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Abstract 

 

The First Industrial Revolution, facilitated by the steam engine, transformed agrarian 

economies into ones dominated by industry and machine manufacturing. With the 

advent of the internal combustion engine in the late 19th century, the Second Industrial 

Revolution began, enabling the mass production of goods. Computers powered by 

microchips instigated the Third Industrial Revolution, which has been roaring since 

the second half of the 20th century. We now stand at the precipice of the Fourth 

Industrial Revolution, still powered by computers. Industry 4.0, as it is known, is 

characterised by automation, the internet of things, cloud computing and artificial 

intelligence. As the population of the world approaches 8 billion people in 2021, 

equipped with high-performance computers and a sense of hope, we have set our sights 

on the most complex problems facing humanity, problems such as climate change, 

pandemics, food and water shortages, drought and even interplanetary travel. The 

microprocessor has played a central role in the rapid development of modern 

technologies since it began to be widely used in the latter part of the 20th century and 

it will continue to play this role as we tackle the problems mentioned. Silicon has 

served as the bedrock of modern microprocessors and has, for many years, supported 

the trend known as Moore’s Law. Moore’s Law holds that the number of transistors 

in an integrated circuit (IC) doubles roughly every two years. Initially, Moore’s Law 

was facilitated by the miniaturisation of the Si transistor. A smaller transistor footprint 

allowed for more to be contained in an IC, increasing the processing power. However, 

continued device-scaling has resulted in material and architectural limitations being 

reached. In an effort to keep pace with the technological demands of modernity, the 

use of novel materials and device architectures are being adopted to improve device 
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performance. Germanium has long been considered a viable candidate for use in 

modern processors and has seen some inclusion in the form of SiGe alloys used as the 

channel material in CMOS devices. With that said, before 100% Ge gains widespread 

industry acceptance, there are certain issues, mostly to do with its oxide, that must be 

overcome. This thesis aims to highlight key advancements that have been made in 

relation to the passivation of Ge(100) surfaces such that Ge becomes a viable material 

for inclusion in modern CMOS devices. 

Chapter 1 serves as an introduction to the work presented in this thesis. Key 

concepts such as the structure and properties of Ge(100) surfaces are outlined to 

highlight why Ge is seriously being considered as a future channel material for CMOS 

devices. An in-depth review of literature on Ge passivation is included also in an effort 

to set the foundation for and highlight the significance of the work that follows in the 

coming chapters. 

Chapter 2 details the characterisation methods that are used to probe the 

Ge(100) surfaces that are discussed in Chapters 3, 4 and 5. Since XPS is the 

characterisation method most used throughout this body of work, particular attention 

is given to it. WCA and AFM are introduced also; however, since they serve as 

complementary characterisation methods, only a brief introduction is presented. DFT 

analysis performed by Dr. Barbara Maccioni and Dr. Michael Nolan is presented in 

this chapter also; however, a more detailed discussion of how the DFT simulations are 

used to help elucidate the behaviour of Ge-SAM systems can be found in the work 

chapters in which they are implemented. 

Chapter 3 discusses the method developed to achieve thiol-SAM passivation 

of Ge(100) surfaces using a novel vapour-phase approach. This method improves on 
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the current state-of-the-art by reducing the time required to form stable alkanethiol-

SAMs on Ge(100) from 24 hours to ~200 minutes while still forming SAMs that 

inhibit reoxidation of the Ge for up to 1 week. Many of the vapour-phase passivation 

methods for Ge that are found in the literature rely on the use of high-vacuum. That is 

not the case for the novel process developed and documented in this chapter. 

Ultimately, the vapour-phase passivation method serves as the foundation for the 

remainder of the work presented in this thesis since it provided a reliable and 

reproducible method for Ge passivation. Thus, this process appears in both chapters 4 

and 5 also. 

Chapter 4 highlights the significant effect humidity in air has on the longevity 

of thiol-SAMs on Ge(100) surfaces. Although the thiol-SAM-passivated Ge surfaces 

that are prepared exhibit resistance to reoxidation, upon exposure to ambient 

conditions, reoxidation of the Ge does eventually occur. Thus, a natural progression 

from Chapter 1 is to determine what factors are significant in the reoxidation of Ge 

and the destruction of the passivating SAM. SAMs of different thiol molecules, 

prepared by both vapour- and liquid-phase passivation methods are prepared and 

exposure to various levels of humidity at constant temperature to elucidate what effect, 

if any, humidity in air has on the reoxidation of thiol-SAM-passivated Ge. It is found 

that irrespective of the passivating thiol molecule and the method used to achieve 

passivation, reoxidation of the Ge trends with relative humidity. DFT simulations are 

presented which help elucidate how water molecules interact with the SAM-Ge system 

and potential mechanisms for the reoxidation of the Ge and the loss of the SAM are 

outlined. 

Chapter 5 explores what effect the length of the passivating alkanethiol 

molecule has on the stability of the SAM and the reoxidation of the Ge upon exposure 
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to ambient conditions. Only alkanethiol molecules with an even number of –CH2 units 

in the C backbone are selected for the study to ensure parity-related effects are 

avoided. Thiol chain length is found to be an important factor in the stability of the 

SAM since long-chain thiols inhibit reoxidation of the Ge more effectively than their 

shorter-chain counterparts. With that said, SAMs comprised of short-chain thiol 

molecules, such as 1-butanethiol, still inhibit Ge reoxidation albeit less effectively 

than long-chain thiols such as 1-dodecanethiol. 

Finally, Chapter 6 presents the conclusions made and provides an outlook on 

future prospects. 
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Chapter 1 

Introduction 

1.1 Background & Motivations 

Soon after the invention of the integrated circuit (IC) in 1959 by Jack Kilby, a trend 

known as Moore’s law has been observed. Moore’s law states that the number of 

transistors on an integrated circuit approximately doubles every 18-24 months.[1] The 

continued scaling of the MOSFET according to Moore’s Law has allowed for 

improved chip performance, decreased cost and reduced device switching power. It is 

on the back of this technological progress that the modern, connected world has been 

built. In recent decades, Moore’s Law scaling of transistors has become increasingly 

difficult to maintain as device features scale below 10 nm. Not only are these features 

incredibly difficult to fabricate, but at such small dimensions, physical phenomena, 

such as electron tunnelling through the gate oxide, are hindering device 

performance.[2] In Figure 1, a traditional n-channel MOSFET structure with channel 

length ‘L’ is displayed. N-channel MOSFETs consist of drain and source regions that 

are heavily doped n+ and a p-type substrate. When a positive voltage is applied to the 

gate, the holes in the area under the gate oxide are repelled down into the substrate and 

electrons are attracted from the source and drain into the channel. When a voltage is 

applied between the source and the drain, current flows through the channel. For the 

successful operation of the device, it is essential that the gate oxide (orange) 

electrically isolates the gate from the channel; otherwise, the aforementioned 

tunnelling issues render the device useless. 
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Figure 1. Traditional n-channel MOSFET structure with channel length ‘L’. 

Efforts to reduce the size of transistors is one that is not indefinitely possible – 

physical limitations exist and ultimately, we are restricted by the size of an atom. In 

an effort to maintain Moore’s Law while circumventing the physical limitations that 

exist, devices with novel architectures and materials are being scrutinised. For 

instance, in place of planar structures, FinFET transistors [3] have been introduced 

and currently efforts are well underway to create the next generation of transistors 

using a gate-all-around (GAA) nanowire approach.[4, 5] These ingenious methods of 

manipulating the structure of transistors allow for ‘More Moore’ [6] without 

confronting the aforementioned issues associated with attempting to continue the 

miniaturisation method. The concept of ‘More Moore’ was first introduced in 2005 in 

a whitepaper released by The International Roadmap for Devices and Systems 

(IRDS™) committee. The term refers to the continuation of Moore’s law by 

introducing novel materials and device architectures circumventing the issues 
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associated with the continued miniaturisation of devices. In 2020, the IRDS™ laid out 

a roadmap for the evolution of FET devices from the finFET in 2020 to lateral GAA 

FETs over the next decade to the 3D VLSI FET structures from 2030.  

 

Figure 2. IRDS™ proposed evolution of FET structure. 

One of the main focuses in the progression of FET architecture is to increase 

the amount of surface area of the channel that is in contact with the gate such that the 

control of the flow of charge carriers through the channel be maximised. This desire 

has led to taller fins, tri-gates and GAA architectures. Another motivation is to stack 

devices on top of each other in an effort to increase drive without also increasing the 

footprint of the device. In Figure 2, the predicted evolution of FET architecture from 

FinFETs to stacked lateral GAA FETs is displayed. 

As well as novel architectures, new materials are being explored for next-

generation complementary metal-oxide semiconductor (CMOS) devices also. To date, 

CMOS technology has relied on the properties of SiO2 – its abundance,[7] mechanical 

strength [8] and the nature of the high quality interface between Si and SiO2.[9] 

However, continued device scaling has rendered SiO2 unfit for purpose as the gate 

oxide in MOSFET devices due to the current tunnelling through the dielectric.[10] 

The physical thickness of the gate oxide in transistors at the 65nm node and less is 
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lower than the limit for electron tunnelling (3nm) which results in leakage through the 

gate when the device is in the off-state. This renders the device useless and thus, novel 

materials with higher dielectric constants than that of SiO2 have been utilised to allow 

for devices to be scaled beyond the 65nm node. High-κ dielectrics such as HfO2, ZrO2 

and LaO2 are currently being used in devices to mitigate this issue. These high-κ 

materials offer low equivalent oxide thickness (EOT) due to their high dielectric 

constant (κ) value.  However, the use of high-κ dielectrics as gate oxides in Si devices 

is confronted with some serious issues. For one, scattering at interface charges limits 

the effective mobility of the transistor resulting in a low drive current, which negates 

having the high-κ dielectric in the first place.[11] Also, compared to SiO2, the oxides 

deposited by metal organic chemical vapour deposition (MOCVD) or atomic layer 

deposition (ALD) are of significantly lower quality [12] and during high-κ deposition 

it is difficult to prevent the growth of an interfacial oxide layer between the silicon 

substrate and the high-κ dielectric. This switch to high-κ dielectrics has caused a shift 

in the current technological paradigm whereby the significance of the Si/SiO2 interface 

and thus Si as the primary channel material has been negated. Over the past two 

decades, extensive research into alternative channel materials has been conducted.[13, 

14] In Table 1, important material properties of semiconductors are shown. 

Germanium (Ge) has attracted interest as a channel material due to its high carrier 

mobility. Ge boasts electron (3900 cm2V−1s−1) and hole (1900 cm2V−1s−1) mobilities 

more than 2 and 4 times that of Si, respectively.[14] 
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Material→ 

Property↓ 

Si Ge GaAs InAs InP InSb 

Electron mobility (cm2V-1s-1) 1400 3900 8500 4000

0 

5400 77000 

Hole mobility (cm2V-1s-1) 450 1900 400 500 200 850 

Bandgap (eV) 1.12 0.66 1.42 0.35 1.34 0.17 

Lattice constant (Å) 5.431 5.658 5.653 6.058 5.869 6.749 

Dielectric constant 11.7 16.2 12.9 15.2 12.5 16.8 

 

Table 1. Properties of high mobility semiconductors.[14] 

Although, from inspection of Table 1 it may seem that other semiconductor 

candidates outperform Ge. For instance, InSb has an electron mobility 55 times greater 

than Si. However, the integration of Ge into current very large-scale integration 

(VLSI) lines seems more feasible than other potential channel materials such as the 

III-Vs since Ge can be processed in many of the same ways as Si and so many of the 

processes used in Si chip fabrication are also applicable to Ge. An often stated concern 

in relation to Ge is that its relative abundance is too low to support the semiconductor 

industry. Ge is less abundant than Si, which accounts for 27.7% of the Earth’s crust 

(by weight) and is the second most common element behind only O – the only other 

constituent in the dielectric, SiO2. The annual production of semiconductor Si is 7 

million tonnes and the global reserves of Ge are estimated to be 2-3 thousand tonnes 

[15] so it is implausible to fathom a world where Ge replaces Si entirely. Nowhere in 

this work is it stated that Ge could or should completely replace Si as the cornerstone 



6 | Page 

 

of the semiconductor industry but rather a claim is made that Ge could be used in 

tandem with Si assisting us to maintain Moore’s law to continue to meet the 

technological demands of modernity. Materials such as Ge-on-insulator (GeOI) 

provide opportunity whereby wafer-scale Ge can be processed without needing an 

entire Ge wafer – instead, a thin Ge film on the abundant SiO2 is sufficient. High 

quality Ge films can also be grown epitaxially on Si to produce devices that are 

particularly useful in the field of optoelectronics.[16] Epitaxy refers to a type of crystal 

growth or material deposition whereby crystalline material is grown in one or more 

well-defined orientations with respect to the crystalline substrate the growth process 

is occurring on. In the case of epi-Ge, Ge is grown on Si. By introducing tensile strain 

when growing the films, the band gap shrinks enhancing the optoelectronic properties 

of Ge. Progress is constantly being made in the production of high-quality epi-Ge with 

fewer defects.[17] Using materials such GeOI and epi-Ge offer significant advantages 

over the use of bulk Ge such as reduced cost, increased mechanical strength and 

increased compatibility with existing Si processing equipment. 

1.2 Structure of Ge 

Ge, being the 32nd element on the periodic table, is in the same group as C and Si and 

thus exhibits many of the same properties as its Group IVA counterparts. For one, it 

has 4 valence electrons and so each Ge atom is fully saturated when it has 4 bonds. 

Thus, as is the case with Si and C (diamond), Ge is a covalent solid which crystallises 

into a cubic lattice structure with a lattice constant of 5.658 Å (Figure 3(a)).[18] If the 

Ge lattice is cut along a (100), (010), or (001) plane the surface atoms are left with two 

broken or dangling bonds. When prepared under vacuum, the crystallographic faces 
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of Ge that are thought to be the most industry useful (the (100) and (111) faces) 

reconstruct such that the surface geometry differs greatly from that of bulk 

material.[19] These reconstructions occur to minimise the energy of the surface. It is 

important to remember that the surface of any crystalline material can be thought of 

as a ‘macro-defect’ since the repeating crystallographic pattern is abruptly disrupted 

by the lack of more material and an interface with space or other materials is present 

instead. As a result of this, the properties at the surface differ greatly to the properties 

of the bulk. In an effort to reduce the number of dangling bonds at the surface from 

two to one, the Ge(100) surface reconstructs to form Ge dimers. In Figure 3 (b) and 

(c) asymmetric b(2x1) and c(4x2) reconstructed Ge(100) surfaces are shown and have 

been observed by scanning-tunnelling microscopy.[20] These dimers are often 

considered to be akin to a double bond containing both a σ and π bond. For Ge, the π 

bond is considerably weaker than that of a C=C bond found in alkenes and is buckled 

away from a symmetric configuration. 

 

Figure 3. (a) Ball and Stick model of the Ge lattice structure. Ball and stick model of 

reconstructed Ge(100) with an asymmetric (b) b(2x1) and (c) c(4x2) 

reconstruction.[18] 



8 | Page 

 

1.3  Electronic Properties of Ge 

Like pure Si, pure Ge is an intrinsic semiconductor with an indirect bandgap meaning 

the minimum energy of the conduction band has a different momentum to the 

maximum energy of the valence band and thus direct photon emission does not occur 

spontaneously. In semiconductors, the bandgap is small enough to allow electron 

transfer from the valence band to the conduction band upon excitation – perhaps from 

the sun in the case of photovoltaic cells (Figure 4). The excitation of the electron into 

the conduction band leaves a hole where the electron once was. An electron from an 

adjacent atom can fill that hole creating a chain-reaction of moving holes and electrons 

- an electric current. 

Figure 4. Band diagrams for metals, semiconductors and insulators showing 

difference in bandgap for each material type. 

 Doping is the intentional introduction of impurities into an intrinsic 

semiconductor with the purpose of augmenting the electrical, optical and/or structural 
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properties of the material. Once doped, the semiconductor is referred to as an extrinsic 

semiconductor. Doping semiconductors with impurity atoms can drastically increase 

the conductivity of the material. Ge can be doped negatively (introducing electrons) 

or positively (introducing holes) by incorporating impurity atoms in the Ge crystal 

structure. To achieve p-type Ge, the Ge crystal is doped with a trivalent element such 

as Ga, which increases the number of holes in the system. Doping in this way shifts 

the Fermi level of the material closer to the valence band. To achieve n-type Ge, the 

Ge crystal is doped with a pentavalent element such as P or Sb. Doping in this manor 

shifts the Fermi level of the material closer to the conduction band by introducing 

more electrons to the system. For Ge to be more widely incorporated into modern 

devices, some electronic issues must first be overcome. One of the issues relates to 

contacting n-type Ge with metals. A Schottky barrier forms when a metal and a 

semiconductor contact each other. Optimisation of Si transistors has made this barrier 

as thin as possible such that charge carriers can tunnel across it. Ge poses some 

interesting dilemmas when it comes to thinning the Schottky barrier since holes readily 

move from the metal into the Ge; however, the same is not true for electrons. The 

practical implication of this is that n-type Ge devices such as nFETs experience high 

electron resistance and heat loss. In an attempt to mitigate this issue, it has been 

proposed the future MOSFET devices that incorporate Ge as the channel material 

should be comprised of nFETs from III-V compounds and pFETs from Ge.[21] 

1.4 Germanium’s Native Oxide 

There are some challenges facing Ge that need to be overcome before there is 

widespread use of Ge in integrated circuits. First and foremost, it has largely been due 
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to the nature of the Ge oxide that has hindered the practical use of Ge to date. 

Dielectrics play an essential role in CMOS devices and although high-κ dielectrics 

have replaced SiO2 as the gate dielectric, SiO2 still serves a multitude of purposes in 

modern IC devices. For example, SiO2 is used to isolate one device from another, as a 

passivation layer to protect the junction from moisture and other atmospheric 

contaminants and to provide electrical isolation for the multilevel metallisation used 

in VLSI. Like Si-based devices, Ge-based devices would benefit from a stable native 

oxide. However, Ge’s native oxide is less than ideal. In 1986, Schmeisser et al. used 

high resolution Ge 3d XPS spectra to resolve the surface oxidation states of Ge(100) 

and Ge(111). It was found that Ge’s oxide is a complex system consisting of Ge in a 

range of oxidation states (+1, +2, +3 and +4).[22] The stability of the GeO (Ge+2) was 

highlighted when Prabhakaran et al. carried out oxidation of both the Ge(100) and 

Ge(111) surfaces by dipping in a mixture of H2O2 and H2O or HNO2 and found that 

mainly GeO was produced. They also found that in situ oxidation of both surfaces 

produced mainly GeO.[23] Exposure of the Ge surfaces to air instigated the growth of 

the native oxide where Ge exists in a +4 oxidation state. This native oxide (GeO2) has 

some undesirable properties from a device fabrication perspective. For example, it is 

water-soluble which is problematic since current processing techniques involve 

aqueous processing steps which pose no problem for SiO2 but would cause oxide 

etching for GeO2. Also, thermal oxide growth (an important step in the Si transistor 

fabrication process) is not readily achieved for Ge – oxidation of Si followed by a 

high-temperature anneal results in SiO2 formation from suboxides whereas oxidation 

of Ge by O2 results in the growth of Ge 1+, 2+ and 3+ oxidation states but little of the 

4+ state found in GeO2.[24]  
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In an attempt to mitigate the issues related to Ge’s unreliable native oxide, with 

the knowledge that high-κ dielectrics will most likely be used as the gate oxide in 

modern MOSFETs and that SiO2 will continue to serve as the bedrock for devices, 

efforts to remove the native Ge oxide and replace it with a more stable passivation 

layer have been made by many. 

1.5 Reactivity of the Ge Surface 

The literature on the passivation of Ge contains both vapour- and liquid-phase methods 

- each method confronted with specific challenges. For example, vapour-phase 

methods often require high vacuum and noxious, highly reactive precursors depending 

on the type of passivation that is required. While the liquid-phase passivation reactions 

often require long reaction times. There are some passivating molecules can be 

delivered through either liquid or vapour, depending on the specific desired outcome. 

A review of the literature of both vapour- and liquid-phase passivation of Ge is 

presented. 

1.5.1 Vapour-Phase Passivation of Ge 

The vapour-phase passivation of Ge and other materials is desirable for a number of 

reasons. As mentioned, devices with novel architectures such as GAA strained Ge 

pMOS devices created by Witters et al. consist of arrays of densely-packed 

nanostructures (9 nm diameter Ge NWs – Figure 5) which could be damaged by wet-

chemical processing due to capillary forces and surface tension.[25] 
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Figure 5. Top-view SEM images of free-hanging Ge NWs.[25] 

Also, Tao et al. stated that contamination by insoluble residues and metallic 

impurities during wet-chemical processing was a motivating factor for their work on 

exclusively gas-phase passivation of Si surfaces for NEMS (Nano Electro-Mechanical 

Systems) and MEMS (Micro Electro-Mechanical Systems) devices.[26] The vapour-

phase passivation of Ge has been conducted using a diverse range of chemicals 

including halides [27-33], sulfides [34-37], nitrides [38, 39], oxynitrides [40-43], 

organics [44-51], graphene [52-59], and Si.[60-64] Herein, these methods will be 

discussed and recent methods to passivate Ge using vaporised reagents will be focused 

on. First, it is important to define a vaporised reagent. Vaporisation of a reagent is 

dependent on temperature and pressure and so, vapour-phase reactions with Ge at 

ambient temperatures and pressures are discussed along with those reactions that occur 

under ultra-high vacuum (UHV). UHV may be necessary for a number of reasons. In 

an attempt to minimise the number of variables, many reactions are carried out under 

UHV conditions. The UHV system offers an environment where the intended 

chemistry can be deployed with less concern for contamination from the environment. 

