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Abstract:  22 

Key life history traits such as breeding time and clutch size are frequently both heritable and 23 

under directional selection, yet many studies fail to document micro-evolutionary responses. 24 

One general explanation is that selection estimates are biased by the omission of correlated 25 

traits that have causal effects on fitness, but few valid tests of this exist. Here we show, using 26 

a quantitative genetic framework and six decades of life-history data on two free-living 27 

populations of great tits Parus major, that selection estimates for egg-laying date and clutch 28 

size are relatively unbiased. Predicted responses to selection based on the Robertson-Price 29 

Identity were similar to those based on the multivariate breeder’s equation, indicating that 30 

unmeasured covarying traits were not missing from the analysis. Changing patterns of 31 

phenotypic selection on these traits (for laying date, linked to climate change) therefore 32 

reflect changing selection on breeding values, and genetic constraints appear not to limit their 33 

independent evolution. Quantitative genetic analysis of correlational data from pedigreed 34 

populations can be a valuable complement to experimental approaches to help identify 35 

whether apparent associations between traits and fitness are biased by missing traits, and to 36 

parse the roles of direct versus indirect selection across a range of environments. 37 

  38 

 39 

 40 

Introduction 41 

Determining the potential for microevolution is fundamental to assessing how populations 42 

may adapt to climate change (Holt 1990; Visser 2008) and the likelihood of evolutionary 43 

rescue in altered environments (Gomulkiewicz and Holt 1995; Carlson et al. 2014). Adaptive 44 
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evolution requires heritable variation and while studies of natural populations typically find 45 

substantial genetic variation in traits under directional selection, observations of 46 

‘evolutionary stasis’, i.e. a lack of selection response in heritable traits, are common (Merilä 47 

et al. 2001; Estes and Arnold 2007; Walsh and Blows 2009). One prominent hypothesis to 48 

explain such stasis, or to explain discrepancies between observed and expected evolutionary 49 

responses in general, is that selection estimates may be biased by missing traits or variables 50 

that are correlated with both focal traits and fitness (Schluter et al. 1991; Rausher 1992; 51 

Kruuk et al. 2001, 2002, 2003; Hadfield 2008; Stinchombe et al., 2002; 2014; Morrissey et al. 52 

2010). This can be the case, for example, when the relationship between fitness and traits is 53 

environmentally-inflated and hence we would expect weaker (or no) response to selection 54 

(Fisher 1958; Price et al. 1988).  55 

A classic example of evolutionary stasis (potentially underpinned by environmental 56 

correlations between trait and fitness) is seasonal timing of breeding in temperate birds (Price 57 

et al. 1988): early breeders generally have higher reproductive success than late breeders 58 

(Verhulst and Nilsson 2008) and egg-laying dates are typically heritable (Charmantier and 59 

Gienapp 2014), implying that earlier egg-laying should evolve. Using a quantitative genetic 60 

model, Price et al. (1988) showed how a lack of microevolution of heritable breeding time 61 

can be compatible with selection for earlier breeding, if both breeding time and fitness are 62 

influenced by a purely environmental variable, nutritional status in their example. Birds in 63 

good nutritional condition may both breed earlier and produce more surviving offspring, but 64 

earlier egg-laying will not evolve if fitness differences are entirely driven by nutritional 65 

status. If traits or environments that are correlated with both focal traits and fitness are 66 

missing from selection analyses, then the regression coefficients of relative fitness on trait at 67 

the genetic and environmental levels will not be the same and hence phenotypic estimates of 68 

selection will be biased (Rausher 1992; Hadfield 2008; Morrissey et al. 2010).  69 
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Several studies of plant (e.g. Stinchcombe et al. 2002; Morrissey et al. 2010) and animal (e.g. 70 

Kruuk et al. 2001, 2002; Gienapp et al. 2006) populations have sought to test whether 71 

environmentally-induced covariances between traits and fitness bias selection estimates. 72 

‘Environmentally-induced covariance’ here refers to situations where the focal trait is 73 

correlated with another variable (e.g. a largely non-heritable trait such as nutritional status) 74 

that has a causal effect on fitness, and should not be confused with the process of ecological 75 

selection itself, whereby the selective environment causes a covariance between trait and 76 

fitness (MacColl 2011; Bouwhuis et al. 2015). In these studies of potential environmental 77 

biases to selection, fitness was regressed on predicted breeding values (PBVs, estimates of 78 

the net effects of an individual’s genes on its phenotype relative to the population mean) for 79 

the trait of interest. Such a two-step approach is no longer considered appropriate on 80 

statistical grounds, however, as PBVs remain confounded with environmental effects on the 81 

phenotype (Postma 2006) and hypothesis tests based on PBVs can be highly anti-82 

conservative (Hadfield et al. 2010). Hence, we still have limited evidence whether selection 83 

estimates in general in nature are biased by environmental covariances between trait and 84 

fitness (or by unmeasured genetically correlated traits), particularly in free-living animal 85 

populations (work on plants indicates such biases may be substantial, Scheiner et al. 2000; 86 

Stinchcombe et al. 2002). This lack of evidence is particularly apparent for the case of 87 

changing phenotypic selection: only one study of mammals (Robinson et al. 2008), to the best 88 

of our knowledge, has tested whether changes in phenotypic selection are reflected by 89 

changes in selection on underlying breeding values. This is particularly relevant in the 90 

context of broad-scale environmental changes such as those wrought by global warming: 91 

changing environmental covariances between traits and fitness could give the impression that 92 

natural selection is intensifying, when in fact the genetic relationship between traits and 93 

fitness may remain unchanged, leading to erroneous predictions of evolutionary responses.  94 
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Here we test the extent to which phenotypic selection estimates for two key avian life-history 95 

traits (egg-laying date, LD and clutch size, CS) may be affected by such biases, using six 96 

decades of data from two Dutch study populations of great tits (Parus major Linnaeus, 1758). 97 

Our approach is based on the logic of the secondary theorem of natural selection (STS, also 98 

known as the Robertson-Price Identity), which states that the expected per-generation 99 

evolutionary response (or ‘genetic selection differential’) equals the covariance between 100 

relative fitness and the breeding value for a trait, which under a simple quantitative genetic 101 

model corresponds to the additive genetic covariance between relative fitness and trait  102 

(Robertson 1966; Price 1970; Crow and Nagylaki 1976). The multivariate breeder’s equation 103 

(MVBE) can also be used to predict joint responses to selection on two or more correlated 104 

traits (Lande and Arnold 1983) and has the advantage over the STS approach that direct and 105 

indirect components of selection (and selection responses) can be distinguished using 106 

selection gradients (Stinchcombe et al. 2014). However, selection gradients only partition 107 

direct and indirect selection accurately when all correlated traits affecting fitness are included 108 

in the analysis (Lande and Arnold 1983; Stinchcombe et al. 2014). Thus the MVBE can give 109 

inaccurate predictions of microevolution when correlated traits are not measured and 110 

Morrissey et al. (2010) have advocated using the STS to avoid this problem (see also 111 

Morrissey et al. 2012). More recently, Stinchcombe et al. (2014) have championed a 112 

combined approach that blends the merits of the STS and MVBE and allows evolutionary 113 

responses to be estimated directly without bias, as well as direct and indirect components of 114 

selection and selection responses to be partitioned. Implementation in a Bayesian-MCMC 115 

framework also allows for statistically robust estimates of uncertainty on all parameters to be 116 

made in a single model (Stinchcombe et al. 2014). 117 

Following the approach recommended by Stinchcombe et al. (2014), we implement trivariate 118 

Bayesian-MCMC animal models involving three traits: LD, CS and annual reproductive 119 
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success (ARS, the number of recruiting offspring produced by an individual each breeding 120 

season, a proxy for reproductive fitness). Posterior distributions of the (co)variance 121 

components were then used to derive estimates of genetic selection gradients (βG), i.e. 122 

regression coefficients of breeding values for ARS on breeding values for each trait. 123 

Similarly, we quantified the relationship between environmental effects on fitness and 124 

environmental effects on traits, denoted βE. The difference between βG and βE then provides a 125 

measure of the extent of environmental bias to phenotypic selection (Rausher 1992; Hadfield 126 

2008). We predicted that βE should be negative for LD, as females experiencing favourable 127 

environments (e.g. good nutrition) are likely to both initiate egg-laying earlier (i.e. more 128 

negative LD) and raise more young, independent of their breeding values for LD. For CS we 129 

predicted that βE should be positive, given that females in good condition are likely to both 130 

lay more eggs and recruit more offspring, regardless of their breeding values for CS. While 131 

experimental manipulations of phenotypes provide the most robust tests for causal effects on 132 

fitness, such experiments can be logistically challenging in the wild and are typically 133 

attempted in only a limited number of years or environments (see Discussion for avian 134 

examples involving laying date and clutch size and associated problems). 135 

The trivariate animal models also allow us to assess the relative contributions of direct versus 136 

indirect genotypic selection on each trait – the latter mediated via a potential genetic 137 

correlation between LD and CS.  Previous studies have provided mixed evidence for such a 138 

correlation; for example, Sheldon et al. (2003) reported a negative genetic correlation for a 139 

