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Abstract  

 

Translation initiation is a complex process. The efficiency of translation initiation is 

determined not just by activity and availability of the translation initiation apparatus, 

but also the properties of mRNA 5’transcript leaders (5’TL). In most cases of cap-

dependent translation, translation initiation begins with the formation of the 

preinitiation complex (PIC) loading and accommodation onto the m7G capped 5’end 

of mRNA, facilitated by m7G cap – eIF4F interactions. The PIC accommodation onto 

the 5’end of mRNA is a point of control in translation initiation where the role of 5’ 

cap proximal mRNA sequence determinants are poorly understood. 

 

To explore the effect of the nucleotides in the extreme 5’ end of mRNA on translation 

initiation, a library of mRNA molecules was synthesized containing all possible 

permutations of the first 10 nucleotides, referred to as E5S (Early 5' Sequence). The 

library was transfected into HEK293T cells. The lysates obtained from transfected 

cells were separated on a sucrose density gradient to isolate mRNAs bound to 

polysomes. Based on the assumption that efficiently translated mRNAs are associated 

with polysomes, the effect of E5S on translation initiation was measured by 

comparing frequencies of nucleotides (and their combinations) at specific positions in 

E5S from mRNAs in polysome fractions to their frequencies in E5S of the original 

library using massively parallel sequencing. The second position of E5S was found to 

have a markedly higher influence on translation initiation than positions further 

downstream (for technical reasons it was not possible to estimate the influence of the 

first position of E5S). In this position G was the most enriched nucleotide, and U was 

the most depleted nucleotide. Analysis of available ribosome profiling datasets did 

not reveal a significant association between E5S and ribosome footprint densities at 

the coding regions. While this work clearly suggests the influence of nucleotide 

context on translation initiation, it is possible that such as uORFs and RNA secondary 

structures, have a higher influence on translation initiation than E5S. The E5S is a 

previously unappreciated determinant of translation initiation, and this work suggests 

that differences in mRNA 5' end accessibility defined by the cap proximal sequence 

may be an important determinant in modulating the rate of translation initiation. 
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1. Introduction 
 
 
 

1.1  The role of translation in mammalian gene expression 

 
The task of producing a protein molecule from its gene is a highly complex process. 

The regulation of protein production involves multiple ways which all act in a 

controlled, but stochastic and highly dynamic manner called ‘gene expression 

regulation’. The regulation of gene expression involves the synthesis of mRNA and 

protein via transcription and translation 1 that are coordinated by various participating 

factors and pathways. 

 

While a nucleotide sequence in the DNA determines the sequence of its mRNA during 

transcription, a mRNA sequence determines the amino acid sequence of the resulting 

peptide during translation. However, there is no trivial relationship between the 

transcript concentration vs that of its protein concentration at a particular genomic 

locus. Studies that have quantified transcripts and proteins revealed that the 

importance of establishing the expression level of a protein includes multiple 

processes. Some of them are mentioned below: 

 

a) Translation initiation rates which are influenced by the sequence of the 

mRNAs containing upstream open reading frames (uORFs), alternative 

transcription start sites (TSS), and/ or upstream AUGs (uAUGs). 

 

b) Modulation of translation rates can occur by protein binding elements to the 

regulatory elements on the transcript, e.g., microRNAs (miRNA), Ribosome 

binding proteins (RBPs) etc. or through relative availability of the transcript 

and/or (tRNA charged) ribosome. 

 

c) Modulating the half-life of a protein that includes the complex ubiquitin-

proteasome pathway or autophagy that can influence the concentration of the 

protein independent of its transcript concentration. 

 

d) Temporal delay in protein synthesis based on changes in the transcript 

concentrations steered by mRNA export and the translation process. 
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e) Transport of proteins using mechanisms to export proteins includes the 

spatial disconnection of proteins from the transcripts that they were 

synthesised from. 

 

Therefore, the direct comparison between protein and mRNA abundances from the 

same location or the same cell type may not be ideal. With the advent of high 

throughput sequencing technology, the genetic expression of a cell is defined by both 

its transcriptome and its translatome 2–5. Our understanding of the relationship 

between mRNA and protein levels depends on significant recent advances to quantify 

transcripts and proteins to produce qualitative data using cutting edge technologies as 

shown in Figure 1.1. 

 

In the mRNA transcript, the 5’ transcript leader (TL) region of the mRNA carries 

various elements that can regulate the translational readout both quantitatively 

(amount of protein expressed) and qualitatively (sequence of proteins that are 

expressed). These regulatory elements include RNA secondary structures, protein 

binding sites, and uAUGs which dictates the translation of uORFs and produces 

proteins with N-terminal extensions 6–8. In the coming sections, we will discuss cap-

dependent translation initiation in mammals and narrow our focus on the effects of 

the 5’-cap proximal nucleotides of the mRNA on translation in mammals. 
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Figure 1.1: Mechanisms controlling gene expression thus illustrating the relationship between 

mRNA and proteins. Various Mechanisms, types of molecules involved, methods for their 

respective quantitative measurement and the properties measured by the respective methods are 

indicated. 

 
Abbreviations: NET-seq, native elongating transcript sequencing; RATE-seq, RNA approach to 

equilibrium sequencing; Ribo-seq, ribosome profiling; SILAC, stable isotope labelling by amino acids 

in cell culture; TMT, tandem mass tag; iTRAQ, isobaric tag for relative and absolute quantification; 

LFQ, label-free quantification; SRM, selected reaction monitoring ; ALF, absolute label-free 

quantification ; iBAQ, intensity-based absolute quantification; TRAP-seq, Targeted purification of 

polysomal mRNA; pSILAC, pulsed stable isotope labelling by amino acids in cell culture; PUNCH-P, 

puromycin-associated nascent chain proteomics; AHA, azidohomoalanine labelling; 4SU labelling, 4-

thiouridine labelling; RNAPII, RNA polymerase II and RT-PCR, reverse transcription- polymerase 

chain reaction.  

This image is adapted and modified from 
9
. 
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1.2  Overview of the scanning model of translation 
 

 

Upon reaching the cytoplasm, the 5’ cap of the mRNA that governs the cap dependent 

translation in mammals proceeds in two distinct pathways: Cap Binding complex 

(CBC) dependent translation (CT) and eukaryotic translation initiation factor 4E 

(eIF4E)-dependent translation (ET). ET will be the primary focus of the coming 

sections. CT is believed to precede ET because CBC-bound mRNA is a precursor of 

eIF4E-bound mRNA10. While CT is largely involved in mRNA quality control, ET 

oversees the bulk of protein synthesis. 

 

Cap dependant translation in mammals is a cyclic process that can be broadly divided 

into four stages: initiation, elongation, termination and ribosome recycling. Most 

regulation in translation occurs at the step of initiation. Translation initiation involves 

the recruitment of 43S pre-initiation complex (PIC) to the 5’ end of the m7G-capped 

mRNA which is recognised and facilitated by eIF4F complex, through the multi-

subunit eIF3. The 43S PIC scans the 5’TL for an AUG start codon based on its 

complementarity with the anticodon of Met-tRNAi. AUG recognition triggers the 

hydrolysis of GTP in the ternary complex (TC) and release of eIF2-GDP from Met-

tRNAi to produce a stable 48S initiation complex, followed by the joining of the large 

60S ribosomal subunit, stimulated by eIF5B to form an 80S initiation complex. The 

elongation phase commences with decoding of the next triplet that is positioned in the 

ribosomal A-site 11–13. The elongation phase incorporates amino acids into a growing 

polypeptide chain. The recognition of the stop codon triggers the termination of 

translation. Lastly, 80S initiation complex dissociates from mRNA and dissembles 

onto 40S and 60S subunits which are recycled to initiate the subsequent rounds of 

translation 11,14,15. However, there are alternate mechanisms of translation that are cap 

independent and will not be discussed in this review 16–18. 
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1.3 eIF4E based translation initiation (ET) 
 

 

Translation is a cyclical process, where ribosomal subunits that participate in 

translation initiation are derived from recycling of post-termination ribosomal 

complexes (post-TCs)19–24. Ribosomal recycling yields separate 40S and 60S 

ribosomal subunits 25. 

 

Most mammalian mRNAs are translated by a scanning mechanism. The Met-tRNAi 

in a TC with GTP-bound eIF2 is loaded on the 40S ribosomal subunit, promoted by 

initiation factors eIF1,eIF1A, eIF5 and eIF3 to form 43S PIC (Figure 1.2) 8. eIF4F 

comprises of m7G cap-binding protein eIF4E, scaffolding subunit eIF4G, and DEAD 

box helicase eIF4A. In the next step, mRNA is activated by unwinding its 5’TL in an 

ATP-dependant manner by the eIF4F, eIF4B, and eIF4H along with the help of PABP 

11,26–28. The unwinding of long, highly structured 5’TL in some mRNAs require the 

presence of a DExH-box containing protein, DHX29 11,27,29. The mRNA with a 

circular ‘closed-loop’ configuration formed by the interaction of eIF4G-PABP, can 

improve translation efficiency by facilitating the utilization of recycled 40S ribosomes 

30
. 

 
In the empty 40S subunit, the mRNA channel remains closed due to the interactions 

between its head and the body to form a latch 31. The mRNA channel must be opened 

to allow initial loading of mRNA on the 40S subunit. .eIFs, 1 and 1A in unison are 

responsible for unlatching the 40S to cause ‘open’ confirmation of the 40S subunit i.e. 

conducive for the process of scanning 32,33. The 43S PIC subsequently binds to the 

mRNA with the help of eIF4F, eIF4B, and eIF3. The 43S PIC, in an ‘open 

conformation’ with tRNAi not fully engaged in the P-site (POUT) (metastable state of 

TC), then scans base by base along the 5’TL in the 5’-3’ direction of the mRNA in 

using complementarity with the anticodon of Met-tRNAi to identify the ‘strength’ of 

the AUG codon in the presence of eIF1, eIF1A and eIF5 34. GTP bound to eIF2 is 

hydrolysed by eIF5 in the scanning PIC, but the dissociated phosphate (Pi) is not 

released as it is blocked by eIF1 in the complex. The 43S PIC stops scanning when it 

encounters the first AUG codon (or near cognate codon, although with lower 

efficiency), if it is in a poor context, the scanning complex may pass AUG without 

translation initiation 35. Recognition of the start codon causes the tRNAi to be 

accommodated in the P-site (PIN) leading to a closed PIC, causing an arrest of the 

scanning process, switching the scanning complex to a ‘closed’ conformation. This 
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rearrangement triggers the release of eIF1, allowing eIF5 mediated eIF2-GTP 

hydrolysis and resultant dissociation of Pi 
11,36–38. A resulting stable 48S initiation 

complex is formed with an established codon-anticodon base pairing. In the next step, 

the 60S ribosomal subunit joins the 48S initiation complex causing a displacement of 

eIF2-GDP and initiation factors (eIF1, eIF3, eIF4F, eIF4B and eIF5) mediated by 

eIF4B. In the next step, the hydrolysis of eIF5B-GTP causes the displacement of 

eIF1A and eIF5B-GDP from the assembled elongation competent 80S ribosome. 
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Figure 1.2: Mechanism of translation initiation. The process of initiation is shown as a pathway of 

multiple reactions beginning with the dissociation of 80S ribosomes into free 40S and 60S subunits and 

the assembly of the 43S PIC on the small ribosomal subunit. 80S ribosomes and 40S subunits are 

represented with approximate locations of the aminoacyl-tRNA (A), peptidyl-tRNA (P), and exit (E) 

sites labelled in the 40S subunit. eIFs are labelled in the form of shapes as shown in the reference tab 

on the right. GTP and GDP are represented as dark/light grey structures respectively (shown in the 

reference tab). Translation is a cyclic process. Ribosome recycling yields separate 40S and 60S 

ribosomal subunits. eIF2, GTP and Met-tRNAi forms a TC called eIF2-GTP-Met-tRNAi. The 43 PIC 

is formed that includes a 40S subunit, eIF1, eIF1A, eIF3, eIF2-GTP-Met-tRNAi and eIF5. mRNA is 

activated when the mRNA cap-proximal region is unwound in an ATP dependent manner by eIF4F and 

eIF4B. The 43S PIC attaches to the unwound mRNA and scans the 5’TL in the 5’-3’ direction in search 

of an initiation codon. Upon initiation codon recognition, the scanning complex switches to a ‘closed 

confirmation’ and a 48S initiation complex is formed. This leads to the eIF5 mediated hydrolysis of 

eIF2-bound GTP and Pi is released leading to the displacement of eIF1. In the next step, the 60S subunit 

joins the 48S complex followed by the displacement of eIF2-GDP and other factors (eIF1, eIF3, eIF4B, 

eIF4F and eIF5) mediated by eIF5B. The hydrolysis of eIF5-GTP results in the displacement of eIF1A 

and eIF5-GDP from the elongation competent 80S ribosome. Following elongation, termination occurs 

(not shown in the figure) followed by recycling which generates separated ribosomal subunits and the 

process begins again. This figure is adapted and modified from 11,12. 
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Translation initiation is the most regulated step in mRNA translation. Several 

sequence elements present in the 5’TL of a mRNA molecule that influence translation 

initiation have been characterized that includes upstream ORFs initiated with AUG 

and near cognate start codons, specific secondary structures, as wells as specific 

sequence motifs e.g. Terminal oligo-pyrimidine tract (TOP). The elements of the 5’TL 

present in the cap proximal end of the mRNA that can influence the process of 

translation initiation will be discussed in the following section. However, there are no 

studies that exhaustively explore the effect of the context of nucleotides present in the 

cap proximal end of the mRNA on the rate of translation initiation. 

 

 
 
 
 

 

1.4  Elements in 5’TL that modulate translation initiation 
 

 

Secondary structures in the cap proximal end of mRNA 

 

 

Scanning of the 40S ribosome along the 5’TL of the mRNA through structural barriers 

is an important regulatory step in translation initiation as discussed in the previous 

sections. Secondary structures located in the 5’TL of the mammalian transcripts can 

significantly alter the translation efficiency 39,40, initially reported by Kozak’s 

experiments 41–43 . The presence of secondary structures in the proximity to the 5’end 

of mRNA decreases the efficiency of translation in α and β-globins, whereas having a 

minor effect on translation when placed downstream in the leader sequence – this was 

first demonstrated by Kozak 41. The inhibition of translation in the presence of 

secondary structure was studied in the bovine growth hormone receptor where the 

translation was modulated up to 80-fold based on differences in the 5’TL splice 

variant. Insertion of various hairpins into 5’TL to study its effects of translation were 

first performed by Kozak. These initial studies in Cos 7 cells found that hairpins with 

the predicted thermal stability of −30 kcal/mol had no effect on translation, while 

hairpins of −50 kcal/mol reduced translation by 85%–95% 44. Similar to in vitro 

studies 45, it was shown in live cells that mRNA structures are inhibitory when placed 

proximal to the 5′-mRNA cap between positions +1 - +9 46. 
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RNA helicases are known to play a general role in translation initiation and have a 

role in unwinding RNA hairpin structures in an ATPase dependant fashion. Stable 

RNA secondary structures can resist the unwinding activity of the helicase elF4A, 

overcome partially by the overexpression of elF4A in partnership with elF4B 47. Apart 

from eIF4A, other RNA helicases are also involved in translational control including 

DHX29, DHX9 (also referred to as RNA helicase A or RHA) and DDX3. 

 

mRNAs containing moderate to strong 5’TL secondary structure (ΔG <-19 kcal/mol) 

use DHX29, a DEAH box protein to promote translation initiation. Rather than 

unwinding secondary structures in the RNA (due to poor helicase activity), DHX29 

acts by altering the 40S conformation between the ‘open’ and ‘close’ state of mRNA 

entrance site by shuttling between its NTP and NDP bound states 29. DHX29 is also 

known to associate with eIF1A to play a vital role in leaky scanning and start codon 

recognition 27. 

 

DHX9 can impact translation initiation of specific mRNAs. DHX9 can bind to the 

5’TL structural motif in c-JUND mRNA 48 and unwind the structural elements within 

its 5’TL to promote translation initiation. La ribonucleoprotein domain family 

member 6 (LARP6) binds to the 5’ stem loop (sL) of type 1 collagen mRNA with high 

affinity. DHX9 forms a complex with LARP6 to promote translation of type 1 

collagen mRNA 49. The mechanism by which DHX9 probably unwinds the secondary 

structure of 5’sL, releasing LARP6 to promote translation remains unclear 50. 

 

Translation of specific mRNAs containing an sL, the TAR RNA motif in their 5’cap 

proximal end, for example, HIV-1 gRNA, are enhanced in the presence of DDX3. sL 

can impede eIF4F binding and subsequent 43S PIC loading. DDX3 aids in unwinding 

the secondary structure of specific mRNAs populations with the help of eIF4G and 

eIF4F, facilitating the entry of the 43S to promote translation initiation 51. 

 

Iron metabolism is regulated by the binding of RBPs namely iron regulatory protein 

(IRP) to hairpin structures called Iron Regulatory Elements (IRE) present in the 5’TL 

and 3’UTR of ferritin and transferrin transcripts respectively. An IRE hairpin is ~30 

nts long and forms a 5′‐ CAGUGN‐ 3′ loop and a stem with moderate stability 
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(ΔG∼−7 kcal/mol), interrupted by an unpaired C residue 52,53. mRNAs coding the H 

and L-ferritin, the iron storage protein contain a single IRE in their 5’TL. At low iron 

concentration, IRP binds to the 5′TL of the ferritin mRNA to prevent ferritin 

translation; at higher iron levels, the IRP is saturated with iron and falls off the ferritin 

mRNA. The release of the IRP from the ferritin mRNA leads to efficient translation 

of the mRNA 54,55. Transferrin mRNA is responsible for iron uptake in cells. In the 

presence of excess iron, IRP binds to IREs in the 3’UTR of transferrin mRNA causing 

iron-dependant degradation 55. 

 

Another form of structural impediment in the 5’TL for translation initiation can occur 

as G-quadruplexes. G-quadruplex is a non-canonical four stranded nucleic acid 

structure formed by guanine rich nucleotide sequences 56. For example, the presence 

of secondary structures in the form of G-quadruplexes in the cap proximal ends of 

NRAS 5’TL can repress translation by acting as a roadblock to inhibit the progression 

of the ribosome during translation 57. 

 

 

The role of uAUGs /uORFs in modulating translation 

 

According to the scanning model, the 43S PIC enters the mRNA at its 5’cap and scans 

sequentially along the 5′TL until it positions the first AUG codon 45 in its P-site. The 

optimal context of an AUG start codon in mammals is GCCA/GCCAUGG (termed 

Kozak consensus) of which A at −3 and G at +4 (the A at the AUG codon being +1) 

39,58 are critical in determining the strength of the start codon context. Sometimes ‘near 

cognate’ triplets that differ from AUG by a single base can be selected by the scanning 

PIC at lower frequencies, due to the mismatch with the anticodon of tRNAi and 

probable destabilisation of the 48S PIC. Near cognates rely on optimal context more 

heavily than AUG with NUG triplets functioning better than A(A/G)G triplets in start 

codon selection 12. Various factors including initiation factors, structural elements in 

the tRNAi and the rRNA along with the protein components of the small ribosomal 

subunit 40S are involved in discriminating between AUGs and non-AUG triplets by 

the scanning PICs. In eukaryotes, while eIF1 promotes scanning and blocks the 

recognition of non-AUGs and poor context AUGs, eIF5 antagonises the function of 

eIF1 59. 
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If an upstream AUG (uAUG) is in-frame with a downstream AUG uninterrupted by a 

stop codon, leaky scanning may occur to produce two protein isomers differing by an 

N-terminal extension, to produce a longer form usually targeted at a particular cellular 

component) 12,24,60. Some uORFs have the ability to inhibit downstream ORFs; direct 

evidence for this is seen for a relatively small number of genes. Inhibitory uORFs are 

principally governed by two primary control mechanisms: 

 

a) One class of regulatory uORF encodes a peptide that can stall the 80S ribosome 

engaged in synthesis at or near the uORF stop codon. Stalling by the uORF 

peptide prevents the scanning of 43S PICs that leaky scanned at the uORF-

AUG codon by creating a ‘roadblock’ modulated by ligands (Figure 1.3b), for 

example, spermidine for AMD1. 

 

b) The second class of regulatory ORFs can inhibit the downstream ORF start 

codon by hindering the 43S PICs, their encoded peptide being irrelevant to 

their inhibitory function (Figure 1.3a). Genome data warranted that the barrier 

created by such uORFs can be overcome by leaky scanning. uORFs whose 

AUG codons comply the rules of optimal Kozak context having a higher 

inhibitory effect to prevent downstream ORF synthesis 61,62. 
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Figure 1.3 :Translational control mechanisms by uORFs a) When uORF is translated (shown as 

80S ribosomes) by the scanning 43S PIC, upon termination free subunits dissociate from the mRNA to 

prevent the translation of the main ORF (mORF) b) The 80S ribosomes are stalled during elongation 

or termination by an uORF attenuator peptide generated by the leaky scanning of uORF-AUG codon 

blocks the scanning 43S PIC, preventing mORF translation. 

