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Abstract 

This thesis is split into three sections based on three different areas of research. 

In the first section, investigations into the α-alkylation of ketones using a novel 

chiral auxiliary is reported.  This chiral auxiliary was synthesised containing a 

pyrrolidine ring in the chiral arm and was applied in the preparation of α-alkylated 

ketones which were obtained in up to 92% ee and up to 63% yield over two steps.  

Both 3-pentanone and propiophenone based ketones were used in the investigation 

with a variety of both alkyl and benzyl based electrophiles.  The novel chiral 

auxiliary was also successful when applied to Michael and aldol reactions.  A 

diamine precursor en route to the chiral auxiliary was also applied as an 

organocatalyst in a Michael reaction, with the product obtained in excellent 

enantioselectivity, albeit in very poor yield.  It was also employed as a chiral ligand 

along with sparteine in the α-alkylation of a carboxylic acid. 

In the second section, investigations into potential anti-quorum sensing molecules 

are reported.  The bacteria Pseudomonas aeruginosa is an antibiotic-resistant 

pathogen that demonstrates cooperative behaviours and communicates using small 

chemical molecules in a process termed quorum sensing.  A variety of C-3 

analogues of the quorum sensing molecules used by P. aeruginosa, including 

chloro, bromo, iodo, fluoro and methyl, as well as the quinazolinone analogue, were 

synthesised.  Expanding upon previous research within the group, investigations 

were carried out into alternative protecting group strategies of 2-heptyl-4-(1H)-

quinolone with the aim of improving the yields of products of cross-coupling 

reactions. 

In the third section, investigations into fluorination and trifluoromethylation of 2-

pyrones, pyridones and quinolones is reported.  The incorporation of a fluorine atom 

or a trifluoromethyl group into a molecule is important in pharmaceutical drug 

discovery programmes as it can lead to increased lipophilicity and bioavailability, 

however late-stage incorporation is rarely reported.  Both direct fluorination and 

trifluoromethylation were attempted.  Eight trifluoromethylated 2-pyrones, five 

trifluoromethylated 2-pyridones and a trifluoromethylated 2-quinolone were 

obtained in a late-stage synthesis from their respective iodinated precursors using 

methyl fluorosulfonyldifluoroacetate as a trifluoromethylating reagent. 



Abbreviations 
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Chapter 1  Introduction 
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1.1  General introduction 

The study of stereochemistry originated in the early 1800s during 

investigations by the French physicist Jean-Baptiste Biot into the nature of plane-

polarised light.1-3  Biot noted that when a beam of plane-polarised light passed 

through a solution of certain organic molecules, including sucrose and camphor, 

the plane of polarisation rotated.  The compounds were termed optically active.  

Little research was carried out in this area until Louis Pasteur began his work on 

the study of crystalline tartaric acid salts derived from wine in 1848.  When Pasteur 

crystallised a concentrated solution of sodium ammonium tartrate below 28 °C, he 

made the observation that two distinct types of crystals, which were mirror images 

of each other, precipitated.4  Pasteur was able to painstakingly separate the two 

types of crystals by working carefully with tweezers.  Although the original 

mixture was optically inactive, solutions of each type of crystal were optically 

active and their specific rotations were equal in amount but opposite in sign.  This 

discovery of chirality two centuries ago has necessitated that organic chemists 

develop methods of forming enantiomerically pure substances, rather than 

synthesising a racemate and separating the two enantiomers.    

 Chiral compounds are used in a wealth of applications, including 

pharmaceuticals5 and agrochemicals.6  Biological activity of these compounds 

arises through their interaction with an enzyme or receptor, which are constructed 

from chiral building blocks such as amino acids or carbohydrates, meaning these 

sites of action are themselves chiral.  Receptor sites in the body can interact 

differently with the two different enantiomers of a chiral compound.  Although 

there is only a difference in the spatial arrangements of the atoms at a chiral centre 

of a compound, this variance can lead to different effects in vivo.7-9  

 Synthetic organic chemistry reactions that allow formation of carbon-

carbon bonds are an important class of transformations, demonstrated by the 

numerous reviews published in this area.10,11  Numerous well-known reactions 

successfully accomplish this feat, including for example cross-coupling 

reactions,12 the aldol condensation13 and annulation reactions.14  Methodologies 

that allow selective formation of these bonds while also introducing new 

stereocentres are of particular interest and recent publications have shown progress 

in this area.15-18 
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1.2  Methods of synthesising enantiomerically pure compounds 

There are three main routes to form enantiomerically pure compounds 

based on the types of starting material used (Figure 1.1).19   

 The use of chiral pool methodology allows the formation of 

enantiomerically pure compounds by the use of cheap, naturally occurring, 

commercially available chiral starting materials.  An example of this is the use of 

chiral amino acids to direct chirality further in a synthesis, with the chiral starting 

material becoming part of the final product through various addition steps.  

However, a drawback to this method is that it is only useful when the chiral starting 

material is available in stoichiometric quantities and is enantiomerically pure. 

 Alternatively, a racemic mixture can be synthesised and the desired 

enantiomer indirectly isolated by either crystallisation or chromatography.  This 

procedure relies on derivatisation by reacting a mixture of enantiomers with 

enantiomerically pure compounds, resulting in diastereomeric compounds which 

have different physical properties and can be separated by the methods previously 

mentioned.  Dynamic kinetic resolution (DKR) is an option when the reaction can 

be carried out in conditions where the enantiomers of a substrate can interconvert.  

In this case, theoretically all of the substrate can be converted to an 

enantiomerically pure product.20  If DKR is not an option, then this route suffers 

from the major disadvantage that half of the mixture is the undesired enantiomer, 

which is usually discarded.  On reaction scale up, this can be problematic both in 

terms of cost and logistics.       

 The treatment of achiral substrates with a chiral reagent to yield a chiral 

product is an attractive means of forming enantiomerically pure compounds 

compared with methods previously outlined.  This can be performed using 

enzymes in the process of biocatalysis or using chiral compounds such as chiral 

auxiliaries or asymmetric catalysts.  Asymmetric synthesis is of particular 

importance in the production of pharmaceuticals, and it has been reported that 

more than half of drug candidate molecules have at least one chiral centre.21  The 

requirements for a useful asymmetric synthesis include high (usually greater than 

90%) regio-, diastereo- and enantioselectivities.7  In an asymmetric synthesis, an 

achiral substrate is converted to an unequal mixture of the two enantiomers of a 

chiral product, ideally achieving the highest possible proportion of the desired 

enantiomer. 
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Figure 1.1 Routes to enantiomerically pure compounds. 

1.3  α-Alkylation of aldehydes and ketones 

Development of efficient and highly selective methods for carbon-carbon 

and carbon-heteroatom bond formation has been, and continues to be, a 

challenging yet exciting endeavour in organic chemistry, with new publications in 

the area constantly available.16  The α-alkylation of aldehydes and ketones is 

considered one of the most fundamental reactions in synthetic organic 

chemistry.22,23  These reactions consist of two steps.  Firstly, the carbonyl 

compound is deprotonated at the α-position using a suitable base to provide a 

stabilised anion, also known as an enolate.  Typically, a strong base such as LDA 

is used to ensure complete formation of the enolate.  Deprotonation occurs in a 

cyclic mechanism.24  The lone pair on the basic nitrogen atom of LDA abstracts 

an enolisable proton α- to the carbonyl moiety of 1 (Scheme 1.1).  At the same 

time, the lithium coordinates to the oxygen to form the intermediate enolate.  In 

the second step, an SN2 substitution reaction takes place, with attack of the enolate 

on an electrophilic alkyl halide providing an α-alkylated product 2.  Both steps are 

usually undertaken at low temperatures, typically -78 °C.  Choice of electrophile 

is important to ensure successful alkylation.  Those that work best are methyl, allyl, 

primary alkyl and benzyl halides.  Secondary alkyl halides can alkylate enolates, 

however the reaction tends to be slower than that which occurs when a more 

reactive alkyl halide is chosen.  Tertiary halides on the other hand do not 
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participate in alkylation reactions, instead undergoing unwanted E2 elimination 

reactions.24 
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Scheme 1.1 Depiction of two-step process in α-alkylation of carbonyl compounds. 