Swedish population of collared flycatchers (Ficedula albicollis), as did Garant et al. (2008) 140 

for a UK population of great tits. Husby et al. (2010) reported a negative genetic correlation 141 

in one great tit population, but a positive (albeit non-significant) genetic correlation in 142 

another. To test whether changing patterns of phenotypic selection (in the case of LD, related 143 

to climate change and phenological mismatch; Visser et al. 1998, 2006; Reed et al. 2013) 144 
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provide a reliable guide to changing selection on underlying breeding values, we split years 145 

into groups based on variation in phenotypic selection and compared βG against βE in each 146 

case. Finally, net responses to selection on each trait for both the full and sub-sampled 147 

datasets were estimated using both the STS and MVBE approaches. By comparing them, one 148 

can assess the extent to which missing correlated traits may bias predictions of 149 

microevolution (Morrissey et al. 2012). 150 

 151 

Materials and Methods 152 

Data 153 

The great tit populations in the HV (52°23′N, 05°51′E, central Netherlands) and on Vlieland 154 

(53°10’N, 05°02’E, one of the West Frisian Islands in the Wadden Sea) have been 155 

continuously monitored since 1955. Here we consider brood years from 1955 to 2013 156 

inclusive, with recruit data from 2014 being used to estimate selection on traits expressed in 157 

2013 (thus 60 years of data were used in total). Nest boxes are supplied in excess in all 158 

suitable habitats in both study areas. The laying date of the first egg of a clutch (LD) was 159 

calculated from the number of eggs found during weekly nest box checks, assuming that one 160 

egg is laid per day. Clutch size (CS) was defined as the maximum number of eggs found 161 

before or during incubation. Adults were caught during chick feeding and identified by their 162 

aluminium and colour rings, or ringed if not previously caught. All nestlings were ringed with 163 

aluminium rings before fledging. Annual reproductive success (ARS) was defined as the 164 

number of recruits, i.e. the number of offspring that returned as adults to breed in our study 165 

population, produced by that female in a given breeding season (including recruits from 166 

potential second clutches, as decisions regarding the timing or size of first clutches will affect 167 

the total number of recruits, not just those from first broods). 168 
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During the study period a number of broods was manipulated, e.g. by supplying food or 169 

manipulating clutch or brood size. Since these manipulations could affect offspring survival, 170 

manipulated broods were excluded from all analyses. From 1996 to 2003 a clutch size 171 

selection experiment was carried out in the Vlieland study population (Postma et al. 2007). 172 

During this experiment a large proportion of clutches was removed or swapped but because 173 

all these clutches were excluded from our analyses, this experiment would not affect our 174 

analyses here (in total, eight full years of data were excluded for VE due to manipulations: 175 

1955-57, 1961-62, 1967-68, 2012). We restricted our analyses to the Eastern subpopulation 176 

on Vlieland as the pedigree for the Western subpopulation is considerably shallower due to 177 

higher immigration from the mainland (Postma & van Noordwijk 2005). Full details on 178 

sample sizes are provided in Table 1. 179 

 180 

Statistical models 181 

Our focal traits, LD and CS, are determined by the female and unaffected by properties of the 182 

male in great tits (Caro et al. 2009). We consequently modelled these traits to be sex-limited, 183 

i.e. not expressed by males, but not genetically sex-linked, which means that males were not 184 

assigned any phenotypes but paternal links were included in the pedigree. We analysed 185 

genetic (co)variances of LD, CS and ARS using the so-called ‘animal model’ (Henderson 186 

1950; Kruuk 2004; Wilson et al. 2010) implemented in a Bayesian framework. Animal 187 

models allow genetic and environmental sources of trait (co)variation to be disentangled, and 188 

as such are well suited for quantitative genetic analyses in pedigreed natural populations as 189 

they use all information about relatedness among individuals, and can handle unbalanced 190 

datasets. Key advantages of the Bayesian approach, which utilises Markov Chain Monte 191 

Carlo (MCMC) techniques (Hadfield 2010), are that (1) all sources of variability and 192 

uncertainty are accounted for in the estimation procedure, which produces full posterior 193 
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probability distributions, rather than point estimates and approximate standard errors, of 194 

parameters of interest and (2) non-Gaussian trait distributions can be modelled more easily 195 

and reliably than in frequentist approaches (Morrissey et al. 2014).   196 

Since many females bred in multiple years, we included a permanent environment random 197 

effect in all models and also a maternal effect. All three traits vary considerably among years 198 

due to phenotypically plastic responses, e.g. to temperature (LD), population density (CS) or 199 

winter conditions (ARS). To account for these plastic year-to-year variations, LD and CS were 200 

mean- and variance-standardised within years and we included a fixed effect of year for ARS 201 

in all models (standardising ARS within years was avoided as it was more appropriate to treat 202 

this as a Poisson variable in the models, which requires integer values). First-time breeders 203 

generally have a later LD, lay smaller clutches and have reduced reproductive success and we 204 

hence included age (factor with two levels: ‘second calendar-year’ (=first time breeder) and 205 

‘older’) as a fixed effect in all models. 206 

The R-package MCMCglmm (Hadfield 2010) was used to run all animal models. 207 

Uninformative, proper priors were used with an 3 × 3 identity matrix for V and nu = 1.002. 208 

The results were robust to alternative prior specifications (e.g. stronger priors, results not 209 

shown). We used a burn-in period of 250,000 for all models and a thinning interval of 10,000 210 

to ensure proper mixing of the chain and independent samples (the autocorrelation between 211 

samples was always <0.2). The number of effective samples was never substantially smaller 212 

than the number of samples drawn (200).  213 

 214 

Decomposing selection into genetic versus environmental components. 215 

Selection is technically measured as the relationship between trait and relative fitness 216 

(individual fitness divided by mean individual fitness), which can be expressed as a 217 

Page 9 of 42



For Peer Review
 O

nly

10 

 

regression slope, as in selection gradients (Lande and Arnold 1983), or as a covariance, as in 218 

selection differentials (Price 1970; Endler 1986). However, relative fitness does not conform 219 

to any known parametric distribution and hence we instead modelled the (genetic and 220 

environmental) relationships between trait and absolute ARS using a log-link generalised 221 

linear model (Poisson distributed errors). The regression coefficients from this type of model 222 

are then equivalent to the Lande-Arnold regression coefficients using relative fitness (Smouse 223 

et al., 1999).  224 

With two traits of interest (Z1 and Z2) and a single fitness measure (W), one can fit a 225 

trivariate animal model that produces as output a 3×3 genetic covariance matrix, which 226 

following Stinchcombe et al. (2014) we call Gzw: 227 

��� =	���	
 ��
	
,	� ��
	
,���	� ��
	�,���� � 
Note that while use a g subscript here and throughout the paper when referring to genetic 228 

parameters, these actually refer to the variance or covariance of additive genetic effects (i.e. 229 

breeding values). ��� corresponds to the genetic variance in the fitness component (if total 230 

relative fitness were used, this parameter would specify the upper limit on the rate of 231 

evolution, according to Fisher’s fundamental theorem, Fisher 1930). The off-diagonal matrix 232 

elements of the column/row corresponding to fitness indicate genetic covariances between 233 

traits and fitness; arranged as a vector these give sG, the genetic selection differentials 234 

(Stinchcombe et al. 2014). These correspond to the predicted evolutionary responses for each 235 

trait, according to the STS (with the caveat that here we only consider a component of fitness, 236 

ARS, as opposed to total fitness). Matrix elements not involving W represent the standard 237 

genetic covariance matrix G for the traits (in this case a 2×2 matrix). Structurally identical 238 

3×3 covariance matrices are produced for all random effects included in the animal models. 239 

Page 10 of 42



For Peer Review
 O

nly

11 

 

The vector of genetic selection gradients βG can then be derived using βG = G
-1
sG (Lande and 240 

Arnold 1983; Rausher 1992; Stinchcombe et al. 2014). Likewise, we estimated the overall 241 

relationships between each trait and ARS at the environmental level as βE = E
-1
sE, where βE 242 

was a vector of environmental “selection” gradients, E was an environmental covariance 243 

matrix calculated by summing the posterior distributions of the covariance matrices for the 244 

permanent environment effects (repeatable differences among individuals across years not 245 

due to additive genetic effects), maternal effects, and residual deviations (within year 246 

environmental effects on phenotype). sE refers to the vector of environmental selection 247 

differentials, calculated by summing the permanent environment, maternal and residual 248 

covariances between trait and fitness. The estimates of βE were very similar when maternal 249 

effects (which could themselves contain a maternal genetic component) were excluded from 250 

the calculations. We also re-ran the trivariate animal models (all years considered together 251 

only) using unstandardised trait values and including year effects in the calculation of βE in 252 

order to explore whether the  main conclusions were affected by our procedure of 253 

standardising traits within years (see Appendix 1). 254 

The environmental bias to phenotypic selection on each trait was then quantified as βE – βG 255 