 

 

 

Leaky scanning of an inhibitory uORF is increased during stress conditions, eIF2(αP) 

at serine 51 decreases the levels of eIF2-GTP and acts as a competitive inhibitor for 

eIF2 Guanine exchange factor eIF2B causing decreased TC assembly. Decreased TC 

levels can lead to a delay in reinitiation that allows ribosomes to bypass inhibitory 

uORFs and translate the mORF. An example of this mechanism is described using the 

mammalian ATF4, the transcriptional regulating activating transcription factor (Figure 

1.4 b). ATF4 expression involves the differential contribution of two upstream ORFs 

(uORFs) in the 5′ TL of the mouse ATF4 mRNA. The 5′ proximal uORF1 is a positive-

acting element that facilitates ribosome scanning and reinitiation at downstream 

coding regions in the ATF4 mRNA. When eIF2-GTP is abundant in non-stressed cells, 

ribosomes scanning downstream of uORF1 reinitiate at the next coding region, 

uORF2, an inhibitory element that blocks ATF4 expression. During stress conditions, 

phosphorylation of eIF2 and the accompanying reduction in the levels of eIF2-GTP 

increase the time needed for the scanning ribosomes to become competent to reinitiate 

translation. This delayed reinitiation allows for ribosomes to scan through the 

inhibitory uORF2 and instead reinitiate at the ATF4-coding region 63,64. 
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Figure 1.4: uORF translational control under different gene architectures a) 1. The scanning PICs 

translating uORF do not reinitiate at the mORF (Figure 1.3a) 2. Leaky scanning at the uORF with 

suboptimal start codon initiates at the mORF. In this case, leaky scanning can be inhibited depending 

upon elevated eIF5 levels [e.g.: lowering translation of eIF5 gene], by eIF2(αP) [e.g., IFRD1] and 

polyamines (e.g., AMD1 encoding SAM decarboxylase) b) 1. Scanning ribosomes translate a short 

uORF whose translation does not prevent reinitiation. 2. When scanning is resumed, TC reacquisition 

can lead to the translation of an inhibitory downstream uORF that can prevent further reinitiation 3. 

Slow acquisition of TC due to low TC concentration induced by eIF2(αP) allows for reinitiation at a 

downstream mORF. An example includes ATF4. c) 1. Scanning ribosomes can initiate translation at a 

uORF that permits reinitiation 2. Ribosomes that can leaky-scan at the first uORF translate a second 

inhibitory uORF that prevents reinitiation 3. Ribosomes can translate the first uORF resume scanning 

and upon bypassing the second inhibitory uORF (avoid its inhibitory effect), can reacquire TC and 

translate the mORF. d) When an upstream start codon is in frame with the mORF, the inhibitory uORF 

can be bypassed during elongation to produce protein isoform ‘A’ with specific properties 2. Scanning 

ribosomes can bypass a suboptimal in-frame start site and initiate at a downstream uORF 3. Rescanning 

and reacquisition of TC leads to reinitiation at a proximal start codon producing protein isoform ‘B’ 4. 

Slow reacquisition of TC can allow reinitiation at a farther downstream start codon to produce shortest 

protein isoform ‘C’ with activities opposing thos de C/EBP-α and C-EBP-β.  

This image is adapted and modified from 24,65. 
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Small ORFs (smORFs) 
 

 

smORFs are defined as small ORFs containing less than 100 codons that can be 

translated 66. smORFs can exist within the 5’TL and encode functional proteins 67,68. 

smORFs can either modulate downstream initiation events or have distinct biological 

functions. Detecting products from smORFs is technically challenging 69 and has been 

possible recently with the advent of ribosome profiling 70. Genome wide analysis 

using ribosome profiling has identified the previously non-annotated smORFs with 

the potential to encode biologically active peptides 69. For example, in mice, 

myoregulin (MLN) smORF expresses a 46aa peptide that plays a role in muscle 

contraction. Another example in human is humanin, a smORF (24 amino acids long) 

that has significant implications in apoptosis 69. 

 

 
 

1.5  5’ Terminal Oligopyrimidine Tract (TOP) motif 

 

Transcripts containing a cysteine following the m7G cap and an uninterrupted stretch 

of 4-14 pyrimidines (TOP motif) are referred to as TOP mRNAs 71. TOP mRNAs are 

known to encode components of the translational machinery including ribosomal 

proteins and elongation factors 72. TOP mRNA translation is highly responsive to 

stress and growth conditions and is believed to be mediated via the mammalian target 

of rapamycin complex 1 (mTORC1) and its downstream effector eukaryotic 

translation initiation factor 4E-binding protein (4EBP) 73. 

 

Translational control of 5’TOP mRNA relies on the regulation of eIF4E by 4EBP 73,74. 

However, suppression of 4EBP-1/2 function is unlikely to be the only factors driving 

5’TOP mRNA translation, eIF4E overexpression did not promote translation of 

5’TOP mRNAs 75. These findings suggest the presence of additional regulatory factors 

that can bind directly to the TOP sequence in regulating 5’TOP mRNA translation 76. 

 

Early evidence suggested that the regulation of 5’TOP mRNA involved an unknown 

titratable repressor molecule 77. Based on this observation, several candidates were 

proposed to have an association with 5’TOP elements and its immediate downstream 

region. Some of these candidates include the abundant La antigen or La-related 

protein 
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3 (LARP3) 78–80 , AUF1 81, ZNF9 80, TIA-1 82, LARP1 83 and LARP7 84. It seems 

likely that one, or several of these proteins can compete with eIF4F for binding to the 

5’TOP and, hence, prevent 43S recruitment under conditions non-permissive for 

5’TOP mRNA translation. However, there is a lack of definitive evidence for 

regulatory roles of these proteins in the translation of 5’TOP mRNAs. 

 

In recent studies, ribosome-profiling suggested that mTOR almost exclusively 

stimulates TOP/ TOP-like mRNA translation 73,74. In contrast, polysome profiling 

indicated that mTOR mediates the translation of non-TOP mRNA as well 85. Gandin 

et al revealed that mTOR sensitivity is not based solely only on TOP motif but 

distinctive 5’TL features 86.The mechanisms that can control the specificity of TOP / 

TOP like mRNA regulation remains unclear and has been debated in recent studies 86. 

 
 

 

1.6 RNA binding proteins and their role in translation initiation 
 

 

An RBP can form ribonucleoprotein complexes (RNP) and associate with transcripts 

to influence their fate and function 87. RBPs bind to specific sequence / structural 

motifs in the RNA via well-defined RNA binding domains (RBD) 88 such as the RNA 

recognition motif (RRM) 89, hnRNP K homology domain (KH) 90 or DEAD box 

helicase domain 91. However, recent advances in structural biology have revealed the 

existence of complex protein-RNA interactions that do not require canonical RBDs 

92. 

 

RBPs can bind to the RNA to regulate mRNA stability, localisation and its translation 

88,93. RBP’s can have both positive and negative effects on the translation of mRNAs 

depending on their interaction with specific RNA motifs. A few examples of RBPs 

rendering translation control are described below- 

 

a) LARP1 

LARP1 is an evolutionary conserved RBP containing a La motif, a 90 amino acid 

domain followed by an RRM-L5 and a highly conserved C-terminal region called the 

DM15 domain 94 /LARP1 motif 95. LARP1 contains binding sites for PABP and 

RAPTOR (regulatory-associated protein of mTOR) and plays an important role in the 
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regulation of a subset of mRNAs containing the 5’TOP motif 96. It can enhance or 

restrict translation based on cell type, RNA binding affinities and available protein-

protein interactions. In vitro studies demonstrate the that LARP1 can bind to the m7G 

cap and the first cytidine of the TOP mRNA (higher affinity compared to eIF4E), 

thereby blocking the eIF4F complex on TOP mRNAs and repressing translation 97–99. 

In contrast, LARP1 is observed to bind to a range of targets to activate proto-

oncogenes and enhances total protein synthesis in various cancer cell lines 100–102. 

 

 

b) PABP 

 

PABP is a conserved family of eukaryotic RBP involved in various stages of post-

transcriptional gene expression including pre-mRNA 3’ end processing, translation 

initiation, termination, mRNA stability and turnover and mRNA-specific degradation 

mechanisms 24,103–106. 

 

In the context of cap dependant translation, the interaction of eIF4G-PABP enhances 

the eIF4E-cap binding activity and eIF4A helicase activity 107–109. During translation 

initiation, the interaction of PABP-eIF4G and poly(A), stabilises bound mRNAs to a 

‘closed-loop’ formation that enhances the 43S PIC assembly and post-termination 

ribosome recycling 110,111. 

 

PABP is regulated by PABP interacting proteins 1 and 2 (Paip1 and Paip2). Paip1 

binds to PABP and enhances its affinity for eIF4G in the presence of eIF3 112. Paip2 

is a competitive inhibitor of eIF4G-PABP interaction and can inhibit the interaction 

between PABP and poly (A) tail of the mRNA 113. In mice, Paip2 knockout can silence 

transcription during spermiogenesis 114. When Paip2 is knocked out, an increase in 

PABP can lead to non-productive eIF4G binding or competitive binding to 5’TL in a 

subset of mRNAs leading to infertility, decreased sperm count and abnormal 

spermatid structure in mice 28,115–119. 
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1.7  m7G cap and its role in translation initiation 

 
 

The cap structure was first observed in several viral mRNAs before it was identified 

in cellular mRNA of HELA cells 120,121. The cap structure is the first modification 

made to RNA polymerase II transcribed RNA. The cap structure is formed co-

transcriptionally in the nucleus as soon as the first 25-30 nts are incorporated into the 

nascent transcript 122,123. mRNA is capped by N7-methyl guanine (m7G) that are 

linked through an inverted 5′-5′ triphosphate bridge to the initiating nucleoside of a 

nascent transcript 124. Three enzymatic activities namely RNA triphosphatase (TPase), 

RNA guanylyltransferase (GTase) and guanine N7 methyltransferase (guanine N7 

MTase) are involved in the conversion of 5’ triphosphate of the nascent transcript into 

a cap 0 structure as shown in Figure 1.3 125. 

 

Additionally, the m7G-specific 2′O methyltransferase (2′O MTase) methylates the +1 

and +2 ribonucleotides at the 2′O position of the ribose to generate the cap 1 and cap2 

structures respectively. Although the cap 0 and cap 1 modification of a nascent mRNA 

occurs in the nucleus, cap 2 modification occurs in the cytoplasm. The human enzymes 

that methylate the 2′O position of the +1 and +2 ribose to form the cap 1 and cap 2 

structures, respectively, have recently been identified 126,127. Cap1 and cap2 

methylations in U2 snRNA are required for spliceosome E complex formation and 

consequently for efficient pre-mRNA splicing 128. 
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Figure 1.5: Enzymatic steps involved in RNA capping The RNA triphosphatase activity (TPase) 

removes the γ-phosphate from 5′ triphosphate, generating a diphosphate 5′ end and inorganic 

phosphate (reaction [1]). The guanylyltransferase (GTase) activity takes up a GTP molecule to form a 

covalent intermediate containing a lysyl-Nζ-5′-phosphoguanine (reaction [2.1]). In the presence of a 

5′ diphosphate RNA, the GTase activity transfers the 5′-phosphoguanine (GMP) to the 5′ 

diphosphate, forming a 5′-5′ triphosphate linkage between the first base of the RNA and the capping 

base (reaction [2.1]). In the presence of S-adenosylmethionine (SAM), the guanine-N7 

methyltransferase (MTase) activity adds a methyl group to N7 amine of the guanine cap to form the 

cap 0 structure (reaction [3]). Finally, the m7G cap-specific 2′O MTase modifies the 2′O of +1 ribose 

and generates the cap 1 structure (reaction [4]). This image is adapted from 129. 

 
 

 

 

 

 

The cap structure is a critical part of the process of cap dependant translation. eIF4E 

is the cap binding protein that binds to m7GpppN (where N is any nucleotide). eIF4E 

recruit’s mRNA transcripts onto the ribosome through its high affinity binding with 

eIF4G 11. eIF4E is involved in two important processes: a) it binds to the m7G cap and 

recruits eIF4G/eIF4A to the 5’ end of the mRNA transcript to form the eIF4F complex 

6,13 and b) enables circularization of the mRNA 13. Many mRNAs with highly 

structured TL are sensitive to eIF4E whereas housekeeping genes such as GAPDH and 

Actin containing short unstructured 5’TL are not eIF4E sensitive 130–133. 

Overexpression of eIF4E is observed to increase the efficiency of transcripts 
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containing a highly structured TL in cap dependant translation initiation. eIF4G 

enhances the affinity of eIF4E to bind the m7G cap 134. eIF4G interacts with eIF4E 

through the motif YX 4 LΦ (Y denotes tyrosine, X denotes any amino acid, L denotes 

Leucine and Φ denotes a hydrophobic residue), also conserved in 4E-BPs 135,136. 

Competition between eIF4G and 4E-BP1 occurs due to the presence of a shared 

binding motif (YX 4 LΦ) available on the dorsal side of eIF4E. The interaction of 4E-

BP1 to eIF4E is modulated by phosphorylation of multiple serine and threonine 

residues 137. The translation levels are therefore lowered when 4E-BP1 is active and 

this activity is thought to be regulated by mTOR dependent phosphorylation 138. 

 

mTOR is the mammalian target of rapamycin, a highly conserved serine/threonine 

kinase that plays a significant role in controlling cell growth and metabolism. The 

mTOR activity is regulated by growth factors and amino acid availability as well as 

the energy status of the cell 138. When mTOR activity is low, 4E-BP1 is hypo-

phosphorylated (i.e. phosphorylated in 2 out of its 4 phosphorylation sites) allowing 

efficient binding to eIF4E and blocks translation initiation. When mTOR activity is 

high, 4E-BP1 is phosphorylated in its 4 phosphorylation sites (S37, T46, T70, and 

S65) 139,140 causing it to release eIF4E, thus allowing initiation of cap dependent 

translation 141. eIF4E does not use its lateral side to bind to eIF4G but comprises of 

non-canonical binding sites to accommodate 4E-BPs 142–146. These non-canonical 

motifs can increase the affinity of 4E-BP to eIF4E up to threefold, contributing as an 

essential component in the 4E-BPs competition with eIF4G 145. 

 

Despite major advances in our understanding of various regulatory elements within 

the mammalian 5′ TL modulating translational efficiency, we have recently started to 

appreciate the transcriptional heterogeneity of this process. 
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1.8 Alternative Transcription start site (TSS) and its role in 

translational regulation. 
 
 

Regulation of gene expression at the transcriptional level leads to transcript diversity. 

Transcription begins from a TSS after the transcription initiation complex assembles 

on the corresponding promoter. However, many genes are known to have multiple 

transcript isoforms that contain alternative first exons corresponding to their 

alternative promoter, adding complexity at the level of transcription. In mammals, it 

is estimated that around 58% of the transcribed genes contained multiple promoters147
. 

 

Variable 5’TLs can alter gene expression by producing different mRNA variants in a 

tissue specific manner 148–150 thereby influencing mRNA stability and translational 

efficiency. However, alternative first exons can differ in length and sequence but in 

extremely rare cases, they have similar length and nucleotide sequence, for example, 

gene clusters of Pcdh and UGT1 151. 

 

In mammalian genes, most promoters are located within the CpG- rich regions and 

occur less frequently in TATA box regions. Whilst the TATA box enriched promoters 

are known to initiate in a well-defined site, CpG rich promoters are known to have a 

broad, plastic and evolvable initiation site for transcription 152. A series of TSSs were 

observed over a very small 4-6 bp surrounding the principle TSS 153. 

 

A true transcription site is identified with the presence of 7-methyl guanine cap 

structure to the 5’ triphosphate of the first base of an RNA polymerase II transcribed 

mRNA. It is this unique feature of RNA that forms a basis for several methods aiming 

to enrich and identify capped messages to map the exact positions in the nucleotides 

to which the cap is added. The main methods extrapolating this mechanism is cap 

analysis of gene expression (CAGE) 154, oligo-capping 155, robust analysis of 5’ 

transcript ends using 5’ Rapid amplification of cDNA ends (5’RACE)156 and 

NanoCAGE157. 

 

The 2’-3’ diol structure of the cap nucleotide is also present in the extreme 3’ end of 

an RNA molecule, exploited by the CAGE technology. The diol structure is oxidised 

chemically followed by biotinylation, selection of capped messages by 

immunoprecipitation with streptavidin. The enriched capped RNA is transcribed into 

cDNAs that span the entire lengths of the capped RNA molecules 154.  
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In the oligo-capping and 5’-RACE methods, the ability of the 5’cap to resist 

phosphatase treatment is exploited. The phosphatase treatment ensures the removal of 

tri, di, and mono-phosphates from the cleaved or degraded RNA. The cap is 

subsequently removed using the tobacco acid pyrophosphorylase leaving a 

5’monophoshate that is then ligated to a linker molecule to mark the 5’ extreme end 

of mRNA 155,156. Full length c-DNA generated by one of the above-mentioned methods 

can be included with short DNA tags attached to the 5’end of the mRNA suitable for 

next generation sequencing 158. The information on the exact position of cap addition 

sites for millions of RNA molecules can be generated by the amalgamation of cap-

selection and next generation sequencing technologies 159–161, thus making digital 

information on the number of transcription initiation events at any genomic position 

easily available. The NanoCAGE method finds the TSS of mRNA molecules from 

low quantities of total RNA as input (~10ng) 157. NanoCAGE combines a template 

switching method relying on the reverse transcription of the cap of the mRNA to 

enrich for 5’ends 162 as well as a semi-suppressive PCR to minimise PCR artefacts 163. 

 

The potential of alternative TSS in altering 5’TL structure leading to enhanced or 

diminished levels of protein synthesis has been extensively studied. 164–166. In a study 

combining polysome profiling with high throughput mRNA-5’end sequencing, the 

translational status of the mRNA isoform with distinct TSSs was studied. Among 

9,951 genes expressed in mouse fibroblasts, 4,153 genes showed significant initiation 

at multiple sites, of which 745 genes exhibited significant isoform-divergent 

translation 167.TSS switches are of functional significance and have an association with 

a pathogenic phenotype such as BRCA1 in breast cancers 168,169. In some genes such 

as the tumour protein p53 and GNAS, alternative promoters were shown to be activated 

or silenced to modulate transcription levels 170. A recent study exploring the 

mammalian genes for TSS switching events during cerebellar development revealed 

9767 cross-over TSS switching events across 1511 genes suggesting that the dominant 

TSS shifts over time 171. The alternative switching events have also been used to 

characterize the cellular phenotype based on its transcriptional landscape in human 

cell lines 172. However, the magnitude of the effects of transcriptional switching on the 

ribosome associated mRNA population remains unclear. 
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1.9  5’cap proximal nucleotides and their possible role in 

translation control 

 

During the conventional mechanism of scanning as explained earlier (Introduction, 

1.2 and1.3), the 43S PIC moves from the 5’-3’ direction of a mRNA in search of a 

start codon. The mechanism in which the mRNA positions on the 43S PIC or the 

factors that permit the release of the 43S PIC to permit scanning from the 5’end is not 

clear. Due to the advent of high resolution cross-linking studies, it is now possible to 

study the mRNA path on the 48S complexes 29,173 i.e. 5’ distal when positioned over 

a start codon. RNase footprint studies have demonstrated that the 80S ribosome 

protects ~30 nts of the mRNA but the 48S complex binds to an additional 10-20 nts of 

RNA on the 5’end 174,175, in contact with other IFs particularly eIF3 29. This is 

consistent with previous observations from Kozak that efficient translation requires a 

minimum TL length of 20nt 39. It is interesting to know the mechanism in which the 

start codon could be positioned in the P-site of the 43S PIC for transcripts containing 

short 5’TL <20nt. 

 

There are various models that can be predicted to offer an explanation for this 

occurrence 176 as shown in figure 1.6 and listed as follows: 

 

a) It is shown that the interaction between eIF4G-eIF4E is weakened upon eIF4E 

binding to the cap structure 177. 3’-5’ scanning has been suggested in recent studies 

178. One possibility is that upon 43S PIC loading, the contact between eIF4E-eIF4G 

breaks, allowing retrograde movement of the 43S PIC and positioning of the AUG in 

the P-site (Figure 1.4). Furthermore, displacement of a part of the cap binding 

complex, possibly eIF4G in association with a fraction of available eIF1, has been 

proposed to occur during initiation on Translation Initiator of Short 5′ UTR (TISU) 

elements 179, the details on how the process is driven remains unclear. 

b) The interaction between eIF4E- 5’cap could be dampened (unknown 

mechanism) allowing the mRNA to slide over the surface of the 40S subunit until the 

AUG enters the P-site. 

c) The presence of leaderless mRNA has been demonstrated in prokaryotes and in 

vitro systems in eukaryotes 180–182. It is also known that eukaryotic cells 
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contain a large pool of “empty” 80S monosomes that are biologically inactive 183. 

Direct loading of empty 80S particles that are devoid of eIFs can occur on the mRNA, 

i.e. then threaded through the ribosome until the AUG enters its P-site. 

 

One group of cellular mRNAs possess a short 5’TL with the presence of a TISU motif 

located downstream juxtaposition to the TSS 184. TISU element in mRNAs can control 

the initiation rates of both transcription and translation. The TISU motif comprises of 

the sequence SAASATGGCGGC in which S is C/G. mRNAs containing short 5’TL 

(< 12nt) in the presence of TISU elements was shown to facilitate translation initiation, 

rendered without the possibility of a scanning mechanism 185. TISU mRNAs are 

insensitive to eIF1A induced leaky scanning and remain unaffected by the inhibition 

of eIF4A helicase action 185. TISU translation was found to be strongly dependant on 

eIF1. eIF1/1B siRNA knockdown led to translation repression of TISU bearing 

reporter RNA 179. Translation of TISU mRNA is maintained during stress when 

canonical cap dependant translation ceases 179. However, the mechanism of TISU 

mRNA translation and its magnitude on regulating gene expression remains poorly 

understood. 
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Figure 1.6: Probable mechanisms in recognition of initiation codons proximal to 5’cap by the 

ribosome. a) During conventional scanning, the 43S PIC moves 5′–3′ on the mRNA until an initiation 

codon is positioned in the P-site. Various studies indicate that the 43S PIC pauses over an AUG start 

codon to establish contact with around 40nts of mRNA, 10 upstream nucleotides of which are in close 

contact with eIF3. Such a configuration is a probable explanation that AUG codons within the first 

20nts of most mammalian transcripts are poorly recognized by the ribosome. However, a few models 

can be predicted to explain the initiation events observed on mRNA carrying TISU elements which 

have 5′ TLs shorter than 10nts as follows (B) Model 1: The eIF4E/4G contact is destroyed permitting 

retrograde movement (3′–5′) of the PIC. (C) Model 2: The eIF4E-5′ cap interaction is perturbed upon 

allowing the mRNA to slide over the surface of the 43S ribosome until the AUG enters the P-site. (D) 

Model 3: Transcripts carrying 5′ TISU elements are selectively recruited to empty 80S ribosomes and 

then treaded through the mRNA channel until the AUG enters the P-site. This image is adapted from 
176. 
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Despite major advances in our understanding of various regulatory elements within 

the mammalian 5′ TL that modulate the translational efficiency, we are only beginning 

to appreciate the impact of transcriptional heterogeneity on this process. 