In addition, low pressures and high temperatures encourage vaporisation of many 
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materials and thus allow vapour-phase chemistry to be carried out with materials that 

would otherwise be liquid or solid at room temperature and pressure. 

1.5.1.1  Halide Passivation 

Treatment of Ge with acid halides has been shown to be effective at removing the 

native oxide leaving a halide or H-terminated Ge surface depending on the reagent 

used. HF vapour etching is a common process in the preparation of Si MEMS and 

NEMS devices since it can be used to under etch Si, removing the underlying SiO2, to 

make freestanding Si nanostructures from silicon-on-insulator (SOI). The literature on 

the use of HF vapour etching to remove GeO2 and H-passivate Ge is sparse however 

the use of halide acids such as HCl, HBr and HI has been documented in the literature. 

Cullen et al. showed in 1962 that reacting the hydrated germanium oxide with heated 

HCl gas at 144-147°C, resulted in H2O and GeCl4, which are volatile at that 

temperature. Then, when exposed to a mixture of Cl2 and HCl gas at 87-90°C, a Cl-

terminated Ge surface which is reactive toward Grignard-type chemistry was 

formed.[27] Since then, vaporised halide-atom-containing molecules (X2, HX where 

X = F, Br, Cl, I) have been used to remove native oxide on Ge and to passivate it with 

the halide atom or with H as in the case of HF. The structure of halide terminated Ge 

has been discussed by Citrin et al. They used surface extended x-ray absorption fine-

structure measurements to show that Cl on annealed Ge (111)-(2x8), is the onefold-

atop site which was contrary to previous photoemission studies of the system.[29] In 

the same year, Bachelet and Schluter at Bell Labs confirmed these results using total-

energy minimisation.[28] For the most part, halide passivation of Ge has been 

achieved using vaporised HCl or Cl2 gas. However, Fouchier et al. showed that native 

oxide removal and subsequent Ge halide passivation could be achieved using Br as 
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the halide atom.[30] Passivation of Ge by Br was achieved using an electrochemical 

AgBr cell that produced molecular Br under UHV. The Ge(111) surface was prepared 

by ion sputtering at 900K followed by an annealing step. Gothelid et al. reacted 

Ge(111) surfaces with I under UHV conditions and found that two Ge-I species are 

created (GeI and GeI2) which are chemically stable when exposed to O2.[31] Halide 

passivation is often used as an intermediary step towards passivation with other 

molecules as it effectively removes the oxide and provides surfaces that are robust 

enough to withstand exposure to the ambient for some time while also being reactive 

toward to organic molecules such as Grignard-reagents and alkanethiols. 

1.5.1.2  Sulfur Passivation 

Sulfur, being bivalent, has the potential to passivate the Ge(100)-2x1 surface since 

each Ge atom has two dangling bonds. By disassociating S from AgS2 under UHV 

conditions, Weser et al.  successfully passivated Ge(100) and found the S to be 

positioned in a bridge-like position whereby the bulk Ge structure was maintained and 

a 1 x 1 surface structure was observed.[34] Roche et al. used core-level photoemission 

spectroscopy to show that for the same system, a non-ideal surface is formed which 

consists of Ge in four oxidation states and that annealing at 200°C promotes the S-Ge 

phase which desorbs by annealing at higher temperatures resulting in etching of the 

surface.[37] These works relied on S passivation of Ge using atomic S under UHV 

conditions. Much of the work carried out in relation to vapour-phase passivation of 

Ge by S relies on the use of the H2S. Cohen et al. first cleaned the Ge(100) surface by 

carrying out a series of annealing and sputtering steps and then passivated by exposing 

the oxide-free Ge(100) to H2S under UHV conditions. They described the adsorption 

of H2S on Ge(100) using temperature-programmed desorption and found that adsorbed 
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H2S decomposes upon heating into H2 and GeS, which desorb at 570 and 660 K, 

respectively.[35] Nelen et al. expanded on this and found that higher Ge surface 

temperatures, result in higher total surface coverage due to hydrogen desorption from 

the Ge surface which creates additional surface sites for H2S decomposition.[36] 

1.5.1.3  Nitride & Oxynitride Passivation 

Passivation of Ge surfaces using nitrides and oxynitrides has been explored in an 

attempt to fabricate insulating films on Ge of sufficient interfacial quality for MOS 

and junction passivation applications. In the late 1980’s, Hymes et al. used a vapour-

phase approach where they found that an oxidation step followed by exposure to 

ammonia (NH3) at 600°C for long periods resulted in the formation of a stable, 

stoichiometric oxynitride, Ge2N2O.[40] Paine et al. followed this work by evaluating 

the quality of the germanium-oxynitride interface using TEM. They found that the 

layers grown using the vapour-phase method outlined by Hymes et al. were uniform 

in thickness and are interfacially smooth.[41] Since these original vapour-phase 

experiments using NH3 for passivation of Ge, other N-containing molecules such as 

N3H and N2H4 [38] have been studied also. Tindal et al. found that HN3 reacts with 

Ge(100) at relatively low temperatures to form Ge3N4 by adsorbing molecularly at 

temperatures below 300 K and above which, it decomposes, causing N2 to desorb 

leaving N-H groups on the surface. At 575 K, the final hydrogen was found to desorb 

yielding a nitrided Ge surface.[38] Kim et al. have studied how the HfO2 (high-κ 

dielectrics) form on nitrided Ge(100). They used a vapour-phase passivation approach 

using NH3 at 600°C and found that they had achieved effective passivation of surface 

defects and that the presence of a thin GeOxNy layer between the high-κ dielectric and 

Ge(100) substrate behaved as a diffusion barrier for metal species from the dielectric 
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into the Ge.[42] The deposition of high-κ dielectrics on nitrided Ge surfaces has been 

further studied by Dimoulas et al. In their work, Hf was evaporated using e-beam 

under atomic O generated by an RF plasma source to create HfO2 layers on a thin film 

of GeOxNy on Ge. The initial vapour-phase passivation of the Ge surface by the 

oxynitride was deemed necessary in order to obtain MOS capacitors of acceptable 

electrical quality, since direct deposition of HfO2 on Ge resulted in leaky or no MOS 

behaviour.[43] These results showed that improved MOS behaviour could be achieved 

when the native germanium oxide was removed and an interfacial layer was used to 

separate the high-κ dielectric and the underlying Ge. 

1.5.1.4  Silicon Passivation of Ge 

In an attempt to improve on the MOS capacitors created using an interfacial nitride 

film, Wu et al. passivated Ge using SiH4 gas to create an interfacial Si layer between 

the HfO2 and the Ge.[60] They found that their MOSFET exhibited less frequency 

dispersion, a narrower gate leakage current distribution, and higher peak mobility than 

the devices with surface nitridation. Their method for Si passivation involved exposing 

H-terminated Ge to SiH4 at ambient pressure at 400°C. Following the Si passivation, 

the HfO2 gate dielectric was deposited in an O2 and N2 environment at 400°C using 

hafnium tert-butoxide as the precursor. Mitard et al. expanded on this and used both 

SiH4 and Si3H8 to grow epi-Si on Ge and illustrated that reduced Si growth temperature 

resulted in the introduction of negatively charged defects possibly located at the 

Si/SiO2 interface.[61] Creating other Si-based layers between Ge and high-κ 

dielectrics has been explored also. Chen et al. deposited an ultrathin (0.8nm) SiO2 film 

on a thin Ge film by physical vapour deposition (PVD) and followed that with a Tix 

La1-xO layer (x ∼ 0.67).[62] The vapour-phase passivation of Ge by SiO2 was an 
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essential step in creating a MOSFET that worked well since had the Ge not been 

capped, the Ge would have been oxidised by water and air during the cleaning process 

and the GeO2 layer that formed would have been dissolvable in water causing the loss 

of the thin Ge layer. 

1.5.1.5  Passivation of Ge by Organic Molecules 

Vapour-phase passivation of Ge using organic molecules has been a topic of interest 

since the first retro-Diels-Alder reactions between conjugated butadienes and the 

Ge(100)-2×1 surface carried out by Teplyakov et al. in 1998.[44] In their study, they 

found that Diels-Alder chemistry occurs on Ge(100)-2×1 at room temperature as 

readily as on Si(100)-2×1, which has been shown previously.[65, 66] The Diels-Alder 

reaction on Ge were carried out in a UHV chamber whereby the Ge was sputtered 

clean and dienes were introduced to the chamber and found to chemisorb to the Ge 

surface in accordance with the computational predictions for Si made by Konecny.[65] 

Lal et al. expanded on this by carrying out vapour-phase passivation of Ge(100) using 

ethylene gas. They showed that ethylene chemisorbs molecularly on the Ge(100)-

(2x1) surface at room temperature. In their study, C2H4 and C2D4 were deposited onto 

the Ge(100) substrate at 300 K under UHV conditions.[45] Lee et al. furthered this 

line of research by using cyclic unsaturated hydrocarbons (cyclopentene and 

cyclohexene) to passivate Ge surfaces. They found that both hydrocarbons react with 

the surface Ge-dimer bonds to yield reaction products that are consistent with a [2+2] 

cycloaddition reaction.[46] Much like the other works referenced in this section, these 

reactions were carried out under UHV conditions; however, unlike the other works 

that used Ar+ sputtering to clean the Ge surfaces, Lee et al. used an ex-situ Ge 

preparation procedure which involved exposure to ultraviolet generated ozone. 
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Vapour-phase passivation reactions of Ge using organic molecules with novel atoms 

has also been studied. Takenaka et al. have reacted As-containing precursors with Ge 

surfaces at high temperatures using a metal-organic vapour phase epitaxy (MOVPE) 

system to achieve gas-phase doping of Ge.[51, 67]  

1.5.1.6  Graphene Passivation of Ge 

Graphene, considered as a wonder material by many has garnered a lot of attention 

owing to its unique physical properties and truly exceptional electronic properties. It 

is because of these electronic properties (specifically the extraordinary carrier 

mobility) that graphene has long been predicted to play a role in post-Si electronics. 

As such, efforts have been made to grow graphene using chemical vapour deposition 

(CVD) on a range of substrates including Ge. Wang et al. have grown large-area 

graphene directly on Ge obviating the need to transfer graphene grown on a metal foil 

onto Ge. They found that defect-free, large area graphene growth was achieved on Ge 

when H2 and CH4 were flown at a ratio of 50:0.1 sccm into the reaction chamber at 

910°C for 100 minutes and also demonstrated that Ge has an effective catalytic ability 

for direct fabrication of Ge.[52] Kiraly et al. have elaborated on this by exploring the 

electronic and mechanical properties of CVD grown graphene on Ge. They found that 

the crystallographic orientation of the Ge has significant impact on the atomic 

structure and electronic properties of the material interface.[54] One of the focuses of 

this thesis is develop a method to inhibit the oxidation of Ge upon exposure to the 

ambient. Rojas Delgado et al. have experimented with graphene as an oxidation 

inhibitor for oxide-free Ge surfaces and found that CVD-grown graphene effectively 

inhibits the growth of oxide for up to 17 weeks on Ge(100) surfaces.[58] Of all of the 
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methods described in this section for the growth of graphene, this is the only one that 

uses CVD-grown graphene to prevent the oxidation of Ge. 

1.5.2 Liquid-Phase Passivation of Ge 

Methods for the wet-chemical passivation of Ge have been explored also and can 

largely by broken into the 4 methods listed below; however, there are also some novel 

methods for the wet-chemical functionalisation of Ge that have recently been 

demonstrated. For the purposes of monolayer doping of Ge with As atoms, Kennedy 

et al. have demonstrated a method for the wet-chemical functionalisation of Cl-

terminated Ge using arsanilic acid.[68] Aside from these niche methods, the main 

methods are: 

1) Halide passivation 

2) Grignard-chemistry 

3) Hydrogermylation 

4) Alkanethiol passivation 

1) The halide passivation methods described in the vapour-phase passivation 

method section which proceeds this section have been achieved for liquid acid halides 

also.  The wet chemical etching of Ge using acid halides is often used to remove the 

native oxide and replace it with a monolayer of halide atoms in the case of HCl,[69] 

HBr [70] and HI or H in the case of HF.[71] In the current semiconductor fabrication 

process, HF is used to etch SiO2 leaving a H-terminated Si surface that has been shown 

to be a useful reactive precursor for further functionalisation. HF etching of Ge oxides 

has been explored also. The H-terminated Ge surfaces that are created after etching in 

an aqueous solution of HF have been shown to reoxidise rapidly upon exposure to the 
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ambient.[71, 72] The H-terminated Ge surface is used as a reactive precursor to 

additional liquid-phase organic functionalisation. Unlike with Si, HCl can be used to 

etch Ge oxides and yield a Cl-terminated surface which has been shown to be more 

stable than H-terminated Ge surfaces.[73] These Cl-terminated Ge surfaces exhibit 

more ambient stability than H-terminated surfaces while also being useful as reactive 

precursors to additional organic functionalisation. 

2) Passivation using Grignard chemistry was first demonstrated by Cullen et 

al. in 1962 whereby an ethyl-Grignard was reacted with a Cl-terminated Ge surface 

forming Ge-C bonds.[27] Grignard reagents are formed by the reaction of magnesium 

with alkyl or alkenyl halides. They exhibit strong nucleophilic properties, reacting 

with electrophilic species such as the Cl-terminated Ge surface. Originally, it was 

thought that the formation of the Ge-C bonds was in a one-to-one ratio with the Ge 

surface atoms; however, the chlorination procedure implemented in Cullen’s 

experiment has since been shown to cause etching of the Ge surface and as such, the 

Ge-C ratio is not clear.[24] Following on from this, different lengths of alkane chains 

such as  have been attached to the Ge surface using Grignard reagents (ethyl-Grignard, 

octadecyl-Grignard).[74] These Grignard-alkylated Ge surfaces have been shown to 

be stable upon exposure to the ambient for 5 days or boiling water for 30 minutes.[74] 

3) Hydrogermylation reactions whereby an alkene or alkyne is reacted with a 

Ge surface mediated by a Lewis acid, UV light, or heat resulting in a Ge-C bond like 

the Grignard-type passivation. With hydrosilylation (the most extensively studied wet 

chemical functionalisation method for Si) in mind, Choi and Buriak first achieved 

hydrogermylation of a H-terminated Ge(100) surface in the year 2000.[75] This route 

for functionalising the Ge surface is advantageous over the Grignard approach since 
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hydrogermylation reactions typically take between 1 and 12 hours at room temperature 

whereas Grignard-type reactions can take between 6 hours and 7 days at elevated 

temperatures. 

4) Alkanethiol passivation reactions involve reacting thiol molecules with a 

halide- or H-terminated Ge surface resulting in the formation of Ge-S bonds. Much 

like the heavily-studied Au surface, alkanethiol molecules with long-chain C 

backbones form self-assembled monolayers (SAMs) on Ge. Since the primary focus 

of this body of work is to passivate Ge(100) using SAMs of 1-alkanethiol molecules, 

a more detailed insight into this Ge passivation method is presented in Section 1.6. 

1.6 Alkanethiol Self-Assembled Monolayers 

The concept of self-assembly is the formation of a system without the guidance of 

external forces but rather as a consequence of specific, local interactions among the 

components themselves.[76] Self-assembled monolayers are an example of the 

phenomenon that take place at gas-liquid, gas-solid and liquid-solid interfaces.[77] A 

self-assembled monolayer on a solid surface is typically formed when a single layer 

of molecules bond to the surface in a self-limiting fashion to yield a surface that is 

saturated and chemically stable. The stability of a monolayer is largely dictated by: (1) 

the strength of the bond that is formed between the atoms on the surface of the material 

and the reactive site in the molecule and (2) the intermolecular van der Waals (vdW) 

forces that exist between adjacent molecules in the SAM. Van der Waals forces are 

weak, distance-dependant forces that exist between molecules or atoms. These forces 

do not result in chemical bonds and are easily disturbed - in a SAM, each molecule in 

the monolayer stabilises adjacent SAM molecules, which increase the global stability 



22 | Page 

 

of the SAM. Among SAMs, the most popular are those of thiols or dithiols, which 

have been shown to form on a range of oxide-free metals and semiconductors.[77-82] 

 

Figure 6. Schematic of thiol molecules assembled on substrate surface elucidating the 

3 constituent parts of the molecule. 

Alkanethiol molecules consist of a reactive S-H head group, a carbon backbone 

and a functional group at the tail of the molecule (Figure 6). The properties of the 

functional group at the tail of the molecule influence the characteristics of the surface. 

For example, the hydrophobicity of the surface can be engineered by creating a SAM 

whose constituent molecules have a non-polar functional group (such as CH3) at the 

tail. The non-polar tail of the long thiol molecules used to create SAMs on gold cause 

the hydrophobicity of the surface to increase dramatically when compared to the 

surfaces prior to SAM formation.[83] The length of the carbon backbone also affects 

the properties of the functionalised surface. Studies on gold have shown that long-

chain thiol molecules form ordered, stable assembles and that as the C backbone 

decreases in length, the SAM becomes increasingly disordered with lower packing 

density and coverage.[84] 
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Figure 7 illustrates a simple 4 step mechanism by which a thiol SAM is formed 

on Au from the vapour, according to Vericat et al.[82] It is a process that begins with 

(i) the physisorption of thiol molecules onto the Au surface - no covalent bonds are 

formed at this stage. The second phase of the process (ii) involves the chemisorption 

(bonding) of the reactive S head of the thiol molecule with the Au surface. The 

chemisorbed thiol molecules lie down on the Au surface. (iii) Further physisorption 

and bonding of the thiol molecules to the surface occurs such that the concentration of 

bonded molecules at the Au surface reaches a level whereby adjacent molecules being 

to stand up and align due to the weak van der Waals forces that occur between the C 

backbones. The final step of the process (iv) involves the saturation of the available 

surface sites and the forming an ordered array of thiol molecules on the Au surface. 

 

Figure 7. The 4 stages of alkanethiol SAM formation on Au(111): (i) physisorption, 

(ii) lying-down phase formation, (iii) nucleation of the standing-up phase, (iv) 

completion of the standing up phase.[82] 
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The relative ease at which this process can be conducted has made the process 

of interest to those who wish to engineer the properties of surfaces or interfaces. SAMs 

are used for many applications including ultrathin layers for corrosion prevention [85], 

friction reduction [79, 86], and as anti-stiction coatings in MEMs fabrication.[87] 

SAMs lend themselves especially useful for the functionalisation of nanostructures 

(nanoparticles, nanorods and nanowires) that are otherwise difficult to functionalise. 

Yuan et al. have functionalised Ge nanowires using a SAM of 1-dodecanethiol 

molecules for lithium-ion battery applications and found that the passivated wires 

outperformed non-passivated wires electrochemically. They hypothesised that the 

organic SAM helped maintain the structural integrity of the nanowire during the 

lithiation/delithiation process.[88] Collins et al. have also functionalised Ge nanowires 

for the purposes of oxidation prevention. They found that the SAM formed from 1-

dodecanethiol molecules on the Ge nanowire offered greater oxidation resistance than 

Ge nanowires functionalised using Grignard chemistry.[89] 
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Chapter 2 

Characterisation Methods 

 

2.1 X-Ray Photoelectron Spectroscopy 

X-Ray photoelectron spectroscopy (XPS) is the main method of characterisation used 

in this study. The origins of XPS can be traced back to H. Hertz’ investigations of the 

photoelectric effect, when he observed that a spark was produced when a negatively 

charged electrode was exposed to ultraviolet radiation.[1] However, it was A. Einstein 

in 1905 who formulated the photoelectric effect in terms of photons motivated by M. 

Planck’s work on black body radiation.[2] In the decades following Einstein’s paper, 

efforts were made to develop a spectroscopic technique that leveraged the 

photoelectric effect. Ultimately, X-ray photoelectron spectroscopy, a spectroscopic 

technique that can be described using the equation below, was develop.[3] 

𝐸𝐾 = ℎ𝜈 −  (𝐸𝐵 +  𝛷) 

where EK is the kinetic energy of the photoelectrons, hν the incident photon energy, 

EB the electron binding energy, and Φ is the work function of the sample and the 

analyser. Conceptually, the principle behind XPS is relatively simple; a photon of 

energy hν penetrates the sample surface and is absorbed by an electron with a binding 

energy EB below the vacuum level. This causes a photoemission process whereby the 

electron is emitted from the surface with kinetic energy EK. Emitted electrons are 

detected and represented graphically whereby EK (or more commonly EB using the 

formula above) is plotted vs intensity (Figure 1). Since the energy of the 
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photoelectrons is quantised, the spectrum consists of a series of discrete peaks that 

reflect the ‘shell’ form of the electronic structure of the atoms at the surface of the 

sample. Ascertaining the binding energies of electrons emitted from the sample 

surface allows qualitative elemental analysis to be carried out. This seemingly simple 

process is complicated by the fact that photoelectrons may lose energy to collisions 

with atoms in the material itself or during detection in the spectrometer. This kind of 

energy loss is known as inelastic loss and is responsible for the ‘steps’ to low kinetic 

energy (high binding energy) that are observed in survey spectra. 