(bold symbols are used to denote the 2×1 vector of biases, with the first element 256 

corresponding to the bias for LD and the second the bias for CS; when referring to the bias for 257 

each trait separately we simply use βE – βG; see Fig.1 for a graphical representation of 258 

environmental biases to selection). Statistical support for an environmental bias to selection 259 

on either trait was then assessed by simply checking whether the posterior distributions of 260 

this metric overlapped zero. If the 95% HPD (highest posterior density) interval included 261 

zero, then the null hypothesis of no environmental bias was accepted.   262 

 263 

Changes in selection through time: real or apparent? 264 
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To test whether changes in the magnitude of phenotypic selection were underpinned by 265 

similar changes in selection on breeding values, we split the Hoge Veluwe (HV) and Vlieland 266 

East (VE) datasets into years with ‘strong’, ‘medium’ and ‘weak’ phenotypic selection on 267 

LD, and also (separately) based on  ‘strong’, ‘medium’ and ‘weak’ phenotypic selection on 268 

CS. Annual standardised phenotypic selection differentials (denoted sP) were calculated by 269 

dividing individual fitness by annual mean fitness and regressing this relative individual 270 

fitness against (mean and variance) standardised egg-laying date or clutch size (Lande and 271 

Arnold 1983). We then split years into three groups based on thirds on the distribution of sP, 272 

for each trait (see Table 1for full details). The ‘weak’ and ‘strong’ categories not only 273 

differed in strength but also partly in the direction of selection. The ‘weak’ category 274 

contained years with weakly positive (LD) or negative to no selection (CS), the ‘medium’ 275 

category years with no or weakly negative (LD) or positive (CS) selection, while the ‘strong’ 276 

category contained years with strongly negative (LD) or strongly positive (CS) selection 277 

(Table 1).  278 

Trivariate animal models were fitted for each group of years and βG and βE were calculated as 279 

before. The statistical significance of directional selection on underlying genotypes was 280 

determined qualitatively by assessing whether the HPD interval of βG overlapped zero for 281 

each trait/phenotypic selection strength combination. Similarly, support for environmental 282 

biases to phenotypic selection in each category was determined by assessing whether the 283 

HPD interval of βE – βG did not overlap zero (see Fig.1 for a hypothetical example). Due to 284 

the large data sets necessary to reliably estimate genetic covariances it was simply impossible 285 

to conduct this analysis at a finer temporal scale, let alone at an annual basis.  286 

 287 

Assessing the power to detect environmental biases 288 
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Even if the HPD interval of our metric of bias (βE – βG) includes zero, the possibility remains 289 

that insufficient statistical power was available to detect true biases (e.g. relatively small 290 

biases). To get a better sense for this we undertook a power analysis, whereby two traits were 291 

simulated (assuming multivariate normality for simplicity) to be uncorrelated at the genetic 292 

level, but correlated at the environmental level. One of the ‘traits’ was assumed to be fitness 293 

and the other either LD or CS; thus the simulations modelled a real (and complete) 294 

environmental bias to phenotypic selection. Uncorrelated breeding values for each trait were 295 

simulated using the rbv function in MCMCglmm (Hadfield 2010) across both the HV and VE 296 

pedigrees for the same number of individuals for which actual phenotypic information was 297 

available. Correlated environmental deviations were then simulated from a multivariate 298 

normal distribution and added to the uncorrelated breeding values to generate simulated 299 

phenotypes. Permanent environment and maternal effects were ignored for simplicity. 300 

Bivariate animal models were then run on these simulated phenotypes to generate estimates 301 

of βG and βE as above. Six different strengths of environmental bias (i.e. six different βE 302 

values, and therefore also βE – βG values, given that βG was simulated to be zero) ranging 303 

from 0 to 0.50 were simulated. For each, 500 replicate simulations were run for both HV and 304 

VE and power was calculated as the proportion of simulations where the HPD interval of the 305 

resulting posterior estimates of βE – βG did not include 0.  306 

 307 

Comparing evolutionary predictions of the STS and MVBE 308 

Estimates of the response to selection on LD and CS were obtained from the trivariate animal 309 

models by extracting the posterior distributions of sG (i.e. the additive genetic covariances 310 

between each trait and ARS), which corresponded to the evolutionary predictions based on the 311 

STS approach. Estimates based on the MVBE approach were obtained using ∆�� = ��, where 312 

∆�� indicates the change in the mean of each trait, � is the genetic covariance matrix as 313 
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estimated from the trivariate model (the upper 2×2 quadrant of ���, see above) and � is the 314 

vector of phenotypic selection gradients, as estimated from the posterior distributions of the 315 

trivariate animal model (using � = �����, where � = � + � and �� = �� + ��). The goal 316 

of this exercise was to compare predictions from the STS and MVBE relative to each other, 317 

rather than to generate quantitatively accurate predictions of selection responses per se – the 318 

latter would not be completely reliable in any case, given that assumptions of both the STS 319 

and MVBE such as constant demography and non-overlapping generations are not met. The 320 

predicted responses to selection based on both approaches were in phenotypic standard 321 

deviation (PSD) units for each trait, because standardised trait values were used in both cases.  322 

 323 

Results 324 

Phenotypic patterns 325 

Estimates of directional selection at the phenotypic level varied substantially among years in 326 

strength and sign for both LD and CS in each population (Supplementary Fig.1). For the HV 327 

population, earlier layers had higher fitness on average across all years (mean sP: = -0.14, 328 

range among years = -1.06 to 0.98), with 45 out of 59 years (76%) exhibiting negative 329 

selection differentials. Phenotypic selection for earlier laying was on average weaker across 330 

all years for the VE population (mean sP: = -0.014, range among years = -0.86 to 0.64), with 331 

28 of 52 years (54%) exhibiting negative selection differentials. In the HV population, 332 

females laying larger clutches had higher fitness on average across all years (mean sP: = 0.14, 333 

range among years = -0.68 to 0.69), with 40 of 59 years (68%) exhibiting positive selection 334 

differentials, whereas in the VE population phenotypic selection on CS was on average 335 

weaker (mean sP: = 0.02, range among years = -0.72 to 0.48), with 32 of 44 years (73%) 336 

exhibiting positive selection differentials.  337 
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LD and CS were negatively phenotypically correlated (HV population all years: standardised 338 

trait values: rp = -0.23; unstandardised trait values: rp = -0.21; VE population all years: 339 

standardised trait values: rp = -0.12; unstandardised trait values: rp = -0.06; all P<0.05). These 340 

reflected within-year associations between LD and CS, as the annual means were not 341 

significantly correlated for either population (HV population: r = -0.10, P = 0.45; VE 342 

population: r = 0.10, P = 0.46). For the HV population, there was a trend towards earlier egg-343 

laying (across all years) of 0.1 days per year (b = -0.10 ± 0.04, t1,57 = -2.47, P = 0.016) and 344 

also a trend towards smaller first clutches (b = -0.02 ± 0.006, t1,57 = -2.44, P = 0.018) 345 

(Supplementary Fig.1). For the VE population, there were no significant temporal trends in 346 

either LD (b = -0.08 ± 0.04, t1,52 = -1.81, P = 0.076) or CS (b = -0.01 ± 0.01, t1,52 = -1.21, P = 347 

0.27) (Supplementary Fig.1).   348 

 349 

Trivariate animal models: all years considered together 350 

Additive genetic variance was found to be non-zero for all three traits in both populations 351 

(see Supplementary Tables for full results of trivariate models). For the HV population, the 352 

heritability (h2) of standardised LD was estimated at 0.16 (HPD interval: 0.09 - 0.20; the 353 

point estimate here and for all subsequently reported parameters refers to the posterior mode, 354 

and the range to the HPD interval), h2 of standardised CS was estimated at 0.21 (0.14 – 0.30) 355 

and the h2 of (unstandardised) ARS was estimated at 0.29 (0.15 – 0.38). For the VE 356 

population, the heritability (h2) of standardised LD was estimated at 0.17 (HPD interval: 0.12 357 

- 0.29), h2 of standardised CS was estimated at 0.18 (0.13 – 0.27) and the h2 of 358 

(unstandardised) ARS was estimated at 0.24 (0.16 – 0.36).  LD and CS were standardised 359 

within years, while a fixed effect of year was included for ARS, and thus the h2estimates here 360 

correspond to the fraction of within-year variation (additive genetic + permanent environment 361 