Due to the highly electrophilic nature of aldehydes, even with the reaction 

being carried out at the low temperatures required, the rate at which deprotonation 

takes place is not fast enough to outpace aldol self-condensation.  Hence the 

reaction is more successful with ketones as substrates.24  

 Despite its usefulness and widespread application, classical carbonyl 

enolate chemistry is intrinsically complex and problematic.  Most of the problems 

encountered in carbonyl enolate chemistry (aldol type self-condensation, di- and 

poly-alkylation, control of regiochemistry and lack of reactivity of corresponding 

enolates) have been solved in recent years by the use of nitrogen analogues of 

aldehydes and ketones, such as enamines, imines or hydrazones, which act as 

synthetic equivalents of the carbonyl compounds.24-30   

 The formation of α-alkylated aldehydes and ketones which also incorporate 

a new stereogenic centre are of utmost importance in organic chemistry.  

Fortunately, over the last four decades, techniques have become available to 

effectively allow this transformation, the most common approach of which is the 

use of chiral auxiliaries to induce the asymmetry in the product.31 

1.4  Chiral auxiliaries 

The use of chiral auxiliaries in asymmetric synthesis has been a major 

breakthrough towards easy access to enantiomerically pure compounds and it has 

become one of the preferred methods for carbon-carbon bond formation in the 

synthesis of chiral natural products.8  In this approach, a prochiral substrate such 

as 3, is attached to the enantiomerically pure chiral auxiliary such as 7 to yield 4, 
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before reaction with an achiral reagent (Scheme 1.2).  The possible products 5 are 

thus diastereomeric and one is formed in excess due to the difference in activation 

energies.  The chiral auxiliary is removed without racemisation to yield the final 

product 6 bearing a new stereocentre, with the formation of one enantiomer over 

the other favoured due to the chirality of the auxiliary.7    

R
R1

O

R
R1

N
Xc

R
R1

N
Xc

E
R

R1
O

E

H2N-Xc

Xc
 = chiral auxiliary

* *

3 4 5 6

7

 

Scheme 1.2 Example of chiral auxiliary methodology.   

For a chiral auxiliary to be considered practically useful it must be 

enantiomerically pure, cheap and easy to obtain in quantity.  It must be both easy 

to attach to the substrate and easy to remove from the product without loss of 

stereochemical integrity and it should be separable and recoverable from the final 

product.9         

 There are four main factors which direct attack preferentially from one 

face.  The main factor is steric hindrance of the bulk of the chiral auxiliary however 

the other factors that need to be considered include the chelation of metal ions, 

hydrogen bonding and electrostatic interactions.7 

1.4.1  Development of  chiral auxiliaries for asymmetric alkylation 

In 1969, Yamada and co-workers reported the first asymmetric synthesis 

of α-alkylated cyclohexanones via enamine chemistry using a chiral auxiliary 

based on (S)-proline (Scheme 1.3).32  Enamines (S)-8a-c were formed by reaction 

of cyclohexanone with their respective L-proline esters and reacted with either 

methyl acrylate or acrylonitrile to afford products (S)-9a-c.  The authors found that 

the degree of enantioselectivity of 9 was enhanced with increasing steric bulk of 

the ester moiety.  On optimisation of the reaction conditions, the authors noted that 

the best yield for the alkylation step (9a attained in 55% from 8b) was obtained 
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when the reaction was carried out in ethanol, so this was the solvent of choice for 

subsequent alkylations.  The effect of reaction temperature on the asymmetric 

induction of 8c with methyl acrylate was investigated.  Results showed that 

increased reaction temperature resulted in increased yield (20 °C for 5 h provided 

9b in 17% yield, while reflux for 3 h provided 9b in 33% yield), but a decrease in 

enantioselectivity (59% enantiomeric excess, ee, was observed when the reaction 

was carried out at 20 °C compared to 43% ee when the reaction was carried out at 

reflux). 

N COOR1 O
R2

CN

(S)-8a-c (S)-9a-c

8a 
R1 = CH3

8b 
R1 = C2H5

8c 
R1 = t-Bu

O

O
or

9a R2 = CN
9b R2 = COOCH3
9c R2 = COOH  

Scheme 1.3 Yamada’s enamine based alkylation system.    

Another example of the use of proline in asymmetric synthesis is the Eder-

Sauer-Weichert-Hajos reaction which was more successful than Yamada’s 

previous effort in terms of selectivity, with enantiomeric excess of up to 93% being 

achieved in cyclisation reactions used to form steroid building blocks.33,34   

 In 1976, Meyers reported results of >95% ee in alkylation reactions of 

cyclohexanone via metallated azaenolates using an acyclic amino-acid based 

auxiliary (Scheme 1.4).35  Basing their studies on the results published by 

Yamada,32 the authors proposed that a more rigid metalloenamine would be 

necessary to effect an efficient asymmetric alkylation.  Hydrogenolysis of chiral 

oxazoline (4S,5S)-10 to the amide (R)-11 followed by acidic hydrolysis provided 

chiral amine (R)-12 in 92% yield.  (R)-12 was reacted with cyclohexanone to 

provide imine (R)-13 which was deprotonated, alkylated and hydrolysed to 

provide (R)- or (S)-14 in excellent selectivity.  Chiral auxiliary (R)-12 could be 

recovered in good yield (73-85%) by neutralisation of the oxalic acid solution after 

hydrolysis.   
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Scheme 1.4 Meyer’s synthesis of alkylated ketones using metallated azaenolates. 

Around this time, the use of N,N-dimethylhydrazones (DMHs) as synthetic 

equivalents for azaenolates came to the fore.36-40  The application of DMHs had 

major advantages over free carbonyl compounds as they are more reactive and 

higher regio- and stereoselectivity was observed.25  The efficacy of these DMHs 

stems from the high reactivity of the hydrazone-derived organometallic species, in 

particular organolithium derivatives. The hydrazone moiety can be easily cleaved 

by a variety of methods, allowing regeneration of the carbonyl functionality.25,41  

The N-N bond is susceptible to reductive cleavage to yield primary amines.25  

Compared to the parent carbonyl compound, the acidity of the α-hydrogens of the 

hydrazone is ca. 10 orders of magnitude lower (the pKa of the hydrazone is ca. 30 

whereas the pKa of the corresponding ketone is ca. 20).  This is an advantage with 

hydrazones, as the lower acidity means their conjugate bases are more reactive 

towards electrophiles than the corresponding ketones.  On addition of bases such 

as LDA,36,39 n-BuLi39 and t-BuLi42 to solutions of hydrazones, stable metallated 

hydrazones are formed due to the coordination of the metal, in these cases lithium, 

to nitrogen atoms.  The low acidity observed with α-hydrogens in hydrazones 

prevents racemisation of stereogenic centres at this positon by typical bases (such 

as carbonates, hydroxides and alkoxides), which is in direct contrast with the high 
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racemisation rates observed with analogous ketones and aldehydes.25  The use of 

hydrazones is also advantageous as regioselective deprotonation is usually high 

and predictable.43,44  Unless there is an anion-stabilising group present at a 

competing site, deprotonation will occur at the least substituted carbon atom.25  

Alkylation of the metallated azaenolates provides regioselectively functionalised 

or branched hydrazones.  Importantly, alkylation of hydrazones occurs selectively 

at the α-carbon unlike ketones or aldehydes, where alkylation of the oxygen often 

competes with alkylation at the α-carbon.25 

1.4.2  SAMP/RAMP-methodology in asymmetric α-alkylation   

The breakthrough in using chiral auxiliaries to synthesise α-substituted 

ketones in good yield and enantioselectivity occurred in 1976, when Enders and 

co-workers45 pioneered the now frequently used SAMP/RAMP methodology.  

Employing (S)- or (R)-1-amino-2-methoxymethyl-pyrrolidine (SAMP or RAMP) 

as the chiral auxiliary, this approach has turned out to be very successful in the α-

alkylation of both cyclic and acyclic ketones.    