 

Translation initiation is considered to be the most regulated phase of the translational 

cycle 8. Translation initiation begins with the assembly of the 43S PIC and eIF4F 

complex loaded onto the 5’ terminus of the mRNA. eIF4E performs the first critical 

step of eIF4F function via its interaction with the 5’-cap of the mRNA 186. Biochemical 

and structural studies have elaborated the eIF4E-cap interaction 130,187–190. 

 

It was observed that the flexibility of the C-terminal loop of eIF4E is reduced upon 

complex formation with m7GpppA in-vitro 191, indicating that eIF4E can establish 

contact with the first cap-proximal nucleotide. 5’ cap proximal nucleotides that 

mediate RNA secondary structure does not inhibit the binding activity of eIF4E but 

influences the RNA exiting the eIF4E cap binding pocket in a translation inhibitory 

manner 192. Cap proximal nucleotides can mediate translation repression via RBPs 

when bound to structures located within ∼40 nucleotides of the cap supporting a steric 

mode of inhibition 193. Cross-linking assays have demonstrated cap-dependent 

interactions of eIF4B, eIF4H, and eIF3a with mRNA up to 52 nts downstream from 

the 5′ terminus 194. Although there have been various reports about the interactions of 

the various initiation factors with the 5’TL of mRNA molecules, the actual mechanism 

and magnitude by which cap-proximal nucleotides influence translation has not been 

investigated previously. 

 

RBNS (RNA Bind-n-Seq) is a method for comprehensive, quantitative mapping of 

RNA binding specificity 195. RBNS has been used to demonstrate RNA sequence 

preferences for a general initiation factor, which cells potentially exploit for 

translational control of specific mRNAs. This method has been modified for studying 

the binding affinities of yeast initiation factor eIF4G1 to yeast transcript leaders 

containing conserved oligo-uridine motifs 196. The binding affinities of initiation 

factors that may have a role in identifying cap proximal nucleotides of the mRNA 

have not been studied extensively in human cell lines. 

 

Selection of transcription start sites and alternate promoter usage is an important 

element of regulation of gene expression. However, little is known about the effects 
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of TSS and AP on translation. Tamarkin-Ben-Harush et al. showed that the ability of 

eIF4E to bind to capped mRNA with different +1 nucleotides that modulated with 

stress, with the lowest binding affinity observed for 5’ cytidine 197. However, in the 

control condition, there was no significant effect of initiating nucleotides on the 

translational response. 

 
Kozak postulated the scanning model for translation initiation where particular 

sequences immediately surrounding the AUG, especially those including a purine at 

position −3, enhance AUG selection by the scanning PIC for an optimum context, 

which in mammals is 5′-(A/G)NNAUGG-3′45,58,198. The influence of nucleotide 

context of start codons has various implications on translation efficiency warranted in 

many recent studies 59,199,200. Considering that nucleotide context in the start of a 

coding sequence can play an important role in determining the efficiency of 

translation, there is a possibility of sequence context in the cap proximal nucleotides 

of mRNA having a potential role in determining the rate of translation initiation. 
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2. Materials and Methods 
 

 

The methods section has been divided as follows: 

 

a) Section 2.1- 2.3 contains the methods involved in designing the experimental 

protocol for this work. 

b) Section 2.4-2.20 includes methods in the optimization and development of the 

protocol used for this work. 

c) Section 2.21- 2.28 contains the methods used for bioinformatic analysis of this 

work. 

 

All chemicals used are of molecular biology grade and were purchased from Sigma-

Aldrich unless described otherwise. Oligonucleotides were purchased from IDT 

(Integrated DNA Technology) unless described otherwise. 

 

 

 

2.1 RNA ligation of small molecules 
 

 

DNA oligos A and B used for RNA ligation were transcribed using T7 RibomaxTM 

express large-scale RNA production system (P1320, Promega). Oligo A and B were 

ligated in the ratio of 1:1 using T4 RNA ligase 1 using manufacturer’s instructions 

(NEB, M0437M). Bacterial RppH was used to dephosphorylate the 5’ ends of the 

RNA according to the manufacturer’s instructions (NEB, M03565). The secondary 

structure of RNA oligos was analysed using RNAfold software 201. The sequence 

of Oligo A and B are as follows: 

 

 

 

 

 
 
 
 
 

Oligo name Sequence (5’-3’) 
  

Oligo A attgggacaactgtgttcactagcaacc 
  

Oligo B attgggagtcagttcaacactagcaata 
  

Oligo C attgggacaactgtgaacactagcaata 
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2.2 RNA ligation of large molecules 
 

 

T4 RNA ligase was used as described previously 202 and reverse transcription (RT) 

primer was used to reverse transcribe the ligated product that was visualized in an 

8% denaturing PAGE UREA gel. 

 
 

 

2.3 Cleavage of RNA using RNase H 
 

 

RNase H was used according to manufacturer’s instructions (NEB, M0297S) in 

varying ratios of RNA: RNase H. Splint DNA was generated complimentary to the 

RNA molecule under consideration. 

 

 

 

2.4 Two step Polymerase Chain reaction for amplification of lnO 
 

 

Plasmid pGL3 (a kind donation from Dr. Dimitri Andreev) was used as a template 

for PCR amplification of the firefly luciferase gene. Primer sO was obtained from 

Trilink Technologies in triplicates (sO1, sO2, and sO3). 

 

The primers with the following sequences were used: 

 

 

A two-step PCR method was used to generate the lnO DNA template using primers 

a131, sO, and aFla50 and Phusion polymerase (NEB, M0530L) (Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

Primer name Sequence (5’-3’) 

sO cgccgtaatacgactcactatagnnnnnnnnnnacaactgtgttcactagcaa 

a131 ttttttttttttttttttttttttttttttttttttttttttttttttttaacttgtttattgcagcttataatgg 

aFla50 acaactgtgttcactagcaacctcaaacagacaccatggcctgcagggaagacgccaaaaacataaa 



 

38 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 2.1: Two-step PCR method for generation of the lnO template. A part of the pgl3 vector 

was amplified using an a131 primer and aFLA50 in PCR-1; sO, and aFLA50 in PCR-2 to incorporate 

E5S into the lnO template. 

 

 

 

 

 

 

 
Table 2.1: PCR conditions for Phusion PCR 

 

Component 50 µl Reaction Final 

Concentration 

 

Nuclease-free 

water 

32.5 µl   

5X Phusion HF 

Buffer 

 10 µl 1X 

10 mM dNTPs  1 µl 200 µM 

10µM Forward 

Primer (a132) 

2.5 µl 0.5 µM  

10µM Reverse 

Primer (aFla50) 

2.5 µl 0.5 µM  

Template DNA 

(pGL3 vector) 

1 µl 20ng  

Phusion DNA 0.5 µl 1.0 units/50 µl 

PCR 
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Table 2.2: PCR conditions for producing lnO DNA 

 

 

STEP  TEMP TIME 

    

Initial Denaturation  98°C 30 seconds 

    

30 Cycles  98°C 10seconds 

  65°C 30seconds 

  72°C 30 seconds per kb 

    

Final Extension  72°C 10 minutes 

    

Hold  4°C  

    

 

 

 

PCR-2 incorporates sO into the lnO DNA template to include a T7 promoter and the 

random region (N=10) sequence. The reaction components of the PCR reaction were 

set up as in table 2.3. The thermo-cycling conditions were as follows: 

 

 

 
Table 2.3: Thermo cycling conditions for PCR2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STEP TEMP TIME λ (°C/s) 

    

Initial Denaturation 98°C 30 seconds 3 

    

15 Cycles 98°C 10 seconds 2.2 

 65°C 30 seconds 2.2 

 72°C 30 seconds 2.2 

    

Final Extension 72°C 10 minutes 3 

    

Hold 4°C   
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2.5 Taq Polymerase extension 
 

 

sO was annealed and extended to its complement (RVG_long) to form sOBG using 

an annealing mix of 10 µM forward primer (sO), 10 µM reverse primer (RVG_long) 

and 4 µl of 0.2 M Tris HCl at pH=7.5. 

 

Primer 

name 

Sequence (5’-3’) 

sO cgccgtaatacgactcactatagnnnnnnnnnnacaactgtgttcact

agcaa 

RVG_l

ong 

tatgtttttggcgtcttccctgcaggccatggtgtctgtttgaggttgctagtg

aacacagttgt 

 

 

Table 2.4: Optimal set-up condition for taq polymerase reaction 

 

TEMPERATUR

E TIME 
  

95°C 

5 

minutes 
  

70°C 

11 

minutes 
  

37°C 

5 

minutes 
  

 

 

40 µl of the above annealing mix was added to the extension mix comprising of 40 

ul of 5x superscript 3 buffer, 10 µl of 0.1 M DTT,8 µl dNTPs (10mM each), 3 µl of 

SuperScript™ III Reverse Transcriptase and 99 µl of water. The extension and 

annealing mixes were resuspended thoroughly and left at 37°C for 45 minutes and 

purified using isopropanol extraction. 

 

2.6 In vitro Transcription (IVT) 
 

RNA was transcribed using the manufacturer’s protocol from AmpliScribe™ T7 High 

Yield Transcription Kit (Epicentre, AS3107) using 1 µg of DNA as a template. 
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2.7 RNA purification 
 

RNA was purified according to the manufacturer’s protocol using the Zymo research 

RNA clean and concentrator kit (Zymo research, R1015). The quality of RNA was 

verified on a 7.5 % PAGE-urea gel with recipe described in Table 2.6. 

 

 

Table 2.5: Recipe for 7.5% PAGE urea gel 

40% acrylamide/bis-acrylamide (19:1) 2.82 ml 
  

Urea 7.2 g 
  

10X TBE 1.5 ml 
  

Water 4.72 ml 
  

37°C to dissolve then filter before adding  
  

10% APS (ammonium persulfate) 37.5 μl 
  

TEMED 7.5 μl 
  

final volume 15 ml 
  

 

 

 

2.8 Capping of RNA 
 

RNA was capped using the manufacturer’s protocol from ScriptCap™ Capping 

Enzyme (Cellscript, C-SCCE0610). 

 

2.9 RNA transfections 
 

 

HEK293T cells were plated at 40-45% confluence in a 15cm dish. After 12 hours, the 

media was changed. A transfection mix containing 30-40 µg RNA/ 15 cm dish, 100 

µl of Lipofectamine 2000 and 3.8 ml of DMEM was mixed in an RNase free tube and 

incubated at room temperature for 20 minutes. The transfection mix was added to the 

cells. The cells were kept at 37◦C in a HEPA filter CO2 incubator for 2 hours. Cells 

were then lysed, and transfection efficiency was measured using a reporter assay. 
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2.10 Cell lysis 
 

Polysome lysis buffer (PLB) was made with the following components: 20mM Tris 

HCl, 250mM NaCl, 1.5 mM MgCl2, 1mM DTT and 0.5% Triton-X 100. To 1 ml of 

PLB, 1µl of cyclohexamide (100mg/ml) and 10 µl of TURBO DNase was added. 

HEK293T cells were taken from the incubator. The media was aspirated from the 15 

cm plate and washed with cold Phosphate Buffer Saline (PBS) containing 

cyclohexamide (100mg/ml) followed by the addition of 400 µl of PLB after thorough 

scraping of the cells from the surface of the dish. The collected cell lysate was added 

to a 1.5ml RNase free tube and left on ice for 10 minutes followed by centrifugation 

at 18000 g for 10 minutes. The supernatant was collected and used for the consequent 

steps. 30 µl of the lysate was used to measure the transfection efficiency (in triplicates) 

using the reporter luciferase assay 59. 

 

2.11 Luciferase assay 
 

 

The firefly luciferase activity was determined using the Luciferase Stop & Glo® 

Reporter Assay System (Promega). Relative light units were measured on a Veritas 

Microplate Luminometer (Turner Biosystems). The light units in triplicates were 

measured and standard error bars were plotted using the Graphpad Prism software. 

 

2.12 Sucrose gradients preparation 
 

Sucrose gradients of 60% and 10 % density were prepared respectively comprising of 

20 mM Tris-HCl (pH 7.5), 250 mM NaCl, 15 mM MgCl2, 1mM DTT and 100mg/mL 

cyclohexamide. Approximately 5.5 ml of 10% sucrose was slowly layered onto the 

same volume of 60% sucrose in a Beckman centrifuge tube (Beckman Coulter, 

331372). The gradient tubes were sealed using a parafilm and slowly placed 

horizontally for 4 hours to allow spontaneous gradient formation. This was followed 

by carefully and slowly inverting the tube to a vertical position without disturbing the 

gradient. The cell lysate was loaded onto the gradient and centrifuged at 35,000 g for 

3 hours at 4 ° C using an ultracentrifuge (Beckman, Optima XE-100k). 
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2.13 Polysome fractionation 

 
 

The fraction collector was carefully washed with RNase free water. A UV lamp was 

switched on and allowed to warm up. The tubes were removed from the rotor and 

placed on ice. The pump was set to 6ml/min and the tube was filled with chasing 

solution (60% (w/v) caesium chloride containing 0.02% bromophenol (w/v). It was 

ensured that there were no bubbles introduced into the pump syringe or tubing. A 

Tracer DAQ analysis program was launched. Settings used by Gandin et al 
203

 were 

used to obtain the digital polysome profile. The pump was set to collect fractions at 

1.5ml/min. The pump was put to a remote position, then the pump and fraction 

collector was started. The fractions were collected in a 96 well UV plate every 11 

seconds (~250 µl). At the same time, the DAQ tracer was switched on and an upward 

displacement of the gradients was started along with simultaneous detection of UV 

absorbance at 254nm. The settings on the DAQ tracer were as per the Gandin et al. 

protocol 
203

. When the first drop of chasing solution came out, the fraction collection 

was stopped. The polysome trace was saved in .csv format. The values corresponding 

to channel 0 (corresponding to 254nm absorbance) were selected and plotted as a 

scatter plot. 

 

 

2.14 RNA extraction 

Total RNA was isolated from 15 cm plates using manufacturer’s protocol for TRIZOL 

LS (Invitrogen™, 10296028). The Trizol method was the preferred method for RNA 

extraction 
204

 from sucrose fractions. The fractions were separated based on their 

absorbance values into monosome fraction, light fraction and heavy fraction 

respectively where, Light (2-5 ribosomes) and heavy (>5 ribosomes) respectively. 

Equal amounts of polysome fractions were flash frozen with equal amounts of Trizol 

LS. RNA was extracted as per the manufacturer’s protocol and precipitated using 

isopropanol precipitation. 

 

2.15 Isopropanol precipitation 

The sample to be isolated was precipitated with 10% volume of sodium acetate, 1.5 

µl of glycoblue (Ambion, AM9515) and 1-1.5 volumes of isopropanol and left at -

80°C 
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for 1 hour. This mixture was centrifuged at 12000 g for 20 minutes followed by an 

ethanol wash of 500 µl of 80% ethanol centrifuged at 12000 g for 20 minutes. The 

resulting precipitate was eluted in water to the desired volume. 

 

2.16 Poly A purification 

 

mRNA was obtained from the total RNA fraction using Purist poly A Mag kit 

(Ambion™, AM1922) following the manufacturer's protocol. The percentage of 

mRNA obtained varied from 0.7-1% of the total RNA extracted. 

 

2.17 Reverse Transcription (RT) 

 

RNA was purified by phenol-chloroform extraction, re-suspended in 10 µl of water 

and 2 µl of reverse transcription primer (RT_primer or RT_primer_modified) was 

added. This premix was denatured at 80°C for 2 minutes and then placed on ice for 2 

minutes. The RT reaction was set up as tabulated in table 2.7 below and incubated for 

30 min at 48 °C in a thermal cycler: 

 

Table 2.6: Reaction set up for the reverse transcription reaction 

 

Component Amount per reaction (μl) Final 
   

Ligation and primer 12.0  
   

First-strand buffer (5×) 4.0 1× 
   

dNTPs (10 mM) 1.0 0.5 mM 
   

DTT (0.1 M) 1.0 5 mM 
   

SUPERase·In (20 U μl
−1

) 1.0 20 U 

SuperScript III (200 U μl
−1

) 1.0 200 U 

 
 

 

The RT reaction mixture was incubated at 48°C for 30 minutes and RNA was 

hydrolysed at 95 °C for 20 minutes. The reaction was transferred to a 1.5 mL tube 

with 156 µl water, 20 µl sodium acetate (3M, pH 5.5), 2 µl glycoblue and 300 µl 

isopropanol was added to precipitate the cDNA. 
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RT_primer: 

5’Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTG 

 

GTCGC/iSp18/CACTCA/iSp18/TTCAGACGTGTGCTCTTCCGATCTAGTTTGA 

 

GGTTGCTAGTGAAC3’ 

 

RT_primer_modified: 

 

5’/5Phos/AGANNNNAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGA 

 

TCTCGGTGGTCGC/iSp18/CACTCA/iSp18/TTCAGACGTGTGCTCTTCCGATC 

 

TAGTTTGAGGTTGCTAGTGAAC3’ 

 

Post precipitation, the product was dissolved in 10 µl of water and mixed with 3X 

RNA loading dye. The purified cDNA was visualized on a 7.5% PAGE urea gel 

prepared according to the following recipe: 

 

Table 2.7:7.5% urea TBE gel 

40% acrylamide/bis-acrylamide (19:1) 2.82 ml 

  

Urea 7.2 g 

  

10X TBE 1.5 ml 

  

Water 4.72 ml 

  

37°C to dissolve then filter before adding  

  

10% APS (ammonium persulfate) 37.5 μl 

  

TEMED 7.5 μl 

  

 

Once the gel was set, the gel was pre-run at 15mA for 30 minutes. The samples were 

mixed in 3X loading dye and heated at 80°C for 2 minutes followed by 2 minutes on 

ice and sample loading on the PAGE-UREA gel. The control RT sample contained 

2.0 μl of reverse-transcription primer (1.25 μM), 8 μl of water and 3X RNA loading 
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dye. The gel was run at 15 mA (~ 300V) for 60-70 min to separate the non-extended 

primer from the RT product. The gel was visualized using SYBR gold in 10X TBE 

buffer under blue light. 

 

The RT product band was purified from the denaturing gel using 600 µl of DNA 

extraction buffer (300 mM NaCl, 10 mM Tris (pH 8) and 1 mM EDTA) and left at 

room temperature in a nutator overnight. On the following day, cDNA was 

precipitated from the extraction buffer using isopropanol extraction and DNA was 

eluted in 16.5 µl of water as described previously. 

 

2.18 Circularization 

RT sample was taken and circularized using the reaction components that were added 

as follows: 2 µl of CircLigase buffer (10x), 1 µl of MnCl2 and 1 µl of CircLigase II. 

The reaction was set at 60°C for 2 hours followed by a denaturation step at 80°C for 

10 minutes. The circularized DNA was purified using isopropanol precipitation as 

described previously and re-suspended in 10 µl of water. 

 

2.19 Library Preparation 

DNA libraries were amplified by Phusion polymerase PCR suitable for HiSeq3000. 

Circularized DNA was used as a template along with standard forward and reverse 

Illumina sequencing primers (Table 2.7). A trial PCR was performed to find the 

optimal number of PCR cycles required for each sample for a 20 µl reaction using the 

setup shown in table 2.9. 

 

Forward primer: 5′-AATGATACGGCGACCACCGAGATCTACAC-3′ 

Indexed reverse library PCR primers: 

 

5′-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGA 

CG TGTGCTCTTCCG-3′ (The underlined NNNNNN indicates the reverse 

complement of the index sequence used during Illumina sequencing shown in table 

2.9). 