+ maternal + residual) explained by additive genetic effects. For ARS, the h2 estimate is at the 362 

Page 15 of 42



For Peer Review
 O

nly

16 

 

scale of the linear predictor. For purposes of comparison with other traits, we back-363 

transformed this estimate to the observed scale (h2
obs) using the following equation (Foulley 364 

1993): ℎ���� =  !"#! $ !%&'()"#!*�
+ , where µ was the mean on the observed scale and ,-� was the 365 

additive genetic variance estimated by the model. This gave an estimate of h2
obs for ARS of 366 

0.05 (0.03 – 0.07) for the HV population and 0.05 (0.03 – 0.07) for the VE population. 367 

Considering all years together, βG for LD was estimated as -0.08 (-0.31 – 0.26) for the HV 368 

population, while βE was estimated at -0.20 (-0.24 – -0.06; Table 2). The negative 369 

relationship between LD and ARS at the environmental level was driven predominantly by a 370 

statistically significant (HPD interval not overlapping zero) negative residual covariance 371 

(Supplementary Table 4), as the permanent environment (Supplementary Table 2) and 372 

maternal covariances (Supplementary Table 3) were overlapping zero. The bias statistic (βE - 373 

βG) for LD was estimated as -0.03 (-0.46 – 0.21, Table 2, Fig. 2); note that the posterior mode 374 

of the derived statistic βE - βG can deviate from the difference in the posterior modes of βE 375 

and βG due to posterior distributions not being perfectly symmetrical.  376 

Considering all years together, βG for CS was estimated as 0.06 (-0.15 – 0.33) for the HV 377 

population, while βE was estimated at 0.09 (0.04 – 0.21; Table 2). The positive relationship 378 

between CS and ARS at the environmental level was driven predominantly by a statistically 379 

significant positive residual covariance (Supplementary Tables). The bias statistic (βE - βG) 380 

for CS was estimated as 0.01 (-0.24 – 0.32, Table 2, Fig. 2).  381 

For the VE population, βG for LD was estimated as -0.06 (CI: -0.26 – 0.12) considering all 382 

years together, while βE was estimated at 0.01 (-0.07 – 0.05; Table 2). Surprisingly, a positive 383 

permanent environment covariance between LD and ARS was evident across all years for the 384 

VE population (Supplementary Table 2), whereas a negative residual covariance was found 385 

(Supplementary Table 4). These counteracting covariances explain why the overall βE was 386 

Page 16 of 42



For Peer Review
 O

nly

17 

 

close to zero. The bias statistic (βE - βG) for LD was estimated as -0.01 (-0.20 – 0.24, Table 2, 387 

Fig. 2).  388 

For the VE population, βG for CS was estimated as -0.02 (-0.17 – 0.19) considering all years 389 

together, while βE was estimated at 0.08 (0.01 – 0.12; Table 2). The positive relationship 390 

between CS and ARS at the environmental level was driven predominantly by a positive 391 

residual covariance (Supplementary Tables). The bias statistic (βE - βG) for CS was estimated 392 

as 0.11 (-0.14 – 0.27, Table 2, Fig. 2). The trivariate animals based on unstandardised trait 393 

values produced very similar results to those based on standardised LD and CS (Appendix 1).  394 

 395 

Trivariate animal models: splitting years by selection strength categories 396 

For both populations, changes in phenotypic selection strength for both traits were generally 397 

paralleled by similar changes in selection on the additive genetic component of trait variation 398 

(Fig. 2, Table 2). The ‘strong’ phenotypic selection category for CS in the HV population was 399 

the only one where the HPD intervals for βG were completely non-overlapping zero (Fig.2, 400 

Table 2), indicating that selection on CS breeding values was consistently positive in these 401 

years. In general, however, the model estimates for βG became larger in absolute terms (more 402 

positive for CS and more negative for LD) as phenotypic selection became stronger. Although 403 

the posterior modes for βG deviated somewhat from those for βE (Fig.1), the full posterior 404 

distributions overlapped considerably and the HPD intervals for βE - βG overlapped zero in all 405 

cases (Table 2). Full details on the additive genetic, permanent environment, maternal and 406 

residual covariance matrices for each population/trait/ selection strength category 407 

combination are given in Supplementary Tables 1-4.  408 

 409 

Power to detect environmental biases 410 
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The power analyses showed that there was >80% power to detect true environmental biases 411 

to selection of approximately 0.40 (βE – βG) or higher for both populations, but only 412 

approximately 25-50% power to detect environmental biases of 0.20 to 0.30 (Fig. 3). Power 413 

declined approximately sigmoidally as simulated βE – βG decreased. Power to detect biases 414 

was slightly higher for the VE population, likely reflecting the better pedigree (more 415 

relatedness links) compared to the HV pedigree. 416 

 417 

Comparing evolutionary predictions of the STS and MVBE 418 

For LD, the MVBE predicted a very small response to selection (∆z = -0.02 PSD or 0.09 419 

days, per generation) overall across the whole time period in the HV population, whereas the 420 

STS predicted a smaller response to selection (sg=-0.003 PSD, HPD interval: -0.053 – 0.031). 421 

Similarly, for the VE population, a very weak response to selection was predicted (error bars 422 

overlapping zero for both methods) by both the MVBE and the STS (Fig.4). These responses 423 

refer to the expected net rate of microevolution per generation, assuming constant directional 424 

selection. For CS, the MVBE predicted a very small positive response to selection (∆z = 425 

0.025 PSD, or 0.05 eggs, per generation) overall across the whole time period in the HV 426 

population. The modal estimate of the response to selection according to the STS was similar 427 

(sg = 0.035 PSD) but with a broader HPD interval that overlapped zero (-0.020 – 0.078 PSD). 428 

For the VE population, a slightly positive response to selection was predicted by the MVBE 429 

(∆z = 0.011 PSD, or 0.020 eggs per generation) across all years, while the STS predicted a 430 

slightly negative response (-0.003 PD) but with a HPD interval (-0.034 – 0.035 PSD) that 431 

overlapped zero (Fig.4). 432 

Predicted responses to selection were on average larger for both methods in years where 433 

phenotypic selection was stronger, and the MVBE and STS gave qualitatively and 434 
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quantitatively similar predictions when years were grouped according to phenotypic selection 435 

strength (Fig.4). The uncertainty associated with the STS predictions was considerably larger 436 

than that associated with the MVBE predictions (Fig.4). The general concordance between 437 

the MVBE and STS predictions reflected the fact that the genetic covariance between LD and 438 

CS overlapped zero in all trivariate animal models (Supplementary Table 1) and that no 439 

strong environmental biases to selection were found (which could have biased the MVBE, 440 

but not the STS, predictions). Thus indirect selection responses appeared not to play any role, 441 

at least with respect to the two traits considered in the analysis, as there was no evidence for 442 

statistically significant genetic covariance between them. 443 

 444 

Discussion 445 

Using six decades of individual-based life history data and advanced, powerful statistical 446 

techniques we have shown that (1) heritable variation in a key component of fitness (the 447 

annual number of recruits) exists and thus microevolution is possible in our study 448 

populations, (2) heritable variation exists for two key reproductive traits (LD and CS) known 449 

to affect fitness, and (3) selection estimates are relatively unbiased by missing traits or 450 

variables that may be correlated with these traits and fitness. This latter result is our most 451 

important finding and can be interpreted as a “quantitative genetic signature” (c.f. Morrissey 452 

and Ferguson 2011) of changing patterns of natural selection (see also Robinson et al. 2008).  453 

Phenotypic selection estimates in our great tit study populations are therefore reliable and not 454 

entirely driven by changes in environmental correlations between traits and fitness. This does 455 

not imply that the latter do not exist (βE for each trait was typically non-zero in the datasets 456 

analysed here, Fig.2, Table 2), nor that environmental relationships between trait and fitness 457 

are not also changing (βE was different for different phenotypic selection strength categories 458 
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in line with our predictions, i.e. it was more negative in years where sP for LD was more 459 

negative, and more positive in years where sP for CS was more positive, Fig.2, Table 2). 460 

Rather, changes to βE were paralleled by similar changes to βG (Fig.2), which implies that our 461 

phenotypic selection estimates were not unduly biased. Directional environmental change, for 462 

example associated with regional warming (Gienapp et al. 2013), should therefore induce 463 

evolutionarily-relevant selection. We note, however, that while equality of βG and βE for each 464 

trait is consistent with these traits causally affecting fitness, it is not sufficient: proportionality 465 

of the phenotypic and genetic covariance matrices for the focal and selected traits also gives 466 

rise to equality of βG and βE even when the regression coefficients do not represent the causal 467 

effect of the focal trait on fitness (see Section 2 in Appendix A of Hadfield 2008). Should 468 

covariance in year-effects on each trait should be included in the calculation of βE? The 469 

answer is not immediately obvious and depends on the extent to which (interannual) 470 

genotype-by-environment interactions contribute to overall trait variation and whether one 471 

conceives of selection as operating within years, or also across years. In our case, including 472 

year effects in the calculation of βE tended to make the latter deviate slightly more from βG 473 

