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The effective-one-body (EOB) formalism contains several flexibility parameters, notably a5, vpole, and

�aRR. We show here how to jointly constrain the values of these parameters by simultaneously best-fitting

the EOB waveform to two, independent, numerical relativity (NR) simulations of inspiralling and/or

coalescing binary black-hole systems: published Caltech-Cornell inspiral data (considered for gravita-

tional wave frequenciesM! � 0:1) on one side, and newly computed coalescence data on the other side.

The resulting, approximately unique, ‘‘best-fit’’ EOB waveform is then shown to exhibit excellent

agreement with NR coalescence data for several mass ratios. The dephasing between this best-fit EOB

waveform and published Caltech-Cornell inspiral data is found to vary between �0:0014 and þ0:0008

radians over a time span of �2464M up to gravitational wave frequency M! ¼ 0:1, and between

þ0:0013 and �0:0185 over a time span of 96M after M! ¼ 0:1 up to M! ¼ 0:1565. The dephasings

between EOB and the new coalescence data are found to be smaller than: (i) �0:025 radians over a time

span of 730M (11 cycles) up to merger, in the equal-mass case, and (ii) �0:05 radians over a time span of

about 950M (17 cycles) up to merger in the 2:1mass-ratio case. These new results corroborate the aptitude

of the EOB formalism to provide accurate representations of general relativistic waveforms, which are

needed by currently operating gravitational wave detectors.
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I. INTRODUCTION

The effective-one-body (EOB) formalism [1–4] is an
analytical approach which aims at accurately describing
both the motion of, and the radiation from, coalescing
binary black holes. The EOB method uses, as basic input,
high-order post-Newtonian (PN) expanded results (see [5]
for a review of the PN-theory of gravitationally radiating
systems). However, one of the key ideas in the EOB
method is to avoid using PN results in their original
‘‘Taylor-expanded’’ form (symbolically fTaylorðv=cÞ ¼
c0 þ c1v=cþ c2ðv=cÞ2 þ � � � þ cnðv=cÞn), but, instead,
to ‘‘repackage’’ them in some resummed form, i.e., sym-
bolically, to replace fTaylorðv=cÞ by some nonpolynomial
function fEOBðv=cÞ, defined so as to incorporate some of
the expected nonperturbative features of the (unknown)
result. This repackaging is crucial for being able to bypass
the strong limitations of PN results. Indeed, by itself PN
theory is unable to go beyond the (adiabatic) early inspir-
alling stage of black hole coalescence,1 while the EOB
method is able to describe, in a continued manner, the full
coalescence process: adiabatic early inspiral, nonadiabatic
late inspiral, plunge, merger, and ring-down. The EOB
method comprises three, rather separate, parts:

(1) a description of the conservative (Hamiltonian)
piece of the dynamics of two black holes;

(2) an expression for the radiation-reaction force F ’

that supplements the Hamiltonian dynamics;
(3) a description of the gravitational wave (GW) signal

emitted by a coalescing binary system.
For each one of these parts, the EOB method uses

special resummation techniques, inspired by specific re-
sults going beyond perturbation theory. For instance, the
resummation of the EOBHamiltonian (part 1) was inspired
by a specific resummation of ladder diagrams used to
describe positronium energy states in quantum electrody-
namics [6]. The resummation of the radiation-reaction
force F ’ was inspired by the Padé resummation of the

flux function introduced in Ref. [7]. As for part 3, i.e. the
EOB description of the gravitational radiation emitted by a
coalescing black-hole binary, it was mainly inspired by the
classic work of Davis, Ruffini, and Tiomno [8], which
discovered the transition between the plunge signal and a
ringing tail when a particle falls into a Schwarzschild black
hole.
Before the availability of reliable numerical simulations,

the EOB method made several quantitative and qualitative
predictions concerning the dynamics of the coalescence,
and the corresponding GW radiation, notably: (i) a blurred
transition from inspiral to a ‘‘plunge’’ that is just a smooth
continuation of the inspiral, (ii) a sharp transition, around
the merger of the black holes, between a continued inspiral
and the ring-down signal, and (iii) estimates of the radiated
energy, and of the spin of the final black hole (the latter1See Appendix B for a new confirmation of this fact.
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estimates were made both for nonspinning binaries [2] and
for spinning ones [9]). Those predictions have been
broadly confirmed by the results of recent numerical simu-
lations performed by several independent groups (for a
review of numerical relativity results see [10]). The recent
breakthroughs in numerical relativity (NR) [11–15] open
the possibility of acquiring some knowledge about binary
black-hole coalescence that goes beyond what either PN
theory, or its resummed avatars (such as the EOB), can tell
us. Actually, it was emphasized early on [4,16,17] that the
EOB method should be considered as a flexible structure,
containing several parameters representing (yet) uncalcu-
lated results, that would need NR results (or real observa-
tional data) to be determined. For instance, Refs. [4,16]
introduced a parameter (here denoted as a5) representing
uncalculated 4 PN, and higher, contributions to the crucial
EOB ‘‘radial potential’’ AðRÞ. Reference [17] introduced
several more EOB flexibility parameters, notably vpole
(entering the Padé resummation of the radiation-reaction
force) and a parameter (here replaced by �aRR) describing
uncalculated nonquasicircular (NQC) contributions to the
radiation reaction. Recently, Ref. [18] augmented the list of
EOB flexibility parameters by introducing two parameters
(here denoted as a and b) representing NQC contributions
to the waveform, as well as two parameters, tm and �
(together with the choice of an integer p), describing the
‘‘comb’’ used in matching the inspiralling and plunging
waveform to the ring-down one. Each one of these EOB
flexibility parameters (a5, vpole, �aRR, a, b, tm, �, p) pa-

rametrizes a deformation2 of the originally defined EOB.
Each direction of deformation, e.g., @=@a5, hopefully adds
some ‘‘missing physics’’ that either has not yet been calcu-
lated because of technical difficulties,3 or represent only an
effective description of a complicated, nonperturbative
process which is not directly formalizable in a calculable
way. In both cases, the EOB programme aims at using NR
results to determine the ‘‘best-fit’’ values of the flexibility
parameters; i.e., the values that, hopefully, allow an ana-
lytical EOB waveform to accurately represent the exact
general relativistic inspiralling and coalescing waveform.
Note that, in this paper, we will not use the terminology of
faithful (versus effectual) waveforms [7]. Indeed, this ter-

minology refers to particular measures of the closeness of
two waveforms (called ‘‘faithfulness’’, F , and ‘‘effectual-
ness’’, E in [17]) which are based on specific ways of
maximizing normalized overlaps. These measures are not
the best suited for our present purpose because they are
detector dependent (through the use of the detector’s spec-
tral noise curve ShðfÞ in the Wiener scalar product hX; Yi,
see e.g., Eqs. (6.1) and (6.2) of [17]). By contrast, we are
interested here in hopefully showing that EOB waveforms
can be ‘‘close’’ to general relativistic ones in a much
stronger mathematical sense, say in the time-domain L1
norm: supt2½t1;t2�jhEOBðtÞ � hexactðtÞj< ". Actually, the

most important ‘‘closeness,’’ for data analysis purposes,
is the closeness of the phases. Therefore we shall primarily
consider the time-domain phase L1 norm: k��k1 �
inf�;�supt2½t1;t2�j�EOB

22 ðtþ �Þ þ ���NR
22 ðtÞj, where we

minimize over the two arbitrary parameters � (time-shift)
and � (phase-shift). When k��k1 is smaller than " for
most physically relevant intervals ½t1; t2�, we shall say that
the (time-domain) EOBwaveform hEOBðtÞ is an "-accurate
representation of hexactðtÞ.
The program of determining the ‘‘best-fit’’ flexibility

parameters by comparing EOB predictions to NR results
has been initiated in several works [16,18,20–22] (see also
[23–25] for other works involving the comparison of EOB
waveforms to NR ones). For some parameters,4 it has
already been possible to determine them, or, at least, to
find a rationale that allows one to fix them in a near-optimal
manner. For instance, it was found in Ref. [18] that p ¼ 2,
i.e. the use of 2pþ 1 ¼ 5 matching points and 5 corre-
sponding positive-frequency QNMs was optimal from a
practical point of view, in the sense that smaller values led
to visibly worse fits, while higher values led to only a rather
marginal improvement. We shall therefore fix p to the
value p ¼ 2. Concerning the ‘‘central matching time’’
tm, previous work [18,20,22] has found that it was near
optimal to choose (as advocated in [2]) tm to be the so-
called ‘‘EOB light-ring crossing’’ time, i.e. the EOB dy-
namical time when the EOB orbital frequency � reaches
its maximum. Concerning the matching-comb width pa-
rameter � ¼ �t=ð2pÞ (where �t is the total width of the
matching interval), Refs. [18,22] found that � ¼ 1:7Mfinal

(corresponding to �t ¼ 4� ¼ 6:8Mfinal) yielded a good
result. Here Mfinal denotes the mass of the final black

2We use here the word deformation in the mathematical sense.
Ideally we would like the list of EOB flexibility parameters to
describe a kind of versal deformation of the original EOB, i.e. a
multiparameter family which is general enough to encompass all
the physics contained in real GW coalescence signals, starting
from the originally defined EOB waveform, which was based on
a rather coarse representation of the coalescence waveform.

3For instance, the exact, general relativistic value of a5 [or,
rather, of the �-dependent coefficient a5ð�Þ ¼ �a5 þ �2a05 þ � � �
of ðGM=c2RÞ5 in AðRÞ] has not yet been calculated simply
because it would represent a huge technical challenge, involving
a 4 PN (and 4-loop) generalization of the rather involved 3 PN
(and 3-loop) work that led to the unique determination of the
lower-order coefficient a4ð�Þ [5,19].

4Note that several of the EOB flexibility parameters listed
above refer to the recently introduced resummed 3þ2-PN accu-
rate EOB waveform [18,21] and to the comb matching procedure
of Ref. [18]. The EOB dynamics and waveform used in the
works of Buonanno and collaborators differ in several ways from
the dynamics and waveform used by us, notably: (i) a radiation-
reaction force of lesser PN accuracy, and without NQC correc-
tions, (ii) a waveform of ‘‘Newtonian’’ accuracy without NQC
corrections, and (iii) a simpler matching procedure between the
plunge and the ring-down involving only three (positive-
frequency) quasinormal modes (QNM) and an instantaneous
matching (as used in some of the original EOB papers [2,26]).
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hole. Here also, we fix tm ¼ t
light-ring
EOB , and � ¼ 1:7Mfinal.

Moreover, we shall discuss below a rationale allowing one
to fix the parameters a and b.

Summarizing: the only EOB flexibility parameters
which have not yet been uniquely determined are a5,
vpole, and �aRR. Some recent works [20–22] have explored

the influence of these parameters on the EOB waveform
and have made initial steps towards determining ‘‘best-fit’’
values for these parameters; i.e., values leading to an
optimal agreement with NR data. In particular, Ref. [20]
found that the faithfulness F (in the sense of Sec. VIA of
Ref. [17]) of restricted EOB waveforms against NASA-
Goddard NR coalescence waveforms was largest when5 a5
belongs to some rather wide interval, say [20, 100], cen-
tered around a5 � 60. On the other hand, Ref. [21] found
that the accuracy (in the sense of the L1 norm of the phase

difference) of the resummed 3þ2-PN EOB waveform6 with
respect to the high-accuracy Caltech-Cornell (CC) NR
long-inspiral waveform was at its best when a5 belonged
to an interval �½10; 80� centered around a5 � 40. The
influence of the flexibility parameter vpole was studied in

Refs. [21,22]. It was found that, for any given values of a5
and �aRR, and for any given NR waveform, there existed a
well-determined value of vpole that minimized the phase

difference between EOB and NR (see below for a more
precise formulation). However, those previous EOB-NR
comparisons limited themselves to considering one NR
data set at a time (the published Caltech-Cornell inspiral
data for Ref. [21], and some Albert Einstein Institute (AEI)
coalescence data for Ref. [22]).

The aim of the present paper is to go beyond this piece-
meal consideration of NR data and to best fit (in phase) the
flexed EOB waveform, hEOBða5; vpole; �aRR; tÞ, simulta-

neously to several independent NR waveform data (namely
inspiral and coalescence data produced by the Jena group
and reported here, and published inspiral Caltech-Cornell
data). Our main result will be that the best-fit values of the
three remaining EOB flexibility parameters ða5; vpole; �aRRÞ
are approximately determined, in the sense that they must
all take values in relatively small, correlated, intervals. It is
then found that the resulting, approximately unique, best
fitted EOB waveform exhibits a remarkable agreement
(modulo differences compatible with estimated numerical
errors), both in phase and in modulus, not only with the
data that we use in the fit (i.e., equal-mass Jena data and
equal-mass Caltech-Cornell data considered for M! �
0:1), but also with other NR data (namely, unequal-mass
Jena data and Caltech-Cornell data after M! ¼ 0:1).