 

Figure 1. Survey spectrum of as-received Ge(100) highlighting the significant Ge, O 

and C peaks. 
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 In Figure 1 the survey spectrum for as as-received Ge(100) surface is 

displayed and the Ge, O and C peaks of interest are highlighted. The figure inset 

depicts a schematic of the Ge sample being characterised. As-received Ge is Ge that 

has undergone no processing other than cleaning by sonication in acetone followed by 

IPA and drying under a stream of N2. Although the Ge surface has been cleaned, a thin 

layer of carbonaceous material (green) is present on the surface. This contamination 

is unavoidable when processing samples in air since adventitious carbon from the 

atmosphere deposits on all surfaces. In the survey spectrum, a C 1s peak is evident at 

248.8 eV. Since adventitious carbon is always present, and it is known that C 1s 

electrons from a carbon atom bonded to another carbon atom have binding energies of 

248.8 eV, this peak can be used to calibrate XPS spectra. 

The X-ray induced photoemission process causes the sample surface to 

become positively charged. Ideally, the sample must be able to dissipate any positive 

charge that builds up during irriadation. Surface charging can affect the kinetic 

energies (and thus the calculated binding energies) of electrons that are emitted from 

the surface since the electrons are attracted to the positively charged surface during 

the emission process. Modern XPS tools utilise electron guns and electrically 

grounded sample stubs to ensure surface charging does not hamper data interpretation. 

That said, slight shifts in peak position can and do occur and thus a calibration method 

is necessary. C 1s calibration is used throughout this study whereby the C 1s peak is 

fitted and set to 248.8 eV, the known binding energy for the peak. The same peak 

correction is applied to the survey spectrum and the core-level spectra also. 

 In Figure 1, there are two highlighted Ge features (red). At high binding 

energy, the Ge 2p peaks are found whereas the Ge 3d peaks are found at the lower end 
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of the binding energy scale. In both cases, a phenomenon known as spin-orbit coupling 

results in the presence of doublet peaks. This phenomenon is observed for all non s-

level core levels (p, d & f) and occurs due to spin-orbit coupling between the electron 

spin and the angular momentum vector of the orbital from which the electron came. 

The difference in energy of the doublets arises from the parallel an anti-parallel nature 

of the spin and orbital angular momentum of the electron. The relative intensities of 

the doublet peaks are given by the ratio of their respective degeneracies (2j + 1) and 

thus the area ratios of the doublets is known (Table 1). 

Sub-shell j value Area Ratio 

s 1/2 - 

p 1/2 , 3/2 1:2 

d 3/2 , 5/2 2:3 

f 5/2 , 7/2 3:4 

 

Table 1. Spin-orbit coupling parameters 

In this body of work, the Ge 2p3/2 peaks are used to study the Ge surface. The 

Ge 2p1/2 feature contains the same information at higher binding energy. The Ge 3d 

peaks are present at the lower end of the binding energy scale since the 3d electrons 

have high EK upon photoemission. The Ge 2p peaks are more surface sensitive than 

3d peaks. To understand why, one must first understand the inelastic mean-free path 
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(IMFP) of electrons. The IMFP is the average distance between collisions in which a 

photoelectron loses energy. If a photoelectron loses kinetic energy due to a collision, 

it will contribute to the spectrum background rather than to the characteristic ‘no-loss’ 

peak. The IMFP value for Ge 3d electrons is greater than that of Ge 2p electrons. Ge 

3d electrons can therefore travel further through a film before losing energy to 

collisions and thus originate from deeper in the sample. Since the focus of this work 

is to probe organic SAMs on Ge and to measure oxide growth on a sub-2 nm scale, 

the surface sensitivity of the Ge 2p peaks makes them more useful for surface 

characterisation. 

X-rays from an Al source (hν = 1486.6 eV) were used throughout this body of 

work. A range of other anode materials are available for XPS however the most 

commonly used among them are Mg X-ray sources (hν = 1253.6). Using a different 

X-ray source results in different X-ray energies and line widths in the acquired spectra. 

Throughout, acquired XPS data is used to calculate oxide film thicknesses and 

in Chapter 3, XPS data is used to calculate the thickness of a 1-hexanethiol SAM on 

Ge. Oxide thicknesses were calculated using the method outlined previously by 

Murakami et al.[4] 

 

𝑑𝐺𝑒𝑂2
= 𝜆𝐺𝑒𝑂2

𝑠𝑖𝑛𝜃 𝑙𝑛 (
𝐼𝐺𝑒

∞

𝐼𝐺𝑒𝑂2

∞

𝐼𝐺𝑒𝑂2

𝐼𝐺𝑒
+ 1) 

 

where 𝜆𝐺𝑒𝑂2
 is the inelastic mean free path for the Ge 2p transition, which is 0.9 nm; 

the photoemission angle θ is 90°; 𝐼𝐺𝑒
∞ /𝐼𝐺𝑒𝑂2

∞  is the ratio of the Ge 2p signal from 
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infinitely thick Ge to infinitely thick GeO2 and is 1.73; 𝐼𝐺𝑒𝑂2
 is the intensity of the of 

native oxide (GeO2) peak from curve fitting the Ge 2p feature; 𝐼𝐺𝑒  is the intensity of 

the metallic Ge peak from curve fitting the Ge 2p peak. One might expect for the 

minimum non-zero oxide thickness to be ~ 2.8 Å since that is the GeO2 unit cell 

length[2]; however, the calculated oxide thickness are representative of the average 

oxide thickness across the sample. Since islands of oxide are likely, reported oxide 

thicknesses may be less than the length of the GeO2 unit cell.   

Calculation of the thickness of the SAM overlayer was performed following the 

methodology originally defined by Cumpson et al. [5] 

 

𝑙𝑛 (
𝐼𝑜𝑆𝑜

𝐼𝑠𝑆𝑠
) −  (

𝜆𝑜

𝜆𝑠
) 

1

𝜆𝑜 𝑐𝑜𝑠 𝜃  
−𝑙𝑛 2 =𝑙𝑛 𝑠𝑖𝑛 ℎ (

𝑡

2𝜆𝑜 𝑐𝑜𝑠 𝜃  
)   

 

where Io and Is represent the respective measured peak intensities of the overlayer (HT-

SAM) and the substrate peaks. So and Ss refer to the relative sensitivity factors for the 

overlayer and the substrate, respectively. λo and λs  are the attenuation lengths of 

electrons in the overlayer and the substrate. θ is the emission angle with respect to the 

surface normal. The peak intensity of the overlayer peak, Io, and the peak intensity of 

the substrate peak, Is, were determined using CasaXPS software after a transmission 

correction. The relative sensitivity factors for the substrate peak Ss and the overlayer 

peak So were also obtained from the CasaXPS library. The practical electron 

attenuation length (EAL) in the overlayer, lo, was estimated, using the NIST Electron 

Effective Attenuation Length (EAL) database, to be 2.58 ± 0.2 nm for the Ge 3d 

component. 
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2.2 Water Contact Analysis 

Water contact analysis (WCA) is a powerful and relatively simple characterisation 

technique used to probe the wetting properties of thin films. The method uses the polar 

nature of water molecules to give insight into the kind of surface termination that is 

present on the sample being probed. Water molecules, having a dipole, will interact 

more favourably with surfaces where a dipole exists and thus will wet this kind of 

surface more than a surface without a separation of charge. For example, the non-polar 

head and carbon backbone of a thiol molecule repels water and so the wettability of a 

Ge surface passivated by thiol molecules is less than that of an as-received Ge surface 

– terminated by native oxide and thus electronegative O atoms. WCA is used 

throughout this thesis as a method of determining the hydrophobicity of surfaces that 

are terminated differently and when used in tandem with XPS, much about the surface 

of the Ge can be discerned. 

2.3 Atomic Force Microscopy 

Atomic force microscopy (AFM) is a high-resolution type of scanning probe 

microscopy (SPM) that is used by surface scientists to measure the surface topology 

of materials. AFM is utilised throughout this body of work to track any change in the 

roughness of Ge(100) surfaces. What may seem like a non-significant increase of 

roughness on planar Ge may translate to considerable roughness when transposed to 

Ge nanostructures. Roughness will be a critical factor in future devices that utilise 

GAA nanosheet or nanowire architectures since these structures have high surface to 

bulk ratios. As such, an effort to track and minimise Ge surface roughness is 

undertaken in this body of work. Unlike WCA and XPS, AFM (as it is used here) does 
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not give insight into Ge surface termination – simply an insight into surface roughness 

is ascertained. 

 An AFM consists of a cantilever with a sharp tip that is scanned across the 

sample surface at a desired scanning frequency. There are three AFM operating 

modes: 

1. Contact mode: where the tip scans the sample in close contact with the surface 

and the cantilever traces the surface topology. 

2. Non-contact mode: where the tip is hovered 10-150 Å above the sample 

surface. Weak, attractive van der Waals forces between the cantilever tip and 

the surface are detected and topographic images are constricted by scanning 

the tip above the sample surface. 

3. Tapping mode: where the cantilever vertically oscillates at or near the resonant 

frequency of the cantilever such that it ‘taps’ the sample surface. When the 

cantilever is in contact with the surface, the oscillation is reduced due to energy 

loss caused by contacting the surface. The dampening of the oscillation 

amplitude is used to measure and identify surface features. 

Tapping mode AFM is utilised throughout this study to measure Ge surface 

roughness. The value used to give insight into the roughness of a surface is known as 

the root-mean square (RMS) value. RMS is the root mean square average of the profile 

height deviations from the mean line. As-received Ge surfaces have a RMS value 

between 0.2 and 0.3 nm depending on the supplier. 
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 2.4 First Principles Density Functional Theory 

Simulations 

DFT is a computational quantum mechanical modelling method used across the 

sciences to investigate the electronic or nuclear structure of systems comprised of 

many bodies such as atoms or molecules.[6] First principle density functional theory 

simulations as implemented in the Vienna Ab Initio Software Package (VASP) [7, 8] 

are used to model thiol-passivated Ge(100) surfaces and specifically to model the 

effect humidity has on the stability of the SAM and the reoxidation of the passivated 

Ge surfaces in Chapter 4 and the effect thiol chain length has on SAM stability in 

Chapter 5. 

The simulations were performed by Dr. Barbara MacCioni and Dr. Michael 

Nolan in the Tyndall National Institute, Cork, Ireland. Since modelling of thiol SAMs 

on Ge was undertaken, the following valance electron configurations were used; for 

germanium; Ge 4s2 and 4p2, for chlorine; Cl 3s2 and 3p5, for sulfur; S 3s2 and 3p4, for 

carbon; C 2s2 and 2p4, for oxygen O 2s2 and 2p4, and for hydrogen; H 1s1. For the 

calculations, a plane wave basis set in a 3-dimentional periodic slab model of the Ge 

substrate with DFT-optimised lattice constants are used. Further information about the 

specific modelling methods are available in Chapters 4 & 5 where DFT modelling is 

used. 
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Chapter 3 

Vapour-Phase Passivation of Chlorine-

Terminated Ge(100) using Self-Assembled 

Monolayers of Hexanethiol 

 

 

This chapter is adapted from the following ACS Applied Materials & Interfaces 

publication and EMRS presentation. Consequently, certain concepts within this 

chapter may be repeated in other chapters. 

 

Publication: 

S. Garvey, J.D. Holmes, Y.S. Kim, and B. Long, Vapour-Phase Passivation of 

Chlorine-Terminated Ge(100) using Self-Assembled Monolayers of Hexanethiol. ACS 

Applied Materials & Interfaces, 2020. 

Presentation: 

S. Garvey, J.D. Holmes, B. Long, Vapour-Phase Passivation of Germanium using 

Aliphatic Thiols for Integration into Silicon-Based Systems, 2019 EMRS Spring 

Meeting, Nice, France, 27-31 May, 2019 (Talk). 
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3.1 Abstract 

Continued scaling of electronic devices shows the need to incorporate high mobility 

alternatives to silicon, the cornerstone of the semiconductor industry, into modern 

field effect transistor (FET) devices. Germanium is well poised to serve as the channel 

material in FET devices as it boasts an electron and hole mobility more than twice and 

four times that of Si, respectively. However, its unstable native oxide makes its 

passivation a crucial step towards its potential integration into future FETs. The 

International Roadmap for Devices and Systems (IRDS™) predicts continued 

aggressive scaling not only of the device size but also of the pitch in nanowire arrays. 

The development of a vapour-phase chemical passivation technique will be required 

to prevent the collapse of these structures that can occur due to the surface tension and 

capillary forces that are experienced when tight pitched nanowire arrays are processed 

via liquid-phase chemistry.  Reported here, is a vapour–phase process using 

hexanethiol for the passivation of planar Ge(100) substrates. Results benchmarking it 

against its well-established liquid-phase equivalent are also presented. X-ray 

photoelectron spectroscopy (XPS) was used to monitor the effectiveness of the 

developed vapour-phase protocol where the presence of oxide was monitored at 0 h, 

24 h and 168 h. Water contact angle (WCA) measurements compliment these results 

by demonstrating an increase in hydrophobicity of the passivated substrates. Atomic 

force microscopy (AFM) monitored the surface topology before and after processing 

to ensure the process does not cause roughening of the surface, which is critical to 

demonstrate suitability for nanostructures. It is shown that a 200 minute vapour-phase 

passivation procedure generates stable, passivated surfaces with less roughness than 

the liquid-phase counterpart. 
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3.2 Introduction 

Silicon (Si) is an essential part of modern technology since it forms the basis of the 

integrated circuits that are found in electronic devices. It also plays a critical role in 

infrared sensors [1], solar panels [2] and chemical sensors [3] and has been the 

semiconductor of choice for more than 60 years, owing to its relative abundance, 

mechanical strength and stable native oxide. However, as the need for faster, more 

efficient processors grows, other materials [4-7] and novel architectures [8] are being 

studied with the intention that they be incorporated in devices alongside Si.  

As mentioned, germanium (Ge) is an attractive candidate as a channel material, 

however, the germanium’s native oxide is a complex system with a range of oxidation 

states (+1, +2, +3, +4).[9] The bulk of this oxide, GeO2, is problematic from a device 

perspective since it is unstable and the interface between it and the underlying Ge is 

characterised by defects which lead to charge trapping and poor overall device 

performance.[10] In FET devices, the interface between the dielectric and the 

underlying channel material is critical to the operation of the device. Ultimately, it is 

the nature of the native oxide that has hindered the practical use of Ge to date. GeO2 

can be removed by treating the Ge with a  halide acid (most commonly HF or HCl) 

solution, however, the resulting H-terminated or Cl-terminated Ge surfaces have been 

shown to rapidly reoxidise upon exposure to the ambient.[11-13] It is for this reason 

that the oxide must be removed and replaced with a passivating layer which inhibits 

reoxidation such that a more reliable dielectric can be deposited on the passivated Ge 

surface. 

There have been a number of reports on the passivation of Ge using liquid-

phase chemistry. Cullen et al. first reported the liquid-phase chemical functionalisation 

of a Cl-terminated Ge surface using ethyl Grignard in 1962.[14] Choi and Buriak then 
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demonstrated the hydrogermylation of H-terminated Ge which mirrored the 

hydrosilylation reactions which had been carried out on Si.[15] Hanrath et al. have 

subsequently shown that the hydrogermylation reaction is applicable to H-terminated 

Ge nanowires also.[16] Both the Grignard chemistry and the hydrogermylation 

reaction result in a Ge-C bond. Alkanethiol liquid-phase chemistry has also been 

developed for Ge which results in the formation of a Ge-S bond.[17] The vapour-phase 

passivation of Group IVA semiconductors has also been explored and dates back to 

the early 1960’s whereby Si and Ge were passivated by halides [14, 18-23], a range of 

organics [13, 24-29], nitrides and oxynitrides [30-33]. For example, Degen et al. have 

reported the vapour-phase passivation of Si(100) and Si(111) using short-chain 

alkynes for NEMS and MEMS devices.[34] Kosuri et al. have described the adsorption 

kinetics of 1-decyene on H-terminated Si(100)[35] and Si(111)[36] and also the 

adsorption kinetics of 1-alkanethiols on Ge(111)[37] surfaces. Takenaka et al. have 

reacted Ge surfaces with vaporised tertiarybutylarsine (TBA) which is an arsenic 

source for Ge doping.[38, 39] In this report, a facile approach for the vapour-phase 

passivation of oxide-free, chlorine-terminated Ge(100) using a short-chain alkanethiol 

(1-hexanethiol) at ambient pressure and low temperature (140°C) is demonstrated. 

The International Roadmap for Devices and Systems (IRDS™) predicts that 

the fin/nanowire diameter, channel length and fin/nanowire pitch of these devices will 

all decrease in size from one technology node to another.[40] The greatest predicted 

decrease in size is in the fin/nanowire pitch. Vapour-phase passivation routes offer the 

ability to passivate structures with small dimensions and pitches without causing the 

damage that liquid-phase alternatives can cause. An example of the impact of liquid-

phase chemical processing on the structure of suspended nanostructures can be seen 

in Figure 1, where released Si nanowires have stuck together due to capillary forces, 
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after etching in an aqueous solution of hydrofluoric acid (HF). An example of a novel 

liquid-phase approach that has been shown to be effective at passivating 

nanostructures is to conduct the passivation reactions in a critical-point drier as 

demonstrated by Tao et al. for the alkylation and amination of Si.[41] Otherwise, 

vapour-phase alternatives such as the one documented here, can be implemented. 

 

 

Figure 1. SEM image of 60 nm long Si nanowires with a 20 nm spacing after dipping 

in HF, highlighting the effect of the capillary forces experienced during liquid-phase 

processing. 

To date, the bulk of the work carried out on self-assembled monolayers 

(SAMs) on Ge has focused on using 1-dodecanethiol, which has 12 carbon atoms, to 

form SAMs on the Ge surface.[37, 42, 43] The preference for this work was to choose 

a thiol molecule with the highest vapour pressure possible (to enable effective 

vapourisation) while still forming good quality monolayers. A range of aliphatic thiol 

molecules with carbon backbones ranging in length from 2 to 12 carbons were 

investigated for their ability to passivate Ge and inhibit oxidation of the underlying Ge 

in 24 hours (see Figure 4). 1-Hexanethiol (HT) was ultimately chosen as the aliphatic 
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thiol molecule to passivate Ge in this study due to its relatively high vapour pressure 

and effective passivation of Ge.  

 

Figure 2. Schematic of oxide removal and passivation procedure for Ge using 

hexanethiol. 

A SAM is formed when a single layer of molecules bonds to a surface in a self-

limiting fashion to yield a surface that is chemically stable. Herein, HT molecules are 

reacted in the vapour-phase with a Cl-terminated Ge(100) surface. A mechanistic 

explanation for what occurs during the 1-alkanethiol passivation of Cl-terminated 

Ge(100) has been discussed by Bent et al.[13] They explore three possible routes for 

the passivation; namely a hydrohalogenic elimination pathway, an elimination and 

subsequent insertion pathway and a pathway which involves the cleavage of the dimer 

bond between Ge atoms at the surface. Their density functional theory calculations 

show that adsorption of 1-alkanethiols on halide-terminated Ge surface via 

hydrohalogenic acid elimination (Figure 3) is kinetically favourable at room 
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temperature. Thus, the reaction of HT with Cl-terminated Ge(100) is likely to occur 

via this pathway and the Ge dimer bond is likely to remain unbroken.[13] 

 

Figure 3. Proposed HCl elimination pathway for thiol reaction with Cl-terminated Ge. 

The use of SAMs to augment the surface properties of a variety of materials 

such as gold,[44, 45] silicon[46] and copper[47] has been extensively documented in 

the literature. A common use for SAMs on Ge is to inhibit the growth of the unreliable 

oxide.[42, 43] In this study, the authors demonstrate a method to passivate oxide free, 

Cl-terminated Ge(100) using HT in the vapour-phase. This method is shown to be 

effective at preventing the regrowth of native Ge oxide for 24 hours. 

3.3 Methods 

All chemicals were purchased from Sigma-Aldrich unless otherwise stated. P-type 

germanium wafers were purchased from Umicore. Ge wafers were cut into 1 cm2 

coupons and degreased by sonication in acetone for 3 minutes then rinsed in IPA and 

dried under a stream of N2. GeO2 was removed by etching the coupons in 20% HCl 

for 10 minutes followed by drying under N2. To achieve vapour-phase passivation, the 

coupons were loaded into a HiP MS series micro reactor (Figure 4) in a glovebox with 



55 | Page 

 

an atmosphere of < 0.5ppm O2 and H2O. The reactor was assembled in the glovebox 

to ensure no water vapour was present which could have oxidised the chlorine-

terminated, oxide-free Ge prior to the vapour-phase thiol reaction. The assembled 

reactor was then connected to HiP three way/two stem connection valves on both the 

inlet and exhaust. The reactor was then loaded into a furnace.  