(i.e. more bias) compared to when year-effects were excluded, but the differences were 474 

relatively minor, being somewhat more pronounced for CS because the year covariance was 475 

positive for that trait (Appendix 1). 476 

If we had found a significant deviation of βE from βG in our datasets (i.e. if the posterior 477 

distributions of βE – βG had not overlapped zero), this would have indicated that the null 478 

hypothesis of no bias to selection should have been rejected, which was not the case for any 479 

of the datasets we analysed. However, absence of evidence is not necessarily evidence of 480 

absence: a lack of significant bias could simply be explained by a lack of statistical power to 481 

detect true bias. Our power analyses indicated that we only had sufficient power to detect 482 

large biases (Fig.3), although what constitutes ‘large bias’ is somewhat subjective and 483 

Page 20 of 42



For Peer Review
 O

nly

21 

 

difficult to define. According to our power analysis, we had >80% power to detect biases in 484 

excess of approximately 0.4, but only 25-50% power to detect ‘moderate’ biases in the region 485 

of 0.2 to 0.3 (which encompassed many of the actual estimates of βE – βG, see Table 2) with 486 

the units here corresponding to those for standardised selection gradients, i.e. proportional 487 

change in relative fitness per phenotypic standard deviation. Stinchcombe et al. (2002) 488 

provided an analysis of environmentally-induced biases in phenotypic selection estimates 489 

based on field experiments with three species of annual plants and reported standardised 490 

selection gradients at both the phenotypic (βP) and additive genetic (βG) levels. The mean 491 

absolute bias based on their data (calculated as |βP - βG|, extracting the βP and βG values from 492 

their Tables 2, 3 and 4) was 0.28 (note that with no bias, βP =βG =βE) and ranged from 0.02 to 493 

0.77. Using this as a yardstick suggests that we had sufficient power in the current study to 494 

detect only relatively large biases, but Stinchcombe et al. (2002) noted that their estimated 495 

biases were likely conservative in that they were based on data from spatially replicated field 496 

experiments; i.e. most studies of selection in the wild are based on correlational data collected 497 

under uncontrolled environmental conditions, where environmental biases may be 498 

considerably larger. In the current study, the standard deviation in sP (sP is equivalent to 499 

univariate βP) for our great tit populations was 0.34 for LD and 0.28 for CS (pooling annual 500 

sP estimates from both populations). Denoting this standard deviation as σ(sP), as a rule of 501 

thumb one might consider biases between σ(sP) and 2σ(sP) as ‘moderate’ and biases in excess 502 

of 2σ(sP) as ‘large’. Thus while we lacked sufficient statistical power to detect ‘small’ biases 503 

(e.g. < σ(sP)), such minor biases would be less of a concern in the sense that inferences 504 

regarding evolutionarily relevant selection would be unlikely be too ‘far off the mark’ if only 505 

phenotypic-level information were available. Likewise, predictions of the response to 506 

selection based on the MVBE should not be too inaccurate (predictions based on the STS 507 
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would not suffer from the same problem, as they are unbiased by potential environmental 508 

covariances or missing traits).  509 

The STS and MVBE approaches yielded similar predicted responses to selection on each trait 510 

in each population (Fig.4). While the STS has the advantages over the MVBE that responses 511 

to selection can be estimated in a single model and are unbiased, one cannot disentangle 512 

direct from indirect components of selection/selection responses (Stinchcombe et al. 2014). 513 

The MVBE approach on the other hand suffers from the major disadvantage that one can 514 

only be sure that the predictions are accurate when all correlated traits under selection are 515 

included in the analysis (Stinchcombe et al. 2014). The broad concordance we found between 516 

the STS and MVBE predictions implies that missing correlated traits were not a major issue 517 

in our case. However, the uncertainty associated with both sets of predictions was substantial 518 

and thus we cannot rule out the existence of missing correlated traits completely, we can just 519 

infer that their potential absence did not unduly bias the MVBE estimates. The quantitative 520 

predictions themselves (under both approaches) must be treated with caution to some extent, 521 

however, because both the STS and MVBE make assumptions that are not entirely met by 522 

our data, such as constant demography and non-overlapping generations. Our primary goal in 523 

comparing the predictions of both approaches, however, was to assess the extent to which 524 

missing correlated traits may have been an issue, rather than to generate quantitatively 525 

accurate predictions of selection responses per se.  526 

By applying the analytical framework recommended by Stinchcombe et al. (2014), we were 527 

able to estimate partial genetic selection gradients for each trait and therefore to separate the 528 

effects of direct versus indirect selection. The results indicated that indirect components of 529 

selection were relatively unimportant, given that the estimates for βG were very similar to the 530 

estimates for sG. The phenotypic correlations between LD and CS were also relatively weak 531 

in both populations and the genetic correlations were not significantly different from zero 532 
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(Supplementary Table 1), implying that selection on one trait would not cause a correlated 533 

response in the other. A positive genetic correlation in this case would imply a genetically-534 

based trade-off, in that the traits are typically selected in opposite directions. Studies of other 535 

songbird populations have previously reported a negative genetic correlation between these 536 

traits (Sheldon et al. 2003, Garant et al. 2008) or no genetic correlation/a positive correlation 537 

(Husby et al. 2010), suggesting that genetic trade-offs between these avian reproductive traits 538 

are not inevitable and may even be population- or environment-specific. Estimates of genetic 539 

covariances/correlations are typically associated with large uncertainties (Lynch and Walsh 540 

1998) however, and comparisons of their strength across contexts must therefore be treated 541 

with caution. 542 

Patterns of phenotypic selection on LD and CS differed somewhat between the HV and VE 543 

study populations, with sP deviating more from zero in particular for LD in the HV 544 

population (Table 1, Supplementary Fig.1). In the early part of the study (1950s to early 545 

1980s) the breeding time of great tits in the HV study area was relatively well-matched, on 546 

average, with the caterpillar food peak and hence no net directional selection for earlier egg-547 

laying was expected or observed (Visser et al. 1998; Reed et al. 2013). An increasing 548 

phenological mismatch between great tits and their food then developed from the 1980s 549 

onwards as climate change unfolded (Visser et al. 1998, 2006, Chevin et al. 2015) and as a 550 

result, phenotypic selection for earlier laying intensified (Reed et al. 2013, Supplementary 551 

Fig.1). The strong selection category for LD therefore consisted of (largely, but not 552 

exclusively, more recent) years where phenological mismatch was high and this explains why 553 

βG was more negative in these (Fig. 2) and why a stronger response to selection was predicted 554 

(Fig. 4). The fact that the HPD intervals associated with βG and sG for LD overlap zero in all 555 

selection strength categories indicates that years with varying selection pressures (not only in 556 

terms of magnitude, but potentially also sign) are still pooled in these analyses, and also that 557 
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genetic signatures of directional selection are more difficult to pick out from the ‘noise’ when 558 

sample sizes are reduced like this. The importance of phenological matching with a shifting 559 

food peak has been less well-studied in the VE population, but it is likely that timing relative 560 

to seasonal peaks in caterpillar biomass plays a similar role in driving selection on LD in that 561 

area. Fluctuations in population density appear to drive selection on CS (Both et al. 2000; 562 

Saether et al. In Press): under high population densities with increased competition for 563 

resources or territories, individuals in good ‘condition’ would have a selective advantage, 564 

which means that under high densities breeders should trade-off a larger clutch size for an 565 

increased investment in offspring, leading to selection for smaller clutch size under high 566 

densities.  Climate change may also select indirectly on CS via a genetic correlation with LD, 567 

but as we have shown, evidence for genetic linkages between these traits was lacking in this 568 

study.  569 

On average over the six decades considered, selection appeared to favour earlier egg-laying 570 

and larger clutches in both populations and in the HV population mean LD advanced 571 

significantly over time, yet mean CS also exhibited an overall negative temporal trend 572 

(Supplementary Fig.1). For the VE population, both mean LD (b = -0.16 ± 0.06, P=0.01) and 573 

mean CS (b = -0.03 ± 0.01, P<0.001) exhibited significant negative temporal trends when the 574 

data were restricted to 1970 onwards (sample sizes were much smaller in the earlier years). 575 

Both patterns are likely mostly explained by phenotypic plasticity rather than microevolution. 576 

For LD it is well established that earlier egg-laying occurs as a plastic response to higher 577 

spring temperatures, with springs getting progressively warmer in recent decades in the 578 

