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Summary
Background: Physical exercise is an essential factor in preventing and treating metabolic 

diseases by promoting systemic benefits throughout the body. The molecular factors involved in 

this process are poorly understood. Micro RNAs (miRNAs) are small non-coding RNAs that inhibit 

mRNA transcription. MiRNAs, which can participate in the benefits of exercise to health, circulate 

in plasma in extracellular particles (EP). Horses that undergo endurance racing are an excellent 

model to study the impact of long-duration/low intensity exercise in plasma EP miRNAs.

Objectives: To evaluate the effects of 160 km endurance racing on horse plasma extracellular 

particles and their miRNA population.

Study design: Cohort study.

Methods: We collected plasma from 5 Arabian horses during five time-points of an endurance 

ride. Extracellular particles were purified from plasma and characterised by electron microscopy, 

resistive pulse sensing (qNano), and western blotting. Small RNAs were purified from horse 

plasma EP, and sequencing was performed. 

Results: Endurance racing increased EP concentration and average diameter compared to 

before the race. Western blotting showed a high concentration of extracellular vesicles proteins 2 

h after the race, which returned to baseline 15 h after the race. MicroRNA differential expression 

analysis revealed increasing levels of eca-miR-486-5p during and after the race, and decreasing 

levels of eca-miR-9083 after the end.

Conclusions: This study adds new data about the variation in plasma EP concentrations after 

long-distance exercise and brings new insights about the roles of exercise-derived EP miRNAs 

during low-intensity endurance exercise.

Introduction
Endurance racing is classified as a competition of low intensity and long duration 1. 

However, in the last decade, speeds advanced to the point of being considered moderate-A
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intensity 2. During the competition, horses complete a test of typically 160 km (100 miles) in a 

day, passing through veterinary checkpoints during the race3. Haematological determinations 

have been used over the years in order to compare the responses of horses to various types of 

exercise 4. Several studies document the differences in parameters before and after exercise, 

relating them to athletic performance and fluid losses undergone by animals 5 6 7. Significant 

changes in plasma and serum biochemical parameters occur during endurance racing, reflecting 

the metabolic state of the animal and helping veterinarians to assess negative consequences on 

performance and health 8 9. In recent years, small molecules, such as microRNAs (miRNAs), 

were discovered circulating in plasma, serum, and other biological fluids, making them promising 

biomarkers for diseases 10 11.

MicroRNAs are short noncoding RNA molecules that negatively regulate messenger RNA 

and play essential roles in the general biological process 12. In an RNAse-rich environment, such 

as plasma, miRNAs are protected from degradation by being transported associated with 

extracellular vesicles (EVs) 13, lipoprotein particles 14, and argonaute-2 protein complexes 15. 

Extracellular vesicles are lipid bilayered membrane vesicles with a size range of 40 to 1000nm in 

diameter, which can be classified into exosomes and microvesicles 16. Extracellular vesicles, 

lipoprotein particles, and protein complexes can be purified from cell culture supernatants or 

biologic fluids using polymer-based precipitation kits 17. The International Society for Extracellular 

Vesicles (ISEV) recommends using the term Extracellular Particles (EPs) for samples purified by 

polymer-based precipitation kits and that may include EVs, lipoprotein particles and argonaute-

proteins 18.

Circulating miRNAs are altered in response to different protocols of acute and chronic 

exercise in both healthy and diseased populations 19, raising questions of the importance of EVs 

delivering miRNAs between skeletal muscle and muscle-organ crosstalk during exercise 20. This 

crosstalk may contribute to the systemic biological effects of exercise 21. Equines subjected to 

endurance racing represent an excellent model for understanding the molecular mechanisms 

involved in adaptation and success in this category of exercise. This work aimed to evaluate the 

effects of 160 km endurance racing on horse plasma extracellular particles and their miRNA 

population.