 

Figure 4. Schematic of HiP MS series micro reactor configuration. 

A 0.1M solution of thiol in toluene was degassed using the freeze-pump-thaw 

(FPT) method. This method involves freezing the thiol solution under N2 using liquid 

nitrogen and then allowing the solution thaw under vacuum (10-3 Torr) to remove 

undesirable gases present in the solvent. This method was repeated 3 times - until there 

was no more evolution of gas from the thiol solution. The degassed thiol solution was 

then syringed from the round-bottom flask using a 10 mL Luer-lock syringe which 

had been dried in a vacuum oven at 60°C overnight and then purged with N2 prior to 

filling with the thiol solution. The Luer-lock syringe was used to pump the thiol 

solution at 1.5 mL/hr into the reactor at 140°C, carried by a constant flow of H2 in Ar. 

After 200 minutes, the furnace was turned off and the injection of the thiol solution 
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into the reactor was stopped. At this point, 5 mL of the thiol solution had been pumped 

through the reactor. The reactor was then allowed to cool for 30 minutes before the 

samples were removed. The samples were then sonicated in acetone for 5 minutes, 

rinsed with propanol and dried under a stream of N2. In the case of the Ge samples 

passivated using a liquid-phase chemical procedure, a 0.1M solution of the thiol 

molecule in toluene was degassed using the FPT method described previously. Oxide-

free, Cl-terminated Ge samples were refluxed in the solution under an N2 atmosphere 

using Schlenk line apparatus for 24 hours as is common in the literature to achieve 

thiol SAMs of high quality on Ge.[13, 29, 43] Samples were exposed to 40% relative 

humidity (RH) at 20°C in a Vötsch temperature test chamber to emulate ambient 

conditions for 24 hours to track what affect the ambient had on the samples. A 200 

minute reaction time was shown to be a sufficient amount of time to create stable 

SAMs; however, the authors do not assert that this is the minimum amount of time 

required. 

Atomic force microscopy was used to determine if the processing affected 

surface roughness. Water contact angle analysis was used to determine the 

hydrophobicity of the sample surface which gives an indication of the quality of the 

SAM and X-ray photoelectron spectroscopy was used to get elemental analysis of the 

Ge surface post reaction and after exposure to the ambient for 24 hours to determine 

if the passivated surface was resistant to oxidation. Passivated samples were 

transported under a positive pressure of N2 in a SPI-DRY™ Sample Preserver to the 

characterisation tools. 
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3.3.1 Atomic Force Microscopy (AFM) 

All AFM measurements in this study were taken using tapping mode Veeco 

Multimode V at room temperature over a 3 x 3 µm2 scanning area. Tapping mode is 

preferred to contact mode when working with SAMs since the SAM can be affected 

by the probe being in constant contact with the surface. Tapping mode bypasses this 

problem since the probe is not dragged along the surface.  

3.3.2 Water Contact Angle (WCA) 

An image of a 50 µL drop of deionised water on the Ge surface was obtained and the 

angle formed between the water, Ge surface and air was measured. The greater the 

angle, the more hydrophobic the sample. Here, the wettability of a Ge surface gives 

an indication as to whether the thiol molecule has reacted with that surface. 

Considering the tail of the HT molecule is non-polar in nature, an increase in 

hydrophobicity indicates that a thiol SAM is present on the Ge surface. 

3.3.3 X-Ray Photoelectron Spectroscopy (XPS) 

XPS spectra were acquired on an Oxford Applied Research Escabase XPS System 

equipped with a CLASS VM 100 mm mean radius hemispherical electron energy 

analyser with multichannel detectors in an analysis chamber with a base pressure of 

5.0 × 10−9 mbar. A pass energy of 50 eV, a step size of 0.7 eV and a dwell of 0.3 s was 

used for survey spectra which were swept twice. All core level scans other than the S 

2p and 2s were acquired with a step size of 0.1 eV, a dwell time of 0.1 s and a pass 

energy of 20 eV averaged over 10 scans. The S 2p and 2s scans were acquired with a 

step size of 0.1 eV, a dwell time of 0.1 eV and a pass energy of 50 eV averaged over 

20 scans. This was done to maximise the intensity of the S 2p peaks so accurate peak 
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fitting could be carried out. A non-monochromated Al-Kα X-ray source (1486.58 eV) 

at 100 W power (10 mA, 10kV) was used for all scans. All spectra were acquired at a 

take-off angle of 90° with respect to the analyser axis and were charge corrected with 

respect to the C 1s photoelectric line at 284.8 eV. A Shirley type background was used 

for construction and peak fitting of synthetic peaks. Synthetic peaks were a mix of 

Gaussian-Lorenzian, the Ge 2p spectra were fit using Gaussian-Lorentzian peak shape 

GL(90) for the elemental Ge peak and Lorentzian peak shape LA(1.53,243) for all 

other peaks. The relative sensitivity factors used are from a CasaXPS library 

containing Scofield cross-sections. 

3.4 Results & Discussion 

Alkanethiol passivation of Ge is a well-established process that has been used by many 

to augment the surface properties of Ge.[29, 48-50] However, the majority of the 

literature pertains to passivation using 1-dodecanethiol [42, 51, 52] since the heavily 

studied DT SAMs on Au system [45, 53] is the system from which best practices for 

Ge were adopted. Using the liquid-phase passivation method, a number of aliphatic 

thiol molecules with carbon backbones ranging in length from 2 to 12 carbons were 

used to passivate Ge in an effort to to select a thiol molecule suitable for vapour-phase 

passivation trials. The authors desired to select a thiol molecule which could easily be 

promoted into the vapour phase (relatively low Mw) while still able to form SAMs on 

Ge that inhibit Ge surface reoxidation. HT outperformed the other thiols tested in 

terms of Ge reoxidation upon exposure to ambient conditions for 24 hours (as 

evidenced by the Ge 2p spectra shown in Figure 5) and so was chosen for trials using 

the vapour-phase approach that is detailed in this work. 
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Figure 5. Ge 2p spectra of Ge passivated by (i) ethanethiol (ii) 1-butanethiol (iii) 1-

pentanethiol (iv) 1-hexanethiol (v) 1-octanethiol and (vi) 1-dodecanethiol with 0 (red) 

and 24 (blue) hours exposure to ambient conditions. 

 

3.4.3 Atomic Force Microscopy & Water Contact 

Analysis 

An industry requirement for the passivation of Ge is that its surface remains oxide-

free for a queue-time of 24 hours. This allows for maintenance or repair of 

instrumentation, which may result in the exposure of processed Ge to the ambient 

during device fabrication. Processed Ge wafers require a sufficiently robust 

passivation layer to avoid reoxidation of the substrates. Processes developed on planar 

Ge must be non-destructive such that they be transferrable to highly ordered, densely 

packed, high aspect-ratio Ge nanostructures. As a result, AFM was used to track the 

effect the processing had on the roughness of planar Ge surfaces. Since the surface to 
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bulk ratio for nanostructures is high, it is imperative that any processing has a 

negligible impact on surface roughness. Results for the liquid-phase passivation of Ge 

using HT are included for comparison. 

Prior to the vapour-phase passivation of the Ge surface, the native oxide was 

removed using a 20% solution of HCl. This step relies on liquid-phase processing 

which would not be compatible with nanostructures, however in the context of an 

industrial setting a vapour phase alternative would be applied. The RMS value 

obtained for a clean Ge surface is 0.30 nm as seen in Figure 6 (i). The inset in Figure 

6 (i) highlights how the surface prior to any processing is hydrophilic, a shallow angle 

of less than 50° is obtained when a 50 uL drop of millipore deionised water is deposited 

onto the surface. This value is consistent for literature values of ultrasonic cleaned Ge 

surfaces.[54] The surface is hydrophilic since the water interacts favourably with the 

GeO2 film present on the surface. After the HCl etch, a Cl-terminated Ge surface with 

an RMS value of 0.30 nm was obtained. Removing the oxide with HCl does not cause 

an increase in the surface roughness. The inset in Figure 6 (ii) illustrates how the 

chlorine-terminated Ge surface is also hydrophilic. A water contact angle of less than 

50° is obtained since the water molecules interact favourably with the Cl-terminated 

Ge surface. This is consistent with the literature on Cl-terminated Ge whereby angles 

of 39-50° are observed.[54, 55] The AFM image in Figure 6 (iii), illustrates how the 

vapour-phase HT passivation reaction does not cause an increase in Ge surface 

roughness and the degree of hydrophobicity of the Ge surface sharply increases to over 

90° due to the presence of the thiol SAM. Increasing contact angle measurements for 

alkanethiol SAMs have been shown to correlate with the length of the alkanethio l 

molecule.[46] On Ge(100), alkanethiol SAMs consisting of 1-dodecanethiol 

molecules have been shown to display WCA of > 100°,[42] while SAMs consisting 
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of 1-octadecanethiol molecules (C18) have been shown to display WCA of > 

115°.[52] In this study, HT, having a shorter C backbone, was found to form a SAM 

on Ge that yield a surface with a WCA of 90°. The sharp increase in the hydrophobicity 

of the Ge surface is a clear indication that the vapour-phase reaction occurred between 

the Cl-terminated Ge surface and the HT molecules. For comparison, the AFM and 

WCA data for a Ge surface which has been passivated using the liquid-phase 

chemistry approach have been included also. It is clear from the AFM image in Figure 

6 (iv) that the surface roughness of the Ge is affected by the liquid-phase passivation 

procedure where an RMS value of 0.61 nm is observed along with a WCA of 85°. The 

increased WCA indicates that a HT-SAM is present on the surface however, the SAM 

is likely of lower quality than that obtained by the vapour-phase passivation since the 

WCA angle observed is lower. 
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Figure 6. AFM images with water contact angle insets of (i) as-rec Ge (ii) HCl-treated 

Ge (iii) HT vapour-phase passivated Ge with 0 hours exposure to the ambient (iv) HT 

liquid-phase passivated Ge with 0 hours exposure to the ambient. 

 

3.4.4  X-ray Photoelectron Spectroscopy 

Characterisation 

In the literature, when discussing the oxidation of Ge, it is common to discuss the Ge 

3d peak primarily; however, the 3d transition comes from electrons with high kinetic 

energy and therefore from a greater sampling depth when compared to the electrons 

from the 2p transition which have lower kinetic energy and so are more surface 

sensitive. Thus, in an attempt to highlight what is occurring at the surface of the Ge, 

the Ge 2p peak will be presented in this study. When fitting the oxide peaks, the 

suboxide peak position was fixed at 1.1 eV greater than the elemental Ge peak. GeO2 

peak position was not fixed since a trend was observed whereby the peak position 

shifted to higher binding energy upon oxidation. Oxide thickness was calculated using 

the method outlined by Murakami et al.[56] 

 

𝑑𝐺𝑒𝑂2
= 𝜆𝐺𝑒𝑂2

𝑠𝑖𝑛𝜃 𝑙𝑛 (
𝐼𝐺𝑒

∞

𝐼𝐺𝑒𝑂2

∞

𝐼𝐺𝑒𝑂2

𝐼𝐺𝑒
+ 1) 

 

where 𝜆𝐺𝑒𝑂2
, the inelastic mean free path for the Ge 2p transition is 0.9 nm; the 

photoemission angle θ is 90°; 𝐼𝐺𝑒
∞ /𝐼𝐺𝑒𝑂2

∞  is the ratio of the Ge 2p signal from infinitely 

thick Ge to infinitely thick GeO2 and is determined as 1.73; 𝐼𝐺𝑒𝑂2
 is the intensity of 
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the of native oxide (GeO2) peak from curve fitting the Ge 2p transition; 𝐼𝐺𝑒  is the 

intensity of the metallic Ge peak from curve fitting the Ge 2p transition. This 

calculation was repeated to determine the thickness of the suboxide (GeOx) component 

for each sample also. In this case, 𝐼𝐺𝑒𝑂𝑥
, the fraction of suboxide (GeOx) from curve 

fitting the Ge 2p was used in place of  𝐼𝐺𝑒𝑂2
. 

Figure 7 (i) depicts the Ge 2p spectrum for an as-received Ge sample that has 

undergone no processing. As expected, there is a large peak at 1221.14 eV that 

corresponds to Ge+4 from GeO2. There is also a peak evident at 1218.89 eV which is 

attributed to the suboxide, GeO. The thickness of the GeO2 on as-rec Ge is 2.12 nm 

which is in agreement with literature values for as-rec Ge(100).[57] The thickness of 

the suboxide component was 0.56 nm. The suboxide component of Ge likely has 

contributions from Ge in +1, +2 and +3 states however these cannot be accurate 

resolved with the instrumentation available. Treatment of the as-received Ge with HCl 

removed both the native oxide and the suboxide component leaving a Cl-terminated 

surface which oxidised upon exposure to the ambient. This is evident in Figure 7 (ii, 

iii) where the Ge 2p peaks corresponding to the native oxide and suboxide are no 

longer present after the HCl etch but return after 24 hours of exposure to the ambient. 

A GeO2 film, 0.34 nm thick grows in 24 hours of exposure to the ambient indicating 

that Cl-termination does not sufficiently prevent reoxidation of the Ge surface. 
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Figure 7. Ge 2p plots for (i) as-rec Ge (ii) and (iii) Cl-terminated Ge after 0 and 24 

hours exposure to the ambient, respectively. 

Figure 8 (i) depicts the Ge 2p spectra for a Ge sample that has had the native 

oxide removed by a HCl etch followed by passivation using HT in the vapour-phase. 

No GeO2 is detected after the passivation reaction however, there is a component at 

1219.2 eV which is likely attributable to Ge+2 from a mixture of Ge-O and Ge-S after 

the passivation reaction. An XPS tool with higher resolution would be needed to 
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attempt to resolve these components. The calculated thickness of these components is 

0.16 nm. After 24 hours of exposure to the ambient, the GeO2 film thickness was 0.08 

nm. The growth of oxide is minimal and as such can be used as a proxy for quality of 

SAM on the Ge surface. The more stable and uniform the SAM, the slower the growth 

of oxide. In this case, the vapour-phase passivated Ge exhibits inhibition of oxide 

growth and thus one can infer that a stable SAM is present. The peak at 1219.2 eV is 

still present after the passivation reaction is unchanged with a calculated thickness of 

0.16 nm. After 168 hours of exposure to the ambient, GeO2 thickness was calculated 

to be 0.25 nm with the thickness of the component at 1219.2 eV calculated to be 0.20 

nm indicating that continued oxidation does occur albeit slowly. The thickness of the 

oxide film on the HT vapour-phase passivated sample after 168 hours exposure to the 

ambient is less than that of the Cl-terminated sample after only 24 hours of exposure 

(0.25 nm vs. 0.34 nm). 
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Figure 8. (i) and (ii) Ge 2p plots for HT vapour-phase passivated Ge with 0 and 24 

hours exposure to the ambient, respectively. 

An inspection of the O 1s peaks for the vapour-phase passivated Ge directly 

after the passivation reaction and after 24 and 168 hours of exposure to the ambient is 

illustrated in Figure 9. There is little growth in the intensity of the O 1s peak after 24 

hours however after 168 hours some growth is observed indicating that the HT SAM 

passivation is effective at inhibiting oxidation of the Ge over 24 hours but that in the 

following 144 hours, a small amount of GeO2 growth occurs (0.17 nm growth in the 

144 hours proceeding the first 24 hours). 
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Figure 9. O 1s spectra of Ge passivated by HT in the vapour-phase after 0 (blue), 24 

(red) and 168 (black) hours exposure to the ambient. 

The S 2p peak occurs at 162.3 eV which overlaps with a Ge 3p satellite feature, 

however through peak fitting, the S 2p peak can be clearly differentiated from the Ge 

3p sat. There is no S 2p peak present in the as-rec Ge sample (Figure 10 (i)), as 

expected. However, a clear S 2p peak is observed at 162.3 eV in Figure 10 (ii) for the 

HT passivated sample. That peak is still evident after 24 hours of exposure to the 

ambient (Figure 10 (iii)), albeit with slight lower intensity, which indicates that the 

thiol SAM is stable on the surface for 24 hours. A possible explanation as to why the 

intensity of the S 2p peak diminishes slightly in 24 hours is that the growth of a small 

amount of oxide on the surface in 24 hours displaces the thiol molecules, resulting in 

a slightly less intense S 2p peak. The XPS measurements showing the presence of 

sulfur on the vapour-phase HT-treated surface is clear indication that the vaporised 

HT reacted with the Cl-terminated Ge surface. The presence of the S 2p peak after 24 

hours and the minimal growth of oxide observed in Figure 8 indicates that the HT-
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SAM on the Ge surface is stable and more effective than chlorine at preventing 

oxidation from exposure to the ambient for 24 hours. 

 

Figure 10. (i) as-rec Ge showing no S peak (ii) HT vapour-phase passivated Ge with 

0 hours exposure to the ambient (iii) HT vapour-phase passivated Ge with 24 hours 

exposure to the ambient. 

For comparison with the vapour-phase passivation approach, Figure 11 

elucidates the liquid-phase passivation of Ge, where some native oxide is present 
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directly after the passivation reaction and the oxide thickness is 0.21 nm. The presence 

of this oxide indicates that the during the 24-hour processing, a small amount of Ge 

oxidation occurs. This is not the case with the shorter (~200 minute) vapour-phase 

reaction where there is no detectable GeO2 directly after the passivation reaction. 

Shorter processing times are desirable since they decrease the likelihood that oxidation 

can occur. The thickness of the oxide for the liquid-phase passivated sample increases 

to 0.34 nm after 24 hours of exposure to ambient conditions (a growth of 0.13 nm).  

 

Figure 11. (i) and (ii) Ge 2p spectra for the liquid-phase passivation of Ge illustrating 

the presence of native oxide after 0 and 24 hours exposure to the ambient, respectively. 
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This XPS data, coupled with the WCA data from Figure 6 indicate that the 

liquid-phase passivation reaction yields a SAM of which does not inhibit oxidation of 

the Ge as effectively as the vapour-phase passivated sample. The vapour-phase 

passivation method results eclipse those of the liquid-phase chemical passivation in 

relation to oxidation inhibition over 24 hours of exposure to the ambient. A summary 

of the oxide thicknesses is tabulated in Table 1.  

 GeO2 thickness (nm) 

Sample (Ge) 0 hrs exposure 24 hrs exposure 

As-Rec. 2.12 2.12 

HCl-treated 0 0.38 

Vap. HT-passivated 0 0.08 

Liq. HT-passivated 0.21 0.34 

 

Table 2. Oxide thicknesses for as-rec, HCl-treated, vapour-phase passivated and 

liquid-phase passivated Ge(100) samples. 

 

3.4.5 Estimation of Overlayer Thickness 

XPS thickness measurement of the SAM overlayer for the vapour-phase passivated 

Ge was performed following the methodology originally defined by Cumpson et al. 

[58] 
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𝑙𝑛 (
𝐼𝑜𝑆𝑜

𝐼𝑠𝑆𝑠
) −  (

𝑜

𝑠
) 

1

𝑜 𝑐𝑜𝑠 𝑐𝑜𝑠  
−𝑙𝑛 𝑙𝑛 2 =𝑙𝑛 𝑙𝑛 𝑠𝑠𝑠 𝑠𝑖𝑛 ℎ (

𝑡

2 𝑜 𝑐𝑜𝑠 𝑐𝑜𝑠  
)   

 

where Io and Is represent the respective measured peak intensities of the overlayer (HT 

molecules) and the substrate peaks, So and Ss refer to the relative sensitivity factors 

for the overlayer and the substrate, respectively. o and s are the attenuation lengths 

of electrons in the overlayer and the substrate.  is the emission angle with respect to 

the surface normal. The peak intensity of the overlayer peak, Io, and the peak intensity 

of the substrate peak, Is, were determined using CasaXPS software after a transmission 

correction. The relative sensitivity factors for the substrate peak Ss and the overlayer 

peak So were also obtained from the CasaXPS library and manually inputted into the 

data processing software to remove instrumental factors which may affect 

quantification. The practical electron attenuation length (EAL) in the overlayer, lo, was 

estimated, using the NIST Electron Effective Attenuation Length database, to be 2.58 

± 0.2 nm for the Ge 3d component. Using this method, the thickness of the SAM 

overlayer was estimated to be approximately 1 nm which is in accordance with the 

length of one HT molecule – the expected thickness of the monolayer.  

3.5 Conclusions 

In this study, a method to achieve the vapour-phase passivation of Ge(100) surfaces is 

outlined. The developed method is used to create HT-SAMs that inhibit reoxidation 

of the underlying Ge(100) surface for 24 hours and shows improved resistance to 

reoxidation up to 168 hours when compared to Cl-terminated Ge(100) surfaces. It was 

found that a 200 minute reaction time is sufficient to create SAMs that inhibit the 
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growth of oxide which improves on state-of-the-art liquid-phase processes that require 

up to 24 hours. To gain industry-acceptance, reduced reaction times are necessary. The 

procedure does not cause an increase in surface roughness of planar Ge and therefore 

demonstrates suitability for trials on Ge nanostructures that would otherwise be 

damaged by liquid-phase chemical processing. 
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Chapter 4 

Humidity-Mediated Oxidation of Thiol-

SAM-Passivated Ge(100)  

 

 

This chapter has been prepared as a manuscript for submission to the ACS Applied 

Materials & Interfaces journal. Consequently, certain concepts within this chapter 

may be repeated in other chapters. 
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S. Garvey, A. Serino, B. Maccioni, J.D. Holmes, M. Nolan, N. Draeger, E. Gurer, B. 