Our work focusses on the comparison between the EOB
predictions and NR data because the EOB method is the
only existing analytical approach which: (i) incorporates,
in an exact manner, all the theoretical knowledge acquired
through many years of post-Newtonian studies,
(ii) provides waveforms covering the full coalescence pro-
cess from early inspiral to ring-down, and (iii) can describe
spinning binaries (see, in this respect Refs. [4,27]).
However, as some studies have emphasized the nice prop-
erties of one specific PN approximant, called TaylorT4 in
[28] (for consistency with the T1, T2, and T3 Taylor
approximants considered in [29]), we shall discuss it
briefly in Appendix B, though it does not satisfy our
requirements (ii) above, namely, that of providing wave-
forms covering the full coalescence process.
This paper is organized as follows. In Sec. II we briefly

describe the numerical simulations, whose results we use
in the following. Section III summarizes the definition of
the 3þ2-PN accurate EOB waveform that we use.
Section IV is the central section of this work: it shows
how the simultaneous comparison of EOB to two different
NR data sets allows one to determine a small range of
‘‘best-fit’’ (correlated) EOB flexibility parameters a5, vpole
and �aRR. Section V selects central values for the best-fit
parameters and discusses in detail the agreement between
the EOB waveform and the Jena NR waveform, for various
mass ratios. The paper ends with a concluding section,
followed by two Appendices. Appendix A is devoted to
the issue of determining the metric waveform hðtÞ from the
curvature waveform  4ðtÞ, while Appendix B discusses the
TaylorT4 approximant. Except when otherwise specified,
we use in this paper units such that G ¼ c ¼ 1.

II. NUMERICAL RELATIVITY SIMULATIONS

Numerical simulations were performed with the BAM
code [30,31], which evolves black-hole binaries using the
‘‘moving-puncture’’ approach [12,13]. The relevant physi-
cal and numerical parameters for our simulations are pre-
sented in Table I; note that the results from the equal-mass
simulations were presented in [32], which also contains
extensive error analysis and comparison with standard
post-Newtonian inspiral approximants. These results are
also in good agreement with those of [28] over the shared
frequency range. We shall present below an explicit com-
parison of the phase of the waveform of Ref. [28] with the
one of our equal-mass simulation.

A. Initial data

Following the moving-puncture approach we set up
initial data containing two black holes via a Brill-
Lindquist-like wormhole construction [33], where the ad-
ditional asymptotically flat end of each wormhole is com-
pactified to a point, or ‘‘puncture.’’ The entire 2-wormhole
topology can thus conveniently be represented on R3. It has
long been understood how to set up such puncture initial

5Note that Ref. [20] uses the notation � for a5.
6We refer to the PN accuracy of this waveform as 3þ2PN

because it includes not only the known comparable mass 3 PN
waveform corrections, but also the test-mass limit of the 4 PN
and 5 PN waveform amplitude corrections [21].
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data, and, in particular, how to avoid working with diver-
gent quantities [34–37]. More recently it has turned out
that the gauge conditions used in the moving-puncture
approach actually allow a simpler representation of the
black-hole interior during the evolution: the black-hole
throat is pushed an infinite proper distance away from the
horizon, and the initial puncture geometry is replaced by a
new compactified asymptotics with a milder singularity
[38–40].

One key element of the simplicity of the moving-
puncture approach is that black holes can be modeled on
a Cartesian numerical grid without the need to deal with
black-hole excision techniques. Another is that the as-
sumption of an initially conformally flat spatial geometry
yields a very simple way to generate any number of mov-
ing, spinning black holes [36,41]. Note. however, that the
puncture initial data are not restricted to conformal flatness
a priori [34,35,37], and generalizations that better model
spinning black holes have been suggested [42,43].

Assuming conformal flatness for the initial data, and
assuming the extrinsic curvature of the initial slice to be
within the class of nonspinning Bowen-York solutions, the
freedom in specifying initial data comprises the masses,
locations and momenta of each black hole.

The mass of each black hole, Mi (i ¼ 1, 2), is specified
in terms of the Arnowitt-Deser-Misner (ADM) mass at
each puncture, which is, to a very good approximation
[44–46] equal to the irreducible mass [47,48] of the appar-
ent horizon

Mi ¼
ffiffiffiffiffiffiffiffiffi
Ai
16�

s
; (1)

where Ai is the area of the apparent horizon. We identify
this mass with the mass (denoted below mi) used in post-
Newtonian theory. This assumption will only hold exactly
in the limit where the black holes are infinitely far apart
and stationary, but we consider any error in this assumption
as part of the error due to starting the simulation at a finite
separation.

The constraint equations for black-hole binary puncture
initial data are solved using a pseudospectral code [49],
and resampled for our finite-difference grid using high-
order polynomial interpolation [31].

We want to specify initial data for nonspinning black
holes in the center-of-mass frame, such that the trajectories
correspond to quasicircular inspiral, i.e. the motion is
circular at infinite separation, and the eccentricity vanishes.
Following [50], we obtain the initial momenta of the black
holes from a post-Newtonian inspiral calculation, using a
3PN-accurate conservative Hamiltonian [19], and 3.5PN
accurate beyond leading order orbit-averaged radiation
flux [51,52]. We have measured the eccentricity from
oscillations in the separation and frequency as described
in [50], and have obtained the values 0.002, 0.003, 0.005,
for mass ratios q ¼ 1, 2, and 4, respectively.

B. Numerical evolution

We use the BSSN formulation of the Einstein equations
[53,54] for time evolution, which are formulated in terms
of a conformal 3-metric ~�ij, related to the physical metric

as

~� ij ¼ 	�ij: (2)

Representing the conformal factor by the quantity 	 has
the advantage that, when dealing with puncture data, the
conformal factor 	 conveniently vanishes at each puncture
[12]. Details of our implementation of the BSSN/moving-
puncture system are described in [30]. We also need to
choose a lapse and shift during the evolution to determine
our coordinate gauge. As is common in the moving-
puncture approach, we use the ‘‘1þ log’’ slicing condition
[55]

@0� ¼ �2�K; (3)

and the ~�-driver condition [56,57],

@0

i ¼ 3

4B
i; (4)

@0B
i ¼ @0~�

i � �Bi; (5)

where @0 ¼ @t � 
i@i. The parameter � in the shift-
condition effectively regulates the coordinate size of the
apparent horizons, and is set to � ¼ 2=M in our
simulations.
The Einstein evolution equations are solved numerically

with standard finite-difference techniques as described in
[30,31]. Spatial derivatives are approximated with sixth-

TABLE I. Details of the simulations discussed in the test. From left to right, the columns report: mass ratio q ¼ m2=m1; symmetric
mass ratio � ¼ m1m2=ðm1 þm2Þ2; initial coordinate separationD of the punctures; initial ADMmass; initial tangential (pt) and radial
(pr) momentum of the black holes; mass and dimensionless spin parameter jf ¼ Jf=M

2
f of the final black hole; mass and dimensionless

spin parameter j
ring
f andM

ring
f =M of the final black hole obtained only from the ring-down; dominant (quasinormal-mode) frequency of

the ring-down. Quantities are scaled by the total initial black hole mass M ¼ m1 þm2 as indicated.

q � D=M MADM=M jpt=Mj 103 � jpr=Mj Mf=M jf Mring
f jringf M�þ

2220

1 1=4 12 0.991 225 0.085 035 0.053 729 0:9514� 0:0016 0:687� 0:002 0.962 0.690 0:0850þ i0:5521
2 2=9 10 0.990 901 0.085 599 0.794 821 0:96� 0:003 0:625� 0:004 0.977 0.635 0:0856þ i0:5214
4 4=25 10 0.993 522 0.061 914 0.043 332 0:978� 0:003 0:472� 0:004 0.990 0.487 0:0874þ i0:4683
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order accurate stencils. First order derivatives correspond-
ing to Lie derivatives with respect to the shift vector are
approximated with off-centered operators as described in
[31], all other derivatives are approximated with centered
finite-difference operators. Kreiss-Oliger artificial dissipa-
tion operators which converge to zero at fifth order are
applied as described in [30,31]. Time evolution is per-
formed with a fourth-order Runge-Kutta integration. Our
box-based mesh refinement is described in [30]. Time
interpolation errors in the mesh-refinement algorithm con-
verge only at second order, but do not seem to contribute
significantly to the error budget, as does the Runge-Kutta
time integration.

The grid configurations we have used for our equal-mass
runs are described in [32]. For the unequal-mass runs, we
have used the 56, 64, 72-gridpoints configurations of [32],
adding two further refinement levels to push the outer
boundary further out by roughly a factor of 4. In order to
be able to reuse our equal-mass grid configurations, we
always choose the mass of the smaller black hole, which
determines our resolution requirements, at M1 ¼ 0:5.

C. Wave extraction

The gravitational wave signal is extracted at different
surfaces of constant radial coordinate by means of the
Newman-Penrose Weyl tensor component  4 [58,59]
which is a measure of the outgoing transverse gravitational
radiation in an asymptotically flat spacetime. At finite
distance to the source the result depends on the coordinate
gauge and the choice of a null tetrad. Our choice of tetrad
and details of the wave extraction algorithm are described
in detail in [30]. We choose our extraction surfaces at 40,
50, 60, 80, and 90M. In [32] we extrapolated the waveform
amplitude (though not its phase) to the value that would be
observed at infinity; in this work we deal with the raw
numerical data at the farmost extraction radius, but use
some extraction-radius-extrapolated results to provide un-
certainty estimates. See next subsection.

The analysis carried out in this paper will use, as ap-
proximate asymptotic waveform, the curvature perturba-
tion extracted at radius 90M, without any extrapolation
(neither with respect to extraction radius, nor with respect
to resolution). The comparisons between numerical data
and analytical predictions done below will make use of
metric (by contrast to curvature) waveforms. We discuss in
Appendix A the integration procedure we used to compute
the numerical metric waveform from the raw curvature
waveform output of the simulations. In this paper, we focus
on the ‘ ¼ m ¼ 2 ‘‘quadrupolar’’ waveform.

D. Accuracy

1. The equal-mass case

A detailed error analysis was performed for the equal-
mass waveforms in [32]. In this section, we will first

summarize the results of that error analysis, and then
complete it by more carefully quantifying the uncertainty
in the phase. As we shall see, our refined estimate of the
uncertainty in the phase will end up being significantly
lower than the upper bound, 0.25 radians, quoted in [32].
The amplitude and phase of the equal-mass nonspinning

waveforms show sixth-order convergence with respect to
numerical grid resolution prior to merger, with a small drop
in convergence order around merger time. Higher-accuracy
results were constructed by Richardson extrapolation with
respect to numerical resolution, and this procedure also
allowed an estimation of the contribution to the uncertainty
in the amplitude and phase from discretization error. The
discretization error in the amplitude was found to be below
0.5%, while the discretization error in the phase was esti-
mated to be below 0.01 radians. These are conservative
error estimates obtained by observing the numerical errors
over the course of the entire simulation. See, in particular,
Fig. 4 in [32]. If we look at that figure we may conclude
that the error estimate of the phase is extremely conserva-
tive, but one should also be aware that the quoted numeri-
cal phase error takes into account only instantaneous
differences in the value of the waveform phase, but not
secular drifts. When the analysis for [32] was performed,
the authors hoped that the conservative value quoted would
account for any phase drifts. We shall see below that,
however, there might remain sources of secular drifts that
are not yet well understood.
In addition to the discretization error, there is also an

error due to measuring the waveform at a finite distance
from the source. For both the waveform amplitude and
phase, it was found in [32] that finite extraction radii errors
were much larger than discretization errors. Prior to
merger, the error in the amplitude was found to fall off as
1=R2

ex, where Rex was the radiation extraction radius, and
this observation allowed a clean extrapolation to Rex ! 1,
and, once again, an estimate of the uncertainty in the
amplitude. The uncertainty in the extrapolated amplitude
was at most 2% before merger. Around merger time, the
amplitude error falloff is dominated by a 1=Rex term, and
the uncertainty in the extrapolated amplitude grows to
around 5%. However, in this paper we use the raw data
calculated at the extraction radius Rex ¼ 90M, and as such
the uncertainties are larger, as much as 5% over the entire
simulation. The largest uncertainties in the finite-extrac-
tion-radius amplitude are at early times, when the ampli-
tude is small, and around merger, when the dynamics are
strongest.
In [32] the total phase uncertainty accumulated on a time

interval of duration 1400M extending up to gravitational
wave frequencyM! ¼ 0:1 was quoted as being 0.25 radi-
ans. This large valuewas an upper bound which was quoted
in view of the difficulty in finding a robust method to
extrapolate the phase to infinite extraction radius. These
difficulties were related to the specific phase alignment
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method which was used in [32]. There, one was first
choosing some frequency at which to line up the phases
and frequencies of waves from different extraction radii,
and then attempting to perform an extrapolation. Although
it is entirely valid to time- and phase-shift any number of
waveforms to perform a comparison between them, it
turned out that this is not an efficient way to perform a
consistent extraction-radius extrapolation.

