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Abstract 

Since Si is struggling with fundamental limitations in aggressively scaled 

devices, new higher mobility materials like Ge and III-V have become of interest as 

potential replacements in advanced CMOS technology. However with respect to the 

underlying knowledge and research, these materials seem quite young, compared to 

Si which has more than 40 years of research behind it. Undoubtedly to be widely 

used in advanced CMOS devices, the process and integration of these materials has 

to be well established so that their high mobility benefit is not swamped by 

imperfect manufacturing procedures. 

In this dissertation number of key bottlenecks in realization of Ge devices are 

investigated; 

First we address the challenge of the formation of low resistivity contacts on n-

type Ge, comparing conventional and advanced rapid thermal annealing (RTA) and 

laser thermal annealing (LTA) techniques respectively. LTA appears to be a 

feasible approach for realization of low resistivity contacts with an incredibly sharp 

germanide-substrate interface and contact resistivity in the order of 10
 -7

 Ω.cm
2
. The 

thermal stability of these contacts has to be carefully addressed. 

Further obstacles were also studied from a dopant activation level and leakage 

current point of view, where the influence of RTA and LTA on dopant activation 

and leakage current suppression in n+/p Ge junction were compared. Providing very 

high active carrier concentration > 10
20 

cm
-3

, LTA resulted in higher leakage current 

compared to RTA which provided lower carrier concentration ~ 10
19 

cm
-3

. This is 

an indication of a trade-off between high activation level and junction leakage 

current. Obtaining high ION/IOFF ratio ~ 10
7
 was the main achievement of this study, 

which to the best of our knowledge is the best reported value for n-type Ge so far. 

The final part of this PhD was devoted to studies on Ge thin body structures. 

Simulations were carried out to investigate how target sputtering, dose retention, 

and damage formation is generated in thin-body semiconductors by means of 

energetic ion impacts and how they are dependent on the target physical material 

properties. Solid phase epitaxy studies in wide and thin Ge fins confirmed the 
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formation of twin boundary defects and random nucleation growth, like in Si, but 

here 600 °C annealing temperature was found to be effective to reduce these 

defects. Finally, a non-destructive doping technique was successfully implemented 

to dope Ge nanowires, where nanowire resistivity was reduced by 5 orders of 

magnitude using PH3 based in-diffusion process. 
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Chapter 1 

Introduction  

1.1  Motivation and background  

The idea of making a transistor goes back to 1925 when Julius Edgar Lilienfeld 

invented a field effect transistor (FET) [1]. He only filed a patent on his work but 

later on it was proved that his device was operational [2].  

In 1947 a new working transistor was made from Ge semiconductor. A couple of 

years later another transistor made from Si was introduced, which was more 

interesting than Ge transistor due to the inexpensive, abundant, Si substrate and its 

superb stable native oxide. The amorphous SiO2 has a large energy gap of 

approximately 9 eV, and a dielectric strength which is sufficient for supporting 

electric field strengths of several megavolts/cm, (10
6
 V/cm) which is especially 

critical for metal-oxide-semiconductor field effect transistor (MOSFET) operation 

[3]. Since then Si has been the main material used in semiconductor industry. 

In 1965 Gordon Moore, considering the fabrication cost and technological 

capabilities in that time, speculated that the number of transistors on a single 

integrated circuit could be doubled per year [4]. The idea which was called 

“Moore’s Law” was later on amended to double transistors on a chip every 2 years 

[5].  

For more than four decades this guideline has been the driving force for endless 

innovations in design and fabrication of transistors and integrated circuits which 

appeared to be smaller in size and more densely packed at each technology node, 

providing incredible sophisticated functionalities. 

Apparently the path has never been easy since each new generation of electronic 

devices would impose challenges from processing and fabrication to circuit 

integration, test and reliability issues [6].  

According to Dennard et al. continuous device scaling while maintaining the 

same electric field in the device needs a transformation of the transistor dimensions 
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as well as the voltage and doping by a factor of α [7]. This reduction includes the 

vertical as well as horizontal dimensions of the device. The applied voltage to the 

device should also be reduced by α. On the other hand the substrate doping 

concentration should be increased using the same scaling factor i.e. (α.Na) [7, 8]. As 

a result the switching speed is boosted by a factor of α when the power consumption 

is reduced by a factor of α
2
.  In Table 1.1 a summary of the scaled features as well 

as the effects on the device performance is shown. 

 

Table 1.1: Scaling results for circuit performance which follow from circuit dimension. The rules 

apply to constant electric field scaling [7]. 

Device or circuit parameter Scaling factor 

Device dimension, tox, L, W 1/α 

Doping concentration Na α 

Voltage V 1/α 

Current I 1/α 

Capacitance 1/α 

Delay time/circuit VC/I 1/α 

Power dissipation/circuit VI 1/α
2
 

Power density VI/A 1 

 

For more than 4 decades lots of efforts have been made in order to meet Moore’s 

law with respect to the scaling factor proposed by Dennard. 

 
Figure 1.1: Transistor density per square millimetre versus the year of the device introduction (left 

axis) along with transistor gate length shrinkage versus the year of the device introduction (right 

axis) Copyright 2011 Nature publishing group [9].  

 

 Figure 1.1 shows the evolution of gate length and the density of transistors in 

microprocessors over the last decades. The gate length shrank from 10 µm to 28 nm 
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and the number of transistors per square millimetre increased from 200 to over 1 

million  [9]. 

With respect to microprocessors and  integrated circuits CMOS technology is 

facing two major problems; power dissipation and variability [10]. From power 

density perspective, the complexity of the integrated circuits has been accompanied 

by an increase in power dissipation. As the transistors become smaller in size and 

faster in performance the overall active power increases due dissipative switching 

of charge between transistor terminals during logic operations. Although it was 

relatively negligible a few generations back the standby power has become 

significantly high and comparable to the active power density. This is caused by the 

overall increase in the off-state leakage current as a result of gate length scaling and 

oxide thickness reduction [11]. Figure 1.2 depicts the passive power trend based on 

the Subthreshold current and show a cross-over point below 20 nm gate length [12]. 

 
Figure 1.2: Active and subthreshold power density trends plotted from the industry data versus the 

gate length for junction temperature of 25 °C. The empirical extrapolated dashed-lines show that the 

active and standby power equal at 20 nm gate length [12]. 

 

Regarding the variability issue, doping processes require a very precise control 

in nanoscale devices. At this scale a random displacement of the dopants can 

influence the electrical characteristics of the device. In addition fluctuations of 

channel dopants can cause variations in the threshold voltage which is problematic 

for circuit design in terms of yield and reliability [10]. In fact other processes (e.g. 

lithography, etch) can also introduce variability or defects in the substrate. All of 

these things become more critical as the transistor scales. 
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 Transistor shrinking challenges  1.1.1

In a typical n-type bulk transistor like Figure 1.3 the channel is controlled by the 

gate. When the gate voltage reaches a certain value called threshold voltage the 

holes are pushed away and electrons are attracted to the channel forming an 

inversion layer underneath the gate. At this stage, increasing drain voltage results in 

electron current flowing from source to the drain. The current keeps increasing by 

the drain voltage until the pinch off stage happens where some part of the channel is 

disappeared due to the spreading depletion region that is heavily affected by the 

drain. Meanwhile the strong electric field around the drain region pulls the electrons 

to the channel. From now on the current is a function of the gate voltage and is 

almost independent of the drain voltage. This is where the transistor enters the on 

state (saturation region). 

In this case the on current is calculated from 

 
 2

2
TGS

oxg

ox
on VV

tL
WI 


  

(1.1) 

where µ is the carrier mobility in the channel, W is the width of the gate, Lg is 

the gate length and εox and tox are the oxide permittivity and thickness respectively.  

 

 
Figure 1.3: Schematic representation of a typical bulk transistor and the corresponding current 

voltage characteristic. 

 

From the equation above it is clear that a thinner gate oxide, shorter gate length 

as well as a wider gate can boost the on current as it has been achieved over the last 

decades of conventional transistor downscaling. Nevertheless the continuous 
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shrinking trend came with consequences as the Si technology reached fundamental 

physical limits.  

For instance, the gate oxide thinning can no longer improve the device 

performance. Poor silicon dioxide (less than about 3 nm thickness) results in high 

tunnelling leakage current (~ 3× for every 0.1 nm thickness reduction [11]) through 

the film which increases the device power consumption. High-κ dielectrics such as 

zirconia (ZrO2) and hafnia (HfO2) have already been introduced to allow further 

scaling without sacrificing the device throughput.  

Moreover the reduced spacing between the source and drain at shorter gate 

lengths causes short channel effects (SCE) which manifests itself in number of 

undesired behaviours. The issue looks more critical considering the fact that the 

practical source drain distance is approximately 50% shorter than the gate length, 

for example for a 30 nm gate length the actual effective channel length is 15 nm [9]. 

Figure 1.4 shows a schematic of a transistor and SCE.  

 
Figure 1.4: Schematic of bulk transistor and short channel effect due to transistor shrinkage. High 

leakage current and mobility reduction degrade the transistor performance. 

 

In classical transistors there is a potential barrier for electrons to flow from 

source to the drain. When the gate length is long enough (~ 1 µm) the source and 

drain are far apart therefore the channel is controlled by the gate whereas at shorter 

gate lengths, the drain depletion region is extended under the gate, taking over the 

control of the channel by reducing the potential barrier for electrons to flow from 

source to the drain. So, as the drain voltage is increased, the current starts increasing 

even before the voltage on the gate reaches the threshold value. This effect known 

as drain induced barrier lowering (DIBL) results in reduction of the threshold 

voltage as the drain voltage increases [9]. This is equivalent to Vt roll-off effect that 

the gate threshold voltage decreases as the channel length is reduced. The resulting 
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current flow is called Subthreshold current. The rate of the current increase below 

the threshold voltage is referred to as subthreshold swing (SS) which is another 

figure of merit for the device performance and is formulated as [13] 

   n
q

kT
SS  10ln  (1.2) 

corresponding to the inverse of the slope of the linear region in Id-Vg curve (see 

Figure 1.3). The unit is mV/decade. Here, kB is the Boltzmann constant, q is the 

charge of an electron, T is the temperature in Kelvin, ln (10) is coming from the 

logarithmic scale of the plot and n is the body factor which is an indication of the 

level of efficiency of the gate control over the channel. The body factor can be 

calculated from  

 

ox

ox
g

d

Si
b

g

b

t
C

W
C

C

C
n






















 1

 
(1.3) 

where Cb and Cg are the bulk and gate capacitance respectively. εsi and εox denote 

the Si and oxide dielectrics respectively. Wd is the depletion region under the 

channel and tox is the gate oxide thickness. 

As is seen in the equation SS cannot be below a certain value due to the 

theoretical limits. In fact in the best possible case where gate has the full control 

over the channel the SS is approximately 60 mV/decade at room temperature. 

However, in practice the body factor is larger than 1, so the SS is always above 60 

mV/decade. To minimize SS the gate should establish a relatively fixed bulk charge 

in the depletion region as the gate voltage is changing so that the bulk capacitance is 

kept as small as possible.  

Again the importance of maintaining the gate control over the channel is 

highlighted. In short channel devices the extended electric field from the drain can 

result in increased SS value. One possible solution for this issue is lightly doped 

substrate. 

Another side effect of transistor shrinkage is velocity saturation. Due to strong 

electric field in the channel the velocity of carriers reaches the maximum, and does 
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not follow the linear relation with the electric field. This is attributed to increased 

levels of scattering that the accelerated electrons are going through so that they lose 

their energy. Saturation velocity was observed for 250 nm gate length in SOI 

transistors [14]. 

Generally speaking the main outcome of the SCE is high leakage current which 

results in more power dissipation. 

In order to minimize SCE and access resistance in conventional planar devices it 

is necessary to highly dope source and drain regions while maintaining shallow and 

abrupt junctions. In this case the scattering rate of the ionized dopant atoms is 

higher resulting in mobility degradation.  

Higher doping concentration in the channel in order to reduce the depletion 

width is also required along with mobility enhancement techniques such as strain 

engineering by using SiGe, or SiC to introduce strain in Si lattice. 

One of the important features that affect the transistor performance is parasitic 

source drain resistance (RSD). It is suggested that four components contribute to the 

RSD, which can be listed as: overlap resistance (Rov), extension resistance (Rex), 

deep resistance (Rdp), and contact resistance (Rc). In nanometre size transistors RSD 

is more pronounced and needs special attention. Among the resistance components 

overlap resistance is strongly dependent on the doping concentration in the overlap 

region as well as the lateral abruptness of the region which can affect the current 

spreading and the accumulation carrier density. So care must be taken when doping 

this region [15].  

In an extensive study by Seong-Dong et al. it was predicted that at 50 nm gate 

length the contact resistance and the overlap resistance contribute up to 70% of the 

total source drain resistance and as the transistor gets smaller the contact resistance 

contribution in the total resistance becomes more significant [16]. Therefore it is 

essential to implement novel processing techniques for doping and annealing in 

order to minimize contact resistance in new generations of the scaled transistors. 

A feasible solution for advanced CMOS technology to pursue the downscaling 

trend seems to be the emergence of new generations of transistors with innovative 

geometrical structures such a multi-gate MOSFETs and FinFETs [9] as well as 

introduction of new alternatives for silicon e.g. III-V materials and Ge.  
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1.2 Potential replacements for Si 

In the first place Si became the prevailing material in semiconductor technology due 

to its excellent native oxide, but because of the failure of the gate oxide in 

aggressively scaled transistors new hi-κ materials had to be introduced to do the 

task. When SiO2 was replaced, one of the main reasons for using Si was lost and 

researchers began investigating new high mobility semiconductor materials such as 

III-V compounds, Ge, graphene, and transition metal dichalcogenides (TMD) 

[17]which seem to have the potential to replace Si. Table 1.2 shows the properties 

of several high mobility materials that could be used in nanoscale devices. 

 

Table 1.2: Comparison of high mobility materials with Si [11]. 

Property Si Ge GaAs InP InAs InSb 

Electron mobility (cm
2
/ Vs) 1500 3900 8500 5400 40000 77000 

Hole mobility (cm
2
/ Vs) 475 1900 400 200 500 850 

Bandgap (eV) 1.12 0.66 1.42 1.34 0.35 0.17 

Dielectric constant 

(mterial) 
11.7 16.2 12.9 12.5 15.2 

16.8 

 

These materials benefit from high electron mobility that is essential in making 

high speed devices. GaAs and InAs, and InSb have significantly higher electron 

mobility than Si which makes them promising materials for high performance n-

type transistors. On the contrary, they have less or comparable hole mobility as 

compared to Si which is not quite favourable for making p-type transistors. 

Processing and fabrication of these expensive materials is costly as well and may 

need a separate fabrication line as these materials cannot be processed in 

conventional Si labs due to contamination issues.  On the other hand, Ge appears to 

have several distinctive characteristics over the other candidates. Compared to Si, it 

benefits from higher carrier mobility for both electrons (2×) and holes (4×). More 

importantly, Ge is a non-contaminant element, which makes it compatible with Si 

fabrication tools and infrastructure. Note that Ge has already been used in the form 



1. INTRODUCTION 

9 

 

of SiGe in 90 nm and smaller technology node transistors to obtain higher mobility 

and faster devices.  

Although these advantages suggest Ge as a good choice, Ge technology is not 

fully mature [18] in order to extensively incorporate this material in the advanced 

CMOS technology. Perhaps the biggest challenge is process and integration of Ge 

in an efficient way so that high-mobility benefit is not swamped by imperfect 

manufacturing procedures.  

1.3 New device architectures 

The transistor miniaturization has led to the emergence of various revolutionary 

device architectures. Figure 1.5 shows the evolution of transistors from 1980s till 

now. The main point of these architectures is to improve the gate control over the 

channel. It is well established that silicon-on-insulator (SOI) devices have the 

potential to improve SCE in traditional bulk transistors.  

 
Figure 1.5: Illustration of the alternative transistor designs reducing the short channel effect [19]. 

 

In these devices that are known as extremely thin SOI device (ETSOI) the Si 

film thickness is thinner than the channel depletion depth [19]. These devices 

benefit from smaller source/drain to substrate capacitance, switch faster and run at 

lower voltages and offer body bias [19]. However the necessity for very small 

thickness of the Si film create challenges  such as thickness targeting and variations 
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in the ETSOI wafer, high parasitic source drain resistance, quantum confinement 

and scattering. Also, the drive current in these devices is less than comparable bulk 

transistors. 

Another alternative approach is surrounding the gate with two or more opposing 

gates where each additional gate improves the SCE. These devices can be oriented 

horizontally (double-gate device) or vertically (FinFETs) and also can be fabricated 

on SOI substrates. They have the advantage of enhanced gate control therefore the 

leakage current is suppressed and the switching speed is increased. An additional 

benefit of these devices compared to ETSOI devices is that the total electrical area 

can be dramatically larger than the device footprint [19]. 

 
Figure 1.6: 22 nm Tri-gate transistors on bulk Si made by Intel [20]. 

 

Switching to new non-planar structures has enabled the industry to proceed to 

the 22 nm technology node. The vertical architecture of these devices allows 

integration of more devices on a chip and making faster circuits and probably a 

wider range of functionalities. Manufacturing of these devices is quite challenging. 

The higher device current achieved in these devices can very well pay off the 

difficulties for fabricating these devices. In fact patterning and fabrication of high 

aspect ratio fin structures at aggressively reduced fin pitches impose new challenges 

and demand new doping and annealing techniques. In 2011 Intel introduced a new 

generation of the CPUs fabricated from Tri-gates on SOI. Figure 1.6 is a 

representative image of the transistors demonstrated on bulk Si substrate. 

It is generally accepted that the FET devices will continue the transistor scaling 

toward ultrathin body channels [17].  
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The ultimate CMOS device is likely to be a nanowire with a gate-all-around 

geometry, a hi-κ gate dielectric and conductive gate electrode. In these devices 

scaling the gate pitch can be done by scaling the source and drain regions, spacer 

and overlap regions or the channel length, however there are trade-offs associated 

with that. For example, a wider spacer can decrease the parasitic capacitance but at 

the cost of increased parasitic source drain resistance as these regions will have to 

be smaller. If there are good electrostatics then the channel length can be shorter 

enabling larger S/D regions and smaller parasitic resistance but it is accompanied by 

increased gate parasitic resistance [19]. The interference of parasitic resistance in 

each region of these devices can impede the device performance by reducing the 

drive current and making the device slower. As an example the gate region contains 

a gate contact with underlying gate metal layers and there is a resistance associated 

with each of these layers. The resistance of the S/D regions includes the resistances 

of the contact, the silicide, and an epi layer, and the most critical task is probably 

minimizing the Schottky barrier height. Parasitic capacitance will be more 

challenging in new devices due to the reduced distance between the gate and the 

other parts [19]. Therefore it appears that advanced technologies and materials are 

needed to address the traditional as well as the new challenges in device scaling. 

1.4 Challenges for introducing Ge to CMOS technology 

Even though Ge is very similar to Si, there are some differences in terms of material 

characteristics that make it a challenging task for industry to fabricate fully 

operational Ge transistors.  

The most well-known challenges facing the Ge technology can be summarized as: 

 The substrate / integrate Ge on Si wafer  

 Gate dielectric  

 Doping  

 Contacts 

 Thin body devices 

 Leakage current 
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The issues in bold will be discussed in this thesis. Regarding the material 

strength Ge wafers (in 300 or 450 nm diameter) are not strong enough to survive the 

auto-feed handling involved in mass production of integrated circuits. The lattice 

constant of Ge is ~4% greater than that of Si, therefore Ge growth on Si will start to 

relax almost immediately via the formation of misfit dislocations. To solve this 

problem, a thick SixGe1−x buffer layer is grown on the Si substrate and the active Ge 

layer is grown on top of that, where the defect density is reduced considerably. This 

buffered-growth technique provides a way of integrating Ge devices on a Si handle 

wafer [17]. Another approach is growth in trenches using the aspect ratio trapping 

technique [21]. 

One of the most well-known obstacles rises from the unstable water soluble 

germanium oxide (GeO2) that cannot be used as gate dielectric in Ge MOSFETs in 

a straightforward approach. In fact GeO2 when in contact with Ge transforms into 

GeO which tends to desorb at temperatures above 400 °C. The consequence is the 

loss of the underlying Ge layer as well as desorption of the oxide layer, and 

roughness of the surface. 

Various approaches have been proposed to form a proper dielectric on Ge such 

as, such as Si, GeO2, and oxynitride interfacial layers, high pressure thermal 

oxidation, sulphur passivation, plasma oxidation, etc. Other high-κ materials are 

also introduced for Ge CMOS devices, like HfO2, LaLuO3, ZrO2, and GeO2/AlO3 

gate stacks for n-type Ge devices [17]. 

The other major problem is realization of n-type ultra-shallow junctions with 

highly activated dopants. It is well established that n-type dopants in Ge tend to 

diffuse quickly and are relatively difficult to activate. In contrast, p-type dopants i.e. 

B exhibit low diffusivity as well as high activation levels (> 10
20

cm
-3

) in Ge, 

favourable for fabricating high performance PMOS Ge devices [18]. The shallowest 

p-type profile in Ge has been generated by B 2 keV implant [22] whereas As 5 keV 

implant have been carried out to produce the shallowest n-type doping profile [23]. 

Point defect engineering techniques such as co-implants as well as non-implant 

doping approaches like plasma doping, spin-on-dopant along with novel annealing 

techniques like laser, flash lamp or microwave annealing might be helpful to offer 

solutions for these problems. 
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Realizing a low resistive contact on n-type Ge is another key bottleneck. The 

problem arises from the material properties which lead to formation of high 

Schottky barriers between Ge and the contact metal. In contrast formation of ohmic 

contacts on p-type Ge is more straightforward. Several solutions have been 

proposed to minimize the barrier height and form an ohmic contact mainly with two 

approaches; terminating the dangling bonds on the surface and optimization of the 

germanide alloy with high doping concentrations underneath. 

Ge band gap (0.67 eV) is about half of that of Si leading to higher leakage 

current in pn junctions [24]. Utilizing advanced processing techniques, and point 

defect engineering would allow formation of junctions with minimum defects which 

are one of the main reasons for leakage current. 

Modelling capabilities are not developed as compared to extensive experimental 

works that are being done on Ge and need to be improved in order to give 

substantial input for time and cost effective development of Ge devices [17] . 

As stated earlier there are many unknowns about Ge that need to be answered 

and this entails application of novel approaches for doping, annealing, fabrication 

so that Ge can be extensively used in device fabrication. The main focus of this 

thesis is on the problems related to doping, contacts, leakage current and thin body 

devices. 

1.5 Thesis structure 

This dissertation addresses different issues in the fabrication and characterization of 

Ge based devices.  

Chapter 2 provides a short introduction on metal semiconductor contacts, Fermi 

level pinning and the mechanism involved in this phenomenon. A short literature 

review on contacts on n-type Ge is presented as well. Formation and 

characterization of low resistance NiGe contacts on Ge with respect to dopant type, 

dopant concentration, and annealing techniques is discussed. 

In Chapter 3 we discuss different doping and annealing methodologies with main 

focus on laser and rapid thermal annealing techniques where we systematically 

compare the impact of the two on dopant activation, and leakage current in n+/p 
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junctions. The effect of F for controlling dopant diffusion is studied. The Ge 

desorption phenomenon and its contribution to dopant loss is investigated as well.    

In Chapter 4 we briefly analyse the effect of ion implantation into thin body 

structures using SRIM simulation tool. Next we study solid phase epitaxy in thin 

body Ge structures. In the final section we implement a MOVPE-based non-

destructive doping technique for doping nanometre thick fin resistors and show the 

results of material characterizations and extract electrical parameter associated with 

resistance.  

Finally Chapter 5 summarizes the key points of this study and discusses possible 

future works that can help to expand the understanding of Ge challenges and their 

potential solutions.  
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Chapter 2 

Contacts on Germanium Devices 

2.1 Introduction 

Metal semiconductor (MS) contacts are known as a key part in every semiconductor 

based device. They can be classified as: (i) Ohmic, which is essential in connecting 

the integrated circuits to the outside world with no/negligible resistance so that it 

does not affect the performance and efficiency of the device, and (ii) Schottky, 

which is used in high speed rectifying diodes, solar panels, and power devices.  

A brief introduction of MS contacts and Fermi level pinning (FLP) phenomena 

are in the opening of this chapter followed by the state-of-the-art work that has been 

reported so far to address the issue. The main focus of this chapter is on formation 

of low resistance contacts on n-type Ge and their characteristics with regard to 

dopants concentration, dopant type and annealing techniques. 

2.2 Metal semiconductor contacts 

Metal work function is defined as the energy (in electron volts) required for freeing 

an electron from the metal Fermi level to the vacuum level while the electron is still 

close to the surface in macroscopic scale. This value is a property of the material 

and cannot be changed. In semiconductors the work function can be tuned by 

changing the concentration of the dopants. Figure 2.1 illustrates the band diagram of 

the metal-semiconductor system before making contact. qΦM and qΦS are the metal 

and semiconductor work functions respectively. qχ is the semiconductor electron 

affinity referring to the energy required to extract an electron from the conduction 

band to the vacuum level. If the materials do not interact then for ΦM> ΦS it can be 

said that the average total energy of an electron in semiconductor is higher than that 

of metal. 
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The opposite is true if ΦM< ΦS. When these materials come to an intimate 

contact, electrical current flows across the interface in a non-linear fashion against 

the biased voltage [25].  

The underlying story is that after the contact is made in order to establish 

equilibrium the conduction band (CB) electrons flow from the semiconductor to the 

metal. For p-type semiconductors this role belongs to the holes in the valence band 

(VB). As a result Fermi levels are aligned, with a new arrangement made in the 

band diagrams as is shown in Figure 2.2. 

 
Figure 2.1: Schematic of the energy band diagram of metal and n-type semiconductor before making 

contact. 

 

 Migration of electrons from the semiconductor CB to the metal leaves fixed 

positive charges behind leading to formation of a depletion region at the interface.  