Material and Methods

Horse plasma samples
We selected Arabian horses participating in a 160 km international endurance race, 

regulated by the International Equestrian Federation (FEI). Each animal had gone through A
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conditioning program, finishing the required official races of shorter distances for at least four 

years before being allowed to compete. The race started with 18 horses, but 9 were eliminated (3 

due to orthopaedic problems, and 6 due to metabolic disorders). We excluded the horses with 

haemolysed plasma due to the inhibitory effect of haemoglobin on the PCR reaction. Thus at the 

end, we were left with 5 horses.  The horses examined by the official veterinary staff and were 

considered fit to perform the test. During the ride, horses were also evaluated (every 30 km) to 

ascertain if any metabolic or orthopaedic alteration could prevent them from continuing and 

completing the ride (vet check). 

Samples were taken pre-race the night before (T0), at the second veterinarian-gate (66 

km, T1), at the end of the race (T2), 2 hours after the race (T3), and 15 hours after the race (T4) 

(Figure 1a). Venous blood samples (10mL of whole blood) were obtained by antiseptic jugular 

venipuncture in tubes with EDTA (Vaccuette) and negative pressure. For plasma purification and 

platelets removal, blood was centrifuged for 2,000 x g for 15min at room temperature, and 

platelet-poor plasma was stored in -20ºC up to 3 hours after sampling.

Extracellular particle purification 
The investigators who performed EPs purification and sequencing were blinded of the 

identity of the samples. Extracellular particle purification was performed using the commercial kit 

ExoquickTM (Exosome Precipitation Solution, System Biosciences Inc., Mountain View, CA, USA) 

following manufacturer's recommendations, with the following modifications of the standard 

protocol. Extracellular particles were purified from 500μL of plasma. Thromboplastin was added 

into platelet-poor plasma to allow the removal of fibrins and fibrinogens to prevent their 

precipitation by ExoQuick. Platelet-poor plasma was treated with Thromboplastin 1:1, incubated 

at room temperature for 5 min, and centrifuged in a standard microcentrifuge at 8,000 x g for 5 

min. After that, serum-like samples were incubated with 126µL of Exoquick overnight at 4ºC and 

then centrifuged by 10,000 x g for 30 min to pellet EPs. The pellet was resuspended in 200μL of 

PBS 1X. For EP characterisation, samples were pooled, forming five samples (T0, T1, T2, T3, 

and T4), each one comprising five horses. Extracellular vesicle characterisation was performed 

by electron microscopy and tunable resistive pulse sensing (qNano). 

Electron microscopy 
Electron microscopy for horse plasma EP visualisation was performed following the 

previously described protocol 22. Briefly, a drop containing 10μL of pooled EPs purified from all A
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samples was placed on parafilm and processed for negative staining. Grids were washed three 

times in PBS 1X. The EPs samples were fixed in a drop of 2% paraformaldehyde for 10 min and 

washed in PBS. Grids were post-fixed with 2.5% glutaraldehyde, incubated for 10 min and 

washed five times using distilled water. Finally, grids were contrasted with 3% uranyl acetate for 

15 min. The images were acquired using 80 KVs in a transmission electron microscope JEOL 

model 1011, at the University of Brasilia electron microscopy laboratory.

Estimating the concentration and size distribution of EPs using tunable resistive pulse 
sensing 

Tunable resistive pulse sensing analysis (TRPS) was performed using the qNano system 

(Izon, Christchurch, New Zealand). Tunable resistive pulse sensing analysis is a variant of 

resistive pulse sensing (RPS). It measures nanoparticles suspended in electrolytes on a particle-

by-particle basis as they pass through a nanopore. When the particle passes through a nanopore 

it changes an electric current. The blockage in the current is proportional to the size of the 

particle. Extracellular particle samples were diluted in PBS. Samples were measured using an 

NP100 pore with the following settings: Stretch 47.01mm, Voltage 1V, and applied pressure of 20 

cm.H2O (full pressure). The NP100 Izon pore can detect particles between 50nm and 330nm. 