PCR cycles were optimised for 6-18 cycles to obtain the ideal amount of PCR product 

required for Illumina sequencing 
205

. 
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Table 2.8: Reverse NGS primers used for library preparation 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forward index Indexed reverse library PCR primer (5′→3′) 

(5′→3′)  
  

ACGACT CAAGCAGAAGACGGCATACGAGATAGTCGTGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

GCAGCT CAAGCAGAAGACGGCATACGAGATAGCTGCGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

TACGAT CAAGCAGAAGACGGCATACGAGATATCGTAGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

GCTACG CAAGCAGAAGACGGCATACGAGATCGTAGCGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

ATCACG CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

CGATGT CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

TTAGGC CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

TGACCA CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

ACAGTG CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

GCCAAT CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

CAGATC CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

ACTTGA CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

GATCAG CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

TAGCTT CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

GGCTAC CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
  

CTTGTA CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAG 

 TTCAGACGTGTGCTCTTCCG 
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Table 2.9: PCR for library amplification of circularized DNA 

 

Initial denaturation 98°C 30 seconds 

   

Cycle 2-24 98°C 10 seconds 

 65°C 10 seconds 

 72°C  

  5 seconds 

   

Final elongation 72°C 5 seconds 
   

Ramping ∆Ct 2.2°C/sec for each step  
 

 

The ramping temperature is crucial in avoiding biases in the PCR reactions 206. The 

PCR products were visualized on an 8 % PAGE gel using SYBR gold in 10XTBE 

buffer and viewed under blue light. The recipe for 8% PAGE gel is as follows: 

 

 

Table 2.10 : Recipe to make 8% PAGE gel 

 
 
 
 
 

 

 

 

 

 

The amplified DNA products were separated from the control library on an 8% PAGE 

gel. The DNA libraries were extracted from the gel using a DNA extraction buffer 

overnight and precipitated using isopropanol extraction with 2 µl of glycoblue and 

dissolved in 10 µl of water. The quality of the PCR products was verified on an 8% 

PAGE gel and the quantity was measured on The Agilent 2100 Bioanalyzer as per 

manufacturer’s instructions using the Agilent DNA 1000 Kit. The samples were sent 

for next generation sequencing (NGS) to BGI, Hong Kong. 

 

10X TBE solution 500μl 
  

19:1 acrylamide: bisacrylamide solution (40%) 1 ml 
  

water 3.5 ml 
  

TEMED 10 μl 
  

Ammonium Persulfate (10% w/v) (APS) 35 μl 
  

final volume 5ml 
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2.20 Candidate confirmation 

 
Candidates were selected based on their TIRES (Methods, 2.24). The candidate oligos 

were incorporated on the lnO DNA template replacing the (NNNNNNNNNN) 

sequence and amplified using Phusion polymerase. The lnO DNA template was 

transcribed, capped and transfected into HEK293T cells for 2 hours. The firefly 

luciferase activities were measured on a Veritas Microplate Luminometer (Turner 

Biosystems). Standard error and mean were calculated for triplicates of individual 

candidates. 

 

Bioinformatics analyses 

 

2.21 Clipping of identifier sequence 
 

The raw data was available in a FASTQ format (The FASTQ format). We began the 

bioinformatics analyses by using the Cutadapt tool 208 in order to remove the 

identifier sequence ACAACTGTGTTCACTAGCAACCTCA from all reads. This 

was adequate for most of the duplicates and it produced sequences that were either of 

the expected read length or one nucleotide longer. Cutadapt failed to successfully clip 

three datasets owing to poor sequence quality at the 3' ends of the read. Therefore, a 

custom script was written to count the number of occurrences of every permutation. 

These permutations were included in our analysis if they passed the following: 

 

All nucleotides in the random region were annotated as a base (A, C, T or G). Those 

denoted with an N were discarded. 

 

The random region (length=10nt) was in the expected location of either positions 9 to 

18 or 10 to 19 in the FastQ read. 

 

For reads that were not successfully trimmed with Cutadapt, the nucleotides following 

the random region must be ACA, representing the start of the HBB TL sequence. 
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2.22 Aggregation of datasets 
 

 

The total number of reads obtained in each library was calculated. As the number of 

reads obtained from datasets PR2-2 and TR2-2 was particularly low, they were 

aggregated with PR2-1 and TR2-1 respectively. 

 
 

2.23 UMI correction 
 

 

Unique molecular identifiers (UMIs) are short sequences or "barcodes" added to each 

reading in NGS protocols. They serve to reduce the quantitative bias introduced by 

additional PCR cycles. UMIs were incorporated in the RT_primer_modified to 

remove sequences that are likely to represent duplicates generated by the library 

construction PCR. When multiple sequences with the same nucleotide identity share 

the same extended UMI, one sequence is selected arbitrarily, and the others discarded 

using a custom script. 

 

2.24 Calculation of TIRES and TIRESG values 

 
Owing to differences in the level of sequencing depth, the polysomal reads selected 

to total RNA reads (PR/TR) ratios of every motif present in the libraries were 

produced from rescaled read counts, as described below: 
 

a) The TIRES ratio of every motif present in the five samples (1-1, 1-2, 2, 3-1 and 

3-2 respectively) was calculated using the formula: 

 

 
 

Where Ijk is TIRES of an N-nucleotide long variant j from the set of 4
n
 random 

variants J calculated for the data obtained in the sample k (1-1, 1-2, 2, 3-1 or 3-2). P 

and T are the number of reads from PR and TR libraries, respectively. 
 

The maximum effect of TIRESG on E5S was seen at N=8nt and is maintained 

consistently in this work unless mentioned otherwise. 
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b) TIRESG was computed as the geometric mean of TIR ratio of every motif 

present in the five libraries 1-1, 1-2, 2, 3-1 and 3-2 respectively. 

 

2.25 Analysis of the NanoCAGE dataset 

 
 

The NanoCAGE dataset was downloaded from86 and the sequences of transcripts 

isolated from polysomes was extracted. The data were processed using custom python 

scripts and plotted using tools from the Microsoft Office suite. 

 

2.26 Sequence logo 
 

The WebLogo3 software suite using custom settings was used to create sequence 

logos (http://WebLogo.threeplusone.com/create.cgi). 

 

2.27 CAGE data analysis 
 

The CAGEr package was used to extract clusters. Clusters were linked to gene names 

by finding the closest annotated coding gene downstream. If there was no gene 

downstream within 51,884 nucleotides the cluster was discarded, this limit was chosen 

as 95% of annotated TSS's are less than this distance from the annotated coding start. 

In the case of a gene with multiple clusters, the cluster with the highest read count was 

chosen. 

 

2.28 Ribosome occupancy in HEK293T cells 

 
 

Data for the studies (control condition) from Andreev et al and Sidrauski et al was 

processed using the RiboGalaxy platform 68,209,210. RiboGalaxy uses the Galaxy8 

framework for the pre-processing, alignment and analysis pipelines. Custom python 

scripts were used to calculate the TE values as the ratio of the ribo-seq counts against 

the RNA counts. The TE values are indicative of the ribosome occupancy on a 
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transcript. The sequence for each transcript containing a TE value was obtained using 

the CAGE data (HEK293T cells). The first 11 nucleotides were isolated for each 

transcript. The TIRESG for each of these motifs was obtained. 
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3. Results 
 

 

Aim 

 

The impact of 5’TL on translation efficiency is sanguine, the influence of cap proximal 

mRNA nucleotides on translation at a systems level has not been addressed previously. 

This question becomes important in the context of TSS heterogeneity, thus making 

possible that mRNA leaders that differ only in a few nucleotides may possibly have 

different TEs. 

 

To understand the effects of cap proximal nucleotides in the 5’TL, it is important to 

consider the first few nucleotides in the 5’TL and examine their effects on translation. 

To understand the effect of each nucleotide on a certain position in the cap proximal 

nucleotides of 5’TL, it was essential to randomize the region of 5’TL under 

consideration. In this work, cap proximal nucleotides were randomised upto a length of 

10 nts referred to as Early 5’ Sequence (E5S) and variations in this sequence context 

could potentially influence the rate of translation initiation. Although the information 

available would not directly give us information about the translation initiation rate, it 

would help us understand a significant statistic influencing the rate of translation 

initiation called TIRES (Translation Initiation Rate Enrichment Statistic). The aim of 

this work was to explore the effect of E5S on the TIRES by: 

 

a) Creating a library of molecules including all possible E5S variations and 

 

b) Monitoring the changes in translation initiation rate enrichment statistic 

(TIRES) across all possible E5Ss. 
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Experimental considerations 

 

I. Library size and string length preferences for E5S 

 

The library of molecules generated to study the effects of E5S on TIRES was achieved 

by a randomization strategy. Each position along E5C has one of four nucleotides, 

making the number of possible variants 4n where n is the nucleotide string length. As 

the desired library comprised of a string length of 10nt, it contains 410 variants i.e. 

1048576. The string length of 10 as E5S was chosen due to the following 

considerations: 

 

1) The optimal start codon context preferences for translation initiation postulated 

by Kozak spans a 7nt sequence from -3 to +4 positions surrounding the AUG start 

codon. A string length of 7 nts was considered as the minimal size and 3 additional nts 

were added for the extra scope. 

 

2) The longer the sequence length, the higher the possibility of a secondary 

structure. However, the probability of having a stable secondary structure with 10 

nucleotides is low, therefore, any structural impediments occurring in the translational 

efficiency can be ruled out. The E5S downstream sequence was also kept devoid of 

high GC content to avoid the possibility of secondary structures. 

 

3) The cap proximal nucleotides of RNA could potentially include a motif for 

RBPs which might influence TIRES. The RNA binding motifs for different RBPs in 24 

diverse eukaryotes have been described by 211. In 102 cases identified in humans, the 

RNA binding motifs had an average length of ~5-8nt. If the change in TIRES mediated 

by E5S was due to an RBP, a minimum string length of 10nt should be enough to cover 

the majority of the RBP consensus binding motifs. 

 

II. Design of control and reporter constructs 

Two DNA constructs were generated. The first construct called short oligo (sO) was 

chemically synthesized by Trilink technologies. The second construct, Long oligo (lnO) 

was generated by a two-step PCR approach. 
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 III. Architecture of sO 

 

sO, consisted of a T7 promoter followed by 10 random nucleotides (N) and the 5’ 

transcript leader of the human β globin gene (HBB) (NCBI Gene ID: 3043). Certain 

design considerations outlined below were kept in mind while designing the short oligo. 

 

a) T7 promoter 

 

T7 and SP6 are DNA dependent RNA polymerases that produce RNA transcripts from 

a DNA template, exhibiting high specificity for their respective promoters 212. T7 RNA 

polymerase is highly specific in recognising the T7 promoter sequence 

(TAATACGACTCACTATA) 213. It also requires a double stranded DNA template 

and Mg2+ ion as a cofactor for the synthesis of RNA 214. The T7 promoter was chosen 

as: a) the tools available for in vitro transcription (IVT) from the T7 promoter are well 

developed and robust and b) a wide range of high quality T7 RNA polymerase based in 

vitro transcription (IVT) kits are available having the capacity to produce large amounts 

of RNA in a short duration of time (30-60 minutes). 

 

b) Synthesis of random nucleotide (N=10) string in sO 

 

sO was generated in triplicate (sO1, sO2, and sO3) by Trilink technologies using 

chemical synthesis techniques. Essentially, a DNA string was synthesized containing 

10nts distributed equally were (N=A, C, G, and T) inserted at each position. Quality 

control of the sO was analysed using mass spectrometric analysis by Trilink and found 

to be within the acceptable wobble range (range not shown in the QC sheets) (“TriLink 

| Long RNA Synthesis, Longmer RNA,”). 

 

Quality control details of the sOs generated by Trilink technologies are outlined in 

Appendix Table 1. 

 

 

c) 5’ transcript leader (TL) of HBB 

 

The E5S (randomized) was synthesised on to the 5’ end of a pre-existing 20nt sequence 

from the TL of the HBB. This was extended on an overlapping complementary 35nt 

oligonucleotide region from the HBB using SuperScript™ III Reverse Transcriptase to 
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generate the final 45bp double stranded sOBG (sO-beta globin TL) containing the E5S 

and 35 bases of the TL immediately upstream of the AUG start codon of the HBB gene. 

The HBB 5’TL was chosen due to the following reasons: 

1) HBB is highly expressed and translated in many human cell lines. 

 

2) The 5’TL of HBB was analysed using Oligo Calculator (NEB) tool and stable 

secondary structures (ΔG (kcal. mole-1> -9) were absent. 

 

IV. The architecture of long oligo (lnO) 

 

To facilitate the use of sOBG in downstream experiments, the addition of a reporter 

gene was necessary. Reporters can be i) readily assayed after transfection, ii) used as 

markers for screening successfully transfected cells, iii) used for studying the regulation 

of gene expression and iv) can serve as controls for standardizing transfection. 

Luciferase assay is the preferred reporter assay system due to its broad dynamic range, 

high sensitivity, and easy use. 

 

For the generation of the lnO, the coding sequence (CDS) and 3’UTR of firefly 

luciferase (Fluc) were amplified from the modified pGL3 vector and a 50 nts polyA tail 

was added using an appropriately designed primer. The start codon of the firefly 

luciferase was designed in an optimal Kozak context for a) optimal protein production 

and b) to avoid products of leaky scanning as a result of a poor start codon context 

216,217. The poly A tail protects the mRNA molecule from enzymatic degradation in 

the cytoplasm, and aids in transcription termination, export of the mRNA from the 

nucleus, and translation 218. sOBG was then amplified with the reporter gene as 

outlined in the methods to generate the lnO shown in Figure 2.1. LnO was used as a 

standard construct for IVT of RNA used in all downstream experiments described in 

this thesis unless otherwise mentioned. 

 

V. Transfecting mRNA into cells for protein production 

 

HEK293T cells were the preferred choice of cell line due to reliable growth rates, 

propensity for transfection and general robustness. DNA transfection is considered a 

robust way to initiate protein production in cells and is less technically demanding with 

respect to creating a target mRNA library. When DNA is transfected into cells, both 

transcription and translation biases can occur. However, with mRNA transfection, 
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biases resulting from transcription are eliminated as the mRNA is directly provided to 

the cells. In addition, mRNA transfections are reliable and easily quantifiable. Hence, 

mRNA transfections were chosen as the method of introducing the target lnO library in 

HEK cells. 

 

VI. Choice of a method to study mRNA libraries that are highly translated 

 

Various techniques can be used to study mRNAs that are highly-translated: 

 

1) Polysome profiling uses sucrose gradients to separate highly translating mRNA 

population from untranslated ones 20,203. 

2) Ribosome profiling measures the translation of ribosome protected fragments 

by deep sequencing 8. Using this technique, the position of the ribosome at codon 

resolution can be determined to allow discoveries of new coding transcripts and protein 

isoforms as well as accurate measurement of translation rates 219. 

3) Translating ribosome affinity purification (TRAP) is a technique used to analyse 

cell specific translation responses. TRAP involves the generation of engineered cells 

that express a tagged ribosomal protein in-vivo under a tissue specific promoter. These 

tagged ribosomes are then purified, and associated mRNAs are identified by microarray 

or deep sequencing 5. 

 

Identification of elements in the 5’TL corresponding to translated mRNA isoforms is 

essential for the analysis of gene expression regulation 220. Polysome profiling 

provides access to the full-length translated mRNAs including the untranslated regions 

(UTRs). In contrast, ribosome profiling can map ribosome protected fragments only to 

coding sequences. Hence, polysome profiling was chosen to study highly-translating 

mRNA populations in E5S libraries. 

3.1 Library requirement to study the effect of E5S on TIRES 
 

A number of next generation sequencing libraries were used in this work (n=18). These 

libraries account for differences caused by technical variation across samples and 

account for biases that may be introduced by the experimental protocol adopted to study 

the effect of E5C on TIRES. Below is a general summary of the various indexes and 

library names that is used constantly throughout this thesis: 
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1) The sOBG library is a control library obtained from the taq extension of the 

synthetic oligo (sO) generated from the commercial provider, Trilink. sO was obtained 

in triplicate namely sO (1-3) to account for any biases in the chemical synthesis of the 

random sO oligo. sO was extended to form sOBG (1-3) to form three libraries. 

 

2) The lnO library is obtained upon the addition of the 5’TL of HBB and 

CDS+3’UTR of the luciferase reporter to sOBG. sOBG (1-3) generated lnO (1-3). lnO 

control library was generated to account for any PCR biases generated in the PCR 

approach used for lnO generation. There are three lnO libraries in total. 

 

3) Total RNA (TR) libraries were generated when lnO (1-3) were transfected into 

HEK293T cells in duplicates. Cell lysates were collected 2 hours post transfection to 

isolate total RNA to represent the original control library. There are six libraries in total 

from lnO (1-3) in duplicates leading to TR1-1, TR1-2, TR2-1, TR2-2, TR3-1, and TR3-

2. 

 

4) Polysomal RNA (PR) libraries were generated when lnO (1-3) was transfected 

into HEK293T cells in duplicates. Cell lysates were collected 2 hours post transfection 

and loaded on a sucrose gradient to isolate (actively translating) polysomal RNA. There 

are six libraries in total from lnO (1-3) in duplicates leading to PR1-1, PR1-2, PR2-1, 

PR2-2, PR3-1, and PR3-2. 

 

5) Translation Initiation Rate Enrichment Statistic (TIRES) of each library 

was calculated as shown in the methods (Methods, 2.26) representing the ratios of 

TR/PR, to form six libraries in total as 1-1, 1-2, 2-1, 2-2, 3-1 and 3-2 respectively. 

  

Overview of possible experimental designs 

 

3.2 Production of the target E5S RNA library 
 

The primary aim of this work was to create a library of molecules including all possible 

E5S variations (410). Different approaches were used to produce the target RNA 

library. One of the simplest methods considered was the use of chemically synthesized 

RNA. However, chemical synthesis of RNA is restricted to sizes of 50-100 nts 221, 

considered too small for the experimental approach used here. 
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Bacteriophage polymerases such as T7, SP6 and T3 available commercially were used 

for the transcription of long RNA molecules. These RNA polymerases preferentially 

initiate RNA synthesis with 1-3 guanine (G) residues (Trilink | Long RNA Synthesis, 

Longmer RNA). Robust kits are also available commercially for the same purpose and 

were used. 

 

The T7 RNA polymerase consensus sequence in the T7 promoter contains a G, GG or 

GGG at its 3’ end. The 5’ end of the T7 transcribed mRNA always contains a G at the 

+1 position which is a critical part of the T7 promoter 213. Thus, all T7 mRNAs in the 

RNA library start with a G at +1 position. 

 

We aimed to create an RNA library starting with a random nucleotide containing the 

E5S, following the 5’cap. It was, therefore, essential to remove the +1G generated from 

T7 IVT. Modified T7 promoters without guanines at positions +1, +2, and +3 were 

tested for in vitro synthesis of mRNA from the DNA template. T7 polymerase did not 

support the IVT of RNA in the absence of G at +1. The presence of G at the +2 and +3 

positions of the 5’ mRNA terminus improved efficiencies of in vitro RNA production, 

but their absence was permissive to T7 polymerase mediated RNA production (data not 

shown). Therefore, the removal of +1G from IVT RNA was considered using the 

following approaches: a) Ligation of a chemically synthesised RNA molecule 

containing random nucleotides (N=10) onto the luciferase reporter RNA, b) Cleavage 

of the +1G using RNase H and c) Cleavage of the +1G using a self-cleaving enzyme 

such as hammerhead ribozyme. 

 

a) Using an RNA ligation method to generate the target E5S library 

 

T4 ssRNA ligase 1 catalyses the ligation of 5’ phosphoryl terminated nucleic acid to a 

3’ hydroxyl terminated nucleic acid using single stranded RNA molecules as 

substrates222–224. For an in vitro transcript that contains a 5’ triphosphate, 

dephosphorylation of RNA molecules using RNA 5´ pyrophosphohydrolase will 

generate a 5´ monophosphate 225. To produce the target mRNA E5S library containing 

+1N (Nϵ(A,C,T,G) ) juxtaposition to the cap, the first approach considered was the 

ligation of a chemically synthesised RNA molecule containing E5S onto an in vitro 

synthesised luciferase reporter RNA. 
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Preliminary experiments were performed to estimate the efficiency of ligation in 

different conditions (Figure 3.1a and b). When two RNA oligos of different nucleotide 

compositions were ligated under standard conditions, the ligation reaction was 

successful but with low product yield (Figure 3.1 a). A similar result was seen when 

homologous (same nucleotide composition and size) RNA oligos were ligated using a 

standard ligation protocol in Figure 3.1b. It was observed that in the absence of a 

dephosphorylated in vitro transcript, the ligation reaction did not occur (Figure 3.1b). 

 

To test the efficiency of ligation of a small molecule (oligo A) and a long reporter 

molecule, the long molecule was dephosphorylated, and standard T4 ssRNA ligase 

ligation conditions were used as recommended by the manufacturer. As the difference 

between the short and long RNA molecule was minimal (28nt), it was not possible to 

visualize the products of the ligation reaction using a denaturing PAGE urea gel. 

Therefore, the ligation products were reverse transcribed and amplified for 20 cycles 

using Phusion polymerase. A successful PCR product indicated successful ligation of 

long and short RNA molecules. Figure 3.1c shows that the ligation of short and long 

RNA molecules was unsuccessful. This is likely due to inefficient dephosphorylation 

of the long reporter molecule. 
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a)                                                                    b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) 
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Figure 3.1: Analysis of ligation efficiency of in vitro transcribed RNA fragments using T4 ssRNA 

ligase 1.RNA ligations were performed on in vitro transcribed RNA molecules as described in the 

methods (2.3) and visualized using 15% PAGE urea gel stained using 2% SYBR gold. a) Left lane, RNA 

marker (sizes 20-100 bp); lane 1, RNA Oligo A; lane 2, dephosphorylated RNA Oligo B; lane 3, RNA 

Oligo A and dephosphorylated RNA oligo B ligated using T4 ssRNA ligase 1, b) Incubation of oligo C 

(30nt) with T4 ssRNA ligase1.Lane1, oligo C capped and oligo C (dephosphorylated with 

5’pyrophosphohydrolyase) ligated using T4 ssRNA ligase 1; Lane 2, control (ligase only, no oligos); 

lane 3, control (oligos only, no ligase); lane 4, capped oligo C and oligo C incubated with T4 ssRNA 

ligase1. c) ligation of short (oligo A) and dephosphorylated long reporter RNA molecules (luciferase) 

that were reverse transcribed, amplified at 20 cycles using Phusion polymerase and visualized on a 8% 

PAGE gel stained using 2% SYBR gold where Lane1, low ssRNA marker; Lane 2: short+ long RNA 

without T4 ssRNA ligase 1; lane 3: short+ long RNA with T4 ssRNA ligase 1; Lane 4: Amplified control 

oligo (oligo A plus a 20nt long 5’TL of luciferase oligo). 
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The small molecules were ligated (Figure 3.1a and b) under standard conditions 

recommended as per manufacturer’s instructions, but the efficiency of ligation was 

observed ~ <25%. Dephosphorylation of the RNA oligo 5’ end is required for 

successful RNA ligation. The ligation of a short oligo to a luciferase reporter RNA 

was not detectable by PCR (Figure 3.1c). Unsuccessful dephosphorylation of the 

luciferase reporter mRNA (~1950nt long) may have contributed to the inefficiency of 

ligation. Consistent with this, Dr. Stephen Rader 202 (personal communication) 

observed similar limitations with long oligos. 