 Starting from commercially available (S)-proline, the auxiliary SAMP is 

available in four steps in 58% yield, while RAMP, the (R)-enantiomer is obtainable 

in six steps starting from (R)-glutamic acid in 35% yield.46,47  

 The synthesis of SAMP (Scheme 1.5) begins with a lithium aluminium 

hydride reduction of (S)-proline (S)-15 to alcohol (S)-16.  Subsequent nitrosation 

using ethyl nitrite yields nitrosamine (S)-17, methylation is achieved using sodium 

hydride/methyl iodide to give (S)-18 and a final lithium aluminium hydride 

reduction yields target compound SAMP (S)-19, with excellent yields being 

observed for each step.45  
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Scheme 1.5 Four step synthesis of SAMP. 

 SAMP (S)-19 can also be obtained via a six step synthesis, again starting 

from (S)-proline (S)-15 (Scheme 1.6).  The first step is the same as for the previous 

synthesis shown.  Alcohol (S)-16 is treated with methyl formate to provide 

aldehyde-protected amine (S)-20 in quantitative yield.  Methylation yields (S)-21 

in excellent yield, whereupon treatment with base regenerates the free amine (S)-

22.  Nitrosation provides (S)-18, and a final lithium aluminium hydride reduction, 

as per Scheme 1.5, provides the desired product SAMP (S)-19 in high yield.45   
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Scheme 1.6 Six step synthesis of SAMP. 

 An alternative route, in which the possibly toxic nitrosamine (S)-18 

intermediate in the reaction sequence is avoided, was developed by Enders et al. 

in 1987.48  The nitrosamine is avoided by N-amination of (S)-22 to yield (S)-23 

and subsequent Hofmann degradation to provide SAMP in 57% overall yield 

(Scheme 1.7). 

N
CONH2

O
N
NH2

O

(S)-23 (S)-19
SAMP

57% overall yield

N
H

O

(S)-22

KOCN

H2O

KOCl
KOH

H2O

 

Scheme 1.7 Hofmann degradation route to SAMP. 

(S)-Proline is the naturally occurring form of the amino acid and is 

available in abundance.  However the (R)-enantiomer is not as readily available so 

RAMP is not synthesised in the same manner.49  Instead, the synthesis begins with 

the more commonly available and relatively inexpensive (R)-glutamic acid (R)-24, 
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which is refluxed in water and purified over an ion-exchange column to afford (R)-

pyroglutamic acid (R)-25.  Initial results indicated that it was possible to reduce 

(R)-25 to (R)-16 in 57% yield; however when the reaction was performed on larger 

scales it was noted that the yield dropped dramatically to ca. 15%.  By 

transforming (R)-25 into the methyl ester using diazomethane, the subsequent 

lithium aluminium hydride reduction of the lactam and ester moiety proceeds in 

one step in 76% yield.  From this point, the synthesis is as per that of SAMP, 

whereby nitrosation with a suitable alkyl nitrite provides (R)-17.  Subsequent 

methylation yields nitrosamine (R)-18.  A final lithium aluminium hydride 

reduction affords RAMP (R)-19 in 35% overall yield (Scheme 1.8).49 
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NH2
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EtONO
THF

LiAlH4
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Scheme 1.8 Synthesis of RAMP. 

 Analogues of SAMP and RAMP chiral auxiliaries with increased steric 

bulk have also been developed.  SADP (S)-26, SAEP (S)-27 and SAPP (S)-28 

(Figure 1.2) can be prepared in a seven step sequence from (S)-15.50  The even 

more sterically demanding RAMBO (R)-29 can be obtained from the 

corresponding amino acid derivative51,52 following the usual protocol for the 

preparation of these chiral auxiliaries.53-55 
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Figure 1.2 Sterically demanding analogues of SAMP and RAMP. 

1.4.2.1  Mechanism of α-alkylation of SAMP-hydrazones 

 Chiral hydrazones are formed in good to excellent yield (75-95%) by 

combining SAMP or RAMP with the desired ketone or aldehyde under water 

separation conditions (Scheme 1.9).31  With ketones, the reaction is carried out at 

reflux with catalytic amounts of acid in benzene or cyclohexane.  In the case of 

aromatic ketones, where carbonyl reactivity is lower, longer reaction times are 

necessary and water formed during the reaction must be removed azeotropically 

with a Dean-Stark trap.  In the case of aldehydes, the reaction can be carried out 

neat at 0 °C.47                 
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Scheme 1.9 Synthesis of chiral SAMP-hydrazones from (a) aldehydes and (b) 

ketones.31 

A lithium base, such as LDA, is typically used to deprotonate the 

hydrazone leading to an azaenolate intermediate.  This can be trapped by an 

electrophile to obtain diastereomerically enriched products.  In the deprotonation 

step, four geometrical isomers - ECCECN, ECCZCN, ZCCECN and ZCCZCN - can 

theoretically be generated.  Investigations into the geometry of the deprotonation 

step showed that in the case of both cyclic ketones and the more flexible acyclic 

systems, only the ECCZCN-species results (Scheme 1.10), as confirmed by trapping 

experiments,45-47,56,57 spectroscopic investigations58,59 and X-ray analysis.60  

Further determination of freezing point depression values of lithiated 2-

acetylnapthalene-SAMP-hydrazones confirmed the monomeric structure of the 

enolate complexed by two solvent molecules.61  In this structure, the lithium atom 

of the lithio enehydrazide is located ca. 20° below the CCNN-plane and is 

intramolecularly chelated by the methoxy group.  This is a rigid intermediate and 

attack proceeds under high diastereofacial differentiation, yielding highly 

diastereomerically enriched hydrazones 34. 
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Scheme 1.10 Origin of selectivity in SAMP-hydrazone alkylations. 

 Although much emphasis has been placed on the study of this and related 

newer approaches both experimentally55,62-70 and theoretically,71-78 the postulated 

SE2'-front (metalloretentive) mechanism is based solely on the stereochemical 

outcome of the reaction.  In this mechanism, the electrophile attacks from the front, 

which in this instance has to be the case as the back face is blocked by the steric 

bulk of the pyrrolidine ring.  In 2011, Koch published findings on a computational 

study of the SAMP alkylation.79  The results agreed with the previously postulated 

SE2'-front mechanism.  Detailed knowledge of the structure of the intermediate 

metallated SAMP hydrazone was required in order to understand the mechanism.  

The first step in the investigation by Koch was to find a reliable geometry of a 

model key intermediate 35, which was formed from acetaldehyde and SAMP.  

Koch found that the resulting structures possess N-Li coordination as found in the 

X-ray structure, but with a varying number of additional contacts to the allylic 
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carbon atoms and the second hydrazone nitrogen atom (Figure 1.3).79  Compound 

35b, with the most coordinations, is predicted to be more stable in the gas phase 

(62 kJ mol-1 lower in energy compared to 35a).    

 Due to the well-known fact that solvation plays a crucial role in lithium 

chemistry,74,76,80-83 it was also considered during these investigations.  Calculations 

on the model lithio azaenolate with either one or two THF molecules coordinated 

were performed.  Two sets of optimised geometries were deemed to be possible: 

one in which the lithium cation sits “above” the NNCC moiety and one where it is 

displaced to the “back” of this NNCC semicircle (Figure 1.3).  When one THF 

molecule was added, the energy difference between the two structures is reduced 

to less than 30 kJ mol-1.  When a second molecule of THF was added, the Li-O 

contacts become more important than those to the azaallylic part of the hydrazone, 

leading to almost equally stable structural motifs with three Li-O contacts within 

8 kJ mol-1.  The two structures differ only slightly in the distances and number of 

azaallylic contacts (Figure 1.3).  Based on this experimental evidence, Koch stated 

that the rate-determining step of the SAMP-alkylation proceeds via intermediate 

35b.   