Long, Humidity-Mediated Oxidation of Thiol-SAM Passivated Ge(100). ACS Applied 

Materials & Interfaces, (in review). 
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4.1 Abstract 

Germanium’s (Ge) native oxide is a complex system, comprising GeO2 and sub-

stoichiometric oxides where Ge can exist with a range of oxidation states (+1, +2 and 

+3). Not only is the oxide more complex than that of Si, but the native Ge oxide is 

problematic from a CMOS device perspective since it is water-soluble. Many of the 

processing steps used in traditional device fabrication are water based which would 

cause oxide etching, ultimately rendering the devices useless. Consequently, for 

CMOS devices, it may be advantageous to replace the Ge oxide with a stable 

passivating layer during fabrication. Self-assembled monolayers (SAMs) of thiols on 

Ge have been shown previously to inhibit oxidation however, reoxidation does 

eventually occur when exposed to ambient conditions. It had been speculated that 

humidity may play a role in the degradation of the SAM, ultimately resulting in 

reoxidation. To test this hypothesis, thiol-passivated Ge(100) surfaces are exposed to 

controlled humidity environments with different levels of relative humidity. The rate 

of reoxidation of the Ge surfaces are tracked using X-ray photoelectron spectroscopy 

(XPS) and water contact angle (WCA) analysis to discern what role relative humidity 

plays in the reoxidation of the Ge and the degradation of the SAM passivation. Atomic 

force microscopy (AFM) data is presented to show that humidity-mediated reoxidation 

of the Ge has little or no impact on the route mean square (RMS) roughness of those 

surfaces. Atomistic modelling of thiol-SAM passivated Ge in the presence of water 

molecules has been studied using first principles density functional theory (DFT) in 

order to simulate experimental conditions and to understand the atomic level processes 

that determine stability in hydrophilic and hydrophobic configurations.   
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4.2 Introduction 

Traditionally, Si was chosen as the semiconductor material of choice due to its relative 

abundance [1] and mechanical strength [2], but most importantly because of its stable 

native oxide and high quality oxide/Si interface.[3] However, as aggressive device 

scaling has continued, traditional dielectrics such as SiO2 have shown to be ineffective 

at insulating the channel from the gate.[4] At such small dimensions, electrons can 

tunnel through the gate oxide resulting in high leakage current and poor device 

performance.[5, 6] As a result, there has been a shift from traditional dielectrics to 

high-κ dielectrics such as HfO2 and ZrO2 in an effort to circumvent the aforementioned 

tunnelling issue.[7] Regardless, continued transistor scaling has been driving efforts 

to find higher mobility semiconductor materials with properties suited to the modern 

demands of CMOS device fabrication and performance. Other high mobility materials 

such as III-V semiconductors [8, 9] and two-dimensional transition metal 

dichalcogenides (TMDs) [10, 11] are being scrutinised for their potential use in future 

devices also. Germanium, however, is a very attractive alternative for a number of 

reasons. Critically, it boasts an electron and hole mobility more than twice and four 

times that of silicon, respectively, and its similarity to Si, as another Group IVA 

element, would allow it to be seamlessly incorporated using similar fabrication 

processes. The global reserves of Ge are estimated to be approximately 2-3 thousand 

tonnes.[12] By comparison, Si as the second most abundant element in the earth’s 

crust, has an annual production of approximately 7 million tonnes. Given these relative 

abundances it is unlikely that Ge will replace Si entirely. However, it is plausible that 

Ge will be integrated into the Si platform as the channel material and efforts to do such 

are well underway.[13-15] Current transistor manufacturing includes channels 
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consisting of SiGe alloys to gain the partial benefits of Ge. In 2020, Intel published 

results for a gate-all-around nanosheet PMOS transistor using Si0.4Ge0.6.[16] 

A contributing factor as to why pure Ge has not yet been integrated into current 

devices is that Fermi level pinning of the Ge surface occurs when contacting a metal 

due to unpassivated acceptor-like gap states present at the interface.[17, 18] Dimoulas 

et al. have hypothesised that since the Fermi level in Ge lies higher than the charge 

neutrality level (CNL), the gap states at the interface fill easily, building up a fixed 

negative charge preventing the efficient inversion in the inversion layer of the CMOS 

device resulting in sub-optimal device performance.[19] Many of the other issues with 

Ge are specifically related to the nature of the oxide. For example, the Ge/GeO2 

interface is characterised by interfacial dangling bonds and vacancies which trap 

charge, hindering device performance.[20, 21] Also, significant GeO desorption 

occurs at the high temperatures necessary to grow high quality GeO2 films on Ge 

whereas this is not the case with the Si system.[22] The desorption of GeO during 

thermal oxidation affects the qualities of both the Ge/GeO2 interface and the bulk 

GeO2 itself. With that said, Toriumi et al. have performed Ge oxidation under high-

pressure O2 (HPO) conditions at high temperatures to supress the GeO desorption and 

avoid deteriorating the GeO2 bulk film quality or Ge/GeO2 interface.[23] Finally, 

GeO2 is water soluble, making it extremely problematic for aqueous wafer-processing 

steps which are currently common in device manufacturing.[24] In fact, native oxide 

etching of GeO2 using water, results in the formation of the suboxide, GeO, which can 

then be removed by annealing at temperatures above 450°C leaving a pristine Ge 

surface.[25] However, upon exposure to ambient conditions, the native oxide readily 

regrows. For the reasons outlined, when working with Ge, it may be advantageous to 
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remove the native oxide and to store the oxide-free Ge under an inert atmosphere, 

UHV conditions or to passivate the surface to ensure no oxide regrowth occurs.  

Many methods to passivate Ge have been explored and are discussed in the 

scientific literature – these include both wet and dry methods of passivation using 

halides [26, 27], carboxylic acids [28], sulfur [29], nitride [30], oxynitride [31], 

passivation by graphene [20, 32, 33], and self-assembled monolayers (SAMs).[34, 35] 

SAMs have been the subject of extensive research throughout the latter half of the 

20th century and well into the 21st, as it is understood that organic functionalisation 

of surfaces can dramatically affect the properties of those surfaces. The early literature 

on SAMs focused on their assembly onto planar gold [36]; however, since then the 

study of SAMs has expanded to many other materials such as copper [37, 38], bismuth 

[39], graphene [40],  III-Vs [41, 42] and semiconductors such as Si, SiGe and Ge.[34, 

42] A SAM is formed through the adsorption of molecules onto a surface, followed 

by a slower period of organisation whereby the molecules rearrange themselves on the 

surface to form a system that is energetically favourable. This results in a self-limiting 

process that minimally impacts the substrate but enables the alteration of surface 

properties such as the wettability and oxidation resistance.[34, 35] There are myriad 

reasons to form organic monolayers on the surfaces of semiconductor materials [43]; 

however, some examples include; for mono-layer doping [44-47], to enhance the 

stability and efficiency of solar cells [48, 49] and for electrochemical sensors.[50] 

Several studies have explored the use of alkanethiol SAMs for inhibiting oxide 

growth on germanium. However, reported stabilities are widely variable.[51-53] 

Herein, we investigate the role the environment, specifically humidity, plays in thiol 

desorption and subsequent Ge oxidation. In this study, thiol SAMs are used to 



87 | Page 

 

passivate Ge(100) surfaces which are then placed in a controlled humidity 

environment with different levels of relative humidity (RH). CMOS compatible 

devices incorporating Ge are on the technological horizon. Understanding the 

mechanism for surface instability is crucial for SAMs to gain industry adoption for Ge 

oxide control.  

 

 

Figure 1. Schematic of thiol-SAM on Ge. 

4.3 Methods & Materials 

4.3.1 Preparation of SAMs on Ge surfaces 

Samples were prepared by three different methods, (i) vapour-phase passivation of 1-

hexanethiols, (ii) vapour-phase passivation of 1-octanethiols, and (iii) liquid-phase 

passivation of 1-dodecanethiols. The first method was conducted in an academic 

setting and used for identifying a humidity trend, the latter two were conducted in an 

industrial setting. No direct comparisons were made between the two settings. 
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4.3.1.1 Vapour-Phase Passivation using Hexanethiol 

Passivation of the Ge(100) surface was achieved using vaporised 1-hexanethiol (HT) 

using a method previously outlined by the authors.[54] The passivated Ge coupons 

were exposed to air in low (5%), ambient (40%) and high (90%) RH environments for 

168 hours to determine what effect the water vapour in air had on the Ge surfaces. For 

the purposes of this study, the humidity-controlled environment with 40% RH is 

referred to as ‘ambient humidity’. In an attempt to isolate the water vapour from the 

low humidity environment without also isolating O2, compressed air (which has a low 

water content) was used. In this case, Ge coupons were held in a glass vessel filled 

with desiccant through which compressed air was flowed continuously. A humidity 

sensor was used to track the humidity in the glass vessel. For both the ambient and 

high humidity tests, a Vötsch humidity-controlled chamber was used. In all cases, the 

samples were exposed to a constant temperature of 20°C. After 24 and 168 hours in 

their respective environments, samples were characterised using AFM, WCA and 

XPS. 

4.3.1.2 Vapour-Phase Passivation using Octanethiol 

Coupons of Ge(100) were etched with an HCl based proprietary etch designed to 

remove surface oxides and contaminants and provide a temporary Cl termination, and 

dried under a nitrogen gas stream. Samples were transferred to a custom low-pressure 

vacuum deposition chamber, with a transfer time up to 5 minutes. 1-octanethiol (OT) 

was deposited using vapour draw at 80˚ C and 800 mTorr for 3 cycles of 10 minute 

doses. Samples were removed and rinsed with anhydrous ethanol, dried under a 

nitrogen stream, and immediately placed in target environments. The passivated Ge 

coupons were exposed to low (5%) and ambient (~40%) RH environments for 24 
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hours at room temperature and analysed by XPS. For the low humidity case, Ge 

coupons were held in a vessel filled with desiccant. A humidity and oxygen sensor 

were used to monitor the humidity and oxygen levels to ensure consistency.  

4.3.1.3 Liquid-Phase Passivation using Dodecanethiol 

Coupons of Ge(100) and Si0.25Ge0.75(100) (SiGe75) were etched with the same HCl 

based proprietary etch as vapour-phase passivation of OT. Samples were immediately 

transferred to a solution of 25 mM 1-dodecanethiol (DDT) in anhydrous ethanol at 

room temperature. After 24 hours, samples were removed and rinsed with anhydrous 

ethanol, dried under a nitrogen stream, and immediately placed in target environments. 

The passivated Ge coupons were exposed to low (5%) and ambient (~40%) RH 

environments at room temperature for 24 hours and analysed by XPS. For the low 

humidity case, Ge coupons were held in a vessel filled with desiccant. A humidity and 

oxygen sensor was used to monitor the humidity and oxygen levels to ensure 

consistency. 

4.3.2 Characterisation Methods 

All AFM measurements were taken using tapping mode Veeco Multimode V at room 

temperature over a 3 x 3 µm2 scanning area. 

For water contact analysis (WCA), an image of a 50 µL drop of deionised 

water on the Ge surface was obtained and the angle formed between the water, Ge 

surface, and air was measured. 

X-ray photoelectron spectroscopy measurements were carried out on two 

instruments. Vapour-phase deposited hexanethiol samples were analysed using an 
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Oxford Applied Research Escabase XPS System with a CLASS VM 100 mm mean 

radius hemispherical electron energy analyser with multichannel detectors in an 

analysis chamber with a base pressure of 5.0 × 10−9 mbar. Survey scans were swept 

twice and were acquired using a pass energy of 50 eV, a step size of 0.7 eV and a 

dwell of 0.3 s. All core level scans, were averaged over 10 scans and were acquired 

with a step size of 0.1 eV, a dwell time of 0.1 s and a pass energy of 20 eV except for 

the S 2s, which was acquired with a pass energy of 50 eV averaged over 20 scans. This 

was done to maximise the intensity of the sulfur peaks to allow for accurate peak 

fitting. A non-monochromated Al-Kα X-ray source (1486.58 eV) at 100W power (10 

mA, 10 kV) was used for all scans.  

Vapour-phase passivated OT and liquid-phase passivated DDT samples were 

analysed using a ThermoFisher Scientific Theta 300 at 1 × 10-9 Torr with a 

monochromatic Al-Kα source at 100 W (6.67 mA and 15 kV) with a 400 μm spot size. 

A pass energy of 50 eV was used to collect high energy resolution spectra with a step 

size of 0.1 eV, a dwell time of 50 ms, and 15, 15, and 20 sweeps for C 1, Ge 2p, and 

S 2s, respectively. 

All spectra were acquired at a take-off angle of 90° with respect to the analyser 

axis and were charge corrected with respect to the C 1s photoelectric line at 284.8 eV. 

A Shirley type background was used for construction and peak fitting of synthetic 

peaks. Synthetic peaks were a mix of Gaussian-Lorenzian; the Ge 2p spectra were fit 

using Gaussian-Lorentzian peak shape GL(90) for the elemental Ge peak and 

Lorentzian peak shape LA(1.53,243) for all other peaks. The relative sensitivity 

factors used are from a CasaXPS library containing Scofield cross-sections. 
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4.3.3 First Principles Density Functional Theory 

Simulations 

First principles density functional theory (DFT) calculations as implemented in the 

Vienna Ab Initio Software Package (VASP) [55, 56] have been used to model 

alkanethiol SAMs on the Ge(100) surface and to explore how humidity could 

influence Ge surface passivation. The calculations utilise a plane wave basis set in a 

3-dimensional periodic slab model of the substrate with DFT-optimised lattice 

constants. The core electrons are described by projector augmented wave (PAW) [57] 

potentials and the exchange and correlation energies are modelled according to the 

generalised gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) 

[58] gradient corrected functional. In order to take into account the van der Waals 

interactions between alkanethiols and water, we used the DFT-D3 dispersion 

correction method [59] that incorporates the long-range dispersion contribution to the 

exchange-correlation PBE functional. We use the following valance electron 

configurations; for germanium; Ge 4s2 and 4p2, for chlorine; Cl 3s2 and 3p5, for sulfur; 

S 3s2 and 3p4, for carbon; C2s2 and 2p4, for oxygen; O 2s2 and 2p4, and for hydrogen; 

H 1s1. All the calculations were executed using an energy cut-off for the valence 

electron plane wave basis set at 420 eV and the convergence criteria for electronic 

relaxations and ionic relaxations at 10-4 eV and 0.02 eV/Å, respectively. The Brillouin 

zone was sampled with (2 × 2 × 1) Monkhorst-Pack k-point grids.[60] 
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4.4 Results & Discussion 

4.4.1 Impact of Humidity on Thiol-SAM Stability 

The primary characterisation method for the study of SAM degradation and Ge 

oxidation is XPS since it gives accurate determination of elemental composition and 

oxidation states of those elements at the surface (~10 nm sampling depth) of the 

samples being characterised. As such, the growth of GeO2 was tracked as a function 

of exposure time to different levels of RH. For the purposes of this study, Ge 2p spectra 

from XPS were used to track oxidation of the Ge(100) surfaces since the Ge 2p 

transition is more surface sensitive than Ge 3d. In addition, to track the presence of 

sulfur, the S 2s spectra were acquired. Oxide thickness was calculated using the 

method outlined previously by Murakami et al.[61] 

 

𝑑𝐺𝑒𝑂2
= 𝜆𝐺𝑒𝑂2

𝑠𝑖𝑛𝜃 𝑙𝑛 (
𝐼𝐺𝑒

∞

𝐼𝐺𝑒𝑂2

∞

𝐼𝐺𝑒𝑂2

𝐼𝐺𝑒
+ 1) 

 

where 𝜆𝐺𝑒𝑂2
 is the inelastic mean free path for the Ge 2p transition, which is 0.9 nm; 

the photoemission angle θ is 90°; 𝐼𝐺𝑒
∞ /𝐼𝐺𝑒𝑂2

∞  is the ratio of the Ge 2p signal from 

infinitely thick Ge to infinitely thick GeO2 and is 1.73 and 3.25 for the Oxford Applied 

Research and ThermoFisher instruments, respectively; 𝐼𝐺𝑒𝑂2
 is the intensity of the of 

native oxide (GeO2) peak from curve fitting the Ge 2p feature; 𝐼𝐺𝑒  is the intensity of 

the metallic Ge peak from curve fitting the Ge 2p transition. This calculation was 

repeated to determine the thickness of the suboxide (GeOx) component for each 
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sample. In this case, 𝐼𝐺𝑒𝑂𝑥
, the fraction of suboxide (GeOx) from curve fitting the Ge 

2p was used in place of  𝐼𝐺𝑒𝑂2
. 

 

Figure 2. (i) Ge 2p and (ii) S 2s spectra for HT-passivated Ge showing increasing in 

intensity of GeO2 peak and decrease in intensity of sulfur peak for the high RH sample 

over 168 hours. 

In Figure 2 (i), the Ge 2p XPS spectra for HT-passivated Ge with 0, 24 and 

168 hours of exposure to the high RH environment is shown. Directly after the 

passivation reaction, after 0 hours of exposure, only the peaks corresponding to Ge+0 

at 1218.2 eV (red) and Ge+2 at 1219.3 eV (blue) are present. There is no peak 

corresponding to Ge+4 since the initial HCl etch has effectively removed the native 
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oxide entirely and the subsequent passivation procedure has prevented re-growth of 

native oxide. As stated, there is a contribution from Ge in a +2 oxidation state (blue). 

This contribution is likely present due to a combination of the suboxide (GeO) and Ge 

bonded to S (1219.1 eV) [62] after the passivation reaction. A peak separation of 1.1 

eV between the Ge+0 and Ge+2 components was observed for the sample with 0 hours 

exposure to high humidity. In Figure 2 (ii), the S 2s peak at 226.9 eV after 0 hours of 

exposure is also displayed. Here, a clear S signal is observed which confirms that the 

thiol molecules have bonded to the Ge surface. Upon exposure to the high humidity 

environment for 24 hours, an increase in the intensity of the GeO2 peak at 1220.9 eV 

(pink) is observed in the Ge 2p spectrum and after 168 hours, a greater increase in 

peak intensity is observed with the peak shifting slightly (0.05 eV) to higher binding 

energy as the GeO2 film thickness increases from 0.07 nm after 24 hours to 0.38 nm 

after 168 hours. Also, the S 2s signal decreases in intensity from 0 to 24 hours of 

exposure indicating that some of the thiol molecules have been displaced from the Ge 

surface. After 168 hours, S is no longer detectable by XPS suggesting that the majority 

of the SAM has been displaced by oxide. The changes observed in the XPS over 168 

hours of exposure to the high RH environment can be contextualised and the role water 

vapour has on the thiol-passivated Ge can be understood when the same measurements 

are taken for samples exposed to lower levels of humidity over the same period of 

time.  
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Figure 3. (i) Ge 2p and (ii) S 2s spectra for HT-passivated Ge showing increasing in 

intensity of GeO2 peak and decrease in intensity of S peak for ambient humidity 

sample over 168 hours. 

In Figure 3, the Ge 2p (i) and S 2s (ii) XPS data for the HT-passivated Ge 

which was exposed to ambient humidity for 168 hours, is shown. As was observed 

with the high humidity samples, there is no GeO2 present directly after the passivation 

reaction and after 24 hours of exposure to the ambient - the GeO2 thickness is 

calculated to be 0.06 nm. After 168 hours of exposure to the ambient, the GeO2 peak 

at 1220.8 eV increases in intensity and the oxide thickness is calculated to be 0.25 nm. 

While there is a growth of GeO2 in 168 hrs, there is also a loss of S as can be seen in 
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Figure 3 (ii), whereby the S 2s peak diminishes within the first 24 hours and over the 

following 144 hours. With that said, there is still detectable S after the 168 hour period. 

These results differ from the high humidity samples. For one, there is less GeO2 

growth over the 168 hour exposure period, 0.25 nm relative to 0.38 nm at high 

humidity, and S is still detectable on the surface over that same period – an indication 

that the SAM is still present and lending partial oxidation resistance to the Ge surface.  

 

Figure 4. (i) Ge 2p and (ii) S 2s spectra for HT-passivated Ge showing increasing in 

intensity of GeO2 peak and decrease in intensity of sulfur peak for low humidity 

sample over 168 hours. 
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To complete the picture, passivated Ge surfaces were exposed to a low 

humidity environment and again, characterised by XPS. In Figure 4, the Ge 2p (i) and 

S 2s (ii) XPS plots for the sample exposed to the low humidity environment are 

displayed. After 24 hours of exposure to the low RH environment, there is 0.04 nm of 

GeO2 growth and a slightly reduced intensity S 2s peak when compared with that after 

0 hours of exposure. After 168 hours, 0.18 nm of the native oxide has grown and S is 

still detectable by XPS on the surface. The XPS data from Figures 2, 3 and 4 combine 

to reveal what effect humidity has on the surface of the Ge. It is apparent that in the 

presence of water vapour, the passivated Ge begins to oxidise over time and the 

amount of S on the surface decreases as the thiol molecules desorb from the surface. 