 
Figure 2.2: Energy band diagram of the MS Schottky contact under equilibrium [26]. 

 

At this point a potential barrier is formed preventing further movement of electrons 

and is given by 

 qqqV Mi   

 

(2. 1) 
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In the meantime on the metal side a built-in potential barrier is formed known as 

electron Schottky barrier height (eSBH): 

  Vcib EEqVq   
(2. 2) 

This barrier leads to a rectifying behaviour allowing the current flow only from one 

side to the other. The current flow from the semiconductor to the metal changes 

depending on the applied bias voltage. If a positive voltage bias is applied to the MS 

contact the potential barrier is reduced for the electrons in semiconductor but not for 

the electrons in metal. Therefore the electron current flow from the semiconductor 

to the metal increases. In a reversed bias situation the potential barrier increases and 

the current flow from semiconductor to the metal decreases drastically. In both 

situations the SBH is not changed and therefore the electron current flow from the 

metal to the semiconductor remains unchanged leading to a rectifying non-linear 

current–voltage behaviour [26]. The MS contact is a majority carrier device with 

little minority carrier conduction, and therefore it is a fast switching device. Similar 

discussion is applied for p-type semiconductor with holes being the majority 

carriers [27]. 

Ohmic contacts in MS system are possible via: (i) formation of tunnelling 

barriers where the metal is a degenerately doped n-type semiconductor (ii) MS 

systems where the metal work function is smaller than that of the semiconductor 

[27]. In a degenerately doped n-type semiconductor Fermi level is near the 

conduction band. In this case the dopant concentration is very large so that the 

depletion region is very small where tunnelling through the potential barrier can 

happen (see Figure 2.6 c)). In this case in reversed bias condition the electrons 

easily tunnel through the barrier from metal to the semiconductor and in forward 

bias they tunnel through the barrier from the semiconductor to the metal. Much of 

the same can be said for metal Schottky tunnel barriers on degenerate p-type 

semiconductors in which the holes flow from the metal to the semiconductor and 

vice versa. 

Regarding the second approach, the metal with smaller work function has the 

electrons with higher energy levels so the intimate contact between the two 

materials would lead to the electron flow from metal to the semiconductor. Here the 
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surface of the semiconductor consists of free mobile electrons, which is not the case 

for the Schottky contacts. Also the electrons from the conduction band of the 

semiconductor see no barrier towards the metal as is shown in Figure 2.3[27]. 

 
Figure 2.3: Energy band diagram of an  ideal the MS ohmic contact under equilibrium [27]. 

  

Nevertheless, this approach does not seem to be applicable for n-type Ge in contrast 

to Si according to the extensive experimental studies carried out in this area [28]. 

The mechanism involved in this is discussed in the following section.  

In general a large SBH and Schottky MS system on n-type Ge is expected to 

behave ohmic for the equivalent MS system on p-type Ge. For example in a study 

by Nishimura et al. an identical process fabrication on n and p-type Ge resulted in 

Schottky and ohmic contacts on the n and p-type Ge substrates respectively [29].  

2.3 Fermi level pinning 

Experimental works on SBH measurements in Ge revealed that in many of the 

materials SBH is independent of the metal work function [25]. This phenomenon, 

which is called Fermi level pinning (FLP), was later attributed to two mechanisms. 

2.3.1 Surface states 

During the fabrication procedure of a semiconductor device the surface integrity 

and crystal lattice of the semiconductor is perturbed leading to formation of 

dangling bonds at the semiconductor surface. This would subsequently give rise to 

the number of surface states in the semiconductor band gap near the interface. 
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Being called interface traps these states lie within the band gap and are occupied 

with electrons if they are below the Fermi level.  

When contact is formed between metal and the semiconductor, again Fermi 

levels should align on both sides and as a result band bending should happen. If the 

interface state density is large then a negligible movement of Fermi level at the 

semiconductor surface will transfer sufficient amount of charge from the 

semiconductor to the metal (see Figure 2.4). 

 
Figure 2.4: Energy band diagram of a non-ideal MS contact. 

 

Therefore the alignment of the Fermi level is accomplished by movement of the 

electrons in the interface traps to the metal indicating that the contribution of band 

bending in alignment of Fermi level is negligible [26]. For Ge, the Fermi level is 

pinned close to the Charge Neutrality Level (CNL) located only 0.09 eV above the 

valence band [30], resulting in a large electron SBH and high contact resistance for 

n-type devices. As is shown in Figure 2.5 the SBH formed on Ge is almost 

independent of the metal work function.  

The barrier height is calculated from 

 0 qEq gb  (2. 3) 

According to Nishimura et al. the barrier height in Ge is hardly modulated by 

annealing in forming gas, metal-germanide/Ge interface or changing the substrate 

orientation [28]. Figure 2.5 shows the SBH extracted for various metals on n-type 

Si and Ge. Nevertheless it appears that processing and surface preparation 

techniques can significantly affect the SBH in MS contacts [25]. 
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Figure 2.5: The experimentally obtained SBH on n-type Si and Ge using metals with a wide range of 

work functions. In contrast to Si SBH in Ge is nearly independent on the work function of the metal 

[28].  

2.3.2 Metal induced gap states (MIGS) 

Another possible reason proposed for FLP is metal induced gap states (MIGS) that 

are the energy states in the semiconductor originated from the tailing of the metal 

electron wave functions. As a result there is a scattering of negative charge from the 

metal into the semiconductor. In this case inserting an ultrathin insulating layer 

could depin the FL as the tailing of the metal electron wave function is blocked. 

Engineering the barrier height in order to form ohmic contacts seems to be 

impractical at this stage since the formation mechanism of the SBH is still unclear 

itself. However it is possible to tune the depletion width at the interface by 

manipulating the semiconductor doping. This is also the case study for formation of 

low ohmic contacts on n-type Ge which is one of the stumbling blocks associated 

with the successful integration of advanced Ge devices.  

As mentioned earlier, as a result of making a contact between a metal and n-type 

semiconductor, electrons transfer from the semiconductor to the metal, and a 

depletion region is formed. The width of this region changes depending on the 

doping concentration of the semiconductor (ND) affecting the conduction 

mechanism in MS contacts [31] which is shown in Figure 2.6. 
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Figure 2.6: Electron flow mechanism for metal-n-type semiconductor contacts for different 

semiconductor doping concentrations. a) is for lowly doped Ge and c) is for highly doped Ge [31]. 

 

In lowly doped semiconductors the electrons leap over the barrier when they are 

thermally excited. This mechanism is shown in Figure 2.6 a) and is called 

thermionic emission (TE). For a moderately doped semiconductor the dominant 

mechanism is thermionic-field emission (TFE). In this case conduction happens in 

two steps in which electrons are thermally excited to a higher energy level where 

the barrier width is narrow so that they can tunnel through to the other side (Figure 

2.6 b). For a highly doped semiconductor current flows under field emission (FE) 

mechanism where the electrons can tunnel through the barrier which has become 

sufficiently narrow as is shown in Figure 2.6 c) [31]. 

2.4 State-of-the-art work for contacts to n-type Ge 

2.4.1 Thin insulating layers 

Several methods and techniques are suggested to modulate eSBH. Ultra-thin 

amorphous insulating layers, such as Ge3N4 [32] or GeOx (1.6-2.2 nm) [29] can 

terminate the free dangling bonds, and eliminate FLP. A GeOx layer between a 

metal and n-type Ge has been used to improve contact performance [33]. MgO 

ultrathin layers can also depin the surface and exhibit a weak thickness dependence 

[34]. It was shown that an amorphous interlayer at TiN/Ge contacts which contains 

nitrogen can alleviate FLP [35]. An extensive theoretical study by Roy et al. 

predicted contact resistivity (ρc) of tunnel barrier contacts where the variable was 

the thickness of a thin insulating layer [36].  
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2.4.2 NiGe optimization  

Another approach to creating stable low resistive contacts is to form a metal-

semiconductor compound at the surface in combination with high doping 

concentrations underneath. Gaudet et al. examined twenty transition metals as 

candidates for metal-germanium reaction [37]. Based on the low formation 

temperature, stability, resistivity, and sensitivity to oxidation, NiGe and PdGe were 

suggested as the most promising candidates. NiGe is often favoured due to less 

problematic removal of unreacted Ni [38] during the full MOSFET process flow. 

Lee and Zhang also performed NiGe material studies where the germanides were 

formed at different reaction temperatures [39, 40]. Sheet resistance rose sharply 

above 500 °C, attributed to NiGe agglomeration. P and As segregation during NiGe 

formation reduces the eSBH due to the snowplow effect of the dopant atoms in 

front of the growing germanide front [41]. In that work the dopants were ion 

implanted, and As had a stronger influence than P, presumably due to a more 

effective snowplow of the larger atom. 

Selenium segregation was also used to reduce eSBH for NiGe/n-Ge contacts 

[42]. NiGe contacts formed by a 300-400 °C germanidation anneal showed ohmic 

behaviour (derived from I-V characteristics) in combination with high phosphorus 

doping [43, 44]. Furthermore, Ikeda et al. modulated eSBH by Sulphur snowplow 

during germanidation [45]. Gallacher et al. extracted specific contact resistivity (ρc) 

of 2.3×10
-7

 Ω.cm
2
 on n-type Ge that was doped during epitaxial growth [46]. The 

optimum NiGe formation temperature was a 340°C RTA. However the NiGe 

interface with the underlying substrate was not smooth. Recently ohmic Ni contacts 

on n-type GeSn were reported [47]. 

2.4.3 High dopant activation 

Hutin et al. presented further evidence of eSBH reduction with increased dopant 

concentration at the surface [48]. Koike et al. performed two step P implantation 

prior to formation of NiGe contact on Ge [49]. After the first P ion implantation 

high-temperature annealing (at 600 °C for 1 min) was carried out to form n+/p 

junctions. This was followed by the second P implantation into the n+-Ge after 

contact holes were formed on the surface. In order to suppress P diffusion no 
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activation annealing was carried out. After Ni deposition and RTA treatment at 350 

°C ρc ~ 3×10
-8

 Ω.cm
2
 was obtained. 

Low ρc was reported by Miyoshi et al. using carrier-activation enhancement 

(CAE) technique. In that work P/Sb co-implantation was used to reduce SBH in 

NiGe/n+ Ge contacts [50].  

2.4.4 Other interface engineering techniques 

The other promising segregation technique known as Implantation Through Silicide 

(ITS) was used by Dubois et al., where dopants were implanted after the alloy 

formation [51]. In that method dopants segregate at the interface during low 

temperature post RTA, while the silicide front is not growing. P segregation has 

also been employed during PtGe formation to reduce eSBH, where P was originally 

in-diffused from a spin-on-resist, and the process variable was the in-diffusion 

anneal step [52]. Dumas et al. used an evaporation of a mixed alloy of Ag/Sb 

(99%/1%) onto to a moderately doped (ND=1×10
18

 cm
-3

) n-type Ge and showed 

formation of AgSb ohmic contacts. In that work Ge was epitaxially  grown on Si 

wafers with P in-situ doping  [53]. CF4 plasma treatment of the Ge surface was 

demonstrated experimentally to alleviate FLP [54]. Zheng et al. reported ohmic 

contacts to n-type Ge using Yb-germanide where 60 nm of Yb was deposited 

followed by SiO2 deposition to prevent Yb oxidation and finally RTA treatment at 

500 °C [55].  

One of the state-of-the-art techniques which has been proven to be effective in 

formation of low resistance contacts is laser thermal annealing (LTA). Firrincieli et 

al. studied ρc of NiGe contact using two different approaches; sub-melt laser anneal 

(LA) prior to germanidation and Snowplow effect. Using LTA for dopant 

activation, in combination with RTA for NiGe formation resulted in ρc of 8×10
-7

 

Ω.cm
2
 on n-type Ge. In snowplow effect the implantation of n-type dopant species 

is followed by NiGe formation at low temperatures (maximum 400 °C) leading to 

segregation of dopants during germanidation to the NiGe/Ge interface. The group 

reported ρc of 2×10
-5

 Ω.cm
2
 using this technique. In that work the NiGe layers were 

thermally stable up to 350 °C, but the interface with the Ge substrate was not flat. 

This is common for NiGe layers formed by RTA [56].  
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 Lim et al. have demonstrated Fermi-level depinning using multi-pulsed LTA by 

the formation of epitaxial NiGe2 [57]. While the steps accompanying the growth of 

germanides, and closely related silicides, by RTA have been studied to some extent, 

the formation pathway for the LTA processed materials has not been thoroughly 

investigated. 

2.5 Contacts on p-type Ge 

On the contrary to n-type, FLP is favourable in making ohmic contacts to p-type Ge 

[29, 30]. It is a common practice to form contacts on Ge after a pre-amorphisation 

implant (PAI) followed by ion implantation (II) and RTA. Bhatt et al. achieved a 

record low ρc of 1.7×10
-8

 Ω.cm
2
 and 7.7×10

-8
 Ω.cm

2
 using cryogenic and room 

temperature (RT) B implantation respectively. A summary of ρc obtained for p-type 

Ge is presented in Table 2.1. A table on the n-type doped Ge is shown later in this 

chapter. 

 

Table 2.1: Representative ρc values reported to for p-type doped germanium (from Ref. [58]) 

Method N peak(cm
-3

) Rsh(Ω/sq) ρc (Ω.cm
2
) 

PAI+II+RTA 1×10
19

 NA 8×10
-8

 

p-Ge 1×10
19

 NA 2×10
-6

 

p-Ge 1×10
18

 NA 3.5×10
-7

 

RT II+RTA >1.2×10
19 

155 7.7×10
-8

 

Cryo II+RTA >4×10
20

 28 1.7×10
-8

 

 

In the following section ρc dependence on implant dose will be determined, as 

well as a comparison of P-doped and As-doped Ge layers. P is the slowest n-type 

dopant in terms of diffusion in Ge [59] thus this parameter extraction is of vital 

importance. Also we aim to extract a set of ρc in the low activation anneal 

temperature regime (500 °C), consistent with solid-phase-epitaxial-recrystallization 

[60]. 500 °C appears to be an optimum annealing temperature for n-type dopants, as 

lower temperatures (e.g. 400 °C) result in poor sheet resistance and activation while 

at higher temperatures (e.g. 600 °C) diffusion is a concern [61]. A few studies have 

shown high activation levels (especially for P) without visible diffusion at 500 °C 

[61, 62].  
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2.6    NiGe contacts made by Rapid Thermal Anneal 

2.6.1 Experimental procedure 

In order to extract ρc we use the Transfer Length Method (TLM) [31]. Figure 2.7 

depicts the schematic of a typical TLM structure. Resistance between two adjacent 

metal strips is measured, and as shown in the inset of Figure 2.7 resistance is plotted 

versus contact spacing. A linear fit to the data yields the transfer length (LT), and 

contact resistance (Rc) from which sheet resistance Rsh, and ρc are extracted by 

 
T

c
sh

L

WR
R 

 
(2. 4) 

 

2

Tshc LR  

 

(2. 5) 

where W is the width of the structure. In our TLM test structure each NiGe bar was 

380 100 µm
2 

and the spacings in-between were 4, 16, 36, 64, 100, 144, and 196 

µm.  

 
Figure 2.7: A schematic of the Transfer Length Method structure. 

 

The layout consisted of a repeated array of this TLM design. More than 20 TLM 

structures within each array were electrically measured in order to extract values for 

ρc and Rsh. Figure 2.8 shows a summary of the process flow in the experiments 

undertaken here. 

 After cleaning, high-resistivity (>40 Ω.cm) n-type (100) Ge wafers received 

well implants, namely P with a dose of 4 10
12

 cm
-2 

and energy of 180 keV, and B 

with a dose of 1 10
13

 cm
-2  

and energy of 40 keV, to create a semi-insulating layer. 

Rc

Rsh
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L3L1 L2

W

2LT
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Next the shallow dopant implant was performed. In one sample set the P implant 

dose was varied from 5 10
14

 to 2 10
15 

cm
-2

. The implant energy was 12 keV. In 

another sample set P and As implants were compared by implanting with the same 

dose (1 10
15

 cm
-2

) and with two different energies (15, 28 keV respectively). The 

dopant profiles had the same projected range (approx. 15 nm) and junction depth 

(approx. 60 nm) calculated by SRIM modelling [63]. A furnace anneal at 500 °C 3 

min in N2 was performed for dopant activation in all the samples [60]. 

Sheet resistance measurement of selected samples was performed using 

Prometrix OmniMap RS35e. The tip spacing was 1.016 mm. Thereafter, 20 nm Ni 

was deposited on the samples by thermal evaporation. Lift-off process was 

performed afterwards. A trench was dry etched down to 400 nm deep to avoid 

leakage current. The samples were subjected to 250, 350, or 450 °C RTA for 30 sec 

in N2 for the NiGe reaction. According to data in [37], [39], and [40] this is the 

process window for low-resistive NiGe formation. Scanning Electron Microscopy 

(SEM) was done for inspection, using a QUANTA FEG 650. Electrical 

characterization was done using a KEITHLEY 37100 and a KEITHLEY 2602. 

 

Figure 2.8: A summary of the experimental process flow. 

 

2.6.2 Results of the electrical characterization 

Figure 2.9 shows a representative SEM image of the finished TLM patterns. A 

dashed box highlights an individual TLM, with bright NiGe strips created on the Ge 
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substrate, surrounded by a 400 nm deep trench which is also labelled. The gaps 

were measured by SEM to confirm the outcome of the lithography process. 

 
Figure 2.9: A representative SEM image of the TLM structures. Bright strips are NiGe formed on 

bulk Ge. The TLMs are surrounded by a 400 nm deep trench. 

 

2.6.2.1 ρc versus P implant dose 

First we consider the sample set where the P implant dose was varied from 5×10
14

 

to 2×10
15

 cm
-2

. Here a 350 °C NiGe formation anneal was applied.  

 
Figure 2.10: ρc versus the P implant dose. Increasing the implant dose resulted in decreasing the ρc. 

The inset shows the resistance between two consecutive metal contacts versus the spacing for all the 

P implant doses.  Straight lines are well fitted to the data. 

 

Figure 2.10 represents the result. The inset shows the total resistance as a function 

of the contact spacing, extracted from a typical TLM electrical measurement, for the 

three P implant doses.  
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As is seen straight lines are fitted to the data. Intercepts of the line with vertical and 

horizontal axes yield Rc and LT respectively. ρc and Rsh were then calculated. ρc 

versus P implant dose is shown in the main part of Figure 2.10. 

 Note that the standard deviation was plotted in the form of error bars, but are so 

small here that they are barely visible (standard deviation in this case is between 2 

to 5 percent). Increasing the implant dose resulted in decreasing the ρc, from 

7.97×10
-4

 Ω.cm
2
 at the dose of 5×10

14
 cm

-2
 to 8.81×10

-5 
Ω.cm

2
 at the dose of 

2×10
15

 cm
-2

. The trend line empirically fitted to the data shows that the resistivity is 

proportional to x
-1.59

, where x is the implant dose. When NiGe TLMs were used to 

extract ρc on p-type Ge [64], ρc was found to be proportional to NA
-0.62

, where NA 

was the acceptor concentration and was in the 10
17

-10
20

 cm
-3

 range, i.e. increasing B 

concentration reduces ρc. For the P implant dose = 2×10
15

 cm
-2

, the I-V 

characteristics are shown in Figure 2.11. It can also be seen in the figure that the 

resistance between contacts increases as the spacing increases. 

 
Figure 2.11: I-V characteristics for TLM structures where P implant dose is 2×10

15
 cm

-2
 and NiGe 

formation temperature is 350 °C. 

 

Figure 2.12 presents the Rsh of the P implanted samples versus the implant dose, 

extracted by standard 4PP and by the TLM structure. The error on the 4PP 

measurement was ± 10 %. The purpose here is to sanity-check the data extracted 

from the TLM electrical characterization. Essentially, Rsh of the samples is 

compared before and after TLM patterning, and show reasonable agreement.  
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Figure 2.12: Rsh calculated from TLM patterns versus the implant dose, comparing the Rsh of the 

samples before and after TLM patterning. 

 

Secondary ions mass spectroscopy (SIMS) and spreading resistance probe (SRP) 

profiles for similar implant doses and RTA conditions to our work was done by 

Chui et al.  [61] and is shown in Figure 2.13. 

 
Figure 2.13: SIMS and SRP profiles of P after 10 s RTA at 500 with varying implanted doses from 

4×10
14

 to 2×10
15

 cm
-2

. The electrical concentration in all the samples is limited to ~ 5×10
19

 cm
-3

 due 

to solubility limit of P in Ge. Copyright 2005 American Institute of Physics [61]. 

 

The results show very similar levels of active dopant concentrations for implant 

doses from 4×10
14

 to 2×10
15

 cm
-2

 which indicates a solid solubility limit, and 

consequently Rsh does not show significant change for the implant range. Rsh values 

and SRIM modelling of the implanted profiles reveals that increasing the implant 

dose has increased the inactive P dose without significant change in the active P 
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dose. Regarding this, the decreasing ρc in Figure 2.10 could be attributed to the 

increase in inactive P dose piling up at the NiGe/Ge interface. There are many 

reports of impurities at the germanide or silicide interface modulating the eSBH 

[51], [45],[65]. 

2.6.2.2 ρc versus choice of implant 

Next we consider the sample set where P and As implants were compared by 

implanting with the same dose and with energies so that the dopant profile had the 

same projected range. The inset in Figure 2.14 shows the total resistance of contacts 

versus spacing for the P and As implanted samples after 350 °C NiGe formation 

anneal. ρc of the TLM structures patterned on these samples were also extracted 

(Figure 2.14). The variable in this section was the NiGe formation temperature. It 

can be seen that at each temperature ρc of the P implanted sample is lower than that 

of the As case. 

 

Figure 2.14: ρc versus NiGe formation temperature. TLMs patterned on P implanted samples have 

lower resistance compared with As implanted samples. The inset shows the resistance as a function 

of spacing for both cases. 

 

Chui et al. reported higher active doses for P over As after a 500 °C RTA [61]. 

Activation of As at 500 °C is poor presumably due to unfavourable solubility and 

tendency to form clusters at this temperature. Following the same methodology as 

in [60] the active levels for the P implanted samples here are in the order of 3-

6×10
19

 cm
-3

, depending on the implant dose and energy. Higher active levels were 

achieved in [60] using a Ge pre amorphisation implant (PAI).  
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Table 2.2 represents ρc data, which to the best of our knowledge are currently in 

the public domain, relating to metal contacts on n-type doped Ge. Information 

regarding the contact material, dopant, and process conditions are listed therein.  

  

Table 2.2: ρc values reported to date for n-type doped germanium. 

Contact Dopant Method 
Activation 

anneal (°C) 

NiGe 

formation (°C) 

ρc 

(Ω.cm
2
) 

 

NiGe not specified not specified not specified 300 4×10
-5

 
 

[66] 
NiGe not specified not specified not specified

 
400 8×10

-5
 

NiGe not specified not specified not specified 500 6×10
-3

 

NiGe As
 

PAI+ II 600 250/330 5×10
-4

 
 

[67] 
NiGe As PAI+ II 800(LSA) 250/330 4×10

-5
 

NiGe As PAI+ II 900(LSA) 250/330 2.5×10
-6

 

Al/Ti P II 650  6×10
-5

 [68] 

Al/Ti Sb II LSA  7×10
-7

 [69] 

Al/Ti P+Sb Co-implant 500  8×10
-7

 [70] 

NiGe P II 500 250 3.46×10
-6

 This  work 

NiGe P Two step II 600/350 350 3×10
-8

 [49] 

AgSb P In-situ - 400 1.1×10
-5

 [53] 

NiGe P/Sb Co-implant not specified 350 6.4×10
-7

 [50] 

 

Oh et al. [66] used TLM to extract ρc on n-type Ge, p-type Ge, n-type Si, and p-

type Si, using NiSi and NiGe processes where n-type Ge was shown to be the most 

problematic system, producing the highest ρc. TLM structures were also used to 

extract ρc with Ti contacts on in-situ doped or implanted n-type Ge, as well as on 

SiGe [68]. In that work the 80% Si in-situ doped layer showed about two orders of 

magnitude lower contact resistivity compared to implanted Ge. Low ρc=7×10
-7

 

Ω.cm
2
 was reported using a process with Al/Ti contacts on Sb-doped Ge combined 

with laser anneal (LSA) [69]. The same group recently reported ρc=8×10
-7

 Ω.cm
2
 

using a 500 °C anneal to activate a P/Sb co-doped n+ region [70].  Alternative 

strategies involve NiGe combined with an As implant and LSA, or highly n-doped 

Si capping to reduce n-type Ge ρc [67]. In the NiGe part of that work, ρc decreases 

with increasing LSA temperature. ρc< 2×10
-6

 Ω.cm
2
 was reported using a 900 °C 

LSA. ρc is reduced by over 2 orders of magnitude switching from a 600 °C anneal to 

the 900 °C LSA. For both optimized processes in [69] and [67] diffusion control 

may be a concern as both As and Sb were shown to diffuse during LSA. A record 

low ρc=3×10
-8

 Ω.cm
2
 was recently achieved using two step P implantation prior to 

NiGe formation [49]. Using AgSb on epitaxially grown n-type Ge ρc=1.1×10
-5

 

Ω.cm
2
 was obtained [53]. 



2. CONTACTS ON GERMANIUM DEVICES 

 

32 

 

The lowest ρc we achieved in this work was 3.46×10
-6

 Ω.cm
2 

using a 1 10
15 

cm
-2 

15 keV P implant, followed by a 500 °C activation anneal, 20 nm Ni, and 250 °C 

NiGe formation anneal. Material studies on NixGey formation at different 

temperatures are reported in sec 2.7 as well as similar works by [37, 41]. It has been 

shown that at 250 °C there is a mix of NiGe, Ni2Ge, and Ni5Ge3 which may be 

significant in achieving low ρc obtained in this work. 