 

Splint ligation of RNA was considered. Using this method, specific RNA molecules 

are ligated together using T4 DNA ligase and a bridging DNA oligo complementary 

to the RNAs226. Stark et al employed a splint ligation strategy for RNA molecules of 

lengths 100-120nt 227. Various attempts were made to optimise this method including 

changing the lengths of splint DNA molecules from 18nt to 25nt, however, this did 

not improve the ligation of long RNA molecules, and this strategy was unsuccessful 

(data not shown). Although the ligation of small RNA molecules is well studied, there 

are few studies addressing the ligation of long RNA molecules. It is not clear why the 

ligation reaction in this study was problematic, and unsuccessful ligation of small and 

long RNA molecules created a considerable challenge. As a result, various alternative 

strategies were tested to cleave the +1G produced during in vitro transcription of the 

lnO RNA. 

 

 

b) Removal of +1G from in vitro transcribed mRNA using a site-specific 

cleavage reaction 

 

To obtain the lnO RNA library comprising of homogenous +1N ends in the 5’ 

terminus, the cleavage of +1G produced from IVT using T7 RNA polymerase was 

essential. Two approaches were considered for +1G cleavage: a) using an 

endoribonuclease like RNase H and b) using a self-cleavage ribozyme such as the 

hammerhead ribozyme. 
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Endoribonuclease RNase H cleavage of +1G from in vitro transcribed RNA 

 

RNase s H are a family of widely expressed non-sequence-specific endonucleases that 

hydrolyse RNA from an RNA/DNA hybrid 228. Figure 3.2a illustrates the mechanism 

of using RNase H and a complementary DNA oligonucleotide to cleave an RNA 

molecule. RNase H cuts RNA at the 3’ end of the DNA in a partial RNA: DNA hybrid. 

The design of the RNase H experiment included certain modifications of the lnO oligo 

as shown in Figure 3.2a. The extended lnO oligo RNA contains X nucleotides 

preceding the E5S region (N=10). A complementary DNA oligo with sequence Y, 

where Y is complementary to X is added to form a partial DNA: RNA hybrid cleavage 

site as shown in Figure 3.2a. Post cleavage, it is critical to separate the cleaved RNA 

oligos based on their size differences. As the length of the lnO template was around 

~2.5 Kb in size, it was essential to have a considerable difference in size between 

cleaved products for visualisation on a denaturing PAGE urea gel. The size difference 

between the cleaved products was around 500nt as shown. A complementary DNA 

oligo of 50nt (Y) is required to cut specifically at the 3’ site of the extended lnO oligo 

before the random nucleotide N. The lengths of the extended DNA: RNA hybrid oligo 

containing X nucleotides (where length of Xmer =20nt) and complementary oligo 

containing Y nucleotides (where length of Ymer =20nt) have been modified in the 

figure (Figure3.2a) for clarity, the actual lengths vary as explained above. 

The RNase H cleavage efficiency on long RNA molecules was investigated. Bacterial 

rRNAs isolated from BL21 E. coli cells were used. The length of the bacterial 16s 

rRNA is 1542 nt. Two DNA oligos complementary to the 16S rRNA region 1100-

1117 and 1491-1506 were designed and hybridised to the bacterial rRNA. This was 

subsequently incubated with RNase H and the appropriate buffer (Methods, 2.32). The 

expected lengths of products post cleavage are 1117 + 425 nts (oligo probe in the 

region 1100-1117) and 1506 + 36nt (oligo probe in the region 1491-1506) 

respectively. However, if the cleavage of the RNA hybridised to DNA probe 1100-

1117 occurs in the absence of the cleavage of RNA hybridised to the other DNA probe 

(1491-1506), a 390nt cleavage product is expected. The efficiency of cleavage of the 

bacterial 16S rRNA as outlined above was investigated using different concentrations 

of RNase H relative to RNA (Figure 3.2b). Initially, RNase H (1 unit/20 pmol of 

RNA). 

was incubated with the RNA: DNA hybrid. However, only a small amount of cleavage 

product was observed. The efficiency of RNA cleavage increased with increasing 
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amounts of RNase H relative to RNA (Figure 3.2b). When the RNase H concentration 

was increased 25-fold, cleavage of approximately 50-60% of the 16S rRNA was 

observed. 

 

Based on these findings, the RNase H approach was considered for cleavage of small 

RNA molecules using a 37 nts IVT RNA oligo. A lower percentage of RNA cleavage 

was observed at low RNase H concentrations (Figure 3.2c) and at high concentrations 

of RNase H, the RNA cleavage efficiency was observed to be ~50%. RNase H 

cleavage reactions contained ~350 fmol of purified bacterial rRNA and 50 nmol of 

RNA oligos as the target RNA (Figure 3.2b and c). However, the downstream 

transfection experiments require large amounts of purified lnO RNA (40-50 pmol (10-

30 µg)) depending on the cell density and size of the culture plates used. The results 

(Figure 3.2 a and b), indicate that to accomplish complete cleavage of the target lnO 

RNA library, large amounts of RNase H would be required (the RNase H activity is 

significantly lower than expected). While the approach using RNase H to prepare lnO 

is somewhat feasible on a small scale, it was considered unfeasible for the large scale 

required for the downstream experiments. 

 

Various methods including chimeric (RNA/DNA chimeras) molecules, LNA (locked 

nucleic acid) 229–232 and optimisation of reaction conditions for cleavage of small 

RNA molecules were investigated (data not shown). Both the chimeric and LNA 

modifications increased the cleavage efficiency marginally to 60-65% (vs 50% 

without modification). 
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a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)                                                      c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: Cleavage of RNA/DNA hybrids using RNase H. a) Schematic diagram of the mechanism 

of catalytic RNase H promoted cleavage of the target lnO RNA b) Cleavage of 16S bacterial rRNA / 

DNA hybrids (generated using DNA oligonucleotide probes 1100-1117 and 1491-1506) with 

increasing concentrations (right to left) of RNase H c) RNase H cleavage of a 38 nts RNA (in vitro 

transcribed) / 10nt DNA hybrid using increasing (right to left) concentrations of RNase H. 
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Using Hammerhead Ribozyme for endolytic cleavage of lnO RNA 

 

 

Next, consideration was given to the usage of a self-cleaving ribozyme, like the 

hammerhead ribozyme, to cleave the +1G at the start of the lnO library. The 

hammerhead ribozyme (HHR) catalyses the site-specific attack of an activated 2’OH 

nucleophile and its adjacent 3’ phosphate causing cleavage of the P’-O5’ 

phosphodiester linkage to form a 2’,3’ cyclic phosphate and a 5’ alcohol 233. Figure 

3.3 illustrates the minimum sequence required by the HHR to cleave target mRNA. 

In addition, HHR sequence can be altered for complete cleavage of small RNA 

molecules 234. The previous methods of preparing lnO RNA using RNA ligation and 

RNase H were rejected due to their low product yield. Although the use of HHR was 

considered for cleavage of lnO RNA at the +1G site, it was not used in the final 

experimental protocol due to predicted issues with the extraction and recovery of 

cleaved RNA from a denaturing gel, again resulting in limited RNA availability for 

downstream experiments. 
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Figure 3.3: The minimal consensus structure required in the hammerhead ribozyme used for 

efficient autocatalytic self-cleavage.  

This figure is adapted from 233. 
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Optimisation of experimental protocol 
 

3.3 Amplification of template DNA for in vitro transcription using 

a novel PCR strategy 

 

For large scale in vitro transcription by a T7 polymerase, a high-quality DNA template 

(lnO) is critical. The DNA template for the lnO library was generated using a two-step 

PCR approach (Figure 3.4) (methods, 2.6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4:The two-step PCR approach used to generate lnO DNA template 

 
 
 
 

The minimum quantity of PCR template used for IVT RNA production with a >99% 

probability of including 410 variants was calculated using the GLUE web interface 

program. GLUE 235 is a program for estimating completeness and diversity in 

randomised libraries. The main aim of the two-step PCR was to incorporate all unique 

variants of the library exclusive of biases in the amplified DNA template. Using 

GLUE, it was estimated that a minimum of 3.2 attomoles of DNA was required as 

starting material to acquire 99% library completeness amounting to 2.1ng of the ~2 

Kb lnO (in triplicate). 

 

 Three short control oligos were generated, sOBG1, sOBG2 and sOBG3 from each 

chemically synthesised oligo to be amplified to obtain long oligos lnO1, lnO2 and 
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lnO3 respectively. The short control oligos were duplexed using Superscript III 

(Methods, 2.7). The control lnO and sOBG (1, 2 and 3), visualised on a 2% agarose 

gel, are shown in Figure 3.5. The ~2.1 Kb band represents the lnO and 98bp band 

represents sOBG control samples. 

 

Phusion polymerase was used to generate the desired DNA template using a two- step 

PCR with a minimum number of cycles (n=15), and Phusion HF buffer. The 

approximate error rate of Phusion HF buffer is ~4.4 x 10-7. Specific quantities of DNA 

i.e. 125ng (100 fmol) were used as a template in each step of the PCR reaction. 

 

PCR amplification and instrument biases are known to occur. Aird et al showed that 

using a ramp rate (λ) of 2.2 C/sec significantly reduced biases in comparison to the 

standard λ=3 ̊C/sec206. As a result, a ramp rate of 2.2 C was adopted to minimise 

amplification biases. Low number of amplification cycles (n= 15) are also important 

in reducing biases and were incorporated in the two-step PCR approach 236,237. 

 

Template DNA was purified and used downstream for large scale in vitro transcription 

reactions. 1µg of template DNA was used to generate 100-120 µg of purified RNA 

using AmpliScribe™ T7-Flash™ Transcription Kit. The quality of RNA was verified 

on an 8% denaturing PAGE UREA gel. A sharp band was present at ~2 Kb in size 

(Appendix Figure 1) without any denatured by-products. 
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Figure 3.5 : Generation of sOBG and lnO. Single stranded triplicates of sO were extended using a 

primer complementary to its 3’ end and superscript III polymerase. This extension generated the 98bp 

dsDNA templates sOBG1, sOBG2, and sOBG3, respectively. lnOs were generated in triplicates using 

a two-step PCR amplification approach using λ= 2.2 ̊C/sec, size 2143 bp. Samples were run on a 2% 

agarose gel and visualised by staining with safe view and photographed under UV. The lower band 

above 200bp in the lanes corresponding to lnO triplicates 1, 2 and 3 respectively is the unused ultramer 

primer (a131) used in the PCR reaction. 
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Figure 3.6: Schematic outline of the steps involved in the DNA library preparation from an RNA 

template. RNA was isolated from HEK293T cells post RNA transfection (2 hours), purified and reverse 

transcribed using a custom reverse transcription primer (RT_primer/ RT_modified_primer) containing 

Illumina forward and reverse primers as shown in the figure. The cDNA was then circularized using 

CircLigase™ ssDNA Ligase. The circularized cDNA was amplified to generate the NGS libraries. The 

DNA libraries were sequenced using the MiSeq platform. 

 

It was important to verify the success of the two-step PCR approach by verifying the 

number of biases generated from sO generated lnO DNA. To test this, control libraries 

were prepared from short oligo controls (sOBG1 and 2). The lnO DNA template was 

in vitro transcribed, capped, reverse transcribed into cDNA using a specific RT primer, 

circularised and amplified by PCR to produce NGS libraries (Figure 3.6). All in vitro 

transcribed RNA molecules started with a +1G from the T7 promoter and included 

E5S (N=10) in positions 2-11. When lnO1 RNA was transfected in cells followed by 

cell lysis and total RNA extraction, duplicate control samples denoted as TR were 

generated (TR1-1 and TR1-2 are duplicates created from lnO1). These libraries were 

sequenced using the high throughput sequencing technology, MiSeq. 
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3.4 Confirming the incorporation of E5S in lnO based control 

libraries 
 

Each DNA library was sequenced using MiSeq and analysed for the total number of 

unique variants representing E5S. T7 polymerase used in IVT ensured the presence of 

G in the +1 position. Under ideal circumstances, it is expected that due to the presence 

of four nucleotides A, C, G and T, the frequency of occurrence of each nucleotide in 

positions 2 to 11 should be 0.25 (shown as the red dashed line against the relative 

frequency of 0.25 in Figure 3.7). The aim of the experiment was to ensure the random 

distribution of nucleotides in the intended positions of 2 to 11. With minor differences 

of ± 10%, the nucleotides incorporated at each position were found to be close to the 

expected frequency of 0.25 apart from nucleotide C at position 4 which was at a 

frequency of ~0.10 in all samples. This could be due to the way the chemical synthesis 

of the sO oligos proceeded. The preference for nucleotides in all other positions (2 to 

11)was close to the expected frequency. There was no single nucleotide in any specific 

position over-represented or under-represented in the control samples of sOBG1 and 

TR1 duplicates as shown in Figure 3.7 indicating the success of the two-step PCR 

approach. 
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Figure 3.7: NGS data from MiSeq (Triniseq) confirms the occurrence of random oligonucleotides 

along E5S with the presence of G at the +1 position. sOBG stands for short oligo control in duplicates 

1 and 2, TR stands for total RNA control in duplicates 1 and 2. 

 

 

However, there was a difference in sequencing depth between samples owing to 

differences in the expression of their E5S unique variants. Variation in the NGS DNA 

library sample quality (Table 3.1) and a lack of sample equalisation at the MiSeq 

facility led to a significant variation in the total number of reads i.e. 4790610 to 11164, 

between samples. It was observed that the highest number of unique variants were 

associated directly with the highest number of total reads obtained from the MiSeq 

data. Despite these technical variations, no biases were observed in the representation 

of a single nucleotide in a specific position of 2 to 11, excluding the aforementioned 

bias at position 4. The nucleotides were observed at a frequency of 1 at all positions 

downstream of position 11 marking the end of E5S region. 
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Table 3.1 Data obtained from MiSeq for samples sOBG1, sOBG2, TR1-1, and TR1-2, 

respectively. 

 

 

After the successful generation of lnO DNA template, the next steps included the use 

of polysome profiling with massively parallel sequencing to study the effects of E5S 

on TIRES. 

 

3.5 +1G occurs at high frequency in the TSS of annotated human 

transcripts 
 

The TSS marks the start of transcription of mRNA at the 5'-end of a gene sequence. 

The determination of the exact TSS position is crucial for the identification of various 

regulatory elements present in the 5’TL region immediately flanking the TSS 238. 

The 5’TL sequence of numerous transcripts are available across several databases. 

Given that the first position in lnO RNA is guanine, it was of interest to examine the 

TSS sequences from annotated transcripts (human) extracted from different databases 

to determine the frequency of guanine at the TSS position. The data was extracted 

from the following databases, a) GENCODE (v 27) b) UTRdb and c) FANTOM for 

HEK cells. The distribution (in percentage) of TSS corresponding to individual bases 

(G, A, T, and C) is shown in Figure 3.8. 

The GENCODE Consortium curates gene features in the human genome using a 

combination of computational analysis, manual annotation and experimental  

  

Sample number Number of unique reads Total number of reads 

   

sOBG1 385389 665774 

   

sOBG2 911995 4790610 

   

TR1-1 231795 320914 
   

TR1-2 10662 11164 
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validation 239. The current release of GENCODE 27 data (human), containing 79,911 

annotated transcripts, was downloaded and the 5’TL including TSS information was 

extracted for these transcripts. Guanine is the most frequent +1 base (37.12%) at the 

TSS of all annotated transcripts from the GENCODE 27 database, followed by A 

(31.6%) (Figure 3.8). 

 

Sequences collated in UTRdb were recovered from the National Centre for 

Biotechnology Information (NCBI) RefSeq transcripts using custom software 240. For 

human genes, a comprehensive collection of UTRs [derived from the full set of over 

300 000 alternative full-length transcripts collected in ASPicDB 241] was generated by 

a thorough analysis of all available EST/mRNA. The human 5’UTR sequences were 

downloaded from the UTRdb in the FASTA format and TSSs were investigated for 

individual base distribution. A (36.7%) was the most frequently occurring +1 base at 

the TSS, closely followed by G (35.5%) in 124215 annotated transcripts (human) 

obtained from UTRdb. 

 

 

CAGE was performed previously across a large collection of primary cell types and 

revealed that many mammalian promoters are composite entities containing multiple 

closely-separated TSSs with independent cell-type-specific expression profiles. The 

FANTOM5 promoter centric expression atlas provides expression profiles for most 

coding and non-coding transcripts in the human and mouse genomes 242. The 

FANTOM5 consortium, containing HEK cells TSS data, was downloaded. G (36.2%) 

was found to be the most frequently occurring +1 base at the TSS, followed by C 

(30.6%), in 22213 annotated transcripts in the FANTOM database for HEK cells. 

 

It was expected that the lnO RNA generates the E5S with equal probabilities of all 

four bases A, C, T, and G in each position along the E5S. Interestingly, the frequency 

of TSS composition varied in all investigated annotated transcripts (human) from three 

different databases. However, G was found to be the most frequently occurring base 

in position 1 of most annotated transcripts in the databases investigated as shown in 

Figure 3.8. The lnO investigated in this work has guanine at position 1 and thus 

represents ~35% of available annotated transcripts (human). 
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Figure 3.8: Frequency distribution of individual bases in the TSS of human annotated 

transcripts from different databases, GENCODE 27, UTRdb and FANTOM (HEK cell). 

 

 

3.6 Optimising the polysome profiling protocol for generation of a 

high quality NGS library 
 

To understand the effects of E5S on TIRES, it was important to develop and optimise 

a strategic experimental approach. The approach that was used in this work is as 

follows: 

 

a) mRNA transfection aspects 

 

To understand the in vitro effects of E5S on TIRES, lnO RNA was transfected into 

HEK293T cells. mRNA transfection of lnO RNA was optimised according to standard 

protocols. Firefly luciferase activity was the readout method used to determine RNA 

transfection efficiency. For each lnO RNA (1, 2 and 3), four transfections were 

performed, and cell lysates were prepared 2hrs after transfection. Out of the four cell 

lysates, the two samples with the highest luciferase activity were used as duplicates 

for polysome RNA isolation (PR) and the rest were used as duplicates for total RNA 

control (TR) for each lnO respectively. 
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b) Polysome isolation 

 

During mRNA translation, the ribosomal subunits (the 40S and 60S) bind to target 

mRNA forming an 80S complex i.e. a monosome. Ribosomes move along the mRNA 

during translation elongation in association with tRNAs. When there is an active 

translation, many monosomes can associate on the same mRNA molecule forming 

polysomes. Specific mRNAs bound to polysomes indicates the active translational 

status of the mRNAs. To investigate the RNA molecules with high TIRES, polysome 

profiling was the chosen readout for actively translating mRNAs. There are various 

factors which influence polysome formation such as translation initiation factors, the 

context of the start codon, elongation factors and the presence of secondary structures 

in the 5’TL 243,244. In this experiment, the molecular architecture in the lnO library 

were identical except for differences in their E5S (positions 2 to 11). Therefore, any 

changes in the TIRES can be considered to be an effect of the E5S on mRNA 

translation initiation. 

 

 

c)  Library preparation of mRNA controls and polysome RNA 

 

This work aimed to produce deep sequencing libraries, upon analysis would ideally 

generate sequence information for all unique variants from the E5S library isolated 

from the polysomes. After transfection of lnO RNA into HEK293T cells, total RNA 

and polysomal associated RNA were isolated and subsequently used in library 

preparation as described in Figure 3.6. Based on the assumption that efficiently 

translated mRNAs are associated with heavy polysomes, the effect of E5S on 

translation initiation was measured by comparing frequencies of nucleotides (and their 

combinations) at specific positions in E5S from mRNAs in polysome fractions to their 

frequencies in E5S of the original library (total RNA) using massively parallel 

sequencing. While both ribosome and polysome profiling have previously been used 

for various applications, the use of polysomes in the context of studying the E5S of 

TIRES has not been reported. This novel experiment, therefore, included various 

optimisation and development protocols, which are described in the following 

sections. 
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d) mRNA transfections 
 

 

Lipofectamine mRNA transfection is based on the principle of liposome formation 

between the cationic lipofectamine and negatively charged nucleic acid molecule. 

These liposomes can fuse with the negatively charged plasma membrane of living 

cells, allowing nucleic acid to cross into the cytoplasm and contents to be available to 

the cell for expression 
245,246

. 

 

mRNA lnO libraries (1, 2 and 3) were transfected in duplicate into HEK293T cells with 

the transfection reagent Lipofectamine 2000. Transfection was optimised with respect to 

cell density. Different capping reagents were evaluated, and the best performing reagent 

was used. The quantity and quality of mRNA were evaluated prior to transfection. The 

following conditions were observed for optimal transfection and translation of firefly 

luciferase from the lnO RNA in HEK293T cells: a) cell confluence was maintained at 70-

75% during transfection and b) the duration of transfection was two hours. It was observed 

that uncapped mRNA showed 500 times less luciferase activity in comparison to capped 

mRNAs (appendix Figure 2). 