The progressive growth in GeO2 for each sample set is displayed in Figure 5. 
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Figure 5. GeO2 thicknesses of HT-passivated Ge exposed to low, ambient and high 

relative humidity for 0, 24 and 168 hours. 
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 It is clear from Figure 5 that oxidation of the Ge surface trends with humidity. 

It was not possible to achieve a 0% RH environment in air at 20°C and therefore the 

growth of oxide observed for the low RH case can be attributed to the small but non-

negligible amount of water vapour in the air. 

Water contact angle (WCA) analysis was carried out on each sample directly 

after the passivation procedure and after 24 and 168 hours in their respective 

environments. This is a quantitative measurement technique that gives an indication 

of the wettability of a surface. The wettability of the Ge surface is affected by how the 

surface is terminated. For example, the as-received Ge surface with its native oxide 

interacts favourably with water, resulting in a hydrophilic surface and a shallow 

contact angle between the water droplet, Ge and air. When the oxide is replaced with 

the methyl-terminated monolayer, a more hydrophobic termination, the polar water 

molecules in the droplet interact less favourably and thus do not wet the surface, 

resulting in a steep contact angle between water, Ge and air. In Figure 6 (ii), a contact 

angle of 95° is measured for the HT-passivated Ge. By tracking the changes in the 

angle of the water droplet with the substrate and air, we gain insights into how 

exposure to the environment with different levels of RH affects the presence of the 

SAM. The WCA for the sample exposed to the low humidity environment decreases 

by 5° in 24 hours but does not decrease further in the following 144 hours (Figure 6 

(iii) and (iv)). A similar result is observed for the sample exposed to the ambient 

humidity – a decrease of 5° in the WCA is observed in the first 24 hours of exposure 

to the ambient and over the next 144 hours of exposure, the contact angle only 

decreases by a further 2°.  
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The largest change in contact angle is observed for the sample exposed to the 

high humidity environment for 168 hours. In this case, the WCA drops by 8° over the 

first 24 hours and by a further 13° in the following 144 hours (Figure 6 (vii) and (viii)). 

Over the 168 hour period of exposure to the high humidity environment, the WCA 

decreased by a total of 22°. This indicates that the longer-term stability of the SAM is 

influenced greatly by the exposure to the high humidity environment. 

Taking this data together with the XPS results in Figure 2 elucidates how the 

water vapour damages the SAM allowing surface oxidation, evidenced by an increase 

in the intensity of the peaks corresponding to GeO2. A summary of the WCA results 

are displayed in Figure 7. The AFM images in Figure 6 show what effect, if any, 

exposure to the respective environments had on the surface roughness of the Ge. A 

pristine surface with roughness RMS value of 0.26 nm is observed for degreased Ge 

(Figure 6 (i)). For all other samples, an increase in surface roughness is observed and 

for the samples exposed to the high relative humidity, some spots are observed that 

may be oxide formations on the Ge surface at point defects. 
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Figure 6. WCA and AFM data for (i) as-rec Ge (ii) HT-passivated Ge (iii) and (iv) 

HT-passivated Ge with 24 and 168 hours exposure to the low humidity environment, 

respectively. (v) and (vi) HT-passivated Ge with 24 and 168 hours exposure to the 

ambient humidity environment, respectively. (vii) and (viii) HT-passivated Ge with 

24 and 168 hours exposure to high humidity environment, respectively. 
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Figure 7. WCA data for HT-passivated Ge plotted against time spent in respective RH 

environments. WCA for as-received Ge is 50°.[63] 

Previous reports explored the stability of DT-SAMs that were formed on 

Ge(100) through liquid-phase passivation. To demonstrate further the role of humidity 

in this work, the growth of GeO2 over time in low and ambient humidity environments 

for alkanethiol SAMs formed by vapour-phase passivation is compared to that of 

liquid-phase passivation in Figure 8. Due to the difficulty of achieving the vapour-

phase passivation of Ge using DT, which is a result of the molecule’s high vapour 

pressure, OT is used, which is a similar long-chain alkyl-thiol but has a lower vapour 

pressure. The vapour-phase passivation shows a similar trend to what has been 

reported previously in this work, where GeO2 growth is 0.01 and 0.13 nm for low and 

ambient humidity environment samples, respectively. This trend continues for liquid-

phase passivation where the GeO2 growth is 0.25 and 0.64 nm for low and ambient 
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humidity environment samples, respectively. This data also suggests that passivation 

method, and thus SAM quality, plays a role in stability as well-ordered, hydrophobic 

alkyl-backbones contribute to preventing water molecules from reaching the SAM-Ge 

interface.  

While the goal is to eventually replace Si with pure Ge in devices, Si1-xGex is 

the current alternative. As the percentage of Ge increases in SiGe alloys, the native 

oxide challenges associated with Ge become more pronounced. Today, mainstream 

logic devices in high volume manufacturing are limited to <60% Ge. In Figure 8, 

liquid-phase passivation of DT on SiGe75 is shown. The GeO2 growth is -0.05 and 

0.35 nm for low and ambient humidity, respectively. While the data suggests a 

decrease in GeO2 for the low humidity sample, it is likely a result of sample variation. 

The growth of GeO for SiGe75 in ambient humidity and the lack of growth for low 

humidity indicates that the role humidity plays follows the same trends for SiGe alloys 

as for pure Ge. By controlling for humidity, SAM stability on SiGe can be increased, 

thus reducing the amount of germanium oxide growth. 

 

Figure 8. GeO2 thicknesses of (left) Ge samples passivated by vapour-phase deposited 

OT and liquid-phase deposited DT and (right) DT-passivated SiGe75 exposed to low 



103 | Page 

 

and ambient relative humidity for 0 and 24 hours. Values extracted from Ge 2p spectra 

from Appendix Figure S4.1. 

 

4.4.2 Modelling SAM-Passivated Ge and the Impact of 

Humidity 

Density Functional Theory (DFT) calculations were performed to understand the 

atomic level detail of the SAM stability and the interaction between SAMs and water 

molecules. We use extensive static relaxations to explore how water interacts with 

SAMs and behaves at the Ge-SAM interface. While ab initio molecular dynamics 

(MD) would be useful to explore this in more detail, such analysis requires significant 

calculations beyond the scope of this work. 

The Ge(100) surface is modelled with a (2x2) surface supercell expansion with 

128 atoms while the 40 Å of vacuum separating the slabs along the periodic direction 

perpendicular to the surface allows for a range of alkanethiol chain lengths from two 

to twelve carbon atoms to be explored while removing periodic interactions 

perpendicular to the surface. To simulate the conditions of the bulk, Ge atoms in the 

bottom layer of the slab are fixed. The top surface, composed by 8 Ge atoms, was 

initially fully passivated with Cl atoms. 

We first determine the stable structures of alkanethiols on Ge and then we 

explore the influence of humidity for the SAMs with 4 and 6 carbon-atom-backbones 

as these are computationally tractable. The search for the most stable interface 

structure of the SAM on Ge was carried out by calculating the adsorption energies of 
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these alkanethiols on Ge surfaces at various coverages. With 8 Ge atoms in the 

outermost (terminal) surface layer, coverages from 12.5% to 100% can be constructed. 

The adsorption energy of the thiols at the Ge(100) surface is computed with 

adsorption in the thiolated form, in which the S–H bond breaks during adsorption onto 

the Ge surface, and leads to HCl formation. We calculated the adsorption energies 

(Eads) with the following expression: 

Ead = E(tot) + E(n HCl) – [ E (Cl:Ge) + E( n HS-CxH2x+1) ] 

where E(tot) is the total energy of the thiol-functionalised Ge surface, with n adsorbed 

thiol molecules; E(n HCl) is the energy of the isolated HCl molecule multiplied by the 

number, n, of HCl molecules; E (Cl:Ge) is the energy of the Cl passivated Ge(100) 

surface and E (nHS-CxH2x+1) is the energy of n alkanethiol molecules. All the energies 

have been computed using the same parameters including the van der Waals 

corrections.[59] 

We have examined different coverages and arrangements of the thiol 

molecules on Ge(100) for the examples of C4 and C6 alkanethiolates. The relaxed 

structures of the most stable butane- and hexanethiol-passivated Ge(100) surfaces at 

different coverages and the respective adsorption energies are reported in Figure 9. 

These stable thiolate coverages are used as models for humidity explorations. 
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Figure 9. Atomic structures of a) butanethiol and b) hexanethiol on Ge(100) at 

different coverages, with respective computed adsorption energies. 
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For C4 and C6 alkanethiols, the most favourable coverages on the Ge(100) 

surface are 62.5% and 87.5%, respectively, with computed adsorption energies of -

2.65 eV and -4.45 eV, respectively. We see that the C6 thiolate chain shows a stronger 

interaction with the Ge(100) surface, which can be attributed to the alkyl chain-chain 

interactions that are stronger for longer thiol chains. A detailed discussion of the 

stability and structure of a wide range of thiolate SAMs on Ge(100) is presented in 

Chapter 5.  

In Table 1, we present computed interaction energies of water at butane- and 

hexanethiol-passivated Ge surfaces at full SAM coverage. For each SAM, two 

energies are presented – Eint is the interaction energy relative to n water molecules (n 

= 1 – 8), while Eint / n is the interaction energy per water molecule.  

 Butanethiol on Ge(100) at 100% Hexanethiol on Ge(100) at 100% 

n H2O Eint (eV) Eint /n (eV) Eint (eV) Eint /n (eV) 

1 -0.09 -0.09 -0.09 -0.09 

2 -0.39 -0.19 -0.48 -0.24 

3 -0.82 -0.27 -0.84 -0.28 

4 -1.38 -0.35 -1.36 -0.34 

5 -1.73 -0.35 -2.24 -0.45 

6 -2.08 -0.35 -2.18 -0.36 

7 -3.26 -0.47 -2.67 -0.38 

8 -3.66 -0.46 -3.63 -0.45 

 

Table 1. Calculated interaction energies of Ge(100) surfaces with full coverage of 

alkanethiolates at different concentration of water molecules. The two energies 

presented for each thiolate are the total interaction energy for n water molecules (Eint) 

and the interaction energy per water molecule (Eint/n). 
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From Table 1, the magnitude of the interaction energy increases with the 

number of water molecules. However, the computed interaction energy per molecule 

is -0.25 ± 0.05 eV for low concentration (n = 2 - 4) and -0.40 ± 0.05 eV for high 

concentration (n = 5 - 8) in both SAM-Ge systems and therefore the influence of the 

chain length on the interaction with water is constant for these thiolate chains. This is 

most likely due to the presence of the terminating methyl group in the thiolates, which 

repels the water molecules and is independent of the length of the thiolate chain. 

The hydrophobic property of Ge(100) passivated by butanethiol- and 

hexanethiol-SAMs can be seen from the structures presented in Figure 10. Water 

molecules are initially positioned to interact with the thiolates at the chain-vacuum 

interface and are repelled from the SAM after relaxation in both low and high water 

concentration scenarios. 
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Figure 10. Atomic structures of Ge(100) entirely covered by a) butanethiol and b) 

hexanethiol with n (1, …, 8) water molecules positioned at the chain-vacuum interface 

before relaxation. 

In the case of a partially covered Ge surface, water molecules may migrate 

through any gaps between the chains but are still not easily able to reach the Ge surface 

because the SAM acts as a barrier, as demonstrated in the experimental work where 

Ge reoxidation requires > 24 hours. In Figure 11, we show two initial configurations 

of a water molecule positioned in the space between thiol chains and near the Ge 

surface for hexanethiol-SAMs at a surface coverage of 75%. After relaxation, both 

arrangements assume the same configuration with an interaction energy between water 

and the SAM-Ge system (Eint) of - 0.40 eV. Even if the water molecule is positioned 

near the thiolate-Ge interaction, it appears to relax away from the surface, trapped 

between two thiolate chains. 
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Figure 11. Atomistic structure of Ge(100) with 75% hexanethiol coverage with a 

water molecule placed a) in the middle of the chains and b) near the Ge surface before 

the relaxation and c) after relaxation. 

Interactions between water and a butanethiol-passivated Ge surface at 62.5% 

coverage as a function of water concentration are shown in Figure 12. The SAM acts 

as a barrier at low water concentration and water molecules begin to be repelled by 

the chains as the number of water molecules increases. At the highest water 

concentration, the water molecules are repelled by the terminating methyl group, as 

confirmed by Howell et al.’s work on water–SAM interactions.[64] Calculated 

interaction energies of these structures are also reported in Figure 12, as the number 

of water molecules increases, the interaction energy is always increasingly negative 

but interestingly, the interaction energy per molecule is higher at low concentration (n 
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= 1, …, 4) than at high concentration (n = 5, …, 8), in which it appears to be constant 

around -0.50 ± 0.05 eV. 

 

 

Figure 12. Calculated adsorption energies and optimised structures of Ge(100) with 

62.5% butanethiol coverage, with n (1, …, 8) water molecules. 

For this SAM-Ge structure, we also investigated a range of initial 

configurations in which a water molecule that is present at the Ge-SAM interface can 

dissociate into one of two species. The first is the formation of a thiol molecule, with 

an S-H bond which migrates away from the surface and a surface Ge-OH bond. The 

second is formation of a HCl molecule which migrates from the surface and a surface 

Ge-OH bond; this can also promote Ge oxidation by removing the surface passivating 

Cl species, as illustrated in Figure 13. 
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Figure 13. Schematic indicating possible reaction pathways for water attacking Ge 

surface, both cases involving the displacement of a passivant by an OH group. 

In the case of butanethiol-passivated Ge at 62.5% coverage, a water molecule 

can dissociate into hydrogen and hydroxide ions and relax to form a protonated HS-

thiol molecule and a new Ge-OH bond with an interaction energy of -0.85 eV. This is 

comparable to the configuration in which H2O does not dissociate but instead interacts 

at the interface between the SAM and Ge, as shown in Figure 14. 
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Figure 14. a) Model used to explore possible water dissociation in Ge(100) with 

butanethiol coverage of 62.5%, b) a solution in which molecular water remains 

confined around the initial position, c) water dissociation, in which water dissociates 

into hydrogen and hydroxide ions forming a Ge-OH bond and HS-thiol. 

In Figure 15, we show an example of the hexanethiol-Ge system at 62.5% 

SAM coverage, where upon water dissociation, a HCl molecule is released and a Ge-

OH species is formed. While this shows an apparently less favourable interaction 

energy of -0.19 eV compared to butanethiol, it is nonetheless competitive with the 

stability of a water molecule interacting at the SAM-Ge interface. This process 

removes the Cl species that passivates Ge in the absence of thiolates and also forms a 

new Ge-OH bond, which was proposed as the first step in reoxidation of halide-

passivated Ge in a previous work.[65] 
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Figure 15. a) Model used to explore possible water dissociation in Ge(100) with 

hexanethiol coverage of 62.5%, b) water dissociation, water breaks into hydrogen and 

hydroxide ions forming a Ge-OH bond and HCl molecule, c) water remains confined 

around the initial position. 

We propose that reoxidation can occur through two pathways, both involving 

water dissociation. One is the removal of Cl from the Ge surface as HCl and the other 

involves the removal of the SAM is as sketched in Figure 13, while both result in Ge-

OH at the surface. 
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4.5 Conclusions 

By tracking the growth of native GeO2 in time using XPS, the role that water vapour 

plays in SAM degradation and Ge surface oxidation is elucidated. The XPS results 

obtained indicate that higher humidity environments result in increased rates of 

oxidation of the thiol-passivated Ge surface. The WCA analysis complements these 

results wherein a greater decrease in contact angle is observed for the Ge samples 

exposed to the high humidity environment in contrast to those subjected to lower 

humidity environments. There are two potential avenues for SAM removal and Ge 

oxidation, (i) H2O attacking the Cl-Ge bond, which remain after the HCl etch, to form 

HCl and Ge-OH, and (ii) H2O attacking the R-S-Ge bond to form R-SH and Ge-OH. 

This reaction paves the way for oxygen in the air to attack Ge-Ge bonds.[65] The 

methyl termination in the tail group plays a crucial role in acting as a barrier to water 

in the air, preventing water from migrating to the Ge-SAM interface. Oxidation that 

does occur is likely due to the presence of defect sites in the SAM, which allow water 

to easily migrate to the surface. The Ge surfaces discussed in this work are assumed 

atomically flat. In reality, surface features such as ledges and steps are present which 

cause the structure of the SAM to be interrupted and offer sites for water molecules to 

diffuse through the SAM to the Ge surface. Thus, DFT simulations which incorporate 

such surface features are warranted and would complement this work. The 

experimental and modelling results highlight that by controlling the humidity of the 

environment the thiol-passivated Ge coupons are exposed to, the longevity of the SAM 

can be improved and thus the resistance to oxidation of the underlying Ge. 

Alternatively, improving the SAM can also have an impact on stability, for example 

by increasing the hydrophobicity of the tail group termination by using a fluorinated 

group, by increasing the chain alignment and packing density, or by decreasing the 
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defect density. Lastly, water induced thiol desorption could be a promising method for 

non-destructively removing the SAM during the fabrication process, as AFM showed 

little to no impact on surface roughness. This desorption process warrants further 

investigation. 
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Chapter 5 

Effect of Thiol Chain Length on Oxidation 

Resistance of Thiol-SAM-Passivated 

Ge(100) Surfaces 

 

 

This chapter is adapted from the following ACS Applied Materials & Interfaces 

manuscript. Consequently, certain concepts within this chapter may be repeated in 

other chapters. 

 

Manuscript: 

S. Garvey, A. Serino, B. Maccioni, J.D. Holmes, M. Nolan, N. Draeger, B. 

Long, Effect of Thiol Chain Length on Oxidation Resistance of Thiol-SAM-

Passivated Ge(100) Surfaces. ACS Applied Materials & Interfaces, (in 

review). 
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5.1 Abstract 

Germanium (Ge) has long been a considered a primary candidate to serve as the 

channel material in CMOS devices. The International Roadmap for Devices and 

Systems (IRDS™) predicts that from 2024, Ge, 2D materials or III-Vs will be the 

channel materials of choice for logic devices. However, since Ge is currently more 

easily integrable into VLSI (Very Large Scale Integration) lines than the other 

candidates, it has received more interest. Unfortunately, the complexity and water 

solubility of the native oxide of Ge has complicated its use as a channel material. 

Methods to remove the native oxide and replace it with a stable, passivating layer are 

being scrutinised in the hope that issues with the oxide can be circumvented. It is 

hoped that this will promote widespread use of Ge as the channel material. One such 

passivation method is the use of self-assembled monolayers (SAMs) of organic 

molecules. In the present work, a series of 1-alkanethiols, with varying carbon chain 

lengths are used to create SAMs on Ge(100) and a study of the reoxidation of the 

passivated Ge upon exposure to ambient conditions is undertaken. The longer thiol 

molecules outperform their shorte-chain counterparts in inhibiting reoxidation over 

168 hours of exposure to ambient. At the same time, we find that Ge surfaces 

passivated by the short-chain thiols (down to C4H9SH) still display acceptable 

resistance to reoxidation and therefore offer a passivation method that also reduces the 

C content on the Ge surface. These results also highlight the significance of the van 

der Waals interactions between the backbones of the thiols in relation to SAM stability 

and prevention of oxide growth. 
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5.2 Introduction 

In 1946, when Zisman published a paper on the self-assembly of a surfactant molecule 

onto a metal surface, interest in the scientific community was muted since the potential 

of self-assembly had not yet been recognised.[1] Self-assembly is a process by which 

a disordered system of components forms an organised structure or pattern due to local 

interactions among the components themselves.[2] This phenomenon occurs naturally 

in biological cells to form supramolecular organisations of complex systems [3]; 

however, it was Zisman who introduced the concept to technologists for the purposes 

of surface property modification and engineering of materials. Since then, self-

assembled monolayers (SAMs) have been used to augment the surface properties of 

many different materials [4] as they can have considerable effect on surface properties 

while being relatively easy to prepare. The system that has been studied most is thiol-

SAMs on gold.[5-8] In 2005, Whitesides et al. published an in-depth review on the 

topic [9]; however, this system is still being scrutinised and recently it has been 

discovered that non-chemisorbed gold-sulfur binding prevails in self-assembled 

monolayers.[10] The list of uses for SAMs is a lengthy one; however, some uses 

include corrosion prevention,[11] friction reduction,[12, 13] and as anti-stiction 

coatings in MEMs fabrication.[14] 

Specifically, in relation to forming SAMs on Ge, a review of the literature 

shows that there are three main methods. Namely, using the Grignard reaction, [15, 

16] alkanethiol passivation [17, 18] and through hydrogermylation.[19] Both the 

Grignard reaction and hydrogermylation approach result in the creation of Ge-C bonds 

whereas the alkanethiol passivation route involves the formation of Ge-S bonds.[20] 

The vast majority of the literature on alkanethiol (CH3(CH2)n-1SH) passivation of Ge 
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pertains to 1-dodecanethiol (C12H26S).[21-25] That said, Han et al. have demonstrated 

that SAMs of both 1-octadecanethiolates (C18H37S) and 1-octanethiolates 

(CH3(CH2)7S) can be formed when an oxide-free, H-terminated Ge(111) surface is 

reacted with a solution of the thiol molecules.[26] In both cases, they found the surface 

coverage of the SAM to be good with a high degree of orientational ordering and 

thermal stability of the passivation layers up to 450 K indicating that the Ge-S bond is 

a covalent bond. In this study, alkanethiol passivation of oxide-free Ge is conducted 

using a range of aliphatic thiol molecules with a range of carbon chain lengths in an 

effort to discern what effect the length of the thiol chain has on the effectiveness of 

the SAM at inhibiting Ge oxidation over the course of 168 hours. The main motivation 

to use short-chain thiols for Ge passivation relates to processing temperatures. Thiols 

with lower molecular weights have higher vapour pressures and thus require less heat 

to form the thiol vapour necessary to achieve a vapour-phase passivation. Reducing 

the processing temperatures required to achieve passivation is advantageous since a 

low thermal budget allows the passivation process to be carried out further down the 

device fabrication line and previous processing steps are less likely to be affected. 

