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CUSUM Design for Detection of Event-rate Increases for a Poisson Process 

 

ABSTRACT 

In quantifying the performance of a CUSUM chart for detecting upward shifts in event rate, it has 

been recommended that steady-state evaluation of performance measures such as ARL be used.  In 

this article, the methodology for making such evaluations using the Markov-chain approach is 

presented, for the case of an exponential CUSUM.  This is much more efficient than the alternative 

of simulation, which is still in use.  It is also shown that if one is using steady-state ARL as a 

measure of detection performance, one can find better choices for the CUSUM parameter k than that 

provided by the SPRT-based formula.  Two types of shift in event rate are considered, and 

corresponding tables of recommended choices of CUSUM parameters (k, h) are presented for ten 

levels of in-control ARL, and for nine sizes of shift.  These tables can assist quality engineers in the 

design of CUSUMs for monitoring inter-event times in steady-state operation.  It is also shown that 

these exponential CUSUM tables may be used to find values for the parameters of a geometric 

CUSUM or a Bernoulli CUSUM chart for monitoring a proportion, provided the in-control value of 

the proportion is no more than approximately 0.5%. 
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CUSUM Design for Detection of Event-rate Increases for a Poisson Process  

by 

Patrick D. Bourke 

Section 1:  Introduction 

This paper is concerned with monitoring inter-event times using a CUSUM chart, so that sudden 

increases (shifts) in event rate can be quickly detected.  A landmark paper is Lorden and Eisenberger 

(1973), where it was assumed that the times between failures have an exponential distribution, and 

that following an increase, the failure rate remains at the increased level until the CUSUM generates 

a signal.  In that paper, it was also assumed that when a shift occurs, it happens at the instant of 

occurrence of a failure.  This assumption avoids the added complexity that arises when a shift can 

occur at some independent time-point, unconnected with previous event occurrences.  In this paper, 

both types of shift are considered. 

The monitoring of inter-event data using CUSUM charts is a topic of continuing interest to 

practitioners and researchers in Statistical Process Monitoring, with an extensive literature.  There is 

a broader category of monitoring schemes, now known as “time between events” charts (TBE 

charts), that includes alternative monitoring statistics, and an increasing range of assumed 

distributions for the inter-event data.  The review paper on monitoring the rate of a rare event 

(Woodall and Driscoll, 2015) provides a valuable perspective.  A difficulty facing non-specialist 

practitioners wishing to keep up-to-date with current developments, is the task of deciding which of 

the proposed methods are most useful, given the large number of competing monitoring schemes and 

the sometimes-overstated claims for superior detection performance.  In the case of TBE charts, the 

review (Ali et al. 2016) contains a listing and commentary on 165 articles and provides useful 

information.  Very few articles in this review have dates prior to year 2000, and contributions by 

renowned CUSUM-chart innovators such as Page, Johnson, Lorden, Lucas and Yashchin are not 

mentioned. 
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Among the many topics in recent research on TBE charts, are: the effects on chart performance 

of estimation errors for required process parameters (Zhang et al. 2014), charts that use distributions 

such as the Weibull to model inter-event times (Shafae et al. 2015; Sparks and Hazrati-Marangaloo 

2020)  and a critical review of the use of Average Run Length (ARL) as a detection-performance 

measure, with suggestions for alternatives (Woodall and Faltin, 2019; Rizzo et al. 2020). 

Following the Lorden-Eisenberger seminal paper on the detection of failure-rate increases, the 

other landmark papers on the exponential CUSUM chart are Lucas (1985), Vardemann and Ray 

(1985) and Gan (1994).  None of these papers are specific about the way in which a shift in event 

rate can occur, unlike the Lorden-Eisenberger paper.   

In this article, the focus is on the development of Markov-chain-based methodology for 

evaluating steady-state Average Run Length for an exponential CUSUM chart.  The importance of 

the use of steady-state performance metrics has been stressed in Woodall and Driscoll (2015).  Many 

steady-state ARL evaluations in the general CUSUM literature still rely on simulation.  In Schuh et 

al. (2013), simulation was used to provide steady-state ARL evaluations for an exponential CUSUM. 

The methodology developed in this paper may be used to provide an efficient means of evaluating 

steady-state performance for an exponential CUSUM, in contrast to the relative slowness of 

simulation.  As part of this methodology, consideration is given to the way in which a shift in event 

rate can occur, and two types of shift are considered.  The Markov-chain-based methodology 

developed here may also be applicable to other TBE distributions, such as the Weibull, and this 

requires further research.  Tables are presented to assist quality engineers in choosing exponential 

CUSUM parameters.  It is also shown that these tables can be used to choose the (k, h) parameter-

values for a geometric CUSUM chart (and a Bernoulli CUSUM chart) for monitoring a proportion, 

provided that the in-control value of the proportion is no greater than about 0.5%.      

The paper is organized as follows. In Section 2, the details of the exponential CUSUM for 

detecting an upward shift in event rate are briefly reviewed, together with a discussion of various 
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performance metrics such as ARL and Average Time to Signal (ATS).  In Section 3, consideration is 

given to several ARL-based approaches to the choice of the CUSUM parameters k and h, including 

the use of steady-state ARL as a measure of detection performance.  That Section also provides 

discussion on the way in which a shift in event rate can occur.  For each of two types of shift 

mechanism, I explain how to use Markov-chain discretization of the exponential CUSUM (Brook 

and Evans, 1972) to develop the methodology for steady-state ARL evaluation.  Simulation was used 

throughout the paper to provide a confirmatory check on the Markov-chain-based evaluations of 

ARL.   

Approaches to the choice of the parameter k are considered in Section 4.  Evaluations of the 

detection performance of exponential CUSUMs using the Sequential Probability Ratio Test (SPRT) 

formula for k are given, and it is shown in Table 1 that, if one is using steady-state ARL to quantify 

detection performance, one can find better choices for the parameter k.   

In Section 5, the principal numerical results of the paper are presented.  Two tables are given, 

and these set forth recommended parameter-values for detection of each of nine increased levels of 

event rate.  In the first of these tables it is assumed that a shift can occur independently of previous 

events at an unknown point in time.  In the second table, it is assumed that the shift in event rate 

accords with that used in Lorden and Eisenberger (1973).  The benefit of using the recommended 

parameter-values rather than the corresponding SPRT-based set is presented as a percentage decrease 

in out-of-control ARL.  Two further tables are provided showing these percentage decreases, and in 

every one of the 90 cases that were considered for each of the two shift-types, there is a benefit to 

using the recommended parameter-values.  The benefit is greatest (up to 10%) when the supposed 

shift-size is small, and the specified level for in-control ARL has a low value such as 25. 

A CUSUM scheme that is closely related to the exponential CUSUM is the geometric 

CUSUM, used for monitoring a proportion.  In Section 6, it is shown that one can use the two main 

tables (Tables 2 and 3) provided in this article to choose parameter values for a geometric CUSUM, 
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and hence for a Bernoulli CUSUM.  In Section 7, an example is presented of an application using 

Table 2 to design a CUSUM scheme. The final Section provides a summary and mentions some 

related investigations. 

Section 2:  The Exponential CUSUM Scheme and Related Performance Measures 

We consider a CUSUM scheme for detecting increases in the occurrence rate (µ) of events such 

as equipment failures, major storms or disease outbreaks over time.  (CUSUM schemes for detecting 

decreases in event rate may be considered of lesser importance, and a corresponding investigation of 

such schemes is deferred.)  The time-interval (Xi) from one event to the next is recorded, and the 

following CUSUM statistic (Ci) is updated as each Xi observation becomes available.   

    Ci = max (0, Ci-1 + k – Xi)        i = 1, 2 …      [1] 

In starting the CUSUM, an initial value (C0) must be chosen. This is often taken to be zero, but a 

head-start or FIR (Fast Initial Response) level (Lucas and Crosier, 1982) may also be used.  The 

quantity k is the reference value of the CUSUM and is one of the two parameters of the CUSUM 

scheme.  The second parameter of the CUSUM is the decision interval value, denoted by h.  When 

the CUSUM first exceeds the value h, this is referred to as a signal from the CUSUM scheme and is 

taken to indicate that the event rate may have increased.  However false signals are possible.  The 

average number of CUSUM evaluations until a signal, when the initial CUSUM value is set at zero, 

is termed zero-state ARL.  In designing the CUSUM, we want to choose values for k and h to 

achieve an appropriate balance between the following interacting objectives: 

If the event rate remains at an acceptable level (µ0), we want to restrict the frequency of false 

signals. 