By contrast, for the purpose of the present paper we have
performed a new study of the extraction-radius extrapola-
tion which follows the strategy proposed in [28]. More
precisely we used two similar, but different, phase align-
ment methods. The first one consists of simply introducing
the ‘‘Newtonian retarded time,’’ at the coordinate extrac-
tion radii Rex, uN ¼ t� Rex and study the waves as func-
tion of uN. Then, when attempting extrapolation with
respect to Rex, we find a clear c0ðuNÞ þ c2ðuNÞ=R2

ex falloff
in the error, and are able to make a clean extrapolation to
infinity. We have also repeated the analysis with an extra
þc3ðuNÞ=R3

ex term in the fit.
The second method consists of using, inspired by the

result in [28], the a priori more accurate definition of
retarded time, uB ¼ t� r	, where the (approximate)
Regge-Wheeler tortoise coordinate r	 is (following [28])
defined as r	 ¼ Rex þMADM þ 2MADM log½ðRex þ
MADMÞ=ð2MADMÞ � 1�. This improved choice of retarded
time allows us again to perform a clean extrapolation
to infinity. As when using uN, we use two different
fits: c0ðuBÞ þ c2ðuBÞ=R2

ex and c0ðuBÞ þ c2ðuBÞ=R2
ex þ

c3ðuBÞ=R3
ex. We then estimate the uncertainty in the phase

of the farmost unextrapolated data, extracted at Rex ¼
90M, by comparing the following five phases: (i) the raw
phase �90M measured at Rex ¼ 90M, (ii) the phase �1

N2

extrapolated using uN and assuming a 1=R2
ex falloff,

(iii) the phase �1
N3 extrapolated using uN and assuming a

1=R2
ex þ 1=R3

ex falloff, (iv) the phase �1
B2 extrapolated

using uB and assuming a 1=R2
ex falloff, and (v) the phase

�1
B3 extrapolated using uB and assuming a 1=R2

ex þ 1=R3
ex

falloff. The differences between the phases are computed
after they have been aligned by using the two-times pinch-
ing technique of Ref. [22] (which is reviewed in Sec. IV
below). For consistency with our EOB-NR matching dis-
cussed in Sec. V below we use as ‘‘pinching’’ gravitational
wave frequencies !1 
 0:1 and !2 ¼ 0:4717. Note that
these frequencies bracket the merger time. The four phase
differences �90M ��1

i where i 2 fN2;N3;B2;B3g are
exhibited as functions of the numerical relativity coordi-
nate time at 90M, in Fig. 1. The triangles in the figure
indicate the two times corresponding to the two pinching
frequencies ð!1; !2Þ, while the vertical dashed lines indi-
cate the time interval ½1200; 1900� 
 ½tL; tR� which will
turn out to be crucial for our analysis in Sec. V below.
Several conclusions can be drawn from Fig. 1: First, the
choice of retarded time, uN or uB, does not matter much for
the extrapolation procedure. Second, though the phase

differences over the entire span of the simulation can reach
values �þ 0:13 radians around merger time (peak at t 

1930M) and/or �� 0:2 radians (during ring-down), they
stay quite small during the time interval ½tL; tR� that we
shall focus on in our analysis below.7 Most importantly for
the following the maximum phase differences over the
interval ½tL; tR� stay within the rather small interval
ð�0:042;þ0:032Þ radians.
After this ‘‘internal’’ way of trying to estimate the

numerical errors in the phase of our equal-mass simulation,
let us consider an ‘‘external’’ way which consists in di-
rectly comparing the unextrapolated, 90M raw phase
�90MðtÞ to the phase computed by Boyle et al. [28] and
kindly communicated to us. In Fig. 2 we are directly
comparing two phases: our unextrapolated �90MðtÞ and
the resolution- and radius-extrapolated Caltech-Cornell
curvature phase �CCðtÞ. The phase difference ��CCJena

22 ¼
�CC ��90M was plotted versus the Caltech-Cornell (cur-
vature) frequency !CC. This phase difference was com-
puted in the following way. First, we used the two-pinching
frequencies!1 ¼ 0:059 517 and!2 ¼ 0:149 76 (indicated
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FIG. 1 (color online). Differences between the phase extracted
at Rex ¼ 90M, and the phase extrapolated to infinity based on
two choices of the retarded time and on two choices of the
extrapolating polynomial, as described in the text. The choice of
retarded time makes little difference to the result.

7Note also that with the above choice of pinching times
ð!1; !2Þ the phase differences stay quite small, namely �0:06
radians, during the entire inspiral. However, this result sensi-
tively depends on the way the phases have been matched. For
instance, when using pinching frequencies !1 ¼ !2 ¼ 0:1 one
observes maximum phase differences of �þ 0:07 radians at
merger and �� 0:45 radians during ring-down, while they stay
between ð�0:03; 0Þ radians during the inspiral. On the other
hand, when using pinching frequencies around merger, i.e.,
!1 ¼ 0:36 and !2 ¼ 0:38, one gets quite small phase differ-
ences during merger and ring-down, but one observes large
dephasings at early times, that build up to �0:6 radians.
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by two dashed vertical lines in the figure) to determine the
time and phase shifts ð�; �Þ, see below, then the result
��CCJena

22 ðtCCÞ ¼ �CCðtCCÞ � ð�90MðtCC þ �Þ þ �Þ is

plotted versus !CC instead of tCC. In addition, since the
Caltech-Cornell simulation extends only up to !max

CC �
!2 
 0:15, we have estimated three different possible
extrapolations of the phase difference ��CCJena

22 beyond
!2 and up to !R ¼ 0:1898.8 These three different extrap-
olations were obtained by fitting ��ð!CCÞ over the inter-
val [0.1, 0.15] by three different polynomial functions of
!CC: quadratic, cubic, and quartic. As we see in Fig. 2, the
quadratic fit is the one which gives the worst possible phase
difference over the interval ½!L; !R�. We use this worst
case as an estimate of the maximum phase difference
between Caltech-Cornell and Jena phasings over ½tL; tR�.
More precisely, while the minimum value of��CCJena

22 over

the interval is�0:0068 radians, its maximum isþ0:044 84
radians (at !R, i.e., at the extreme right of Fig. 2). This
corresponds to a two-sided CC-Jena phase difference (in
the sense of footnote 12 of Ref. [22]) �1=2½0:044 84�
ð�0:0068Þ� ¼ �0:026 radians over the interval ½!L; !R�.
As this difference a priori comprises many possible ‘‘noise
sources’’ coming from comparing two very different simu-
lations, with different wave extraction procedures, we
consider that this is our best present estimate of the un-
known ‘‘real’’ error on the difference �90M ��CC. In
addition, as a recently published upper limit on the total
accumulated phase error in the Caltech-Cornell data of
Ref. [28] is 0.01 radians [60] (which is rather small), we

shall consider in the following that�0:026 radians provide
our best current estimate of the real error on the equal mass
�90M over the interval ½!L; !R�. Note, in passing, that the
internal error analysis procedure discussed above was giv-
ing a roughly comparable error estimate, namely, a two-
sided phase difference �1=2ð0:032� ð�0:042ÞÞ �
�0:037 radians. However, we cannot rely on this internal
analysis because it fails to explain the origin of a striking
feature of Fig. 2, which is that, before the plateau of very
small phase differences reached between frequencies 0.06
and 0.15, there is a steeper phase gradient which reaches
�0:16 radians at ! ¼ 0:044 45, roughly corresponding to
the beginning of the Jena simulation. Part of this error may
be due to residual eccentricity—a quick comparison with
post-Newtonian results using the techniques described in
[50] suggests that the phase error from a residual eccen-
tricity of e� 0:002 could be as much as 0.05 radians. We
feel, however, that most of the error comes from some
secular drift at early times which is not yet well
understood.

2. The unequal-mass cases

For the unequal-mass case 2:1, we find similar results,
namely, that the finite extraction radii dominate the error,
and the amplitude error is below 5% prior to merger. As for
the accumulated phase error in the 700M time span up to
M! ¼ 0:1, we did not carry out the radius extrapolation
analysis discussed above in the unequal-mass case. As a
rough upper limit we quote an accumulated phase error of
0.15 radians. In contrast to the equal-mass case, the falloff
in the amplitude error with respect to radiation extraction
radius is not so clean around merger time, preventing us
from performing an accurate extrapolation to infinity. As
such, wewould conservatively give an uncertainty estimate
of 10% of the amplitude at merger and later.
In the unequal-mass case 4:1, the case is different again:

here the discretization error dominates the phase error,
suggesting that higher-resolution simulations are needed.
Our estimate for the accumulated phase uncertainty up to
M! ¼ 0:1 is 0.25 radians, based entirely on discretization
error. For the amplitude we estimate that the uncertainty is
similar to that in the 1:2 case, i.e., around 5% prior to
merger, and 10% after that time.

E. Final parameters of the black hole

The final mass of the black hole is obtained by subtract-
ing the radiated energy from the initial mass. While the
initial mass (the ADM mass) is known very accurately
from the solution of the constraints with spectral methods
[49], the radiated energy is less accurate and dominates the
errors of the final mass and Kerr spin parameter. The
radiated energy is not very accurate, due to the loss of
accuracy in the wave signal at merger time for the equal-
mass case (leading to a conservative error estimate of 4%),
and the problems of extrapolation in radius and gridspacing
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FIG. 2 (color online). Comparison between Caltech-Cornell
and Jena actual numerical data: the phase difference ��CCJena

22 ¼
�CC ��Jena

90M is shown versus Caltech-Cornell GW frequency

!CC.

8Note that !1 ¼ !L corresponds to the lower limit tL of the
crucial EOB-NR comparison interval used in Sec. IV, while !R
corresponds to its upper limit tR.
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for the unequal-mass cases, which lead us to a conservative
error estimate of 10% in those cases.

The error in the radiated energy also dominates comput-
ing the quantity jf ¼ J=M2, where we either compute J
from a surface integral as in [30] andM as described above,
or we calculate jf itself from the ring-down. The error in
computing the angular momentum J from a surface inte-
gral falls off very quickly with separation. The dominant
error in this quantity comes from high-frequency numeri-
cal noise in the integrals, which is however much smaller
than the error in jf resulting from errors in the final mass.

To determine the mass and spin parameter of the final
black hole from the ring-down, we have performed two
types of fits to the dominant mode. First, the quality factor
has been obtained from a fit to the dominant quasinormal
mode9 of the complex ring-down waveform. This fit was
performed by a nonlinear least-squares Gauss-Newton
method, using expð��tþ 
Þ as a parameter-dependent
template [with two complex parameters ð�;
Þ], and an
appropriate time interval during the ring-down (chosen
by minimizing the post-fit residual). Then, from the best-
fit value of � (i.e., the QNM dominant complex frequency

�þ
2220), we computed the values of ðMring

f ; j
ring
f Þ of the final

black hole by using the interpolating fits given in

Appendix E of [61]. The triplets ðMring
f =M; j

ring
f ;M�þ

2220Þ
are listed in Table I.

This method does not require knowledge of the final
mass, but is actually not well conditioned due to the shape
of the curve jð!Þ. Better accuracy is obtained by only using
the real part of the frequency, then again, the error in j is
dominated by the error in the radiated energy. The values
are consistent with the values obtained from the surface
integrals for the angular momentum J. The numbers Mf

and jf quoted in Table I are consistent with both methods,
and with the analytical fit for jf published for shorter and

less accurate waveforms in [62]. By contrast ðMring
f ; j

ring
f Þ,

are ‘‘best-fit’’ values that will be used below to compute the
EOB ring-down waveform.

III. THE EOB WAVEFORM

We shall not review here the EOB formalism, which has
been described in several recent publications [20–
22,24,63]. We refer to these papers, and notably to
Refs. [21,24], for detailed definitions of the dynamics
and of the waveform. Let us only indicate here a few of
the crucial elements of the EOB implementation that we
use here. We recall below the main ingredients of the EOB
formalism, focusing on the appearance of the various EOB
flexibility parameters.

(i) The EOB Hamiltonian Hreal describes the conserva-
tive part of the relative two-body dynamics. We use

for the crucial ‘‘radial potential’’ AðrÞ entering this
Hamiltonian the P1

4 Padé resummation of

ATaylorða5; �; uÞ ¼ 1� 2uþ 2�u3 þ a4�u
4

þ a5�u
5; (6)

where [3,19]

a4 ¼ 94
3 � 41

32�
2; (7)

where a5 is the 4 PN flexing parameter introduced in
[4], and where10 u ¼ 1=r.