Ge is a very promising channel material candidate for CMOS devices since it 

has both higher electron and hole mobilities than Si [27] (over 2 and 4 times, 

respectively) while being easier to integrate into current CMOS processing lines than 

the other high-mobility channel material candidates (TMDs, III-Vs). The native Ge 

oxide (the bulk of which is GeO2) is not a suitable dielectric with characteristics that 

make it undesirable from a device perspective. For example, unlike SiO2, GeO2 is 

water-soluble and thus the aqueous processing steps that are currently used in device 

manufacturing would cause oxide etching and regrowth upon exposure to air – 

multiple cycles of which would cause loss of Ge, an issue which is critical when 
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working with Ge nanostructures such as nanoribbons or pillars.[20] Also, the interface 

between Ge and its native oxide is not ideal with vacancies that trap charge carriers 

and hinder device performance.[28] Consequently, methods to replace the Ge oxide 

are of interest to those who wish to circumvent the aforementioned issues to work 

towards enabling the use of Ge as a channel material in future CMOS devices. 

Alkanethiol SAMs have been shown to be effective at inhibiting oxide growth on Ge 

upon exposure to the ambient.[23, 29] The alkanethiol passivation of Ge is a two-step 

process. The native oxide must first be replaced with a surface termination layer that 

is reactive toward thiols. The native oxide can be removed using acid halides (HX, X 

= F, Cl, Br).[30-34] Removing the oxide using HF yields a H-terminated surface which 

can be further functionalised by thiol molecules. However, the H-terminated surface 

itself does not offer prolonged oxidation resistance, in fact, the surface begins to 

reoxidise within minutes.[35] As such, achieving passivation without also causing 

oxidation of the H-terminated Ge surface can be challenging. Therefore, terminating 

the Ge with a layer, which is more robust than the H-termination yet still reactive 

toward further functionalisation, is advantageous. Other acid halides can be used for 

this purpose since unlike with HF, upon oxide removal, the surface is terminated by 

the halide atoms (Cl, Br) rather than H atoms.[30, 34] The Cl-terminated surface 

specifically, while still being reactive toward thiols, oxidises at a slower rate when 

compared to H-terminated Ge surfaces.[30] The Cl-terminated Ge surface therefore 

allows for alkanethiol passivation with less risk of concurrent oxide growth.  

The stability of thiol-passivated Ge surfaces is dependent on a number of 

factors. Alkanethiol chain length is hypothesised to be a critical factor in the stability 

of the SAM since longer alkane chains maximise the van der Waals (vdW) interactions 

between adjacent alkanethiol molecules in the SAM. VdW interactions are weak 
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interactions that occur between atoms that are in close proximity to each other. In the 

case of an alkanethiol-SAM, the –CH2 units in the backbones of adjacent molecules 

interact with one another. Although this local interaction is weak in nature, the global 

effect can be considerable. The significance of this phenomenon is made evident by 

the fact that thiol SAMs on gold are stable even though non-chemisorbed gold-sulfur 

binding prevails, as previously mentioned.[10]  

Another contributing factor to the stability of the SAM is the parity of the 

molecule used to achieve the SAM - whether there is an odd or even number of C 

atoms in the backbone of the passivating thiol molecule. Odd-even effects are a widely 

observed phenomenon across the sciences but in biology, physical chemistry and 

material science in particular.[36] Generally, the effect can be described as an 

alteration in the structure and/or properties of a system based on whether there are an 

odd or even number of units in a molecule.[36] In thiol SAMs, the unit is a –CH2 

moiety. These kinds of effects have been observed on Ag [37-39]; however, due to the 

chemical inertness of Au under ambient conditions and the excellent reproducibility 

in preparing high-quality SAMs as a consequence, the majority of the literature on the 

odd-even effect of SAMs is on Au.[40-44] When forming a SAM, thiol molecules 

with an odd number of –CH2 units in the C backbone pack differently to those with an 

even number of –CH2 units. In Figure 1, thiol molecules of opposite parity are 

displayed. The orientation of the terminal group is different in each case. This has been 

shown to have implications on the properties of the SAM itself. Baghbanzadeh et al. 

observed an odd-even effect on the tunnelling current density through Au junctions 

passivated by SAMs of n-alkanethiolates with odd and even numbers of –CH2 

units.[45] Also, Amara et al. have elucidated how properties such as capacitance, 
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dielectric constant and surface hydrophobicity of Au passivated by thiol-SAMs 

depend on both the length and parity of the thiol molecules used.[43] 

 

Figure 1. Thiol molecules with even and odd numbers of –CH2 units in the backbone 

are displayed. The difference in the orientation of the terminal group is apparent. 

 In an effort to elucidate the impact of the thiol chain length on the stability of 

a SAM on Ge and its oxidation resistance we present a detailed investigation of the 

preparation and properties of thiol SAM functionalised Ge and a set of first principles 

density functional theory (DFT) calculations of model SAM-Ge systems. We chose to 

simplify the analysis and neglect odd-even effects in the thiols and therefore only thiol 

molecules with an even number of –CH2 units in the thiol backbone are used in this 

study. 
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5.3 Methods 

5.3.1 Preparation of SAMs on Ge surfaces 

Passivation of the Ge was achieved using a range of aliphatic thiol molecules 

purchased from Sigma-Aldrich using a vapour-phase method previously outlined.[29] 

Specifically, 97% ethanethiol (C2), 99% 1-butanethiol (C4), 99% 1-hexanethiol (C6), 

98.5% 1-octanethiol (C8) and 98% 1-dodecanethiol (C12) were used. For comparison, 

a Cl-terminated Ge surface was prepared also simply by etching in 20% HCl for 10 

minutes to remove the native oxide followed by drying under a stream of N2. Between 

measurements, the samples were stored in a temperature and humidity controlled 

environment (Vötsch temperature test chamber). To emulate ambient conditions, the 

relative humidity (RH) and temperature were set to 40% and 20°C, respectively. XPS 

measurements were taken directly after the passivation reaction and after 24 and 168 

hours of exposure to the controlled ambient environment. 

5.3.2 Characterisation Methods 

5.3.2.1 X-ray Photoelectron Spectroscopy (XPS) 

Spectra were acquired on an Oxford Applied Research Escabase XPS System 

equipped with a CLASS VM 100 mm mean radius hemispherical electron energy 

analyser with multichannel detectors in an analysis chamber with a base pressure of 

5.0 × 10−9 mbar. A step size of 0.7 eV, pass energy of 50 eV and a dwell of 0.3 s was 

used for survey spectra which were swept twice. All core level scans other than the S 

2p were acquired with a step size of 0.1 eV, a dwell time of 0.1 s and a pass energy of 

20 eV averaged over 10 scans. The S 2p scans were acquired with a step size of 0.1 

eV, a dwell time of 0.1 eV and a pass energy of 50 eV averaged over 20 scans in an 
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effort to maximise the intensity of the S 2p peaks. A non-monochromated Al-Kα X-

ray source (1486.58 eV) at 100 W power (10 mA, 10kV) was used for all scans. All 

spectra were acquired at a take-off angle of 90° with respect to the analyser axis and 

were charge corrected with respect to the C 1s photoelectric line at 284.8 eV. A Shirley 

type background was used for construction and peak fitting of synthetic peaks. 

Synthetic peaks were a mix of Gaussian-Lorenzian, the Ge 2p spectra were fit using 

Gaussian-Lorentzian peak shape GL(90) for the elemental Ge peak and Lorentzian 

peak shape LA(1.53,243) for all other peaks. The relative sensitivity factors used are 

from a CasaXPS library containing Scofield cross-sections. The fitted Ge 2p peaks 

used to determine oxide thicknesses are displayed in the Appendix section (Figure 

S5.1 & S5.2). Oxide thickness was calculated using the method outlined previously 

by Murakami et al.[46] 

 

𝑑𝐺𝑒𝑂2
= 𝜆𝐺𝑒𝑂2

𝑠𝑖𝑛𝜃 𝑙𝑛 (
𝐼𝐺𝑒

∞

𝐼𝐺𝑒𝑂2

∞

𝐼𝐺𝑒𝑂2

𝐼𝐺𝑒
+ 1) 

 

where 𝜆𝐺𝑒𝑂2
 is the inelastic mean free path for the Ge 2p transition, which is 0.9 nm; 

the photoemission angle θ is 90°; 𝐼𝐺𝑒
∞ /𝐼𝐺𝑒𝑂2

∞  is the ratio of the Ge 2p signal from 

infinitely thick Ge to infinitely thick GeO2 and is 1.73; 𝐼𝐺𝑒𝑂2
 is the intensity of the of 

native oxide (GeO2) peak from curve fitting the Ge 2p feature; 𝐼𝐺𝑒  is the intensity of 

the metallic Ge peak from curve fitting the Ge 2p transition. 
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5.3.2.2 Water Contact Analysis (WCA) 

An image of a 50 µL drop of deionised water that was deposited on to the Ge surface 

was taken such that the angle between the water, Ge surface and air could be measured. 

Increased hydrophobicity of the passivated Ge surfaces is used as an indirect 

indication that the passivation layer is present.  

5.3.3 First Principles Simulation Methodology 

We studied alkanethiolate SAMs on the Ge(100) surface from first principles density 

functional theory (DFT) using a basis set of periodic plane wave as implemented in 

the Vienna Ab Initio Software Package (VASP5.4).[47, 48] The core electrons are 

described by projector augmented wave (PAW) [49] potentials and the exchange and 

correlation energies are approximated by the generalised gradient approximation 

(GGA) with the Perdew-Burke-Ernzerhof (PBE) [50] gradient corrected functional. In 

order to take into account the van der Waals interactions between alkanethiols, we 

used the DFT-D3 dispersion correction method [51] that incorporates the long-range 

dispersion contribution to the exchange-correlation PBE functional. We use the 

following valance electron configurations; for germanium; Ge 4s2 and 4p2, for 

chlorine; Cl 3s2 and 3p5, for sulfur; S 3s2 and 3p4 and for carbon; C2s2 and 2p4. All the 

calculations use an energy cut-off for the valence electron plane wave basis set of 420 

eV and the convergence criteria for electronic relaxations and ionic relaxations are 10-

4 eV and 0.02 eV/Å, respectively. In addition, the conjugate-gradient algorithm was 

used for the relaxation of the ions during the calculations, and a 2×2×1 Monkhorst–

Pack k-points grid [52] was used for the integrals in the Brillouin zone for a correct 

energy convergence.  
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5.4 Results & Discussion 

XPS is an extremely useful method for probing SAMs and thin films in general since 

it allows for the elemental composition, chemical state and electronic structure of the 

surface of a material to be ascertained. XPS is used in this study to track the 

reoxidation of the passivated Ge(100) surfaces upon exposure to ambient conditions 

to elucidate what effect thiol chain length has on the effectiveness of the SAMs at 

inhibiting Ge oxidation. Thiol SAMs have previously been shown to be effective at 

inhibiting oxidation of Ge.[23] It is hypothesised that long-chain thiols rather than 

short-chain thiols are better at preventing Ge oxidation since the SAM is stabilised by 

vdW forces between the C backbones of the adjacent thiol molecules. The global vdW 

interaction increases with carbon chain length. However, to the knowledge of the 

authors, this has not yet been experimentally determined for thiol-SAMs on Ge. Five 

thiol molecules were chosen for this study, each containing an even number of –CH2 

units in the thiol backbone. They are as follows: ethanethiol (C2), 1-butanethiol (C4), 

1-hexanethiol (C6), 1-octanethiol (C8) and 1-dodecanethiol (C12). These molecules 

were used to passivate Ge and a study of the reoxidation of Ge upon exposure to 

ambient conditions was carried out. 

The calculated GeO2 thicknesses after 0, 24 and 168 hours are graphically 

represented in Figure 2 and tabulated in Table 1. Fitted Ge 2p spectra are included in 

the Appendix section – Figures S5.1 & S5.2. For reference, a Cl-terminated Ge 

surface is included in the study as a baseline for Ge reoxidation upon exposure to 

ambient conditions. In the case of BT, HT, OT and DT no GeO2 was detectable by 

XPS directly after passivation. This was not the case with ET-passivated Ge. The 

authors could not passivate Ge with ET without also causing a non-negligible amount 



137 | Page 

 

of Ge oxidation (0.06 nm). It is hypothesised that the alkanethiol chain is too short in 

the case of ET for any meaningful stabilisation effect from vdW forces to occur. 

Consequently, the sample begins to oxidise in the short space of time (5 minutes) that 

is required to clean the sample after passivation and to load into the XPS chamber.  

From Figure 2, a clear pattern is observed whereby Ge oxidation trends with 

thiol chain length. That is, SAMs of thiol molecules consisting of longer chains inhibit 

the oxidation of Ge more effectively than SAMs comprised of shorter chains upon 

exposure to ambient conditions for 168 hours. Over the course of the 168 hour period, 

0.08 nm of GeO2 grows on the DT-passivated Ge whereas 0.12 nm, 0.14 nm and 0.16 

nm grows on OT-, HT- and BT-passivated Ge, respectively. These results are tabulated 

in Table 1. Included in this table are the calculated oxide thicknesses for as-received 

Ge and Cl-terminated Ge after 0, 24 and 168 hours of exposure to ambient conditions. 
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Figure 2. GeO2 growth over 24 and 168 hours for Ge passivated by ET (purple), BT 

(black), HT (red), OT (blue), DT (pink), Cl (brown). 

The rate of oxidation for each sample is greatest in the first 24 hours of exposure to 

ambient conditions indicating that the sites in the SAM that are susceptible to in-

diffusion of water molecules facilitate oxidation at that spot on the Ge and the growth 

of the seed oxide is a slower process. In addition, oxidation rates strongly trend with 

thiol chain length over the first 24 hours of exposure; however, the rate of oxidation 

over the proceeding 144 hours is less dependent on thiol chain length evidenced by 

similar but not equal rates of oxidation. 

 

Surface 

termination 

As-

Rec 

Cl-Ge ET 

(C2) 

BT 

(C4) 

HT 

(C6) 

OT 

(C8) 

DT 

(C12) 

Exposure time 

(hrs) 

 

Oxide Thickness (nm) 

0 2.1

2 

0 0.06 0 0 0 0 

24 2.1

2 

0.2 0.12 0.06 0.05 0.04 0.02 

168 2.1

2 

0.35 0.27 0.16 0.14 0.12 0.08 

 

Table 1. Calculated oxide thicknesses for Ge with a range of surface terminations. 

Density Functional Theory (DFT) calculations were performed to understand 

the atomic level details of the role of the carbon chain length of the thiol molecule on 

the stability of thiol-SAM-passivated Ge(100) surfaces. The Ge(100) surface is 

modelled with a (2x2) surface supercell expansion with 128 atoms. To simulate the 

conditions of the bulk, Ge atoms in the bottom layer of the slab are fixed. The top 
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surface, composed of 8 Ge atoms, was initially fully passivated with Cl atoms. Surface 

calculations were performed using the slab technique, taking into account the 

periodically repeating infinite layers separated by vacuum layers along the normal 

surface. A vacuum thickness of 40 Å is adopted in all cases in order to remove 

interaction between periodic slabs perpendicular to the surface, while allowing for a 

range of alkanethiol chain lengths from 4 to 12 C atoms to be explored.  

To determine the stable structures and coverages, we calculated the adsorption 

energy of alkanethiols on the Ge(100) surface for different thiols with an even number 

of C atoms in the molecule backbone and at various coverages. Coverages from 12.5 

to 100% can be constructed in our Ge surface model. We considered the adsorption of 

the thiols in thiolated form since it is well established that the S–H bond breaks during 

the adsorption of thiols on Ge surfaces leading to HCl elimination and Ge-S bonding. 

The adsorption energies (Eads) of the thiols forming the SAMs were computed by the 

following expression: 

Ead = E(tot) + E(n HCl) – [ E (Cl:Ge) + E( n HS-CxH2x+1) ] (eqn. 1) 

where E(tot) is the total energy of the thiol-functionalised Ge surface, with n adsorbed 

thiol molecules; E(n HCl) is the energy of the isolated HCl molecule multiplied by the 

number, n, of HCl molecules; E (Cl:Ge) is the energy of the Cl-passivated Ge(100) 

surface and E (nHS-CxH2x+1) is the energy of n alkanethiol molecules. All the energies 

have been computed using the same parameters including the van der Waals 

corrections. Negative values of the adsorption energies Eads mean energetically 

favoured adsorption configurations.  
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The most stable configurations for the thiol SAMs were determined, starting 

from several initial trial configurations and adsorption sites on the Ge(100) surface, 

by energy minimisations to sample minima corresponding to equilibrium structures.  

The results for the computed adsorption energies of Ge(100) passivated by thiols with 

an even number of –CH2 units in the chains (C4, C6, C8, C10, C12) are reported in 

Figure 3.  

Surface passivation of Ge(100) is favourable for all thiols for coverages above 

37.5%. In general, we find that coverages between 75 and 100% are the most 

favourable, except for the butanethiol (C4) where it is 62.5%, although the higher 

coverages are still favourable (negative adsorption energy from eqn. 1). Referring to 

computed adsorption energies, the most strongly bound thiol is the hexanethiol (C6), 

although at the most stable coverages all thiols show high stability, with computed 

adsorption energies of between -2.0 and -4.5 eV/molecule, which indicates a strong 

thiol-surface bond. By contrast, in a previous study, on H:Si(111) we found weaker 

adsorption energies around -1.5 eV.[53] Octane- and decanethiols (C8 and C10) show 

similar behaviour while butanethiol (C4) appears to show a stronger coverage 

dependence, with adsorption energies initially comparable with C8 and C10 thiols at 

low coverage, but being less favourable at high coverages. 

These results are comparable to experimental data, in which the Ge passivation 

with thiols from butanethiol to dodecanethiol are all favourable, while the precise 

coverage does not have a strong impact on stability. 
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Figure 3. Adsorption energies of Ge(100) passivated by thiols of different lengths as 

a function of coverage. 

 

In order to understand the Eads values, we have analysed the structural 

properties of the Ge-SAMs systems. We began our investigation by determining the 

most favourable configurations for the Ge(100) passivation in which chlorine and 

sulfur atoms occupy the same Cl–Ge–Cl and S–Ge–S bridge sites.[54, 55] The 

interatomic distances for the Ge–Cl and Ge–S bonds are 2.4 Å and the distance 

between Ge atoms is 4.1 Å for both chlorine- and sulfur-passivated Ge(100). 

The binding of the alkanethiols induces significant distortions to the surface 

upon relaxation whereby S atoms move towards the bridge site. In the most favourable 

configurations, the interatomic distances for the Ge–S bonds in butane- and 

hexanethiolates on Ge(100) are between 2.2 Å and 2.4 Å and thus vary at most by 0.2 

Å. The interatomic distances for the Ge–S bonds in the longer chains, i.e. C8, C10 and 

C12, are between 2.2 Å and 2.6 Å, varying at most by 0.4 Å. This variation is more 
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evident in configurations at coverages between 75% and 100%, in which some S atoms 

bond to only one Ge surface atom. 

The corresponding S–C distances for all thiolates at all coverages, vary by only 

0.02 Å between 1.82 Å and 1.84 Å. At lower coverages, from 12.5% to 37%, the S–C 

distance is constant across all thiol chains and assumes a maximum value of 1.84 Å. 

As the coverage increases, the S–C distance for the thiols assumes different values. 

Consequently, the interatomic distances within the molecule do not depend 

significantly on the length of the thiolate chains, but depend on the particular 

arrangement of thiols on the Ge surface.  

Moreover, from structural analysis, we have found that the alkanethiols form 

a compact monolayer with a non-homogeneous thickness. The thiol chain thickness 

can be determined as the projection of the length of the chain along the c-axis, denoted 

by lc in Appendix Figure DFT-S5.3. We have computed the thickness for C4, C6, 

C8, C10 and C12 alkanethiol SAMs that entirely cover the Ge surface and at the 

relevant, most stable partial coverages. The difference in the thickness is related to the 

simultaneous variation of the length and the tilt angle, l and θ, respectively, of each 

chain forming the monolayer. The tilt angle, defined in Appendix Figure DFT-S5.3, 

corresponds to the angle between the thiol chain and the normal to the surface at the 

adsorption point. The angles are measured between the c-axis and the straight line 

joining S and Cn (n = 4, 6, 8, 10, 12). On gold, [41, 56] and silicon [57] surfaces, thiols 

usually adopt a tilted structure which can promote interactions between the chains and 

consequent stabilisation of the system.  