If the event rate shifts upward to a minimally unacceptable level (µ1), we want the CUSUM 

to signal as quickly as possible. 

The relationship between the Sequential Probability Ratio Test (Wald and Wolfowitz, 1948) and a 

CUSUM scheme (Page, 1954) is discussed in Hawkins and Ollwell (1998), pages 135-138.  This 
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relationship leads to the SPRT-based choice for the parameter k  

                                     k = [ln(µ1) – ln(µ0)]/(µ1 - µ0)      [2] 

This choice for k is frequently referred to as having an optimality property, related to a result in 

Moustakides (1986).  Extensive numerical investigations on this were reported in Gan (1994) for the 

case of zero-state ARL as a measure of detection performance (to be considered later). 

The use of the above SPRT formula for choosing k for an exponential CUSUM is frequently 

recommended and is well-established in the literature.  For example, in Zhang et al. (2014) the 

authors write (page 275) that the exponential CUSUM chart is popular “because it can be optimized 

for a given shift”, and the cited reference in support of this is Gan (1994).  In Shafae et al. (2015) as 

part of a summary of the exponential CUSUM chart, the authors write (page 840) “the reference 

parameter ke is given by” and this is followed by the SPRT formula for k.  In Schuh et al. (2013), 

SPRT-based values of k were used in investigations (using simulation) of steady-state ARL 

performance for exponential CUSUMs.  One of the aims of this paper is to demonstrate by counter-

example that the optimality associated with the SPRT value for k is not applicable when detection 

performance is measured using steady-state ARL or FIR ARL.  It is explained (pages 46,47) in 

Yashchin (1993) that this optimality relates to “worst-case ARL”.  Before further discussion on this 

matter, we need to consider some performance measures for an exponential CUSUM scheme. 

Performance Measures for the Exponential CUSUM: ARL, ANES and ATS 

The speed of detecting a signal can be quantified in terms of Average Run Length (ARL), 

which is the average number of CUSUM evaluations following some condition until a signal is 

generated.  Given that the CUSUM is evaluated following each event, an alternative term (in the 

present context) for ARL could also be used: Average Number of Events to Signal (ANES).  We 

shall consider two types of ARL measure: initial-state ARL and steady-state ARL. 

Initial-state ARL (denoted ARLIS(µ)) is the average number of CUSUM evaluations up to the 

occurrence of a signal, where the initial CUSUM value is set at IS, with the event rate continuing at 
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level µ.  Frequently-used values for IS are zero or h/2, the latter being the FIR level for the initial 

CUSUM value, proposed in Lucas and Crosier (1982).  We denote the corresponding ARLs by 

ARLZERO(µ) and ARLFIR(µ), and point out that, for a specified CUSUM, ARLZERO(µ) > ARLFIR(µ). 

Steady-state ARL (denoted ARLSS(µ)) is defined here for an out-of-control condition.  We 

assume that the process has been in stable in-control operation for a considerable period, with the 

CUSUM being reset to an initial value whenever a false signal occurs.  The distribution of CUSUM 

values will have reached steady state prior to a sudden upward shift in event rate from µ0 to µ.  Then, 

ARLSS(µ) is the average number of CUSUM evaluations from the moment of shift up to the 

occurrence of a signal.   

A closely-related performance measure is Average Time to Signal (ATS).  In the present case, 

ATS = ARL/µ, bearing in mind that the average value for inter-event time is (1/µ).  The ATS 

measure is relevant when one needs to compare the detection performance of monitoring schemes 

which have quite different conditions for generating a signal. This is the case in Schuh et al. (2013) 

which uses the ATS metric to compare the performances of exponential CUSUMs and Poisson 

CUSUMs.  In the present paper, comparisons of alternative monitoring schemes are confined to TBE 

CUSUMs, so that it is not necessary to use ATS, although some users of CUSUMs may prefer to 

work with ATS.  The results on detection performance presented below are given in terms of ARL.   

It is important to be aware that, for exponential inter-event times with event rate µ, the ARL 

for a CUSUM scheme with parameters k and h, with initial CUSUM value C0, is equal to the ARL 

for a CUSUM with parameters kµ and hµ, with initial CUSUM value (C0)µ, when the event rate is 1.  

Because of this property of an exponential CUSUM scheme, in drawing up tables of recommended 

parameter values for k and h, we can set the value of the in-control event rate at 1, without loss of 

generality. 
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Section 3:  Approaches to the Choice of Parameters k, h 

In the early literature on the design of CUSUM schemes, the recommended approach was to 

search for (k, h) values that would minimize ARLZERO(µ1), subject to the requirement that 

ARLZERO(µ0) be at least some specified level (100, 150, 200, etc).  This was the approach used in 

Gan (1994).  There are some other approaches: 

B Find k, h so that ARLFIR(µ1) is minimized, while achieving a required level for ARLFIR(µ0). 

C Find k, h so that ARLSS(µ1) is minimized, while achieving a required level for ARLZERO(µ0). 

D Find k, h so that ARLSS(µ1) is minimized, while achieving a required level for ARLFIR(µ0). 

It is shown later that for approach B, the SPRT-based choice for k is not optimal.  In this paper, we 

use approach D, because of the benefit of using Fast Initial Response in the operation of a CUSUM.   

In the case where the observations are intervals in a continuum (such as time intervals, as in this 

paper), there is another factor that affects the evaluation of ARL: the type of shift mechanism. 

Two Types of Shift Mechanism and Evaluation of Steady-state ARL 

As mentioned in the Introduction, it was assumed in Lorden and Eisenberger (1973) that a shift 

in the failure rate could only happen at (or immediately after) the instant when a failure occurred. 

The wording (page 168) is as follows: “Note that (2) specifies that the increase in failure rate from λ 

to λ(1 + θ) occurs instantaneously after Xm-1 is observed.”  The consequence of this assumption is 

that the stream of inter-event data (Xi) has the following structure: 

{a time-ordered sequence of {Xi} with event rate µ0,  

 immediately followed by a sequence of {Xi} with event rate µ1} 

In this paper we shall refer to this type of shift as a Lorden-Eisenberger shift (or L-E shift). 

In many of the papers on the monitoring of inter-event data published after Lorden and Eisenberger 

(1973), there is no discussion of the timing of the shift in event rate.  In Gan (1994) there appears to 

be an implicit assumption that the shift is an L-E shift. 
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A second type of shift is considered in this paper: the shift could occur independently of 

previous event occurrences, and we can think of the time-point for a shift as chosen independently 

and randomly in some specified interval.  We refer to this type of shift as an independent random 

shift.  A similar assumption, leading to equivalent post-shift ARL performance, is that the shift 

occurs at some fixed but unknown future time-point. This gives rise to the following three-

component structure for the stream of inter-event data: 

A time-ordered sequence {Xi} of inter-event times, with event rate µ0.   

A single inter-event time Y, the first part of which is due to the rate µ0 and the second part due to     

 the rate µ1.  (A shift in event rate has given rise to Y.) 

The third component is a time-ordered sequence {Xi} with event rate µ1. 

The probability distribution of the second component (the composite random variable Y) needs to be 

determined, and the derivation is given in Appendix A.  The cumulative distribution function (CDF) 

of Y was found to be as follows: 

  𝐹(𝑦) = 1 +
µ0

µ1−µ0
𝑒−µ1𝑦 +

µ1

µ0−µ1
𝑒−µ0𝑦                [3] 

subject to µ0 ≠ µ1.  Other assumed forms for the TBE distribution will require corresponding 

derivations of the distribution of Y, which may be in closed form or in discretized form.  The mean 

value of Y is (1/µ0) + (1/µ1), and thus the presence of Y can slow the detection of an increase in event 

rate.  The form of the distribution of Y is a consequence of the independent-random-shift assumption, 

and of course the assumed TBE distribution (exponential).  If one considers the incidence of a shift 

occurring independently and randomly in time, one can realize that this shift is more likely to fall 

into one of the longer time-intervals between successive events.  In the present case, the duration 

from the event immediately preceding the shift up to the shift itself has an exponential distribution 

with mean 1/µ0.  This has been confirmed by simulation, and a proof is given in Appendix A. 

The evaluation of steady-state ARL using Markov-chain analysis for a Poisson process with 

the L-E shift is relatively straightforward but does not appear in the research literature.  First it is 
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necessary to evaluate the steady-state distribution of the discretized non-signalling CUSUM values 

prior to the shift. This probability distribution is then applied to the appropriate set of ARL values 

(for various CUSUM initial states) following the shift.  The details are given in Appendix B. 