 

Luciferase reporter assays showed expression of firefly luciferase protein, a measure 

of successful mRNA transfection. Figure 3.9 shows high luciferase reporter values 

upon transfection of lnO RNA (1, 2 and 3 in duplicate) in HEK293T cells. The lysates 

with the highest luciferase expression were used for polysome isolation, the others 

were used as total RNA controls. 
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a)  

 
b) 

 

 

 

 

 

 

 

 

 

 

  

 

c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9: Transfection efficiency of samples indexed PR and TR (in triplicate) determined using 

the luciferase reporter assay. HEK293T cells were transfected with lnO RNA at 30-40 µg/15cm plate. 

Cell lysates were prepared 2 hours after transfection and firefly luciferase light units were measured to 

evaluate transfection efficiencies. Transfection efficiencies are tabulated of each lnO RNA used for TR 

and PR libraries a) 1 b) 2 and c) 3. Data shown as the mean + standard deviation. 
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3.7 Isolating specific mRNA populations from polysome fraction 
 

 

Polysomes can be size-fractionated using sucrose density gradient centrifugation. 

Specific mRNA bound to the polysomes indicates the active translational status of the 

mRNA. Highly translating mRNAs were isolated from polysomes using a continuous 

sucrose density gradient (10-60%) (Methods,2.12) (Figure 3.10 (a and d)). 

 

To understand the effects of E5S on TIRES, it was essential to obtain various fractions 

from the sucrose density gradient (Methods,2.12) as monosomes, light polysomal 

fraction and heavy polysomal fraction (Figure 3.10a) to indicate their respective 

translational status in the cell. Various fractions in the sucrose gradient are 

representative of different stages of active mRNA translation and will yield valuable 

information about the effects of E5S on TIRES. Total RNA and RNA isolated from 

polysomes libraries were used to compare the TIRES changes in the unique variants 

of E5S as explained previously. 

 

Total RNA is ideally comprised of ~5% mRNA. Using polyA mRNA isolation kits, 

the fraction of mRNA obtained from a pool of total RNA ranged from 0.5-2% (data 

not shown). The mRNA pool consists of all mRNAs in the cell along with the 

transfected lnO RNA library. The transfected lnO RNA is a very minor fraction of the 

total mRNA purified from HEK293T cells. Extracting transfected lnO RNA from the 

polysomal fraction (PR) for the downstream processing steps and next generation 

library preparation was the most challenging part of the experiment, and the following 

optimisation strategy was employed: Initially, a 10cm dish was used to transfect 

HEK293T cells with lnO mRNA for two hours (four 10 cm dishes). The RNA 

transfection protocol was maximised for high efficiency as discussed previously 

(Results, 3.6 d). Lysates with the highest luciferase activities indicative of successful 

transfection were loaded on a sucrose gradient and processed for polysome isolation 

in duplicate (two 10 cm dishes). The remaining lysates were used as control to isolate 

total RNA in duplicate (two 10 cm dishes). In the first attempt, the monosome, light 

polysome, and heavy polysome fractions were isolated and processed for library 

preparation (Figure 3.10 (a-c)). Figure 3.10a shows a polysome profile obtained from 

a 10-60% sucrose gradient of HEK293T cell lysate obtained from a 10cm dish 
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transfected with 10 µg RNA /dish. High transfection efficiency was a considered as a 

readout for efficient lnO translation. Total RNA was isolated from different fractions 

as monosomes, light and heavy polysome outlined in green boxes. Following RNA 

isolation, reverse transcription of the RNA was performed using a custom reverse 

primer (Figure 3.10b). 

 

The RT products were then purified and visualised using a 7.5% denaturing PAGE 

UREA gel. Figure 3.10b shows an unextended reverse transcription (RT) primer used 

as a control. RT products from the monosome, light, and heavy fractions are expected 

to form an extended product higher (~20nt) than the unextended primer outlined in the 

red box (Figure 3.10b). Faint bands indicative of extended products were seen in this 

area. These were then gel excised, purified, circularised, and used as a template for 

DNA library preparation using Illumina index primers. 

 

The PCR products were visualised on an 8% PAGE gel stained with 2% SYBR gold 

containing RT products from the monosome, light polysome fraction and heavy 

polysome fraction respectively along with the control template (produced from 

circularisation of the RT primer). The PCR products were found to be the same size 

as the control template. This could reflect a) unsuitable conditions for PCR 

amplification of the input templates and/or b) insufficient amounts of RT product in 

the reaction for downstream processing steps. However, the control template is 

produced in large quantities indicates that the conditions used for the PCR reaction 

were favourable. Thus, it is probable that low amounts of RT product was insufficient 

for downstream processing steps. However, in this case, the presence of two clear 

bands (above the control unextended primer band) could indicate the presence of non-

hydrolysed RNA left in the reaction. To avoid the masking of the non-hydrolysed 

RNA with the RT product formation on 8% PAGE urea gel, the RNA hydrolysis step 

was included after the RT reaction. After the inclusion of the hydrolysis step, the RT 

reaction did not show any bands above the unextended control (data not shown). 

Although the inclusion of this step was not useful in producing the desired PCR 

products (data not shown), it helped in further optimisation of the protocol by avoiding 

non-specific product formation. Overall, it was concluded that the amount of RT 

product produced by these reactions was insufficient for preparation of successful 

NGS DNA libraries. 
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To increase the amount of RT product, it was essential to have a viable quantity of 

RNA extracted and purified from polysomes. However, it was critical to identify the 

minimum amount of RNA required for downstream processing and production of 

high-quality DNA libraries. A q-RT PCR (data not shown) was employed in parallel 

to confirm the minimum amount of RNA required to produce a successful DNA 

library against the standard library preparation steps including reverse transcription, 

circularization and amplification shown in Appendix Figure 10. 

 

To improve the efficiency of the RT reaction, the mRNA fraction was isolated from 

the total RNA pool using polyA fractionation. Following this, all polysomal fractions 

were pooled from the 10cm dish and used for DNA library preparation. However, no 

RT product was seen in the 8% PAGE urea gel and upon further processing, no PCR 

products were observed (data not shown). Thus, it was predicted that total RNA from 

the polysomal fraction of a 10cm dish as an input was not sufficient for DNA NGS 

library preparation. 

 

Consequently, the yield of polysomal RNA was increased using the following 

modifications a) increasing the size of the dish (15cm) with 70-80% confluence for 

transfection, b) increasing the amount of RNA used for transfection to 30µg/15cm 

dish, c) using a modified RT primer containing a unique molecular identifier (UMI) 

 

d) polyA purification of total RNA was employed to purify the pool of mRNA fraction 

from total RNA which helped reduce the background for visualisation of the RT product. 

The successful results are shown in (figure 3.10 (d-f)). The polysome profile obtained 

from the cell lysate of HEK293T cells transfected with lnO RNA 1 (in duplicate) as shown 

in figure 3.10d. The polysome fractions were extracted and pooled together. Subsequently, 

total RNA was extracted from the polysome fraction, polyA purified to isolate mRNA, 

reverse transcribed using a custom RT_primer_modified and an RNA hydrolysis step was 

incorporated. The RT product produced from the polysome fraction visualised on an 8% 

PAGE UREA gel is shown in Figure 3.10e. A clear band (outlined in the red box) was 

visible above the control band containing the unextended RT_primer. This band was 

excised from the gel, purified, and processed downstream to produce DNA NGS libraries. 

The successful library amplification PCR reaction was visualised on an 8% PAGE gel as 

shown in figure 3.10f. A clear band was seen above the control band upon PCR 

amplification of 14 cycles. This was an indication of a successful library suitable for 
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processing on a Hi-Seq3000. Previously, a similar approach to the successful 

experiments described above was assayed using a smaller dish (a 10 cm dish with 70-

80% confluence) for transfection and incorporating all the other modifications. This 

approach was unsuccessful (data not shown) and it was concluded that the minimum 

cell number required to generate successful target DNA libraries suitable for 

HiSeq3000 from polysomes, was approximately 16 x 106 cells i.e. 15 cm dish at 70-

75% confluence. 
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a)                                                           d) 

 

 

 

 

 

 

 

 

 

 

 

 
 

b)                                       e) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)                                f) 
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Figure 3.10: Isolation of polysomal fractions for successful library preparation a) A polysome 

profile obtained from 10-60% sucrose gradient of HEK293T cell lysate from a 10cm dish transfected 

with 10 µg lnO RNA per dish. OD was monitored at 254nm using a spectrophotometer connected to 

the fractionator setup (Y axis) across increasing sucrose density (X axis). Total RNA was isolated from 

different fractions as monosomes, light and heavy polysomes outlined in green boxes. b) the total RNA 

from various fractions of the polysome was reverse transcribed purified and visualized using a 7.5% 

denaturing PAGE urea gel; lane 1, unextended reverse transcription (RT) primer; lanes 2, 3 and 4, RT 

products from monosome, light and heavy polysome fraction respectively. The green arrow indicates 

the unextended RT primer to be avoided and the RT products expected are outlined in the red box 

selected for purification by gel excision (the expected RT product should be about 20nt longer than the 

primer. Two main bands were visible above the control band, the RT product was unclear, hence both 

were recovered by gel excision). These products were then circularized and used as a template for PCR 

amplification. c) DNA library products following amplification of the circularised RT products 

analysed on 8% PAGE gel stained with 2% SYBR gold. Libraries prepared from RT products obtained 

from the monosome, light and heavy polysomal fraction are shown. lane1: control library ~151 bp from 

the unextended rt primer, lanes 2-4: libraries from monosome, light, and heavy polysomal fractions 

respectively. d) the polysome profile showing all polysomes obtained from a HEK293T cell lysate 

transfected with 30 µg lnO RNA per 15cm dish which was used for total RNA isolation and polyA 

purification. e) a 7.5% denaturing PAGE urea gel stained with 2% SYBR gold facilitating visualization 

of the RT product from RNA obtained from the polysomal fraction. The green arrow indicates the 

unextended RT primer to be avoided and the RT products are outlined in the red box (about 20bp larger 

in size) for gel excision and purification. f) 8% PAGE gel stained with 2% SYBR gold used to visualize 

libraries generated from circularised RT product obtained from polysomal fraction alone. Lane 1: DNA 

marker used to indicate the 100bp and 200 bp, lane 2: control library ~151 bp from the unextended RT 

primer lane 3: libraries obtained upon 8-18 cycles depending upon the sample. of the PCR reaction 

(~171 bp in size) were excised for deep sequencing. 
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Figure 3.11: Schematic of the experimental protocol used to study the effect of E5S on TIRES 

A random oligo is chemically synthesized and incorporated with a firefly luciferase reporter followed 

by in vitro transcription, capping, transfection, polysome isolation, total RNA extraction, polyA mRNA 

purification, library preparation, deep sequencing and computational analyses as shown in the figure. 

 
 

After careful consideration and review of the optimisation strategy, an experimental 

protocol was designed to study the effects of E5S on TIRES (Figure 3.11). The final 

protocol was as follows – a DNA template was created using a two-step PCR 

approach, in vitro transcribed and capped enzymatically. RNA quality was assessed 

at each step using 8% PAGE urea gel. mRNAs were transfected into HEK293T cells 

in 15cm dishes, lysed, loaded onto a 10-16% sucrose gradient and the polysomal 

fractions isolated. Total RNA and polyA purification from polysomal fraction 

resulted in a pool of pure mRNAs. Reverse transcription using a custom UMI 
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primer, circularisation and amplification steps resulted in a library representative of 

the actively translating transcript population differing in their E5S. 

 

Following the protocol from Figure 3.11, 18 libraries were prepared as discussed 

previously (Results,3.1). The RT products used in generating the 18 libraries are 

shown in Figure 3.12. Figure 3.12a shows the RT samples of controls lnO1,2 and 3 

and sOBG1,2 and 3 above the control template (RT primer unextended) (~145 bp) 

outlined in a red box that was excised and processed further for the creation of lnO 

and sOBG NGS libraries. In cases where the RT product produced was low in quantity, 

additional PCR cycles were necessary to increase the yield. However, the increase in 

cycles could potentially introduce PCR biases. To control for such biases an RT 

modified primer containing a UMI (unique molecular identifier) sequence was used 

for TR and PR samples. Figure 3.12b shows the RT products obtained from TR (1,2 

and 3 respectively) in duplicates. A clear band was seen boxed in red above the control 

band comprising the RT modified primer used as a control (unextended) (~150bp). 

The bands were excised and processed for library preparation. Figure 3.12c shows the 

RT products obtained from PR (1,2 and 3 respectively) in duplicates. A clear band was 

seen represented as a red box above the control band comprising the RT modified 

primer used as a control (unextended). The bands on PR1-1 and PR1-2 were faint but 

were excised, processed, and successfully used to obtain the desired DNA libraries. 

The Illumina library preparation step includes the PCR amplification of a DNA 

template comprising of 8-16 cycles depending on the quantity of cDNA extracted from 

different libraries shown in Figure 3.12 247. 
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a) 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

c) 

 

 

 

 

 

 

 

 

 
Figure 3.12: Purification of reverse transcription products (RT) of all library samples including 

short control (sOBG), long control (lnO), total RNA control (TR) and polysome fractions (PR) in 

duplicates respectively. RNA retrieved from TR and PR samples was reverse transcribed using a UMI 

primer to generate cDNA. The RT products were visualized in a 7.5% denaturing PAGE urea gel using 

2% SYBR gold staining. The unextended RT primer serves as the control and the samples outlined in 

the red box represent the RT product to be excised for purification. 

  

  



 

90 

 

As the experiments in this thesis relied on low quantities of product, the aim was to 

optimise each reaction to obtain the maximum amount of final product. Upon 

successful isolation, each RT product was purified and circularised for library 

preparation shown in Figure 3.13. 

 

CircLigaseTM was used in the process of circularisation. This enzyme is a 

thermostable ligase that catalyses the intramolecular ligation (i.e. circularization) of 

ssDNA templates. In this case, the cDNA produced from the experiment was 

circularised as seen in Figure 3.13a. Using optimal conditions (Methods, 2.18), it is 

seen that the amount of circularised DNA was ~>95% of the control DNA. 

 

The PCR amplification step was the final step of the library preparation. It was 

important to optimise the number of cycles in the PCR for two main reasons a) to 

obtain optimal DNA quality suitable for sequencing using the HiSeq platform and b) 

to limit biases by avoiding over amplification of the product. Figure 3.13b shows 

amplification over different number of PCR cycles. The PCR product visualised on an 

8% PAGE gel begins to appear after 6 amplification cycles seen as a faint band. 

Further, upon reaching 8 amplification cycles, an intense band is seen. However, a 

smear appears when the PCR amplification is continued to 10 cycles that is intensified 

upon further amplification at 12 cycles. The smear is indicative of over amplification 

during the PCR reaction. As shown in Figure 3.13b, 8 amplification cycles were 

considered optimal and used for next-gen library generation. 
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a)                                                                           b) 
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Figure 3.13: Library preparation and quality analysis a) Circularization of purified cDNA 

visualized on a 15% denaturing PAGE urea gel stained with 2% SYBR gold. The control has the 

unextended RT primer and the circularized product is shown in a red box. b) Purification of PCR 

products. The red box indicates the ∼171-nt band that was gel excised and purified for deep sequencing. 

The control indicates the ∼151-nt background band derived from unextended RT primer was avoided 

during gel excision. The green arrow indicates the partial duplexes resulting from reannealing as the 

PCR amplification approaches saturation. c) BioAnalyzer profile of a high-quality sequencing library 

of sample TR1-1. A single 172-nt peak is present (the peak at 35 and 17000 are the vendor's internal 

standard, present in all profiles). 
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Analysis using an Agilent Bioanalyzer 2000 was used to confirm the quality of the 

DNA libraries. The Bioanalyzer is used to quantify yield and detect artefacts post-

PCR amplification. Bioanalyzer profiles are used regularly in the assessment of library 

quantity and quality. Figure 3.13c shows a bioanalyzer profile of a library of TR1-1 

produced from lnO1 RNA. A single 172-nt peak is visible (the peak at 35bp and 

17000bp are the vendor's internal DNA standard, present in all profiles). This profile 

denotes a high-quality DNA sequencing library comprising of a population of 172bp 

DNA fragments. 
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Table 3.2 : Bioanalyzer analyses of libraries qualified for deep sequencing. 

Library Name Fragment size Concentration Molar 

  (ng/µl) concentration 

   (nmol/l) 

    

sOBG1 172 16.74 152.32 
    

sOBG2 177 10.51 87.88 
    

sOBG3 163 1.58 18.09 
    

lnO1 174 12.64 97.31 
    

lnO2 171 5.60 54.66 
    

lnO3 171 7.92 93.12 
    

TR1-1 172 1.53 6.7 
    

TR1-2 181 8.87 80.95 
    

TR2-1 177 8.67 68.4 
    

TR2-2 171 4.63 23.91 
    

TR3-1 179 11.05 113.96 
    

TR3-2 178 13.07 82.84 
    

PR1-1 154 5.63 75.90 
    

PR1-2 176 20.81 49.68 
    

PR2-1 177 6.75 18.09 
    

PR2-2 174 7.45 20.74 
    

PR3-1 173 13.09 38.86 
    

PR3-2 175 20.32 16.88 
    

 

Note: One of the libraries, sOBG2, was misplaced by the vendor and library 

generation had to be repeated. While processing this library, the RT reaction was 

performed with an incorrect primer, RT_primer_modified instead of an RT_primer. 

This was a technical error which was only observed later. Although the results are not 

affected by this, it added an additional step of removing PCR duplicates from the data 

available from the library. 
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Table 3.2 shows the molar concentrations of DNA in the final libraries. Most of the 

samples have the desired fragment size of >165nt. All samples produced a single peak 

indicating a high-quality sequencing library. The desired molar concentrations 

recommended by the vendor states that each library must have a minimum 

concentration of 2-4nm/l. All the libraries generated met the desired criteria for the 

BGI HiSeq platform. 

 

3.8 Massively parallel sequencing shows a high percentage 

of inclusion of all possible variants in the libraries 
 

Eighteen libraries were sequenced with Illumina HiSeq3000 instrument by a 

commercial provider (BGI, China). Following successful library generation and 

quality assessment, the libraries were sequenced in two lanes containing nine libraries 

in each lane. The typical throughput of HiSeq3000 lane is ~300 million reads. The 

number of reads expected per library is shown below: 

 

Expected number of reads per lane using Hi-Seq-3000 platform = 300 million 

Number of libraries multiplexed per lane =9 

Number of reads expected per library = 33.33 million 

Number of unique variants expected in a single library = 410 = 1.04 million 

The number of times each unique read occurs in a library is calculated as: 

The number of reads expected per library / Number of unique variants expected 

in a single library = 33.33 million/1.04 million = 32 

 

Upon parallel sequencing, data containing the total number of clean reads with their 

quality scores from the two different sequencing lanes respectively is shown in 

Appendix Table 2 (a and b). The total number of reads obtained from the two 

sequencing lanes was 298.2 million and 264.7 million respectively. These numbers 

were slightly lower than the expected 300 million reads/lane. 

 

The highest number of unique variants possible in each library is 410 i.e. 1048576 

representing a complete library (100%). Library completeness is calculated as the 
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number of unique reads obtained divided by the maximum number of reads possible 

in a single library (1048576). The library completeness of each library is shown in 

Table 3.3. All TR and PR libraries comprised of >95% of possible unique variants 

except for libraries PR2-2 and PR1-1. 

 

The FASTQC tool was used to assess the quality of reads obtained from all libraries. 

Base calling is the process by which raw data from the sequencing instrument is 

converted to nucleotide sequences 248. Base calling accuracy is typically measured 

by a Q score (Phred quality score) and is a common metric to assess the accuracy of a 

sequencing run. Q scores are defined as logarithms of base calling error probability248. 
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Table 3.3: Evaluation of the completeness of libraries 

RNA No. reads No. permutations % completeness 

library (millions) (millions) observed 
    

sOBG1 26.4 1001470 95.5 
    

sOBG2 28.5 1012639 96.5 
    

sOBG3 20.6 1000039 95.3 
    

lnO1 31.4 1021488 97.4 
    

lnO2 35.7 1022746 97.4 
    

lnO3 27.6 1019764 97.25 
    

TR1-1 45 1041306 99.30668 
    

TR1-2 8 1005306 95.87345 
    

TR2-1 23 1031308 98.3532 
    

TR2-2 31 1033711 98.58236 
    

TR3-1 29 1032177 98.43607 
    

TR3-2 30 1032967 98.51141 
    

PR1-1 7.8 982937 93.74018 
    

PR1-2 23 1028695 98.104 
    

PR2-1 19 1027989 98.03667 
    

PR2-2 1.47 683174 65.15255 
    

PR3-1 23 1034968 98.70224 
    

PR3-2 29 1034968 98.70224 
    

 

 

 

 

The sequences produced with Illumina include the adapter sequence/identifier 

sequence. To remove the adapter sequence 

(ACAACTGTGTTCACTAGCAACCTCA) from all datasets, the Cutadapt tool 208 

was used. The read lengths post Cutadapt clipping is shown for 18 libraries in Figure 

3.16. The libraries sOBG (1 and 3) and lnO (1-3) had high concentration of RNA 

available for RT, therefore an RT_primer without a UMI was used in the generation 

of these libraries. The expected lengths of the processed reads upon adapter trimming 

are 11nts. The samples indexed TR and PR were processed for library generation using 

a UMI sequence (RT_primer _modified) due to their low concentrations after  
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downstream processing. The expected lengths of the processed reads upon adapter 

trimming are 18nts. In addition, sOBG2 was reverse transcribed using 

RT_primer_modified as mentioned previously. 