(ii) The EOB radiation-reaction forceF ’ðvpole; �aRR; �Þ,
that we shall use here, has the form

F ’ðvpole; �aRR; �Þ ¼ fNQCRR ð �aRRÞF 0
’ðvpole; �Þ; (8)

whereF 0
’ðvpole; �Þ is defined as a Padé resummation

[7] of its Taylor expansion. See Eq. (17) of [18]

where fDIS is the P4
4 Padé resummation of ð1�

v=vpoleÞF̂Taylorðv;�Þ. In addition, the factor fNQCRR is

a nonquasicircular (NQC) correction factor of the
form

fNQCRR ð �aRRÞ ¼
�
1þ �aRR

p2
r	

ðr�Þ2 þ �RR

��1
: (9)

This factor was introduced in Refs. [18,22] (see also
Ref. [17]). We fix the value of �RR to �RR ¼ 0:2 as in
[22].

(iii) We use improved ‘‘post-post-circular’’ EOB dy-
namical initial data (positions and momenta) as in
[21,22].

(iv) We use the resummed 3þ2PN accurate ‘‘inspiral-
plus-plunge’’ Zerilli-Moncrief normalized metric
waveform introduced in Refs. [18,21]. It has the form

�insplunge
22 ða; b;�; tÞ ¼ �4

ffiffiffiffiffiffi
�

30

r
�ðr!�Þ2fNQC22 ða; bÞ

� F22ð�Þe�2i�: (10)

Here �ðtÞ is the EOB orbital phase, � ¼ _� is the

EOB orbital frequency, r! � r½ ðr; p’Þ�1=3 is a

modified EOB radius, with  being defined as

 ðr;p’Þ ¼ 2

r2

�
dAðrÞ
dr

��1

�
�
1þ 2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ

�
1þp2

’

r2

�s
� 1

��
; (11)

which generalizes the 2PN-accurate Eq. (22) of
Ref. [26]. The factor F22 is a resummed, 3þ2-PN-

9In the notation introduced in Sec. III below, the dominant
mode corresponds to the labels ð�; ‘; ‘0; m; nÞ ¼ ðþ; 2; 2; 2; 0Þ.

10Except when said otherwise, we henceforth systematically
scale dimensionful quantities by means of the total rest mass
M � m1 þm2 of the binary system. For instance, we use the
dimensionless EOB radial coordinate r � REOB=M, with G ¼ 1.
Note also that � � �=M with � � m1m2=M.
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accurate complex amplitude correction valid during

the (adiabatic) inspiral (see [21]), and fNQC22 ða; bÞ is
the following extra complex correcting factor, aimed
at taking care (in an effective way) of various non-
quasicircular effects during the plunge

fNQC22 ða; bÞ ¼
�
1þ a

p2
r	

ðr�Þ2 þ �a

�
eibðpr	=r�Þ; (12)

where pr	 is the momentum conjugate to the EOB-

tortoise radial coordinate r	. Here we shall fix �a ¼
0:12. In these equations, we have only indicated the
explicit appearance of the waveform flexibility pa-
rameters ða; bÞ. In addition, the waveform is, evi-
dently, implicitly depending on a5, which enters
the Hamiltonian, as well as on vpole and �aRR, that

enter the radiation-reaction force.
(v) We use a ring-down waveform,

�
ring-down
22 ðtÞ ¼ X

N

Cþ
Ne

��þ
N t; (13)

where the label N actually refers to a set of indices
ð‘; ‘0; m; nÞ, with ð‘;mÞ ¼ ð2; 2Þ being the
Schwarzschild-background multipolarity degrees of
the considered �‘m waveform with n ¼ 0; 1; 2; . . .
being the ‘‘overtone number’’ of the considered Kerr-
background quasinormal mode (QNM; n ¼ 0 denot-
ing the fundamental mode), and ‘0 the degree of its
associated spheroidal harmonics S‘0mða�; �Þ. In ad-
dition �þ

N ¼ �þ
N þ i!þ

N refers to the positive com-
plex QNM frequencies (�þ

N > 0 and!þ
N > 0 indicate

the inverse damping time and the oscillation fre-
quency of each mode, respectively). The sum over
‘0 comes from the fact that an ordinary spherical
harmonics Y‘mð�;�Þ (used as expansion basis to
define �‘m) can be expanded in the spheroidal har-
monics S‘0mða�; �Þeim� characterizing the angular
dependence of the Kerr-background QNMs [64].
As explained in Sec. III of Ref. [22], we use five
positive-frequency QNMs computed starting from

the values of Mring
f =M and jringf listed in Table I.

(vi) We match the inspiral-plus-plunge waveform to the
ring-down one, on a ð2pþ 1Þ-tooth comb ðtm �
p�; tm � ðp� 1Þ�; . . . ; tm � �; tm; tm þ
�; . . . ; tm þ p�Þ, of total length �t ¼ 2p�, which is
centered around some ‘‘matching’’ time tm. We fix
the integer p to the value p ¼ 2, corresponding to
five matching points. As mentioned above, we fol-
low previous work [2,22,23] in fixing the ‘‘matching
time’’ tm to coincide with the so-called ‘‘EOB light-
ring’’, i.e. the instant when the orbital frequency
�ðtÞ reaches its maximum (this defines, within the
EOB approach, the merger time). As in [22], we fix

� ¼ 1:7Mring
f , which corresponds to a total width for

the matching interval �t ¼ 4� ¼ 6:8Mring
f .

(vii) Finally, we define the complete EOB matched wave-
form (from t ¼ �1 to t ¼ þ1) as

�EOB
22 ða5; vpole; �aRR; a; b; tm; �;�; tÞ
� �ðtm � tÞ�insplunge

22 ðtÞ þ �ðt� tmÞ�ring-down
22 ðtÞ;

(14)

where �ðtÞ denotes Heaviside’s step function.
This metric EOB waveform then defines a corresponding
curvature waveform, simply (modulo a factor r and nor-
malization conventions) by taking two time derivatives of
(14), namely

r ‘m4 ¼ d2

dt2
ðrh‘mÞ ¼ N‘

d2

dt2
ð�‘mÞ; (15)

where N‘ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þ 2Þð‘þ 1Þ‘ð‘� 1Þp

(see Appendix A).
Note, however, that in view of the imperfect smoothness11

of the EOB matched metric waveform (14) around t ¼ tm,
we find it more convenient, when comparing EOB to
numerical data that include the merger, to work with the
metric waveform without taking any further time deriva-
tives. We discuss in Appendix A the procedure that we use
to compute from the numerical relativity curvature wave-
form a corresponding metric waveform by two time
integrations.

Fixing the a and b flexibility parameters

In this brief subsection we discuss a rationale for choos-
ing two of the EOB flexibility parameters mentioned
above, namely a and b, that enter the NQC waveform
correction factor (12).
Reference [18] found that it was near optimal to fix the

NQC parameter a entering the modulus of the waveform12

so as to ensure that the maximum of the modulus of the
EOB quadrupolar metric waveform sits on top of that of the
EOB orbital frequency, i.e., at the ‘‘EOB light-ring.’’13 We
shall therefore ‘‘analytically’’ determine the value of the
waveform NQC parameter a, as a function of the symmet-

11A partial cure to this problem would consist in replacing the
discontinuous step function �ðt� tmÞ in Eq. (14) by one of
Laurent Schwartz’s well-known smoothed step functions (or
‘‘partitions of unity’’) �"ððt� tmÞ=ð2p�ÞÞ.
12Here a and b denote the parameters called a0 and b0 in
footnote 9 of .
13Note that this coincidence in the locations of the maximum of
jh22ðtÞj and of � is automatically ensured when one uses (as
advocated in [2]) a ‘‘restricted’’ EOB waveform �22ðtÞ /
�2=3 exp½�2i�ðtÞ�. It is, however, a nontrivial fact that NR
results show (both in the test-mass limit [18] and in the equal-
mass case [22]) that the maximum of j�22ðtÞj does occur very
near the maximum of the (corresponding, best matched during
inspiral) EOB orbital frequency �ðtÞ. This can be considered as
another successful prediction of the EOB formalism. Note that
this property does not apply to the maximum of the modulus of
other GW quantities, such as the instantaneous energy flux or the
modulus of quadrupole curvature waveform r 22

4 ðtÞ, which
occur significantly after the EOB light-ring [23].
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ric mass ratio � ¼ �=M ¼ m1m2=ðm1 þm2Þ2 by impos-
ing the following requirement: that the maximum of
j�EOB

22 ðtÞj be on top of the �ðtÞ.
In principle, the determination of a by this requirement

depends on the choice of the other EOB flexibility parame-
ters. In other words, the satisfaction of this condition will
determine a as a function of all the parameters entering
the EOB dynamics and inspiral waveform: a ¼
aða5; �aRR; vpole; �Þ. In practice, however, and as a first

step towards a fully consistent choice of all the EOB
flexibility parameters, we fixed a in the following way. In
previous work it was found both analytically (when �� 1,
see Ref. [18]) and numerically (when � ¼ 1=4, see
Ref. [22]) that the value a ¼ 0:5, together with �a ¼
0:12, led to a sufficiently accurate solution of the above
requirement. For the present work, we partially took into
account the parameter dependence of a by fixing
ða5; vpole; �aRRÞ to the central best-fit values that we will

select below and by then numerically finding the optimal
value of a as a function of � only. In particular, we
identified the following pairs ð�; aÞ of near-optimal values:
(0.25, 0.44), (0.2222, 0.49), (0.16, 0.64), (0.05, 0.905), and
(0.01, 0.985). These are the values that we shall use in this
work. Note also that the �-dependence can be approxi-
mately represented by a simple linear fit, namely að�Þ ¼
1:019� 2:345�.

As for the NQC parameter b entering the phase of the
(quadrupolar) waveform, previous work [22] has found
that it had a very small effect (when using the new,
3þ2-PN accurate EOB waveform which already includes
the leading NQC phase correction) and that it could simply
be set to b ¼ 0. We shall also do so here.

IV. SELECTING BEST-FIT EOB FLEXIBILITY
PARAMETERS

As recalled in the introduction, and in the previous
section, the only EOB flexibility parameters whose best-
fit values are still quite indeterminate are a5, vpole, and �aRR.

In this section we shall show how to remedy this situation
by combining information coming from various NR data,
namely, on the one hand, from published Caltech-Cornell
data, and, on the other hand, from recently computed Jena
data (reported here).

A. Using Caltech-Cornell published data to determine
vpole and �aRR as functions of a5

To start with, let us recall that Ref. [21] had fixed �aRR ¼
0 and had then showed that imposing one constraint relat-
ing the EOB waveform and Caltech-Cornell inspiral data,
namely 
bwd

!4
ða5; vpoleÞ ¼ 1, (see Eq. (35) in [21]), implied

a rather precise functional relationship between vpole and

a5 (see Fig. 3 there). More recently, Ref. [22] compared the
same type of EOB waveform with NR waveforms, com-
puted with the CCATIE code of the Albert Einstein

Institute, and suggested that it might be useful to flex the
EOB waveform by introducing a nonzero value of �aRR, i.e.
a nonquasicircular correcting factor fNQC, Eq. (9), in the
radiation reaction. Here we shall combine these two strat-
egies by starting from an EOB waveform depending on the
three a priori independent parameters ða5; vpole; �aRRÞ and
by imposing two independent constraints relating the EOB
waveform to published Caltech-Cornell data. These con-
straints have the form



�t!4
!4

ða5; �aRR; vpoleÞ ¼ 1; (16)



�t0!4
!4

ða5; �aRR; vpoleÞ ¼ 1; (17)

where



�t!m
!m

ða5; �aRR; vpoleÞ �
�!m�T4EOBðt!m

NR þ �t!m
Þ

�m
: (18)

Here �!m�T4EOBðt!m

NR þ �t!m
Þ is the value at the time

t!m

NR þ �t!m
of the curvature waveform ( 22

4 ) phase differ-

ence between T4 and EOB when the two waveforms are
matched at the gravitational wave frequency !m (in the
sense of [28]). The �m’s appearing in Eq. (18) are estimates
of the value of the phase difference between TaylorT4 and
Caltech-Cornell numerical relativity data at various times
differing from the matching time t!m

NR by �t!m
, as measured

by us on the left panel of Fig. 19 of [28]. Following the
procedure outlined in Sec. IVof [21], we use the matching
frequency !4 � !m ¼ 0:1. Then, we consider two of the
measured values which have been used to produce the
empty circles appearing in Fig. 5 of [21]. These two values
are
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FIG. 3. Functional relationships linking vpole and �aRR to a5
obtained by imposing the two constraints (16) and (17) based on
published Caltech-Cornell inspiral waveform data.
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�4 ¼ 0:055 corresponding to �t!4
¼ �1809M; (19)

�0
4 ¼ 0:04 corresponding to �t0!4

¼ �529M: (20)

The data point ð�t!4
; �4Þ corresponds to the leftmost empty

circle on the top panel of Fig. 5 of [21], while the point
ð�t0!4

; �0
4Þ corresponds to the next-to-next empty circle on

the right of ð�t!4
; �4Þ. The former data point was used in

Ref. [21] as the ‘‘main backward’’ !4 data. Note that the
new data point that we use here is also ‘‘backward’’ (with
respect to !m ¼ !4 ¼ 0:1), though it is less backward by
about a factor three. We use these two points here because
we think they represent the best ‘‘lever arms’’ to exploit the
approximate14 numerical data represented in Fig. 5 of [21].
In particular, we do not use any ‘‘forward’’ data point
because the accuracy with which we could measure them
is more uncertain. Let us emphasize that, as a consequence
of this choice, our determination of the functional relation-
ships vpoleða5Þ and �aRRða5Þ exhibited below only relies on

Caltech-Cornell data up to gravitational wave frequency
M! � 0:1.