When the shift is an independent random shift, there is an additional step in the evaluation of 

steady-state ARL.  As for the case of an L-E shift, we first evaluate the steady-state distribution of 

discretized CUSUM values for the completed inter-event times prior to the shift.  Next, we need to 

accommodate the influence of the random variable Y (see equation [3]) associated with the shift.  We 

construct a transition matrix similar in form to that used in evaluating the steady-state distribution of 

CUSUM values prior to the shift, but now in constructing this matrix, we replace the CDF of the 

exponential distribution with the CDF of the random variable Y.  This transition matrix is then used 

to do a one-step revision of the (pre-shift) steady-state distribution of the CUSUM values. This 

revised distribution is the distribution of non-signalling CUSUM values immediately following the 

observation of the random variable Y.  The revised distribution is then applied to the relevant vector 

of initial-state ARL values (using the event rate µ1) to give the steady-state ARL value.  The details 

are given in Appendix C. 

Section 4:  Some ARL-based Comparisons of Alternative Choices for k 

In this Section we consider the choice of the parameter k for detecting a specified size of 

upward shift in event rate. If we had chosen to use zero-state ARL as the performance measure of the 

CUSUM following the shift, and if the shift is of type L-E, the best choice of k would be that given 

by the SPRT formula, as demonstrated comprehensively in Gan (1994).  At the start of the previous 

Section it was mentioned that for approach B (where ARLFIR(µ1) is used as the detection-

performance measure) the SPRT-based choice for k is not optimal. This will now be shown, using 

two CUSUM schemes.  For the first scheme, suppose the shift to be detected is from µ0 = 1 to µ1 = 

1.5, and we require that ARLFIR(µ0 =1) be 50.  (The initial state of the CUSUM in all the FIR ARL 

evaluations in this paper is h/2.)  A search for the best choice of k (in the sense that ARLFIR(µ1) is at 
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a minimum) was conducted, and yielded k = 0.882, h = 4.3594, for which ARLFIR(µ1) = 10.814.  The 

SPRT-based values of the CUSUM parameters are k = 0.811, h = 3.3494, for which ARLFIR(µ1) = 

11.053, which is 2.2% higher than that for k = 0.882.  For the second CUSUM scheme, suppose the 

shift to be detected is from µ0 = 1 to µ1 = 2, and we require that ARLFIR(µ0 =1) be 100.  A parameter 

search was again conducted, and yielded k = 0.755, h = 3.5027, for which ARLFIR(µ1) = 7.754.  The 

corresponding SPRT-based parameter values are k = 0.693, h = 2.7708, for which ARLFIR(µ1) = 

7.932, which is 2.3% higher.          

Next, it will be shown that, if one is using steady-state ARL as the detection-performance 

measure, the SPRT-based choice for k can be improved upon.  The search methods described later in 

this Section were used to find “recommended values” for k, which depend on the specified size of 

shift, and on the chosen rate of false alarms.  It is of interest to see how the detection performance of 

a CUSUM with a recommended value for k compares with that of a corresponding CUSUM that uses 

the SPRT choice for k.  Some initial comparisons are presented in Table 1, where the shift-type is 

“independent random”.   

Table 1:  Six Examples of Comparisons of ARLSS(µ1) for Competing CUSUM Schemes.   
       In each comparison, two matching CUSUMs are given, and steady-state ARLs are evaluated.  

                     The in-control ARLs are FIR, with initial-state = h/2 

 

Detection of a shift from µ = 1 to µ = 1.5     

         

Levels of Recommended choices  SPRT choice for k % decrease average % decr. 

ARLFIR(1) for k, h      in ARL for in ARLSS(µ) for 

  k h ARLSS(1.5) k h ARLSS(1.5)  µ = 1.5 µ in [1.25, 1.75] 

ARL =   25 1.406 19.3350 10.184 0.811 2.4692 11.377 10.5 11.1 

ARL = 100 0.898 6.2618 21.085 0.811 4.3531 21.601 2.4 2.4 

ARL = 300 0.859 7.6855 31.935 0.811 6.1425 32.408 1.5 1.7 
         

        

Detection of a shift from µ = 1 to µ = 2.5      

         

Levels of Recommended choices  SPRT choice for k % decrease average % decr. 

ARLFIR(1) for k, h        in ARL for in ARLSS(µ) for 

  k h ARLSS(2.5) k h ARLSS(2.5) µ = 2.5 µ in [2.25, 2.75] 

ARL =   25 0.717 1.8057 6.092 0.611 1.2433 6.159 1.1 1.1 

ARL = 100 0.671 2.5511 9.476 0.611 2.0369 9.573 1.0 1.1 

ARL = 300 0.650 3.1605 12.532 0.611 2.7087 12.607 0.59 0.65 
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In Table 1, two sizes of upward shift in event rate, viz. from 1 to 1.5, and from 1 to 2.5, were 

used, together with three levels for initial-state ARL(µ0), with a FIR setting of h/2.  Table 1 shows 

the percentage reduction in ARLSS(µ1) when the recommended (k, h) is used rather than the SPRT-

based choice for k.  One can see that the percentage advantage of using the recommended (k, h) is 

greatest (at 10.5%) for detecting the smaller shift, when the in-control ARL is at 25.  The results of 

90 such comparisons are provided in Table 4 in the next Section. 

The search procedure used to find the recommended choices for (k, h) in Table 1 will now be 

described for the case of an independent random shift.  The search was conducted in two stages (to 

reduce the total search time).  Suppose that the specified value of in-control ARL is 100, and we 

wish to detect an upward shift from event rate µ0 = 1 to event rate µ1 = 1.5.  In the first stage of 

search, I chose a series of “two-decimal-place” values for k (e.g. 0.10, 0.11, 0.12, …,1.2) and for 

each value of k, I searched for the value of h such that the in-control ARLFIR marginally exceeds 100.  

For each one of these one hundred and eleven (k, h) pairs that meet the in-control ARL specification, 

I used the methodology in Appendix C to evaluate the steady-state ARL where the shift to µ1 = 1.5 

had occurred independently at a random point in time.  In the first stage of search, the recommended 

(k, h) choice for the case of ARL = 100 and µ1 = 1.5 was indicated by the minimum of these steady-

state ARL values, and this was k = 0.90, h = 6.318.  In the second stage of search, a series of 21 

three-decimal-place values for k (including, and on either side of the k-value arising from the first 

stage) was investigated in a similar way to yield the recommended (k, h) pair.  In Table 1 we see that 

the recommended choice is k = 0.898, h = 6.2618, and the value for ARLSS(µ1=1.5) is 21.085.  This 

two-stage search procedure was used in searching for the 90 recommended (k, h) values listed in 

each of Tables 2 and 3 in a later Section. 
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The Effect on the Comparisons of Approximate Specification of µ1 

 The question may be raised as to the effect on the relative performance of a CUSUM using the 

recommended choice for k and a CUSUM with the SPRT choice for k, when the shifted event-rate 

(µ) differs somewhat from the level (µ1) used in setting up the CUSUMs.  To investigate this, the 

percentage decrease in ARL (when using the recommended choice for k, h rather than the SPRT-

based choice) was found for a range of event-rate (µ) levels from 1.25 to 1.75 for the CUSUM 

schemes in Table 1 with in-control ARL = 100, and µ1 specified as 1.5.  The average decrease was 

found to be 2.4%.  Similar investigations were conducted for the other 5 pairs of matched CUSUMs 

in Table 1, and the average decreases are reported in the right-hand column of Table 1    

To explore this further, the percentage decreases in ARL when using the recommended choices 

for k, h rather than the SPRT-based choices are presented in two graphs.  In Figure 1, for the three 

comparisons in the top half of Table 1, the percentage decreases in ARL value are displayed for 

levels of µ ranging from 1.25 to 1.75.  For ARL = 100, the improvement is almost 7% when the 

actual event-rate is smaller at 1.25 than the specified level of 1.5.  The improvement drops towards 0 

(and below) if the actual event-rate is about 1.63 (or above) rather than 1.5.  For ARL = 300, the 

improvement is about 6.5% when the actual shift is 1.25, and the improvement drops toward 0 if the 

actual shift is just below 1.57.   