 

  
Figure 1.3 Postulated model lithio azaenolates as key intermediates in the SAMP 

alkylation.  The disolvated (THF) structures are depicted in the lower half.79 

 Added confirmation that the reaction proceeds by a metalloretentive SE2'-

front mechanism was attained when Koch calculated the transition states for 

several SAMP alkylations with known enantiomeric excesses, covering a wide 

range of enantiomeric purities.79  Koch found that in all but one case, the 

H

N
N

O

35
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metalloretentive syn attack of the electrophile from above onto the allylic moiety 

is preferential and that from all the data obtained, the reaction is likely to be an 

SE2'-front or SEi-type mechanism, which are difficult to distinguish.  In both cases 

a bimolecular mechanism is at play, whereby the new bond forms at the same time 

as the old bond breaks.  Attack of the electrophile occurs from the front in both 

mechanisms, resulting in retention of configuration.  The subtle difference is that 

in the SEi mechanism, the electrophile may assist in the removal of the leaving 

group by forming a bond with it at the same time as the new carbon-electrophile 

bond is being formed.  In this case however, the relatively large distance between 

the electrophile and the leaving group suggested that the SE2'-front was more 

likely.  Koch also concluded that the selectivity of the reaction derives from the 

internal stabilisation of the transition state (where the electrophile attacks from 

above the lithiohydrazone plane) by electrophile-lithium interactions.  It was stated 

that steric effects do not contribute to the selectivity. 

1.4.3 Methods of cleavage of hydrazone to carbonyl   

 Over the last number of decades, many cleavage methods have been 

developed to allow transformation from the hydrazone back to the parent carbonyl 

functionality that are compatible with other functional groups.41  In general, 

cleavage methods can be classified as either oxidative, hydrolytic or reductive.  

1.4.3.1 Oxidative methods           

 Oxidative methods include the use of ozone in an ozonolysis reaction, 

which has been extensively used in the case of DMHs and also SAMP/RAMP 

hydrazones (Scheme 1.11).  In this methodology, a gentle stream of ozone is 

bubbled through a solution of the desired hydrazone 36 in dichloromethane at -78 

°C.  The colour of the solution turns green to blue (indicating excess O3) when the 

reaction has gone to completion.  Nitrogen or argon is then flushed through the 

solution as it is allowed to warm to room temperature.46  This is a very clean 

reaction, yielding the desired carbonyl compound 37 and the nitrosamine (S)-18 in 

quantitative yield, which allows for recycling of the chiral auxiliary (S)-19 in up 

to 80% yield after separation by distillation or chromatography and subsequent 

reduction by lithium aluminium hydride.  Advantages of this method of cleavage 

include the use of relatively mild reaction conditions, the requirement of neutral 

pH, short reaction times, the ease of detecting the end of the reaction, excellent 
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yields and lack of racemisation of sensitive aldehydes and ketones.  However this 

method cannot be applied when there are functional groups present which are 

incompatible with ozone under the reaction conditions.  Due to the high reactivity 

of the C=N double bond towards ozone, the parent carbonyl functionality can be 

restored chemoselectively, even in the presence of functional groups that are 

sensitive to oxidation, such as thioethers,84 protected α-hydrazino and 

aminoketones,85 and borane-protected phosphines86 by careful monitoring of the 

reaction by TLC or the addition of certain diazo dyes as indicators.   
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N O
N O
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R3

N O
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O3

LiAlH4
Recycling

(S)-18

(S)-19

36 37

 

Scheme 1.11 Cleavage of hydrazone by ozonolysis. 

Although the mechanism of ozonolysis is not exactly known, it is plausible 

that oxidative C=N bond cleavage starts with intermediates of type 38a or 38b 

(Scheme 1.12), which directly decompose to the desired carbonyl compound 37 

and a diazene (S)-39, which is further oxidised under the reaction conditions to 

yield the nitrosamine (S)-18.  Hence 2 equivalents of ozone are necessary for 

complete consumption of hydrazone.87 
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Scheme 1.12 Postulated mechanism for ozonolysis. 

Another method of oxidative cleavage used to regenerate the parent 

carbonyl compound is the use of singlet oxygen, which has broad applicability for 

the regeneration of aldehydes, ketones and aldol adducts.88  There are two 

plausible mechanistic pathways for the course of the oxidative cleavage from 

hydrazones 40, either an ene-type reaction via a hydroperoxide 41, or a 

cycloaddition reaction via the dioxazetidine 42 as an intermediate to provide 

carbonyl compounds 44 (Scheme 1.13).  However, the cycloaddition route and 

autoxidation process can be ruled out as the dimethylnitrosamine 43 is not formed 

and the hydrazones 40 do not react in the absence of a sensitiser.  
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Scheme 1.13 Possible mechanistic routes for singlet oxygen hydrolysis of 

hydrazones. 

 Other less common oxidative cleavage methods include the use of sodium 

perborate (NaBO3),89,90 tetrabutylammonium peroxydisulfate ((TBA)2S2O8),91 

[hydroxyl(tosyloxy)iodo]benzene (HTIB),92 magnesium monoperoxyphthalate 

(MMPP),93 meta-chloroperoxybenzoic acid (MCPBA),94 peracetic acid95 and 

hydrogen peroxide,96 amongst others.41     

 A recent publication by Smith et al.97 has shown that ketone SAMP 

hydrazones can be cleaved to the carbonyl compound by use of peroxyselenous 

acid, generated in situ from SeO2 and 30% H2O2.  The introduction of a pH 7 buffer 

was necessary to prevent epimerisation at the α-position of the ketone.  The authors 

proposed a mechanism for the reaction (Scheme 1.14).  The first step is the 

formation of peroxyselenous acid 45.  Oxidation of the pyrrolidine nitrogen of 36 

takes place to generate 46, which activates the hydrazone towards hydrolysis.  

Addition of water with abstraction of hydrogen leads to 47, with the lone pair of 

electrons on the oxygen able to initiate fragmentation of the molecule, providing 

desired ketone 37 and diazene (S)-39 as by-product. 
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Scheme 1.14 Proposed mechanism for the oxidative hydrolysis of SAMP 

hydrazones with SeO2 and H2O2 under buffered conditions. 

1.4.3.2 Hydrolytic methods 

A commonly used hydrolytic cleavage method used in SAMP/RAMP 

methodology is that of methyl iodide/HCl, also known as the salt method.  

According to Avaro et al., much milder reaction conditions are required for the 

hydrolysis of dimethylhydrazones if they are first transformed to their 

corresponding trimethylhydrazonium iodides.98  The conversion of SAMP/RAMP 

hydrazones involves a two-phase system.    

 Treatment of 36 with excess methyl iodide at 60 °C leads to a quantitative 

mixture of methyliodides 48a and 48b (Scheme 1.15), which are hydrolysed 

without further purification in a biphasic system of 3-4M HCl and n-pentane to 
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afford the parent carbonyl compounds without racemisation in good to excellent 

yields in reaction times of 15–60 min.  The resultant carbonyl compounds are 

rapidly transferred with vigorous stirring into the pentane layer, which is free of 

acid.  Chiral aldehydes and ketones which bear a stereocentre in a position α- to 

the carbonyl moiety are surprisingly resistant to racemisation in an acidic 

environment.  However, great care must be taken with glassware as even traces of 

base lead to rapid and complete racemisation.41    

 The aqueous layer from this biphasic cleavage method contains the 

auxiliary in the form of salts (S)-49a and (S)-49b.  When this is neutralised and 

extracted, the result is a mixture of SAMP hydrazone (S)-50, the hydrazine (S)-51 

and SAMP (S)-19 in a ratio of 1:7:2 with a moderate yield of 40–50%.  The 

ammonium salts (S)-49a remain in the aqueous phase whilst the trisubstituted 

hydrazine (S)-50 is known to easily undergo oxidation in air to yield formaldehyde 

hydrazone (S)-51, which is hydrolysed to give (S)-19.  In this way, it is possible to 

at least partially recycle the chiral auxiliary from this cleavage method (Scheme 

1.15).41  
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Scheme 1.15 Cleavage of hydrazone via salt method. 