The two constraints (16) and (17) were solved by nu-
merical Newton-Raphson iteration in vpole starting from a

grid of values of ð �aRR; a5Þ. The iteration was stopped when
the constraints were satisfied to better than the 10�4 level.
The result of this procedure consists of two separate func-
tional relations linking, on the one hand, vpole to a5 and, on

the other hand, �aRR to a5. These two functional relations
are plotted in Fig. 3. The upper panel of the figure is a
modified version of the vpoleða5Þ functional relationship

represented in the upper panel of Fig. 3 of [21]. The latter
curve was drawn by fixing �aRR to zero and by imposing

only the first constraint, 

�t!4
!4

ða5; 0; vpoleÞ ¼ 1. By con-

trast, the curve vpoleða5Þ in the upper panel of Fig. 3 was

obtained by simultaneously tuning vpole and �aRR so as to

satisfy the two constraints (16) and (17). The numerical
data behind the plots of Fig. 3 are also given in explicit
numerical form in Table II. [The many digits quoted there
are only given for comparison purposes.]

In the upper panel of Fig. 4 we exhibit, for the particular
value a5 ¼ 25 (and, correspondingly, �aRR ¼ 27:9197 and
vpole ¼ 0:515 63) the near-perfect agreement between the

two !4-matched phase differences �T4 ��EOB and
�T4 ��NR. [Our choice of the particular value a5 ¼ 25
will be motivated in the next subsection]. For complete-
ness, we have also included in the upper panel (see dash
and dash-dot curves) the analogous phase differences

matched at the matching frequencies !2 ¼ 0:05 and !3 ¼
0:063 instead of !4 ¼ 0:1. The visual agreement between
these three phase-difference curves and the corresponding
ones displayed in the left panel of Fig. 19 in Ref. [28] is
striking. [As in Fig. 19 of [28], we use here TaylorT4
3:5=2:5; see Appendix B for its precise definition]. The
lower panel of Fig. 4 plots the !4-matched phase differ-
ence �EOB ��NR ¼ ½�T4 ��NR� � ½�T4 ��EOB�, i.e.,

TABLE II. Explicit values of the EOB effective parameters
�aRR and vpole for a certain sample of a5. These values correspond

to imposing the two constraints 

�t0!4
!4

’ 1� 10�4 ’ 
�t!4!4
.

a5 �aRR vpole

5.0000 38.286 713 287 0.559 878 668

10.0000 34.630 281 690 0.546 122 851

15.0000 31.708 633 094 0.534 478 193

20.0000 29.496 402 878 0.524 422 704

25.0000 27.919 708 029 0.515 629 404

30.0000 26.940 298 507 0.507 845 655

35.0000 26.484 962 406 0.500 903 097

40.0000 26.545 801 527 0.494 646 066

45.0000 27.057 692 308 0.488 978 922

50.0000 28.031 496 063 0.483 798 488

55.0000 29.360 000 000 0.479 064 301

60.0000 31.097 560 976 0.474 690 707

65.0000 33.130 252 101 0.470 660 186

70.0000 35.517 241 379 0.466 908 044

75.0000 38.189 655 172 0.463 416 027
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FIG. 4 (color online). Top panel: near-perfect agreement be-
tween T4-EOB and T4-NR phase differences when a5 ¼ 25,
�aRR ¼ 27:9197, and vpole ¼ 0:51563. Here NR refers to the

published results of the Caltech-Cornell inspiral simulation.
The corresponding EOB-NR phase difference (bottom panel)
is of the order of 10�3 radians over the 30 GW cycles of the
Caltech-Cornell inspiral simulation.

14As a measure of the accuracy of the approximate data points
quoted in Eqs. (19) and (20) above, let us mention that we have,
since, directly determined from the Caltech-Cornell numerical
data provided to us the values �4 ¼ 0:054 97 corresponding to
�t!4

¼ �1809M, and �0
4 ¼ 0:039 57 corresponding to �t0!4

¼
�529M (with a numerical relativity time t!4

¼ 3782:1489M
corresponding to !4 ¼ 0:1).
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the difference between the two solid curves (red online and
black) in the upper panel.

Note that this phase difference varies between �0:0014
and þ0:0008 radians over the time span of (� 2464M up
to M! ¼ 0:1) which was used in our EOB-CC fitting
procedure. A study of the continuation of the curve exhib-
ited in the bottom panel of Fig. 4 then shows that, after
M! ¼ 0:1 and up to a final frequency M! ¼ 0:1565, this
phase difference varies between þ0:0013 and �0:0185
radians over a time span of 96M. Note that a recent report
[60] has indicated that a refined estimate of the total
phasing error in the Caltech-Cornell simulation was of
the order of 0.01 radians over the entire span of the simu-
lation. Therefore the accuracy of our EOB-fit is consistent
with such an error estimate.

Summarizing so far: by best-fitting the three-parameter
flexed EOB waveform �EOB

22 ða5; vpole; �aRR; tÞ to pub-

lished15 Caltech-Cornell inspiral data before M! ¼ 0:1
(in the sense of imposing the two constraints Eqs. (16)
and (17)) we have reduced the number of independent
unknown EOB flexibility parameters to only one, namely,
the ‘‘4 PN’’ EOB parameter a5. The basic physical reason
behind the difficulty of determining a5 by means of inspiral
data only (especially when relying, as we did above) on
data below GW frequency 0.1, is the fact that a5 starts
significantly affecting the EOB dynamics (and waveform)
only during the late-inspiral, when the dynamics becomes
strongly nonadiabatic. Our next step will be to constrain a5
by best-fitting the EOB waveform to numerical data cover-
ing more of the late-inspiral dynamics.

B. Using numerical data covering late-inspiral and
plunge to constrain the ‘‘4 PN’’ EOB flexibility

parameter a5

In this subsection we shall fulfill, at least in first ap-
proximation, the aim of the EOB-NR comparisons initiated
in Refs. [16,20–22]; i.e., to determine an essentially unique
set of ‘‘best-fit’’ EOB flexibility parameters
ðvpole; �aRR; a5Þ. In view of the results of the previous sub-

section, we now need to best-fit the one-parameter flexed
EOB waveform

�EOB
22 ða5; tÞ � �EOB

22 ½vpoleða5Þ; �aRRða5Þ; a5; t�; (21)

where vpoleða5Þ and �aRRða5Þ are the functional relation-

ships illustrated in Fig. 3 above, to a numerical waveform
smoothly connecting, without interruption, the nonadia-
batic late inspiral to the early inspiral and to the subsequent
plunge. Here we shall make use of recently computed
numerical data (see Sec. II) that cover (for the equal-
mass case) about 20 GW cycles of inspiral and plunge up
to merger. As we shall see, for the purpose of determining
a5, we will mainly use the signal only up to the plunge.
As quantitative measure of the EOB-NR agreement we

shall consider here the following L1 norm of the
a5-dependent EOB-NR phase difference (using the EOB
metric waveform, Eq. (21) above)

k��kEOBNR1 ða5; t1; t2; tL; tRÞ� supt2½tL;tR�j�EOB
22 ða5; tþ�12Þ

þ�12��NR
22 ðtÞj: (22)

Here ½tL; tR� denotes the time interval on which one com-
putes the L1 norm of the phase difference. In addition,
ðt1; t2Þ denote two pinching times which are used to deter-
mine some time and phase shifts, �12 ¼ �ðt1; t2Þ and �12 ¼
�ðt1; t2Þ, needed to compare the EOB and NR phase func-
tions (which use different time scales and phase
references).
Let us recall the ‘‘two-pinching-times’’ procedure, in-

troduced in [22], for determining the time and phase shifts
� and �. First, the two waveforms being complex numbers,
we decompose them in amplitude and phase: �X

22 ¼
AX expð�i�XÞ where the label X can be either ‘‘EOB’’
or ‘‘NR.’’ The corresponding instantaneous (metric) GW
frequencies are then defined as !XðtÞ � d�X=dt. We start
by fixing two pinching times ðt1; t2Þ on the NR time scale t.
We then define the time shift � by solving the equation
�NRðt2Þ ��NRðt1Þ ¼�EOBð�þ t2Þ ��EOBð�þ t1Þ. Then,
we define the phase shift� such that�NRðt1Þ ¼ �EOBðt1 þ
�Þ þ �. In the limiting case where the corresponding GW
frequencies !1 ¼ !NRðt1Þ and !2 ¼ !NRðt2Þ are nearly
coincident, !1 
 !m 
 !2, this procedure coincides with
the one introduced in Ref. [28] and based on the choice of a
single matching frequency !m.
We shall first consider the equal-mass case, � ¼ 1=4.

For this case we choose the following NR pinching times:
t1 ¼ 1764:9 and t2 ¼ 1940:1 (corresponding to NR gravi-
tational wave frequencies !22

1 ¼ 0:0998 and !22
2 ¼

0:4717). These times bracket the merger time. This is
done to optimize the EOB-NR agreement over the physi-
cally most crucial (and possibly numerically most accu-
rate) part of the waveform, i.e. the late-inspiral, plunge,
merger, and ring-down. Concerning the choice of the in-
terval ½tL; tR� used to compute the L1 norm, we selected it
with the following criteria in mind: as a5 is most important
during late-inspiral and plunge, but is somewhat uncorre-
lated to the way EOB approximates the plunge-ring-down
matching, we chose ½tL; tR� to cover the crucial stage of the
late-inspiral. More precisely, we have fixed tR such that the
NR gravitational wave phase is approximately 7.6 radians
(i.e. 1.21 GW cycles) smaller than the phase when the EOB

15Since we had recently access to the actual Caltech-Cornell
data we could and did check the reliability of the results obtained
from the published data. In particular, when computing the phase
difference �EOB ��actual

CC we essentially recovered the results
quoted in the text. For instance, we find that the actual phase
difference varies between: �0:002 radians at Caltech-Cornell
time 600M and �0:017 66 radians at the end of the simulation
(M! ¼ 0:1565), passing through zero at M! ¼ 0:1. The num-
ber of GW cycles between tCC ¼ 600M and tCC ¼ 3782 (M! ¼
0:1) is 22.10, while the number of GW cycles in the final part of
the simulation (after frequency 0.1) is 2.16.
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waveformmodulus reaches its maximum (which is close to
merger time in view of the discussion of Sec. III). Then, tL
was chosen such that �NRðtLÞ22 ¼ �NR

22 ðtRÞ � 58:5. Their
numerical values are tL ¼ 1198:8M and tR ¼ 1899:6M,
while the corresponding NR gravitational wave frequen-
cies are !22

L ¼ 0:059 52 and !22
R ¼ 0:1898, respectively.