For the comparisons in the lower half of Table 1, the improvements in ARL for each shifted 

event-rate in the range from 2.25 to 2.75 are illustrated in Figure 2.  There is a similar pattern to that 

in Figure 1, but the percentage improvements in ARL are smaller.  The two Figures demonstrate the 

fact that ARLs for event rates that are below the specified rate (such as 1.5 in Figure 1, and 2.5 in 

Figure 2) are even lower for the recommended choices of k than for the SPRT-based choices. 

However, the SPRT-based choices of k begin to out-perform the recommended choices for k, for 

values of µ sufficiently above the specified rate (e.g above 1.63 in Figure 1 for in-control ARL = 

100, and above 2.71 in Figure 2 for in-control ARL = 100). 
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Section 5:  Tables of Recommended Values for Parameters k, h 

  Finding suitable values for the parameters of most CUSUMs is not easy. The designer (or user) 

of a time-between-events CUSUM needs to have the following information: 

     The in-control event rate µ0. 

     A suitable level for the in-control ARL, so that false signals are acceptably infrequent. 

     The minimum level (µ1) of the event rate for which the user would like the CUSUM to signal as 

     quickly as possible. 

To provide help to quality engineers (or other users) in choosing values for the parameters of an 

exponential CUSUM chart, two tables (Table 2 and Table 3) have been developed.  Table 2 is 

relevant if the engineer accepts the assumption that a shift in event rate can occur independently at a 

random (or unknown) point in time.  Table 3 is the corresponding table where the shift can only 

occur at the instant of an event (i.e. a Lorden-Eisenberger shift). 

 In developing the Tables, ten levels were chosen for in-control ARL as follows: 25, 50, 100, 

150, 200, 300, 500, 700, 1000, 2000.  The nine sizes of the upward shift (µ1) in event rate listed in 

each of Tables 2 and 3 are 1.5, 2, 2.5, 3, 3.5, 4, 5, 7, 10. (A spreadsheet version of these tables is 

provided in the online supplemental material.)  The search procedure used to find the recommended 

values for k and h for each of these 90 scenarios has been described earlier. 

The speed of detection for a monitoring scheme is usually quantified in terms of the ARL 

following a shift, and the values of steady-state ARL(µ1) are provided in each of Tables 2 and 3.  The 

recommended (k, h) values (for a specified ARLFIR(µ0) and shift size) are the same in Tables 2 and 3 

for 66 of the 90 cases.  Differences mainly occur when ARLFIR(µ0) ≤50.  In 15 cases, the difference 

in the values of k for corresponding positions in Tables 2 and 3 is 0.001.  Thus, in most cases, the 

same set of (k, h) parameter values is applicable for both types of shift, which is an interesting 

finding.  However, there are important differences for the corresponding ARLSS(µ1) entries in Tables 

2 and 3.  This is because detection is slower for independent random shifts than for L-E shifts. 
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Table 2:  Recommended Values of CUSUM Parameters (k, h) for Detection of Each of Nine Upward  

                          Shift in Event-rate, for Each of Ten Levels of In-control ARLFIR.   
      The Shift is an Independent Random Shift. ARLSS(µ1) is included for each shifted event-rate µ1. 
 

ARL     Size of shift µ1         

val-

ues   1.5 2 2.5 3 3.5 4 5 7 10 

  k 1.406 0.862 0.717 0.628 0.603 0.603 0.478 0.376 0.289 

25 h 19.3350 2.9203 1.8057 1.3245 1.2061 1.2061 0.7710 0.4906 0.2870 

  ARL(µ1) 10.2 7.5 6.1 5.3 4.7 4.4 3.9 3.4 3.1 

  k 0.955 0.790 0.696 0.618 0.558 0.511 0.472 0.367 0.285 

50 h 5.8219 3.1036 2.2218 1.6757 1.3412 1.1149 0.9442 0.6039 0.3902 

  ARL(µ1) 15.4 9.9 7.7 6.5 5.8 5.3 4.7 4.0 3.5 

  k 0.898 0.762 0.671 0.605 0.550 0.505 0.437 0.373 0.281 

100 h 6.2618 3.5977 2.5511 1.9913 1.6104 1.3455 1.0121 0.7453 0.4669 

  ARL(µ1) 21.1 12.6 9.5 7.9 6.9 6.3 5.4 4.6 4.0 

  k 0.879 0.750 0.660 0.596 0.544 0.501 0.434 0.347 0.280 

150 h 6.7135 3.8992 2.7525 2.1511 1.7559 1.4749 1.1092 0.7321 0.5070 

  ARL(µ1) 24.8 14.2 10.6 8.7 7.6 6.9 5.9 4.9 4.2 

  k 0.869 0.743 0.656 0.591 0.540 0.498 0.433 0.347 0.280 

200 h 7.0837 4.1201 2.9267 2.2711 1.8558 1.5647 1.1821 0.7880 0.5376 

  ARL(µ1) 27.7 15.5 11.4 9.3 8.1 7.3 6.2 5.2 4.4 

  k 0.859 0.735 0.650 0.585 0.535 0.494 0.430 0.345 0.271 

300 h 7.6855 4.4436 3.1605 2.4431 1.9975 1.6871 1.2788 0.8531 0.5599 

  ARL(µ1) 31.9 17.3 12.5 10.2 8.8 7.9 6.7 5.5 4.7 

  k 0.849 0.728 0.644 0.580 0.529 0.489 0.427 0.343 0.270 

500 h 8.4672 4.8830 3.4617 2.6753 2.1726 1.8372 1.4016 0.9333 0.6227 

  ARL(µ1) 37.6 19.7 14.0 11.3 9.7 8.6 7.3 6.0 5.0 

  k 0.844 0.724 0.640 0.577 0.527 0.486 0.425 0.342 0.270 

700 h 9.0108 5.1728 3.6524 2.8271 2.3013 1.9360 1.4795 0.9889 0.6628 

  ARL(µ1) 41.6 21.3 15.0 12.0 10.3 9.1 7.7 6.3 5.3 

  k 0.840 0.721 0.637 0.574 0.525 0.484 0.423 0.341 0.269 

1000 h 9.6221 5.4989 3.8672 2.9862 2.4373 2.0480 1.5622 1.0497 0.6994 

  ARL(µ1) 45.9 23.0 16.1 12.8 10.9 9.7 8.1 6.6 5.5 

  k 0.833 0.716 0.633 0.570 0.521 0.481 0.419 0.339 0.267 

2000 h 10.7847 6.1332 4.3030 3.3099 2.6944 2.2694 1.7194 1.1615 0.7708 

  ARL(µ1) 54.5 26.4 18.2 14.4 12.2 10.8 9.0 7.2 6.0 

 
Confirmatory Checks Using Simulation 

The ARLSS(µ1) values in Table 2 were found using the Markov-chain-based methodology in Appendix C. 

For the exponential CUSUM (k = 0.591, h = 2.2711) for detecting a shift from µ = 1 to µ = 3, with ARLFIR(1) = 200 

25 million simulation replicates yielded ARLSS(3) = 9.32367, with a standard error (SE) of 0.00071. 

The corresponding Markov-chain-based ARL value is 9.32402.  The difference in the ARL estimates is less than the SE 

of the simulation-based estimate.  Other confirmatory checks give similar results. 

These simulation checks provide reassurance on the correctness of the Markov-chain-based methodology in Appendix C. 
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Table 3:  Recommended Values of CUSUM Parameters (k, h) for Detection of Each of Nine Upward         
              Shifts in Event-rate, for Each of Ten Levels of In-control ARLFIR.   
      The Shift is a Lorden-Eisenberger Shift.  ARLSS(µ1) is included for each shifted event-rate µ1. 
 