2.6.3 Discussion; Metal-Oxide-Semiconductor Devices 

At this stage it is worthwhile to put the experimental ρc values into context, using 

the specs and definitions of future generation Metal-Oxide-Semiconductor (MOS) 

devices as set-down by the International Roadmap for Semiconductor ITRS 

Roadmap [71]. If RON is defined as the resistance of a transistor in on-state, then  

 dsat

dd
ON

I

V
R   

 

(2. 6) 

where Idsat is the drain current in saturation, and Vdd is the supply voltage. For 

example the High Performance (HP) devices in the 22 nm technology node target 

2.188 mA/μm, with Vdd=0.9 V. Assume for now that the device width=1 μm, then 

RON=411.3 Ω. The resistance associated with a contact is: 

 
Contact

c
Contact

A
R


  

(2. 7) 

where AContact is the area of the contact. For our 1 μm wide device, AContact is a direct 

function of the contact length in the direction of the current flow, and this is defined 

as 2× (MPU ½ pitch) [71]. For the 22 nm HP device this is 2× (32 nm), thus  

  





 47 10110322

c
ContactR


 

(2. 8) 

In this exercise we vary ρc and calculate RContact for HP devices in the 22, 20, 18, 

and 17 nm technology nodes, and for the Low Operating Power (LOP), and Low 

Standby Power (LSTP) devices in the 22 nm technology node. 

In the targeted device we initially assume 
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 ONContact RR   
(2. 9) 

For a device with highly resistive contacts we recalculate:  

 ContactONON RRR 2*   
(2. 10) 

thus 

 *

*

ON

dd
dsat

R

V
I   

(2. 11) 

For simplicity we normalize Idsat*, with respect to the targeted Idsat to determine 

at what stage ρc becomes significant in the overall performance of the device, 

  ContactON

ON

ON

ON

dsat

dsat

RR

R

R

R

I

I

2*

*


  

(2. 12) 

Thus the drop in Idsat can be calculated as a function of RContact and also ρc.  

 

Figure 2.15: Calculated normalized Idsat vs ρc for HP, LOP, and LSTP devices in the 22 nm 

technology node, with specs taken from the ITRS Roadmap. The inset shows the same graph for HP 

devices in the nodes between 22 and 17 nm. 

 

Figure 2.15 shows the resulting normalized Idsat versus ρc for the various 

technologies and device options. As one expects the current drive drops with 

increased ρc. In general the effect is more significant for scaled technologies, and 

for HP devices, where the targeted RON is more aggressive (i.e. lower). A 10 % drop 

in drive is associated with ρc ~10
-8

 Ω.cm
2
 in the 22 nm HP device, and with ρc~10

-7
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Ω.cm
2
 in the corresponding LOP and LSTP devices. It is obvious ρc needs to be in 

the order of 10
-7

 Ω.cm
2
 and below to avoid RON being dominated by the contacts.  

In the next section we examine the effect of LTA for NiGe contact formation, 

and systematically compare the results with conventional RTA, considering surface 

topography, interface quality, crystal structure, material stoichiometry, specific 

contact resistivity, and thermal stability.  

2.7 NiGe contacts made by Laser Thermal Anneal 

2.7.1 Experimental procedure   

Figure 2.16 summarizes the process flow undertaken in this study. After cleaning, 

high-resistivity (>40 Ω.cm) n-type (100) wafers received well implants to create a 

semi-insulating layer. The wafers then received a shallow P implant with the dose 

of 1×10
15 

cm
-2

 and energy of 12 keV. This was performed through a native oxide, 

and should amorphize approximately to a depth of 25 nm. Dopant activation was 

performed using an RTA at 500 °C for 10 s in an N2 ambient. It seems that 500 °C 

is an optimum annealing temperature for n-type dopants, as lower temperatures (e.g. 

400 °C) result in poor sheet resistance and activation, whereas at higher 

temperatures (e.g. 600 °C), diffusion is a concern. Thereafter 20 nm of Ni was 

deposited using thermal evaporation. Many works to date have studied germanide 

formation with Ni thicknesses in this range. Transfer length method (TLM) 

patterning and mesa dry etch was then carried out to minimize leakage currents. The 

Ni layer was patterned by a standard lift-off technique. It’s worth noting that laser 

light can be reflected by metal layers [72]. For the thickness of Ni in this work (20 

nm) the reflection difference is not expected to have a significant effect. 

The only variable in the process was the NiGe formation anneal. One set of 

samples received RTA treatment either at 250, 275, 300, 325 or 350 °C in N2 for 30 

s. Another set of samples received LTA processing (λ= 308 nm, single-pulse) at 

Excico with laser densities ranging from 0.25-0.55 J/cm
2 

and time durations ranging 

from 144-165 ns. The laser beam area was approximately 10×10 mm
2
. Note, these 

energy densities are significantly lower than those required for proper LTA assisted 

dopant activation in Ge [73]. The melting threshold was characterized by visual 
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observation (surface color change) on test samples prior to the processing of these 

experimental samples.  

 
Figure 2.16: A summary of the experimental process flow in this study. 

 

According to SRIM, a 1×10
15 

cm
-2

 12 keV P implant into Ge should produce a 

junction depth ~55-60 nm deep, even with a diffusionless anneal, so the germanide 

layers in this work should still be contained in the n-doped region. 

Various material characterization techniques were applied to inspect surface 

topography and crystalline quality of the germanide layers. Top-down SEM was 

performed on same tool as in section 2.6.1. AFM was performed in tapping/non-

contact mode at room temperature on 5×5μm
2
 scanning area. XTEM imaging was 

carried out using the JEOL 2100 high-resolution TEM under bright field conditions. 

Scanning TEM (STEM) imaging and Energy-dispersive X-ray spectroscopy 

(EDX) line scan analysis was undertaken using the Helios Nanolab system 

equipped with Oxford Instruments X-Max-80 EDX detector with spot size well 

below 1 nm. The analysis was conducted at 30 kV using moderate beam currents. 

For electrical characterization TLM was used to extract ρc. X-ray diffraction (XRD) 

was done in symmetric θ°-2θ° mode using PANalytical X
’
pert pro diffractometer 

(Cu Kα radiation λ=1.540598 Å). Similar equipment was used as in 2.6 for 

electrical characterization. Furthermore, the LTA process was simulated using the 

enthalpy model described in [74]. This approach allows the modelling of light 

coupling, heat diffusion and Ge melting. It does not take into account the effects of 

stoichiometry change during germanide formation. 
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2.7.2 Results of the material characterisation 

In order to study the effects of RTA and LTA, first surface roughness and 

continuity of the layers was evaluated by top-down SEM and AFM. In both cases 

continuous layers were formed with no evidence of breakages.  

Figure 2.17 shows representative AFM images of the surface topography which 

were formed by (a) RTA at 350 °C and (b) LTA at the energy of 0.35 J/cm
2
. Table 

in the Figure 2.17 shows the Root mean square (RMS) data extracted for all the 

samples. RMS is larger for the RTA set, except for the highest ED LTA. Much like 

there is a process window for NiGe formation by RTA [39, 40] where at high 

temperatures the thin film agglomerates into islands, this data indicates that LTA 

also has a process window for germanide formation above which the film degrades. 

0.55 J/cm
2
 is clearly too high for this application.  

 
Figure 2.17: Representative AFM images of NiGe layers formed by (a) RTA at 350 °C and (b) LTA 

at the energy of 0.35 J/cm
2
. The table shows the surface roughness data for all the RTA and LTA 

samples in this work. 

 

Mazzocchi et al. also reported a change in AFM RMS versus ED in their LTA 

dopant activation study in Ge, which was attributed to the transition from non-melt, 

to sub-melt, to melt conditions [73]. 

Figure 2.18 depicts SEM images comparing a) one RTA sample after RTA at 

500 °C where agglomerated NiGe is formed, and b) one LTA sample after 0.35 

J/cm
2
 ED. From the scale bars it is evident that LTA gives has much smoother 

surface. 
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Figure 2.18: Representative SEM images of the a) sample annealed at 500 °C RTA and b) subjected 

to LTA at 0.35 J/cm2. 

 

Representative XTEM images from a germanide contact formed by a) RTA at 

350 °C for 30 s in N2, and b) LTA at 0.45 J/cm
2
 are shown in Figure 2.19.  

 
Figure 2.19: Representative XTEM images of NiGe layers formed by (a) 350 °C RTA and (b) 

formed by 0.45 J/cm
2
 LTA. 

 

The LTA process resulted in germanide formation having sharp interface with 

the underlying Ge substrate. In stark contrast, the germanide layer formed by RTA 

exhibited a rough and ridged interface with the Ge substrate with larger crystalline 

domains. This is nothing new, as non-smooth NiGe interfaces are commonplace 

when RTA is used for the formation anneal [42, 46, 75].  



2. CONTACTS ON GERMANIUM DEVICES 

 

38 

 

 
Figure 2.20 : EDX data and STEM of germanide layers formed by LTA at 0.45 J/cm

2
, identifying 

NiGe2 in the lower portion of the germanide layer. 

 

Additionally, the germanide layer formed by LTA showed two definite sub-

layers with different stoichiometries identified by EDX line scans using a tightly 

focused electron probe. The quantification of the obtained EDX spectra (Figure 

2.20) showed the existence of a NiGe2 layer in contact with Ge covered by a NiGe 

surface layer. The germanide layer formed by RTA was identified as NiGe across 

its whole thickness. 

The germanide-substrate interface was studied at lattice resolution with the 

corresponding HRTEM images shown in Figure 2.21. Note Figure 2.21 a) and b) 

are from the same LTA sample but at different locations along the surface. Figure 

2.21 a) shows two grains of the NiGe2 phase and the corresponding interface with 

the (001) oriented Ge substrate. The lattices for both NiGe2 domains show some 

epitaxial relation.  

Several stacking fault defects along the (111) set of planes were observed in the 

Ge substrate as well as at the boundary between NiGe2 domains. In comparison, 

Figure 2.21 b) demonstrates a case where NiGe2 grains have no clear epitaxial 

alignment with the underlying (001) Ge substrate despite the fact that a very sharp 

interface is formed. In this regard, the interface between the two layers is effectively 

atomically flat. Lim et al. [76] argued that epitaxial NiGe2 on (001) Ge, although 

not thermodynamically favourable, may form as a result of minimization of the 

interfacial energy. Lattice-matched NiSi growth on Si has been reported by Gao et 
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al., where ultra-thin Ni layers were deposited on Si [77], and NiSi2 preferentially 

formed as it has a similar lattice spacing to Si. In contrast, the lattice resolution 

TEM images of the NiGe/Ge interface for the RTA treated sample revealed a 

corrugated surface far from being fully relaxed (Figure 2.21 c)).  

 
Figure 2.21: a) and b) representative HRTEM images from the interface between Ge and the Ni-

germanide after LTA 0.45 J/cm
2
, and c) RTA at 350 °C.   

 

Nevertheless epitaxial alignment of the (111) set of planes of NiGe to the (001) 

planes of the Ge substrate was identified. A large amount of residual strain has been 

observed by HRTEM lattice imaging. There is a lattice mismatch between NiGe 

and Ge which can be a cause of the residual strain as no Ge lattice defects are 

observed and the number of grain boundaries in the NiGe layer is relatively small. 

This is in contrast to the LTA sample where both Ge lattice defects and larger 

number of grain boundaries help NiGe2/Ge interface to relax.  

Herein we outline the importance of thorough structural examination of the 

germanide-substrate interface properties in relation to the obtained contact 

resistance. Moreover the stark difference in the structure of the germanide layers 
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obtained by LTA and RTA is a result of a fundamentally dissimilar formation 

pathway. 

Figure 2.22 shows a representative TEM image from a sample subjected to LTA 

at the energy of 0.55 J/cm
2 

where polycrystalline NixGey with ridged interface is 

formed. The relatively rough surface of the contact is also visible in the Figure 2.22 

a).  It was confirmed earlier from AFM measurements that surface morphology is 

deteriorated after 0.55 J/cm
2
 LTA. Figure 2.22 b) shows a zoom in view of the 

interface where defects and the interface are visible. 

 
Figure 2.22: representative HRTEM images from the interface between Ge and the Ni-germanide 

after LTA 0.55 J/cm
2
. 

 

The explanation for the huge improvement in interface roughness observed in 

Figure 2.21 is linked to the thermal gradient and shallow heat distribution 

associated with ultra-short-pulse LTA. Using a simple enthalpy model, we could 

simulate the thermal dynamics during the LTA process, taking standard values for 

Ni and Ge optical and thermal properties. It should be noted that within this simple 

approach, the effect of germanide formation on thermal and optical properties is not 

taken into account. Most of the UV laser light is absorbed within less than 10 nm in 

Ge during the sub-µs timescale of the laser pulse. This surface layer acts as a heat 

source, which diffuses in depth over time. 
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Figure 2.23: Simulated maximum temperature reached as a function of depth for the applied LTA 

energy densities. The ED values used for simulation are 0.4, 0.45 and 0.5 J/cm² for the non-melt, 

shallow Ge melt and deep Ge melt, respectively. We acknowledge EXCICO for the modelling work. 

 

 

 
Figure 2.24: Simulated surface temperature as a function of time for the applied LTA energy densities. 

The ED values used for simulation are 0.4, 0.45 and 0.5J/cm² for the non-melt, shallow Ge melt and 

deep Ge melt, respectively. We acknowledge EXCICO for the modelling work. 

 

In Figure 2.23 the maximum temperature reached during the process is shown as 

a function of depth for LTA process conditions corresponding to non-melt, shallow 

melt and deep melt regimes. The melted depth (where temperature is greater than 

the Ge melting temperature of 937 °C) increases with the LTA energy density. As it 

can be seen, the simulated thermal gradient is very high, close to 300 °C/µm, which 

limits the effect of the laser anneal to the near surface region. 



2. CONTACTS ON GERMANIUM DEVICES 

 

42 

 

In Figure 2.24, the corresponding surface temperature dynamics are reported. As 

is shown in the figure, the high temperature regime is sub-µs. Especially, the 

melting time is typically less than a few hundred ns. Within this timeframe, most of 

the Ni and Ge inter-diffusion mechanisms are expected to take place in the liquid 

phase, during melt and recrystallization of the Ge and germanide regions. As the 

melting temperature of Ni is 1455 °C, these simulations indicate that the Ni layer 

remains in solid form. 

The ED values used for simulation are 0.4, 0.45, and 0.5 J/cm² for the non-melt, 

shallow Ge melt and deep Ge melt, respectively. The corresponding melt depth 

simulated for 0.4, 0.45, and 0.5 J/cm² are about 0, 50, and 150 nm respectively. 

However, the germanide depth extracted from the TEM are much shallower in 

this ED range (<70nm). This discrepancy may be due to the impact of the NiGe 

layer optical and thermal properties which change during the process, and are not 

taken into account dynamically in this simple approach. Moreover, it is possible that 

diffusion dynamics are slower than the melting and recrystallization dynamics (sub-

µs timescale), which would lead to a germanide thickness smaller than the melted 

depth. More advanced studies would be required to understand the germanide 

formation mechanisms for such an ultrafast process.  

Note, in the conventional RTA case, the entire sample is essentially at the target 

temperature without significant thermal gradients, and the growth of germanides 

involves a solid-solid reaction.  

Much work has been devoted to understanding the effect of the liquid to solid 

phase transformation on impurity behaviour and solubility. Distribution coefficients 

have been explored since the early days of semiconductor processing, and are 

essentially a measure of solubility. The equilibrium distribution coefficient, k, is 

defined as the relative tendency of various impurities to dissolve in solid materials. 

In other words, k is the ratio of concentrations: CSOLID/CLIQUID, at the melting point 

of the material. In Trumbore’s review paper [78], which contains a vast amount of 

data for impurity solubilities in Si and Ge, k = CSOLID/CLIQUID = 3×10
-6

  for Ni in 

Ge. Hence the solubility of Ni in Ge is vastly greater in the liquid Ge phase, 

compared to the solid Ge phase.  
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Strictly speaking this value is for equilibrium conditions, but it is reasonable to 

state for the LTA case here. Ni is in contact with liquid Ge and thus rapidly 

dissolves into that layer. In effect the liquid Ge consumes the Ni on top very 

quickly, and the resulting Ni-germanide phase is determined by the ultra-fast 

reaction quenching. 

By changing the ED of the LTA process the surface melt depth can be controlled 

(Figure 2.23). The result of this is having a different thickness of liquid Ge in 

contact with the Ni over layer. Consequently the thickness of the obtained 

germanide layer scales with LTA ED as shown in Figure 2.25. 

 
Figure 2.25: XTEM images of Ni-germanide layers obtained at the corresponding laser energy 

densities. 

 

XRD analysis was carried out to identify crystal phases of the germanide formed 

during the RTA and also the LTA process. 

Figure 2.26 shows XRD diffraction pattern of germanide layer formed by LTA at 

0.35 J/cm
2
 along with the main NixGey crystal phases available in crystal reference 

patterns. As is seen in the figure it is clearly a complex system.  

In order to specify the crystal phases and corresponding indexing of the 

reflections each XRD data was compared with the reference patterns in the database 

to find the proper match to each reflection. Figure 2.27 shows XRD patterns of 

germanide layers formed by RTA at temperatures ranging from 250-450 °C with 

corresponding indexing of reflections, based on orthorhombic NiGe phases (pbnm 
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space group, a=5.81, b=5.83, and c=3.42). For reference one unannealed Ge sample 

was also checked by XRD. 

 

 
Figure 2.27: XRD patterns of germanide layers formed by RTA at 250- 450°C. For comparison one 

unannealed Ge sample was also check by XRD.  

 

From the intensities of the RTA samples one can conclude that germanide layers 

are dominated by the NiGe phase with appearance of Ni-rich germanides such as 

Ni5Si2 and Ni5Ge3. The obtained results are in good agreement with the θ-2θ 

 
Figure 2.26: X-ray diffraction patterns of germanide layers formed by LTA at 0.35 J/cm

2
 with the 

data base of different crystal phases of the possible NiGe alloy. 
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patterns of the NiGe JCPDS standard [79] and also other published reports on NiGe 

formation by RTA [41, 75, 80]. Ni-rich germanide phases were also observed 

during thermal treatment of 50 nm Ni layers on Ge [81]. 

Figure 2.28 shows XRD patterns for LTA at 0.45 J/cm
2 

and RTA at 350 °C 

samples, with the corresponding indexing of the reflections, based on orthorhombic 

NiGe2 and NiGe phases (NiGe2 Cmca space group, a = 10.83, b = 5.76 and c = 

5.76; NiGe pbnm space group, a = 5.81, b = 5.38 and c = 3.42). NiGe2 phase was 

reported in XRD analysis of LTA treated samples [76].  

 
Figure 2.28: XRD patterns of germanide layers formed by LTA at 0.45 J/cm

2
 and RTA at 350 °C. 

 

In XRD measurements the intensity of the peaks is influenced by the quality of 

the measured layer. In RTA samples the germanide is created in the form of 

relatively large crystalline domains which results in detectable XRD patterns during 

the measurement. The germanide layers formed by LTA were very thin and 

polycrystalline. Thus the observed peak were of very small intensity and in some 

cases broad making it difficult to accurately determine the crystal phase of the 

germanide layer. 

The NiGe2 phase obtained in the LTA process does not appear in the crystal 

phase diagram of the Ni-Ge system in equilibrium (see Figure 2.29) indicating that 

NiGe2 phase might have been an non-equilibrium unstable crystal phase in the 

system.  



2. CONTACTS ON GERMANIUM DEVICES 

 

46 

 

 
Figure 2.29: Binary phase diagram of the Ni-Ge system. Copyright 2006 American Institute of 

Physics [82]. 

 

2.7.3 Results of the electrical characterization 

Using the TLM test structures fabricated, ρc of the germanide/n-type Ge interface 

and the sheet resistance Rsh of the underlying P doped Ge layer were then extracted. 

Approximately 40 TLM structures within each array were electrically measured in 

order to extract reliable values for ρc 

 
Figure 2.30: Resistance versus contact spacing for LTA and RTA samples. The inset shows I-V 

characteristics of a typical TLM structure where the germanide contacts were formed by LTA with 

the energy of 0.45 J/cm
2
. 

 

Figure 2.30 depicts the typical output from a TLM measurement. The inset 

shows current versus voltage as a function of contact spacing of a typical TLM 
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structure fabricated using LTA (0.45 J/cm
2
). The resistance between contacts 

increases as the spacing increases. In the main part of the Figure 2.30 resistance 

versus contact spacing is plotted for the germanide formed by RTA at 275°, 300°, 

350 °C and LTA at 0.35, 0.45, and 0.55 J/cm
2
. As is seen straight lines are fitted to 

the data. Intercepts of the line with vertical and horizontal axes are used to calculate 

ρc and Rsh according to theory in section 2.6. 

Table 2.3 shows the results of ρc and Rsh extracted from all the TLM 

measurements. In the RTA samples Rsh and ρc decrease as the formation 

temperature increases from 275 to 350 °C, except at 325 °C for which we do not 

have a physical explanation at present. In an overall sense, the RTA samples 

produce ρc >10
-4 

Ω.cm
2
.  

 

Table 2.3: Rsh and ρc values for germanide contacts formed by RTA and LTA. 

Contact formation Rsh(Ω/sq) ρc (Ω.cm
2
) 

275 °C 196.1 6.31 ×10
-4

 

300 °C 186.0 1.61 ×10
-4

 

325 °C 216.3 9.57×10
-4

 

350 °C 169.0 1.35×10
-4

 

0.35 J/cm
2
 163.6 1.38×10

-6
 

0.45 J/cm
2
 147.9 2.84×10

-7
 

0.55 J/cm
2
 192.0 8.34×10

-4
 

 

In general Rsh and ρc are lower in the LTA samples. The best ρc value is 2.84×10
-

7 
Ω.cm

2 
obtained for the TLM sample annealed at 0.45 J/cm

2
, while ρc =1.33×10

-6 

Ω.cm
2
 produced by 0.35 J/cm

2 
is also a significant result. These ρc values are 2-3 

orders of magnitude lower than the equivalent RTA cases. It should be stressed 

again that the only process variable in this experimental work was the germanide 

formation anneal. It is interesting to see that increasing the LTA energy density to 

0.55 J/cm
2
 results in higher ρc. This could be attributed to the degradation of the 

interface quality (see Figure 2.22). 

Based on previous work we estimate the active doping concentration on the 

order of 3−6×10
19

 cm
−3

, depending on the amount of P snowploughed by the 

growing germanide layer, on how much Ge is consumed, and on how much the 

germanide formation anneal boosts or detracts from the initial activation level. 
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It is well-known that ρc is a strong function of active doping in the substrate 

below the contact, thus any boost in dopant activation will yield a similar 

improvement in ρc. One might argue in this case for the 0.35 and 0.45 J/cm
2
 LTA 

cases that the LTA is merely improving the P activation which is generating these 

ρc results. Indeed if one looks at Table 2.3, it does seem that the Rsh values indicate 

LTA is a benefit for P activation. However, if ρc versus Rsh is plotted, as is shown in 

Figure 2.31, one can immediately see that for a fixed Rsh LTA can still produce 

better ρc, if the correct energy density condition is selected. The extracted standard 

deviation for each ρc (error bars in this graph) shows that at very low ρc the 

accuracy of the data is reduced. 

 
Figure 2.31: ρc versus Rsh for all the samples in this work, as well as those from our previous NiGe 

on n-type Ge work using RTA (sec 2.6). For a fixed Rsh LTA can produce better ρc, if the correct 

energy density condition is selected. 

 

Note in Figure 2.31, data points from our previous experiments on germanide 

formation by RTA are included for completeness [83]. Based on the divergent 

trend-lines it is argued here that LTA benefits ρc not only by boosting dopant 

activation, but by also improving the quality of the germanide-Ge interface. The 

latter could be responsible for reduced FLP, as reported by Lim et al. [57]. 

In the final part of this work, thermal stability of the germanide layers is 

explored. The ultra-short time and highly-localized energy densities of LTA 

processing may form highly non-equilibrium metastable conditions in the 

semiconductor materials and substrates. If this is the case thermal budget in the 

processes that come after the LTA process step, may cause any metastable 
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condition revert back to a more equilibrium state. In order to evaluate germanide 

thermal stability one sample prepared at 300 °C RTA and one sample prepared by 

0.45 J/cm
2
 LTA were subjected to “post-processing” RTA treatments from 100-500 

°C. The anneal times were 30 s each. Only one sample was post-processed for both 

RTA and LTA so one should consider the post-processing thermal-budget in this 

study as cumulative. Figure 2.32 a) shows the TLM measurements of the LTA 

sample after post-processing. The slope and intercept of the fitted lines change after 

each RTA treatment, indicating that Rsh and ρc are deteriorated. Figure 2.32 b) 

shows a SEM image taken from the sample after the annealing process where 

agglomerated NiGe alloy is visible.  

 
Figure 2.32: a) Resistance versus contact spacing after post-processing treatments. The anneal times 

were 30 s. b) SEM image of the sample after the annealing process. 

 

Extracted ρc results are shown in Figure 2.33. In the LTA sample ρc increases 

gradually, and at 250 °C there is a significant increase in resistivity. By 500 °C the 

ρc value is similar to the RTA cases. In the RTA sample ρc shows a slight decrease 

at 150 °C and then follows an increasing trend. Both samples were inspected by 

SEM (data not shown), and it was observed at the end of this post-processing anneal 

sequence that the germanide had agglomerated, which may explain the erratic ρc 

trends for >400 °C post-processing. It is well known that germanide layers annealed 

at 500 °C become agglomerated [39, 40]. 

There are various existing methods to alter thermal stability of silicide or 

germanide layers. Thermal stability of the germanide layer was studied by Park et 



2. CONTACTS ON GERMANIUM DEVICES 

 

50 

 

al. by introducing Ta to the deposited Ni layer. The germanide layers showed a 

slightly improved stability upon formation of a Ta rich layer on top of NiGe that 

suppressed agglomeration at temperatures up to 600 °C [84]. Deposition of a thin 

layer of Pt on top of Ni was used to form Ni1-xPtxGe alloys thermally stable up to 

550 °C [85]. Adding an intermediate Ti layer either before or after Ni deposition 

improved the germanide stability due to formation of ternery Ni1-xTixGe  near NiGe 

layer [86]. One recent report highlighted the benefit of co-sputtering Ni and Pt prior 

to alloy formation [87]. Incorporation of Pd in to NiGe using Ni0.95Pd0.05/TiN 

structure hindered agglomeration and oxidation, hence contact thermal stability was 

improved [88]. Yb has also been reported to be effective for same purpose [89]. 

