
Title MiniNAM: A network animator for visualizing real-time packet
flows in Mininet

Authors Khalid, Ahmed;Quinlan, Jason J.;Sreenan, Cormac J.

Publication date 2017-03-07

Original Citation Khalid, A., Quinlan, J. J. and Sreenan, C. J. 'MiniNAM: A network
animator for visualizing real-time packet flows in Mininet'. 2017
20th Conference on Innovations in Clouds, Internet and Networks
(ICIN), Paris, France, 7-9 March 2017, pp. 229-231. doi:10.1109/
ICIN.2017.7899417

Type of publication Conference item

Link to publisher's
version

10.1109/ICIN.2017.7899417

Rights © 2016 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-03-29 11:04:12

Item downloaded
from

https://hdl.handle.net/10468/4757

https://hdl.handle.net/10468/4757


MiniNAM: A Network Animator for Visualizing
Real-Time Packet Flows in Mininet

Ahmed Khalid, Jason J. Quinlan and Cormac J. Sreenan
Department of Computer Science, University College Cork, Ireland

Email: a.khalid@cs.ucc.ie, j.quinlan@cs.ucc.ie, cjs@cs.ucc.ie

Abstract—In this demonstration we present MiniNAM, a utility
that provides real-time animation of networks created by the
Mininet emulator. Mininet is one of the most well-known network
emulators in research and academia. Although Mininet is capable
of emulating both traditional and software-defined networks, it
does not provide a tool to visually observe and monitor the
packets flowing over the created network topology. Our utility
includes all the components required to initiate, visualize and
modify Mininet network flows in real-time. MiniNAM provides
a graphical user interface that allows dynamic modification of
preferences and packet filters: a user can view selective flows
with options to color code packets based on packet type and/or
source node. This establishes MiniNAM as a very powerful
tool for debugging network protocols or teaching, learning and
understanding network concepts. This demonstration illustrates
a number of sample use cases and examples of using MiniNAM
to create networks and view the generated network flows with
customized preferences.

Index Terms—Mininet, MiniNAM, Network Animation, Net-
work Visualization, Software-Defined Networks, SDN

I. INTRODUCTION

Network simulation tools such as NS2 [1] and emulation
tools such as Mininet [2] are widely used for the validation of
new network protocols in research and learning/understanding
network concepts in academia. One of the main challenges
with simulators and emulators is how to monitor the state of
the network across what could be a large number of network
entities and to analyze the complex and frequent message
exchanges between these entities.

Packet traces generated by simulators contain static outputs
and a huge amount of detail, limiting the user’s ability to
comprehend the data. Similarly in emulated networks, statis-
tics are generally gathered in raw form or at the end of the
emulation, hiding the dynamics of the protocol behaviour. Net-
work visualization and animation tools address such problems.
A network animator, like NAM [3] for NS2, allows users
to quickly gather large amounts of traffic details, to visually
identify patterns in communication, and to better understand
causality and interaction.

Mininet is one of the most widely used network emulators.
It creates a virtual network with fully operational nodes and
allows interaction among these nodes, giving a more realistic
and complete interpretation of a network in comparison to
simulators like NS2. One of the key features of Mininet
is its support for OpenFlow and Software-Defined Network
(SDN) systems. Creating SDNs with Mininet can be as easy as
running a single command. Mininet provides some visual tools
like MiniEdit and Virtual Network Description (VND) [4] that

further simplify the generation of network topology however,
unlike NS2, Mininet does not provide a tool for visualization
of traffic and packets flowing over the created network topol-
ogy.

II. DESIGN OVERVIEW

In this paper, we present MiniNAM, A Network Animator
for Visualizing Real-Time Packet Flows in Mininet. MiniNAM
is a graphical user interface (GUI) tool written with Tkinter
and Mininets Python API (Figure 1). MiniNAM provides visu-
alization of the main topology view, from which the user can
derive a number of specialized views based on packet types
and source or destination nodes. The UI provides a means
of viewing traffic flows, monitoring traffic patterns as well
as the packet-level details necessary to design new protocols.
MiniNAM has no additional dependencies and can run on any
system that has Mininet installed on it. MiniNAM contains all
the components needed to create a network, to capture traffic
flows, customize visualization parameters and finally display
the run-time progression of packets from source nodes to
destination nodes over appropriate links. While the scalability
of MiniNAM is dependent on the hardware on which it is
being run, MiniNAM can conveniently support networks of
any size that can be created by Mininet on a certain machine.
In our calculations, visualisation of the underlying Mininet
topologies in MiniNAM generates little demand in overall
CPU usage, but dependent on preferences and filters chosen,
defined in later sections, overall CPU loading does increase
but not significantly.