ARL     Size of shift µ1         

val-

ues   1.5 2 2.5 3 3.5 4 5 7 10 

  k 1.082 0.848 0.718 0.633 0.603 0.565 0.475 0.375 0.291 

25 h 6.3046 2.7889 1.8118 1.3490 1.2061 1.0568 0.7621 0.4880 0.2896 

  ARL(µ1) 8.7 5.9 4.7 4.0 3.5 3.2 2.8 2.3 2.0 

  k 0.947 0.789 0.695 0.619 0.560 0.513 0.472 0.366 0.285 

50 h 5.6326 3.0925 2.2139 1.6818 1.3514 1.1240 0.9442 0.6011 0.3902 

  ARL(µ1) 13.1 8.1 6.2 5.2 4.5 4.0 3.5 2.9 2.4 

  k 0.897 0.762 0.671 0.604 0.550 0.505 0.438 0.373 0.281 

100 h 6.2341 3.5977 2.5511 1.9838 1.6104 1.3455 1.0166 0.7453 0.4669 

  ARL(µ1) 18.5 10.7 7.9 6.5 5.6 5.0 4.2 3.4 2.9 

  k 0.879 0.750 0.660 0.596 0.544 0.501 0.435 0.348 0.279 

150 h 6.7135 3.8992 2.7525 2.1511 1.7559 1.4749 1.1141 0.7360 0.5042 

  ARL(µ1) 22.2 12.4 9.0 7.3 6.2 5.6 4.7 3.8 3.1 

  k 0.869 0.743 0.656 0.591 0.540 0.498 0.433 0.347 0.279 

200 h 7.0837 4.1201 2.9267 2.2711 1.8558 1.5647 1.1821 0.7880 0.5345 

  ARL(µ1) 25.0 13.6 9.8 7.9 6.7 6.0 5.0 4.0 3.3 

  k 0.859 0.735 0.650 0.585 0.535 0.494 0.430 0.346 0.271 

300 h 7.6855 4.4436 3.1605 2.4431 1.9975 1.6871 1.2788 0.8574 0.5599 

  ARL(µ1) 29.1 15.4 10.9 8.7 7.4 6.6 5.5 4.4 3.6 

  k 0.849 0.728 0.644 0.580 0.529 0.489 0.427 0.344 0.270 

500 h 8.4672 4.8830 3.4617 2.6753 2.1726 1.8372 1.4016 0.9381 0.6227 

  ARL(µ1) 34.8 17.7 12.4 9.8 8.3 7.3 6.1 4.8 3.9 

  k 0.844 0.724 0.640 0.577 0.527 0.486 0.425 0.342 0.270 

700 h 9.0108 5.1728 3.6524 2.8271 2.3014 1.9360 1.4796 0.9889 0.6628 

  ARL(µ1) 38.7 19.3 13.4 10.6 8.9 7.8 6.5 5.1 4.2 

  k 0.840 0.721 0.637 0.574 0.525 0.484 0.423 0.341 0.269 

1000 h 9.6221 5.4989 3.8672 2.9862 2.4373 2.0480 1.5622 1.0497 0.6994 

  ARL(µ1) 42.9 21.0 14.4 11.3 9.5 8.4 6.9 5.4 4.4 

  k 0.833 0.716 0.633 0.570 0.521 0.481 0.419 0.339 0.267 

2000 h 10.7847 6.1332 4.3030 3.3099 2.6944 2.2695 1.7195 1.1615 0.7708 

  ARL(µ1) 51.6 24.4 16.5 12.9 10.8 9.4 7.7 6.1 4.9 

 

Confirmatory Checks Using Simulation 

The ARLSS(µ1) values in Table 3 were found using the Markov-chain-based methodology given in Appendix B. 

For the exponential CUSUM (k = 0.656, h = 2.9267) for detecting a shift from µ = 1 to µ = 2.5, with ARLFIR(1) = 200 

25 million simulation replicates yielded ARLSS(2.5) = 9.76686, with a standard error (SE) of 0.00096. 

The corresponding Markov-chain-based ARL value is 9.76566.  The difference in the ARL estimates is of the same order 

of magnitude as the SE of the simulation-based estimate.  Other confirmatory checks give similar results. 

These simulation checks provide reassurance on the correctness of the Markov-chain-based methodology in Appendix B. 
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  Each of the recommended values for k in Tables 2 and 3 exceeds the corresponding SPRT-

based choice, with the greatest difference occurring when both the in-control ARL and the shift size 

to be detected are at their lowest. This helps to explain the sloping shapes in Figures 1 and 2. 

Table 4 contains a listing of the 90 percentage decreases in steady-state ARL(µ1) for the 

recommended CUSUM schemes in comparison with the corresponding CUSUMs that use the SPRT-

based choice of k, for the case of an independent random shift in event rate.  

 

Table 4:   
 
Percentages by Which ARLSS(µ1) for Each CUSUM Scheme in Table 2 is Less than 

       ARLSS(µ1) for the Matching CUSUM Based on the SPRT Choice of k 
                        (for an independent random shift). 
 

ARLFIR(1)                              Sizes of shift µ1 above 1     

values 1.5 2 2.5 3  3.5 4 5 7 10 

25 10.5 2.4 1.1 1.8 2.1 1.6 0.8 0.3 0.4 

50 3.4 1.9 1.2 0.9 0.6 0.6 1.1 0.5 0.2 

100 2.4 1.3 1.0 0.8 0.6 0.5 0.3 0.6 0.3 

150 2.0 1.1 0.8 0.7 0.5 0.4 0.3 0.2 0.3 

200 1.7 1.0 0.7 0.6 0.5 0.4 0.3 0.2 0.3 

300 1.5 0.8 0.6 0.5 0.4 0.4 0.3 0.2 0.1 

500 1.2 0.7 0.5 0.4 0.3 0.3 0.2 0.2 0.1 

700 1.0 0.6 0.4 0.4 0.3 0.3 0.2 0.2 0.1 

1000 0.9 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 

2000 0.6 0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.1 

 

 

Table 5:   Percentages by Which ARLSS(µ1) for Each CUSUM Scheme in Table 3 is Less than 

                     ARLSS(µ1) for the Matching CUSUM Based on the SPRT Choice of k 
                                    (for a Lorden-Eisenberger shift). 

ARLFIR(1)                              Sizes of shift µ1 above 1    

values 1.5 2 2.5 3 3.5 4 5 7 10 

25 6.4 3.0 1.6 2.3 2.6 1.9 1.1 0.5 0.8 

50 4.0 2.4 1.6 1.2 0.8 0.8 1.4 0.7 0.3 

100 2.7 1.5 1.2 0.9 0.8 0.7 0.4 0.7 0.4 

150 2.2 1.3 0.9 0.8 0.7 0.6 0.4 0.2 0.4 

200 2.0 1.1 0.8 0.7 0.6 0.5 0.4 0.2 0.4 

300 1.6 0.9 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

500 1.3 0.8 0.6 0.5 0.4 0.4 0.3 0.2 0.1 

700 1.1 0.6 0.5 0.4 0.3 0.3 0.3 0.2 0.1 

1000 0.9 0.6 0.4 0.4 0.3 0.3 0.2 0.2 0.1 

2000 0.7 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.1 
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The corresponding percentages for the case of an L-E shift in event rate are given in Table 5.  

In both tables, the larger percentage decreases in steady-state ARL(µ1) (for the recommended 

parameter choices compared with the corresponding SPRT-based choices) are when both the in-

control ARL is low and the size of shift is low. The average of these percentages for the 42 CUSUM 

schemes with in-control ARL at most 500, for detecting shifts to an event rate of at most 4, is 1.25% 

for Table 4 and 1.36% for Table 5. 

The Effect on ARL Values When the Time-Between-Events Distribution is Weibull 

It is of interest to investigate the case where the stream of inter-event data is from a Weibull 

distribution, but one is using the values recommended here for k and h, which are based on the 

assumed exponential distribution.  For more detailed investigations of the use of the Weibull as a 

TBE distribution, one may consult Shafae et al. (2015) or Sparks and Hazrati-Marangaloo (2020).  

The CDF for the Weibull is given at the end of Appendix A, and there are two parameters: a scale 

parameter (λ) and a shape parameter (β).  As β is varied from say 0.5 to about 4, the shape of the 

Weibull probability density function changes from a highly-skewed form to an almost symmetric 

unimodal form, and this flexibility (with just two parameters) is quite useful.  

I chose three of the CUSUM schemes listed in Table 2 for this investigation.  Scheme A is for 

detecting a shift from µ0 = 1 to µ1 = 2, with ARLFIR(µ0) set at 100, scheme B is for detecting a shift 

from µ0 = 1 to µ1 = 3, with ARLFIR(µ0) set at 100, while scheme C is for detecting a shift from µ0 = 1 

to µ1 = 2, with ARLFIR(µ0) set at 300.  For each CUSUM scheme I evaluated ARLFIR(µ0) and 

ARLSS(µ1) using a Weibull distribution as the TBE distribution, for each of 10 values for the shape 

parameter.  The evaluation of ARLFIR(µ0) was done using the Markov-chain approach, and these 

evaluations were checked using simulation.  The evaluation of ARLSS(µ1) was done using 

simulation.   