Netherlands (Visser et al. 1998; 2006; Nussey et al. 2005, Husby et al. 2010). An increase in 579 

population density may drive a decrease in mean CS as a plastic response, yet population size 580 

has not exhibited a directional trend in the HV over time, although it has increased 581 
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significantly in VE. Other factors such as changes in food supply or habitat may also be 582 

responsible for the observed trends in CS in both populations.  583 

 584 

Testing for biases to selection using observational versus experimental approaches 585 

Here we tested for potential biases to selection using very long-term datasets and an animal 586 

model approach, which had the advantage of generality in the sense that the analyses 587 

integrated across many different types of years and hence variable selective pressures, 588 

whereas experimental approaches to the same question (e.g. Stinchombe et al. 2002) typically 589 

can only be carried out in one or a few years. Nonetheless, we acknowledge that correlational 590 

data have their limits and that experimental manipulations of putative targets of selections 591 

(i.e. phenotypes of interest) provide the most robust tests of whether traits truly causally 592 

affect fitness. Such experiments are logistically challenging, however.  593 

Several studies with birds have manipulated LD and CS (or brood size), and found that these 594 

manipulations affected reproductive success (e.g. Dijkstra et al. 1990; Daan et al. 1990; 595 

Verhulst and Tinbergen 1991; Brinkhof et al. 1993; Svensson 1997; Pettifor et al. 1998; 596 

Visser and Lessells 2001). Delaying breeding time by removing eggs, which were then 597 

replaced by the breeding female, reduced the reproductive success of the manipulated broods 598 

as expected (reviewed by Verhulst and Nilsson 2008). One problem with these egg-removal 599 

experiments, however, is that the manipulated females paid the cost of producing additional 600 

eggs (Visser & Lessels 2001), which could have impaired their subsequent parental effort and 601 

thereby also their reproductive success. Other experiments advanced LD by supplementary 602 

feeding (e.g. Nager et al. 1997). This manipulation, however, also affects the females’ 603 

condition (and thus potentially their fitness, independently of changes in LD) and it would be 604 

difficult to conclude that LD causally affects fitness from these experiments. Under the 605 
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‘individual optimisation hypothesis’, both reducing and enlarging CS should lead to a fitness 606 

decline (Nur 1997). Experiments manipulating CS generally found this (Pettifor et al. 1998; 607 

Tinbergen and Both 1999) but the fitness decline of enlarged broods (in the case of brood size 608 

manipulations ) was often smaller than expected, which can be explained by the fact that 609 

these females did not incur a cost for egg-production and incubation (Visser and Lessells 610 

2001, Monaghan and Nager 1997).  611 

While experiments therefore hint at causal relationships with fitness for both LD and CS, the 612 

extent of potential biases to selection estimates are more difficult to predict a priori and 613 

quantitative genetic analysis of correlational data, as we performed here, can help to clarify 614 

this. Such approaches applied to mammals (Kruuk et al. 2002; Robinson et al. 2008; 615 

Morrissey et al. 2012) indicate that environmental biases to selection can be substantial. 616 

Previous quantitative genetic tests in birds have been more equivocal (Sheldon et al. 2003; 617 

Gienapp et al. 2006) but based on two-step analyses of PBVs, which are known to be 618 

statistically unreliable (Postma 2006; Hadfield et al. 2010). Our analyses were based on a 619 

statistically robust, one-step animal model approach, as recommended by Hadfield 2008 (see 620 

also Morrissey et al. 2010) and recently applied by Robinson et al.(2008), by Morrissey and 621 

Ferguson (2011), by Morrissey et al. (2012) and by Tarka et al. (2015).  622 

 623 

Conclusions 624 

Our data show that potential for microevolution exists in this population and, crucially, that 625 

changing relationships between phenotypes and fitness are underpinned by changing 626 

selection on breeding values, which are both essential requirements for adaptive evolution in 627 

changing environments (Endler 1986). Future climate change is likely to lead to further 628 

directional selection on LD in particular (Gienapp et al. 2014).  While phenotypic plasticity 629 
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will allow for adaptive tracking of environmental change to some extent (Charmantier et al. 630 

2008; Vedder et al. 2013), microevolution will be crucial for long-term adaptation and 631 

population persistence (Visser 2008; Gienapp et al. 2013). The fact that selection acts on the 632 

genetic component of breeding time implies that evolution of LD can track climate change, 633 

provided the pace of climate change remains within demographically tolerable limits 634 

(Gienapp et al. 2013). We cannot however rule out the possibility of small to moderate 635 

magnitude biases to selection estimates, and thus environmental change may lead to weaker 636 

(or stronger) selection on underlying breeding values than might be predicted based on 637 

phenotypic relationships alone. Missing traits were not a major problem in our selection 638 

analyses, as indicated by the concordance between predictions based on the STS and MVBE 639 

approaches, but it is worth noting that unmeasured phenotypes may themselves have a 640 

genetic basis and be targets of section in a changing environment. Combining inferences from 641 

quantitative genetic analyses with experimental tests of causality will allow for better 642 

forecasting of potential responses to environmental change. Finally, we note that feedbacks 643 

between ecology and evolution, or so-called ‘eco-evolutionary dynamics’, require that 644 

ecologically-induced phenotypic selection actually results in microevolutionary responses, 645 

which in turn requires that selection acts on the genotypic component of trait variation (as we 646 

have shown here) rather than simply on the environmental component. This reinforces the 647 

need to better understand how different types of ecological change alter the relationship 648 

between breeding values for key traits and fitness. 649 

 650 

Acknowledgements 651 

We thank Arild Husby and Michael Morrissey for valuable discussions. Jarrod Hadfield and 652 

three anonymous reviewers provided very useful criticisms of a previous draft. TER was 653 

Page 27 of 42



For Peer Review
 O

nly

28 

 

supported by the Beaufort Marine Research Award in Fish Population Genetics funded by the 654 

Irish Government under the Sea Change Programme.  655 

 656 

References  657 

Both, C., J. M. Tinbergen, and M. E. Visser. 2000. Adaptive density dependence of avian 658 

clutch size. Ecology 81:3391–3403. 659 

Bouwhuis, S., O. Vedder, C. J. Garroway, and B. C. Sheldon. 2015. Ecological causes of 660 

multilevel covariance between size and first‐year survival in a wild bird population. J. Anim. 661 

Ecol. 84:208–218. 662 

Brinkhof, M. W., A. J. Cavé, F. J. Hage, and S. Verhulst. 1993. Timing of reproduction and 663 

fledging success in the coot Fulica atra: evidence for a causal relationship. J. Anim. Ecol. 664 

577–587. 665 

Burt, A. 1995. Perspective: the evolution of fitness. Evolution 49:1–8. 666 

Carlson, S. M., C. J. Cunningham, and P. A. Westley. 2014. Evolutionary rescue in a 667 

changing world. Trends Ecol. Evol. 29:521–530. 668 

Caro, S. P., A. Charmantier, M. M. Lambrechts, J. Blondel, J. Balthazart, and T. D. Williams. 669 

2009. Local adaptation of timing of reproduction: females are in the driver’s seat. Funct. 670 

Ecol. 23:172–179. 671 

Charmantier, A., and P. Gienapp. 2014. Climate change and timing of avian breeding and 672 

migration: evolutionary versus plastic changes. Evol. Appl. 7:15–28. 673 

Charmantier, A., R. H. McCleery, L. R. Cole, C. Perrins, L. E. Kruuk, and B. C. Sheldon. 674 

2008. Adaptive phenotypic plasticity in response to climate change in a wild bird population. 675 

Science 320:800–803.  676 

Chevin, L.-M., M. E. Visser, and J. Tufto. 2015. Estimating the variation, autocorrelation, 677 

and environmental sensitivity of phenotypic selection. Evolution 69:2319–2332. 678 

Page 28 of 42



For Peer Review
 O

nly

29 

 

Crow, J. F., and T. Nagylaki. 1976. The rate of change of a character correlated with fitness. 679 

Am. Nat. 110: 207–213. 680 

Daan, S., C. Dijkstra, and J. M. Tinbergen. 1990. Family planning in the kestrel (Falco 681 

tinnunculus): the ultimate control of covariation of laying date and clutch size. Behaviour 682 

114:83–116. 683 

Dijkstra, C., A. Bult, S. Bijlsma, S. Daan, T. Meijer, and M. Zijlstra. 1990. Brood size 684 

manipulations in the kestrel (Falco tinnunculus): effects on offspring and parent survival. J. 685 

Anim. Ecol. 269–285. 686 

Endler, J. A. 1986. Natural selection in the wild. Princeton University Press, Princeton. 687 

Estes, S., and S. J. Arnold. 2007. Resolving the paradox of stasis: models with stabilizing 688 

selection explain evolutionary divergence on all timescales. Am. Nat. 169:227–244. 689 

Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. Longman, 690 

London. 691 

Fisher, R. A. 1958. The genetical theory of natural selection. 2nd ed. Dover, New York. 692 

Foulley, J. L. and Im, S. 1993. A marginal quasi-likelihood approach to the analysis of 693 

Poisson variables with generalized linear mixed models. Genet. Sel. Evol. 23: 101-107. 694 

Garant, D., J. D. Hadfield, L. E. Kruuk, and B. C. Sheldon. 2008. Stability of genetic 695 

variance and covariance for reproductive characters in the face of climate change in a wild 696 

bird population. Mol. Ecol. 17:179–188. 697 

Gienapp, P., M. Lof, T. E. Reed, J. McNamara, S. Verhulst, and M. E. Visser. 2013. 698 

Predicting demographically sustainable rates of adaptation: can great tit breeding time keep 699 

pace with climate change? Philos. Trans. R. Soc. B Biol. Sci. 368:20120289. 700 

Gienapp, P., E. Postma, and M. E. Visser. 2006. Why breeding time has not responded to 701 

selection for earlier breeding in a songbird population. Evolution 60:2381–2388. 702 

Page 29 of 42



For Peer Review
 O

nly

30 

 

Gienapp, P., T. E. Reed, and M. E. Visser. 2014. Why climate change will invariably alter 703 

selection pressures on phenology. Proc. R. Soc. B Biol. Sci. 281:20141611. 704 

Gomulkiewicz, R., and R. D. Holt. 1995. When does evolution by natural selection prevent 705 

extinction? Evolution 49: 201–207. 706 

Gonzalez, A., O. Ronce, R. Ferriere, and M. E. Hochberg. 2013. Evolutionary rescue: an 707 

emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. B 708 

Biol. Sci. 368:20120404. 709 

Hadfield, J. D. 2010. MCMC methods for multi-response generalized linear mixed models: 710 

the MCMCglmm R package. J. Stat. Softw. 33:1–22. 711 

Hadfield, J. D., A. J. Wilson, D. Garant, B. C. Sheldon, and L. E. Kruuk. 2010. The misuse of 712 

BLUP in ecology and evolution. Am. Nat. 175:116–125. 713 

Holt, R. D. 1990. The microevolutionary consequences of climate change. Trends Ecol. Evol. 714 

5:311–315. 715 

Husby, A., D. H. Nussey, M. E. Visser, A. J. Wilson, B. C. Sheldon, and L. E. Kruuk. 2010. 716 

Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit (Parus 717 

major) populations. Evolution 64:2221–2237. 718 

Kruuk, L. E. 2004. Estimating genetic parameters in natural populations using the “animal 719 

model.” Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359:873–890. 720 

Kruuk, L. E., J. Merilä, and B. C. Sheldon. 2001. Phenotypic selection on a heritable size trait 721 

revisited. Am. Nat. 158:557–571. 722 

Kruuk, L. E., J. Merilä, and B. C. Sheldon. 2003. When environmental variation short-723 

circuits natural selection. Trends Ecol. Evol. 18:207–209. 724 

Kruuk, L. E., J. Slate, J. M. Pemberton, S. Brotherstone, F. Guinness, and T. Clutton‐Brock. 725 

2002. Antler size in red deer: heritability and selection but no evolution. Evolution 56:1683–726 

1695. 727 

Page 30 of 42



For Peer Review
 O

nly

31 

 

Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. 728 

Evolution 30: 314–334. 729 

Lande, R., and S. J. Arnold. 1983. The measurement of selection on correlated characters. 730 

Evolution 37: 1210–1226. 731 

Lynch, M., and B. Walsh. 1998. Genetics and Analysis of Quantitative Traits. 1st ed. Sinauer 732 

Associates, Incorporated, Sunderland. 733 

MacColl, A. D. 2011. The ecological causes of evolution. Trends Ecol. Evol. 26:514–522. 734 

Merilä, J., B. C. Sheldon, and L. E. B. Kruuk. 2001. Explaining stasis: microevolutionary 735 

studies in natural populations. Genetica 112:199–222  736 

Monaghan, P., and R. G. Nager. 1997. Why don’t birds lay more eggs? Trends Ecol. Evol. 737 

12:270–274. 738 

Morrissey, M. B., P. de Villemereuil, B. Doligez, and O. Gimenez. 2014. Bayesian 739 

approaches to the quantitative genetic analysis of natural populations. In: Charmantier A, 740 

Garant D and Kruuk LEB, editors. Quantitative Genetics in the Wild. Oxford University 741 

Press, Oxford, UK. pp. 228–253. 742 

Morrissey, M. B., and M. M. Ferguson. 2011. A test for the genetic basis of natural selection: 743 

an individual-based longitudinal study in a stream-dwelling fish. Evolution 65:1037–1047. 744 

Morrissey, M. B., L. E. B. Kruuk, and A. J. Wilson. 2010. The danger of applying the 745 

breeder’s equation in observational studies of natural populations. J. Evol. Biol. 23:2277–746 

2288. 747 

Morrissey, M. B., D. J. Parker, P. Korsten, J. M. Pemberton, L. E. Kruuk, and A. J. Wilson. 748 

2012. The prediction of adaptive evolution: empirical application of the secondary theorem of 749 

selection and comparison to the breeder’s equation. Evolution 66:2399–2410. 750 

Nager, R. G., C. Ruegger, and A. J. Van Noordwijk. 1997. Nutrient or energy limitation on 751 

egg formation: a feeding experiment in great tits. J. Anim. Ecol. 495–507. 752 

Page 31 of 42



For Peer Review
 O

nly

32 

 

Nur, N. 1987. Alternative reproductive tactics in birds: individual variation in clutch size. Pp. 753 

49–77 in Perspectives in ethology. Springer. 754 

Pettifor, R. A., C. M. Perrins, and R. H. McCleery. 1988. Individual optimization of clutch 755 

size in great tits. Nature 336:160–162. 756 

Postma, E., and A. J. van Noordwijk. 2005. Gene flow maintains a large genetic difference in 757 

clutch size at a small spatial scale. Nature 433:65–68. 758 

Postma, E. 2006. Implications of the difference between true and predicted breeding values 759 

for the study of natural selection and micro‐evolution. J. Evol. Biol. 19:309–320. 760 

Postma, E., J. Visser, and A. J. Van Noordwijk. 2007. Strong artificial selection in the wild 761 

results in predicted small evolutionary change. J. Evol. Biol. 20:1823–1832. 762 

Price, G. R. 1970. Selection and covariance. Nature 227:520–21. 763 

Price, T., M. Kirkpatrick, and S. J. Arnold. 1988. Directional selection and the evolution of 764 

breeding date in birds. Science(Washington) 240:798–799. 765 

Rausher, M. D. 1992. The measurement of selection on quantitative traits: biases due to 766 

environmental covariances between traits and fitness. Evolution 46:616–626. 767 

Reed, T. E., S. Jenouvrier, and M. E. Visser. 2013. Phenological mismatch strongly affects 768 

individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 769 

82:131–144. 770 

Robertson, A. 1966. A mathematical model of the culling process in dairy cattle. Anim. Prod. 771 

8:95–108. 772 

Robinson, M. R., J. G. Pilkington, T. H. Clutton-Brock, J. M. Pemberton, and L. E. Kruuk. 773 

2008. Environmental heterogeneity generates fluctuating selection on a secondary sexual 774 

trait. Curr. Biol. 18:751–757. 775 

Page 32 of 42



For Peer Review
 O

nly

33 

 

Sæther, B.-E., Visser, M.A., Grøtan, V., and Engen, S. In Press. Evidence for r- and K-776 

selection in a wild bird population: a reciprocal link between ecology and evolution. Proc. R. 777 

Soc. Lond. B Biol. Sci.  778 

Scheiner, S. M., K. Donohue, L. A. Dorn, S. J. Mazer, and L. M. Wolfe. 2002. Reducing 779 

environmental bias when measuring natural selection. Evolution 56:2156–2167. 780 

Schluter, D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 1766–781 

1774. 782 

Sheldon, B. C., L. E. B. Kruuk, and J. Merila. 2003. Natural selection and inheritance of 783 

breeding time and clutch size in the collared flycatcher. Evolution 57:406–420. 784 

Smouse, P. E., T. R. Meagher, and C. J. Kobak. 1999. Parentage analysis in Chamaelirium 785 

luteum (L.) Gray (Liliaceae): why do some males have higher reproductive contributions? J. 786 

Evol. Biol. 12:1069–1077. 787 

Stinchcombe, J. R., M. T. Rutter, D. S. Burdick, P. Tiffin, M. D. Rausher, and R. Mauricio. 788 