 

Cutadapt was successful in clipping most of the libraries which produced reads with 

expected length or with one additional nucleotide. However, Cutadapt failed to 

successful clip three datasets (Figure 3.16 (b and c)) owing to poor sequence quality 

at the 3' ends of the read. To overcome these issues, a set of criteria was set for adapter 

trimming of these libraries outlined in methods (Methods, 2.23). 

 

However, in a few cases, the clipped reads also had a significant number of reads that 

were one nucleotide longer than expected i.e. 12 or 19 nucleotides in length. By 

examining the nucleotide frequency at each position of read length being 18 or 19nt, 

the extra nucleotide was found to be added immediately 5' of the +1G position. The 

major fraction of this extra nucleotide was G and a smaller fraction was T. The extra 

nucleotide is likely caused by a non-templated nucleotide addition during library 

generation 249, thus in a subsequent analysis, this additional nucleotide was excluded 

since it did not reflect the actual sequence of mRNA at the 5’ end. It was observed that 

the median number of occurrences of each unique variant in the libraries indexed TR 

and PR varied between 6 and 37. 

 

Unsuccessful adapter trimming of PR2-2 reads can be seen in Figure 3.14 (a). 

However, it was found that the quality of the reads was lower in the region flanking 

E5S comprising of sequence GNNNNNNNNNN. Figure3.14 b shows that the desired 

E5S region had a quality score of >40. As a result, PR2-2 reads were then filtered 

using an alternative method (Methods, 2.23) to obtain the desired, higher quality reads 

along the E5S for the PR2-2 library. A plot of read position against the number of 

reads containing a specific nucleotide in a position shows that all four nucleotides are 

represented at similar frequencies in the E5S region for library PR2-2 (shown as 

NNNNNNNNNN in Figure 3.14c). Successful adapter clipping was observed in 

15 out of 18 libraries sequenced. 
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Figure 3.14: High quality of base calling in sample PR2-2 observed along the E5S a) Adapter 

clipping using Cutadapt was unsucessful in sample PR2-2. The read length of the majority of reads was 

49nt instead of the expected 18nt after adapter clipping. b) FastQC quality along the E5S was >40 c) 

Frequency of each nucleotide at different coordinates of sequencing reads. The orange square 

correspinds to the region of E5C where frequencies of individual nucleotides where Nϵ(A,C,T,G) are 

shown. 

 

 

 

The reads from libraries indexed sOBG/lnO vs TR/PR were processed differently 

based on the UMI index and adapter clipping as shown in Figure 3.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.15: Processing reads in different E5S libraries. The adapter was trimmed from raw reads 

and processed for further analyses. The reads that were not clipped using Cutadapt were clipped using 

a set criterion (Methods, 2.23). 
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a)                                                                  b) 
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Figure 3.16: Read lengths of the libraries post adapter trimming. The identifier sequence was 

trimmed from the raw sequences of the libraries and the read lengths were calculated and plotted for 

samples indexed a) sOBG and lnO, b) TR and c) PR. The 49nt represented by red squares for libraries 

TR1-2, PR1-1 and PR2-2. indicates unsuccessful adapter clipping which was processed using an 

alternative method (Methods,2.23). 
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Preliminary data analysis of library samples 
 

3.9 Unique Molecular Identifier (UMI) correction removes PCR 

duplicates from the library 

 
UMI are random sequences of bases used to tag each molecule (fragment) prior to 

library amplification thereby aiding in the identification of PCR duplicates 250 

(Appendix Figure 4). UMIs were used in libraries indexed TR and PR (12 libraries in 

all) due to the low amounts of starting material in them. Such samples typically require 

additional cycles of PCR making them prone to PCR duplications. Figure 3.17 shows 

a plot of the number of unique variants in the libraries plotted against the number of 

occurrences of each read in the dataset. The comparison of UMI corrected samples vs. 

the total number of reads in all samples showed no significant differences. 

 

Calculation of percentage error following UMI correction is shown in Table 3.4. The 

PCR duplication biases contributed an average error of 11% across 12 libraries under 

consideration. Following UMI correction, the highest percentage of PCR duplicates 

were found to be 20.6% in the library TR1-1 and the lowest percentage of 1.5% in the 

library PR2-2. This corresponds to the total number of reads that occurred in each 

library before UMI correction (Table 3.4), where TR1-1 had the highest (56 million) 

and PR2-2 had the least (1.5 million) number of reads. 

 

The quality of libraries indexed PR2-1 and PR2-2 using Agilent Bioanalyzer showed 

that they were high-quality, single-fragment DNA libraries without any DNA 

contamination. On written communication with BGI, it was confirmed that the 

sequencing depth for sample PR2-2 was compromised due to unknown reasons. 

However, on close inspection of the total number of reads, it is observed that for 

samples generated from lnO3 (TR3-1, TR3-2, PR3-1, and PR3-2) the total number of 

reads remained consistent as expected even upon UMI correction. 
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Table 3.4: Calculation of percentage error following UMI correction 

 

Sample Total Number of reads % of reads 

name number of post UMI removed 

 reads correction after UMI 

   correction 

    

TR1-1 56749003 45012166 20.68201445 

    

TR1-2 8834780 8305027 5.996221751 

    

TR2-1 25618339 23336172 8.908333206 

    

TR2-2 38663009 31967374 17.3179356 

    

TR3-1 32926495 29771654 9.581466233 

    

TR3-2 34115498 30234230 11.37684697 

    

PR1-1 8589484 7800876 9.181087013 

    

PR1-2 25655168 22829261 11.01496198 

    

PR2-1 21928544 19006669 13.32452807 

    

PR2-2 1501788 1479325 1.495750399 

    

PR3-1 26028323 23411900 10.05221504 

    

PR3-2 34688810 29131045 16.02178051 
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Figure 3.17: The effect of UMI correction on samples indexed TR and PR. The plot contains the 

number of unique reads plotted against the number of occurrences of each read in the dataset before 

(green) and after (blue) UMI correction. 

 

 

 

3.10 Verifying the technical reproducibility between samples 
 

The use of massively parallel sequencing enables quantification of many variants in a 

single experiment, in this case, 410 variants (assuming 100% completeness of original 

randomer library). Measuring reproducibility between duplicates is a critical 

component in assessing the quality of data obtained from these experiments. 

To study the reproducibility between duplicates, the ratio of the number of reads 

sequenced from the polysomal selected to total RNA (PR/TR) was determined along 

the E5S inclusive of shorter permutations. The shorter unique variants were calculated 

upon aggregating read counts containing the same sequence motif beginning at the 5' 

end of the E5C (Methods,2,24). 

It was observed that the reproducibility of PR/TR values along the length of E5C was 

weak. Spearman’s ranking correlation was used to rank duplicates based on their 

similarity in PR/TR values. Spearman's correlation coefficient, (ρ) measures the 

strength and direction of the association between two ranked variables. It may be 

observed that the pairwise Spearman's correlation increases as the length of the E5S 

are reduced. However, the average Spearman’s correlation of the pairwise comparison 

for all library combinations was 0.31. These pairwise correlations improved 

significantly upon consideration of shorter permutations (the average correlation of 

nucleotide stretches of 7nt in length was 0.61) seen in Figure 3.18. 

The grey lines in Figure 3.18 represent duplicates generated from the same lnO. It is 

observed that (1-1 Vs 1-2) and (3-1 Vs 3-2) had a high Spearman correlation value of 

>0.80 for E5C of 8nt length. Interestingly, the libraries generated from lnO2 and those 

lnO1 (1-1 Vs 2 and 1-2 Vs 2 respectively) had a Spearman’s correlation of >0.70 for 

E5S of 8nt length represented by blue lines in Figure 3.18. 
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Figure 3.18: Technical replicates produced from lnO1(1-1, 1-2) and 3 (3-1,3-2) are highly 

reproducible. Spearman’s ranking correlation was used to rank duplicates to calculate their similarities. 

It was seen that the duplicates obtained from the same lnO (1-1 vs 1-2) and (3-1 vs 3-2) had a high-

ranking correlation of >0.8. 
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3.11 Influence of E5S on TIRES 
 

The most important aim of this work was to examine the effect of E5S on TIRES. The 

three lnOs experiments were performed in duplicates. Due to the low coverage 

observed in PR and TR libraries generated from lnO2, the libraries were combined to 

form a single library referred to as 2 hereon. 

 

The TIRES ratio of every motif present in the five samples (1-1, 1-2, 2, 3-1 and 3-2 

respectively) was calculated using the formula: 

 

Where Ijk is TIRES of an N-nucleotide long variant j from the set of 4n random 

variants. J calculated for the data obtained in the sample k (1-1, 1-2, 2, 3-1 or 3-2). P 

and T are the number of reads from PR and TR libraries, respectively. The maximum 

effect of TIRESG on E5S was seen at N=8nt and is maintained consistently in this 

work unless mentioned otherwise. 

Figure 3.19 shows the TIRES effect of individual nucleotides along the E5S of the 

five libraries: 1-1,1-2,2,3-1 and 3-2 respectively. An equiprobable frequency model 

was used to predict the influence of each nucleotide along E5S based on its effects on 

TIRES. There was a lack of consistency in the preference of a specific nucleotide at 

any specific position across E5C to influence TIRES across the 5 libraries under 

consideration (Figure 3.19(a-e)). The nucleotide at position 2 had a strong influence 

on TIRES. In samples 1-1, 1-2 and 2 at position 2, G was found to have the highest 

enrichment and U was depleted. However, in samples 3-1 and 3-2, A was found to 

have the highest enrichment while U remained depleted at position 2. These 

differences in patterns could have arisen due to multiple factors including differences 

in the chemical synthesis of sO, differences in lnO used in each library and differences 

in technical reproducibility across samples including sequencing reads obtained from 

the libraries. 
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Figure 3.19: Analysis of sequence context preference for TIRES based on the E5S observed in 

individual samples a) 1-1 b) 1-2 c) 2 d) 3-1 and e) 3-2 respectively. 
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TIRESG was computed as the geometric mean of TIRES ratio of every motif present 

in the five libraries 1-1, 1-2, 2, 3-1 and 3-2 respectively. The geometric mean was used 

instead of the arithmetic mean to reduce the large differences in values between 

samples that could otherwise cause a disproportionate influence on the result. The 

measurement of TIRESG included certain considerations: a) TIRESG was only 

measured for unique variants which were observed in all libraries (1-1,1-2,3-1 and 3-

2 respectively), b) if a unique variant was not present in any library and c) if TIRES 

value was computed to be 0 in any of the libraries, the reads were discarded. 

Due to the presence of random nucleotides along E5S, we expect the nucleotide in 

each position to have an equal probability of occurrence. It is expected that the 

frequency of each of the four possible outcomes (A, C, T and G) to be 0.25. For 

example, if it was found that the real frequency of a nucleotide in position 2 is 0.05 

The observed to expected ratio would be 0.05/0.25= 0.2 (observed value is five times 

lesser than expected value). If the observed frequency is the same as the expected 

frequency of 0.25, the observed/expected ratio will be 1 (baseline of plot 3.20a). Based 

on the model above, y= log2(TIRESG). In Figure 3.20(a) U, has a nucleotide TIRESG 

log2( -0.7) which is ~0.61. Therefore, U occurs almost 60% less frequent than what 

would be expected at position 2. The sequences in the y axis with a value less than 

±0.05 had less than ~4% deviation from the expected value and this was considered 

an arbitrary threshold for significance of the effects of E5S on TIRESG. Based on this 

consideration, the effect of E5S on TIRESG was insignificant along positions 9-11 

(Figure 3,20a). 

Sequence logos were generated (Methods, 2.28) using WebLogo 251 for the top (10%) 

and bottom (10%) candidates based on their TIRESG values. Each logo consists of 

stacks of symbols, one stack for each position in the sequence. The height of symbols 

within the stack indicates the relative frequency of each nucleotide at that position. 

Figure 3.20b shows that unique variants containing the highest TIRESG values (top 

10% of 16386 unique variants). Based on the information theory, A/U in position 3 

and G in position 2 was enriched. Similarly, unique variants containing the lowest 

TIRESG values (bottom 10% of 16386 unique variants) had an enrichment for U in 

position 2-5 and G in position 6. 
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b)                                                                c) 

 

 
 

 
Figure 3.20: Sequence context preference for translation initiation in the E5S. a) TIRES was 

calculated (Methods, 2.24) per nucleotide for libraries 1-1,1-2,2,3-1 and 3-2 respectively along 

positions 2-11 of E5S along with +1G b) WebLogo of 1000 out of 1048286 unique variants having 

highest TIRES values along the E5S and c) WebLogo of 1000 sequences out of 1048286 unique variants 

having lowest TIRES values along E5S. WebLogo was created using the online WebLogo3 software. 
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3.12 E5S position 2 has an influence on TIRES values 
 

 

As seen in Figure 3.20a, the second nucleotide position of the E5S appears to have a 

greater influence on TIRESG in comparison to nucleotides at positions 3-11. To 

measure the strength of the nucleotide context of nucleotide position 2 in E5S 

influencing TIRESG, scatter plots were used. Scatter plots are used to identify potential 

associations between any two datasets 252. An upward trend of the plot is indicative 

of positive association and a downward trend represents the negative association. A 

correlation coefficient evaluates the existence of a linear relationship between two 

samples under consideration 253. 

 

Appendix Figure 6 compares the relationship between technical replicates using lnO1 

and 3 respectively (samples 1-1 vs 1-2 and 3-1 vs 3-2). A strong linear relationship 

was observed between the technical duplicates 1-1 vs 1-2 and 3-1 vs 3-2 with a 

correlation coefficient of 0.837 and 0.774 respectively indicating the similarity in 

measures at position 2 of E5S on TIRES value in the respective library. 

 

The scatter plots along other positions were measured showed similar measures 

between duplicates (data not shown), the effect of the second nucleotide is shown as 

it had the most significant effect along the E5S. The cooperative effects of adjacent 

nucleotides along the E5S were calculated but did not have a significant influence on 

the TIRES. However, the nucleotides with positive cooperative effect on E5S is listed 

in Appendix Table 3. 
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3.13 Validation of the effect of E5S on translation in HEK293T 

cells using reporter assays 

 
Figure 3.20 (a) indicates that specific nucleotide positions in the E5S can influence the 

TIRESG. To validate these findings, candidates (n=4) with the highest and lowest 

TIRES values were selected. TIRESG values are representative of the cumulative 

effect of TIRES on all five libraries. Upon candidate selection, the NNNNNNNNN of 

the lnO template was replaced by the E5S context of the candidate listed in Figure 

3.21 (High denoted as H and low as L). However, the candidate constructs were 

generated using a similar approach as that of the lnO template (Figure 3.6). These 

constructs were transcribed in-vitro, capped, and transfected into HEK293T cells for 

2 hours after which their luciferase values were measured (Methods,2.20). It was 

expected that if E5S had a large influence on TIRESG, the reporter assay would show 

substantial differences between the selected candidates depending on their E5S 

context. The box plots in Figure 3.21 illustrate there were no obvious differences in 

the luciferase activities of high and low TE candidates. These experiments were 

repeated using HEK cell free lysates using the same candidates, and no significant 

differences were observed in the luciferase activities of high and low TIRESG 

candidates (data not shown). 
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Figure 3.21: Validation of the effects of specific E5S context on TIRES. High and low TIRES 

candidates were selected based on their E5S context. These candidates were inserted into the lnO DNA 

template replacing the NNNNNNNNNN region with the desired E5S context (high and low). The 

candidate constructs were transcribed in-vitro, capped, and transfected in HEK293T cells for two hours 

after which firefly luciferase reporter values were measured and plotted for all candidates. 
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3.14 Percentage of GC in E5S influences translational efficiency 
 

In mammalian cells, the dependency of translational efficiency on thermal stability, 

location and GC content of mRNA hairpin structures in the 5’TL have been previously 

evaluated 254 (Bebendure, 2006). It was found that the presence of high GC content 

and a stable secondary structure in the 5’TL had a negative impact on the translation 

efficiency in mammalian cells. In this work, experiments were performed in 

HEK293T cells, thus the potential variation of TIRESG values according to the GC 

content along the E5S is of interest. The GC percentage of each individual variant in 

the E5S was plotted against its respective TIRESG value. It was observed that the 

increase in GC content in the E5S causes a decrease in the observed TIRESG values 

(Figure 3.22). This is consistent with previous reports that high GC content observed 

in 5’TL can cause translation repression 255. An example of secondary structure 

prediction in model RNAs containing different distributions of GC% (E5S+ 5’TL of 

β-globin as in lnO) is shown in Appendix Figure 9. 
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Figure 3.22: Percentage of GC content in the E5S affects TIRESG in HEK293T cells. The percent 

GC content increases from top to bottom in the figure. The average mean TIRESG value for each range 

of %GC content represented in the figure was calculated. Error bars represent the standard error of the 

mean of the fields indicated across different ranges of GC% calculated against their TIRESG values. 
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3.15 Comparison of translation efficiencies between artificially 

designed and naturally occurring mRNAs 
 

If there is a certain binding preference of a specific initiation factor for a specific E5S 

context selected for high TIRESG, it should be maintained across all endogenous 

mRNAs containing the specific E5S sequence. To investigate this, the published 

transcriptional start site 256 and ribosome footprinting 68,210 datasets obtained from 

HEK cells were compared to E5S candidates with high and low TIRESG values. 

Importantly, only endogenous 5’TLs beginning with a guanine were examined, as this 

feature was a constant in all E5S libraries used in this work. 

 

No overall correlation between the ribosome occupancy in the footprinting datasets 

and the TIRESG values obtained from the E5S library was observed as seen in Figure 

3.23 (a and b). Information theory was used to measure the information content of 

10% of the top and bottom candidates ranked by their TE values using the Andreev 

and Sidrauski ribosome footprinting datasets using Sequence Logos 68,210. The 

sequence preference was observed in the E5S region for the high and low TE 

candidates obtained from ribosome footprint studies differed between the ribosome 

profiling datasets. When the data available for all candidates ranked by their TE was 

analysed using information theory, sequence logos indicated similar patterns as seen 

in Figure 3.23 (b, c, and e, f). While the Andreev et al footprint study had top 

candidates with a significance of G and bottom candidates with U in position 2 which 

is coherent with our observations in this work. These observations were not consistent 

with the Sidrauski study that is expected. 
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Figure 3.23: E5S identity does not correlate with mRNA translation in HEK293T cells. Ribosome 

occupancy of endogenous mRNAs that begin with a +1 guanine does not correlate with the TIRESG 

values obtained for E5S. The log2 TIRESG for each E5SC was plotted against the log2 ribosome 

occupancy of endogenous mRNAs from two different datasets. a) Andreev et al, b) Sidrauski et al. The 

TE values were calculated for all mRNAs from the two ribosome footprinting studies. Top and bottom 

10% TE value candidates were chosen to study their motif preferences along the region of E5S using 

WebLogo. The high and low TE value nucleotide preferences for top 10% of endogenous mRNAs from 

two datasets c and d) Top candidates from Andreev et al and Sidrauski et al, e, and f) bottom candidates 

from Andreev et al and Sidrauski et al. 
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3.16 Sequence preference in E5S of mRNA isolated from 

polysomes in MCF7 cells 
 

It is well known that certain features (e.g. uORFs, secondary structures, G 

quadruplexes etc) in the 5’TL can influence translation 8. To understand the effects of 

the 5’TL on TIRES, it is important to define a 5’TL of a mRNA containing accurate 

TSS information. 

 

There are no resources which provide TSS information for commonly used cell lines. 

To understand the precise relationship between the 5’TL features and translational 

control, it would be ideal to have both TSS and translation efficiency determined in 

the same cell line. Polysome profiling is a standard technique to study translatomes. 

Gandin et al studied the mTOR sensitive mRNAs (>5000 mRNAs) in MCF7 cells for 

their TSS and translational efficiency. While the TSS information in this study was 

assessed using NanoCAGE, the translatome of the desired cell line was studied using 

polysome profiling. Data extracted from the mRNA using NanoCAGE analysis and 

polysome fractions in the mock condition (control) are illustrated in figure 3.24.Figure 

3.24 shows the frequency of the TSS in the RNA isolated from the control conditions 

of MCF7 cells in highly translating polysomes (ribosome >=3) for 6551 genes. It is 

observed that most efficiently translated mRNA prefer G in their first and second 

positions. This converges with the observations made in this work where there is a 

preference for G in position 2 in actively translating cells containing a +1G along the 

E5S. The accurate information of TSS and the translatome on MCF7 cells was 

evaluated using NanoCAGE and polysome profiling. The data obtained from 

polysomes was tabulated for its sequence preference along various positions. 
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Figure 3.24: Sequence preference for mRNAs isolated from polysomes in MCF7 cells using 

NanoCAGE data 86 a) Nucleotide frequency at position 1 and b) Nucleotide frequency at position 2. 
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4. Discussion and future perspectives 
 

Delineating the effects that can influence the translation initiation of cap proximal 

nucleotides in the 5’TL can help us in understanding how different regulatory context 

inputs can either restrict or promote the translation of specific messages. The central 

approach taken to address this question was manipulating the cap proximal sequence 

on mRNA namely a stretch of 10nt in length called E5S and study its effect on a 

translation initiation statistic measured as TIRES. 

 

To study the contribution of the E5S on TIRES values, the effect of randomising its 

sequence on translation initiation was investigated. A similar approach previously was 

used to study the effect of start codon context on translation 200. To produce the large 

amounts of RNA required for this investigation, an IVT method using T7 RNA 

polymerase was employed. The T7 promoter region used for IVT is conserved in 

positions -17 to +6 positions 257. However, use of the T7 promoter introduced a 

minimum of a single guanosine at the +1 position that was critical for transcription. 

