to keep the user en-
gaged [2], [3]. In order to implement such a feedback loop, it is
important to first choose suitable physiological measures from
which a user’s emotional state can be determined. Following
this, patterns in the biosignals must be identified which can
be attributed to a particular emotional state, for example
whether the user is bored or frustrated. Consideration must
also be given to the ergonomics of wearing biosensors in a VR
setting, the devices should not impede the user or detract from
the experience. The Empatica E4 and Myndplay’s Myndband
were the biosensors chosen for this study; both are wireless
devices which connect to the VR application via bluetooth.

The Myndband utilises Neurosky technology to record and
process data on the device. The Myndband is a single probe
Electroencephalography (EEG) device which takes the form
of a headband. The E4 is a wristwatch and can measure
Galvanic Skin Response (GSR) and Heart Rate Variability
(HRV). According to Wilson and Eggemeier [4] agreement
between the different physiological signals strengthens the
interpretation of the user’s emotions and mental state. Where
the system detects signs of anxiety, concentration, relaxation,
frustration, etc. the appropriate response can be generated [5].
To test this approach a VR game was developed that required
the user to memorise and replicate visual patterns of varying
length (three to six items). The game had to be both simple and
immersive, the latter being a very important requirement for
Virtual Reality. The Oculus Rift headset was chosen, and the
Oculus Touch controllers used as they allow for more natural
movement compared with a traditional console controller. This
paper focuses on the acquisition of data from biosensor signals
taken while participants played the developed VR game. This
data will later be used to the develop the feedback loop.

II. BIOSIGNALS

A biosignal is any physiological signal emanating from a
living person which can be continuously measured. Examples
of easy to measure biosignals include Heart Rate and temper-
ature, however there are also subtler biosignals such as EEG
and GSR. Biosignals are used to measure different aspects
of a user’s physiological response to stimuli, temperature for
example can be used to identify if someone is ill. EEG, GSR
and HRV are often used to determine a person’s emotional
state [4]. We use a number of different biosignals as it is
believed the accuracy of the system in determining a person’s
emotional state will be increased [4]. Mental workload or
attentiveness would first be determined by analysis of the EEG
signals. GSR and Heart Rate Variability (HRV) could then
be used to substantiate the conclusion provided by the EEG
analysis.

A. EEG

Electroencephalography (EEG) [6] is the measure of elec-
trical activity in the brain. When a neuron fires in the brain
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Frequency Band Range Associated Cognitive States
Delta 1− 3Hz Deep Sleep
Theta 4− 7Hz Mental Workload
Alpha 8− 12Hz Relaxation
Beta 13− 30Hz Anxiety, Attentiveness
Gamma 31− 50Hz Higher Cognitive Functions

TABLE I
EEG FREQUENCY BANDS AND RELATED COGNITIVE STATES

a small electrical field is generated, however, the electrical
response of a single neuron is too small to be detected. It
takes hundreds of thousands of synchronised neurons firing
at the same time to generate a detectable electrical field [7].
An array of EEG probes placed on the scalp can detect the
strength of this field at different places on the head, this
can be used to localise which parts of the brain are active
at certain times. Conventionally this array consists of over
20 wet EEG electrodes, however recent developments have
shown that it is feasible to use a singly dry electrode for
non-medical purposes [8]–[10]. The raw EEG signal can be
processed and broken into a number of frequency bands. In
our case this processing happens on the Myndband itself. EEG
frequency band data can be used to help determine a user’s
emotional state [11], [12]. Table I lists the frequency bands,
the range represented by the band according to Neurosky [13]
and Scheirer et al. [5], and the cognitive states they represent
according to iMotions [14].