Using these specified values we have computed the L1
norm of the EOB-Jena phase difference, Eq. (22), as a
function of a5. The result is plotted, as a solid line (1:1
mass ratio), in Fig. 5. This figure shows that the limited
range of values 20 & a5 & 30 is preferred in that it yields a
minimum of the largest EOB-NR phase difference
k��kEOBNR1 over the ½tL; tR� interval specified above.
This minimum phase difference is on the order of 0.01 ra-
dians. We note, in passing, that this late-inspiral interval
partially overlaps (frequencywise) with the range of the
published Caltech-Cornell data as we used it above (i.e.,
focusing on frequencies M! � 0:1), but crucially extends
to frequencies reaching roughly as high as the EOB adia-
batic last stable orbit (LSO) frequency (!EOB

LSO ¼ 0:2114).
Though Fig. 5 is qualitatively similar to the L1 norm of the
EOB/Caltech-Cornell phase difference displayed in Fig. 4
of Ref. [21], it is important to remark that in the latter
figure the L1 norm varied by only about a factor 2 over the
entire a5 range, 0 � a5 � 100. By contrast, in the current
Fig. 5 the L1 norm varies by about a factor 2 in the much
smaller interval 15 � a5 � 35 and then increases by al-
most a factor 10 over the entire a5 range, 5 � a5 � 75. We
can now use the ‘‘uncertainty level’’ �0:026 radians in
�NR

22 � �Jena
22 (determined in Sec. II C above by comparing

it with Caltech-Cornell data), as indicated by the horizontal
line in the figure, to determine a corresponding interval of
‘‘best-fit’’ values of a5. Though this uncertainty level is

admittedly rather uncertain at this stage, it suggests that the
real16 value of a5 probably lies in the interval 12 & a5 &
40. To firm up our conclusion, we have also considered
numerical data concerning the 2:1 mass-ratio case. In that
case we considered again the L1 norm, Eq. (22), and we
made similar choices both for the pinching times and for
the extremities of the L1 interval. In particular, tR was
chosen to sit 7.6 radians before the maximum modulus
while we kept the left-right phase difference to the same
value as above, namely �NR

22 ðtLÞ ¼ �NR
22 ðtRÞ � 58:5. The

resulting L1ða5Þ function is plotted as a dashed line in
Fig. 5. Though the minimum of this curve is much more
shallow than before, the important fact is that the 1:1
preferred a5 range is consistent with the 2:1 L1 result.
Let us observe (without wishing to attribute any deep
significance to this fact) that the preferred range for a5
happens to be close to the ‘‘special’’ a5 value for which the
‘‘EOB-horizon’’ decreases, when � increases up to 1=4,
down to a vanishing EOB radial coordinate. Indeed the P1

4

Padé approximant that we use here to define the a5-flexed
EOB radial potential AðuÞ ¼ P1

4½ATaylorðuÞ� has the struc-
ture Aða5;uÞ ¼ ð1� rHuÞ=D4ðuÞ where D4ðuÞ is a 4th-
order polynomial in � (see Eq. (3.10d) of Ref. [17]), and
where

rHða5; �Þ ¼ 4
768� ð3584� 123�2Þ�� 24a5�

1536� ð3776� 123�2Þ� : (23)

Here rH is the radial location of the ‘‘EOB-horizon,’’ in the
sense that AðuÞ vanishes for r � 1=u ¼ rH (at least when
rH is positive). For any given positive a5, rH is a decreasing
function of �. If we require that rH stays positive for all
values of � 2 ½0; 1=4�, we find that a5 must be smaller than
the special value

a	5 ¼
123�2 � 512

24
¼ 29:2484: (24)

Note, however, that there is nothing a priori wrong with
higher values of a5. In that case the radial function AðrÞ,
considered versus r, has anyway a third-order zero at r ¼
0.
Summarizing: by combining the comparison of the EOB

waveform with, on the one hand, published Caltech-
Cornell inspiral data and, on the other hand, our coales-
cence data, we have been able to select a preferred small
region of the EOB flexibility parameters. This region is
made of (approximately) correlated triplets
½a5; vpoleða5Þ; �aRRða5Þ�, and is located between the second

and the eighth lines of Table II.
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FIG. 5 (color online). L1 norm of the EOB-NR late-inspiral
(½tL; tR�) phase difference, as a function of a5 for � ¼ 0:25 (1:1
mass ratio) and � ’ 0:2222 (2:1 mass ratio). NR refers to results
of Jena coalescence simulations reported here.

16Note that though a5 is, to start with, a theoretically well-
defined quantity within the EOB framework, its ‘‘experimental
measurement’’ obtained by comparing specifically resummed
versions of the EOB waveforms with numerical data partially
transforms it into an ‘‘effective parameter’’ describing a com-
plicated nonperturbative process.
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V. DETAILED EOB-NR WAVEFORM
COMPARISONS FOR a5 ¼ 25

To confirm the validity of the conclusions reached in the
previous section, we shall now study in detail the perform-
ance of the center of the above-selected interval, namely
a5 ¼ 25 together with the corresponding values of �aRR and
vpole listed in Table II.

In this section we shall consider numerical waveforms
for three different values of �, namely � ¼ 0:25, � ¼
2=9 ¼ 0:2222, and � ¼ 0:16 (corresponding, respectively,
to the mass ratios 1:1, 2:1, and 4:1) extracted from the
simulations of Table I. Note that our best-fit procedure
outlined above essentially relied only on the 1:1mass-ratio
case so that the other cases that we consider here will test
the ability of the EOB formalism to capture the NR wave-
forms. The EOB flexibility parameters used for the various
mass ratios are the ones listed in the fifth row of Table II. In
view of the proximity of the ‘‘best-fit’’ vpole value

vbestpoleð� ¼ 0:25Þ ¼ 0:5156 to the ‘‘best-fit’’ vpole found

(following the strategy of [21]), in the test-mass limit,
vbestpoleð� ¼ 0Þ ¼ 0:526 55 (for the P4

4 4 PN-accurate flux),

we made no attempt at interpolating vpoleð�Þ between the

two values of �.
To compare EOB and NR waveforms we follow the

procedure indicated above. This procedure involves choos-
ing two pinching times t1 and t2 (which should not be
confused with the L1 times tL and tR which will play no
role in this section). We summarize in Table III the pinch-
ing times we use, together with the corresponding frequen-
cies. Note that in all cases the lowest pinching frequency is
around 0.1 while the highest one (reached after the merger)
is roughly 10% lower than the main ring-down frequency.

The results of the detailed EOB-NR comparison are
presented in Figs. 6 and 7. For completeness, we have
used the full numerical waveforms including the burst of
junk radiation it contains at the beginning.

The two upper panels of Fig. 6 refer to the equal-mass
case (� ¼ 0:25). On the left, we plot the ‘‘pinched’’ EOB-
NR phase difference (in radians) over the full simulation
time (see inset). Note that the total simulation covers about
�146 radians of the GW phase; i.e., 23.24 GW cycles
(starting from the beginning of the inspiral, when tNR �
110M, to the middle of the ring-down, up to tNR ¼
1980M). We see that the EOB-NR phase disagreement
stays quite small during most of the inspiral. More pre-

cisely ��EOBNR stays in the range ½�0:04; 0:01� all over
the time interval 1200 & tNR & 1930. This corresponds to
a ‘‘two-sided’’ (in the sense of footnote 12 of Ref. [22])
EOB-NR phase difference smaller than�0:025 radians, or
�0:004 GW cycles over 730M. As in a previous analysis,
the jump in the phase difference around tNR 
 1930 is
connected to the rather coarse way in which the EOB
formalism represents the merger. Still, the accumulated
phase difference over the transition between plunge and
ring-down is only of the order of 0.15 radians; i.e.,
0.02 GW cycles. Note that over the full simulation time
(see inset in top-left panel) there is an accumulated phase
difference of about�0:2 radians. In view of the discussion
on the accuracy of the numerical simulations in Sec. II, it is
quite possible that this difference is mainly due to effects
related to the use of finite extraction radii. Similarly, part of
the phase disagreement around the merger might come
from numerical inaccuracies. The upper-right panel of
the figure compares the real part of the two metric wave-
forms. The visual agreement between the two is striking,
apart from the amplitude disagreement (� 20%, see be-
low) localized around the merger. In view of the discussion
in Sec. II, part of this difference might also have a numeri-
cal origin.
The bottom panels of Fig. 6 refer to the 2:1 mass-ratio

case (� ¼ 2=9 ¼ 0:2222). Here the phase agreement (left
panel) is even better than before. Over the nearly full time
interval 143 & tNR & 1100 the EOB-NR (two-sided)
phase difference is smaller than �0:05 radians; i.e.,
�0:008 GW cycles. The corresponding middle-right panel
compares the real part of the two metric waveforms. Again,
the agreement is striking apart from a �20% amplitude
disagreement localized around the merger (see below).
Finally, Fig. 7 deals with the 4:1 mass-ratio case (� ¼

0:16). Here the agreement is still quite good, though it is
noticeably less good than in previous cases. Consistently
with the discussion of numerical accuracy in Sec. II, this
less compelling accordance is likely to have its origin in
numerical discretization errors. A clarification of this issue
would need higher-accuracy simulations.
Figure 8 completes the comparison between EOB and

NR waveforms, for the equal-mass-ratio case, by simulta-
neously displaying, versus time: (i) the two GW frequen-
cies,17 (ii) twice the EOB orbital frequency�, and (iii) the
two moduli. The leftmost (dashed) vertical line indicates
the location of the EOB adiabatic LSO, while the rightmost
one refers to the ‘‘EOB-light-ring.’’ Though this figure
exhibits the approximate nature of the EOB-matching
procedure (notably visible in the small differences in the
GW frequencies), it also illustrates how the apparently
coarse EOB-matching procedure is able to effectively re-

TABLE III. Pinching NR times and corresponding NR gravi-
tational wave frequencies used to perform the EOB-NR com-
parison of Fig. 6.

� t1 t2 !22
1 !22

2

0.25 1764.9 1940.1 0.0998 0.4716

0.2222 893.9 1071.9 0.1005 0.4542

0.16 1297.6 1476.3 0.1051 0.4189

17For clarity we add in several figures a subscript 22 to the
gravitational wave frequency or phase as a reminder of the fact
that we compare quadrupolar ‘ ¼ m ¼ 2 waveforms.
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produce, with high accuracy, the overall time variation of
the GW frequency through the merger onto the ring-down.
We have obtained similarly good agreements for the other
mass ratios.

We conclude this section by showing in Fig. 9 the frac-
tional amplitude differences, for the three mass ratios
considered here, between EOB and NR waveforms. The
solid line in the figure plots the quantity �A=A � ðAEOB �
ANRÞ=ANR versus NR time for � ¼ 0:25. It is quite possible
that the approximately linear trend visible on this (solid)
line is due to effects related to the finite-extraction radius;
the decrease in amplitude disagreement as we go to later

inspiral times is consistent with the decrease in amplitude
uncertainty (as discussed in Sec. II) as the amplitude rises.
If this is the case, the minimum value, before the merger,
might be indicative of the actual EOB-NR amplitude
agreement. For � ¼ 0:25 this minimum is min½�A=A� 

þ5� 10�3. The jump in �A=A during merger is of the
order of 20%. Though part of this jump might have a
numerical origin, we think that most of it comes from the
EOB approximate matching procedure around merger. Let
us recall, in this respect, that in Ref. [22] �A=A, for � ¼
0:25, was of order �1% during inspiral and rose to a
maximum ofþ18% at merger. The leftmost curve (dashed
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FIG. 6 (color online). Comparison between NR and EOB waveforms for � ¼ 0:25 (top), � ¼ 0:2222 (bottom). The left panels depict
the EOB-NR phase difference; the right panels show the real part of the metric waveforms. Here, NR refers to the full results of Jena
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line) on Fig. 9 refers to the � ¼ 0:2222 case, while the
middle curve (dash-dot line) refers to the � ¼ 0:16 case.
For the same reasons as above it is likely that the approxi-
mate linear trends (which are smaller by a factor �2 than
before) are of numerical origin. The minimum values

before merger of �A=A are min½�A=A� 
 þ7� 10�3

(for � ¼ 0:2222) and min½�A=A� 
 þ5� 10�3 (for � ¼
0:16). Note that the jumps in ½�A=A� around merger are
quite similar to the � ¼ 0:25 case, namely, about �þ
20%.

VI. CONCLUSIONS

We have compared the ‘‘flexed’’ [17,18] resummed
3þ2PN-accurate [21] EOB waveform to two, independent,
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NR data on inspiralling and/or coalescing binary black-
hole systems: on the one hand, published Caltech-Cornell
inspiral data [28] (mainly used by us only up to M! &
0:1) and, on the other hand, newly computed coalescence
data using the BAM code [30,31].

We effected this EOB-NR comparison with a strategy
allowing us to locate a ‘‘best-fit spot’’ in the space of the
three main EOB flexibility parameters ða5; vpole; �aRRÞ. This
strategy is multipronged:

(i) We selected two measurements of published
Caltech-Cornell equal-mass inspiral data concerning
the TaylorT4-NR phase differences at two different
times, approximately spanning the GW frequency
interval 0:04 & ! & 0:1.