The average current between all samples ranged from 81nA to 90nA. Calibration was performed 

using beads of known size, diluted in PBS, and measured at identical settings. Analyses of EP 

concentration and size were performed using Izon Control Suite 2.2 software.

Identification of EP protein markers by western blotting
Extracellular particle protein purification was performed using aliquots of 5μL of EPs 

suspension, diluted in 50μL RIPA 1X protein lysis buffer (150mM NaCl; 1.0% Triton X-100, 1% 

sodium deoxycholate, 0.1% SDS, 25mM Tris-HCl, pH 7.4) plus 0.5μL protease inhibitor cocktail 

(Sigma-Aldrich) and vortexed for 20 seconds. The total protein quantification was performed 

using the Protein Assay kit Qubit® (Life Technologies) according to the manufacturer's 

recommendations. Twenty (20) µg of EP protein were separated by electrophoresis on 12% SDS-

PAGE using the Bio-Rad Mini-Protean II cast system. Electrophoresis was performed with 150V 

and 15mA for 2h in parallel. One gel was stained with Coomassie blue, and the other gel was 

transferred onto polyvinylidene difluoride membranes (PVDF, Bio-Rad). The transfer was 

performed using the Trans-Blot® SD semi-dry transfer cell (Bio-Rad) in transfer buffer containing 

48mM Tris, 39mM glycine, 20% (v/v) methanol and 1.3mM SDS for 1h at 15V and 200mA. The A
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membranes were blocked for 1h in 3% BSA diluted in TBST 1X buffer (50mM Tris.HCl pH 7.4; 

150mM NaCl; 0.1% Tween 20). After blocking, the membranes were incubated overnight with 

rabbit primary polyclonal antibody anti-CD9, CD81, Alix, Flottilin and Calnexin (Santa Cruz 

Biotechnology), at a concentration of 1: 500 diluted in 1% BSA in TBST buffer 1X. Anti-IgG 

secondary antibody (1: 1000; Sigma) conjugated with alkaline phosphatase was incubated for 1 

hour in 1% BSA diluted in TBST buffer. Membranes were developed using NBT/BCIP (AP colour 

development buffer, Bio-Rad) until the appearance of the colour.

RNA extraction, NGS library preparation, and sequencing
Small RNAs were purified from 24 samples. As we used a 24-sample library Preparation 

kit Set, the T3 sample from horse 1 (H1T3) was removed from sequencing. Small RNA 

purification was performed with 150 μL of EPs resuspended in PBS1x using miRCURY™ RNA 

Isolation Kit – Biofluids (Exiqon, Denmark) following the manufacturer’s instructions. Purified 

small RNA samples were characterised and quantified using Agilent Bioanalyzer – small RNA 

chip. Small RNA sequencing libraries were constructed using the TruSeq® Small RNA Library 

Preparation kit Set A (24 runs) (Illumina Inc.), following the manufacturer’s instructions. Briefly, 

both 3′ and 5′ adaptors were ligated along with the unique index sequence in each sample. The 

adaptor-ligated RNA fragments were then reverse transcribed and amplified by 15 PCR cycles. 

Then, enriched small RNA libraries purified from horse plasma EPs were obtained after running a 

native polyacrylamide gel electrophoresis and cutting the fragments of interest. The libraries were 

eluted from the gel and quantified using KAPA Library Quantification Kits for NGS (Kapa 

Biosystems). After that, the 50-base read length sequencing was performed on a MiSeq (Illumina 

Inc.). To avoid batch effects during sequencing, pooled libraries were sequenced twice. Library 

preparation and sequencing were performed at the center for High-Performance Genomics of the 

Federal District (Genomic-DF, Catholic University of Brasilia, Brazil). Demultiplexing (generating 

individual sample groups) of the reads after sequencing was performed by sorting the different 

index sequences. 