B. GSR

Galvanic Skin Response (GSR) is the measure of the
electrical conductivity of skin, which changes due to the au-
tonomic activation of sweat glands. While sweating is usually
associated with exercise, it also occurs more subtly as a result
of changes in a person’s emotional state. Emotions such as
nervousness, frustration or excitement can cause a physiologi-
cal response and trigger sweating [15]. Previous studies, such
as those by Yu Shi et al. [16] and Nourbakhsh et al. [17] have
shown that GSR is a valid and useful measurement of task
difficulty, or stress caused by performing a task.

C. Heart Rate Variability

Heart Rate Variability (HRV) is the measure of the variation
in time interval between heartbeats. A number of methods can
be used to measure HRV, these include photoplethysmography
(PPG) and electrocardiography (ECG). PPG uses a high pre-
cision light sensor to detect the volume of blood flow and
uses this to derive HRV. ECG records the electrical activity
generated by heart muscle depolarisations, which propagates
in pulsating electrical waves towards the skin. As noted
by Appelhans and Luecken [15], an increased HRV usually
indicates physical or physiological stress, while a reduced
HRV can be an indicator of stability of calmness [13].

III. METHOD

A. Study Design

Experiments were carried out to investigate the feasibility
of using biosignals in a VR memory game. 53 participants

took part in the study, each participant was asked to fill out
a pre-experiment demographic survey, and post-experiment
questionnaires. Each subject wore the same biosensors and VR
equipment. Subjects played the same memory game, although
with a randomised set of visual patterns ranging from 3 to
6 items. Ethics approval (2019-036) for this experiment was
granted by UCC’s Social Research Ethics Committee.

B. Virtual Environment and Tasks

The VR experience was developed in the Unreal Engine
4 (UE4). The biosensors were integrated into the VR game,
allowing for the time-stamping and logging of GSR, HR and
EEG data, as well as timestamped in-game events, which could
be analysed post-game. The virtual environment consists of
two scenes, the first being a tutorial designed to familiarise a
user with VR and to teach them the control scheme used for
the game. In this tutorial section aural instructions provide
information on how to use the Oculus Touch controllers.
The tutorial consists of two rooms, designed to look like a
warehouse. In the first room the player learns the basics of
using the controllers in VR, they then move through a corridor
to the second room. The second room (fig. 1) features two guns
which the player can use to shoot holographic targets. When
the player is ready to play the pattern game they can move
to a designated area in the room where they are teleported
to the second scene. The purpose of this scene is to condition
subjects to VR and the control scheme employed. It also serves
as a baseline for comparing the biosignals from the memory
game scene.

Fig. 1. Tutorial Scene

The second scene features a simple pattern replication
game (the memory game). The player has to memorise a
colour pattern displayed on a screen in one room, move to
a second room and replicate the pattern on that room’s screen
(fig. 2). The player performs this task four times. Patterns are
generated randomly, with each subsequent pattern longer than
the previous, therefore increasing the difficulty in recall and
cognitive load.

C. Measures

Several questionnaires were used to measure various as-
pects of the VR experience, as well as the user’s perceived
performance. Each participant was asked to fill out four



Fig. 2. Pattern Replication Screen

questionnaires; the System Usability Scale (SUS) [18]–[20], a
NASA Task Load Index survey (TLX) [21]–[23], the iGroup
Presence Questionnaire (IPQ) [24], [25] and a demographic
questionnaire. The SUS was used to measure the usability
of our developed system. The purpose of the IPQ was to
determine the participants’ subjective level of presence within
the virtual environment. The TLX was employed to measure
the difficulty of the task given to the subject, in this case
the pattern replication game. The TLX is a multidimensional
measure of the required mental workload to complete the given
task.

Users’ physiological responses to the VR experience and
memory game were captured using biosensors. The Empatica
E4 recorded GSR and HR while the Myndband recorded EEG.
All biosignal data was timestamped and recorded in a csv file
for analysis following the experiments. User generated events,
such as the successful or unsuccessful entering of a pattern,
are also recorded and timestamped.