Alkanethiol molecules in the SAM also exhibit a precession angle (α), which 

is used to demonstrate the coexistence of differently oriented chains. The precession 
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angle (α) corresponds to the angle between thiol chain projection into the ab plane 

(surface) and the a-axis (see Appendix Figure DFT-S5.3).[58] 

Tilt and precession angles, length and thickness of the thiol chains for the most 

stable structures of these alkanethiol SAMs on Ge(100) at different coverages are 

given in Appendix Table DFT-S5.4.  

The tilt of the chains is more pronounced in the case of short-chain thiol-

passivated Ge (butanethiol (C4) and hexanethiol (C6)). Furthermore, an increase of 

the tilt angles in butanethiol chains up to 35° is found at low coverages; at full 

coverage, this angle assumes the minimum value of 4°. The precession angles obtained 

indicate different chain orientations at low coverage. At the most stable coverage and 

at full coverage, average precession angles of 180° and 220° (for C4 and C6, 

respectively) indicate that the thiol chains are well ordered. This ordering in the thiol-

SAM structure is one origin of enhanced stability at higher coverages where the 

ordering promotes the interchain vdW interactions.  

The tilt angle in octanethiol (C8) chains assumes a maximum value of 36° 

between coverages of 37.5% and 75% and this angle decreases to 2° at higher 

coverages. In addition, the precession angle increases from 154° to 230° as the 

coverage increases from 75% to 100%. In these cases, the chains are oriented in two 

different directions, with precession angles of 205° and 230°, and assume two values 

of tilt angle; 9° and 3°, respectively. Long-chain thiols at stable coverages adopt two 

different directions. We find precession angles of 88° - 226° for C10, and 80° - 226° 

for C12, while the tilt angles are 4° - 14° and 4° - 12°, respectively.  

In Figure 4, we present two different views of the most favourable 

configurations for the thiol molecules. Short-chain thiols tend to assume one 
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orientation while long-chain thiols tend to be more ordered on the surface and assume 

two orientations. The role of chain length, angles and coverage on the adsorption 

characteristics have been examined to elucidate the energetics of the Ge-SAM 

systems. The difference in energies and especially tilt angles indicates that 

alkanethiolates with long chains promote the stability of the SAM. 

 

Figure 4. Top (a) and side (b) views of geometrically-optimised structures of the most 

stable coverage for each thiol molecule. 

In Figure 5 (i), the S 2p peaks for Ge passivated by the thiol molecules (C4, 

C6, C8, C12) with 0 hours of exposure to ambient conditions are shown and compared 

with freshly cleaned, as-received Ge (green). ET-passivated Ge is omitted since the 

authors could not achieve passivation without also causing GeO2 growth. Sulfur (S) 

acts as a useful marker when tracking the presence of thiol-SAMs on Ge by XPS. 

Since the thiols that are used are non-functionalised, the only other atom that is 

detectable in the thiol molecule by XPS is carbon (C). Hydrogen (H) atoms are not 

detectable by XPS. C contamination from the environment can easily occur whereas 

this is less likely to happen with S. Consequently, in the case of the as-received Ge, 

there is no S peak present at 162.4 eV in Figure 5 (i) (green). There is however, a peak 
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of approximately the same intensity present at 162.4 eV for the four passivated 

samples. Analysis of this S peak gives qualitative information about the presence of 

the thiol passivation on the Ge(100) surface. Since each thiol molecule contains only 

one S atom, irrespective of the number of C atoms present in the backbone of the thiol, 

a comparable amount of S on the surface indicates that the concentration of the thiol 

molecules on the Ge surface is similar in all cases. Thus, it can be inferred that the 

length of the thiol molecule does not have a considerable effect on the level of 

passivation achieved using the vapour-phase method outlined in the methods section. 

In Figure 5 (ii), the C 1s peaks are presented for the same sample set. Here, the 

intensity of the C peak diminishes as the length of the thiol molecule decreases from 

12 C to 4 C atoms. In contrast to S, the number of C atoms in each thiol molecule 

reduces by two from 1-dodecanethiol, with 12 C atoms through to 1-butanethiol with 

4 C atoms, which explains the diminishing nature of the C peak from one sample to 

the next. Although the as-received Ge sample has been degreased using acetone and 

IPA to remove carbon contamination, C is detectable on the surface – as can be seen 

by the presence of the C 1s peak at 284.8 eV (green) in Figure 5 (ii). The presence of 

C is due to unavoidable contamination by adventitious C from the ambient prior to 

loading into the XPS instrument. The C peak is always present and is used to charge-

correct the spectra that are acquired. 
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Figure 5. Overlaid (i) S 2p and (ii) C1s spectra for as-received Ge and Ge passivated 

by BT (black), HT (red), OT (blue) and DT (pink), respectively, with 0 hours exposure 

to the ambient. 

Having exposed the sample set to the ambient for a period of 24 hours, XPS 

spectra were acquired again. The S 2p and C 1s data are displayed in Figure 6. By 

tracking the changes in intensity of the S 2p, C 1s and Ge 2p peaks, the authors can 

determine how well each passivating SAM prevents oxidation of the Ge. Again, in all 

cases, there is an S 2p peak present at 162.4 eV; however, the amount of S has 

diminished somewhat from the first measurement taken directly after the passivation 

procedure. The diminishing S 2p signal is likely due to the growth of Ge oxide 

evidenced by the slight increase in calculated oxide thickness. The Ge 2p data 

(Appendix Figure S5.1 & 5.2) are used to calculate the oxide thicknesses tabulated 

in Table 1. 
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Figure 6. Overlaid (i) S 2p and (ii) C 1s spectra for as-received Ge and Ge passivated 

by BT (black), HT (red), OT (blue) and DT (pink) with 24 hours exposure to the 

ambient. 

In Figure 7 (i), a continuation of the trend that has been observed from 0 to 24 

hours is evident. After 168 hours of exposure to the ambient conditions, an S signal is 

still observed for the passivated samples albeit at lower intensity than after 0 and 24 

hours. A comparison of the S 2p signals for each sample is displayed in Figure 8. In 

all cases, there is a drop in the intensity of the S signal over 168 hours however, there 

is less of a drop in intensity of the S 2p peak for the DT-passivated Ge over 168 hours 

when compared with the other samples. The diminishing nature of the S 2p peak over 

the course of 168 hours of exposure to ambient conditions can be understood when the 

growth of the native oxide (Appendix Figures 5.1 & 5.2) is considered also. Ge-S 

bonds are replaced by Ge-O bonds resulting in the appearance of peaks relating to 

Ge+2 (GeO) and Ge+4 (GeO2) in the Ge 2p XPS spectra resulting in thicker calculated 

oxide thicknesses (Table 1) and the reduced intensity of the S 2p peaks.  
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Figure 7. Overlaid (i) S 2p and (ii) C 1s spectra for as-received Ge and Ge passivated 

by BT (black), HT (red), OT (blue) and DT (pink) with 168 hours exposure to the 

ambient. 
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Figure 8. Overlaid S 2p spectra for Ge passivated by (i) BT (ii) HT (iii) OT and (iv) 

DT after 0 (black), 24 (red) and 168 (blue) hours of exposure to the ambient. 

Generally, there is a drop in intensity of the C 1s peak from 0 (black) to 24 

(red) to 168 (blue) hours as illustrated in Figure 9. However, since contamination from 

the ambient is likely to affect the C data, it is more reliable to follow the S 2p trends, 

as S is specific to the thiol molecules. With that said, a general trend whereby C 

concentration on the Ge surface decreases over 168 hours is observed. This indicates 

that over 168 hours of exposure to ambient conditions, thiol desorption from the Ge 

surface occurs in all cases, irrespective of thiol chain length. 
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Figure 9. Overlaid C 1s spectra for Ge passivated by (i) BT (ii) HT (iii) OT and (iv) 

DT after 0 (black), 24 (red) and 168 (blue) hours exposure to the ambient. 

Water contact angle (WCA) analysis was conducted to give an insight into the 

wettability of the Ge surfaces directly after passivation. The thiols used in this study 

are non-functionalised, with each having a non-polar –CH3 termination. Water does 

not interact favourably with non-polar surfaces and so these kinds of surfaces are said 

to be hydrophobic in nature. Trends have been observed whereby SAMs consisting of 

long-chain alkanethiols produce surfaces which are more hydrophobic than those 

passivated by shorter chain alkanethiols.[43] This trend was generally observed, as 

can be seen by Figure 10 whereby hydrophobicity of the passivated Ge surfaces trends 

with the length of the thiol molecules used to achieve that passivation. SAMs produced 
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from passivation by ET and BT yield Ge surfaces with approximately the same level 

of hydrophobicity however, as the chains lengthen, the hydrophobicity of the surface 

increases to 100° for both OT- and DT-passivated Ge. 

 

Figure 10.  WCA analysis of Ge passivated by (i) Cl (ii) ET (iii) BT (iv) HT (v) OT 

(vi) DT revealing what effect surface termination has on Ge hydrophobicity. 

5.5 Conclusions 

The data has shown that resistance to oxidation of thiol-passivated Ge(100) is 

dependent on the length of the thiol chain. Longer-chain thiols with an even number 

of –CH2 units in their backbones outperform their shorter-chain counterparts. 

Calculated adsorption energies confirm that passivation of Ge(100) is more favourable 

when the number of carbon atoms in the thiol molecule is increased, although even 

the short-chain butanethiol-SAM is stable. Stability with coverage appears to be 
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governed by the tilting and orientation of the thiolate chains on the Ge surface. The 

increased oxide resistance of Ge passivated by the longer-chain thiols is hypothesised 

to originate from the increased stability of SAMs consisting of long-chain thiols due 

to the vdW interactions between adjacent thiol molecules in the SAM. The interaction 

between the thiol molecules stabilises the SAM, which acts as a barrier between the 

Ge and air. The interaction between the shorter-chain thiols in a SAM is less since 

there are fewer –CH2 units per thiol. VdW interactions have been shown to play a 

central role in the stability of thiol SAMs on gold [10] and here it is shown to be an 

important factor in the oxidation resistance of thiol-passivated Ge. 
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    Chapter 6 

Conclusions & Future Perspectives 

 

6.1 Conclusions 

Advanced device architectures and novel materials are being scrutinised in an effort 

to achieve ‘More Moore’ and to meet the technological demands of modernity. 

Improving the channel characteristics of FET devices will involve GAA [1] 

approaches and the integration of novel high-mobility materials such as Ge, III-V 

semiconductors and 2D materials, as predicted by the IRDS™. In fact, in 2020 the 

IRDS™ predicted that Ge will replace SiGe as the channel material of choice by 

2028.[2] This is a challenging prospect whereby the level of control over Ge surface 

chemistry and defect minimisation at the interface between Ge and adjacent materials 

are essential considerations.[3, 4] The limitations of Ge’s native oxide are known and 

documented in the literature [5-7] and efforts to replace the oxide with more stable 

passivating layers are well underway.[8-12] SAMs of various kinds of organic 

molecules have garnered attention as potential methods to achieve Ge passivation 

owing to the relative ease with which they can be prepared along with the considerable 

effect they can have on the surface properties of the Ge.[8, 10, 13, 14] Vapour-phase 

processing of Ge will be an essential step in the production of Ge-based devices since 

the destructive capillary forces experienced during wet-chemical processing are 

circumvented. In this body of work, methods to passivate Ge(100) surfaces with 

aliphatic alkanethiol molecules are explored and insight is gained into the 

environmental factors that cause SAM-degradation and Ge oxidation.  
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 Chapter 1 introduces key concepts such as the structure and properties of Ge, 

the issues associated with Ge’s native oxide, and a review of the literature on the 

passivation of Ge surfaces using liquid- and vapour-phase methods.  

 Chapter 2 details the characterisation and modelling methods that are used 

throughout this body of work. 

Chapter 3 outlines a novel and relatively simple method to achieve the 

vapour-phase passivation of Ge(100) using 1-hexanethiol. This passivation reaction 

can be carried out in ~200 minutes whereas the state-of-the-art liquid-phase reactions 

using 1-dodecanethiol require 24 hours and result in a Ge surface that is less resistant 

to reoxidation. The motivation to achieve the passivation of Ge using a vapour-phase 

approach stemmed from the desire to develop a process that is applicable to suspended 

and tightly pitched arrays of Ge nanostructures. Liquid-phase processing can cause 

damage to suspended nanostructures due to surface tension and capillary forces can 

cause arrays of tightly pitched suspended structures to stick together. In addition, since 

the surface to bulk ratio for nanostructures is high, it was imperative that the developed 

process had a negligible impact on surface roughness. What may seem like an 

insignificant increase in roughness on planar Ge would have a considerable affect on 

10 nm wide nanowires for example, which are only ~40 atoms wide. The process that 

was developed caused no meaningful increase in surface roughness of the Ge and 

served as the bedrock for the rest of the work done in this thesis as it provided a highly 

reproducible method for the creation of alkanethiol-SAMs on Ge. 

 Once a robust passivation method had been developed for Ge, an obvious 

continuation was to determine which environmental factors play a significant role in 

the degradation of the SAM and the reoxidation of the underlying Ge. In Chapter 4, 
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relative humidity is determined to be one such factor. Alkanethiol-passivated Ge(100) 

surfaces were exposed to environments with different levels of relative humidity and 

XPS was used to track the growth of oxide over 168 hours. It was found that 

alkanethiol-passivated Ge oxidised at a slower rate when stored in a low humidity 

environment than higher humidity environments. This is a significant finding since it 

is now understood that the longevity of the SAMs can be increased if relative humidity 

is controlled. The motivation for this study came from the industry partner who wished 

to discern for how long the alkanethiol passivation was effective at inhibiting Ge 

reoxidation and what factors were essential in the reoxidation of the Ge surfaces. In a 

device fabrication line, relative humidity is easy to control and thus the knowledge 

acquired is valuable to the industry partner. 

 A review of the literature on alkanethiol-SAMs on Ge reveals that the vast 

majority of research has focused on the use of 1-dodecanethiol.[8, 13] This is likely 

the case as DT-SAMs on Au is a system that has been studied extensively [15-18] and 

best practices for Au have been applied to Ge. Chapter 5 outlines a study whereby a 

series of 1-alkanethiols, with varying carbon chain lengths are used to create SAMs 

on Ge(100) and a study of the reoxidation of the passivated Ge upon exposure to 

ambient conditions is undertaken. The authors wished to determine if short-chain 

thiols were as effective at inhibiting Ge surface reoxidation as their longer chain 

counterparts. The motivation being that it may be advantageous to achieve passivation 

with molecules containing fewer C atoms. In device fabrication lines, C is sometimes 

considered a poison atom as it can cause dopant deactivation during high temperature 

processing.[19] Furthermore, shorter thiol molecules have higher vapour pressures 

since their molecular weights (Mw) are lower. Thiols with lower Mw are easier to 

promote into the vapour necessary to achieve vapour-phase passivation. In this 
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chapter, the authors observed a trend whereby Ge oxidation resistance improves with 

the length of the passivating thiol molecules. SAMs consisting of 1-dodecanethiol 

molecules outperformed those consisting of 1-octanethiol molecules, which 

outperformed those consisting of 1-hexanethiol molecules and so on. These findings 

highlight the significance of the vdW interactions between adjacent thiol molecules in 

the passivating SAM. 

 In summary, a novel vapour-phase passivation method using alkanethiol 

SAMs has been developed for Ge(100). The process results in SAMs that are more 

effective at inhibiting the reoxidation of Ge than the state-of-the-art while taking 

considerably less time. In addition, the significant role humidity plays in the 

degradation of the alkanethiol-SAM and the reoxidation of the underlying Ge has been 

outlined, and the efficacy of alkanethiols of different chain length in relation to 

inhibition of Ge reoxidation has been elucidated. 

6.2 Future Perspectives 

As mentioned in the conclusions section, a motivation to develop the vapour-phase 

passivation method for Ge was to create a non-destructive process that was suitable 

for Ge nanostructures. Due to difficulties in creating such structures, this goal has not 

yet been realised. Once Ge nanostructures can be fabricated reliably, an interesting 

continuation of this work would be to test the developed vapour-phase passivation 

method (documented in Chapter 3) on these structures. 

Another topic that warrants exploration is how alkanethiol passivation of Ge 

affects the electronic properties of Ge-based devices. For example, Ge-MOS 
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capacitors consist of an oxide layer deposited or grown on Ge after which a 

metallisation procedure is carried out. Comparing the electronic properties of MOS 

capacitors with and without thiol-passivation of the Ge prior to oxide deposition may 

illuminate what effect, if any, the passivation had on the electronic properties of the 

device. Another potential continuation of this work is to passivate Ge with alkanethiol 

molecules that have a functionalised tail group in an effort to promote the nucleation 

of ALD-grown oxides. Growing or depositing oxide layers on Ge is an essential step 

in making Ge-based devices. The –CH3 tail group of a non-functionalised alkanethiol 

molecule does not actively promote the nucleation of ALD oxides; however, an amine 

or hydroxyl group may. This avenue deserves further exploration. 

 Non-functionalised thiol molecules are used throughout this body of work. In 

Chapter 4, the significant role humidity plays in the degradation of the alkanethiol-

SAM and the reoxidation of the underlying Ge is outlined. A topic that warrants further 

investigation is the use of functionalised alkanethiol molecules to create SAMs on 

Ge(100). Heavily-fluorinated alkanethiol molecules have previously been shown to 

form highly-hydrophobic SAMs on Au surfaces.[20] Since water has been shown to 

be an instrumental factor in the oxidation of SAM-passivated Ge(100) surfaces in 

Chapter 4, efforts to passivate Ge with highly-hydrophobic SAMs may improve the 

longevity of the SAM and thus the resistance to oxidation of the underlying Ge upon 

exposure to ambient conditions. 

 As mentioned in Chapter 1, passivation of Ge with organic SAMs is not 

limited to alkanethiols. Hydrogermylation and Grignard-style chemistry offer 

alternative routes that result in the formation of Ge-C bonds rather than the Ge-S bonds 

that alkanethiol passivation yields.[7] These alternative methods warrant exploration 
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such that they be compared to the alkanethiol-passivated Ge(100) surfaces discussed 

herein. 

Odd-even effects are a widely observed phenomenon across the sciences but 

in biology, physical chemistry and material science in particular.[21, 22] A 

contributing factor to the stability of alkanethiol-SAMs on Ge may be the parity of the 

constituent molecules i.e. whether there is an odd or even number of –CH2 units in the 

backbone of the passivating molecule. In an effort to avoid such effects, alkanethiol 

molecules with an odd number of –CH2 units in the C backbone were omitted from 

the study detailed in Chapter 5. An interesting continuation of this work would be to 

determine what effect, if any, the parity of the passivating thiol molecule has on SAM 

stability. DFT simulations could help elucidate how the functionalisation of the 

alkanethiol molecules affects the packing of the SAM and could be used to gain insight 

into the interaction between water molecules and the SAM-Ge system also. 

Ultimately, the scope for further investigations into SAMs on Ge is broad and 

varied; however, such efforts are necessary if Ge is to gain widespread use in modern 

CMOS-compatible as predicted by the IRDS™.[2] 
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Chapter 7 

Appendix 

7.1 Additional Figures 
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Figure S4.1. (i) Ge 2p spectra for OT-vapour-phase passivated Ge, showing what 

effect 24 hours of exposure to low and ambient humidity has on the intensity of the 

fitted Ge peaks. (ii) Ge 2p spectra for DT-liquid-phase passivation of on Ge, showing 

what effect 24 hours of exposure to low and ambient humidity has on the intensity of 

the fitted Ge peaks. (iii) Ge 2p spectra for DT-liquid-phase passivated Si0.25Ge0.75, 

showing what effect 24 hours of exposure to low and ambient humidity has on the 

intensity of the fitted Ge peaks. 
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Figure S5.1. Ge 2p spectra for (i) ET-, (ii) BT-, (iii) HT-passivated Ge(100) with Ge+0 

(red), Ge+2 (blue) and Ge+4 (pink) peaks fitted illustrating what effect 0, 24 and 168 

hours of exposure to the ambient has on the Ge 2p spectra. 
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Figure S5.2. Ge 2p spectra for (i) OT-, (ii) DT-passivated Ge(100) with Ge+0 (red), 

Ge+2 (blue) and Ge+4 (pink) fitted illustrating what effect 0, 24 and 168 hours of 

exposure to the ambient has on the Ge 2p spectra. 
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Figure DFT-S5.3. Schematic illustrating the tilt angle (θ), precession angle (α), thiol 

chain length (l), thiol chain thickness (lc) and thiol chain projection (p) in ab-plane. 

Where ‘S’ and ‘C’ denote the sulfur and carbon atoms at the end of the thiol chain. 

The tilt and the precession angles are measured between the c-axis and the S-C bond, 

and between the a-axis and the projection line, respectively. 
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Table DFT-S5.4. Structural properties, i.e. precession (α) and tilt angles (θ), length 

(l) and thickness l(c) of C4, C6, C8, C10 and C12 alkanethiols on Ge(100). 
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