Small RNA sequencing
The sequencing data were analysed using the commercial software NEXTGENE® 

(SoftGenetics). The quality parameters used were: median score threshold ≥ 13 and called a 

base number of each read ≥16. At most, two mismatches were allowed for mapping small RNA 

sequences to the databases. The software converted data files from FastQ to fasta. After filtering A
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the low-quality reads and trimming the adapters, Equus caballus sequencing databases were 

used to align the selected reads.

The database alignment procedures were applied in the following order: Equus caballus 

mature miRNA database, available at miRBase.org [EquCab2.0], miRNA unmatched sequences 

were aligned to Equus caballus tRNA sequences (downloaded from GtRNAdb database) which 

contains tRNA gene predictions made by the tRNAscan-SE. Finally, remaining reads were 

aligned to the Equus caballus ribosomal RNA database (downloaded from Ensembl). Reads that 

aligned to each database were removed from the following alignment.

Data analysis

For statistical analysis of the data, GraphPad Prism 6 (GraphPad Software, San Diego, CA, 

USA) was used. Statistical significance for horse plasma EP miRNA yield was performed by two-

way ANOVA and Tukey’s multiple comparisons. We considered statistical significance of p<0.05. 

Heatmaps for horse plasma EPs small RNA sequencing data were generated with the pheatmap 

library. For miRNAs differential expression analysis, T0 levels were considered as baseline for 

comparisons. MicroRNAs were considered differentially expressed if p<0.05 in two-way ANOVA 

and p<0.05 after Dunnett’s multiple comparisons test. 

Results

Endurance racing increases horse plasma EP concentration and diameter
The plasma polymer-based precipitation method commercialised as ExoquickTM allowed us to 

visualise small EVs and other particles from horse plasma, as demonstrated by transmission 

electron microscopy (TEM) which showed small EV-like particles from 40 to 100 nm (Figure 1B, 
red arrow). We also detected lipoprotein-like particles below 50nm in diameter (Figure 1B, 
yellow arrow). TRPS showed that EP average diameter between T0 and T1 remained the same 

at 59.2 nm while it increased at T2 (63.8 nm), T3 (65.2 nm), and remained the same at T4 (65.2) 

compared to T3 (Figure 1C). Plasma EP concentration increased from 5.6x1012 per mL at T0 to 

1.2x1013 per mL at T1, 3.6x1013 per mL at T2, 3.6x1013 per mL at T3 and 1.1x1014 per mL at T4 

(Figure 1D). 
Endurance racing also increased plasma EP protein average concentration, ranging from 

3.44 mg.mL-1 at T0 time point to 4.39 mg.mL-1 at T1 time point (p < 0.05), to 3.80 mg.mL-1 at T2 

time point, 3.67 mg.mL-1 at  T3 time point and 4.25 mg.mL-1  at T4 time point (p < 0.05) (Figure 
1E). Total horse plasma EP protein profile was accessed by SDS-PAGE, and western blotting A
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was performed to identify extracellular vesicles (EV) proteins. Twenty (20) µg of total protein 

purified from horses’ plasma EPs was separated by electrophoresis. The SDS-PAGE visually 

showed defined bands from around 10 to 200 kDa in Coomassie blue staining. Some gel bands 

were detected in the size range of albumin and IGG proteins, indicating the presence of non-EVs 

protein aggregates in our preparation (Figure 1F). Western blotting showed that plasma EPs had 

no endoplasmic reticulum protein Calnexin, and showed that T3 time point was enriched in EV 

proteins flotillin-1, CD81 and CD9 compared to the other time points (Figure 1G). 

Endurance racing changes horse plasma EP miRNA content
After performing biophysical and biochemical characterisation from horse plasma EPs, we 

purified and characterised EP small RNA, aiming to conduct library construction and sequencing. 