2002. Testing for environmentally induced bias in phenotypic estimates of natural selection: 789 

theory and practice. Am. Nat. 160:511–523. 790 

Stinchcombe, J. R., A. K. Simonsen, and M. Blows. 2014. Estimating uncertainty in 791 

multivariate responses to selection. Evolution 68:1188–1196. 792 

Svensson, E. 1997. Natural selection on avian breeding time: causality, fecundity-dependent, 793 

and fecundity-independent selection. Evolution 1276–1283. 794 

Tarka, M., B. Hansson, and D. Hasselquist. 2015. Selection and evolutionary potential of 795 

spring arrival phenology in males and females of a migratory songbird. J. Evol. Biol. 5: 796 

1024–1038. 797 

Tinbergen, J. M., and C. Both. 1999. Is clutch size individually optimized? Behav. Ecol. 798 

10:504–509. 799 

Page 33 of 42



For Peer Review
 O

nly

34 

 

Vedder, O., S. Bouwhuis, and B. C. Sheldon. 2013. Quantitative assessment of the 800 

importance of phenotypic plasticity in adaptation to climate change in wild bird populations. 801 

PLoS Biol. 11:e1001605. 802 

Verhulst, S., and J. M. Tinbergen. 1991. Experimental evidence for a causal relationship 803 

between timing and success of reproduction in the great tit Parus m. major. J. Anim. Ecol. 804 

269–282. 805 

Verhulst, S., and J.-Å. Nilsson. 2008. The timing of birds’ breeding seasons: a review of 806 

experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 807 

363:399–410. 808 

Visser, M. E., and C. M. Lessells. 2001. The costs of egg production and incubation in great 809 

tits (Parus major). Proc. R. Soc. Lond. B Biol. Sci. 268:1271–1277. 810 

Visser, M. E. 2008. Keeping up with a warming world; assessing the rate of adaptation to 811 

climate change. Proc. R. Soc. B Biol. Sci. 275:649–659. 812 

Visser, M. E., L. J. Holleman, and P. Gienapp. 2006. Shifts in caterpillar biomass phenology 813 

due to climate change and its impact on the breeding biology of an insectivorous bird. 814 

Oecologia 147:164–172. 815 

Visser, M. E., A. J. Van Noordwijk, J. M. Tinbergen, and C. M. Lessells. 1998. Warmer 816 

springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B Biol. 817 

Sci. 265:1867–1870. 818 

Walsh, B., and M. W. Blows. 2009. Abundant genetic variation+ strong selection= 819 

multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 820 

40:41–59. 821 

Wilson, A. J. 2008. Why h2 does not always equal VA/VP? J. Evol. Biol. 21:647–650. 822 

Page 34 of 42



For Peer Review
 O

nly

35 

 

Wilson, A. J., D. Réale, M. N. Clements, M. M. Morrissey, E. Postma, C. A. Walling, L. E. 823 

B. Kruuk, and D. H. Nussey. 2010. An ecologist’s guide to the animal model. J. Anim. Ecol. 824 

79:13–26. 825 

 826 

 827 

Figure legends: 828 

Fig.1 Schematic of hypothetical relationships between trait and fitness at the genetic (filled 829 

circles, solid lines in insets) and environmental levels (open circles, dashed lines in insets). 830 

Each panel corresponds to a different scenario of environmental bias (quantified as βE - βG), 831 

with three different strengths of phenotypic selection (overall relationship between trait and 832 

fitness at phenotypic level) shown in each. 833 

 834 

Fig.2 Relationships between trait and fitness, measured as standardised selection gradients, at 835 

the genetic (βG, filled circles) versus environmental level (βE, open circles) for years with 836 

weak, medium and strong phenotypic selection on each trait in each study population. Shown 837 

are posterior modes ± highest posterior density intervals. 838 

 839 

Fig. 3 Power analysis results. Filled circles and solid line: HV population. Open circles and 840 

dashed line: VE population.  841 

 842 

Fig.4 Comparing predictions of responses to selection based on the secondary theorem of 843 

selection (STS, grey bars) and multivariate breeder’s equation (MVBE, black bars) 844 

Page 35 of 42



For Peer Review
 O

nly

36 

 

approaches. Units are phenotypic standard deviations. See main text for explanation of error 845 

bars.  846 

 847 

Supplementary Fig. 1: Phenotypic patterns. Top row: sp for LD as a function of year for 848 

each population.  Second row: sp for CS as a function of year for each population. Third row: 849 

mean LD (± standard deviation) as a function of year for each population. Bottom row: mean 850 

CS (± standard deviation) as a function of year for each population. 851 

 852 

 853 
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Table 1: Datasets analysed and associated sample sizes. For both study areas, years were split into groups according to variation in standardised 1 

phenotypic selection differentials (sP) for laying date and clutch size. ‘N records’ refers to the number of first clutches monitored. ‘N females’ 2 

refers to the number of uniquely marked individual females producing those clutches (some females breed in multiple years). 3 

  Laying date (LD) Clutch size (CS) 

  

All years 

LD 

Weak 

phenotypic 

selection on 

LD 

Medium 

phenotypic 

selection on 

LD 

Strong 

phenotypic 

selection on 

LD 

All years 

CS 

Weak 

phenotypic 

selection on 

CS 

Medium 

phenotypic 

selection on 

CS 

Strong 

phenotypic 

selection on 

CS 

Hoge 

Veluwe 

N years 59 20 19 20 59 20 19 20 

N records 4062 1333 1642 1087 4062 1271 1500 1291 

N females 2871 1186 1414 960 2871 1154 1238 1093 

Mean sP -0.14 0.17 -0.22 -0.55 0.16 -0.16 0.12 0.46 

Min sP -1.06 -0.05 -0.34 -1.06 -0.68 -0.68 0.03 0.25 

Max sP 0.98 0.98 -0.07 -0.36 0.69 0.01 0.24 0.69 

Vlieland 

East 

N years 51 17 17 17 51 17 17 17 

N records 2714 504 1373 837 2714 863 977 874 

N females 1663 439 1030 763 1663 747 807 729 

Mean sP -0.004 0.29 -0.02 -0.28 0.02 -0.24 0.05 0.26 

Min sP -0.86 0.08 -0.11 -0.86 -0.72 -0.72 -0.01 0.14 

Max sP 0.64 0.64 0.06 -0.13 0.48 -0.02 0.14 0.48 

 4 

 5 

 6 

 7 
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Table 2: Estimates of the extent of environmental bias to selection (βE – βG) based on the trivariate animal models. PS = phenotypic selection. βG 1 

= genetic selection gradient. βE = environmental selection gradient. Mode = mode of posterior distribution. LCI/UCI = lower/upper highest 2 

posterior density intervals. 3 

Study area Trait Dataset 
 βE – βG 

(mode) 

βE – βG 

(LCI) 

βE – βG 

(UCI) 

 βG 

(mode) 

βG 

(LCI) 

βG 

(UCI) 

 βE 

(mode) 

βE 

(LCI) 

βE 

(UCI) 

Hoge Veluwe Clutch size All years  0.01 -0.24 0.32  0.06 -0.15 0.33  0.09 0.04 0.21 

  
Weak PS  -0.13 -0.42 0.74  -0.31 -0.78 0.23  -0.05 -0.35 0.09 

  
Medium PS  -0.01 -0.23 0.46  0.10 -0.26 0.29  0.11 -0.01 0.25 

  
Strong PS  -0.21 -0.59 0.26  0.51 0.14 0.77  0.34 0.10 0.50 

 Laying date All years  -0.03 -0.46 0.21  -0.08 -0.31 0.26  -0.20 -0.24 -0.06 

  Weak PS  -0.09 -0.59 0.42  0.29 -0.18 0.63  0.05 -0.09 0.21 

  Medium PS  0.02 -0.59 0.43  -0.20 -0.43 0.47  -0.14 -0.32 -0.04 

  Strong PS  -0.26 -0.92 0.49  -0.27 -0.92 0.26  -0.56 -0.73 -0.31 

Vlieland East Clutch size All years  0.11 -0.14 0.27  -0.02 -0.17 0.19  0.08 0.01 0.12 

  Weak PS  -0.22 -0.57 0.23  -0.15 -0.27 0.41  -0.15 -0.25 -0.05 

  Medium PS  0.10 -0.42 0.32  -0.06 -0.26 0.42  0.02 -0.05 0.13 

  Strong PS  0.07 -0.24 0.46  0.25 -0.12 0.47  0.22 0.10 0.32 

 Laying date All years  -0.01 -0.20 0.24  -0.06 -0.26 0.12  0.01 -0.07 0.05 

  Weak PS  0.17 -0.33 0.44  0.19 -0.21 0.45  0.21 0.08 0.36 

  Medium PS  -0.02 -0.38 0.21  0.03 -0.20 0.28  0.00 -0.12 0.06 

  Strong PS  -0.05 -0.29 0.45  -0.05 -0.54 0.12  -0.11 -0.25 -0.05 

 4 

 5 

 6 

 7 
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