(ii) We imposed two constraints requiring that these NR
phase differences be equal to two corresponding
analytical TaylorT4-EOB phase differences, see
Eqs. (16) and (17). This gave us two equations for
the three main flexibility parameters ða5; vpole; �aRRÞ.
By numerically solving these two equations we de-
termined two functional relationships linking, sepa-
rately, vpole to a5 and �aRR to a5. See Fig. 3 and

Table II.
(iii) Having in hand these ‘‘Caltech-Cornell-preferred’’

functional relationships vpoleða5Þ and �aRRða5Þ, we
selected from our newly computed coalescence
simulation (again for the equal-mass case18) a time
interval ½tL; tR� corresponding to the following GW
frequency interval 0:060 & ! & 0:19. On this time
interval we compared the Jena numerically simu-
lated phase evolution to the a5-dependent analytical
EOB one, and we computed the L1 norm of their
difference, i.e. [see Eq. (22) for more details]

k��kEOBNR1 ða5; tL; tRÞ � supt2½tL;tR�
� j�EOB

22 ða5; tÞ ��NR
22 ðtÞj:
(25)

(iv) We plotted (as a solid line) in Fig. 5 k��kEOBNR1 as a
function of a5. We found that this L1 norm has a
rather well localized minimum around the region
20 & a5 & 30. To transform this fact into an actual
‘‘error-bar’’ on the value of a5 we would need to
have in hand a precise measure of the level of the
errors present in the (Jena) numerical data over the
time interval ½tL; tR� on which the L1 norm is com-
puted. At this stage we do not have at our disposal a
reliable measure of this error. However, in Sec. II C
we have given what we think is our current best
estimate of this error level by directly comparing,
on the crucial time interval ½tL; tR�, the Jena phase

data to the actual Caltech-Cornell data. This current
best estimate is �0:026 radians and, according to
Fig. 5, would correspond to the following confidence
interval for a5: 12 & a5 & 40. More work is needed
to nail down in a more precise way the error level in
the Jena phase (see, in particular, our discussion
above on the internal error estimate based on com-
paring various radius extrapolations methods). In
addition, for any value of a5 in such an allowed
confidence level, we would conclude that the corre-
sponding triplets of correlated values a5, vpoleða5Þ,
and �aRRða5Þ obtained from Table II, determine pre-
ferred best-fit values of the EOB flexibility parame-
ters19 ða5; vpole; �aRRÞ. In other words, our current

preferred values of the EOB parameters
ða5; vpole; �aRRÞ lie between the second an the eighth

lines of Table II.
(v) The present implementation of this strategy is, how-

ever, certainly somewhat affected by numerical
noise. A possible indication of this fact is that the
computation of a similarly selected L1 norm pertain-
ing to the 2:1 mass-ratio simulation gives results
(plotted as a dashed line in Fig. 5) which, though
they are fully consistent with the 1:1mass-ratio case,
exhibit a more shallow minimum versus a5. For the
2:1 L1 diagnostic to select an interval of preferred
values of a5 we would need a reliable estimate of the
numerical error level in the 2:1 phase data. However,
at this stage we do not have such an estimate. The
rough error level quoted in Sec. II D is just a very
conservative upper limit which, moreover, does not
concern the specific time interval ½tL; tR� we are
interested in. Let us emphasize that, anyway, even
if a5 is allowed to vary in the full interval 5 � a5 �
75 that we explored, the maximum EOB-NR phase
disagreement (on the considered late-inspiral inter-
val, which corresponds to about 58.5 radians before
crossing the last stable orbit) is below 0.1 radians, i.e.
0.015 GW cycles.

(vi) We think that it would be necessary to devote a
special effort toward having very high-accuracy nu-
merical simulations covering the crucial late-
inspiral, corresponding to the frequency range 0:1 &
! & 0:2, for several mass ratios. Pending the avail-
ability of such simulations, we provisionally con-
clude that our current ‘‘best-bet’’ choice of EOB
flexibility parameters is at the center of the above-
selected interval; i.e., it is given by a5 ’ 25 together
with the correlated values of vpole and �aRR listed in

Table II. In Sec. V we presented evidence that these

18When best-fitting the EOB flexibility parameters, we use � ¼
0:25 data because these are more sensitive to a5.

19Note that the functional relationships vpoleða5Þ and �aRRða5Þ
discussed above have no invariant physical meaning and are just
intermediate tools in converging on the looked-for best-fit point
in the three-dimensional EOB flexibility parameter space.
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values of ða5; vpole; �aRRÞ lead to an excellent agree-

ment between EOB and NR for several mass ratios
and for the entire time interval covering inspiral,
late-inspiral, plunge, merger, and ring-down. In par-
ticular, we found that the dephasing between EOB
and our new coalescence data are smaller than:
(i) �4� 10�3 GW cycles over 730M (11 cycles),
in the equal-mass case, and (ii) �8� 10�3 GW
cycles over about 900M (17 cycles) in the 2:1
mass-ratio case. In addition, we recall that the phase
difference between our current ‘‘best-bet’’ EOB and
both published and actual Caltech-Cornell data stays
within 0.018 radians over the entire span of the
simulation. Such a phase inaccuracy is comparable
with the current, updated estimate of the numerical
errors of the waveforms of Ref. [28], namely, 0.01 ra-
dians [60].
As a contrast to the EOB performance, we also study
in Appendix B the performance of the TaylorT4
approximant. Our analysis shows that the apparently
good performance of TaylorT4 during the inspiral is
due to a lucky compensation between two effects
going in opposite directions: (i) the bad convergence
of the adiabatic PN expansion and (ii) the fact that
the T4 approximant does not take into account non-
adiabatic effects. This compensation causes an ‘‘en-
hancement’’ in the domain of validity of T4.
However, we show that this enhancement holds
only for a limited range of values of the mass ratio.
This is consistent with the finding of [65] that the
enhanced validity of T4 is fragile and is undone by
spin effects.

In conclusion we think that the results presented here
corroborate the aptness of the EOB formalism to provide
accurate representations of general relativistic waveforms.
We suggest that the specific 3þ2PN-accurate resummed
EOB waveform (with the current ‘‘best-bet’’ values of
the flexibility parameters determined here) be used in
constructing banks of waveform templates for currently
operating gravitational wave detectors.
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APPENDIX A: COMPUTING METRIC
WAVEFORMS FROM CURVATURE WAVEFORMS

This first appendix is devoted to the discussion of an
appropriate way of choosing the integration constants that
enter the metric waveform hðtÞ when deriving it by double
time integration from a given (numerical) curvature wave-
form  4ðtÞ.
Our conventions are as follows: for reasons of continuity

with the recent papers [18,22,66] we use the normalization

factor N‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þ 2Þð‘þ 1Þ‘ð‘� 1Þp

in the metric wave-
form to get the so-called Zerilli-Moncrief normalized

waveform that we shall denote �ðe=oÞ
‘m (for even and odd-

parity) as used in Ref. [67]. The metric waveform is
expanded in spin-weighted spherical harmonics of spin-
weight s ¼ �2 as

hþ � ih� ¼ X1
‘¼2

X‘
m¼�‘

h‘m�2Y
‘mð�;�Þ; (A1)

where the link between the multipolar metric waveform
h‘m (as used for instance in [68]) is

h‘m ¼ N‘
r
ð�ðeÞ

‘m þ i�ðoÞ
‘mÞ: (A2)

The raw output of the numerical simulation used here is the
Newman-Penrose scalar  4. This is decomposed in har-
monics as

€hþ � i €h� ¼  4 ¼
X1
‘¼2

X‘
m¼�‘

 ‘m4 �2Y
‘mð�;�Þ: (A3)

The computation of the Zerilli metric multipoles from its
curvature correspondant  ‘m4 requires a double time inte-
gration. Various ways of fixing the two integration con-
stants entering this process have been discussed in the
literature [15,62,69,70]. We focus here on the ‘ ¼ m ¼ 2
multipole of the Zerilli-Moncrief normalized metric wave-

form �ðeÞ
22 .

We wish to emphasize that the choice of integration
constants is particularly delicate when dealing with the
metric waveform hðtÞ, by contrast to dealing with the

quantity _hðtÞ which is most prominent in other applica-
tions, such as the computation of recoil. For instance,
Ref. [70] suggested to integrate backward in time starting
with zero integration constants at t ¼ þ1. This procedure

leads to a rather accurate _hðtÞ. However, we found that the
resulting hðtÞ is not accurate enough for the purpose of
high-accuracy waveform comparison discussed in this pa-
per. This is exemplified in Fig. 10. This figure shows the
metric waveform obtained by such a backward integration.
The important point is that the modulus of the complex
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waveform exhibits quite visible unphysical oscillations at
early times (during inspiral).

By contrast, we found that the following procedure
(related to some of the suggestions of Ref. [62]) gave
reliably accurate results. We start by computing (e.g.,
separately for the real and imaginary parts, or directly for
the complex quantity) the first and second forward time
integrals (using e.g. Simpson’s rule) of r ‘m4 , starting at
t ¼ 0 with zero integration constants, i.e., we define

_h 0ðtÞ ¼
Z t

0
dt0r ‘m4 ðt0Þ; (A4)

h0ðtÞ ¼
Z t

0
dt0 _h0ðt0Þ: (A5)

Then, we fit over the full simulation time interval (sepa-
rately for the real and imaginary parts) the second integral
h0ðtÞ to a linear function of t, say hlin-fit0 ðtÞ ¼ �tþ 
where

� and 
 are complex quantities. Finally, we define the
metric waveform as

hðtÞ � h0ðtÞ � hlin-fit0 ðtÞ ¼ h0ðtÞ � ð�tþ 
Þ: (A6)

Note that this also defines the time derivative of the metric
waveform as

_hðtÞ � _h0ðtÞ � �: (A7)

The result of this procedure is shown in Fig. 11. Here we
applied the procedure explained above to the r 22

4 wave-
form coming from the 1:1 mass-ratio simulation extracted
at r ¼ 90. The top panel shows the real and imaginary

parts of h0ðtÞ (divided by the normalization factor N2)
together with their best linear fits, i.e. the real and imagi-
nary parts of �tþ 
. The bottom panel shows the final
waveform hðtÞ, i.e. the difference between h0ðtÞ and the
best linear fit �tþ 
. The important point is to notice that
the modulus of hðtÞ (the blue solid line in the bottom panel)
is monotonically increasing with t during inspiral without
exhibiting any of the unphysical oscillations that were
present in the previous figure.20 We show on the same
plot also the real and imaginary parts of the complex

quantity �ðeÞ
22 (which correspond to the hþ and h� polar-

izations of the wave after division by r and multiplication
by the spin-harmonic �2Y

22) as well as the gravitational

wave frequency !22 obtained from the metric waveform

�ðeÞ
22 and the gravitational wave frequency obtained from

the curvature waveform  22
4 .

In addition, let us emphasize that for this procedure to
work it is important to start the integration from the abso-
lute beginning of the numerical simulation, by which we
really mean t ¼ 0, i.e. before any signal reaches the ob-
server. One might have thought that it is better to start the
integration after the junk radiation, at the beginning of the
inspiral signal. This is not the case, as it is illustrated in
Fig. 12. This figure shows the worsened result we obtain
when we use exactly the procedure explained above, but on
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FIG. 10 (color online). Computation of the Zerilli-normalized

metric waveform �ðeÞ
22 from r 22

4 via two backward time inte-

grations starting with zero integration constants at the final time.
The data refer to the 1:1 mass ratio (� ¼ 0:25) numerical
simulation. Unphysical oscillations in the modulus are quite
visible at early times.

20This is a good indication that the integration constants have
been computed correctly and that the real and the imaginary
parts of the waveform are dephased by �=2 with very good
approximation.
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the time interval t � 150, i.e. starting at the beginning of
the inspiral signal instead of starting at t ¼ 0. Note the

oscillations in the modulus of�ðeÞ
22 . By contrast, even if we

blow up the corresponding graph in Fig. 11 the oscillations
are practically absent. Note also that the linear drifts are
nowmuch larger than before. This is part of the reason why
the results are less good in this case. By contrast to the first
case where, starting at t ¼ 0meant starting with extremely
small initial values of r 22

4 , starting at the beginning of the
inspiral means starting with much larger values of r 22

4 :
this effect enlarges the linear floors and therefore the errors
on the determination of the linear floors to be subtracted.

APPENDIX B: SHORTCOMINGS OF THE
TAYLORT4 PN APPROXIMANT

To contrast with the EOB-NR comparison done in the
text, we consider in this appendix the comparison between
the so-called TaylorT4 post-Newtonian approximant
[23,25,28,65,71,72] and various NR data. This approxim-
ant is defined by two successive prescriptions: the first
concerns the computation of a ‘‘T4 orbital phase’’ �T4ðtÞ
while the second concerns the definition of a ‘‘T4 metric
waveform.’’ Here we shall focus only on the ‘ ¼ m ¼ 2
quadrupolar waveform. The ‘‘T4 orbital phase’’ �T4ðtÞ is
defined by integrating the ordinary differential equations

d�T4

dt
¼ x3=2; (B1)

dx

dt
¼ 64�

5
x5aTaylor3:5 ; (B2)

where a
Taylor
3:5 is the 3.5 PN Taylor approximant, for any

given value of �, to the Newton-normalized ratio

ðflux-functionÞ=ðderivative of energy functionÞ ¼
F̂ðxÞ=dEðxÞ where E0ðxÞ ¼ dE=dx. As in the text, we scale
dimensionful quantities by the total ‘‘bare’’ mass M ¼
m1 þm2. This is for instance the case for the time variable
t in the above equations. The explicit expression of

a
Taylor
3:5 ðxÞ reads [23,25] (for the nonspinning case)

a
Taylor
3:5 ðxÞ ¼ 1�

�
743

336
þ 11

4
�

�
xþ 4�x3=2 (B3)

þ
�
34 103

18 144
þ 13 661

2016
�

�
x2 �

�
4159

672
þ 189

8
�

�
�x5=2

þ
�
16 447 322 263

139 708 800
� 1712

105
�� 56 198 689

217 728
�þ 541

896
�2

� 5605

2592
�3 þ �2

48
ð256þ 452�Þ � 856

105
logð16xÞ

�
x3

þ
�
�4415

4032
þ 358 675

6048
�þ 91 495

1512
�2
�
�x7=2: (B4)

This phasing evolution is completed by a quadrupolar
waveform which is known (for any given value of �) at
the 3 PN accuracy level [21,62,68,73]. Following [28,68]
we define the 3 PN-accurate T4 waveform by dropping all
the lnðx=x0Þ terms in Eq. (79) of Ref. [68]. We display it
explicitly here to clarify which waveforms we use in our
T4 studies. The explicit expression of the ‘ ¼ m ¼ 2
Zerilli-normalized metric waveform reads