To confirm the correctness of various exponential-CUSUM ARL evaluations in this paper, it 

has been possible to use both the Markov-chain approach and simulation. However, only simulation 
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was used to find ARLSS(µ1) when using the Weibull distribution.  (Nevertheless, some checking of 

the correctness of the Weibull simulation-programming for steady-state evaluations was possible, by 

setting β = 1 and comparing with the corresponding Markov-chain-based evaluations for the 

exponential CUSUM.)   

    

Table 6:  ARL Evaluations for Three CUSUM Schemes Using Weibull Data 

       for a Range of Settings of the Weibull Shape Parameter β. 

 

Weibull CUSUM Scheme A   CUSUM Scheme B   CUSUM Scheme C  
Parameter k = 0.762 h = 3.5977 k = 0.605 h = 1.9913 k = 0.735 h = 4.4436 

Beta  ARLFIR(1) ARLSS(2)  ARLFIR(1) ARLSS(3)  ARLFIR(1) ARLSS(2)  
0.6  19.7 11.3  15.2 6.8  35.1 13.6  
0.8  43.7 11.6  37.8 7.4  98.2 15.8  
0.9  65.8 12.1  60.9 7.7  169.5 16.6  

0.95  81.0 12.3  77.9 7.8  224.8 17.1  
1.0  100.0 12.6  100.0 7.9  300.0 17.3  
1.1  154.3 12.9  167.4 8.1  546.6 17.8  
1.2  241.3 13.3  285.1 8.2  1024.8 18.3  
1.4  621.1 13.8  872.9 8.4  3933.4 18.9  
1.6  1716.0 14.1  2855.7 8.5  16898.8 19.4  
1.8   5090.1 14.4   9900.3 8.6   80479.9 19.7  
 

The results are presented in Table 6, which includes the exponential CUSUM values (when the 

shape-parameter β = 1).  It may be seen that for Weibull TBE distributions where β > 1, the in-

control ARLFIR values for each CUSUM can considerably exceed the corresponding value (100 or 

300) specified for the exponential CUSUMs.   The out-of-control steady-state ARL values differ 

from the corresponding values (12.6, 7.9 and 17.3) for the three exponential CUSUMs to a much 

lesser extent.  Thus, it appears that the CUSUM schemes tabulated in Table 2 may be useful even 

when the TBE distribution is Weibull, provided that the Weibull parameter β is not too far above 1.  

However, if values for β less than 1 are appropriate (where the TBE distribution is well-described by 

the Weibull), one can see in Table 6 that the in-control ARL values can be considerably smaller than 

the specified levels 100 and 300, and this is undesirable.  If a modelling investigation of the TBE 
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distribution suggested that a Weibull distribution with β < 1 was appropriate, then the tabulated k, h 

values provided in Table 2 should not be used in designing a CUSUM.  

Section 6:  Using Table 2 to Find the Parameters of a Geometric CUSUM or Bernoulli CUSUM 

 The geometric CUSUM chart was proposed in Bourke (1991) for detection of shifts in a 

proportion such as fraction nonconforming.  In Bourke (2018) tables are provided to assist quality 

engineers in finding suitable values for the parameters (k, h) of a geometric CUSUM (or an 

equivalent Bernoulli CUSUM) to detect upward shifts that can occur independently in time.  These 

tables refer to 18 in-control values of a proportion in the range 4% to 0.1%, and it was shown that 

interpolation is quite effective, as well as extrapolation for in-control values of a proportion below 

0.1%.  However, these tables are limited to five levels of in-control ARL (25, 50, 100, 200, 300) and 

five sizes of upward shift in the proportion (1.5, 2, 3, 5 and 7 which are multiples of the in-control 

value of the proportion). 

 A procedure is next described whereby one can use Table 2 in this article to find parameters for 

a geometric CUSUM chart for any one of ten levels of in-control ARL, and for nine sizes of shift.  

For sufficiently small in-control values of the proportion (0.5% or less), the procedure works quite 

well.  An example is presented to describe the procedure. 

First, a short description of a geometric CUSUM chart is given.  There are in fact two closely-

related versions of a geometric CUSUM.  In the first version (Bourke, 1991) the observations for the 

CUSUM are the lengths of successive Conforming Run-lengths (CRLs), excluding the 

nonconforming item that marks the end of each CRL.  In the second version, the observation of each 

CRL-value includes the nonconforming item that marks the end of each CRL.  For either version of a 

geometric CUSUM, these CRL-values correspond to the inter-event times for an exponential 

CUSUM.  The expression for a geometric CUSUM has the same form (see equation [1]) as that for 

an exponential CUSUM.  The parameters (k, h) for a geometric CUSUM are usually taken to be 

integers, because the process data are counts.  For a geometric CUSUM, a signal is given when the 
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CUSUM value reaches or exceeds h.   Denoting the value of the proportion that is to be monitored by 

p, the average value of a CRL-length is (1/p) – 1 for version 1 of a geometric CUSUM, and 1/p for 

version 2.   However, for our event-rate CUSUMs with parameter values listed in Table 2, the 

average value of the in-control inter-event time is 1.  In the following example, the presentation is 

given for version 1 of the geometric CUSUM.  

Example:  Suppose that the in-control value of the proportion (p0) is 0.5%, and we wish to design a 

geometric CUSUM for which the in-control ANNSFIR = 100, to detect a shift from 0.5% to 1%.  (It is 

noted that the terminology ANNS (Average Number of Nonconformities to a Signal) is used in 

Bourke (2018) and corresponds to ANES or ARL as in this article).   

 Here, the average value for CRL-length = 199 for a process in control.  Referring to Table 2, to 

achieve in-control ARLFIR = 100, for detecting a shift from event rate 1 to 2, we find the k, h values 

0.762, 3.5977.  We multiply these values by the mean of the in-control CRL data (199), giving 151.6 

and 715.9.  We round these to integer values for a geometric CUSUM.  (I point out that, in the case 

of parameter k, it works better to round down to the nearest integer for version 1 of the CUSUM).  

For k = 151 and h = 716, with p = 0.005, it was found that the in-control ANNS (with FIR) is 102.1 

which is acceptably close to the specified value of 100.  The steady-state ANNS evaluation when p 

has shifted to 1% is 12.76, while the corresponding entry in Table 2 for steady-state ARL (for the 

exponential CUSUM) is 12.6.  The steady-state ANNS values for the geometric CUSUM were 

evaluated using the methodology presented in Bourke (2018) and earlier in Bourke (2001).  

 It is of interest to see how well this method works for a range of levels for p0.  The results of an 

investigation, using the CUSUM specifications in the example above, are presented in Table 7 for p0 

ranging from 0.02 down to 0.002.  This Table also contains the results for corresponding 

investigations for two further exponential CUSUMs from Table 2: 
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Table 7:  Finding parameter values for a geometric CUSUM chart using an exponential CUSUM.   

            Three exponential CUSUMs, with in-control ARLs at 100, 200, 300, are used  

            to show the influence of the level of p0 on the value of in-control ANNSFIR. 

 

  Exponential CUSUM   Exponential CUSUM    Exponential CUSUM  

  with ARLFIR(1) = 100   with ARLFIR(1) = 200   with ARLFIR(1) = 300 

  k = 0.762    k = 0.591    k = 0.735  

  h = 3.5977    h = 2.2711    h = 4.4436  

               

p0   k h ANNSFIR(1)     k h ANNSFIR(1)     k h ANNSFIR(1) 

0.02  37 176 100.7   28 111 238.2   36 218 276.6 

0.01  75 356 101.6   58 225 204.2   72 440 324.9 

0.009  83 396 106.7   65 250 191.1   80 489 329.2 

0.008  94 446 101.8   73 282 198.4   91 551 294.4 

0.007  108 510 98.2   83 322 209.8   104 630 298.8 

0.006  126 596 99.7   97 376 209.6   121 736 314.2 

0.005  151 716 102.1   117 452 203.6   146 884 299.2 

0.004  189 896 102.2   147 566 197.8   183 1106 294.4 

0.003  253 1196 99.9   196 755 200.4   244 1477 299.9 

0.002   380 1795 99.8     294 1133 203.1     366 2217 304.5 

 

k = 0.591, h = 2.2711, for detecting a shift from 1 to 3, while achieving in-control FIR ARL at 200. 

k = 0.735, h = 4.4436, for detecting a shift from 1 to 2, while achieving in-control FIR ARL at 300. 