 

Figure 2.33: ρc versus post-processing RTA treatments. Only one sample was post-processed for 

RTA and for LTA so one should consider the post-processing thermal-budget as cumulative.  

 

2.8 Conclusion 

In this chapter we extracted ρc of NiGe on n-type Ge from TLM structures 

considering different dopants and implant doses. The lowest contact resistivity 

obtained was 3.46×10
-6

 Ω.cm
2 

using a 1×10
15 

cm
-2 

15 keV phosphorus implant, 

followed by a 500 °C activation (optimum annealing temperature in terms of 

activation and diffusion), and a 250 °C NiGe formation anneal. It is shown that 

higher implant dose leads to lower ρc. Also, P and As were compared in terms of 

Rsh and ρc, and it was observed that P yields lower Rsh and ρc. As activation at 500 
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°C is poor presumably due to unfavourable solubility and tendency to form clusters 

at this temperature.  

Moreover, the quality of germanide contacts formed by state-of-the-art LTA was 

investigated and compared systematically with RTA. LTA resulted in smoother 

layers of germanide, mainly NiGe and NiGe2 with some epitaxial relation with the 

underlying Ge. The germanide-substrate interface was incredibly sharp without any 

detectable interfacial region or transition zone in HRTEM. Simulations indicated 

that the LTA melts a surface Ge layer, causing a liquid-solid reaction with the 

overlying Ni. The best contact resistivity obtained in this study was 2.84×10
-7

 

Ω.cm
2
. Thermal stability of contacts formed by RTA and LTA was also compared.  

Future work in this field should include more ρc studies around 250-300 °C 

formation anneal, also without dopant activation anneal before NiGe formation and 

investigation of implantation through silicide (germanide) techniques. In case of 

using LTA to make germanide contacts it is imperative to explore solutions to 

improve thermal stability of contacts created by this approach. 
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Chapter 3 

N-type Dopant Studies 

3.1 Introduction 

Indeed many obstacles and challenges need to be addressed before Ge can become a 

channel material in advanced CMOS technology. Realization of n-type ultra-

shallow junctions with highly activated dopants in order to maintain low access 

resistance is a well-known roadblock in this journey. Meanwhile the relatively small 

band gap (0.67 eV) of Ge raises difficulties to minimize the leakage current in pn 

junctions [24]. In fact many people doubt Ge because leakage is too high. In 

addition, it seems indispensable to come up with practical solutions in order to 

control Ge desorption and dopant loss. This emphasizes the need for novel 

techniques and approaches for doping the semiconductor and the subsequent 

annealing and fabrication steps.  

In this chapter we investigate the influence of laser annealing on dopant 

activation and provide insight into the leakage problem and suggest practical 

solutions. Then we study F behaviour and its effect as a co implant in Ge. We close 

this chapter by a short discussion on Ge desorption and its correlation to the dopant 

loss phenomenon. 

3.2 Doping and annealing methodologies 

The incredible evolution of CMOS technology over the last decades has been 

accompanied by the emergence of numerous approaches for introducing impurities 

into Si and activating them. Among all, ion implantation (at room temperature) is of 

course the industry most conventional method [90]. Cryogenic implants where the 

substrate is at very low temperatures e.g. -60 or -100 °C during the implantation 

process have been proven to provide higher activation levels, more shallow 
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junctions, as well as lower leakage current. Due to the low temperature process, 

cryogenic implants cause greater amorphisation so end-of-range (EOR) damage is 

less. 

Another alternative are hot implants reported to be effective upon reduction of 

implant induced damage during implantation [91-93]. It is well established that 

specific co-implants such as C, F, and N are beneficial through interactions with 

interstitials and vacancies that are responsible for dopant diffusion and deactivation 

during the rapid thermal anneal [18]. Plasma doping is another advanced doping 

technique which allows high dose applications as well as relatively better conformal 

doping that is a fundamental requirement for non-planar FinFET architectures [94]. 

Vapour phase doping has also been used to introduce and activate high 

concentrations of P and As into Si [95]. Furthermore molecular layer doping is 

proposed as a novel method enabling conformal non-destructive doping in 

aggressively scaled semiconductor devices [96]. Spin-on-dopant has also been used 

for shallow junctions formation in Si [97]. 

In Ge processing, it can be well said that ion implantation has been the most 

common technique being used so far. Recently other doping techniques were 

applied on Ge like gas phase doping [98], plasma doping [99], and molecular layer 

deposition [100]. Cryogenic B implantation in Ge has been reported to effectively 

control junction depth and boost the level of activated dopants [58]. Co-implants in 

Ge have been demonstrated under certain circumstances, however they don’t seem 

to be as effective as in Si [17]. 

Ge crystal lattice is more likely to be amorphized than Si. So an annealing step is 

needed to re-grow the damaged crystal, incorporating the impurities in 

substitutional sites in the lattice, and electrically activate them. This is where the 

challenge starts. N-type dopants tend to diffuse very quickly via a vacancy-

mediated mechanism [101], leading to deep doping profiles. More over these 

elements exhibit low activation levels compared to p-type dopants. This is not 

acceptable for what is determined in ITRS roadmap where highly activated dopants 

(> 10
20

cm
-3

) and ultra-shallow junctions ~ 10 nm are required for sub-20 nm 

technology [71]. 
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 Using high implant dose in order to achieve high active concentrations is not 

very straightforward as it results in formation of honey comb voids in the substrate 

which seem to be stable at temperatures as high as 650 °C [102]. Figure 3.1 a) 

shows porous Ge surface after P 15 keV, 4×10
15

 cm
-2 

implant followed by laser 

annealing at 0.66 J/cm
2
. Figure 3.1 b) is a TEM image by Kaiser et al. showing 

formation of voids on top of the amorphous region after As 150 keV, 6×10
15

cm
−2

 

implant [103]. 

 

Low temperature implants e.g. at 77 K have been shown to eliminate void 

formation as the vacancies are less mobile and are unlikely to move around and 

combine with each other. Hot implant also will help to solve this problem due to 

higher rate point defects recombination [102].  

Recently Bao et al. reported the formation of Ge pn junctions by laser doping 

where using spin-on-dopant technique and further laser thermal annealing, P 

impurities were in-diffused in to the substrate. It is shown that this approach can 

reduce Ge desorption, and also the junction leakage current compared to ion 

implantation [104]. 

 Table 3.1 represents a summary of the doping and annealing methodologies that 

to the best of our knowledge have been applied for Si and Ge processing. In this 

thesis we discuss some of these techniques and they are highlighted in the table. 

Having in mind the state-of-the-art techniques being used for processing, and 

fabrication of Si devices, Ge technology looks quite young and immature. Some of 

 
Figure 3.1: a) Porous Ge surface after room temperature P 15 keV, 4×10

15
 cm

-2
 implant and laser 

thermal anneal at energy density of 0.66 J/cm
2
. b) Cross sectional TEM image of the voids after As 

implant 150 keV, 6×10
15

cm
−2

. Copyright 2010 American Institute of Physics [103].  
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these methods have never been used in Ge processing e.g. hot implants or are at a 

very early stage of research e.g. molecular layer doping. Therefore it is imperative 

to seek new approaches to achieve high activation levels of dopants while 

maintaining the ultra-shallow junctions in the emerging non-Si based devices.   

 

Table 3.1: A summary of the doping and annealing techniques that have been applied in Si and Ge 

technology. The areas of interest in this dissertation are highlighted. 

Process Technique 

Doping 

Ion implant 

Cryogenic implant 

Hot implant 

Co-implants 

Plasma doping 

Vapour phase doping 

Spin-on-dopant 

Molecular layer doping 

Annealing 

Rapid thermal anneal 

Solid phase epitaxial regrowth 

Flash lamp anneal 

Laser thermal anneal 

Microwave anneal 

 

The doping process is often followed by an annealing step in order to activate the 

dopants and repair the crystal damaged of the semiconductor. Again, a large variety 

of annealing techniques have been explored for Si devices, such as solid phase 

epitaxial regrowth (minute) [105], flash lamp anneal (millisecond), rapid thermal 

anneal (second), laser thermal anneal (nano-micro second) [73], and low 

temperature microwave anneal (seconds-minutes) [106]. 

3.2.1 Laser anneal activation 

Among various annealing techniques that have been developed so far ultrafast laser 

thermal annealing (LTA) has drawn a lot of interest [107-111]. Providing very 

limited thermal budgets, LTA has been proven to surpass conventional RTA as it 

boosts activation levels of the dopants well above the equilibrium limit while 

suppressing dopant diffusion [69, 73, 111, 112]. This valuable evidence along with 

achievements in low contact resistance formation [76, 109] proves the efficiency of 
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this technique. However the impact of LTA on the control of leakage current in Ge 

junctions is not fully investigated [99]. 

The aim of this experiment is to systematically compare RTA and LTA with 

respect to dopant activation and electrical performance of the n+/p junction. 

Moreover we aim to explore the trade-off between dopant activation and leakage 

current. In order to fully evaluate these thermal processes we combine a wide range 

of material characterization with extensive electrical characterization. In this way 

we explore surface roughness and morphology, crystalline integrity, carrier 

profiling, sheet resistance and carrier mobility in doped layers, as well as leakage 

current levels and generation mechanisms. 

3.2.2 Experimental procedure 

Figure 3.2 shows a summary of the process flow in this experiment.  Ge (100) 

wafers (p-type, 0.059-0.088 Ωcm) received standard cleaning prior to either P or As 

implant with the dose of 10
15

 cm
-2

 and the energy of 15 keV, and 28 keV 

respectively. The P implantation amorphized the Ge substrate to a depth of 30-35 

nm which for As is 35-40 nm. It is a feature of Ge substrates that the 

amorphous/crystalline (a/c) interface is not smooth after ion implantation. 

Following implantation, LTA (single pulse, λ=308 nm) was applied on one set of 

samples at ETH= 0.55 J/cm
2
, ETH+0.25, ETH+0.5, and ETH+0.65 J/cm

2 
energy 

densities in order to cure the crystal damage and electrically activate the dopants. 

We define the threshold energy ETH as the onset where the Ge surface begins to 

melt. It is known that changing the energy density changes the melt depth at the Ge 

surface. Each LTA shot covered an area of 1×1 cm
2 

over 158 to 164 ns of exposure 

time. One P and one As implanted samples were subjected to RTA at 500 °C in N2 

for 3 minutes as a control case. Diodes were subsequently fabricated from P 

implanted samples. The top contact was formed by evaporation of 20 nm nickel and 

then patterned by a lift off process. The diodes were isolated from each other by dry 

etching of a mesa with 600-700 nm height (see Figure 3.11). No germanidation 

annealing was performed. Ioannou-Sougleridis et al. reported enhanced leakage 

current due to diffusion of Pt atoms in to the depletion region during germanide 

formation [113].  
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Figure 3.2: summary of the experimental process flow in this work. 

 

The first stage of material characterization involved examination of the surface 

topography. Atomic Force Microscopy (AFM) was performed in non-contact 

tapping mode at room temperature on 5×5 µm
2
 area for surface examination and 

surface roughness measurements (RMS) before and after the annealing process. 

Scanning Electron Microscopy (SEM) was performed on an FEI 650 FEG SEM to 

inspect the surfaces and test structures. Following this cross-sectional Transmission 

Electron Microscopy (TEM) was carried out to monitor the crystal integrity using a 

200 keV JEOL 2010-HC TEM for the defect analysis, performed under weak beam 

dark field  (WBDF) conditions, and a 200 keV JEOL 2010F for high resolution 

imaging. For carrier profiling, Secondary Ion Mass Spectrometry (SIMS) was done 

on a CAMECA IMS 4FE6 system, available at the UMS-CNRS Castaing 

characterization centre of Toulouse, to obtain the chemical concentration of the 

dopants, while Electrochemical Capacitance Voltage (ECV) profiling was 

performed to determine active carrier concentration of the samples. The last stage of 

material characterization concerned Hall sheet carrier concentration (NHS), mobility 

(µH), and sheet resistance (RS) measurements which was done using a microHALL-

M300 tool at CAPRES A/S. Several measurements were acquired on each sample 

for statistical average values.  
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3.2.3  Results of the material characterization  

The samples were initially examined by AFM to inspect the effect of LTA on the 

surface morphology. After implantation, the RMS was approximately 0.3 nm. As is 

reflected in the extracted RMS values in Figure 3.3 a), the application of LTA in the 

partial melt regime (ETH and ETH+0.25 J/cm
2
) deteriorated the roughness of the 

surface. It is known that these energy densities can partially melt the amorphous Ge 

[73]. At ETH+0.5 and ETH+0.65 J/cm
2
 the substrate was melted beyond the 

amorphous region which resulted in a smooth surface after the LTA process. Figure 

3.3 b) and c) show representative AFM images from P implanted samples after 

ETH+0.25 J/cm
2 

and ETH+0.65 J/cm
2 

respectively. AFM images from As implanted 

samples subjected to ETH and ETH+0.5 J/cm
2
 are also presented in Figure 3.3 d) and 

e). From these data, it appears that the higher LTA energy densities are more 

favorable in order to reduce the roughness of the surface. 

 

Representative cross-sectional TEM images of the samples are illustrated in 

Figure 3.4. Figure 3.4 a) shows the sample after P implantation with the 

amorphous/crystalline (a/c) interface 35 nm below the surface. Figure 3.4 b) depicts 

the P implanted sample after ETH LTA. As seen in the WBDF image, the previous 

amorphous layer is crystallized but stacking faults are also formed (as shown in the 

high resolution image in the inset) due to poor templated recrystallization. 

Moreover, the presence of EOR defects at 40 nm below the surface, behind the 

 
Figure 3.3: a) Surface roughness versus laser energy for P and As samples. Example AFM images of 

P implanted samples treated by LTA at b) ETH+0.25 J/cm
2
 and c) ETH+0.65 J/cm

2
. 
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previous a/c interface, indicates that the melting arrived just in correspondence of 

the a/c interface. The same phenomenon was observed by Tsouroutas et al. [111]. 

Figure 3.4 c) shows the P implanted sample subjected to ETH+0.65 J/cm
2
 LTA 

which resulted in apparently defect free crystalline Ge. At this energy Ge is melted 

beyond the a/c interface. 

 

Similar to P case Figure 3.5 illustrates representative cross- sectional TEM 

images of the As implanted samples before and after the annealing step. Figure 3.5 

a) shows as implanted sample after ion implantation with the amorphous /crystalline 

interface 35-45 nm below the surface. Figure 3.5 b) is an image from the same 

sample after ETH+0.5 J/cm
2
 LTA. In this case the melt-depth is less than the 

amorphous/crystalline interface leading to polycrystalline Ge and a non-uniform 

substrate. Figure 3.5 c) shows sample treated with ETH+0.65 J/cm
2
 LTA, which 

created a clean crystalline substrate.   

Once again it appears that the higher thermal budget of the high energy density 

LTA process is desirable, as fewer crystal defects are evident in the TEM images. 

 

 
Figure 3.4: Representative TEM images of a) amorphous and crystalline interface in Ge with 30-35 

nm amorphous depth after P implant, b) defective crystalline Ge after ETH LTA, and c) crystalline Ge 

with no visible defects after ETH+0.65 J/cm
2 

LTA. We acknowledge Simona Boninelli in MATIS 

IMM CNR and Fuccio Cristiano in LAAS-CNRS and Univeristy of Toulouse for TEM imaging. 
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Figure 3.5: Representative TEM images of a) amorphous crystalline interface in the substrate with 

35-45 nm junction depth after As implant, b) defective and non-uniform Ge after ETH+0.5 J/cm
2
 

LTA, and c) clean crystalline Ge after ETH+0.65 J/cm
2 

LTA. We acknowledge Simona Boninelli in 

MATIS IMM CNR and Fuccio Cristiano in LAAS-CNRS and Univeristy of Toulouse for TEM 

imaging. 

 

Figure 3.6 shows SIMS depth profiles of the P implanted samples subjected to 

LTA. The a/c interface is shown by a dashed line. The peak on the surface is 

probably due to a SIMS artefact. From dose integration of the SIMS profiles it was 

determined that 23-38 % of P out-diffused during the ETH to ETH+0.65 J/cm
2 

LTA. 

Maximum dopant concentration of 2.4×10
20

 cm
-3

 was obtained after LTA at ETH.  

 

There is no evidence of redistribution of dopants for the lowest thermal budget 

cases (ETH and
 
ETH+0.25 J/cm

2
). As expected, higher laser energies resulted in a 

deeper junction and more diffusion of dopants into the substrate. Enhanced 

redistribution of the dopants in molten Ge created a box-like profile after ETH+0.65 

J/cm
2
 LTA. In this case the maximum dopant concentration is reduced down to 

5.3×10
19

 cm
-3 

due to diffusion. 

 
Figure 3.6: SIMS profile of P implanted samples subjected to LTA at energies ranging from ETH to 

ETH+0.65 J/cm
2
. 



3. N-TYPE DOPANT STUDIES 

 

62 

 

Dopant loss could be reduced significantly with a careful optimization of the 

implant conditions, with a much shallower amorphized depth that requires a 

shallower melting depth and shorter melting time, which subsequently reduces the 

out diffusion of dopants. Using a capping layer would also help to reduce the 

dopant loss, hence maximizing the active carrier concentration. An extensive study 

by Impellizzeri et al. on the effect of LTA on activation of B in Ge proved that 

incorporation of oxygen coming from the native oxide on the Ge surface can 

impede electrical activation of dopants [114]. This could also be a concern for 

leakage if oxygen reaches the depletion region of the junction. Comparison of the 

equilibrium diffusion coefficient for oxygen in Ge [11] with that of for P and As 

extracted by Chui et al. [115] shows that P and As diffuse faster than oxygen in Ge 

during the annealing process. For the non-equilibrium LTA process we would not 

expect the oxygen to diffuse faster than the P and As, effectively catching up with 

the dopants and reaching the depletion region in significant concentration levels.  

Figure 3.7 presents active dopant concentration versus depth obtained from ECV 

measurements for P implanted samples. Comparison of ECV and SIMS profiles for 

each of the laser energies shows a good agreement between the two techniques (see 

Figure 3.8). Therefore it appears, within the error bars of the two characterization 

techniques, all the retained dose of P is activated, with a maximum active 

concentration of 1.65×10
20

 cm
-3

, close to the result reported by Mazzocchi et al. 

(1.2×10
20

 cm
-3

) for P using similar laser energy densities [73]. Using LTA on Sb 

implanted Ge, Thareja et al. also achieved carrier concentrations above 10
20 

cm
-3

 

[69]. 

The observed peak at ~ 35 nm in the ETH LTA is located in the most defective 

zone of this sample, as found by TEM analysis (cf. Figure 3.4 b) and indicates that 

the carrier concentration at this depth exceeds the dopant concentration (cf. SIMS 

profile, Figure 3.6). Similarly to what has already been found during B activation in 

Si after excimer laser annealing [116], it is therefore suggested that the presence of 

this ECV peak is attributed to the existing defects rather than to the active dopants. 

Indeed, the charges measured by ECV are associated to the energy levels distributed 

in a wide energy range of the bandgap, including those associated to extended 

defects [117, 118].  
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Finally, from the ECV profile of the RTA control sample it can be confirmed 

that RTA resulted in a lower level of active concentration of 2.7×10
19 

cm
-3

 and a 

deeper junction compared to the LTA samples. 

 

Figure 3.8: SIMS and ECV profile from P implanted samples after a) ETH+0.25 J/cm
2
 LTA, and b) 

ETH+0.65 J/cm
2
 LTA. 

 

Figure 3.9 shows SIMS depth profiles of the As implanted samples subjected to 

LTA. Here the a/c interface lays 35-40 nm below the surface indicated by the 

dashed line. Almost no redistribution of dopants is observed at ETH LTA.  

Dose integration of the SIMS profile at this energy shows no dopant loss during 

the LTA process. However subsequent LTA energies resulted in 10-20% dose loss. 

Using ETH+0.65 J/cm2 LTA a box-like profile is formed with the melt depth lying 

about 80 nm below the surface. Here the plateau concentration is >10
20

 cm
-3

. 

 
Figure 3.7: Active carrier concentration from P implanted samples obtained by ECV. LTA resulted 

in higher carrier concentration compared to RTA.  
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Similar to the P samples no observable defects were formed after the amorphized 

Ge region (including EOR defects) was fully melted and re-grown. 

 

Active carrier concentration of the As doped samples was also measured by the 

ECV profiling technique which is shown in Figure 3.10. 

 

High active concentrations >10
20 

cm
-3

 were achieved after ETH LTA on As 

implanted samples with a peak concentration of 10
21

cm
-3

 at ~35 nm. Several ETH
 

samples were re-measured to confirm these results. Integrated dose of the ETH 

profile is >10
15 

cm
-2

 indicating that the charge is coming not from the dopant but 

 
Figure 3.9:  SIMS profile of As implanted samples subjected to LTA at energies ranging from ETH to 

ETH+0.65 J/cm
2
. 

 
Figure 3.10: Active carrier concentration from As implanted samples obtained by ECV. LTA 

resulted in higher carrier concentration compared to RTA. The peak in the carrier concentration of 

the ETH profile is due to the accumulation of defects in the junction not dopants alone. 
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from defects at the original a/c interface similar to what previously discussed for the 

Phosphorus implanted samples (cf. in Figure 3.7). 

As was shown for P in Figure 3.4, similar trends were obtained for As resulting 

from the LTA process. Like the P case, higher laser energies resulted in deeper 

doping profiles and lower levels of dopant concentration due to diffusion. Again 

within the error bars of the ECV and SIMS characterization techniques it appears 

that all the retained dose of As is activated. As a comparison Hellings et al. reported 

13-26 % activation for As implanted Ge using millisecond laser annealing [108]. 

ECV characterization on the control RTA sample shows carrier concentration ~ 

10
19

 cm
-3

. Using excimer laser annealing Milazzo et al. obtained active carrier 

concentration of As dopant above 10
20 

 cm
-3

 [110].  

Table 3.2 shows the mobility and micro Hall Effect measurements on P and As 

implanted samples after ETH+0.5 and ETH+0.65 J/cm
2
 LTA. Higher laser energy in 

both sets of samples resulted in improved carrier mobility (µH) and also lower sheet 

resistance (RS). This is consistent with the observations from material studies where 

the higher laser energy repaired the crystal lattice after the implantation process (see 

Figure 3.4). Extracted sheet carrier densities with Hall measurements (NHS) is in 

good agreement with the active integrated concentrations obtained from ECV 

profiling technique. Active carrier concentration normally increases with increased 

thermal budget but from these measurements it remains constant.  

 

Table 3.2: Micro Hall effect measurements 

Dopant Anneal (J/cm
2
) µH (cm

2
/Vs) NHS (cm

-2
) Rs (Ω) 

P ETH+0.5 118 5.78×10
14

 91.8 

P ETH+0.65 161 5.60×10
14

 69.4 

As ETH+0.5 94 9.01×10
14

 73.9 

As ETH+0.65 112 8.63×10
14

 64.5 

 

The observed discrepancy in the extracted values may be associated with the out-

diffusion of the dopants during the thermal treatment as well as an almost perfect 

activation of dopants in both cases. In conclusion from the material analysis, it is 

apparent that the best choice of LTA condition depends on a number of factors. At 

low energy density, we observe a diffusion-less high activation of dopants, at a cost 

of residual defects in the crystal. At high energy density, crystalline integrity is 

drastically better, while maintaining very impressive levels of carrier concentration. 
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However care must be taken to optimize the process so as to avoid excessive dopant 

diffusion. 

3.2.4 Results of the electrical characterization on diodes 

Although LTA seems to be promising to achieve high activation levels of dopants 

with no observable defects in the TEM images (Figure 3.4 and Figure 3.5), more 

evidence on electrical performance of these junctions in terms of leakage current 

and ION/IOFF ratio is needed for a clear understanding of the effects of this technique. 

By making diodes and electrically characterizing them we can study the defects that 

exist in a pn junction but are not visible in TEM imaging. These defects are 

responsible for leakage current in the junction. 

Figure 3.11 shows a SEM image of the fabricated diode structures. The inset 

shows a schematic of characterized circular diodes ranging from 100 to 500 µm 

diameter. 

 

Figure 3.12 depicts I-V characteristics obtained from 500 µm circular diodes 

processed by LTA and RTA. Due to the similarity in the material characterization 

trends for P and As implants, we focus on P in the electrical analysis in the 

remainder of this chapter. The ETH LTA sample shows poor I-V characteristics with 

very high leakage current and ideality factor n larger than 2. This can be associated 

to the formation of a defective substrate during the re-crystallization process. 

Annihilation of defects at higher laser energies (see Figure 3.4) resulted in 

 
Figure 3.11: SEM image of the diode test structures. The inset shows a schematic of the 

characterized diodes. 
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improved I-V characteristics. ION/IOFF ratio > 10
4
 was obtained between -1 to 1 V 

for ETH+0.65 J/cm
2
, with n=1.4. Note that smaller dimension diodes produced a 

higher ION/IOFF ratio above 10
5
 with n= 1.2 (see Figure 3.18).  

Significantly, RTA diodes showed ideal behaviour with n =1.03 and ION/IOFF 

ratio > 10
6
. From the I-V characteristics it can be concluded that there are deep level 

defects in the n+/p junctions formed by LTA which form generation centres 

contributing to the leakage current [119]. In the RTA case, on the contrary, long 

thermal budget cured the defects in the depletion layer and resulted in very low 

leakage current. Moreover, diffusion of dopants due to the long RTA (as compared 

to LTA) shifted the junction depth beyond the original defective region within the 

n+ part of the junction so that the remaining defects (if any) would not be located in 

the depletion region and have an impact on the leakage current. 