Milligan et al observed that the strength of transcription using a T7 polymerase was 

the highest in the presence of +GGG in the T7 promoter (+1 to +3 positions). While 

+GG (+1 and 2 positions) was essential for efficient transcription, the presence of +G 

(+1 position) was the minimal requirement critical for transcription. Indeed, replacing 

the +1 positions with C or A led to a 10-fold decrease in transcription efficiency. A 

similar observation was made in this work (data not shown) where transcription 

efficiency was determined for DNA templates varying in the presence of G/GG and 

GGG in positions +1 - +3 of the T7 promoter region. Despite efforts as outlined in the 

results, it proved impossible to bypass the +1G requirement for transcription. 

Consequently, to produce RNA in large quantities for downstream experiments, the 

presence of guanosine was included in the T7 promoter of the DNA template used for 

all IVT reactions discussed in this work. In-vitro systems using other promoters like 

Sp6 were not considered as they also added a +1G in their transcripts upon IVT. 

 

Various strategies were considered to remove the +1G post transcription. The aim was 

to generate RNA including all nucleotides in the +1 position to study the effects of 

E5S on TIRES. RNA ligase and RNase H methods were successful but inefficient in 
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producing a large amount of RNA as explained in the results. Recently, Nelissen et al 

used a novel recombinant strategy employing tRNA scaffolds and combining T7 

promoter IVT along with hammerhead ribozyme. It allowed them to excise the RNA 

of interest containing the desired +1 nucleotide position and limit insert length to 200nt 

258. Their recombination overexpression strategies included a large number of cloning 

steps and extensive downstream purification steps 259. Due to insert length restrictions 

and technically challenging downstream processing steps, this method was considered 

but not used for IVT of the desired lnO transcript. However, keeping these challenges 

in mind, a novel two-step PCR approach was successfully used to generate large 

amounts of lnO template required for downstream experiments. 

 

In library generation for massively parallel sequencing, Aird et al aimed at minimising 

biases caused during Illumina library preparation 206. It was seen that low temperature 

ramp rates (2.2°C/s) were a critical factor involved in producing PCR products with 

minimal biases. A lower number of PCR cycles was preferred allowing minimisation 

of errors introduced in the PCR 260. Phusion polymerase is considered one of the best 

enzymes for PCR aimed at producing the least amount of PCR biases and the highest 

sequence integrity 260. The novel two step PCR approach employed in this thesis used 

Phusion polymerase in combination with a lower number of PCR cycles and a lower 

ramp temperature resulting in minimum biases in the lnO template subsequently 

leading to minimal biases in the NGS library. Previous studies creating a randomized 

pool of mRNA transcripts for library preparation 261 used a selection strategy based on 

bacterial plasmids. The novel approach used here proved to be a fast and effective way 

of producing a randomized library containing all expected variants as shown in the 

results devoid of a selection pressure from a bacterial system. 

 

Based on equal probabilities, all nucleotides were expected to occur at a frequency of 

0.25 at each position of the E5S. Due to technical challenges in T7 promoter based 

IVT, the inevitable presence of G at +1 position restricted the study to only 25% of 

the possible E5S variants. However, in the case of annotated human transcripts 

obtained from three different databases, it was observed that G occurs in the +1 

position at a higher frequency (~35%) by comparison with other nucleotides. Thus, 

the +1G transcripts used reflect approximately one third of the annotated human 

transcripts. 
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Polysome profiling separates translated mRNAs on a sucrose gradient based on the 

number of bound ribosomes 244. In this work, a 10-60% continuous sucrose gradient 

was used for polysomal isolation. Polysome-profiling is used to study translatomes 

and extraction of efficiently translated mRNA (associated with >3 ribosomes) from a 

large volume across many fractions is challenging262. This property makes polysome-

profiling inconvenient for larger experimental designs or for use with samples with 

low RNA yields. However, isolating a single RNA species of interest from the 

polysomal fraction for library preparation was technically challenging. Although most 

of the steps were optimized to obtain the highest yield in the experimental protocol 

used in this work, the RNA obtained from polysomes resulted in limiting quantities 

that differed between samples. Recently, Liang et al optimized a non-linear sucrose 

gradient (three sucrose fractions -5%, 34%, and 55%) which enriches for efficiently 

translated mRNA in only one or two fractions, thereby reducing sample handling by 

5–10-fold 262. This step if incorporated into the experimental protocol used here could 

potentially minimise losses during total RNA isolation from polysomes and thereby 

increase the library yield. 

 

Various studies that characterized the 5’ end of mRNAs revealed that transcription 

start sites in most mRNAs are not constricted to a single, well defined position but can 

often occur at multiple sites or be distributed around a specific site152,153.’Alternative 

TSS in the 5’TL can modulate the translation efficiency 263. The importance of TSS in 

determining the translation of a transcript has been well studied. It is known from 

previous work that some transcripts that can contain multiple TSS reflect the selection 

of particular sites by transcription factors152. When there is a narrow distribution of 

TSS around a particular site for a transcript, it is unlikely that its transcription reflects 

the presence of different transcription factors. While it is not understood, it is possible 

that these TSSs may also be regulated. The findings presented here suggest that small 

differences around the TSS can influence the enrichment preferences for translation 

initiation. 

 

There has been a gap of knowledge in determining whether the nucleotides 

immediately downstream of the cap of mRNA can influence its translation initiation. 

Our findings suggest that cap proximal nucleotides namely E5S can influence 

translation initiation based on their TIRES values as described in this work. A 
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frequency-based model is proposed here which illustrates that minor changes in the 

nucleotides along the E5S can influence its preference for translation initiation. 

Tamarkin-Ben-Harush et al performed TSS mapping of the translatome and observed 

a significant change in translation due to cap proximal nucleotides during stress 

conditions 197. However, in the control conditions, the length of the 5’TL had a 

pronounced effect of translation while the cap proximal nucleotides had no observed 

role in modulating translation. The exact mechanism by which the E5S proximal to 

the 5’ cap can influence translation is not known. Our findings suggest that the E5S 

may influence the accessibility of the 5’ end of a mRNA, and it is probable that minor 

changes in this sequence can modulate translation initiation, but the magnitude of this 

change remains unclear. It is likely that TSS selection for most transcripts is controlled 

by a regulatory mechanism. Therefore, comparison of the effect of E5S on TIRES 

during conditions of stress against the control condition as demonstrated in this work 

can potentially reveal factors that could control TSS selection. 

 

Although the usage of geometric mean TIRESG averaged the effects of TIRES in 

various libraries, it is important to note that the context preference for each library was 

different. The individual pattern of sequence context preference for E5S based on 

TIRES was slightly different in position 2 for samples generated from lnO3 (libraries 

3-1 and 3-2) where C was preferred against samples generated from lnO2 and lnO1 

(libraries 1-1,1-2 and 2) where G was the preferred. These preferences could have 

potentially been the same across the libraries if the steps towards library preparation 

and the sequencing depth of all libraries could be equalized across the libraries. 

 

The second position of E5S was found to have a markedly higher influence on 

translation initiation than positions further downstream (for technical reasons it was 

not possible to estimate the influence of the first position of E5S). In this position G 

was the most enriched nucleotide, and U was the most depleted nucleotide. Similar 

observations were made by another study (unpublished) where the effects of cap 

proximal nucleotides influencing eIF4E binding were studied264. Although the 

methodology used in this study is specific and cannot be directly compared to several 

databases containing information on HEK293T cells, it can be used to gain insight on 

the translation initiation rate attributed to the E5S. The TSS annotations of various 

transcripts are simplified against various complexities. A previous study comprising 
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of two arms: one of NanoCAGE to study TSS information and the other of polysome 

profiling to study genes active in the process of translation is a robust way to study the 

regulation of translation in the context of sequence information in a given cell line. 

Gandin et al used a similar approach to study mTOR responses in MCF7 cells 86, TSS 

information of 6551 transcripts isolated from polysomes in the control condition was 

obtained. These genes analysed for their sequence in the E5S showed that G was 

preferred in position 1 and 2. This is coherent with our observations for E5S 

preferences in HEK293T cells. The influence of +2 position in the mRNA 5’TL has 

not been well studied in the context of translation. However, in mammals it is observed 

that the ribose of the +1 and +2 nucleotides of mRNA is methylated at the 2’ positions.  

 

However, the functions of this modification remains unclear for most mRNAs. A 

recent study in HELA cells showed that when the enzyme responsible for 2’O 

methylation at +1 position was knocked down, the global translation remained 

unaffected127. However, the 2’ methylation in the +1 and +2 positions of mRNA 

influenced the ribosome binding and translational efficiency in specific 

mRNAs124,265,266. It is possible that 2’O methylation can influence the translation 

initiation by an unknown mechanism or influence the binding of the cap binding 

protein eIF4E; given that the modified +1 nucleotide in mRNA can contact eIF4E 

directly189. 

 

The intensity of the effects of TIRESG observed across E5S in this work was not 

reflected in reporter assays using a luciferase reporter gene constructed with high and 

low TIRESG candidates in HEK293T cells and in HEK cell free systems. Over forty 

years ago, Lodish proposed the model that translation of mRNAs that initiate protein 

synthesis at lower rates will be preferentially inhibited when initiation is globally 

reduced, and this was experimentally demonstrated by the comparison of translation 

of alpha and beta globin 267. A difference in the affinity of mRNAs for the general 

translation initiation factor eIF2 was observed to arbitrate selective translation of a 

particular viral mRNA over globin mRNA in a cell-free system based on competition 

between mRNA molecules 268. However, it is important to note that in the experiment 

where lnO RNA molecules were transfected, 410 RNA molecules were competing for 

the components of the translational machinery. The TIRES effects are likely to be 

influenced by competition between mRNA molecules that differ only in their E5S. 
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The experimental design used in this work reflects the translation initiation enrichment 

in a randomized artificial mRNA library. Translation efficiency from artificial mRNA 

observed in the experiment did not correlate with endogenous RNA data obtained from 

ribosome profiling. Nonetheless, this work provides new findings on the sequence 

influence along E5S affecting the rate of translation initiation and provides significant 

insight into factors that may influence translation initiation on endogenous mRNA. 

 

Secondary structure in the RNA can affect the binding capacities of 43S PIC to the 

mRNA and thereby inhibit their translation efficiencies. This work shows that 

increased GC% across E5S has a negative influence on its TIRESG values. The effect 

of secondary structure based on distance, position, and difference in thermal stability 

of RNA hairpins has been reported previously. The higher GC% contribution to lower 

translation efficiency was examined across different mammalian cell lines 46. It was 

seen that hairpin structures placed at various positions between +1 to +9 had maximal 

effect on modulating translational efficiency 46. Future mutational studies on 

modulating secondary structures present in E5S variants containing high and low 

TIRESG values will be necessary to verify if mRNA translation is defined by the 

accessibility of the 5’ end of the mRNA. 

 

Analysis of available ribosome profiling datasets did not reveal a significant 

association between E5S and ribosome footprint densities at the coding regions. This 

work clearly shows the influence of nucleotide context on translation initiation, it is 

possible that other factors such as uORFs and RNA secondary structures have a higher 

influence on translation initiation than E5S. This work increases our understanding of 

how mRNAs are chosen for translation based on their E5S. 

 

In the future, to fully assess the role of the E5S in translation, it will be important to 

develop methods to readily synthesize capped mRNAs encoding different +1 

nucleotides including A, U, and C. mRNAs with different +1 nucleotides can be 

generated by improving existing chemical synthesis methods 269 or by identifying an 

RNA polymerase that can produce mRNAs with various +1 nucleotides that is 

adaptable to robust IVT. A third possibility would be to identify enzymes that can 

phosphorylate RNA 5’ ends to produce 5’- triphosphorylated RNA which could be 

used as a substrate for existing in vitro capping systems 270. 



 

125 

 

 

Cap dependant translation initiation begins with the scanning mechanism in most 

cases. The 40S ribosomal subunit binds to the capped mRNA and scans along the 5’TL 

in search of an optimal start codon. Continuous measurement of protein synthesis in-

situ revealed that ribosome migration occurs in a unidirectional motion. The rate of 

migration of the ribosome is virtually independent of mRNA sequence and secondary 

structure 271. If the candidates with high and low TIRES values have a preference due 

to mRNA competition, measuring their respective protein synthesis rates can elucidate 

the context preference of E5S in modulating translation initiation. The time required 

for scanning along 5’TL was calculated using precise translation kinetic studies in the 

case of Vassilenko et al study including differences in the lengths of their 5’TL 271. To 

implement a similar methodology in this work would be challenging due to similar 

lengths of 5’TL between all variants of E5S. In- vitro translation is dependent on 

various factors. To implement the calculation of the differences in time taken to scan 

along the 5’TL it is important to comprehend elongation rate, termination rate, 

luciferase maturation rate and its effects based on a change in salt concentration, 

however, some of these aspects are not possible using currents methods or are 

technically challenging. 

 

It is well known that RBPs can influence the translation of a subset of mRNAs 92. The 

candidates containing lower TIRESG could potentially be scanned for a motif 

preference for known RBP binding preference giving insight into mechanisms 

governing the relationship between translation and the E5S of mRNAs. In the future, 

RBP studies could probe for novel RBPs that bind candidates having a lower TIRESG 

value that can be validated using overexpression/knockdown studies of the desired 

RBP. A similar approach could be used for certain E5Ss that are preferred for high 

TIRESG value (a consequence of an RBP leading to enhanced translation). 

 

The 5’TOP motif is the most well-known motif influencing translation efficiency that 

occurs in the 5’ cap proximal region. The 5’TOP motif is known to modulate 

translation during stress conditions 272. In the future, with the possibility of successful 

incorporation of a random nucleotide in the +1 position of the mRNA construct, it 

would be interesting to study the influence of 5’TOP motif using the experimental 

approach used in this work in basal and stress conditions. 
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The identification of the mechanism in which the cap structure binds the cap binding 

protein, eIF4E is crucial to our understanding of cap dependant translation initiation. 

It is possible that eIF4E has a binding preference to nucleotides that are proximal to 

the cap structure. Various structural and biophysical studies have demonstrated the 

binding of eIF4E to different analogues of the 5’ cap 189–191. The nucleotide in the +1 

position is known to form different contacts with different initiation factors. For 

example, eIF4Es binding to the nucleotide in the +1 nucleotide position and the 5’ cap 

can vary based on the nucleotide identity 273,274. The advent of RBNS (RNA bind and 

Seq) could help us to understand the binding affinities of different mRNAs to specific 

initiation factors 195. eIF4E is a limiting factor in cells, it remains bound to 

eIF4G/4EBP  275. Zinshteyn et al showed that the translation initiation factor eIF4G1 

preferentially binds yeast transcript leaders containing conserved oligo-uridine motifs 

276. In yeast, it was also seen that conformational coupling between eIF4G and eIF4E 

is important to trigger ribosome loading onto mRNA 273,277. Although these coupling 

preferences have not been studied in humans, it is highly probable that the binding 

affinities of eIF4E alone vary from that of eIF4E bound to eIF4G/4EBP. In the future, 

it will be interesting to study the effects of E5S on TIRES based on overexpression or 

knockdown of the initiation factors eIF4E and eIF4G. 

 

The E5S is a previously unappreciated determinant of translation initiation, and this 

work suggests that differences in mRNA 5' end accessibility defined by the cap 

proximal sequence maybe an important determinant in modulating the rate of 

translation initiation. 
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Appendix 

 
 
 

 

  Table 1: Characteristics of oligos ordered from Trilink Technologies. 

 

Short Oligo O.D(A260) Extinction Molecular weight 

number   coefficient (g) 

     

sO1  69.2 515.8 16229.1 

     

sO2  27.2 515.8 16229.1 

     

sO3  63.5 457.1 14334.9 
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Figure 1: Confirming the quality of RNA using an 8% PAGE UREA gel. RNA generated from in 

vitro transcription using AmpliScribe™ T7-Flash™ Transcription Kit in an 8% PAGE urea gel shows 

a clear band without any denaturation bands in lower sizes. RNA generated from lnOs 1,2 and 3 

respectively are shown against a control luciferase template containing two RNA molecules of sizes 1.1 

and 2.2 KB respectively. 
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a)                                                         b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Luciferase light units in the reporter assay to measure transfection efficiencies of a) 

capped and b) uncapped lnO RNA. HEK293T cells were transfected with lnO RNA at 8-10 µg/6 well 

plate and firefly luciferase light units were measured to evaluate transfection efficiencies. Transfection 

efficiencies are tabulated for each lnO RNA. Capped RNA is transfected over 300-fold better than 

uncapped RNA. 
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a) sOBG1 b) sOBG2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) TR1-1 d) TR1-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Frequency of the number of occurrences of reads in samples (a-d) as shown in the figure. 

 

Illumina MiSeq has an output of 25 million reads per lane. We used 4 samples in the lane giving rise to 

unequal distribution. The expected number of reads upon equal distribution would result in 6.25 million 

reads per sample. Each library has a possibility of 410 unique variants. If the total library size is 6.25 

million reads, it leads to a maximum of 6 occurrences of each unique variant. However, the number of 

reads per sample differed significantly from each other as seen in table 3.1 leading to a different number 

of occurrences for each possible unique variant in the library. Multiple occurrences of the same unique 

variant can potentially indicate biases introduced due to technicalities in the protocol. 
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Table 2: Raw data information on NGS data using Hi-seq3000 on two sequencing lanes shown 

as a and b respectively. 

 

a) 

 
Sample Name Clean reads Clean bases Read length(bp) Q20 (%) GC (%) 

lnO2 39608144 1940799056 49 95.71 44.97 

sOBG3 24550751 1202986799 49 77.12 47.05 

lnO3 30896905 1513948345 49 95.97 45.53 

TR2-1 29490071 1445013479 49 95.98 44.50 

TR3-2 38460630 1884570870 49 95.56 44.39 

TR1-2 11992123 587614027 49 75.93 43.96 

lnO1 34413338 1686253562 49 95.67 44.49 

TR2-2 52453046 2570199254 49 96.29 43.66 

TR3-1 36363104 1781792096 49 96.30 44.41 

      

b) 
 

Sample Name Clean reads Clean bases Read length(bp) Q20 (%) GC (%) 

PR1-1 9912887 485731463 49 69.20 46.84 

PR1-2 28519077 1397434773 49 91.23 44.06 

PR2-1 24205021 1186046029 49 90.24 44.77 

PR2-2 2371855 116220895 49 63.68 46.32 

PR3-1 29634484 1452089716 49 90.90 44.63 

PR3-2 39403259 1930759691 49 90.76 44.54 

sOBG1 29481565 1444596685 49 90.48 45.15 

sOBG2 31542397 1545577453 49 90.70 44.47 

TR1-1 69652844 3412989356 49 90.04 43.83 
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Figure 4: The principle of using UMI to remove PCR duplicates. In this figure, if three out of the 

ten transcript molecules in total are labelled with the unique identifier (i.e. barcoded), only three 

barcodes will be observed in the sequencing data. Converting eight out of the ten molecules leads to the 

identification of eight barcodes in the sequencing reads. A UMI can become saturated if the number of 

transcripts copies exceeds the number of possible UMI combinations.  
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a) 

 
 

b) 
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Figure 5: Frequency of occurrence of nucleotides at positions containing random nucleotides in 

position 8-18. An extra nucleotide was found to be added 5’ proximal to the G (following the UMI 

sequence). The major fraction of this extra nucleotide is G and a smaller fraction of these are T. As the 

extra nucleotide is accounted for the reads that are 19 nucleotides in length are included in this analysis. 

In both cases, the sequence considered includes the last 11 nucleotides, (G including the 10nt 

randomer). 
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a)                                                             b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

c)                                                                          d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Correlation plot between different libraries showing the importance of position 2 of 

E5S. Correlations of measurements of TIRES produced in position 2 were plotted. TE was calculated 

based on each position from 2-11 by taking the ratios of PR/TR of each sample. Pearson’s correlation 

was calculated between the TE of the following samples: a) 1-1vs 1-2 b) 3-1 vs 3-2 c) 3-1 vs 2 and d) 

1-1 vs 3-1. 
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Table 3: Positive interactions (Synergy value >20.12) of di-nucleotides in the E5S influencing 

TIRES.  
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Figure 7: The motifs of RBPs FUS and HNRNPA1 highly expressed in HEK293T cells were 

downregulated in the E5S library. The motifs highly represented by RBPs FUS and HNPRNPA1 were 

taken from the RBP compendium in humans 211. These motifs were scanned across the E5S context in 

comparison to all other 5nt motifs present in the library and represented as a box plot. 
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a) 
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b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: GO enrichment using of genes obtained from polysomes of MCF7 cell lysates whose 

TSS information was obtained from NanoCAGE 86 a) Genes containing GG and GC in the nucleotide 

positions 1 and 2 and b) Genes starting with U in position 1. It was observed that GG and GC occurred 

at the highest frequency in the NanoCAGE data obtained from polysomes and genes that began with U 

(T) in position 1 had the lowest frequency. The selected genes (a and b) were used as an input gene list 

for GO analysis and PANTHER-go slim tool was used to elucidate the molecular functions. 
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a)                                                                  b) 
 

 

 
 

 

c)                                                                                     d) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: RNA structure prediction of model RNA containing GC percentages of E5S with the 

5’TL of lnO RNA of a) 0-40% (GC%: 37.5%, GGAAAACU) b) 40-70% (GC%: 50%, GCUAGUGA) 

c) 70-90% (GC%: 87.5%, GCUCGCCG) and d) 90-100% (GC%:100%, GCGGCGGG) 
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Figure 10: Quantification of the minimum amount of IVT RNA required for library preparation 
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