With an input of 150 μL of EP suspension, we sequenced 24 horses’ EP samples. Purified EP 

small RNA showed enrichment in RNAs between 15 and 150 bp, a representative size of miRNA 

and other small RNA fragments (Figure 2A). We did not detect ribosomal subunits 18S and 28S 

RNA peaks in Bioanalyser characterisation. The total yield of EP small RNA ranged from 20.7 ng 

in the lowest sample to 167 ng in the highest sample. The total yield of small RNA was increased 

at time point T3 compared to time points T0, T1, T2, and T4 (p<0.001 in two-way ANOVA, and 

p<0.01 in Tukey’s multiple comparison test) (Figure 2B).
Raw read numbers obtained after sequencing, filtering, trimming, and alignment to Equus 

caballus mature miRNA database, available at miRBase.org, are summarised in Table 1. Overall, 

13.4% of the total reads were considered mappable reads (after filtering and trimming). Reads 

that did not align with the previous database were aligned to the following one. The percentages 

of mappable reads aligned to small RNA databases were 3.1% for miRNA, 1.9% for rRNA, and 

0.9% for snRNA (Table 1). 

A principal component analysis (PCA) generated with horse plasma EP miRNA reads 

showed a separation between horses from T0, T3, and T4 time points. Horses from time points 

T1 and T2 were localised either with T0 or T4 (Figure 3A). The relative expression of the 30 most 

abundant Equus caballus plasma EP mature miRNAs was shown in the heatmap. Both arms of 

red blood cell-derived miRNA eca-mir-486 were the most abundant miRNAs before, during, and 

after exercise (Figure 3B and C).

As expected for plasma, with low RNA tissue level, we chose the top eight miRNAs (eca-

miR-486-5p, 486-3p, 30d, 30e, 25, 92a, 9083, 9092) for comparison. The miRNA read counts 

were compared between T0, T1, T2, T3, and T4 time points. We detected statistically significant 

increases in the level of eca-miR-486-5p in T1 and T4 compared to T0, and decreasing levels of A
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eca-miR-9083 immediately after the end of the race (T3) and 15 h after the end of the race (T4) 

(p<0.05 two-way ANOVA, p<0.05 Dunnett’s multiple comparisons test).

Discussion
Exercise promotes human health 23. The molecular mechanisms underlying exercise 

promotion for animal health are not fully understood. Cell communication mediated by miRNAs 

was shown to be important in several metabolic diseases 24 and cancer 25. The impacts caused 

by long-distance exercise on the population of horse plasma EP miRNAs can bring us insight into 

what metabolic changes are happening in the animal’s body and may help us to define better 

biomarkers for metabolic stress. 

For horses submitted to endurance racing, biochemical analyses of metabolites have been 

used to predict metabolic elimination during the race 8. After long-distance endurance rides, 

healthy horses had high heart creatine kinase (CK-MB) activity 12 h after the race compared to 

pre-race. Other serum analytes like creatine kinase, protein, albumin, bilirubin, y-

glutamyltransferase, serum amyloid A, fibrinogen, haptoglobin, iron, aspartate transaminase, and 

urea remained increased 12 h after the race compared to before the race. 26

Although there is a lack of statistical power in determining the horse plasma EP 

concentrations and size between time-points, variations of exercise have been shown to increase 

EV concentration in biological fluids in other studies. For example, acute exercise increases EV 

concentration in human plasma after a single bout of cycling 27. Regular exercise has also been 

shown to increase EV baseline concentration in a mouse model 28. Regular exercise also 

increased concentrations of exosomes from heart and serum in mouse models of type 2 diabetes 
29. Our group has previously reported that treadmill acute aerobic exercise increases EV 

concentration in rat serum 30. Exercise-induced increases in plasma EP and EV concentration 

might be explained at least in part by the decrease in plasma volume caused due to fluid shifts 

during exercise 31 32 although previous studies have shown that horses' weight loss (mainly 

caused by dehydration) does not reach 5% of the animal's total weight following endurance races 
33. In addition, water intake is allowed during the race and there are specific points for this on the 

trails. At the end of each stage (every 30 km on average) the horses are required to rest for 40 

minutes and food, electrolytes and water are provided ad libitum. 