As stated earlier I-V measurements were carried out on a large set of diode 

structures from which perimeter leakage current density (
PJ ) was extracted using 

 AP JAJPI   (3. 1) 

which becomes: 

 AP JJ
A

P

A

I


 
(3. 2) 

 
Figure 3.12: Diode I-V characteristics from P implanted samples treated by RTA and LTA (ETH - 

ETH+0.65 J/cm
2
). 
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where P and A are perimeter and area of the diode and JP and JA are perimeter and 

area leakage respectively. 

To confirm perimeter leakage is not significant Figure 3.13 illustrates leakage 

current density at 1V versus different perimeter/area ratios for the LTA and RTA 

diodes. For clarity, data are presented in semi log scale. A straight line can be well 

fitted to the data in linear scale with the slope of the line corresponding to the 

perimeter leakage current, according to equation (3.2). It can be confirmed that both 

RTA and LTA diodes exhibit very low perimeter leakage which is at least 2 orders 

of magnitude smaller than the area leakage current. The graph also gives good 

overview of the current density for all types of samples showing improvement in 

leakage current from ETH to ETH+0.65 J/cm
2 

to the RTA diode.  

 

There are different mechanisms responsible in leakage current which are 

temperature and electric field dependent, and can be classified as Shockley-Read-

Hall (SRH) generation/recombination, trap-assisted tunnelling (TAT), band-to-band 

tunnelling (BBT) and diffusion current [119]. In order to determine the dominant 

mechanism I-V measurements were carried out at temperatures ranging from -35°C 

to 100°C in 15°C steps. An activation energy (EA) was then derived from Arrhenius 

plots.  

Generally speaking, SRH dominated leakage current is more pronounced in the 

presence of deep level defects in the junction with EA approximately half of the 

 
Figure 3.13: Representative perimeter leakage current density at reverse voltage of 1V for different 

perimeter area ratios for LTA and RTA diodes. 
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band gap. TAT occurs when defects operate as trap levels in the depletion region, 

causing electrons to be captured and tunnel due to the electric field. EA around half 

of the band gap is also expected for TAT. If a high electric field exists in the 

junction then the most probable mechanism to happen is BBT, as electrons are 

actuated from valence band in the p-side to the conduction band in the n-side 

through the depletion region. EA is approximately 0 eV in this case. For diffusion 

current, which is proportional to the square of intrinsic carrier concentration, (ni
2
), 

EA is close to the band gap [120]. 

In Figure 3.14 I-V characteristics from 300 µm ETH+0.65 J/cm
2
 LTA diode 

structures at different temperatures are shown. The effect of temperature on diode 

behaviour was reflected in the ideality factor extracted at each temperature. The 

inset in Figure 3.14 illustrates variation of n versus temperature with n increasing by 

temperature.  

In these measurements leakage current increased about 3 orders of magnitude at 

1V, suggesting that diode behaviour is strongly affected by temperature variations. 

Meanwhile at low temperatures (from -35°C to room temperature (RT)) leakage 

current is more dependent on the electric field. 

Activation energy for this sample at 1 V was found to be 0.47 eV, which is 

bigger than half of the Ge band gap. According to theory SRH dominated leakage 

current is proportional to depletion width which itself is proportional to V
0.5

 [119]. 

Measurements on the LTA diode revealed that the leakage current is proportional to 

V
x
 with x > 0.5 for temperatures from -35 to 55 °C and x < 0.5 for temperatures 

from 55 to 100 °C. These results along with extracted EA values (see Figure 3.16) 

point out that the leakage mechanisms are dominated by TAT and SRH, 

respectively. 

Figure 3.15 shows representative I-V characteristics obtained from a 300 µm 

RTA diode. Again temperature measurements were carried out from -35 °C to 100 

°C with 15°C increments. Similar to the LTA diode ideality factor was increased by 

temperature as is shown in the inset. Leakage current was enhanced about 5 orders 

of magnitude at 1 V due to the temperature change. For this particular sample the 

current can be categorized in two different regimes in terms of the leakage current 

behaviour. 



3. N-TYPE DOPANT STUDIES 

 

70 

 

 

 
Figure 3.14: I-V characteristic of ETH+0.65 J/cm

2
 LTA diode for temperature increments from -35 to 

100° C in 15° C steps. 

 

 

From -35 °C up to 10 °C the leakage current showed electric field dependence 

whereas it showed weak dependence on the electric field from 25 °C to 100 °C. 

This difference was also reproduced in the activation energy extraction. The 

activation energy extraction routine is explained in more detail in Figure 3.17, and 

is shown for only 2 conditions. Note we performed this analysis on all the diode 

structures and samples, and this figure shows a representative data sample set. 

Figure 3.16 represents reverse current density versus 1/kT from a 300 µm 

ETH+0.65 J/cm
2
 LTA diode for RT to 100°C. Extracted activation energies from the 

 
Figure 3.15: I-V characteristic from RTA sample for temperature increments from -35 to 100° C in 

15° C steps. 
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Arrhenius plots for 0.5 to 2 V are ~ 0.5 to 0.4 eV respectively. The inset shows 

similar graph for 1V for the RTA sample where the diode behaviour splits into two 

regimes. Different activation energies at high and low temperatures were also 

observed by Eneman et al. [121].  

 
Figure 3.16: Reverse current density versus 1/kT from ETH+0.65 J/cm

2 
LTA sample for RT and 

above. Activation energy is extracted from the slope of the fitted lines. The inset shows current 

density versus 1/kT for the RTA sample for which different behavior is observed below and above 

RT. 

 

Below RT the EA was 0.52 eV suggesting TAT as the main contributor to the 

leakage current. Interestingly, for the temperatures above RT the extracted EA was 

0.79 eV. Considering voltage independency of the I-V characteristics it could be 

interpreted that diffusion is dominating the leakage mechanism in this regime with 

few generation centres in the depletion layer. 

Activation energy versus voltage for RTA and LTA samples at RT and above is 

presented in Figure 3.17. For all LTA samples activation energy is between 0.4 and 

0.6 eV. Note that EA= 0.79 eV (RTA case) is very close to direct band gap (0.8eV) 

of Ge. This appears to be a surprising result as the indirect band gap of Ge is 0.67 

eV.  

The reason for EA > 0.67 eV is not well understood and is currently under 

investigation. It should be noted that multiple samples and multiple diode structures 

produced this result. Furthermore we tested our samples on two entirely different 

probe stations producing the same results. Moreover we repeated the entire 

experiment and RTA processed diodes still produced EA > 0.67 eV.  The activation 
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energies for the RTA samples are over 90 meV in excess of what is expected for a 

perfectly crystalline sample doped at 2.7×10
19

 cm
-3

. The inset in Figure 3.17 shows 

the Fermi level versus carrier concentration for Ge, calculated using a 30 band k.p 

model [122]. At the reported doping concentration the Fermi level and hence the 

activation energy should lie around 0.7 eV. 

 
Figure 3.17: Activation energy versus reverse bias extracted from RTA and LTA diodes. The inset 

shows calculated Fermi level versus carrier concentration in the n-type region, using a 30 band k.p 

model. 

 

 Possible reasons for higher activation energies are: (i) a higher carrier 

concentration of ~ 10
20

 cm
-3

, introduced in the process of making the diodes, and 

(ii) a hybridization of the conduction band with the impurity level at high doping 

concentration, which may shift the bottom of the conduction band higher in energy. 

Both these effects would result in an EA strongly sensitive to doping concentration. 

However, we saw in our ECV data in Figure 3.7 for RTA processed P implants, that 

the active concentration was approximately 2.7×10
19

 cm
-3 

which seems to be 

inconsistent with the first explanation above. We are currently investigating this 

trend in the experimental data further through advanced theory and modelling.  

Figure 3.18 shows the ION/IOFF ratio versus n extracted from 100-500 µm LTA 

and RTA diodes. Coloured symbols show the results from LTA diodes, and open 

symbols show the RTA case. The best ION/IOFF ratio from LTA samples was 

obtained from the 100 µm ETH+0.65 J/cm
2 

LTA diode with n= 1.3 and ION/IOFF 

ratio= 2.4×10
5
, which matches the best reported to date for Ge diodes with LTA 

[69]. RTA diodes exhibit n less than 1.05, with corresponding ION/IOFF ratio ~ 10
7
, 
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which to the best of our knowledge is the highest obtained for Ge diodes to date. n 

~1 indicates that there are few defects in the junction, and the total leakage current 

is mainly dominated by diffusion current. To benchmark our results the inset shows 

similar works on Ge that have been reported so far [99, 123-127]. 

 
Figure 3.18: ION/IOFF ratio versus ideality factor for LTA and RTA samples. The inset shows ION/IOFF 

ratio for other works published. 

 

Jamil et al. used Spin-on-Dopant technique and reported n~ 1.03 and ION/IOFF 

ratio~ 10
5
-10

6
 as compared to conventional ion implantation with n= 1.45 and 

ION/IOFF ratio ~ 10
3
-10

4
 [123]. Kuzum et al. achieved n ~ 1.9 and ION/IOFF ratio ~ 10

3 

from NMOS devices with GeOxNy dielectrics [124]. Morii et al. reported n ~ 1.2 

and ION/IOFF ratio ~ 10
5
 from junctions created by Gas Phase Doping and n~ 1.77 

and ION/IOFF ratio ~ 10
4
 from phosphorus implanted n+/p junctions [125]. Yu et al. 

compared in-situ doping with ion implantation and reported n ~ 1 and ION/IOFF ratio 

= 1.1×10
4
 for in-situ doping. For ion implanted samples the ION/IOFF ratio was ~10

3 

[126]. Yamamoto et al. fabricated n+/p diodes with n~ 1.06 and ION/IOFF ratio ~ 

3.7×10
5
 [127]. Koike et al. reported ION/IOFF ratio ~ 10

6
 by two-step P implantation 

followed by RTA [49]. Heo et al. applied plasma doping followed by excimer laser 

annealing on Ge and obtained n~ 1.1-1.3 and ION/IOFF ratio ~ 10
3
-10

4
 [99]. Their 

ideality factor is better than the value reported in this work but the obtained ION/IOFF 

ratio seems to be lower compared to our data. In our case we used ion implant 

whereas plasma doping was used in the Heo et al. work.  
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This may lead to differences in damage and defect distributions close to the 

junction, leading to different diode performance. Plasma implant is known to reduce 

EOR defects and keep the implanted region very shallow (~ 10 nm in [99]). In that 

case the melting time is probably shorter, thus the dopants out-diffusion is limited. 

In addition high concentration of P on the surface could act as a capping layer 

limiting the oxygen incorporation from the native oxide which may result in fewer 

defects. 

There is certainly a trade-off between high levels of carrier concentration and the 

electrical performance of the n+/p junctions. Figure 3.19 shows the leakage current 

versus maximum carrier concentration for the RTA and LTA samples. 

As is shown in the plot, LTA provides high carrier concentration, which is good 

for access resistance with trade-off in ION/IOFF. The opposite is true for RTA 

technique. From our data it is evident that optimum LTA condition can be found to 

achieve high carrier concentration with acceptable ION/IOFF ratios. 

  

3.3 Co-implantation  

P and As show concentration dependent diffusivity [59, 115]  in extrinsic doping 

conditions reflected in their box-like doping profile with a flat plateau and sharp 

drop-off in the tail after RTA. Reducing diffusion might be possible if implant dose 

 
Figure 3.19: Leakage current versus maximum active concentration as a function of the annealing 

process/energy. This plot clearly shows and the decreasing trend of the leakage current at the cost of 

lower activation level for the dopants. 
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is decreased but that would come with low dopant concentration and high sheet 

resistance. Since P and As tend to diffuse via a vacancy mediated mechanisms [59, 

128] controlling the vacancy population with point defect engineering could help to 

reduce dopant diffusion.  

One solution is using non-dopant impurity co-implants in Ge. It has been shown 

that C co-implant can help to control B and P diffusion and deactivation [129]. C 

has been shown to reduce P diffusion both in form of co-implant [73] and 

molecular-beam-epitaxy [130]. N has also been experimentally demonstrated to 

suppress P diffusion [131, 132]. F is also considered as a co-implant to control 

diffusion in Si process [133, 134] either implanted by itself or in form of BF2.  

Note that F exhibits quite unusual behaviour in Si as it does not seem to spend 

much time in substitutional sites. Looking for impurity solubility and diffusivity of 

F in Si, one would notice notable absence of F in text books and literature [78, 135]. 

Jeng et al. observed rapid outgassing of F from Si during thermal annealing and 

attributed that to formation of volatile Si oxyfluoride and Si fluoride on the surface 

[136]. This can probably be blamed for the difficulty in experimentally extracting F 

solubility and diffusivity data in crystalline Si. F diffusivity in amorphous Si was 

extracted at relatively low temperatures by Nash et al. [137]. 

 
Figure 3.20: Schematic of F role in suppression of B diffusion in Si. 

 

 It is known that F has strong electronegativity and if implanted with high 

concentration in pre-amorphized Si it forms FnVm clusters [138] during the 

recrystallization process. Immobile peaks in SIMS profiles of F in Si often are 

associated with F-rich clusters. It has been proven that these clusters are effective in 
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suppression of B deactivation and diffusion [139] as they capture interstitials which 

will cause the FnVm to dissolve [105] resulting in improved thermal stability of 

SPER-formed junctions as is shown in Figure 3.20. 

As proposed by the theoretical calculations in [101] F co-implants might be 

effective in reducing P diffusion in Ge by forming FnVm clusters. These clusters 

basically occupy the vacancies that P needs to interact with for diffusion into the 

substrate. Despite promising theoretical studies [140] on F co-implants in Ge, few 

experimental works have been reported in this area. Jung et al. used F ion-implant 

to passivate vacancy defects in Ge which generate acceptor states in Ge [141]. 

 In this part of the thesis we report our results on the effects of F co-implants in P 

and As doped Ge. 

3.3.1 Experimental procedure 

Figure 3.21 depicts the process flow undertaken in this study. Experiments were 

performed on (100) n-type Ge wafers, with a bulk resistivity of 0.2-0.5 ohm.cm. 

After a standard clean, wafers received an n-type dopant implant, either P with a 

dose of 1×10
15

 cm
-2

 and energy of 15 keV, or As with a dose of 1×10
15

  cm
-2

 and 

energy of 28 keV. In some cases F was implanted with a dose of 1×10
15

 cm
-2

 and 

energy of either 10 keV which overlays the dopant profiles or 25 keV that is slightly 

deeper.  The first approach puts the F profile in proximity to the dopants. The latter 

is the typical approach used in Si processes where the projected range of the co-

implant is at the depth between the dopant profile and the expected location of the 

end-of-range defects. All implants were performed at a tilt of 7°, with a native oxide 

covering the substrate. Wafers subsequently received an RTA in an inert ambient at 

600 °C. Anneal times were in the 1-30 s range. Ge substrate loss during RTA is 

significant, and we expect approximately 0.15 and 4.5 nm to be lost for 1 and 30 s 

respectively, according to the model of Ioannou et al. [142]. It is often common 

practice to cap Ge substrate during RTA. However covering oxide cap was 

purposely omitted to determine if there was a link between dopant loss and implant 

damage.  
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Figure 3.21: Process flow of the experiment. 

 

Secondary-ion-mass-spectrometry (SIMS) was used to characterize the impurity 

profiles, with Cs
+
 primary ions and negative mode for P and As, and with O2

+
 

primary ions and positive mode for F. Cross-sectional transmission electron 

microscopy (XTEM) was also performed on some samples. Bright-field XTEM 

images were generated to measure the amorphous Ge depth after implant. 

3.3.2 Results of the material characterization 

The XTEM image in Figure 3.22 shows the sample after a 25 keV F implant, with 

an amorphized region which is 72 nm deep. A brief theory on ion implantation and 

point defect is presented in sec 4.2.  

 

 
Figure 3.22: A cross-sectional TEM image after the 1×10

15
 cm

-2
 25 keV F implant. The amorphous 

Ge depth is approximately 72 nm. 
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Figure 3.23: SIMS depth profile of F ( 1×10

15
 cm

-2
 25 KeV) before and after RTA at 600 °C, 30 sec.  

 

Figure 3.23 represents the chemical concentration of the F implant before and 

after RTA at 600 °C for 30 s in N2 confirming F out-diffusion after RTA. SIMS 

profiles after RTA at 600 °C for 1 sec did not show any F either indicating that F 

out-diffused after 1 sec anneals (data not shown here). 

Figure 3.24 shows SIMS profiles for P after the 600 °C 30 s RTA. The 

characteristic box-like diffused profile is clearly evident.  

 

There is little difference between the P profiles for the different F conditions, as the 

junction depth (Xj) at a P concentration of 1×10
18

 cm
-3

 is 120-126 nm. The roll-off 

 
Figure 3.24: P concentration versus depth profiles for a 1×10

15
 cm

-2
 15 keV implant after a 600 °C 

30 s RTA, without F (solid line), with a deep F implant (dashed line), and with an overlaying F 

implant (dotted line). The retained doses extracted from the SIMS are plotted in the inset, either 

including the surface peak or assuming a plateau of 2×10
19

 cm
-3

 in the near-surface region. 
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of the tail is approximately 10 nm/decade. The retained dose was extracted from the 

SIMS profiles, and is plotted in the inset. Note there is a 10 % relative error for 

these values which is standard for SIMS characterization. As the SIMS surface peak 

may be misleading, we also extracted retained dose assuming the plateau 

concentration of 2×10
19

 cm
-3

 in the near surface. These levels of dopant loss are 

consistent with literature. The addition of 10 keV F reduced the retained dose by 

roughly 12 %. 

Figure 3.25 shows SIMS profiles for As after the 600 °C 30 s RTA. A 

characteristic concentration-enhanced diffusion is observed. Xj at an As 

concentration of 1×10
18

 cm
-3

 is 165-180 nm. The roll-off of the tail is approximately 

20 nm/decade. The resulting retained dose was extracted from the SIMS profiles, 

and is plotted in the inset. Without the surface peak we extracted retained dose 

assuming the plateau concentration of 1×10
19

 cm
-3

 in the near surface. The 25 keV 

F implant has no significant dose loss impact while the 10 keV F implant reduced 

the dose by approximately 23 %. 

 

 
Figure 3.25: As concentration versus depth profiles for a 1×10

15
 cm

-2
 28 keV implant after a 600 °C 

30 s RTA, without F (solid line), with a deep F implant (dashed line), and with an overlaying F 

implant (dotted line). The retained doses extracted from the SIMS are plotted in the inset, either 

including the surface peak or assuming a plateau of 1×10
19

 cm
-3

 in the near-surface region. 

 

Clearly F has minimal impact on P and As diffusion in Ge under RTA 

processing. Both dopants exhibit a strong (n/ni)
2
 diffusion dependence, and any 

subtle differences in Xj can be correlated with differences in retained dose. SIMS 

analysis was undertaken to profile the F concentration. Curiously, no F (> 5×10
16
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cm
-3

) could be found. SIMS of the unannealed samples (c.f. Figure 3.23) clearly 

showed that F had indeed been implanted. Subsequently, shorter anneals were done 

on pieces of the 25 keV-F-implanted wafer. Further SIMS analysis showed F had 

completely outgassed after a 600 °C 5 s RTA, and even after a 600 °C 1 s RTA. 

Thus the failure of F to impact on P and As diffusion during RTA is because F does 

not remain in the Ge substrate for a sufficiently long time at these temperatures. 

FnVm cluster formation in vacancy-rich regions in crystalline Si and in crystalline 

SiGe has been extensively studied as a function of F implant dose by El Mubarek et 

al. [143, 144]. Increasing the F implant dose increases the concentration of F and 

vacancies at depths less than the implant projected range, thus increasing the 

likelihood of FnVm cluster formation. However, as shown in Figure 3.22 high F 

implant doses amorphize the Ge substrate, and assuming vacancy point defects are 

annihilated upon recrystallization, if FnVm clusters are to form in Ge they should do 

so while the substrate is still amorphous. Future work in this area could explore 

higher F concentrations (>3×10
20

 cm
-3

 at least) while being extremely careful to 

avoid the formation of the characteristic porous sponge-like structure at the Ge 

surface, common after high-dose or heavily-damaging implants [145]. 

It is difficult to estimate F diffusivity, as an approximation we use the relation 

L=2(D.t)
½
, where L is the diffusion length, D is diffusivity, and t is time. For the 25 

keV F profile, even if snowplowing sweeps away all the F within the amorphized 

region, a conservative estimate of F diffusion length is 100 nm. If t=1 s, this gives 

D=10
-10

 cm
2
s

-1
, which is comparable to some fast-diffusing transition metal 

diffusivities in Ge at 600 °C [11].  

Figure 3.26 shows the temperature dependence of the diffusion coefficient of 

various foreign atoms in Ge [146].  

It was shown that a F co-implant can affect the diffusion of a low dose As 

(3×10
13

 cm
-2

 dose) implant in certain annealing conditions [147]. A reduction of P 

(6×10
13

 and 1×10
15

 cm
-2

 dose) diffusion in Ge using F co-implant was recently 

reported at 400 °C whereas at 450 °C reduced diffusion was only observed for the 

lower P dose. Upon annealing at 500 °C F showed no impact on diffusion of P 

[148]. 
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Figure 3.26: Temperature dependence of the diffusion of foreign atoms in Ge in comparison to self-

diffusion. The solid lines represent the diffusivity of the substitutionally dissolved elements. hybrid 

elements(long-dashed lines), i.e. Cu, Au, Ni, and Ag dissolve on both interstitial and substitutional 

sites[146].  

 

Like in Si, F seems not to reside substitutionally in the Ge lattice for a long time 

before diffusing away quickly. F solubility data in Ge is also lacking in literature. 

However, in contrast to Si, F appears not to form stable clusters easily. In the >10
20

 

cm
-3

 concentration range FnVm clusters form in Si and are stable enough to be 

characterized after standard RTAs. The rapid departure of F from Ge indicates that 

FnVm clusters in Ge are not very stable, at least in the concentration range of interest 

in this experiment.  

Further work is ongoing in the study of dopant outgassing which will be 

described in the next section. 

3.4 Substrate desorption and dopant outgassing 

As was indicated in previous sections (3.2.3 and 3.3) significant amount of dopants 

were lost during the annealing process. This was more pronounced in RTA treated 

samples although LTA (especially in P implanted samples) showed some 

percentage of dopant loss. Dopant loss in Ge has been observed during low-

temperature annealing as well. 

It is still not quite clear why and how dopant loss/out-gassing happens but in 

general, it is associated with Ge substrate desorption during the annealing process 
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[142, 149]. It is suggested that using a capping layer (SiO2 or Si3N4) can help to 

reduce the out-diffusion although it cannot fully eliminate it. It is shown that Si3N4 

is more effective to suppress out-gassing compared to SiO2 [142] essentially due to 

its density. Ge desorption is undesirable since it causes surface roughness, which 

eventually leads to degradation of electrical characteristics of the fabricated device.  

The aim of this work is to answer the following questions:  

1. Is Ge desorption dopant dependent? 

2. Does Ge desorption alone account for dopant loss seen in diffusion studies? 

(or is there another mechanism involved?) 

3.4.1 Experimental procedure 

Figure 3.27 a) shows a summary of sample preparation process. After a standard 

clean n-type (100) Ge wafers with a bulk resistivity of 0.2-0.5 Ω.cm received an 

implant of P with the doses of either 1×10
14

 cm
-2

 (sample B) or 1×10
15

 cm
-2

 (sample 

C). In order to compare possible effects of implant damage on desorption 

phenomenon one sample did not receive any implant (sample A).  

 
Figure 3.27: a) process flow of the experiment, b) SEM image of the Layout of the test structure. Ge 

is patterned with SiO2. c) Schematic of the process flow. 
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For simplicity we refer to the samples as B and C corresponding to the implant 

dose they received. A 100 nm thick SiO2 was deposited by plasma enhanced 

chemical vapour deposition (PECVD) as the hard mask which was then patterned 

by lithography (see Figure 3.27 c) leaving some parts of Ge exposed. The 

photoresist was then removed using 3 min of oxygen plasma followed by 1 min in 

1165 solvent which was repeated 3 times. Thereafter the samples were subjected to 

RTA at 600 or 700 °C for 1 min either in N2 or N2 and 10% O2. As a control case 

one sample from each set of implanted samples did not receive the RTA. Again 

corresponding to the implanted dose we name the control samples as control sample 

A, B and C for no implant, 1×10
14

 cm
-2

, and 1×10
15

 cm
-2

 dose respectively.  The 

final step was using buffered oxide etch (BOE) to remove the oxide mask for 2-2.5 

minutes. The patterned structure is shown in Figure 3.27 c). 

 We measured step height between covered and uncovered regions as well as 

surface roughness to determine the amount of Ge substrate loss. 

3.4.2 Results of the material characterisation  

Initially the samples were visually inspected with SEM. Surface roughness and 

step height measurements were carried out by AFM in tapping non-contact mode at 

room temperature on 5×5 μm
2
 scanning area. Cross-sectional transmission electron 

microscopy (XTEM) was also performed to inspect the crystal integrity of the 

substrate.  

 
Figure 3.28: SEM image of control samples a) A and b) B before removing the oxide mask. The 

inset shows an AFM image from the control sample A.  
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Figure 3.28 shows a representative SEM image from control samples B and C 

before the hard mask was removed. For both samples after SiO2 removal surface 

roughness and step height were approximately 0.4 nm and 4.6 nm respectively.    

3.4.2.1     Annealing in N2 ambient 

In Figure 3.29 representative SEM images from a) sample A, b) sample B and c) 

sample C are shown after being subjected to RTA at 600 °C, for 1 min in N2. White 

dots observed in Figures a and b might be due to sample oxidation.  

 

Similar results were observed after annealing the samples at 700 °C, for 1 min in N2 

expect that there was no oxide left on the surface as it was desorbed at this 

temperature [150].  

 
Figure 3.30: a) RMS values and b) step height measurements from samples A, B and C after the 

RTA treatment. Maximum substrate loss is ~ 4 nm after 700 °C 1 min in N2. 