It is possible to carry out an efficient cleavage of the hydrazone to the 

parent carbonyl compound without first transforming the hydrazone to its 

corresponding methyliodide salt.  The hydrazone is dissolved in a suitable solvent 

and stirred vigorously with 3-4M HCl in a biphasic system.  This was the case in 

the synthesis of RP 66471 54, a potent potassium channel opener, where 

SAMP/RAMP methodology was used to form a quaternary centre α- to the 

carbonyl group.99  Using acidic hydrolysis, the key intermediate 53 was formed 

from 52 without the need of first converting to salts (Scheme 1.16). 
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Scheme 1.16 HCl cleavage of hydrazone. 

The use of acidic reagents for the cleavage of hydrazones to the parent 

carbonyl compounds is not ideal when acid-sensitive groups are present elsewhere 

on the compound.  In these cases, alternative methods must be investigated.  The 

use of silica gel for the cleavage of DMHs yields corresponding ketones with acid-

sensitive groups such as THP groups, benzyl ether moieties and acetal groups 

remaining intact.100  This method does appear to have limitations when attempting 

to cleave α-branched hydrazones.101      

 The hydrolysis of ketone and aldehyde DMHs can also be achieved using 

Cu(II) reagents,102 in particular CuCl2
103 and Cu(OAc)2.

104
  As the resulting 

hydrazine is oxidised to the diazene by Cu(II) the hydrolysis reaction is 

irreversible.105  The Cu(II) hydrolysis method is ideal for compounds that contain 

functionalities that are sensitive to oxidation or strong acids (for example amines, 

alkenes, thioethers, acetals and silyl ethers) as these groups are unaffected under 

the conditions employed, and a higher yield is obtained than when subjected to 

other typical procedures such as ozonolysis or the salt method, due to associated 

side reactions.  Enders et al. demonstrated the use of CuCl2 in the cleavage of 

functionalised α-alkylated SAMP-hydrazones 55 in a ‘one pot’ 
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alkylation/cleavage sequence to afford α-branched parent ketones 56 in good to 

high yield with high enantiopurity (Scheme 1.17).103    
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R2 R1
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E

N aq. CuCl2

52-96%
*
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Scheme 1.17 CuCl2 cleavage of hydrazone. 

Cleavage of ketone SAMP-hydrazones 55 has been achieved with 

saturated aqueous oxalic acid solution in a mild, racemisation free biphasic method 

which also allows recycling of the chiral auxiliary.106  The corresponding ketones 

56 are available in excellent yields (84–98%) and high enantiomeric purity (90–

99% ee).  This procedure is particularly suited to compounds that contain 

functional groups that are sensitive to oxidative cleavage conditions (e.g. alkenes) 

or to strong acids (e.g. ketals).  Recovery of the chiral auxiliary can be achieved 

by treating the corresponding oxalate salt 57 with sufficient base and extraction 

with a mixture of THF/diethyl ether (Scheme 1.18).  To increase the recovery 

yield, the volume of water must be kept at a minimum due to the water solubility 

of the hydrazine.  An added advantage of this method is that no potentially 

carcinogenic nitrosamine by-product is formed, as is the case with other cleavage 

methods, and there is no need to use potentially toxic methylating agents, as is 

required in the salt method.  It must be noted that this method is not suitable for 

the hydrolysis of aldehyde SAMP hydrazones.106 
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Scheme 1.18 Oxalic acid method of cleavage of hydrazone. 

Other less frequently used hydrolytic cleavage methods include the use of 

catalytic quantities of BiCl3 in wet THF under microwave irradiation which allows 

hydrolytic cleavage of the C=N bond of DMHs to yield the corresponding ketones 

or aromatic aldehydes in good yields (75–98%) at atmospheric pressure within a 

few minutes.107  Using a catalytic amount of Pd(OAc)2/SnCl2, ketone DMHs can 

be cleaved to parent ketones in moderate to good yields, without the use of acidic 

or oxidative reagents.108  With this method, it is possible to hydrolyse α,β-

unsaturated ketone DMHs without observing rearrangement.  Halogens or nitro 

groups are also unaffected when using this methodology.  The use of BF3·OEt2 as 

a Lewis acid has proven to promote the hydrolysis of DMHs.109  In comparison 

with ozonolytic cleavage, higher yields were obtained but reaction times were 

longer.110 A method for the selective hydrolysis of ketone hydrazones in the 

presence of acetals has been published.111  In this methodology, the hydrazone is 

dissolved in a biphasic mixture of THF and NH4H2PO4 at pH 4.5 and proved 

successful for both cyclic and acyclic hydrazones.     

 A wide scope of both ketone and aldehydes has been generated by 

biocatalytic conversion of phenyl- and N,N-DMHs in quantitative yield upon 

incubation with baker’s yeast.112  Another example of enzymatic cleavage is the 

use of a catalytic amount of porcine pancreatic lipase (PPL) in a biphasic 

acetone/water system at room temperature for the deprotection of ketone 
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dimethylhydrazones 58 to ketones 59 with varying reaction times based on 

substrate structure (Scheme 1.19).113  Both studies on the enzymatic hydrolysis 

were concerned only with racemic substrates. 
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N

R1 R2

O
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Acetone-H2O

R1 = alkyl, aryl
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up to 96%
 

Scheme 1.19 PPL hydrolysis of dimethylhydrazones.  

1.4.3.3 Reductive methods 

Although reductive cleavage procedures have been used to regenerate the 

carbonyl functionality from derivatives such as oximes and 2,4-

dinitrophenylhydrazones, they have rarely been employed in the cleavage of 

dialkylhydrazones.  Enders and co-workers synthesised ferrocenylketone SAMP 

hydrazones and required a reductive method to afford the corresponding ketones, 

due to the sensitivity of these compounds to oxidative and acidic reaction 

conditions.114  The cleavage of the N-O bond of oximes and nitro compounds as 

well as the S-O bonds of sulfoxides can be achieved with the use of titanium(III).  

Due to the analogous nature of the N-N hydrazone bond, it was postulated that this 

method could be utilised en route to regenerate parent carbonyl functionality.  

Trivalent titanium has been employed in the cleavage of 2,4-

dinitrophenylhydrazones,115 with the resulting imines generated from the 

reduction being easily hydrolysed to their respective carbonyl compound.  TiCl3 

and SnCl2 have been used by Enders to successfully convert ferrocenylketone 

SAMP hydrazones 60 to their parent ketones 61 in good yields and 

enantioselectivities as an alternative to ozonolysis (Scheme 1.20).114  During the 

cleavage, Sn(II) and Ti(III) are oxidised to Sn(IV) and Ti(IV) respectively, which 

are rapidly hydrolysed under the reaction conditions.  It was noted that slight 

racemisation occurred with these cleavage methods, however ortho-functionalised 

ferrocenylketones were obtained with good to high enantiomeric purity. 
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Scheme 1.20 Cleavage of ferrocenylketone SAMP hydrazones. 

1.4.4  α-Alkylation of N-amino cyclic carbamate chiral auxiliaries 

For a number of years, the use of SAMP/RAMP chiral auxiliaries was the 

only method of forming asymmetric α-alkylated ketones in good yield and 

enantioselectivity.  The methodology was successfully employed in a number of 

total syntheses of natural products.31  Development of this methodology has been 

hindered due to some drawbacks.  As the dialkylhydrazones used are only weakly 

acidic, longer exposure to LDA is required to ensure complete deprotonation.  

There is also the need for extremely low temperatures for alkylation (-110 to -78 

°C).  Both factors can be problematic and costly on larger scales.  Finally, 

conditions for the removal of the chiral auxiliary to regenerate the parent ketone 

must be chosen carefully to avoid undesired reactions with other functional groups 

present on the molecule.41         

 In 2008, Lim and Coltart reported a major advance in the area with the 

development of chiral N-amino cyclic carbamates 62-65 (ACCs) (Figure 1.4), 

which were accessible by amination of the corresponding oxazolidinone.116  

Condensation of 62-65 with the desired carbonyl compound yields chiral 

hydrazones.  It was noted that alkylation of these hydrazones could take place at   

-40 °C with less exposure time to LDA required for complete deprotonation, 

making this method more amenable to large scale reactions.  Importantly, the use 

of these chiral auxiliaries allowed the formation of asymmetric α,α-bisalkylated 

ketones for the first time, due to their unique directing effect which overrides the 

inherent selectivity of LDA.  Hydrazones 66-69 were synthesised by stirring a 

solution of 3-pentanone with each of the auxiliaries 62-65 and a catalytic amount 

of p-toluenesulfonic acid in DCM at reflux (Figure 1.4).   
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Figure 1.4 Chiral ACCs and respective hydrazones formed by reaction with 3-

pentanone and p-toluenesulfonic acid in DCM, developed by Lim and Coltart. 