The ANNS columns in Table 7 show that, for the range of p0 levels considered, there is some lack of 

smoothness in the ANNS evaluations across the p0 values, and this is more pronounced for p0 levels 

above 0.5%.  A likely explanation is the fact that the (k,h) parameters for a geometric CUSUM are 

integers. Referring to Table 7, it may be concluded that the proposed method of finding the 

parameters of a geometric CUSUM works quite well when p0 is at most 0.5%, and this is intended as 

approximate guidance.   

 In some applications of the geometric CUSUM it is assumed that a shift in the value of the 

proportion can only occur when a nonconforming item is being produced.  This type of shift has been 

termed a “type 1 shift” (Bourke, 2001) or a “fixed shift”, and this corresponds to a Lorden-

Eisenberger shift in event-rate monitoring.  For such fixed-shifts processes, Table 3 in this article 

may be used to find the parameters of a geometric CUSUM, with the proviso that p0 is at most 0.5%. 
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Section 7:  An Example of the Design of an Exponential CUSUM Using Table 2. 

 This example is intended to show how Table 2 might be used by a quality engineer in choosing 

the parameters of a CUSUM to detect a sudden increase in the rate of breakdowns for a machine. 

An expensive machine is used in manufacturing a high-volume single product.  Based on 

experience in the past year, it is estimated that, for normal operation, there is an average time of 50 

hours between machine breakdowns.  When a breakdown occurs, a quick check is conducted on the 

condition of the machine.  If component X has not worn out, the machine is restarted following a 

basic reset procedure.  One could do a full machine-reset (with replacement of some components, 

including component X) every time the machine breaks down, but the cost of this might exceed the 

benefit. 

 The quality engineer wishes to set up a CUSUM scheme, using the times between breakdowns, 

to indicate whether the breakdown-rate may have increased to an unacceptable level, in which case a 

full machine-reset should be conducted. The engineer will use a signal from the CUSUM to decide 

whether to conduct a full machine-reset.  The currently-acceptable breakdown-rate is µ0 = 0.02 

breakdowns per hour and let us suppose (for the moment) that the engineer considers that the 

unacceptable rate is µ1 = 0.04 per hour.  The engineer wishes to find the parameters of a suitable 

exponential CUSUM scheme. There are ten CUSUM schemes listed in Table 2 for detecting a rate 

that is double the in-control rate.  Throughout Table 2, the in-control rate is 1, but we can switch the 

CUSUM parameters to an in-control rate of 0.02 per hour by multiplying the tabled (k, h) values by 

(1/µ0), which is 50.  The engineer may also prefer to use Average Time to Signal (ATS), rather than 

ARL (using ATS = ARL/µ). 

 In deciding which of the ten CUSUM schemes might be suitable, the engineer will consider, 

for each scheme, the in-control value of ARL(µ0) and the out-of-control value of ARL(µ1), together 

with the cost of a full machine-reset, and the cost of delays in detecting a shift, arising from a higher 

rate of defective product.  In quantifying the cost of such delays, the engineer will use the value of 
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ARL(µ1).  If the engineer chooses a low value for ARL(µ0), shifts are more likely to be quickly 

detected, but the frequency of false signals will be higher, so that unnecessary full machine-resets 

will be more frequent. Correspondingly, if the engineer chooses a large value for ARL(µ0), such as 

1000, there will be fewer false signals, but the average time to signal (ATS) for a real shift will be 

greater, incurring more cost.  The engineer can choose among the ten CUSUM schemes, by 

quantifying the cost of operating each scheme.  The engineer could also consider other possible shift 

sizes, and for each shift size in Table 2 there are ten possible CUSUM schemes. 

Section 8:  Summary and Conclusion 

  The detection of increases in event rate using an exponential CUSUM scheme has been 

considered for the case of a process that has been operating in-control for a period long enough for 

the influence of initial CUSUM settings to have faded.  A procedure for evaluating steady-state ARL 

for this CUSUM, using Markov-chain-based discretization, is described.  Two types of shift from an 

in-control event rate to an out-of-control rate are considered: the shift may occur independently of 

earlier event-occurrences at some random point in time, or the shift may occur randomly in the 

stream of events, immediately following an event, as assumed in Lorden and Eisenberger (1973). 

Numerical searches have been conducted to find recommended values of parameters (k, h) which 

achieve, for a specified shift-size, the lowest level of out-of-control steady-state ARL, while meeting 

a specified level for in-control FIR ARL.  These investigations have been carried out for ten levels of 

in-control FIR ARL ranging from 25 to 2000, and for nine sizes of upward shift in event rate. The 

resulting sets of CUSUM parameter values are here termed “the recommended parameter-values” 

and are organized into two tables, one for each type of shift.  While it is assumed in the article that 

there is 100% inspection of the event process, the case of sampling inspection can be investigated by 

adapting the sampling-inspection approach proposed in Bourke (2001) for monitoring a proportion.  

Comparisons of the detection performance (using steady-state ARL) of CUSUM schemes that 

use the SPRT-based choice of k, and the corresponding recommended parameter-values given here, 
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show that the recommended values give an improvement in performance in all 90 cases considered 

for each type of shift.  This improvement is largest for detection of smaller shift-sizes and for lower 

levels of in-control ARL specification. 

A short investigation was conducted to see how the recommended CUSUM schemes perform 

when the TBE distribution is Weibull rather than exponential, and a range of levels for the shape 

parameter of the Weibull distribution has been considered.  Simulation was used in these steady-state 

ARL evaluations.  One could seek to develop the corresponding Markov-chain-based methodology 

for evaluation of steady-state ARL when the TBE distribution is Weibull. 

The two tables of recommended exponential CUSUM parameter-values may also be used to 

find the parameters of a geometric CUSUM chart (or a Bernoulli CUSUM chart) for monitoring a 

proportion.  The procedure works quite well provided that the in-control value of the proportion is no 

greater than approximately 0.5%. 

Another area of investigation is the performance of “double-CUSUM” schemes formed by 

combining two of the listed schemes in either of Tables 2 and 3, with the intention of broadening the 

range of shift sizes that would be detected quickly.  For example, one could operate together the 

following two exponential CUSUMs from Table 2, each with in-control FIR ARL at 100: 

k = 0.898, h = 6.2618, a CUSUM for detecting a shift from 1 to 1.5 

k = 0.671, h = 2.5511, a CUSUM for detecting a shift from 1 to 2.5 

A signal from either CUSUM is taken as a signal from the double-CUSUM scheme. 

Simulation was used to evaluate the in-control ARL of this double-CUSUM scheme, and this was 

found to be 71.2.  From other evaluations where the component CUSUMs have in-control ARL at  

100, it appears that the in-control ARLs of such double-CUSUM schemes range from about 60 

(where the two component-CUSUMs are aimed at detecting shifts to 1.5 and 5) to about 83 (where 

the two component-CUSUMs are aimed at detecting shifts to 3 and 4).  There are clearly many 

possible double-CUSUM schemes that could be investigated, and several such schemes are presented 
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in Table 8, which may be useful to practitioners.   However, the operational complexity of a double-

CUSUM scheme (or a triple-CUSUM scheme) is likely to limit their suitability. 

 

Table 8:  Simulation estimates of in-control ARLFIR for various double CUSUM schemes. 
_____________________________________________________________________________ 

Single CUSUM Schemes  Double CUSUM Schemes: Estimates of ARLFIR(1) 

with in-control ARL = 100  Each component-CUSUM is indicated by shift-size 

Shift   k   h  Component CUSUMs ARL(1)   

1.5 0.898 6.2618    1.5 2.5   71.2   

2 0.762 3.5977   1.5 3  67.1   

2.5 0.671 2.5511   1.5 4  62.5   

3 0.605 1.9913   1.5 5  60.2   

4 0.505 1.3455   2 3  77.1   

5 0.437 1.0121   2 4  69.0   

     2 5  64.9   

     3 4  83.3   

     3 5  75.4   

           

Single CUSUM Schemes  Double CUSUM Schemes: Estimates of ARLFIR(1) 

with in-control ARL = 500  Each component-CUSUM is indicated by shift-size 

Shift   k   h  Component CUSUMs ARL(1)  
1.5 0.849 8.4672    1.5 2.5   329.3  

2 0.728 4.8830   1.5 3  309.0   

2.5 0.644 3.4617   1.5 4  289.3   

3 0.580 2.6753   1.5 5  279.4   

4 0.489 1.8372   2 3  361.6   

5 0.427 1.4016   2 4  321.3   

     2 5  302.3   

     3 4  402.1   

     3 5  358.9   

           

Single CUSUM Schemes  Double CUSUM Schemes: Estimates of ARLFIR(1) 

with in-control ARL = 1000  Each component-CUSUM is indicated by shift-size 

Shift   k   h  Component CUSUMs ARL(1)  
1.5 0.840 9.6221    1.5 2.5   636.3  

2 0.721 5.4989   1.5 3  598.1   

2.5 0.637 3.8672   1.5 4  561.8   

3 0.574 2.9862   1.5 5  544.6   

4 0.484 2.0480   2 3  703.8   

5 0.423 1.5622   2 4  623.9   

     2 5  588.7   

     3 4  789.9   

          3 5   701.9     
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Appendix A:  Derivation of the Distribution of Random Variable Y (equation [3]) 

 The random variable Y is a sum of two parts.  The first part (U, say) is the time from the event 

immediately before the shift, up to the time of the shift.  The second part (V, say) is the time from the 

shift up to the first event following the shift, and V has an exponential distribution with mean µ1.  It 

may not be so obvious that U also has an exponential distribution, and this will now be shown. 