 

The graph in Figure 3.30 shows the RMS and step height measurements from the 

samples annealed at 600 and 700 °C in N2. We try to analyse the data from 

 
Figure 3.29: SEM images from samples a) A, b) B and c) C after RTA at 600°C, 1 min in N2. 
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temperature and dose perspectives. With regard to temperature, all sets of samples 

showed an increased RMS value after they went through RTA treatment. 

The sample in group B which are implanted with the lower dose of P exhibit 

higher roughness compared to group C samples which were implanted with the 

higher dose of P. The higher RMS value at 600 °C might be related to existence of 

the small white, germanium oxide, dots on the surface which were desorbed at 700 

°C (Figure 3.29) resulting in relatively a smoother surface. Meanwhile the step 

height measurements showed ~ 4 nm of height difference after RTA at 700 °C. 

The aim of this experiment was to investigate the dependency of Ge desorption 

on the dose of the implant and also the annealing temperature. From these data it 

appears that the implant dose does not have a significant effect on substrate 

desorption at least in the scope of this experiment while high temperature annealing 

can lead to substrate loss only to a very small extent.  

Ioannou et al. reported significant amount of Ge loss when annealed at different 

temperatures in N2 ambient and proposed a desorption model which estimated 

desorption of approximately 10 nm of Ge after a 600 °C anneal for 1 min [142]. 

 

 
Figure 3.31: Arrhenius plots of Ge substrate loss rate, along with results from Ioannou et al. [151]. 

The obtained substrate loss observed at 600 °C in this study is also included in the graph. 
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Kaiser et al. also studied Ge desorption in different atmospheres (N2, Ar or 

vacuum) at temperatures from 500 to 600 °C. They reported around 3 nm substrate 

loss per min at 600 °C in Ar and observed a noticeable dependence of the rate of Ge 

loss on the annealing ambient with vacuum ambient more effective to reduce the 

loss rate [151]. The observed substrate loss at 600 °C in our study seems to be 

comparable to the reported results in that work as is shown in Figure 3.31. 

Referring back to dopant loss issue Figure 3.32 shows the SIMS profile of P. 

From the measurements it was observed that maximum 4 nm of the Ge substrate is 

desorbed which corresponds to 30% of the dose in the substrate. In other words if 

substrate desorption is the main cause for dopant loss then 30% of the dopants are 

expected to be gone after  600 °C, 30 sec RTA. Nevertheless in our experiment (see 

3.3) we observed 70-80% of P dose loss after this annealing treatment which 

corresponds to approximately 20 nm loss of Ge substrate. So it seems the Ge 

substrate loss does not account for the dopant loss during the annealing treatments. 

 

3.4.2.2     Annealing in N2 and O2 mix ambient 

It is possible that Ge oxidation is engaged in Ge desorption phenomenon. 

Interestingly the native oxide growth of n-type Ge is faster than p-type Ge, and the 

oxide is grown layer by layer proven to be atomically flat [152]. It was shown by 

Oh et al. that the native oxide naturally formed in the air is mainly GeO2 with small 

amounts of GeOx (x<2) [153]. Recently Sahari et al. grew Ge oxide in the 

temperatures ranging from 375 to 550 °C and reported an exponential increase in 

 
Figure 3.32: SIMS profile of the P implanted sample. 
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the oxide thickness above 490 °C due to significant oxygen diffusion in Ge through 

GeO2 [154].  Note that GeO2 is stable up to 1170 °C [155] so, desorption of Ge in 

the form of GeO2 is not expected at the temperatures discussed in this thesis.  

Ge desorption is perceived to take place in the form of GeO, a successive 

compound created during/after Ge oxidation at high temperatures [153, 156-158]. 

Ge oxidation was studies by Oh et al. at 450-500 °C RTA in an oxidizing ambient 

where annealing in N2 at 500 °C triggered the desorption process [159]. It is 

suggested that at temperatures 600 °C and above desorption and oxidation are likely 

to take place at the same time [157, 159]. Kita et al. observed oxide thickness 

reduction from 400 °C [150]. 

A proposed mechanism for desorption phenomenon is basically decomposition 

of GeO2 through a reaction with the underlying Ge substrate leading to formation of 

GeO [150, 156]. Owing to its temperature-dependent high vapor pressure [154, 157] 

GeO tends to sublimate at low temperatures. In fact the volatile GeO diffuses 

through the GeO2 to the surface and desorbs [160, 161]. Moreover it is shown that 

along with formation of GeO at the interface loosely bonded Ge atoms are 

generated that can diffuse to the surface, react with GeO2 at the surface and reform 

GeO [158]. 

In an extensive study on desorption kinetics of GeO from the GeO2/Ge interface 

Wang et al. suggested that GeO desorption does not occur by a direct-diffusion 

mechanism. They showed that desorption of GeO is a diffusion limited process 

depending on the thickness of the oxide layer. They showed that the greater the 

oxide thickness the higher the desorption temperature. So for an ultrathin GeO2 

(<1nm) desorption temperature is estimated to be around 400°C [162]. Note that in 

that work the oxide was thermally grown whereas in our experiment only native 

GeO2 existed on the sample. Crisman et al. found that above 600 °C the growth of 

germanium oxide is limited by sublimation of GeO from the surface before Ge can 

be oxidized to GeO2 [157]. Law et al. showed that Ge oxidation is not orientation 

dependent at and above 550 °C [156]. They reported white deposits on the 

annealing tool were also and proposed a series of reactions explaining the formation 

of GeO2 during the heat treatment [156] 
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where superscript σ refers to material in solid-gas interface, and subscript i denotes 

the material at GeO2/Ge interface. As was confirmed by Kita et al. loose Ge atoms 

created during the GeO2/Ge reaction at the interface diffuse through the oxide to the 

surface where they react with GeO2 and reform the volatile GeO which desorbs at 

the surface in gas form [150]. In presence of O2 in the annealing ambient it is likely 

that GeO reacts with oxygen and re-produces GeO2 which is deposited on the walls 

of the chamber.  

Minimizing the GeO desorption is an open debate since it causes surface 

roughness, a quite undesired effect that rises difficulties in number of Ge-based 

device fabrication steps such as formation of low resistance contacts or hi-κ 

dielectrics. It is suggested that lowering the oxidation temperature to 400 °C can 

reduce the vapor pressure of GeO and withhold the desorption, as well as high 

pressure oxidation [160]. Also a capping layer can block the GeO out diffusion 

[150].  

In order to study the effect of oxygen on substrate desorption we annealed one 

set of samples in an annealing ambient mixed of N2 and 10% O2. 

Figure 3.33 depicts representative SEM and AFM images from samples A, B, and C 

after RTA at 600 °C in N2 and 10% O2 and after 2-2.5 min BOE treatment for SiO2 

removal. As it can be seen in the image regardless of the implant dose significant 

amount of Ge is desorbed and large regular facets are formed on the substrate. 
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Figure 3.33: SEM image of samples a) A b) B and c) C after 600 °C anneal in N2 and 10% O2 

ambient, and BOE treatment. Large and deep facets of Ge are formed due to non-uniform desorption 

of GeO. 
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In contrast to Si where crystal orientation contributes to the oxidation rate, it was 

revealed by Law et al. that oxidation rate for all three faces of Ge, (100), (110) and 

(111), is independent of the orientation except at 500 °C where oxidation of the 

(111) face is more pronounced [156]. The regular facets that were observed in this 

experiment are probably due to a non-uniform desorption process [162]. 

By cross-sectional TEM imaging (Figure 3.34) the nature of these regular facets 

was confirmed to be crystalline Ge with a thin layer of native oxide on top.  

 
Figure 3.34: a) XTEM image of high implanted sample subjected to 600 °C anneal in N2 and O2 

ambient, and b) zoomed in view of the interface. 

 

 

As a comparison Figure 3.35 shows SEM images from sample C after RTA at a) 

700 °C in N2, and b) N2 and 10% O2, where Figure 3.35 a) shows a relatively 

smooth surface, and Figure 3.35 b) shows a drastically deteriorated surface due to 

 
Figure 3.35: SEM images of sample C after a) RTA at 700 °C in N2, and b) 700 °C anneal in N2 and 

10% O2. 
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oxidation and desorption of the Ge substrate. Unlike the results from the 600 °C 

anneal no facets were observed in the SEM here. In fact GeO is desorbing at a 

different rate so it looks different after the annealing treatment. 

Figure 3.36 shows the corresponding AFM images to Figure 3.35 a) where Ge 

surface roughness after the annealing treatment and the step height after oxide 

removal were measured. 

 

Representative SEM and AFM images taken after RTA at 700 °C in the 

oxidizing ambient are presented in Figure 3.37 and show a) sample A before oxide 

removal, b) sample B before oxide removal with the inset showing a zoomed in 

view of the exposed Ge surface after BOE, and c) sample C before the BOE 

treatment with the inset showing same sample after BOE. In order to fully remove 

the oxide BOE treatment for longer than 2 min was required as the SiO2 became 

denser and harder to remove after the RTA. Again neither the regular facets nor the 

oxide is seen in these images. Instead, a damaged and deteriorated surface is created 

in all groups of samples regardless of the implant conditions. Deep voids are formed 

due to significant amount of Ge desorption induced by high annealing temperature 

and the oxidizing ambient.  

More importantly, white colour deposits were observed on the covering plate of 

the RTA tool above the specimen after the oxidation run. As mentioned earlier, 

there is no chance that Ge could have evaporated in the form of GeO2 as it is stable 

at this temperature. This observation can be explained considering the mix N2 and 

O2 annealing ambient in which the gaseous GeO reacts with the oxygen and re-

 
Figure 3.36: a) surface topography and b) step height measurement of sample C after RTA at 700 °C 

in N2. 
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produces GeO2 which is deposited on the walls of the chamber. White deposits after 

annealing were also reported by Law et al. [156]. 

 

 

 
Figure 3.37: SEM and corresponding AFM images from the samples after RTA at 700 °C in 

N2 and 10% O2 showing: a) sample A before the oxide mask was removed, b) sample B before 

using BOE, with the inset showing a zoomed-in image from the Ge substrate showing a coarse 

surface caused by desorption, and c) sample C before using BOE. The inset shows a zoomed-

in view of the sample after BOE. 
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Step height measurements were not performed on these samples due to height 

limits of the AFM measurement tool. However from SEM imaging it was estimated 

that at least 300 and in some cases more than 500 nm of the substrate was lost. 

The primary aim of this experiment was to correlate the Ge substrate desorption 

with the amount of dopant loss. The oxidation experiment was a complementary 

test to see the effect of oxygen on Ge during the inevitable high temperature 

treatments (such as dopant activation) for device fabrication. In fact in order to 

grow GeO2 one does not need to go above 500-550 °C. From these data it appears 

that the implant dose not have a significant effect on substrate desorption at least in 

the scope of this experiment while high temperature annealing can lead to substrate 

loss only to a very small extent. 

In order to clarify the dopant loss process we carried out residual gas analysis 

(RGA) using an XPS equipped with a quadrupole and heating stage.   

The measurement process is illustrated in Figure 3.38. The quadrupole detects 

the gaseous materials coming from the Ge substrate as it is heated. As the Ge wafer 

is heated the gaseous materials come from the surface and can be detected by the 

quadrupole. The pressure change of the XPS chamber is plotted versus the atomic 

mass unit of the material at each temperature. The result is a profile for particular 

atomic mass units, from which one can estimate at what temperature species of 

interest are out-gassed. 

 

 
Figure 3.38: Identifying out-gassed products using gas chromatography mass spectrometry. 

 

At this point in time the experiments are ongoing. Data is being collected for a 

variety of samples including unprocessed Ge and Ge with dopants implanted. We 

also intend to collect mass spectrometry data from the chamber without a Ge 
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sample processed as a baseline. Preliminary data indicate that this technique can 

detect the out-gassing of implants from Ge such as F and P while the concentration 

of Ge is too low to detect.  

   

3.5 Conclusion 

 In this chapter a number of dopant related issues in Ge were discussed. First, 

material and electrical characteristics of n+/p junctions in Ge formed by RTA and 

LTA process techniques were compared. High carrier concentration (> 10
20

cm
-3

) 

was accomplished using LTA for activating the dopants and also removal of the 

crystal damage induced by ion implantation. ECV and Hall Effect data indicate 

almost 100 % activation of the dose that was retained. Furthermore high quality 

n+/p junction diodes were demonstrated with ION/IOFF ratio ~ 10
7
 and ION/IOFF ratio~ 

10
5
 for RTA and LTA samples respectively. In order to achieve highly activated 

dopants and high ION/IOFF ratios more optimization needs to be done to fine tune the 

LTA process. Also more analysis is required to pinpoint the nature of the 

mechanism involved in extraction of activation energy greater than 0.67 eV in RTA 

Ge diodes. 

Also, it was proposed that F which is the most common non-dopant co-implant 

for point defect engineering in Si, is unlikely to be as useful in Ge. We have shown 

that F has only a minor effect on P and As diffusion, due to extreme F outgassing, 

which is related to the diffusion, and clustering behaviour of F in Ge. F 

concentrations in the high 10
20

 cm
-3

 range may be required to create stable FnVm 

clusters, however high implant doses into Ge often risk irreversible substrate 

damage. Thus, if attempted, care must be taken in that experimental space. 

Next, we investigated the correlation between dopant loss and Ge substrate 

desorption, and conclude that the Ge desorption does not explain the dopant loss 

mechanism. Annealing in N2 at 700 °C caused approximately 4 nm of substrate loss 

per minute. Annealing in O2 lead to severe surface deterioration and roughening. 

XPS analysis is ongoing into the study of dopant out-gassing as mass spectrometry 

can detect species emanating from Ge samples during thermal treatments. 
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Chapter 4  

Fins, Resistors, and Thin Body Devices 

4.1 Introduction 

The origin of multigate field effect transistors (MugFETs) goes back to 1989 when 

Hisamato et al. reported a new vertical ultrathin MOSFET [163]. Having the 

advantage of suppression of short channel effects and improved gate control, this 

new architecture is considered as a solution to the challenge of transistor shrinkage. 

Yet, development of these devices comes with its own issues like fabrication, 

doping, and characterization [164]. Figure 4.1 shows configurations of vertical 

transistors. 

 

Doping thin-body features is a difficult task, in order to get the impurity atoms 

into the structure, activate and prevent them escaping during thermal treatments. A 

pre-requisite for desirable gate performance in these devices is scaling down the fin 

widths [165] but this is accompanied by an increase in parasitic source-drain 

resistance (RSD) [166, 167].  

In order to reduce the RSD it is necessary to maintain the crystal integrity of the 

semiconductor crystal, which is not very straight forward in ion implanted 

structures. In the case of planar substrates the amorphous layers regrow from 

bottom to the top during thermal annealing, whereas in case of narrow structures 

 
Figure 4.1: Different configurations of vertical transistor. 
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like fins recrystallization happens from the bottom to the top and also along the 

edges as is shown in Figure 4.2. Duffy et al. reported a problematic solid phase 

epitaxy (SPE) in thin body Si fins where formation of twin boundary effects and 

poly crystalline grains deteriorated the re-crystallization mechanism [166].  

 
Figure 4.2: Initial and final configurations in a Molecular Dynamic simulation of recrystallization 

process in thin body Si structure [92].  

 

Lateral SPE (L-SPE) has also been investigated as a method to form Si on 

insulator (SOI) substrates. In that case the SPE growth front moves laterally over 

the oxide layer, parallel to the Si surface. In an extensive study by Kunii et al. it was 

shown that during the growth amorphous/crystalline facets form mainly due to the 

boundary between Si and SiO2. As is shown in Figure 4.3 a) during vertical growth 

no facet is formed at the SiO2 stripe edge. SPE at a short distant from Si/SiO2 

interface is normal and no facet is formed. Figure 4.3 b) shows a lateral growth 

where the growing layer is bounded by the SiO2 film and the native oxide layer. It 

was shown that the facet orientation is determined by the orientation of the 

crystalline Si seed [168].  

 
Figure 4.3: Schematic diagram showing a) bounded and normal vertical SPE, and b) lateral growth 

and bounded SPE. Copyright 1984 American Institute of Physics [168]. 
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Formation of these facets can slow down the SPE and in severe cases there is 

chance for poly crystalline grains to form which is known as random nucleation 

growth (RNG). 

Another solution to suppress RSD is replacing ion implantation technique with 

non-destructive conformal doping methodologies.  

Several techniques have been proposed for doping Si fin structures such as 

heated implantation [93], plasma doping [169], atomic layer deposition [170], vapor 

phase doping [95], molecular layer deposition [171], and self-regulatory plasma 

doping [172].  

Contrary to Si, standard implants can easily amorphise Ge [173] at room 

temperature. Therefore it is essential to introduce and apply non-destructive doping 

techniques for Ge fin structures. 

In this chapter we study the issues associated with ion implantation in Ge fin 

structures by looking at simulations of several ion implantation conditions in thin 

body structures followed by studies on SPE in wide and narrow fin test structures. 

Subsequently we implement a non-destructive dopant in-diffusion MOVPE-based 

process to dope the fins, and investigate the electrical properties of P and As doped 

structures. 

4.2 SRIM (The Stopping and Range of Ions in Matter) 

In favor of computer-aided design tools, modelling has become a fundamental 

technique in design, understanding and development of semiconductor devices. It 

enables the designer to apply varieties of conditions that affect the physical 

properties and performance of the device, and pick out the most promising 

fabrication parameters. Several simulation tools can be used to collect and analyze 

the data and finally fabricate the device. SRIM is modelling software providing a 

simulation environment to study the ion implantation process and physics which is a 

conventional and crucial step in making semiconductor devices. For a better 

understanding some concepts that are frequently used in SRIM software are first 

explained. 
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4.2.1 Definitions 

The classical transfer of energy between an ion and a stationary atom in the target 

depends on the mass of both particles and also on the speed and direction of the 

moving particle. When a moving particle is passing through the material the 

stationary particle recoils and absorbs the energy and the incident ion gets deflected. 

Interaction of the ions with the target particles are known as electronic and nuclear 

collisions as is shown in Figure 4.4. The implant damage is caused by nuclear 

collisions which can displace the target atoms from their lattice site and the energy 

lost due to this is called non-ionizing energy loss [174].  

 
Figure 4.4: Schematic representation of the disorder caused by ion implantation [175]: light ion-

increased disorder as the ion penetrates the target, and heavy ion-uniform disorder along the entire 

ion trajectory. 

 

In order to have better understanding and evaluation of the damage caused by 

energetic ions, we need to get familiar with definitions below [63]: 

 Displacement: The process through which the atom is knocked off the lattice 

site. 

 Vacancy: An empty lattice site caused by displacement (see Figure 4.5). 

 Interstitial atoms: Are the incident ions that come to rest in the target, and 

also the target atoms that are ejected from the lattice site and stop in the 

solid (see Figure 4.5). 

 Displacement Energy: The minimum energy needed to knock a target atom 

far enough away from the lattice site, so that it will not return back 
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immediately. This minimum energy can produce a “Frenkel Pair” consisting 

of a vacancy and an interstitial created when an atom is removed from the 

lattice site. Frenkel Pair is the fundamental type of damage caused by an ion. 

 Lattice Binding energy (LBE): The minimum energy required to break the 

electronic bonds and remove an atom from the lattice site. Lattice binding 

energy is smaller than displacement energy, as in this case the atoms are 

displaced from the lattice site but do not have enough energy to leave the 

lattice site, and may come back to their previous positions. 

 Surface Binding Energy (SBE): Is the energy required to take an atom from 

the surface of the material. Atoms at the target surface are not bound on one 

side, and have fewer bonds that should be broken, and it is easier to remove 

them from the target than if they were in the lattice site. Surface binding 

energy is an important factor in damage evaluation as it can directly affect 

the sputtering. 

 Final energy of the moving atom: The energy below which the ion is 

considered to be stopped.  

4.2.2 Modelling of ion implantation in C, Si, Ge and III-V materials 

Modelling has been done for three different ions, B, As, and Sb, each with two 

energy values. The implant angles are 0°, 45°, 60°, 75°, 80°, and 85° in order to 

 
Figure 4.5: a) The incoming ion has knocked out the lattice atom and created a vacancy, b) The 

incoming ion takes the place of the target atom after giving it enough energy to leave the lattice and 

becomes a substitutional ion, c) the recoiling target atom, if energetic enough, can collide with other 

target atoms in the lattice and knock them out. After losing its energy the recoiling atom resides in 

the lattice and becomes a self-interstitial, d) Eventually, the incoming ion stops in the target and 

becomes an interstitial. 
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mimic the conditions in a FinFET device. Target materials are Ge, Si, C, GaAs, 

In0.53Ga0.47As, and GaN. The width of the target is 10 nm, and 10000 ions are 

modelled to generate reliable results. Backscattering, transmission, vacancies 

created in the target, sputtering and the amount of retained dose are the extracted 

parameters in this modelling. In Table 4.1 the simulation conditions are 

summarized. 

 

Table 4.1: Simulation summary carried out in this study. 

Target materials Si Ge C GaAs InGaA

s 

GaN SiO2 

Implant species and energies 
B 0.5 

keV 

2 keV     

As 

 

1 keV 

 

5 keV     

Sb 

 

2 keV 

 

6 keV     

Implant angles 0° 45° 60° 75° 80° 85°  

Implant ions 10000       

Target material thickness 10 nm       

 

The species and energies of the ion implants were chosen to reflect typical ultra-

shallow junction formation for advanced technologies. Table 4.2 summarizes 

important parameters as determined in SRIM that affect the features of interest. 

Energy values shown in the table are the default values taken from SRIM software. 

As is shown in the table displacement energy and lattice binding energy are 

considered identical in Si and Ge, although in [176] displacement energy of Ge is 

reported to be 30 eV. Note that surface binding energy is not known for many 

substances, and in SRIM it is an estimation of the sublimation energy (SE) of the 

materials. Atomic density denotes to the number of atoms in one centimeter cube. 

For example, there are 8 Si atoms in a unit cell which has a volume of 1.6×10
-22

 

cm
3
, corresponding to the atomic density of 4.96×10

22
 (cm

-3
). 

Figure 4.6 shows a schematic of possible sources of dopant loss during the ion 

implantation into the fin structures which can be classified as: 

 Backscattering: The ions may bounce back from the target after one or more 

collisions with the stationary atoms.  

 Transmission: A number of implanted ions can leave the target from the 

other side of the fin.  

 Sputtering: As a result of ion bombardment an amount of the target material 

is removed from the target. 
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Table 4.2: Properties of target materials defined in SRIM [63]. 

Materials 
Density 

(g.cm
-3

) 

Average 

atomic mass 

Atomic density 

(cm
-3

) 

Disp. 

energy 

(eV) 

LBE  

(eV) 

SBE 

(eV) 

Si 2.329 28.1 4.96×10
22

 15 2 4.7 

Ge 5.323 72.6 4.42×10
22

 15 2 3.88 

C 2.235 12 1.14×10
23

 28 3 7.41 

GaAs 5.318 144.64 4.42×10
22 

25 3 
Ga(2.82) 

As(1.26) 

InGaAs 5.504 259.46 3.98×10
22

 25 3 

In(2.49) 

Ga(2.82) 

As(1.26) 

GaN 6.1 83.73 8.79×10
22

 
Ga (25) 

N (28) 
3 

Ga(2.82) 

N (2) 

SiO2 2.32910×2.27 60.08 ٭
22

 
Si (21) 

O (22) 

Si 

(2.1) 

O (2.2) 

Si(3.1) 

O(3.2) 

 Different values are reported for SiO2 density. Here we report the values applied in SRIM ٭

database. 

 

 
Figure 4.6: Schematic diagram showing the concept of Backscattering, Transmission and Sputtering. 

4.2.3 Backscattering  

One of the effects of ion implantation is backscattering where the ions are ejected 

from the target after one or more collisions. Backscattering is affected by the energy 

and the mass of the ion, the angle of the incident beam, and the density of the target 

material. In this study impact of different dopants with two different energies is 

investigated. Figure 4.7 represents bakscattered ions from B 0.5 and 2 keV 
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implantations. The simulations for Arsenic implants were similar to B, thus are not 

shown. Figure 4.8 depicts the results for Sb with 2 and 6 keV energies. 

 
Figure 4.7: SRIM simulations showing backscattered ions from 10000 B ions implanted at a) 0.5 

keV and b) 2 keV energy. 

 

 
Figure 4.8: SRIM simulations showing backscattered ions from 10000 Sb ions implanted at a) 2 keV 

and b) 6 keV energy. 

 

In theory, interaction of the ions with a denser material ends in more 

backscattered ions compared to a material with low density. The trend in the figure 

justifies this explanation. At the bottom of the plot lies C which is the least dense 

material, and has the smallest number of backscattered ions. Next, is Si with a 

slightly greater density and greater number of ions scattered back from the target. 

GaN is exceptional may be due to the average atomic mass of the material. B 

atomic mass is close to that of N so it is more likely that the B and N colissions 

result in displacement of the N atom rather than backscattering of the B ion. 
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Therefore the total number of the backscattered ions is more than Si and less than 

Ge target materials. 

The average mass of the substrates can be a reasonable answer to this exception, 

which begins with C as the lighter one, continues with Si, GaN, Ge, GaAs, and ends 

with In0.53Ga0.47As as the heaviest one. Ge, GaAs, and InGaAs have similar 

densities and average mass and the backscattering rate in these substrates is similar 

as well. Backscattering increases as the implant angle changes from 0° to 85°. In 

fact at bigger implant angles the transverse force of the impinging ion reduces by a 

cosine factor of the incident angle, and thus it is more likely that ions bounce back 

after collisions with target atoms. 

B 2 keV implant results in a similar graph, where in C lowest number of ions and 

in In0.53Ga0.47As highest number of ions are backscattered. Comparing the figures 

one can find out that B 2 keV dopants are less backscattered than B 0.5 keV 

implants. This, is due to the higher energy of the atoms that enables them to get 

deeper into the target. Backscattering is also influenced by the properties of the 

target material. Since B is much smaller that the target atoms e.g. Ge, Ga, In, and 

As, it is more likely to bounce back in the collision with these atoms and leave the 

target.  