Initial studies on the asymmetric allylation of 3-pentanone ACC 

hydrazones 66-69 (Scheme 1.21) showed that using chiral hydrazone 67 resulted 

in the product ketone 74 being formed in excellent yield (90%) and good 

selectivity of (R)- and (S)-74 in a 76:24 ratio.  Repeating the reaction with 

hydrazone 69 resulted in better selectivity (86:14), however a slight decrease in 

yield was observed. From these results, it was postulated that if a chiral auxiliary 

was utilised that had greater steric bulk closer to the amino function it would result 

in greater enantioselectivity.  Hydrazone 68 was subjected to allylation and 

cleavage to provide both (R)- and (S)-74 in both excellent yield (93%) and 

enantioselectivity (91:9).  The more conformationally rigid chiral auxiliary 62 was 

utilised to form hydrazone 66, which contains a carbonyl group adjacent to the 

hydrazone moiety for enhanced α-proton acidity and tight chelation at the level of 

the azaenolate.  Under the same reaction conditions using 66 a further 

improvement to both yield (96%) and enantioselectivity (96:4) was observed 

(Scheme 1.21).116 
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Scheme 1.21 Asymmetric allylation of ACC hydrazones. 

The authors have demonstrated that excellent enantioselectivites are 

available using a plethora of electrophiles and importantly, products are isolated 

in high yields.  Best results were achieved using 66, with excellent yields (up to 

99%) and selectivities (up to 98:2) observed in alkylation reactions.  Deprotonation 

occurs in 30 min at -40 °C and alkylation occurs in 2 h.  Hydrazone cleavage is 

straightforward and efficient with no damage to or loss of the chiral auxiliary.  

These factors suggest that this method of α-alkylation of ketones is amenable to 

large-scale reactions.116      

 Addition of LDA to unsymmetrical ketone SAMP/RAMP-hydrazones 75 

and 76 generally results in the removal of the most sterically accessible 

proton,31,47,117 meaning that controlled asymmetric α,α-bisalkylation is not 

possible.  This results in a mixture of alkylated hydrazones 77a and 77b and 

therefore ketones 78a and 78b (Scheme 1.22, (a)).  In contrast, the use of ACC 

hydrazones in a process termed complex-induced syn-deprotonation (CIS-D) by 

Coltart and co-workers accounts for the α,α-bisalkylation of ketones observed.117  

The carbonyl group in the auxiliary was also intended to influence the 

regiochemistry of deprotonation to enable the α,α-bisalkylation of ketones which 

have both α- and α'-protons.  Alkylation of 79 occurs to provide 80 with a second 

alkylation occurring at the same side to yield 81.  Cleavage of the hydrazone results 

in one single ketone 78b.  Interestingly, the regiochemical outcome is the opposite 

of that normally observed for LDA-mediated deprotonation of ketones and 

SAMP/RAMP-hydrazones (Scheme 1.22, (b)).  An added advantage to this 

strategy is that access to either enantiomeric ketone is possible by using a single 

enantiomer of the auxiliary and by altering the alkylation sequence.   
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Scheme 1.22 Asymmetric α,α-bisalkylation (a) via chiral imines and (b) via ACC 
hydrazones. 
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The postulated mechanism (Scheme 1.23) for the α,α-bisalkylation of 

ketones is based on directed deprotonation of the hydrazone, utilising the carbonyl 

lone pair on the auxiliary to coordinate with the base, thereby directing 

deprotonation to the same side of the C=N bond (82→83, 84→85).  Providing the 

resulting azaenolates 83 and 85 were configurationally stable and the 

monoalkylated product 84 did not isomerise when formed, the process should 

result in product ketone 86 via CIS-D.116,118     
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Scheme 1.23 Postulated mechanism for α,α-bisalkylation. 

Coltart et al. carried out mechanistic studies into this reaction to prove the 

CIS-D route using 3-pentanone-derived ACC hydrazone and alkylating with p-

bromobenzyl bromide.117  A single monoalkylated product was formed and the 

alkylation took place on the same side of the C=N bond as the auxiliary, as 

confirmed by X-ray crystallography.  Theoretical studies also support this method 

of alkylation.118  Investigations into the scope of the monoalkylation reaction with 

a variety of alkyl halides showed that the reactions proceeded in high yield and 
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selectively provided the α-regioisomer.  These results provided further evidence 

of CIS-D occurring during formation of the azaenolate, as well as confirming the 

azaenolate intermediate was configurationally stable under the reaction 

conditions.117  Although isomerisation of the hydrazone did not occur in situ after 

alkylation, the authors noted that if exposed to acidic conditions, the hydrazone 

was prone to isomerisation.117        

 The incorporation of a second alkyl group at the α-position requires an even 

more demanding application of CIS-D than that needed for the first alkylation.  In 

this case, the ACC auxiliary must completely reverse the inherent preference of 

LDA for the removal of the most sterically accessible proton of the monoalkylated 

product and instead direct removal of the less accessible α-proton.  Further 

mechanistic studies proved that a second alkylation occurred on the same side of 

the C=N bond as the auxiliary carbonyl, providing the α,α-bisalkylation compound 

as the major product, confirmed by X-ray crystallography.117 

1.4.5  Chiral auxiliaries in drug synthesis 

 Although the use of chiral auxiliaries may seem outdated in light of the 

increasing scope of asymmetric catalysis, in many cases the chiral auxiliary 

approach is the only selective methodology available.  Chiral auxiliaries also 

facilitate purification of products as single enantiomers by standard techniques 

including chromatography, recrystallisation and distillation.119  As a result, chiral 

auxiliaries continue to play a key role in drug discovery and development in a 

variety of transformations.120  With the current emphasis by various regulatory 

bodies towards single enantiomer drugs, straightforward access to 

enantiomerically pure pharmaceutical intermediates is essential to many drug 

discovery programmes, ensuring a continued importance for chiral auxiliaries in 

drug synthesis.  Due to their high predictability in terms of stereochemical 

outcome, chiral auxiliaries continue to play an important role in the synthesis of 

many drugs, including atrasentan,121 ontazolast,122 and rupintrivir.123 

 Chiral auxiliaries have been used in diastereoselective aldol reactions, for 

example in the synthesis of (+)-methylphenidate hydrochloride (a mild nervous 

system stimulant that is primarily prescribed for the treatment of attention deficit 

hyperactivity disorder in children)124 and in the synthesis of an optically pure 

trifluoromethyl alcohol which was required by researchers at Boehringer 
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Ingelheim Pharmaceuticals Inc. as part of a general drug discovery effort in the 

areas of inflammation, allergic and autoimmune disorders.125   

 Asymmetric hydrogenation reactions are quickly becoming one of the most 

powerful methods for installing chirality in both medicinal chemistry and process 

research.126  This methodology was first reported by Knowles and Sabacky using 

a rhodium complex containing chiral tertiary phosphine ligands.127  Although the 

corresponding chiral auxiliary route requires stoichiometric quantities of chiral 

reagent, the hydrogenation of chiral imines and enamines is an important method 

of synthesising optically pure amines required for medicinal chemistry and drug 

development.128,129  This is demonstrated in the recent syntheses of sitagliptin, 

approved for the treatment of type II diabetes130 and RWJ-53308, an orally active 

platelet fibrinogen receptor antagonist for the treatment of thrombotic disorders.131

 Chiral auxiliaries have also been employed in conjugate addition reactions 

in drug syntheses, for example in the synthesis of tipranavir,132 (+)-(3R,4R)-3-(4-

imidazolyl)-4-methylpyrrolidine dihydrochloride,133 (3R)-N-methyl-2-oxo-[1,4'-

bipiperidine]-3-acetamide134 and in the synthesis of neurokinin-1 (NK1) receptor 

antagonists.135,136        

 It has also been shown that chiral auxiliaries can be used in the synthesis 

of drugs in diastereoselective addition reactions to imines,137 diastereoselective 

addition of trifluoromethyl anion138 and diastereoselective 

chloromethylation.139,140 

1.4.6  Chiral auxiliaries in natural product synthesis 

 Chiral auxiliaries have found application in numerous total syntheses of 

natural products, a selection of which are outlined below.    