 Initially, let us assume that the time of shift is fixed at Ts, so that U is the time from the final 

random event before the shift up to the fixed shift-time Ts.  A Poisson process has no direction in 

time, so that the distribution of U is the same as the distribution from a fixed time-point up to the 

next event in the process.  This latter distribution is well-known to be exponential (in this case with 

https://www.intechopen.com/books/9925
https://doi.org/10.1007/978-3-319-12355-4_2
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mean µ0).  Next, we remove the assumption that the time of shift (Ts) is fixed and allow it to be 

random.  We consider 

𝑃𝑟𝑜𝑏[𝑈 >  𝑡]  =   ∫ 𝑃𝑟𝑜𝑏[𝑈 >  𝑡 | 𝑇𝑠 =  𝑠] 𝑓(𝑠)𝑑𝑠 (A-1) 

where f(s) denotes the probability density function (pdf) of the random variable Ts.  The conditional 

probability in equation (A-1) is exp(-µ0t), which does not depend on s, and thus can be moved 

outside the integral.  Thus, we have        

𝑃𝑟𝑜𝑏[𝑈 >  𝑡]  =  exp(−µ0𝑡) ∫ 𝑓(𝑠)𝑑𝑠  =  exp(−µ0𝑡) (A-2) 

This result that U has an exponential distribution has been checked using simulation for both the case 

of fixed Ts and random Ts. 

 The probability distribution of Y is found by forming the convolution of two independent 

exponential random variables (U and V) and is given in equation [3].  The procedure is 

straightforward, and the steps are as follows.  Denote the pdf of V by g(v).  By considering 

𝑃𝑟𝑜𝑏[(𝑈 + 𝑉) ≤ 𝑦] = ∫ 𝑃𝑟𝑜𝑏[𝑈 ≤ (𝑦 − 𝑣)]𝑔(𝑣)𝑑𝑣
𝑦

0

 (A-3) 

we arrive at 

𝑃𝑟𝑜𝑏[𝑌 ≤ 𝑦] = ∫ {1 − 𝑒𝑥 𝑝[−µ0(𝑦 − 𝑣)]}𝑔(𝑣)𝑑𝑣 
𝑦

0

 (A-4) 

and then 

= [1 − exp(−𝜇1𝑦)] − {𝜇1exp (−𝜇0𝑦)} ∫ exp [−(𝜇1 − 𝜇𝑜)𝑣]𝑑𝑣
𝑦

0

 (A-5) 

After a few more steps, we find 

𝑃𝑟𝑜𝑏[𝑌 ≤ 𝑦] = 1 + [
µ0

µ1 − µ0
] 𝑒𝑥𝑝 (−µ1𝑦) + [

µ1

µ0 − µ1
] 𝑒𝑥𝑝 (−µ0𝑦) 

as given in equation [3].  In the case of µ0 = µ1, the random variable Y has a Gamma distribution. 

__________________________ 
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CDF and Mean of the Weibull Distribution 

  Prob[X ≤ x] = 1 - exp[ -(λx)β]       and  E[X] = (1/λ)Ґ(1+1/β)                    (A-6) 

_________________________ 

Appendix B:  Evaluation of Steady-state ARL(µ1) for an Exponential CUSUM when the   

                possible shift in event rate is a Lorden-Eisenberger shift. 

Two types of shift in the event rate are considered in this paper.  In the landmark paper (Lorden 

and Eisenberger, 1973), it was assumed that the shift could only occur at the time of an event, and as 

mentioned in the earlier sub-section in Section 3 (Two Types of Shift), this type is termed a Lorden-

Eisenberger shift. 

Taking account of the methodology in Brook and Evans (1972), we can find the column vector 

of initial-state ARL values using 

m = (I-R)-11,        (B-1) 

where I is an identity matrix, R is the transition matrix (of size t×t)) for the discretized CUSUM 

transient states, and 1 is a column vector of ones.  (Later we need to refer to the full transition matrix 

P, which is the matrix R augmented by a final row and column for the signal state.)  The zero-state 

ARL value is given by the first element of m, while the middle element provides a FIR ARL value.  

The procedures described in Crosier (1986) and Lucas and Saccucci (1990) are then adapted to 

evaluate steady-state ARL, as follows.   Using µ = µ0, one adds a column vector (I-R)1 to the right 

of matrix R, and then a (t+1)-element row-vector b 

b = (0, 0, 0,.1..,0)       (B-2) 

is added to the base of the resulting matrix.  The position of “1” in the vector b relates to the resetting 

of the CUSUM following a false signal.  This gives a matrix (P*) that describes the discretized 

CUSUM-transitions, including the resetting of the CUSUM to h/2 whenever a false signal is 

produced.  (One could also reset the CUSUM to other initial-state levels by placing the 1 in vector b 
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in other positions: this has a minor effect on the steady-state ARL evaluation).  We can find the 

steady-state distribution (p) of CUSUM values associated with the matrix P*, by solving (subject to 

pT1= 1) 

           P*Tp = p       (B-3) 

In the next step, the element in p corresponding to the signal state is removed, and the other 

elements in p are inflated so that they add to 1.  We now have the steady-state distribution of 

discretized (transient) CUSUM values prior to the shift, and this is denoted by the column-vector pss.  

We can then evaluate the out-of-control steady-state ARL(µ1) as follows 

      ARL(µ1) = pss
Tm       (B-4) 

where m is given by equation (B-1).  Note that in the evaluation of m to be used in equation (B-4), 

we use µ1 the event rate following the shift. 

  

Appendix C:  Evaluation of Steady-state ARL(µ1) for an Independent Random Shift 

A description of the structure of the stream of inter-event times is given earlier in the sub-section of 

Section 3 entitled Two Types of Shift Mechanism and Evaluation of Steady-state ARL. 

The stream of inter-event times associated with an independent random shift differs from the 

corresponding stream for an L-E shift because of the presence of the random variable Y (arising from 

the occurrence of the shift).  The procedure for evaluating the steady-state ARL for an independent 

random shift is the same as for an L-E shift up to the determination of the steady-state distribution 

pss.  This is the distribution of discretized CUSUM values just before the observation of random 

variable Y.  As mentioned earlier, it is then necessary to revise the pss distribution to take account of 

the observation of Y.  This is done using a transition matrix Q associated with Y.  The structure of Q 

is the same as the full transition matrix P (explained in Appendix B), except that instead of using the 

CDF for an exponential distribution, we use the CDF of the random variable Y, given in equation [3].  

The revised distribution of CUSUM values following the observation of Y is given by the row-vector 
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      rss = pss
TQ        (C-1) 

The steady-state ARL(µ1) following an independent random shift is evaluated as follows  

     ARL(µ1) = [1 ˗∑( rss)i] + rss
 (m+1)     (C-2) 

where m is given by equation (B-1) and in evaluating the m to be used in equation (C-2), we use µ1 

the event rate following a shift.  To clarify the two terms in equation (C-2), we consider the 

evaluation of the average value of the Number of Events to a Signal (NES).  NES can take the value 

1 (when Y produces a signal) and the probability of this is the term in square brackets in equation  

(C- 2).  The presence of 1 in the term (m+1) of equation (C-2) is because of the need to count the 

event occurring immediately after the observation of random variable Y, when Y has not produced a 

signal. 

 

A Note on the size of the matrix R for transient states 

The size used for the matrix R was 800×800 

 

 