�T4
22 ¼ �4�

ffiffiffiffiffiffi
�

30

r
e�2i�x

�
1� x

�
107

42
� 55

42
�

�
þ 2�x3=2

� x2
�
2173

1512
þ 1069

216
�� 2047

1512
�2
�

� x5=2
��

107

21
� 34

21
�

�
�þ 24i�

�

þ x3
�
27 027 409

646 800
þ 2

3
�2 þ 428

105
½i�� 2�E

� lnð16xÞ� �
�
278 185

33 264
� 41

96
�2

�
�

� 20 261

2772
�2 þ 114 635

99 792
�3
��
: (B5)

where �E ¼ 0:577 21 . . . is Euler’s constant. The TaylorT4
3:5=2:5 waveform (used in most of our comparisons) is
obtained by dropping the terms / x3½a lnðxÞ þ b� on the
right-hand side of this equation.
Thorough comparisons between the TaylorT4 3:5=2:5

waveform (i.e., 3.5 PN accuracy for phase and 2.5 PN
accuracy only for amplitude) and NR waveforms were
performed, for the equal-mass case, � ¼ 0:25, in
[28,65,71]. Reference [28] concluded that this approxim-
ant yields an ‘‘astonishingly good’’ agreement with nu-
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FIG. 12 (color online). Same as Fig. 11 except that the inte-
gration and the linear fit have been done starting at time t� 150,
i.e. at the beginning of the inspiral signal. Note the oscillations in
the modulus of the bottom panel, and the fact that the linear
drifts (visible in the upper panel) are much larger than in Fig. 11.
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merical data during the inspiral, i.e. a dephasing smaller
than 0.05 radians over�30 GW cycles before reaching the
GW frequency M!22 ¼ 0:1. On the other hand, Ref. [65]
showed that the inclusion of spins on the black holes had
the effect of considerably worsening the agreement be-
tween T4 and NR data. Here we shall study the effect of
varying the mass ratio (for nonspinnig black holes). We
shall also go beyond the analyses of [28,71] in discussing
the behavior of T4 for GW frequencies above 0.1. Let us
first compare the21 � ¼ 0:25 TaylorT4 3:5=2:5 quadrupolar
waveform �T4

22 with equal-mass NR waveforms computed

by the Jena group. As discussed in Sec. II, the BAM code
outputs the Newman-Penrose curvature scalar  4ðt; r; �; ’Þ
at various extraction radii r. This angular-dependent cur-
vature scalar is then: (i) decomposed on the basis of spin-
weighted spherical harmonics and then (ii) integrated twice
over time to yield the metric waveform�NR

22 . The choice of

integration constants in this integration procedure was
done according to the procedure outlined in Appendix A.
To compare the two waveforms�NR

22 and�T4
22 , as functions

of their respective time variables, we choose a relative time
shift � and a relative phase shift � by following the same
two-pinching-time procedure used in the text.

Figure 13 compares the gravitational wave frequency
!22 computed from the numerical data and plotted as a
function of the NR time scale (solid line) with that of the
TaylorT4 3:5=2:5 approximant plotted as a function of the
shifted T4 time scale (dash-dot line). The two waveforms
have been pinched at the NR times t1 ¼ 1299:9 and t2 ¼
1399:8, corresponding to NR frequencies !1 ¼ 0:062643
and !2 ¼ 0:066 292, respectively, (which approximate the
matching frequency !m ¼ !3 ¼ 0:063 of [28]).

We see on this figure that there is a very good agreement
between the two frequencies during the inspiral, up to, say,
the NR time tNR ¼ 1850, where !NR

22 ¼ 0:1301 and !T4
22

differ by about 2.2%. Then, soon after,!T4
22 starts deviating

very strongly from!NR
22 and blows up to infinity at the finite

time tblowup ¼ 1899:5 (indicated by the leftmost vertical

dashed line in the figure). This blowup time, considered on
the NR time scale, corresponds to a NR frequency
!NR

blowup ’ 0:1889. Note that this frequency is smaller than

the effective-one-body GW frequency at the adiabatic
LSO, which is equal to 2�EOB

LSO ¼ 0:2114 (corresponding

to an EOB radial coordinate rEOBLSO ¼ 4:4729). The right-

most vertical dashed line in the figure indicates the
‘‘!-LSO’’, in the sense of Ref. [2], i.e. the time when the
(NR) GW frequency !NR

22 equals the adiabatic LSO fre-

quency. Here we consider the case � ¼ 0:25 and a5 ¼ 25
and we compute the LSO frequency within the EOB ap-
proach. Therefore, in the equal-mass case, the TaylorT4

approximant breaks down already during late-inspiral, be-
fore the EOB LSO, and before the plunge.
The fact that the T4 approximant blows up at a finite

time is a simple mathematical consequence of the structure

of the differential equation (B2), given that, aTaylor3:5 ðxÞ is
found to remain positive for every x � 0. Indeed, one can
even easily analytically compute the blowup time as being
tblowup ¼ t0 þ �t where t0 is any given ‘‘reference’’ time

on the T4 time scale (corresponding to a frequency pa-
rameter xðt0Þ ¼ x0), and where �t is given by the follow-
ing convergent integral

�t ¼
Z 1

x0

dx

C�x
5a

Taylor
3:5

; (B6)

where C� ¼ 64�=5.
After having compared the T4 approximant to NR data

(in the equal-mass case) let us compare the T4 approximant
to the EOB one. As emphasized in Ref. [21], a convenient
way of comparing two waveforms (which avoids the issue
of finding suitable time shifts and phase shifts) consists in
considering the following shift-invariant ‘‘phase-
acceleration’’ function

a!ð!Þ ¼ _!

c�!
11=3

; c� ¼ 12

5
21=3�: (B7)

Note that in the present paper we consider the frequencies
of the metric waveforms (by contrast to the frequencies of
the curvature waveforms considered in [21]).
In the left-panel of Fig. 14 we compare the phase-

acceleration curves of T4 3:5=2:5 (dash-dot line) and
EOB (solid line) for the equal-mass case. The leftmost
vertical line indicates the EOB frequency 
 0:19 corre-
sponding to the T4 blow-up time (computed by Eq. (B6)).
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FIG. 13 (color online). Numerical relativity (Jena) and
TaylorT4: comparison between the instantaneous gravitational
wave frequencies for the equal-mass case (� ¼ 0:25).

21Here, to facilitate the comparison with previous work, we use
a T4 approximant with 2.5 PN-accurate amplitude. Our main
conclusions would be similar had we used the 3 PN-accurate
amplitude.
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The rightmost vertical line indicates the adiabatic EOB
LSO frequency, 2�EOB

LSO 
 0:21 as above. We terminated

the horizontal axis at !22 ¼ !LR
22 ¼ 0:3676 which corre-

sponds to the EOB time when the EOB orbital frequency
reaches its maximum; i.e., the so-called ‘‘EOB light-ring,’’
which defines the ‘‘merger time’’ within the EOB ap-
proach. Note that this figure shows the metric waveform
analogue of the EOB (curvature) phase-acceleration curve
of Fig. 2 of Ref. [21] and extends it up to the merger time.
As was already emphasized in [21], the figure shows that
the T4 acceleration curve strongly diverges away from the
EOB one for frequencies !22 * 0:1, i.e. during the late-
inspiral, before reaching the LSO.

The right panel of Fig. 14 illustrates the case where the
mass ratio is 4:1, i.e. � ¼ 0:16. The vertical dashed line
indicates the adiabatic EOB LSO frequency 2�EOB

LSO 

0:17. For this value of �, the blowup frequency, computed
as above, turns out to be larger than the EOB light-ring
frequency!LR

22 ¼ 0:3201. We see on this plot that, contrary

to the equal-mass case, the T4 acceleration curve starts to
deviate significantly from the EOB one for frequencies
!22 * 0:05. Note, however, that because the two curves
cross again just before the LSO, we expect that the phase
difference between T4 and EOB will remain, on average,
rather small up to the LSO. However later on the T4
phasing will drastically deviate from the EOB one.

Finally, Fig. 15 considers the test-mass limit (�! 0).
Here we compare three acceleration curves: (i) the adia-
batic limit of the T4 acceleration curve, given simply by

a!ð!Þ ¼ a
Taylor
3:5 ðxÞ computed in the limit �! 0 and with

x ¼ ð!=2Þ2=3; (ii) the EOB a! curve computed for � ¼
0:01, and (iii) the exact adiabatic limit of the test-mass
acceleration curve, i.e. the Newton-normalized ratio

F̂ðxÞ= dE0ðxÞ (see e.g. Ref. [7]). Here the flux function F̂ðxÞ
is the one computed numerically in Refs. [74,75]. The two
vertical lines in the figure refer to the � ¼ 0 limit of the
adiabatic LSO frequency (leftmost line, 2� ¼ 0:1361) and
to the � ¼ 0:01 EOB adiabatic LSO frequency (rightmost
line, 2�LSO ¼ 0:1378). This figure illustrates two facts:
first, the T4 approximant starts strongly deviating from the
exact result early on (say for !22 & 0:06, see inset); sec-
ond, one needs to consider � < 0:01 to ensure that the
usual adiabatic approximation is satisfactory up to frequen-
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FIG. 15 (color online). This figure (done for �� 1) illus-
trates, in particular, the fact that the domain of validity of
TaylorT4 when � & 0:16 reduces to the ‘‘normal’’ 3.5 PN one,
namely ! & 0:06.
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FIG. 14 (color online). Comparison between phase-acceleration curves a! of EOB (solid line) and TaylorT4 (dash-dot line) for
� ¼ 0:25 (left panel) and � ¼ 0:16 (right panel). The rightmost dashed vertical line indicates the location of the EOB adiabatic LSO.
The leftmost vertical line on the left panel indicates the EOB GW frequency corresponding the instant when T4 blows up.
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cies close to the LSO one. This is consistent with the
analytical estimate obtained in [2] according to which the
deviations from adiabaticity become important when the
frequency fractionally deviates from the LSO frequency by

�!=!LSO � �2=5. The presence of the 2=5 power means
that we need � � 3� 10�3 to be approximately adiabatic
up to 90% of the LSO frequency.

Summarizing, the main results of the present appendix
(and of complementary investigations of the different
‘‘speeds’’ with which the T4 and EOB waveforms
‘‘move’’ as � varies) are: (i) we predict that the T4 approx-
imant will define an effective phasing template for the
inspiral waveform only up to some �-dependent upper
GW frequency, say !T4

maxð�Þ, having the following proper-
ties; (ii) for � ¼ 0:25, !T4

maxð0:25Þ 
 0:14 (consistently
with [28]) which is significantly above the expected range
of validity of a normal PN approximant, but still signifi-
cantly below the (EOB-estimated22) gravitational wave
LSO frequency !EOB

LSO ¼ 0:2114. For � ¼ 0:16, the upper

bound increases to !T4
maxð0:16Þ 
 0:17, i.e. around the

corresponding LSO frequency. For intermediate values
0:16 & � & 0:25, the situation smoothly interpolates be-
tween these two cases; (iii) by contrast, as � gets smaller
than about 0.16, !T4

maxð�Þ will decrease down to values of
order of 0.05, which are typical of the expected upper

frequency of validity for a normal PN approximant23;
(iv) in all cases the range of validity of T4 is limited to
the inspiral and, contrary to the EOB, does not include the
plunge; (v) in all cases, T4 exhibits a blowup of the
frequency at a finite time. However, this blowup is not
always the main reason limiting the validity of the approx-
imant. For instance, this is the case when � 
 0:25, but not
when � & 0:16. Let us finally emphasize that the enhance-
ment in the domain of validity of T4 when 0:16 & � &
0:25 with respect to the normal expected PN validity is due
to a lucky compensation (which does not take place when
� & 0:16) between two effects going in opposite direc-
tions: on the one hand, the bad convergence of the adia-
batic PN expansion; on the other hand, the fact that the T4
approximant does not take into account nonadiabatic ef-
fects (which are quite significant as emphasized in [2] and
displayed in Fig. 2 of [21]). Our present result clarifies the
theoretical underpinnings of the result found in [65],
namely, that ‘‘deformation’’ of the T4 approximant by
spin effects removes the accidental nice agreement be-
tween T4 and NR. Indeed, one should not expect such a
chance compensation to be stable under any deformation
of the underlying physics (such as additional spins or a
varying mass ratio).
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[36] S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606

(1997).
[37] S. Dain and H. Friedrich, Commun. Math. Phys. 222, 569

(2001).
[38] M. Hannam, S. Husa, D. Pollney, B. Brugmann, and N.

O’Murchadha, Phys. Rev. Lett. 99, 241102 (2007).
[39] M. Hannam, S. Husa, N. Ó Murchadha, B. Brügmann,
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