 SAMP (S)-19 was used to synthesise an intermediate (R)-92 (Scheme 1.24) 

en route to (-)-callystatin A 93,141 a potent cytotoxic polyketide isolated from the 

marine sponge Callyspongia truncate by Kobayashi et al. in 1997.142  O-protected 

4-hydroxybutanal hydrazones (S)-87 were methylated by the usual SAMP 

alkylation procedure to provide (S,R)-88.  Ozonolysis provided the parent 

aldehyde (R)-89, which was reacted with an aryl substituted phosphonate under 

modified Horner-Wadsworth-Emmons conditions to yield Z-α,β-unsaturated ester 

(R)-90.  Subsequent reduction with DIBAL-H provided allylic alcohol (R)-91 and 
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bromination yielded the desired intermediate (R)-92, with the TBDPS group 

withstanding the reaction conditions.  Further synthetic steps furnished 93. 
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Scheme 1.24 Use of SAMP-hydrazone in the total synthesis of (-)-callystatin A 

93. 
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 SAMP (S)-19 and RAMP (R)-19 have also been employed in the 

enantioselective synthesis of stenusine 99 (Scheme 1.25), a propulsion fluid 

expelled by the beetle Stenus comma.143  It was envisaged that the stereogenic 

centre at the 3 position of the piperidine ring could be created by stereoselective 

alkylation of hydrazones derived from SAMP and RAMP.  The electrophile could 

then be employed to introduce the side chain of the piperidine together with the 

second stereogenic centre.  Lithiation of 94 was performed with LDA, followed 

by addition of 1 equiv. n-BuLi in order to deprotonate the formed 

diisopropylamine.  The time required for deprotonation of these hydrazones was 

14-16 h, longer than the usual time required for deprotonation of SAMP/RAMP-

hydrazones.47  The formed azaenolate was quenched by addition of bromide (S)-

95 to yield (S,S,S)-96 when using SAMP and (R,R,S)-96 when using RAMP.  Both 

were produced in high diastereomeric purity (>95% de) and were carried through 

the next step without further purification due to their instability towards 

chromatography.  Treatment with excess DIBAL-H resulted in simultaneous 

reduction of the C=N bond and removal of the silyl ether protecting group, and the 

ensuing formal aluminium hydrazide was quenched with acetyl chloride.  Due to 

the presence of basic conditions, it was postulated that acylation could occur at 

either the hydrazine or the now unprotected hydroxyl group.  However, as the 

reaction mixture was treated with potassium carbonate in aqueous methanol during 

the workup, hydroxyl hydrazides (S,S,S)-97 and (R,R,S)-97 were the products 

isolated.  The acetyl group present in 97 was necessary to act as an activating group 

for the removal of the chiral auxiliary ((S)- or (R)-2-(methoxymethyl)pyrrolidine, 

SMP or RMP), which was achieved by reaction with lithium in liquid ammonia at 

-33 °C.  The resulting crude acetamides were subjected to a lithium aluminium 

hydride reduction, with the acetyl group now acting as a precursor for the required 

N-ethyl substituent in the target molecules.  Acylation with Boc2O yielded the N-

protected amino alcohols 98 with the same diastereomeric purity as was 

determined for the preceding hydrazones 96.  The final product was furnished by 

mesylation of the hydroxy functionality, cleavage of the carbamate group by 

treatment with trifluoroacetic acid and anisole which produced a syrupy 

ammonium salt, which cyclised spontaneously upon basic workup to provide 

stenusine (S,S)-99 or (S,R)-99. 
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Scheme 1.25 Synthesis of stenusine using SAMP/RAMP hydrazones. 

 RAMP has also been utilised in the asymmetric synthesis of 6-methyl-3-

nonanone 103, the female-produced sex pheromone of the caddisfly 

Hesperophylax occidentalis (Scheme 1.26).144  Both (R)- and (S)-enantiomers can 

be easily produced starting from RAMP or SAMP respectively, however (R)-103 

has been reported to be much more active than the (S)-103.145  Hydrazone (R)-100 

was formed in virtually quantitative yield by reaction of propanal with RAMP (R)-

19.  Deprotonation of (R)-100 was achieved by treatment with lithium 

tetramethylpiperidide (LiTMP) at 0 °C.  Alkylation with iodopropane in the usual 
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manner afforded the alkylated RAMP-hydrazone (R,R)-101 in both excellent yield 

and selectivity (95% de).47  Cleavage of the hydrazone was successfully achieved 

using a biphasic system to provide (R)-102.  Due to the susceptibility of the 

liberated aldehyde to further oxidation, cleavage using the well-known ozone 

method could not be utilised on this occasion.  Further transformations of (R)-102 

provided the desired product (R)-103 in excellent yield and enantioselectivity.  The 

same route was used in the synthesis of (+)-pectinatone using SAMP (S)-19 as the 

chiral auxiliary.146 

H

N
N

O H

N
N

O
1. LiTMP, THF

2. C3H7I
H

O3M HCl, pentane

(R)-100 (R,R)-101
90%

(R)-102

O

(R)-103
ee = 92%   

Scheme 1.26 Use of SAMP hydrazone in the synthesis of 6-methyl-3-nonanone. 

 Compounds containing the benzazepine skeleton are of particular interest 

to medicinal chemists as this ring system lies at the heart of a wide range of 

constitutionally diverse models exhibiting profound chemotherapeutic 

properties.147,148  A highly stereoselective route to 3,4-dialkylated-2,3,4,5-

tetrahydro-2-benzazepines using aldehyde SAMP-hydrazones has been reported 

(Scheme 1.27).149  SAMP-hydrazones (S)-104 were prepared by combining the 

desired aldehydes with SAMP (S)-19.  Exposure of (S)-104 to LDA and 

subsequent alkylation with 105 or 106 led to the diastereomerically enriched 

arylated hydrazones (S)-107 in moderate yield, observed as a single diastereomer 

by NMR.  Further synthetic steps resulted in desired products (R,S)-108 in 

moderate yield and high selectivity, with >96% de reported after chromatography. 
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Scheme 1.27 Use of SAMP-hydrazones in the synthesis of benzazepines. 

 Many well-known odourants are chiral compounds and in many cases their 

enantiomers exhibit totally different scents.  Tropional® is an α-branched aldehyde 

which is used in many perfumes to provide a fresh, marine scent.150  In industry it 

is produced as a racemic mixture and as a result, nothing was known about the 

odour of each enantiomer of Tropional®.  Enders and Backes reported the first 

asymmetric synthesis of Tropional® and differences in odour of the two 

enantiomers was described.151  Each enantiomer of Tropional® could be 

successfully synthesised via an efficient four step synthesis using the 

SAMP/RAMP-hydrazone methodology (Scheme 1.28).  (S)- or (R)-100 was 

deprotonated using LDA and the resulting azaenolate trapped with 5-

(bromomethyl)-1,3-benzodioxole 109, resulting in alkylated hydrazone 110 in 

good yields and selectivity, with 90% de observed.  Cleavage of the hydrazone 

was carried out via a two-step procedure.  In the first step, the N-N bond was 

cleaved under oxidative conditions with magnesium monoperoxyphthalate 

(MMPP) to provide nitriles 111 in good yields.  Reduction with DIBAL-H 

provided both enantiomers of Tropional® 112 in good yields and selectivity.  The 

enantioselectivity was determined by reducing 112 to the corresponding alcohols 
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113.  It was noted that the two enantiomers exhibited different odour 

characteristics, with the odour intensity of (S)-112 about five times stronger than 

(R)-112.  (S)-112 exhibited represented the typical odour of the racemic mixture, 

whilst (R)-112 showed a floral, citrus scent. 