Like Mininet, to create a network, users can execute the
MiniNAM utility from the command line by passing various
arguments. To simplify the use of MiniNAM, arguments are
kept in the same format and structure as the Mininet ’mn’
utility. To provide support for custom defined topologies,
MiniNAM provides a ’–custom’ argument which can be used
to load a user-defined python script. MiniNAM also supports

Fig. 1. System Design of MiniNAM



(a) Preferences (b) Filters (c) Statistics on all network interfaces

Fig. 2. Example of some of the dialog boxes available in MiniNAM.

TABLE I
PREFERENCES AND FILTER OPTIONS TO CUSTOMIZE FLOW DISPLAY

Preferences
Speed of packet flows Flows can be viewed in real time or adjusted

to a slower speed
Color code packets If selected, flows from each source node will

have a different color
Colors for packet types Option to choose a different color for dif-

ferent packet types
Show source IP on packets If selected, first and last octet of IP address

of source node will be displayed on every
packet

Show node statistics If selected, node statistics will be shown
instantly on mouse hover over any node

Filters
Show Packets Types Specified packet/frame types will be dis-

played.
Hide Packet Types Specified packet/frame types not displayed.
Hide Packets from IP/MAC Specified source IP/MAC not shown
Hide Packets to IP/MAC Specified destination IP/MAC not shown

networks with multiple controllers to enable visualization of
more complex networks. To create such a network, a custom
python script can be written and switches can be attached to
one or more controllers. On execution of a command, a GUI
will load and present the created topology with option to drag
nodes around in the created window. (X,Y) positions can also
be defined for the nodes in the python script.

A number of menus have been added to ease customization
of the displayed flows:

• Preferences: As illustrated in Figure 2a, this menu, se-
lected from the Edit menu of MiniNAM, permits a means
of customizing the view of flows that will be generated.
Options in the File menu can be used to save these
preferences and load them later for other emulations.

• Filters: As shown in Figure 2b, this menu offer a means
of limiting the types of packet being visualised, based on
packet types, and respective IP and MAC addresses.

Each of the respective parameters in the menus above are
further detailed in Table I. Further customization can be done
by modifying the underlying source code. MiniNAM also
provides other features through the Run menu that include:
pausing the display of flows at a certain time, clearing the
existing flows and viewing OpenFlow switch configurations.
Once the traffic starts flowing, MiniNAM provides real-time
information of the number of packets transmitted and received

by every network node. Once this option has been turned on
from the preferences menu, statistics will be shown when the
cursor hovers over a node. In addition, statistical information
of every interface in the network can be seen (Figure 2c) in
the Run menu.

To provide interaction between elements in the network,
each simulated node contains an option to open a terminal
window by which additional network traffic or application
level programs can be executed. All generated traffic will be
displayed according to user preferences. The user can also
observe the behaviour of network failures on the emulated
network, by using the link down option to simulate a broken
link.

III. APPLICATION OF MININAM

In this section we briefly discuss the role of MiniNAM in
education and research.

• Education: Teachers can use MiniNAM to animate net-
working principles in class or within a lab scenario.
Students can use MiniNAM to compare and understand
network protocols. By slowing down the speed of network
flows, and viewing how packets traverse the network,
students can understand the relationship between the
control and data aspects of the network.

• Research: Researchers can use MiniNAM to investigate
new networking concepts, debug real-life network appli-
cations, as illustrated in [5] where an early prototype of
MiniNAM was used to show real-time video streaming,
and do more advanced comparisons by using the network
interface summary to check the number of packets and/or
bytes crossing each network node and interface.

IV. DEMONSTRATION OVERVIEW

In this demonstration we present our utility MiniNAM,
through the use of three pre-defined distinct network protocol
examples, and an interactive real-time UDP/TCP demonstra-
tion using iperf. We illustrate how MiniNAM can be utilized
to visualize a fully functioning network and associated packet
flows. Also, and more importantly, we show the effectiveness
of MiniNAM when the control of the network inefficiently
manages the network, through the incorrect implementation
of either protocols, nodes or flows.