The concentration of EVs in human plasma under normophysiological states is 

approximately 1010 EVs per mL 34. Extracellular vesicle concentration is highly variable depending 

on the method used to purify and quantify EVs. We detected 5.6x1012 EPs per mL in horse blood 

before the race (baseline), which reached a peak at time point T4 of 1.1x1014 EPs per mL, but A
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this value might be overestimated due to the presence of lipoprotein particles and protein 

aggregates that co-purified and were detected by TRPS methodology. EP concentration 

measured by qNano may be taking into account all plasma precipitated vesicles, and particles, 

including exosomes, microvesicles, protein aggregates, and lipoproteins, released during a 

period of food intake and high tissue regeneration.

Western blotting revealed that time point T3 was enriched in EV proteins (Flotillin-1, CD81, 

CD9, and TSG101). These results suggest a peak in EV concentration 2 h after the race (T3), 

which returns to baseline at T4, 15 h after the race. It was previously shown that exosomes 

returned to the baseline level 90 minutes after exercise on a bicycle; instead, treadmill exercise 

causes more sustained EVs to return to baseline and may take a few hours to achieve it 27. 

Comparing lipoprotein particles, protein complexes and EVs after exercise, EVs are the most 

studied, mainly as potential biomarkers for metabolic disorders, such as impaired endothelial 

function and insulin resistance 35. After exercise, purified EVs in biological fluids may have 

therapeutic utility in the treatment of obesity and type 2 diabetes mellitus 36. During exercise, 

plasma and serum EV levels change after cycling and running in humans 27 and after acute 

aerobic exercise in rats 30.

Regarding miRNA expression levels after exercise, the impact of exercise on the miRNA 

population purified from muscle tissue has been extensively studied 37 38 39 and total circulating 

miRNAs in serum or plasma to be used as a marker for maximal oxygen consumption 40 41. 

Extracellular vesicles were described as being functional carriers of miRNAs in circulation in 2007 
42 , and miRNAs delivered by EVs were well described as having essential functions in cancer 43   

and metabolic diseases  44 . However, recently, EV miRNA was suggested as being an essential 

part of the systemic benefits that exercise causes to human health 13 . In vivo and in vitro studies 

of circulating EVs found following exercise described enhanced protection against cardiac 

Ischaemia/Reperfusion injury compared to endogenous EVs purified from before exercise, 

suggesting that EVs purified after exercise may have potential as a therapy for myocardial injury 

in the future 28.

We described here high levels of eca-miR-486-5p and 486-3p across all EP samples. It was 

described that miRNAs hsa-miR-486-5p, 16-5p, 451a, 106a-5p, 17-5p, 93-5p, 20a-5p, 107, and 

20b-5p are enriched in red blood cells and can be significantly affected by hemolysis of ~0.05% 

erythrocytes 45 46  . The high levels of miR-486 found in all samples, in part, can be explained by 

haemolysis during blood sampling, but we did not find high expression levels from the other 

miRNAs. Also, we found high levels of plasma EP eca-miR-30d, 25, and 92a. These miRNAs 

cofractionated in the latest fractions of size exclusion chromatography, suggesting their 

association with ribonucleoprotein complexes, such as Argonaute 2 (Ago2), and not with A
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extracellular vesicles 15.  After comparing miRNA levels between race time points, we found 

statistically a significant increase in eca-miR-486-5p at T1 and T4 compared to T0, and a 

decreasing level of eca-miR-9083 after the end of the race (T3) and 15 h after the end of the race 

(T4). 

MicroRNA 486-5p is conserved between Equus caballus and Homo sapiens 47. Human 

miRNA 486-5p is one of the most downregulated microRNAs in non-small-cell lung cancer  48 49. 

Cell culture experiments demonstrated that miR-486-5p could directly bind to the 3′-UTR region 

of the gene ARHGAP5, which, in low levels, inhibits lung cancer cell migration and invasion 50. 