Figure 4.8 shows the results for Sb with 2 and 6 keV energies that are similar to 

what were obtained in B implantation, however the number of backscattered ions 

has reduced significantly. For example in C at 0° and 45° no backscattering has 

happened. Atomic mass of Sb is much higher than atomic mass of B therefore the 

Sb ions are not easily scattered by the lighter target atoms such as C and Si. 

However collisions with target atoms with comparable atomic mass units enhances 

the likelihood of backscattering of Sb ions. 

As was observed in B the quantity of backscattered Sb ions enhances by the 

increased incident angle 

Figure 4.9 shows schematic of the implant angles and the effect of the cosine 

factor which is fading in bigger incident angles. 
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Figure 4.9: Schematic diagram showing the implant angles and the effect of the cosine factor. 

 

From the figures it appears that all the variables strudied in this study can 

influence the backscattering and are summarized as: 

 Target material: a denser material leads to more backscattering. 

 Energy and the species of the incident ion: in a particular angle the heavier 

ions and also those with higher energy are backscattered less than lighter or 

less energetic ions. For example, in Ge, at any angle B is backscattered more 

than Sb.  

 Implant angle: more ions backscatter from the material surface at bigger 

implant angles. 

4.2.4 Transmission  

Transmission or channeling during implantation occurs when some ions pass 

through the substrate and exit the other side. It should be noted that SRIM assumes 

the target material is amorphous and therefore crystal channeling effect cannot be 

included in the simulations. Figure 4.10 and Figure 4.11 depict the simulation 

results where a decreasing trend of transmission can be observed for higher incident 

angles. 

Regarding Figure 4.10 during B 0.5 keV implantation no transmission occurred 

in C and GaN which have the highest atomic density values. This is an indication 

that the ion has more chances to hit the target atoms, lose energy and come to rest 

with most probably nuclear collision interactions. Much of the same can be said for 

Si, Ge ,and GaAs. The transmission rate in Ge and GaAs is similar as the density of 

both materials is similar. In0.53Ga0.47As  has the least atomic density among all the 
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studied materials (see Table 4.2) and show higher transmission of B ions at all the 

incident angles. 

 
Figure 4.10: SRIM simulations showing transmitted ions from a) B 0.5 keV and b) B 2 keV 

implants. 

 

 
Figure 4.11: SRIM simulations showing transmitted ions from a) Sb 2 keV and b) Sb 6 keV 

implants. 

 

The considerable amount of B 2 keV ions transmitted through the target 

materials compared to B 0.5 keV verify that impurities with enough energy and 

momentum are able to go deeper into the crystal and probably exit the other side.  

Oblique angles result in the reduction of the energy of the incident ion by cosine 

factor of the implant angle, hence less transmission will occur. As is shown in 

Figure 4.11 a) Sb 2 keV ions pass through only Si and In0.53Ga0.47As at zero angle, 

and are mostly retained in or backscattered from the other target materials. More 

ions pass through the substrate when the ion beam is perpendicular to the fin 
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whereas at oblique implant angles (75, 80, and 85°) Sb ions are either retained in 

the target material or backscattered from it.  Similar trend is observed for Sb 6 keV 

implant, with C showing the second highest transmission rate. This can be attributed 

to the low atomic density of the material. Overall from the data it seems that the 

transmission rate is primarily a factor of density and secondly affected by the 

atomic density of the target material. 

Comparing the Sb implants with B and As for the same implant projected range, 

it seems that heavier ions are less transmitted than lighter ones. This is due to the 

lower straggle when using a heaver mass ion during the implant. Overall more 

transmission happened for: 

 Lighter ions 

 Smaller implant angles 

 Less dense target materials 

4.2.5 Retained dose 

In Figure 4.12 the retained ions in the substrate after B implant at a) 0.5 keV and b) 

2 keV are shown. Retained ions from the lower energy implant follow a decreasing 

trend at more oblique-angled incidents. As is shown in Figure 4.12 a) the maximum 

retained dose of B 0.5 keV implant belongs to C where backscattering and 

transmission rates are very small. It seems that for low energy and light ion 

implants the best angle in terms of retained dose is the normal incident. The 

sequence of the substrates in terms of the retained ions is understandable 

considering the backscattered and transmitted ions at this implant condition as well 

as properties of the target materials. In fact retained dose is calculated from  

 dtransmittescatteredbackdoseimplantdoseretained   (4.1) 

For the B 2keV implant the retained dose in the materials is limited by 

transmission and backscattering below and above 45° implant angle respectively. In 

Figure 4.12 b) it is observed that for Si the best implant angle is 60° where more 

ions are retained in the substrate. Similar to B implant at 0.5 keV the best implant 

angle for Ge, GaAs, GaN and InGaAs is the normal implant. 
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Figure 4.13 a) shows the retained ions after Sb 2 keV implant. As is shown in the 

plot most of the ions are retained in the target at 0° and 45° implants, and start a 

decreasing trend at higher implant angles. For Sb 6 keV the retained dose tend to 

increase by the incident angle in C and Si until 60°.  

 
Figure 4.12: Retained ions after B implant at a) 0.5 and b) 2 keV. 

 

 
Figure 4.13: Retained ions after Sb implant at a) 2 and b) 6 keV. 

 

Due to high number of backscattered ions at bigger incident angles the retained ions 

are reduced. However, the retained ions in the other target materials follow a similar 

trend to Sb 2 keV implant. Similar results were obtained from simulations of B and 

As implants on Si fin structures by Pelaz et al. [92]. 

Dose retention depends on the angle of incidence. High angle ion implants are 

equivalent to high number of backscattered, small number of transmitted and 

retained ions in the targets. At a specific angle the lighter ions are more likely to 
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leave the target due to transmission and backscattering, therefore heavier ions (Sb) 

are more suitable for dose retention. Different retained dose will result in different 

levels of diffusion, since the most common dopants experience the concentration-

enhanced diffusion during RTA [177]. 

Note that in practice in planar structures dopant outgassing can influence the 

retained dose in the substrate, and could apply to thin body structures as well. 

4.2.6 Vacancy  

Vacancies are the empty sites generated when the target atoms are moved from the 

lattice positions. The number of vacancies is affected by the correspondent 

displacement energy which is the minimum energy required to knock out a target 

atom far enough from the lattice site so that it will not go back immediately. 

Vacancies are made when the incoming ion has the energy which is high enough to 

eject a target atom from the lattice site. If the energy of the recoil atom is still 

greater than the displacement energy it may create further vacancies by hitting other 

atoms in the target [63]. Regarding the displacement energies reported in Table 4.2, 

it is relatively easier to remove atoms from the lattice site in Si, and Ge, compared 

to III-V materials and also in C. Probably that is the reason for low number of 

vacancies in C, and high number of vacancies in Si, and Ge after B 0.5 keV (see 

Figure 4.14). 

Figure 4.15 shows the plots from vacancies formed by Sb implants at 2 and 6 

keV. The number of vacancies created by each dopant varies by changing the 

incident angles, and in some cases follows an ascending and then a descending 

trend. By increasing the angle the normal implant energy is reduced by the cosine 

factor of the incident angle which means the ions have less energy and thus can 

generate fewer vacancies. 

From the simulations it appears that more vacancies are generated in the 

following situations: 

 Higher mass of the incoming ion 

 higher energy of the incoming ion 

 low displacement energy of the target material 
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4.2.7 Sputtering yield 

Removal of the near-surface atoms from the target is called target sputtering. When 

the energy of the ion is greater than the surface binding energy of the substrate the 

atoms can be emitted from the surface. ''Sputtering Yield'' is defined as the mean 

number of atoms sputtered per incoming ion. LBE and SBE are important 

parameters in sputtering yield. Sputtering makes the substrate rough and damaged. 

As a consequence the surface atoms are fastened to the lattice by fewer bonds so the 

SBE is reduced allowing more target atoms to leave the material. In SRIM 

calculations this effect is not taken into account so the calculated sputtering yield is 

 
Figure 4.14: SRIM simulations showing the number of vacancies generated after B implant at a) 0.5 

keV and b) 2 keV. 

 
Figure 4.15: SRIM simulations showing the number of vacancies generated after Sb implant at a) 2 

keV and b) 6 keV. 
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underestimated [63]. Sputtering mostly happens in the nearest layer to the surface 

but some of the recoil cascade atoms exiting the target might have originated from 

deeper inside than just the surface. The simulation results for sputtering in B and Sb 

implants are shown in Figure 4.16 and Figure 4.17 respectively. 

In order to get a better overview of the sputtering process, the number of atoms 

sputtered in each implantation was converted to thickness of the material removed 

from the target during the process using 

 
 3

2










cmatomsDensityAtomic

YieldSputteringcmatomsDose
WidthSputtered

 
(4.2) 

where the dose is 1×10
15 

cm
-2

. 

Changing the incident angle from 0° to 85° leads to increase and then decrease in 

the sputtering yield. Referring to Figure 4.7 we know that backscattering follows an 

ascending trend when the implant angle is changed. It means that at angles bigger 

that 60°, significant number of ions are lost without having an impact on the target, 

so the number of ions that have enough energy is decreased, and sputtering is 

decreased as well. Moreover, at high energies the ion maintains its original direction 

along a nearly straight flight path, and transfers a little energy near the surface, but 

transfers much energy close to the surface when travels at grazing incident angles 

[178]. The influence of the angle on the sputtering is governed by the surface 

structure of the target. 

 

 
Figure 4.16: Sputtered width after B implant at a) 0.5 keV and b) 2 keV. 
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Figure 4.17: Sputtered width after Sb implant at a) 2 keV and b) 6 keV. 

 

SBE in Ge is less than that of in Si and C, which implies that the sputtering in Ge 

is higher than sputtering in Si, and C. SBE is different for each component in GaAs, 

In0.53Ga0.47As, and GaN, and is less than Ge, Si, and C (see Table 4.2). Therefore 

the sputtering yield in these materials is higher than the other materials. Also, 

sputtering yield in Ge at zero angle is slightly higher than Si which is consistent 

with the SBE. The simulations on As and B implanted Si fin structures by Pelaz et 

al. show a similar trend as what was obtained in our study [92]. The high sputtering 

yield obtained for SiO2 is due to the low atomic density of the material. 

Figure 4.17 shows the Sputtering yield after Sb implant. The trend is similar for 

both energy implants with dramatic increase in the amount of sputtered material at 

60° implant angle and above. Again C has the lowest sputtering rate, followed by 

Si. The sputtering rate for Ge and GaN appears to be very close. Atomic density of 

the materials together with the number of atoms that are removed from the surface 

can give a reasonable answer to this result. For example the number of ions that are 

removed from GaN per incoming ion is approximately twice than that of Ge due to 

the smaller SBE in GaN. 

According to the material properties presented in Table 4.2 the atomic density of 

GaN is twice the atomic density of Ge, meaning that in a centimeter cube of GaN 

there are two times more atoms than there are in a centimeter cube of Ge. This 

would lead to erosion of relatively similar thickness of both materials during the 

implantation (see equation (4.1)). Same interpretation applies to In0.53Ga0.47As, 

SiO2, and GaAs.  
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In practice one option for reducing the amount of sputtered material is using a 

mask on the target, and it means the amount of energy to get the desired profile of 

impurities should increase in order to be able to pass the mask and reside at the 

desired depth. SiO2 was studied to observe the sputtering rate, and it is shown that 

SiO2 itself is sputtered quite quickly. 

Looking at the data one can figure out the effect of the dopant on the sputtering 

yield where heavier ions and higher energy implants have resulted in greater 

sputtering yield. Implantation in multi-element targets can lead to preferential 

sputtering. If one of the components is not bound to the lattice as strongly as the 

other ones then the incoming ion will transfer more energy to it and the ion will be 

sputtered more, hence the substrate is enriched in the second component. For 

instance in GaAs, sputtering rate (see Figure 4.18) of As is almost twice the 

sputtering rate of Ga, which is the consequence of the respective SBEs.  

Surface sputtering was recently reported by Kelly et al. who investigated the 

structural transformation in Ge nanowires during ion irradiation, and observed a 

reduced nanowire diameter from 22 nm to 16 ± 3 nm , with undulating facets [179].  

In conclusion the sputtering yield is more pronounced in materials with  

 lower SBE 

 lower atomic density 

 
Figure 4.18: Sputtering yield of Ga and As. Sputtering rate of As is twice Ga corresponding to SBE 

of As which is half of the SBE of Ga. 
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4.2.8 Limitations of SRIM 

In this section we critically analyse the data generated by SRIM. The Ge 

database is not as complete and mature as Si; hence some of the parameters are 

taken from Si like displacement energy and LBE. This might affect the results 

obtained in vacancy and sputtering yield sections.   

SRIM code is based on binary collision approximation (BCA) taking into 

account only the collision between the incoming ion and the closest target atom 

[180]. Generally the implantation-created damage in the target material is 

associated with elastic collisions transferring energy to the target atoms which if 

high enough (> displacement energy) can knock off the atom from lattice site and 

form Frenkel pairs. Based on extensive studies by Tejido et al. [180] BCA 

underestimate the damage generated in real implantation process, whereas the 

energy transferred below the threshold displacement energy can impose a 

significant amount of damage and should be considered in damage calculations. In 

SRIM the target material in assumed to be amorphous and the effect of damage 

clusters are not considered in the simulations. Besides, implantation in crystalline 

substrate cannot be studied using this software. 

 A comprehensive analysis of the effects of irradiation in thin body structures 

demands a focused research on modelling adopting various frameworks and 

simulation techniques which is beyond the scope of this dissertation. The 

simulations carried out in this work were done in order to gain a general 

understanding of ion implantation and corresponding effects in thin body structures.  

4.3 Recrystallization of thin-body Ge structures  

Non-planar thin body structures are proven to be the ultimate architectures for the 

advanced CMOS devices, and include semiconductor-on-insulator, double or tri-

gate, multi-gates and nanowires. From experimental point of view it is still unclear 

whether Ge FETs can outperform Si FETs or not. However a modelling analysis by 

Eneman et al. showed that n-type Ge FETs can offer better performance than Si due 

to higher intrinsic mobility, 1.1 times more on the top and 6 times more on the 

sidewalls of the fins. Electron mobility in Ge shows the highest value at (111) 
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orientations [181]. Also SiGe S/D is an effective stressor for Ge and can boost the 

device performance. Meanwhile p-type Ge FETs can beat Si through embedded 

stressors [182]. Albeit before achieving this breakthrough other known issues with 

Ge need to be resolved.  

4.3.1 State-of-the-art work 

In contrast to Si, Ge FinFET devices have been limited to p-type channels, with 

mostly ion implantation for source/drain doping. The smallest fin width reported to 

date is 20 nm. Ge p-channel FinFETs with fin widths (Wfin) of 130-350 nm were 

fabricated by Feng et al. [183]. Hutin et al. demonstrated p-channel MOSFETs with 

Wfin = 30 nm on ultrathin germanium-on-insulator substrates by Ge enrichment 

technique [184]. Van Dal et al. reported scaled p-channel Ge FinFET devices with 

Wfin of 40 nm, fabricated on a Si bulk wafer [21, 185] using Aspect-Ratio-Trapping 

technique. Liu et al. fabricated p-type Ge FinFET devices with Wfin = 60-100 nm 

[186]. Ikeda et al. reported p-type Ge nanowire FET devices with Wfin = 20 nm 

[187]. P-channel MUGFET Ge transistors on GeOI with in-situ B doped raised S/D 

and Wfin = ~ 67 nm where reported by Liu et al. [188]. Recently a body-tied Ge tri-

gate junctionless P MOSFET with a gate length of 120 nm was demonstrated by 

Che-Wei et al. [189].  

The reported results on p-channel Ge FETs are promising, however plenty of 

problems still exist that should be resolved especially for n-type Ge fin structures. 

 In this section we study the crystal integrity and SPE after ion implantation in 

wide and narrow n-doped Ge fin test structures. 

4.3.2 Experimental procedure 

Unimplanted pre-cleaned (100) Ge wafers were patterned using e-beam lithography 

with various doses ranging from 70 µC/cm
2
 to 110 µC/cm

2
. At 25 °C, a SF6 /C4F8 

plasma process was used for etching. The drawn fin widths were 200, 150, 100, 75, 

60, and 50 nm with resulting widths of 150 to 20 nm. Figure 4.19 represents top 

down view of the test structures with Ge fins running in [110] and [100] directions. 

SEM imaging was performed to characterize the fins.  
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Figure 4.20: Tilted SEM image of germanium fin structures patterned by 90 µC/cm

2 
e-beam dose, 

running in a) and d) [110], b) and c) [100], directions. In this case fin widths are 130-150 nm. 

 

A zoomed in image of the fins is shown from different perspective in Figure 

4.20. To study recrystallization phenomena in Ge fins, another sample patterned 

with 70 and 90 µC/cm
2 

doses were subjected to phosphorus implantation at 7º with 

a dose of 1×10
15

 cm
-2 

and energy of 60 keV. Cross-sectional TEM was carried out 

using JEOL2100 operated at 200 kV. 

 

0.1 µm

a) b)

c) d)

 
Figure 4.19: SEM image of Ge fin structures patterned in [110] and [100] directions.  Fins are 1 µm 

long and the pitch is 400 nm within each array. 

 
Figure 4.21: SEM image of the sample preparation process including: a) carbon and platinum 

deposition, b) tilted view during FIB milling, c) plan view of the sample after FIB milling. 

a) b) c)

10 µm
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For sample preparation which is shown in Figure 4.21 a thin layer of carbon 

followed by platinum were deposited on the region of interest prior to focused ion 

beam (FIB) milling processes. Ge fins were studied (i) as implanted (not annealed), 

(ii) after a 3 min anneal at 400 ºC in N2. The lowest e-beam dose, 70 µC/cm
2
, 

resulted in thicker fin widths with worse line edge roughness as is shown in Figure 

4.22. 

4.3.3 Amorphisation and Recrystallization  

Surface proximity and random nucleation regrowth (RNG) are reported as key 

challenges in the realization of sub-20 nm wide silicon fins [166]. An equivalent 

study for Ge is needed for both wide and narrow fins. A schematic of the implant 

and amorphisation procedure is depicted in Figure 4.23. 

 
Figure 4.23: Schematic diagram showing a)7° phosphorous implant in wide germanium fins, b) the 

fins after implant left partially amorphous, c) narrow germanium fins subjected to implant and d) 

completely amorphous fins after implant. 

 
Figure 4.22: Comparison of line edge roughness in fins patterned by a) 70 µC/cm

2
, and b) 90 µC/cm

2
 

e-beam doses. 

b)a)

0.1 µm 0.1 µm
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Figure 4.24 a) shows a TEM image from an array of wide Ge fins where the top 

120 nm of the structures was amorphized due to the implantation. In this part of the 

experiment the fins are approximately 450 nm tall and 105 nm wide. Narrow fins 

with 20-25 nm width were completely amorphized under the same implant 

conditions. In the following, bright-field TEM images homogeneous gray regions 

are amorphous Ge and dark features are defects. The shown images are a 

representative selection of a larger set of images. The intrinsic Ge recrystallization 

rate is ~ 2 nm/s for 400 °C anneal [190], therefore after 3 minutes all the Ge is 

expected to be recrystallized. Fins are partially amorphized on the top and in the 

trench. Deposited carbon and platinum layers are also seen in the image. Figure 

4.24 b) illustrates the fins after a 400 °C 3 min anneal where SPE is complete. 

 
Figure 4.24: XTEM image of Ge fins, a) partially amorphized after implant. b) Although SPE is 

complete, defects and twin boundaries are generated. 



4. FINS, RESISTORS AND THIN BODY DEVICES 

118 

 

 

Figure 4.25 is a combination of fins before and after furnace anneal in higher 

resolution. The stacking faults at the foot of the fins are generated by the 

intersection of two recrystallization fronts. Further defects are observed in the top 

120 nm of the fin that was amorphized. Twin boundaries originating from the 

sidewalls appear in the top corners of the fin (see Figure 4.25 b) for zoomed in 

image). Small localized defects are also visible, which are shown in the figure. 

 

 
Figure 4.25: a) XTEM image of Ge fin structures showing a fin before and after anneal, with twin 

boundaries and localized defects on the top and defects at the bottom, b) Cross-section TEM image 

of fin, showing complete regrowth, with twin boundaries in {111} direction, and defects in the 

crystal structure. 

 

SPE in planar structures has been studied for Si substrates [191, 192], showing 

that the growth direction is parallel to the substrate surface with the underneath 

crystal region being the seed for the regrowth process. On the other hand in 3D 

structures regrowth proceeds vertically from bottom to the top as well as along the 

edges of the structure. According to the atomistic model presented by Drosd and 

Washburn on the physics of recrystallization in Si for each Si atom contributing to 

the growth process two undistorted bonds with the crystal lattice are required with 

the angles and lengths as in the crystalline silicon [193]. In the proximity of the fin 

surface the crystal lattice is interrupted and SPER is retarded due to lack of 

undistorted bonds [166]. Pelaz et al. analyzed damage accumulation and the 

kinetics of the crystalline to amorphous transition in Si. Their Molecular Dynamic 

simulations show that IV pairs located close to the surface are more stable than 

a-Ge

c-Ge

a-Ge a-Ge

Defect 

Twin
boundaries
& localized
defects

Ge substrate

After P implant After 400 °C anneal

100 nm

Twin boundary defects

Small defects

a) b)
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those in the bulk substrate. So the suppression of I-V recombination near the 

interfaces, and also the slow regrowth in the {111} direction, causes the formation 

of twin boundaries and polycrystals in thin-body devices [92] . SPE studies in Ge 

by Darby et al. [194] showed strong dependence of SPE on substrate orientation in 

Ge with the velocity of [001] direction being 16 times greater than [111] direction.  

Narrow fins with 20 to 25 nm width and 400 nm height were also analyzed after 

undergoing the same implant, and are shown in Figure 4.26.  

 
Figure 4.26: a) Narrow fin after 400 °C 3 min anneal. c) Regrowth is incomplete, and b) RNG has 

occurred. 

 

Unlike the wide ones, SPE was deteriorated in narrow fins due to appearance of the 

twin boundaries. A clear arrow-head shaped recrystallization front is observed at the 
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foot of the fin. As is shown in the Figure 4.26 b) RNG occurred and poly-crystalline 

grains of Ge were also formed. In Figure 4.26 c) twin boundaries are seen. This is 

similar to the situation in silicon, and is of concern for future Ge FinFET and 

MugFET applications. 

 
Figure 4.27: a) TEM image of 30 nm size fins after implantation that has amorphized the whole 

structure, b) a zoomed in image of the fin after RTA tratment, and c) a zoomed in view of the top 

portion of the structure fin showing the formation of {111} defects 
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Figure 4.27 shows a 30 nm [110] fin structure which was a) completely 

amorphized and b) recrystallized after ion implantation and the subsequent 

annealing process at 600 °C for 1 sec. In this case the fin is fully crystalline with 

{111} defects only located on top portion of the structure (see Figure 4.27 c)). In 

some of the structures it was observed that twin boundary defects have detached 

from side walls. It can be speculated that these defects start to cure from side walls 

and proceed upwards [195].  

Like in Si, SPE appears to be a questionable approach to realize Ge thin body 

structures due to formation or poly crystalline grains resulting in incomplete or poor 

recrystallization at low thermal budgets (400 °C). Higher thermal budgets, (600 °C), 

can entirely crystallize the fins but electrical performance of such devices can be 

affected due the presence of twin boundary defects on the top of the structure. 

Therefore, it is essential to develop non-damaging doping techniques in order to 

prevent high parasitic resistance counteracting the high mobility benefit of Ge 

material. 

4.4 Non-destructive doping of Ge 

To date Ge FinFETs have relied on mono-directional ion-implantation for highly 

doped regions, which is not the perfect approach to achieve a conformal doping 

[164],  that requires the target structure being uniformly coated with a dopant-

enriched layer leading to evenly distribution of impurities through a thermal 

treatment. 

Gas-phase and solid-source doping technologies have been around for many 

years, but there have been recent developments in molecular monolayer doping 

(MLD) of Si [96] which would be compatible with highly scaled nanowires and fins 

with aggressively scaled pitches. MLD doping has also been reported for InGaAs 

nMOSFETs by Kong et al. [196].  

4.4.1 State-of-the- art work 

Regarding in-diffusion of dopants into Ge from a surface, Takenaka et al. used a 

Metalorganic Vapor Phase Epitaxy (MOVPE) system to in-diffuse As into Ge at 
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500-700 °C [98], and reported maximum active concentrations of 10
19

 cm
-3

, with 

the profiles 0.5-1.5 µm deep due to 60 min anneals. The same group demonstrated 

diode performance that beat their ion implant baseline, correlated with the reduction 

in crystal defects from the MOVPE approach [125]. Maeda et al. succeeded to in-

diffuse Sb into Ge at 700 °C using a Sb-doped silicate glass, and reported a 4 µm 

deep doping profile with maximum chemical concentrations of 5×10
18

 cm
-3 

as well 

as high ION/IOFF ratio ~ 1.5×10
5 

from their diodes  [197]. Jamil et al. performed P in-

diffusion from spin-on-dopant source into Ge at 650-750 °C [123]. However the 

reported Ge FinFET devices are limited to p-type ion implanted structures. 

In this section we report application of non-destructive gas phase doping 

technique to introduce n-type As, and P dopants in fin/nanowire test structures. 

Nanowire resistors are excellent tools to evaluate and test the effectiveness of a 

doping technique based on the access resistance characterization.  