While the three pre-defined examples present a broad range
of network protocols, the interactive demonstration illustrates



(a) Load balancing. The traffic from three
servers can be viewed as different colors
traveling towards the client.

(b) ICMP Packet visualization in NAT. The
change in IP address of packets can be seen
once a packet crosses router r0

(c) Re-routing packets. A broken data link
(shown in dotted) results in packets follow-
ing a different route (s1-s2-s3).

Fig. 3. Three network protocol examples illustrating the generated topology and associated packet flows in MiniNAM.

how to visualize and customized various parameters in Mini-
NAM. In this demonstration, we also initiate Mininet network
topologies, customize preferences, generate traffic and visual-
ize packet flows over the network. The three network protocol
examples are:

• Load Balancing: This example uses a Ryu SDN con-
troller to implement Server Load Balancing using an
OpenFlow switch. A client requests traffic that can be
served from three servers. The switch divides the traffic
load among servers based on the logic implemented by
the controller. To set up the example follow the steps at 1

to setup the load balancer and then run MiniNAM. This
will create a topology with one switch and four hosts, as
seen in Figure 3a. An echo server can be started on three
of these hosts and if pings are sent from client, the packets
can be seen distributed among the servers. This example
illustrates an excellent use case where MiniNAM can
make debugging easier when designing a new network
protocol or algorithm.

• NAT: This example uses the simple linuxrouter example
provided in Mininet to create a network with one NAT-
enabled router connected to three switches. Three hosts,
each on a different network communicate through a
NAT enabled-Linux Router and if NAT is implemented
properly, packets will be routed correctly and this can
be seen in MiniNAM. MiniNAM can display the flowing
packets as well as the change in IP address of packets
when they pass through the router. Figure 3b outlines
how the real-time visualization of packets can make it
easier for students to grasp network concepts.

• Re-Routing: Taken from the Spanning Tree example in
the Ryu controller, this example creates a network with
multiple paths between hosts. If a path is broken and an
alternate path is available, the controller tries to update
the path. In this example Hosts are connected to each
other through multiple paths. By simulating a broken link,

1https://github.com/OpenState-SDN/ryu/wiki/Server-Load-Balancing

the behavior of the routing protocol can be monitored
and the response can be viewed in real-time, as shown
in Figure 3c, simplifying the instantaneous analysis and
debugging of a realistic network failure.

For our real-time interactive demonstration, we utilise iperf
to generate UDP and TCP traffic, and we ask the conference
attendees to exploit the preference and filtering capabilities
of MiniNAM to adapt and alter the traffic flows. A detailed
tutorial on how to build and run MiniNAM to replicate and
repeat these examples is available at 2. On the webpage, we
offer additional scripts, with inadequate code, which illustrate
how MiniNAM can be used to determine when the code
is logically incorrect or insufficient to create the required
network functionality. We provide a MiniNAM binary file
on the webpage which is capable of all the functionalities
mentioned in this paper.

Acknowledgement: This publication has emanated from
research conducted with the financial support of Science
Foundation Ireland (SFI) under Grant Number 13/IA/1892.
Special thanks to Darijo Raca and Alexander Revyakin for
their advice and assistance in this work.

REFERENCES

[1] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu and H. Yu. Advances in
Network Simulation. Computer, Vol. 33 No.5, May 2000.

[2] B. Lantz, B. Heller and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, October 2010.

[3] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu and H. Yu.
Network Visualization with Nam, the VINT Network Animator. Computer,
Vol. 33 No.11, November 2000.

[4] R. R. Fontes, A. L. Oliveira, P. N. Sampaio, T. R. Pinherio and
R. A. Figueira. Authoring of OpenFlow networks with visual network
description (SDN version). Proc. Summer Simulation Multiconference,
July 2014.

[5] J. J. Quinlan, A. Reviakin, A. Khalid, K. K. Ramakrishnan and
C. J. Sreenan, D-LiTE-ful: An evaluation platform for DASH QoE for
SDN-enabled ISP offloading in LTE. Proc. of the 10th ACM International
Workshop on Wireless Network Testbeds, Experimental evaluation &
CHaracterization (WINTECH), October 2016.

2http://www.cs.ucc.ie/misl/research/current/ivid demo/mininam/