Circulating miR-486 was shown to significantly decrease after a 60-min single bout of steady-

state cycling exercise 41. Another study compared muscle, plasma and plasma exosomal miRNA 

levels obtained from 10 young men submitted to a single bout of high-intensity interval cycling 

exercise and found that 9 exosomal miRNAs increased immediately after and 4 h following 

exercise (miR-1-3p, -16-5p, -222-3p, -23a-3p, -208a-3p, -150-5p, -486-5p, -126-3p, and -378a-

5p) 51.

In a previous study of horse whole blood miRNAs after endurance racing, 167 miRNAs 

were differentially expressed when compared before and after the 160 km race. Many of these 

miRNAs regulated genes involved in glucose metabolism, fatty acid oxidation, mitochondrion 

biogenesis, and immune response pathways 52. It is difficult to be certain about the sources and 

target tissues of these plasma exercise-induced EPs. We speculate that blood cells, endothelial 

cells, muscle tissue, and liver are the primary source and target tissues for exercise EPs. Muscle 

is known to secrete interleukins 53 and recent reviews point to the potential role of muscle as an 

EV secretory tissue13. 

The current descriptive study adds essential knowledge to the developing field of plasma 

extracellular vesicles/particles and exercise. The limitations of this study are the lack of statistical 

power to demonstrate differences in plasma EP concentrations and sizes and we did not take 

account of circadian rhythm miRNA variations related to long-lasting exercise. However, we 

showed that endurance racing increases equine plasma EP concentration, with EVs reaching a 

concentration peak 2 h after the race and returning to baseline 15 h after the race. We also 

showed increasing levels of eca-miR-486-5p in T1 and T4 compared to T0, and decreasing levels 

of eca-miR-9083 immediately after the end of the race (T3) and 15 h after the end of the race 

(T4). Further studies are needed to address the specific EP concentration recovery periods after 

long-lasting aerobic exercise. Cell culture experiments could help to understand the role of 

exercise-delivered EP miRNA in target tissues.
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Figure legends

Fig 1: Endurance racing increases the horse plasma EP concentration and diameter. (A) 

Workflow representing the experimental design used to investigate the impact of endurance 

racing on horse plasma EP miRNAs. (B) Electron micrographs of horse plasma EP purified by 

Exoquick. Red arrow indicates small extracellular vesicle-like particles, and yellow arrow 

indicates lipoprotein-like particles. (C) Pooled samples from each time point were used to 

measure EP size and concentration by tunable resistive pulse sensing (TRPS, QNano). The 

analysis showed an increase in Eps’ average diameter, (D) and concentration.   (E) Endurance 

racing increased horse plasma EP protein average concentration (F) Horse plasma EP protein 

profile was analyzed by SDS-PAGE 12%. The SDS-PAGE shows well-defined bands from 

around 10 kDa to 200 kDa in Coomassie blue staining (G) Western blotting showed that horse 

plasma EPs had no endoplasmic reticulum protein Calnexin, and showed that time point T3 was 

enriched in EV markers flotillin-1, CD81 and CD9 compared to the other time points. Peripheral 

blood mononuclear cells lysate were used as positive control (PC), and PBS mixed with laemmli 

loading buffer was used as negative control (NC).

Fig 2: Horse plasma EP small RNA is enriched in time point T3. (A) The concentration of EP 

small RNAs from the horse plasma was quantified and characterised by 2100 Bioanalyzer 

(Agilent) using a small RNA chip. EP samples from all time points showed RNA ranging from 20 

to 60nt in size and absence of long RNAs. (B) The total yield of EP small RNA was increased at 

time point T3 compared to time points T0, T1, T2 and T4 (p<0.001 in two-way ANOVA, and 

p<0.01 in Tukey’s multiple comparison test) (C) Percentage of mappable reads after small RNA 

sequencing from horse plasma EPs. The first column represents the general profile of reads. The 

second column represents only the known reads mapped against Equus caballus databases 

(mature miRNA, rRNA, and snRNA). 