D. Procedure

Subjects participated individually, one at a time. Upon
arriving the participant was welcomed, given an information
sheet, and asked to fill out a consent form and the pre-
experiment demographic questionnaire. A brief explanation of
the biosensors was given and the biosensors were then applied.
The participant was then brought to the VR area where the
headset and controllers were shown and a basic description of
the experience was given. The participant was then asked to
put on the VR headset and given the Oculus Touch controllers.
The VR experience would then begin.

Following the VR experience, the controllers, VR equip-
ment and biosensors were taken from the participant. The
participant was then asked to fill in the IPQ, TLX and SUS,
in that order. Finally, the participant was thanked for taking
part in the experiment.

E. Participants

53 participants took part in our experiment (38 male, 14
female, 1 other). These participants (aged between 20 and
61) were recruited through the University’s student and staff
mailing. Most participants stated that they used a desktop or

laptop daily, and that they were comfortable using technology.
28 participants said they regularly played video games. 29
participants had prior VR experience, however of these, 17
had tried VR only once before.

IV. FINDINGS

The experiments have recently been completed. We are
currently encoding the responses, and preparing the data for
proper analysis. From our experience conducting the experi-
ment and a cursory view of the data we can see the follow-
ing. Of the 53 completed experiments, 34 were completely
successful. Of the remaining 19 experiments two were ended
early due to time constraints. A further 14 were partially
successful, meaning that the data obtained from either the E4
or Myndband was considered bad, however data from the other
device was good. In one experiment no data was obtained
from either the E4 or Myndband. Incorrect application of
the biosensor devices was the most common source of bad
data. One subject could not complete the experiment, or post
experiment surveys, due to motion sickness. One participant
could not partake in the experiment as the headset would not
fit over their spectacles. Most users enjoyed the experience
and found it engaging. It was noted during experiments that
most participants entered each pattern successfully on their
first attempt. It is believed that this can be attributed to the
use of both audio and visual cues in the memorisation stage
of the experiment. This indicates that VR would be an effective
tool for learning and would achieve similar results to a real
world tool. Analysis of the NASA TLX indicates that the task
was moderately difficult, scoring a mean of 50.58% on Mental
Demand. Subjects did not find the task particularly frustrating
(mean of 27.31%) and most felt that their performance of the
task was good (mean of 72.31%). As a source of biosignal
data, HRV derived from a wearable wristband PPG sensor is
less reliable than the other sensor data, which may be attributed
to motion artefacts. Signals from a single dry electrode EEG
sensor can suffer from motion artefacts, poor placement, and
physical interference by the Head Mounted Display. Overall
the GSR data is consistent and reliable, and appears to be the
most promising of the biosignals.

V. CONCLUSION

This experiment was designed to explore the feasibility of
using a memory game in VR. Our long term goal is to use
acquired biosignal data to aid in the generation of a real-time
feedback loop which could alter the difficulty of the game.
This study consisted of a simple colour pattern memorisation
game where players were presented with a pattern in one
virtual room and asked to replicated it in a second virtual
room. Two Biosensor devices were employed, the Empatica
E4 (GSR, HR) and the Myndplay Myndband (EEG). Both
of these devices were implemented into the VR experience
in order to acquire physiological readings. Experiments were
carried out using the VR experience, the biosensors and a
number of surveys (Demographic questionnaire, TLX, SUS,
IPQ). 53 experiments were carried out and subjects were of a



wide range in age and technical experience. In total 34 of the
experiments were completely successful. The next phase will
be to formally analyse the data from these experiments with
the long term goal of implementing a real-time feedback loop
which can improve the player’s levels of engagement with the
experience.
It is important to consider the additional constraints caused
by the biosensor devices when designing a VR experience.
It was found that some noise in the biosignals could be
minimized by careful design of the VR game. Movement noise
was especially detrimental to both the EEG and GSR signals,
however this could be minimized by allowing the controllers
to both move and rotate the player. Improper application of
the biosensor devices also resulted in avoidable noise.
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