4.4.2 Experimental procedure 

The first part of this work was carried out on unpatterned (100) Ge substrates, with 

p-type doping concentration in the range of 5-9×10
16

 cm
-3

 according to the supplier 

information. For the second part of this study undoped (100) germanium-on-

insulator (GeOI) substrates were used, with a Ge thickness of 50 nm, for nanowire 

processing. Samples were cleaned by performing a 10 minute dip in hydrochloric 

acid (37%) : deionised water in the ratio 27:73, followed by immediately drying 

with N2 and loading onto a graphite susceptor within an AIX200-AIX200/4 

MOVPE horizontal reactor which, using double purification of the highest 

commercially available purity precursors, has achieved near Molecular Beam 

Epitaxy quality III-V material by MOVPE [198]. The samples were heated under a 

flow of N2 carrier gas at 80 mbar to 250 °C at which point purified AsH3 (or PH3) 

was also introduced at a flow rate of 50 sccm. The sample temperature was then 

ramped to the process temperature over 10 minutes, while the flow rate of AsH3 (or 

PH3) into the reactor was linearly increased to 250 sccm, and held at the process 

temperature for another 20 minutes under a flow of 250 sccm AsH3 (or PH3) and N2 

carrier gas. The heating was then switched off to cool down the sample under 100 

sccm AsH3 (or PH3). The AsH3 and PH3 were switched out at 450 and 250 °C 
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respectively and the sample allowed cooling under N2 to below 60 °C before it was 

unloaded from the reactor.  

Noted that the reported process temperature is that of a control thermocouple 

within the body of the graphite susceptor and the actual temperature of the surface 

is lower. Previous studies using emissivity corrected pyrometry have shown that the 

sample surface temperature is approximately 590°C at a thermocouple temperature 

of 650 and 620 °C at a thermocouple temperature of 700 °C. 

In order to fabricate Ge nanowires the GeOI substrates were patterned using the 

Raith e-Line Plus electron beam lithography (EBL) system and high resolution EBL 

resist known as hydrogen silsesquioxane (HSQ). After EBL exposure, the HSQ 

resist was developed using an aqueous developer followed by deionised (DI) water 

rinse [199].  

The EBL exposure was a two-step process; the first lithography step was used to 

expose only the high resolution fin structures and the second step the contact pads 

for the four probes were exposed. To attain a highly focused beam for the first step, 

10 kV beam voltage and 100 μm write-field was chosen. To avoid the large 

exposure time, the low resolution contact pads were written with 1 kV beam voltage 

and 400 μm write-field. Figure 4.28 shows a) the process flow and b) a 

representative SEM image of a 20 nm width Ge nanowire. The patterned nanowires 

(fins) were 10 µm long with namely 1µm, 300, 100, 80, 70, 60, 50, 40, 30, and 20 

nm widths.  

 

 
Figure 4.28: a) process flow of the experiment, b) representative SEM image of a 20 nm patterned 

nanowire. 
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An exclusive range of characterizations were performed on the samples 

including AFM for surface inspection, SEM imaging for top-down view of the 

structures, and cross sectional TEM. SIMS and ECV profiling were done to obtain 

the chemical and active carrier concentration respectively.  XPS was carried out 

with a VG Scientific Escalab MKII system using Mg X-rays at 1253 eV. Survey 

scans were performed using a pass energy of 200 eV and core level scans at a pass 

energy of 20 eV. 4 point probe electrical measurements were done to extract 

nanowire resistance. 

4.4.3 Results of the material characterization 

The ECV carrier concentration profile from the P and As doped unpatterned 

samples is depicted in Figure 4.29. It is well established by ion implantation studies 

that As diffuses faster than P [61, 115] as we observe in the ECV profiles. As 

dopants diffused to a depth of approximately 550, and 400 nm during the 700 and 

650 °C processes respectively. The flat-topped nature of the As profiles is due to 

concentration enhanced diffusion [200]. P and As are known to suffer from 

significant concentration-enhanced diffusion in Ge through the formation of dopant-

Vacancy complexes, at concentrations in excess of 2–5×10
19

 cm
−3

 [201]. 

 
Figure 4.29: Active carrier concentration versus depth extracted by ECV profiling for As and P 

doped samples. The As-based process resulted in greater dopant integrated dose than the P-based 

process 

 

In all the samples the peak active carrier profiles are approximately 10
19

 cm
-3

. 

Integrating the profiles to extract total active dose yield 3.70×10
14

 and 6.41×10
14 
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cm
-2 

for As in the 650 and 700 °C processes respectively, and total active P doses of 

4.91×10
12

 and 1.81×10
13 

cm
-2 

for the 650 and 700 °C processes respectively.  

Figure 4.30 shows the SIMS depth profile of As samples with maximum 

chemical concentrations of approximately 5×10
19

 cm
-3

, excluding the peak artefact 

at the surfaces. The profiles match with the ECV data in terms of junction depth. 

However, integrated dose of the SIMS profile shows higher amount of chemical As 

than the electrically active As in the ECV profile indicating that not all the dopants 

are activated during the doping process. Integrating the profiles to extract the total 

chemical dose yield 6.77×10
14

 and 1.19×10
15 

cm
-2 

for the 650 and 700 °C processes 

respectively, which are approximately double the electrically active As doses.  

It is worth mentioning that SIMS analysis was also performed on the P-doped 

samples which showed a signal close to the surface, much like that of the ECV 

profiles, however it did not seem to be reliable data due to the apparent similarity to 

a SIMS surface artefact.   

 

In this experiment the dopants are introduced from a vapor source which is 

assumed to provide constant value of surface concentration, and is called chemical 

predeposition [175]. Here we briefly discuss the underlying theory of the dopants 

driven-in from the surface.  

 
Figure 4.30: Chemical concentration vs depth profiles extracted by SIMS analysis for the 

unpatterned Ge samples processed by an AsH3-based method. The higher temperature of processing 

is more effective at incorporating As, however there is greater diffusion. The inset shows a 

schematic representation of the time evolution of impurity incorporation in a semiconductor using a 

chemical predeposition process. The peak concentration is capped by the solid solubility limit at the 

processing temperature. The profiles get deeper with increasing time. 
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For the chemical predeposition process the impurity concentration (C) profile is 

calculated from 

   









Dt

x
erfcCC stx

2
,

 
(4. 3) 

where x is the distance from the surface, t is time, Cs is the impurity surface 

concentration, and D is the impurity diffusivity. The time evolution of the doping 

profile (for a constant processing temperature) is shown schematically in the inset 

of Figure 4.30. D is assumed to be constant and the depth of the profile is only 

dependent on time. The surface concentration remains fixed, since it is limited by 

solid solubility limit at that processing temperature. Therefore the total quantity of 

dopants, which is defined as dose, Q, can be described as  

    


 dxCQ txt ,

 
(4.4) 

using these equations the total incorporated dose can be simplified to 

   DtCQ st


2


 
(4.5) 

From ECV and SIMS analysis one can extract the total incorporated dose, Q, as 

well as Cs the dopant concentration on the surface, so D can be easily calculated for 

a fixed known processing time (see Table 4.3).   

 Usually, constant diffusion happens when the dopant concentration is below the 

intrinsic carrier concentration (ni) at a processing temperature. Below ni the 

diffusion mechanism is dominated by intrinsic diffusivity whereas above ni 

extrinsic diffusivity dominates the movement fashion of the dopants in 

semiconductor [59]. 

Using standards values for concentration-dependent electron mobility provided 

by Fistul et al. [202] sheet resistance was calculated from 

 





0

1

dxNq
Rsheet


 

(4. 6) 
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 where q is electron charge, µ is electron mobility, N stands for dopant 

concentration and dx represents the junction depth. The extracted values based on 

the ECV data show much higher sheet resistance for P as compared to As samples, 

which can be associated to the relatively deep carrier concentration profiles in As 

samples. The extracted active dose, diffusivity and sheet resistance from ECV and 

SIMS profiles are summarized in Table 4.3. 

In order to confirm the non-destructive effect of the doping process surface 

topography was carried out on all the samples and showed 0.1-0.2 nm roughness 

which is close to the roughness of the as-received wafers.  

 

Table 4.3: Extracted data for the unpatterned samples, showing total active dose, Rsheet, and 

diffusivity all extracted from the ECV profiles in Figure 4.29, as well as total chemical dose and 

diffusivity extracted from the SIMS profiles in Figure 4.30. 

Sample 
Active dose 

(at/cm
2
) 

Diffusivity 

(cm
2
/s) 

SIMS dose 

(at/cm
2
) 

Diffusivity 

(cm
2
/s) 

Rsheet 

(Ω/sq) 

P 650 °C 4.91×10
12

 6.29×10
-16

 n/a n/a 3323 

P 700 °C 1.81×10
13

 8.55×10
-15

 n/a n/a 937 

As 650 °C 3.70×10
14

 8.93×10
-13

 6.77×10
14

 8.31×10
-14

 55.8 

As 700 °C 6.41×10
14

 2.68×10
-12

 1.19×10
15

 2.57×10
-13

 34.5 

 

In Figure 4.31 we present the extracted diffusivity versus 1000/T (in Kelvin) for 

the doping conditions used in this experiment, and compare them to the intrinsic 

diffusivity extracted by Brotzmann et al. [59].  

 
Figure 4.31: Diffusion coefficients vs 1000/T, where T is in Kelvin. The solid trend-line shows the 

intrinsic P diffusivity, and the dotted trend-line shows the intrinsic As diffusivity. The experimental 

data from our work is shown as the symbols. Both ECV and SIMS data were used to extract 

diffusion coefficients here. 
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The P diffusion coefficients extracted from the ECV analysis lie on the intrinsic 

diffusivity trend line. The extracted diffusivity values from the As SIMS profiles 

also show an intrinsic diffusivity for the dopants; however overlaying the extracted 

diffusivity data from the As ECV profiles with the corresponding trend line show 

that these dopants diffuse in an extrinsic fashion. It seems reasonable considering 

the fact that at the processing temperature of our experiment (650-700 °C) ni is in 

the range of 3-4×10
18  

cm
-3 

[59], which is below the As concentrations extracted 

from the ECV profiles (see Figure 4.29).  

Figure 4.32 depicts an XPS survey spectra of a Ge sample cleaned by in-situ ion 

etching, a Ge wafer post MOVPE reaction (inset is a core level spectrum in the As 

2p region post MOVPE reaction). The survey spectrum of Ge after MOVPE shows 

large O (532 eV) and C (285 eV) peaks which are due to the native oxide and 

ambient contamination respectively. These levels are similar to those that one 

would find in an as-received Ge wafer that has not undergone a cleaning step. Core 

level examination of the As 2p core region of the spectrum indicates the presence of 

a small As peak (~0.6 at %).  The presence of As on the surface of the wafer after 

the MOVPE reaction is indicating that there is a constant renewed supply of As 

during the reaction that stops diffusing in as the temperature of the reactor 

decreases. It was not possible to positively identify the presence of P due to it being 

masked by larger Ge peaks that occur at similar binding energies. 

 
Figure 4.32: An XPS survey spectra of Ge cleaned by in-situ ion etching, and a Ge wafer post 

MOVPE doping using AsH3. The inset shows a core level spectrum in the As 2p region post 

MOVPE reaction. 



4. FINS, RESISTORS AND THIN BODY DEVICES 

129 

 

4.4.4 Results of the electrical characterization  

As mentioned earlier the nanowires were exposed to PH3 at 650 or 700 °C, or to 

AsH3 at 650 °C by MOVPE for unpatterned samples. Based on the unpatterned 

sample analysis of the AsH3 at 700 °C, this process was considered too coarse for 

the small nanowires, and was not evaluated in terms of electrical properties.  

Figure 4.33 shows representative 4 point probe I-V measurements after PH3 

process at 700 °C. As is shown in the figure the nanowires behave like a resistor 

with expected linear I-V characteristics that scale for the reduced fin widths. 

 

In order to validate the effectiveness of the doping process I-V measurements 

were carried out on one nanowire sample before it was doped. Further analysis of 

the I-V characteristics was performed in two ways depending on the assumption of 

where the current flows in the nanowire cross-section. One possibility is that current 

flows along the edges of the nanowire where the doping concentration is at the 

highest value on the surface like the P case in this experiment (see Figure 4.29). In 

this case the electrical width of the device and the fin resistance are calculated from 

 finfinElectrical WHW  2
 (4. 7) 

and  

 
Figure 4.33: Current-voltage characteristics of the Ge nanowires. The current obeys Ohms law, is 

symmetrical around the origin, and scales with reduced fin width.  
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where Hfin is the height of the fin and is equivalent to the height of the Ge layer on 

the GeOI wafer. Wfin is to the fin width and varies from 20 nm to 1 um.  

In Figure 4.34 the access resistance is plotted versus fin width for all the doped 

nanowires as well as the data taken from the undoped sample. As is seen in the 

figure there is a comparable difference (4-5 orders of magnitude) between the 

resistance of the undoped and doped nanowires, which justifies the efficiency of the 

MOVPE-based doping technique. Moreover, as the nanowire width is scaled the 

resistance rises, as expected and reported for Si nanowires and FinFETs [167]. 

However it seems surprising that the P and As based processes give similar results 

in the wide nanowires despite the large differences observed in the unpatterned 

samples. From dopants perspectives it appears that 650 °C PH3-based process is not 

high enough as increasing the temperature to 700 °C significantly lowers the 

resistance. Also the resistance of the 700 °C PH3-based process matches well with 

the 650 °C AsH3-based process except that the resistance increases dramatically for 

As nanowires at 40 nm width and below where as the PH3 nanowires can be scaled 

beyond this point without a sharp increase in the resistance, which makes this 

method favourable for making scaled features. 

 

 
Figure 4.34: Extracted Rfin vs Wfin for Ge nanowires subjected to PH3 at 650 and 700 °C, and AsH3 

at 650 °C. Wfin on the x-axis refers to the drawn width on the mask. 
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Another possibility for electrical parameters extraction is considering the current 

flowing uniformly through the nanowire cross-section analogous to the metal 

tracks. In this case the applicable equation is as follows 

 
A

L
R 

 (4. 9) 

where ρ is the material resistivity, A is the cross-sectional area, and L is the length 

of the track, and from these terms we can calculate 

 
t

Rsheet




 (4. 10) 

where Rsheet is the sheet resistance and t is the thickness of the layer.  

 

 
Figure 4.35: ρ vs Wfin for Ge nanowires doped at 650 or 700 °C using PH3, or doped at 650 °C using 

AsH3. Wfin on the x-axis refers to the drawn width on the mask. 

 
Figure 4.36: Rsheet vs Wfin for Ge nanowires doped at 650 or 700 °C using PH3, or doped at 650 °C 

using AsH3. Wfin on the x-axis refers to the drawn width on the mask. 
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Figure 4.35 and Figure 4.36 show extracted resistivity and sheet resistance based 

on the above equations with similar trends observed in the previous analysis in 

Figure 4.34. Once again 700 °C shows better performance for the P doping process, 

and the two dopant species produce similar results for wide devices, when the P-

based process seems to be a better choice for scaled features. 

This is a significant result considering the ECV and SIMS data back in Figure 

4.29 and Figure 4.30. Regarding the ECV and SIMS results from unpatterned 

samples, one might think that the AsH3 based process would be a better choice, due 

to the greater dose incorporation. However As may also exhibit greater likelihood 

of dopant clustering, evident is the differences between the SIMS and ECV data, 

and may even trap at surfaces more readily, a feature that is reported in As-doped Si 

[203]. 

At this point we ought to consider which of the two parameter extraction 

approaches is more suitable for scaled nanowires and FinFETs. As we scale down 

to very small dimensions (sub-30 nm) the doping profiles from all sides will tend to 

overlap, and we are likely to have a uniformly doped structure in cross-section. 

There comes a point where the device is so small that the volume is essentially 

uniformly doped and the current flow is throughout the entire cross section of the 

doped region. Thus in that case it is more appropriate to use the second model for 

electrical parameter extraction above. 

If we assume the fins are uniformly doped then, using the published values for 

carrier concentration-dependent mobility [115], µ the resistance of the nanowire can 

be theoretically calculated according to the following equations. 
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From these values theoretical expectations for R are calculated and plotted as 

isolines of constant active concentration alongside the experimental data (simply 

R=V/I) in Figure 4.37.  

From this plot we can see that the 700 °C PH3 process and the AsH3 process 

touch the 3×10
18

 cm
-3

 isoline, while the 650 °C PH3 process can only touch the 

3×10
17

 cm
-3

 isoline. In all cases the active doping levels appear to degrade as the 

nanowires are scaled. This effect is more pronounced in As-doped structures. It is 

known that As traps at Si surfaces  [203]. This behavior is characterized in Ge using 

the XPS analysis shown in Figure 4.32. Therefore it appears that surfaces are bad 

for resistance as the Wfin is scaled. P has probably a weaker tendency to trap at the 

surface or be influenced by the interface. Furthermore, one might think that 

the overlapping doping profiles originating from the top, left, and right surfaces 

would lead to greater active concentration and lower resistance. In this case we are 

probably limited by solid solubility limits of P and As in Ge. 

 

As the final characterization step, XTEM analysis of the As-doped nanowires 

was undertaken to determine if crystal defects had been introduced by this process. 

Figure 4.38 is a representative TEM image of the samples, in which no visible 

crystal defects are observed, confirming the non-destructive nature of the process.  

Furthermore as the sample temperatures are 650-700 °C during the dopant in-

diffusion one would expect a great deal of dynamic annealing, and thus no crystal 

 
Figure 4.37: R vs Wfin for Ge nanowires doped at 650 or 700 °C using PH3, or doped at 650 °C using 

AsH3. R is also calculated based on the assumptions for uniformly doped concentration levels, and 

carrier concentration dependent mobilities. These calculations are plotted in the form of isoline of 

constant carrier concentrations, in grey. 
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damage build-up that could cause the formation of defects. This is in contrast to ion 

implanted thin-body structures where crystal damage, {111} defects, and poly-

crystalline transformation can be a problem with decreasing Wfin [166, 204]. 

Ion implantation is the standard approach in industry for doping semiconductors 

as it can generate a single ion species with a single energy in a highly controlled 

fashion. The problems associated with this technique are: a) the induced crystal 

damage due to the collision of the energetic ions with the target material and b) 

extremely directional nature of the process resulting in non-conformal doping in 

non-planar structures. Plasma doping enables formation of more conformal doping 

profiles than ion implantation but it can cause damage to the substrate as the ions 

strike the target. In addition there is a chance of implanting multiple species with 

multiple energies in one doping process which can be troublesome if highly 

controlled doping processes are required [90, 205]. Conformal doping techniques 

such as plasma doping may evolve as the ultimate choice for MugFETs and 

nanowire FETs [206, 207]. The proposed MOVPE approach can be considered as 

an alternative methodology based on surface in-diffusion, providing non-destructive 

and conformal doping which is crucial for future non-planar devices. 

 
Figure 4.38: Representative XTEM images of a 50 nm wide Ge nanowire structure post MOVPE-

doping and post electrical characterisation. No visible crystal defects appear to be present. The 

drawn width on the mask layout is 40 nm, with a resulting width at half-height of 37 nm 

 

 

10 nm
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4.5 Conclusion 

In this chapter, ion implantation in this body structures was studied using the SRIM 

simulation software. The amount of ions retained in the structure is determined by 

the amount of backscattered and transmitted ions which are influenced by the 

species and energy of the incident ion as well as the implant angle. Furthermore 

heavy ion implantation at oblique angles would enhance surface sputtering leading 

to undulating nanowire facets   

Ge fins with high aspect ratios were reported on which amorphisation and 

recrystallization phenomena were studied. In wide fins recrystallization was 

complete after a 400 °C 3 min anneal resulting in twin boundary defects and 

stacking faults, whereas in narrow structures due to surface proximity regrowth was 

incomplete and poly-crystalline grains were formed. The structures were crystalline 

and the most defects were annihilated after annealing at 600 °C 1 sec.  

Moreover we demonstrated a non-destructive dopant in-diffusion process by 

means of PH3 and AsH3 in a MOVPE system above heated substrates. We managed 

to avoid crystal damage and reduce the access resistance in doped nanowires. 

Meanwhile the usual degradation of resistance in scaled fin widths was effectively 

suppressed using a PH3-based process. 
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Chapter 5  

Summary and future work 

Considering its unique properties and high mobility, Ge can be considered a 

potential replacement or augment for Si. However key bottlenecks like contact 

resistance, shallow junction formation, dopant diffusion control, and leakage current 

need to be resolved. This thesis discussed a number of challenging issues in 

realization of Ge based devices. 

5.1 Summary 

Formation of low resistive ohmic contacts on n-type Ge is a difficult task. Ohmic 

contacts on Ge can be formed by different techniques and alloys. NiGe seems to be 

one of the best candidates due to its low temperature formation, stability, and low 

resistivity. In this work the effect of impurity concentration, dopant types as well as 

the annealing techniques on NiGe contacts were studied.  

Using a 1×10
15 

cm
-2 

15 keV phosphorus implant and RTA technique, a low ρc of 

3.46×10
-6

 Ω.cm
2 

was obtained after 250 °C NiGe formation anneal. In addition it 

was shown that higher implant dose leads to lower ρc. It was observed that P yields 

lower Rsh and ρc than As. The quality of germanide contacts formed by LTA was 

investigated and compared systematically with RTA.  

LTA resulted in smoother layers of germanide, mainly NiGe and NiGe2 and 

enhanced the quality of the contact dramatically due to the incredibly sharp 

germanide-substrate interface without any detectable interfacial region or transition 

zone. NiGe was formed through a liquid-solid reaction between Ni with the 

underlying melted Ge layer. The best contact resistivity obtained in this study was 

2.84×10
-7

 Ω.cm
2
. The contacts made with both annealing techniques showed 

questionable thermal stability indicating that they have to be modified in a way so 

that they are stable in subsequent annealing steps during device fabrication. 
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The atomically flat germanide layers made by LTA with their significantly low 

ρc justified the efficiency of this technique for contact formation. The next step was 

to evaluate the impact of LTA on implant defects and the junction leakage current. 

It has already been confirmed by different research studies in Si that LTA activation 

anneals can boost the level of active dopants and maintain a shallow doping profile.  

Therefore a new experiment was carried out, this time using LTA to activate the 

n-type dopants and cure the crystal damage after ion implantation, which resulted in 

high carrier concentration (> 10
20

cm
-3

). Material and electrical characteristics of 

n+/p junctions in Ge formed by RTA and LTA process techniques were compared. 

From the ECV and Hall Effect data it was concluded that almost 100 % of the 

retained dose was activated.  

Furthermore high ION/IOFF ratio ~ 10
7
 and ~ 10

5
 was obtained from RTA and 

LTA diode samples respectively. The extracted activation energy from RTA diode 

samples appeared to be greater than 0.67 eV, the indirect bandgap of germanium. 

Studies on F which is the most common non-dopant co-implant for point defect 

engineering in Si proposed that this element is unlikely to be as useful in Ge. In fact 

it has only a minor effect on P and As diffusion, due to extreme F outgassing. F 

concentrations in the high 10
20

 cm
-3

 range might be required to create stable FnVm 

clusters, however high implant doses into Ge often risk irreversible substrate 

damage. Thus, if attempted, care must be taken in that experimental space. 

Studies on the correlation between dopant loss and Ge substrate desorption 

showed that Ge desorption alone does not explain the dopant loss mechanism.  

SRIM simulations were carried out to study the effects of ion implantation in 10 

nm width thin body structures. It was observed that the retained dose in a nanowire 

is limited by transmission of ions at normal incident angles whereas is limited by 

backscattering at oblique implant angles. Surface sputtering could be significant if 

heavy ions and bigger implant angles are used for implantation. 

Substrate desorption, amorphisation and SPE was studied on Ge fins with high 

aspect ratio. In wide fins recrystallization resulted in twin boundary defects and 

stacking faults, whereas in narrow structures due to surface proximity regrowth was 

incomplete and random nucleation growth was observed much like Si. However 

twin boundary defects appeared to cure more readily in Ge. 
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Moreover a non-destructive dopant in-diffusion process was demonstrated to 

dope Ge nanowires where the substrates were subjected to PH3 and AsH3 in a 

MOVPE system. In this technique the crystal damage was avoided thus the access 

resistance was reduced. Also the usual degradation of resistance in scaled fin widths 

was effectively suppressed using a PH3-based process. 

5.2 Future work 

 Future studies to improve the source and drain contact resistance can be done 

by NiGe formation without a dopant activation anneal. Implantation through 

silicide (germanide) technique would be another alternative. Also cryogenic 

implants can be performed on n-type Ge in order to obtain high dopant 

activation and subsequently lower the contact resistance. Activation anneal by 

LTA could also enhance the level of active dopants and help to improve the 

contacts. Hot implant can also be applied to achieve high levels of dopant 

activation and suppress the defects. Non-destructive doping techniques such 

MLD, plasma doping, or MOVPE based doping followed by LTA for contact 

formation could also be investigated. 

 The LTA process for making germanide contacts needs be optimized in order 

to obtain single crystal phase of NiGe. This could be done possibly by 

optimizing the deposited Ni thickness. 

 Solutions to improve thermal stability of the contacts should be explored. 

Introducing a third element in germanidation process like Ta, Pt, and Ti could 

be helpful. 

 LTA process optimizations are required for high ION/IOFF ratios in n+/p 

junctions while highly activated dopants are maintained. 

 Activation anneals done by LTA provide shallow doping profiles with highly 

activated dopants above the solid solubility limit. There is a good chance that 

dopants revert back to equilibrium level if subjected to further annealing steps. 

Therefore it is necessary to examine the thermal stability of such profiles in 

subsequent heating processes. 
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 More analysis is required to determine the nature of the mechanism involved 

in extraction of activation energy greater than 0.67 eV in RTA Ge diodes. 

 Dopant loss phenomenon has to be studied in more depth before a proper 

solution can be proposed. With mass spectrometry this mechanism can be 

closely inspected. 

5.3 Contributions and impact of the work 

 Low resistance atomically flat NiGe contacts were formed using LTA 

technique. 

 The effect of LTA on n+/p Ge junctions was studied and ION/IOFF ratios where 

obtained. It was shown that there is a tradeoff between dopants activation level 

and leakage current. An ION/IOFF ratio ~ 10
7
 is achieved in Ge diodes. 

 It was shown that F is not efficient for defect engineering in Ge at high 

temperature. 

 It is suggested that substrate desorption is not the sole cause of dopant loss in 

Ge. 

 A non-destructive in-diffusion doping technique was successfully applied to 

dope Ge nanowires changing resistance and current level by 5 orders of 

magnitude.
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