Fig 3: Endurance racing changes the horse plasma EP miRNA. (A) A principal component 

analysis (PCA) generated with horse plasma EP miRNA reads showed a strong separation 

between horses from T0, T3, and T4 time points. Horses from time points T1 and T2 were 

localized with either T0 or T4. (B) Heatmap representing the relative expression of the 30 most 

abundant Equus caballus plasma EP mature miRNAs.
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Fig 4: Differential expression analysis from 8 most present horse plasma EP miRNAs during an 

endurance race. MicroRNA levels obtained during and after the race were compared to before-

race levels, aiming to look at differences in their expression. Two microRNAs were differentially 

present in horse plasma EPs during the race. Eca-miR-486-5p was found increased during the 

first veterinarian gate-stop (60km, T1) and 15 h after the end of the race (T4), compared to before 

the race (T0). Eca-miR-9083 was found decreased two hours after the race (T3) and 15 h after 

the end of the race (T4) (p<0.05 two-way ANOVA, p<0.05 Dunnett’s multiple comparisons test). 
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Samples 
Total 

reads 

Trimmed 

and 

Filtered 

Reads 

Mappable 

reads % 

miRNA 

Mapped 

reads 

miRNAs 

% 

rRNA 

mapped 

reads 

rRNA % 

snRNA 

mapped 

reads 

snRNA 

% 

H1T0 1039511 68151 6.6 7129 10.5 680 1 2491 3.7 

H1T1 1423349 291957 20.5 9758 3.3 1492 0.5 3676 1.3 

H1T2 970272 79366 8.2 12112 15.3 274 0.3 697 0.9 

H1T4 1321186 259290 19.6 5638 2.2 2220 0.9 255 0.1 

H2T0 1451794 215600 14.9 4039 1.9 30653 14.2 13175 6.1 

H2T1 1049473 222868 21.2 8152 3.7 644 0.3 3228 1.5 

H2T2 1389314 291126 21 2541 0.9 4622 1.6 123 0 

H2T3 905388 119138 13.2 1617 1.4 1014 0.9 155 0.1 

H2T4 1117307 165401 14.8 5336 3.2 617 0.4 70 0 

H3T0 112438 15982 14.2 588 3.7 1284 9.1 651 4.8 

H3T1 697061 129008 18.5 1473 1.1 6699 5.5 2031 1.7 

H3T2 827697 133106 16.1 4152 3.1 1917 1.5 192 0.2 

H3T3 1765077 95847 5.4 1604 1.7 105 0.1 33 0 

H3T4 932706 225712 24.2 5736 2.5 685 0.3 374 0.2 

H4T0 987823 91399 9.3 1036 1.1 7008 8.4 381 0.5 

H4T1 1362729 223276 16.4 5084 2.3 2963 1.4 2265 1.1 

H4T2 1109392 182828 16.5 1485 0.8 476 0.3 28 0 

H4T3 2028554 119152 5.9 1060 0.9 584 0.5 72 0.1 

H4T4 1563592 158658 10.1 5556 3.5 592 0.4 108 0.1 

H5T0 1431863 105843 7.4 4120 3.9 2496 2.5 349 0.4 

H5T1 1154555 149202 12.9 9877 6.6 503 0.4 1518 1.1 

H5T2 1147142 90537 7.9 1478 1.6 370 0.4 32 0 

H5T3 625885 69395 11.1 6026 8.7 456 0.7 117 0.2 

H5T4 1198794 201356 16.8 8566 4.3 996 0.5 203 0.1 

Total 27612902 3704198 13.4 114163 3.1 69350 1.9 32224 0.9 

 

 

Table 1: Raw read numbers obtained after sequencing, filtering, trimming, and alignment to 

Equus caballus mature miRNA database, available at miRBase.org. Overall, 13.4% of the total 

reads were considered mappable reads (after filtering and trimming). Reads that did not align 

with the previous database were aligned to the following one (rRNA and snRNA). The A
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percentages of mappable reads aligned to microRNAs databases were 3.1%, rRNA 1.9%, and 

snRNA 0.9%. 
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