H

N
N

O

(S)- or (R)-100

1. LDA, THF
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O

Br2.
H
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(S)- or (R)-112
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(S)- or (R)-113
93-95%

ee = 90%   

Scheme 1.28 Use of SAMP/RAMP-methodology in the asymmetric synthesis of 

Tropional®.  

 The SAMP-hydrazone methodology has also been utilised in the synthesis 

of the principle alarm pheromone of the leaf-cutting ant Atta texana, (S)-(+)-4-

methyl-3-heptanone (S)-116.152  The simple, three step procedure (Scheme 1.29) 

begins with the formation of hydrazone (S)-114 by reaction of 3-pentanone with 

SAMP (S)-19.  Deprotonation with LDA leads to the azaenolate intermediate, 

which is trapped with iodopropane to provide (S,S)-115 in 90% crude yield.  

Cleavage of the hydrazone moiety with ozone provided the desired product (S)-

116 in 56-58% overall yield. 
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Scheme 1.29 Use of SAMP-hydrazone methodology in the synthesis of (S)-(+)-4-

methyl-3-heptanone. 

 Other instances where SAMP-methodology has been used in the synthesis 

of natural products includes in the total synthesis of (+)-eremophilenolide153 and 

(-)-methyl kolaventate.154 

1.5  SAMP/RAMP-methodology in aldol reactions 

 The aldol reaction is an important carbon-carbon bond forming reaction in 

organic synthesis, highlighted by coverage in organic chemistry textbooks.155,156  

In the aldol reaction, aldehydes and ketones which possess an α-hydrogen atom 

are deprotonated with a suitable base, forming an enolate ion in what is the rate-

determining step of the reaction.  This enolate ion then reacts with another 

molecule of carbonyl compound to form the aldol product.  Depending on the 

conditions, the elimination product may also form via an E1cB (unimolecular 

conjugate base elimination) mechanism.  This mechanism is similar to E2 

elimination, however in this case the leaving group can be a hydroxide, which is 

not the case in E2 elimination.  Which product is formed partly depends on reaction 

conditions (use of stronger bases, higher temperatures and longer reaction times 

tend to promote formation of the elimination product) and partly on the structure 

of the reagents (some combinations are easy to stop at the aldol stage while some 

almost always give elimination product as well).155    
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 It was not until 1978 that the first asymmetric intramolecular aldol reaction 

was reported, utilising SAMP-hydrazone methodology.96  Hydrazones (S)-117 

were synthesised by combining the respective methyl ketone and SAMP (S)-19 in 

the usual manner.  Deprotonation with n-BuLi and subsequent treatment with 

carbonyl compounds provided β-hydroxyhydrazone intermediates.  In situ 

trapping with chlorotrimethylsilane yielded protected hydroxyhydrazones 118 

(Scheme 1.30).  Two approaches were used to achieve cleavage of the hydrazone 

118: the reaction can be performed in one step with hydrogen peroxide at neutral 

pH to provide the desired aldol adduct 119 directly, or in two steps with singlet 

oxygen then dimethyl sulphide and hydrolysis to provide 119.  Aldol products 119 

were achieved in moderate to good yields (32-77%) and enantioselectivities (31-

62% ee).   
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; 2. (CH3)2S

 

Scheme 1.30 Asymmetric aldol reactions using SAMP-hydrazone methodology. 

 This methodology has been applied to the synthesis of (+)- and (-)-[6]-

gingerol, the principal odour compound of ginger (Scheme 1.31).49  Deprotonation 

of (R)-120 with n-BuLi, reaction with hexanal and subsequent trapping with 

chlorotrimethylsilane provided silyl-protected hydrazone (R,S)-121 in 36% de.  

Further synthetic operations yielded (-)-[6]-gingerol (S)-122 in 36% ee.  When the 
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reaction was performed with RAMP rather than SAMP as the chiral auxiliary, the 

opposite enantiomer was obtained. 

N 1. n-BuLi
2.

 
C5H11CHO
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HO
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Scheme 1.31 Synthesis of (+)-[6]-gingerol using RAMP-hydrazone methodology. 

 The asymmetric alkylation of SAMP-ethyl hydrazones (S)-123 with 

aldehydes provided the syn-aldol adducts (S,S,S)-124 with 51-80% de and 70-80% 

ee.  When adducts (S,S,S)-124 were recrystallised, pure stereoisomers of (S,S,S)-

124  were recovered and subsequent cleavage of the hydrazone moiety resulted in 

a variety of diastereomerically and enantiomerically pure syn-aldol products (S,S)-

125  for the first time (Scheme 1.32).  The relative and absolute configurations 

were determined by X-ray structure analysis.157 
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Scheme 1.32 Synthesis of enantiomerically pure syn-aldol adducts. 

 Other SAMP-analogues have been successfully utilised in aldol reactions.  

When SAEP (S)-27 was used as the chiral auxiliary, the final aldol products were 

obtained in high enantiomeric purity; γ-hydroxy-α-ketoesters were obtained with 

>98% ee158 and the biologically important isotetronic acid derivatives were 

provided in >96% ee.159       

 The use of titanated azaenolates in SAMP-hydrazone aldol reactions has 

provided excellent results.  β-hydroxyhydrazones are formed as single syn-

diastereomers, resulting in β-hydroxyketones in up to quantitative yields and with 

excellent de and ee values.31,160      

1.6  SAMP/RAMP-methodology in Michael reactions 

 The Michael reaction is another important carbon-carbon bond forming 

reaction in organic chemistry.161,162  This is a conjugate addition reaction between 

a nucleophilic enolate ion and an α,β-unsaturated carbonyl compound.  The best 

Michael reactions are those that take place when a particularly stable enolate ion, 

such as that derived from a β-keto ester or other 1,3-dicarbonyl compound adds to 

an unhindered α,β-unsaturated ketone.161  The asymmetric version of this reaction 

is of particular importance and various methods are available to carry out this 

reaction in an asymmetric fashion.163,164     
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 The asymmetric Michael reaction has been extensively investigated using 

SAMP/RAMP-methodology.  The first reported reaction involved the addition of 

SAMP-hydrazones to α,β-unsaturated enoates (Scheme 1.33).165,166  SAMP-

hydrazone (S)-33 is deprotonated with LDA, reacted with a suitable Michael 

acceptor to provide the corresponding 1,4-adducts, which are then cleaved using 

ozone to provide carbonyl compounds (S,S)-126 in 38-62% overall yield with high 

diastereo- and enantiomeric excesses.  This methodology has been successfully 

utilised in the synthesis of serine protease inhibitors by the formation of acyl 

enzyme complexes with α-chymotrypsin,167,168 as well as in the enantioselective 

synthesis of pheromones of the small forest ant Formica polyctena and the red 

wood ant F. rufa.169 
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3. O3

R3 O

O

(S,S)-126
de, ee = 90 to >98%

R1 = H, alkyl, aryl
R2, R3 = alkyl, aryl

38-62%

 

Scheme 1.33 Asymmetric Michael additions via SAMP-hydrazones. 

 A further study into this reaction proved that other Michael acceptors 

including 2-benzylidenemalonates and 2-benzylidenemalononitriles could be 

successfully utilised (Scheme 1.34).170  SAMP-hydrazones (S)-117 is transformed 

to the 2-substituted 4-oxo-diesters and dinitriles (R)-127 after oxidative cleavage 

of the 1,4-adducts by ozonolysis in good overall yields of 50-82% and high 

enantioselectivities.       

 Numerous other Michael acceptors are tolerated under the reaction 

conditions.171-173,31  The reaction has also been successful with cyclic 

SAMP/RAMP-hydrazones, with resultant ketones being obtained in high yields 

and selectivities.174-176  A recent publication by Sammet et al.177 provides an 

insight into the use of both acyclic and cyclic SAMP/RAMP-hydrazones as a 

traceless auxiliary in the asymmetric 1,4-addition of cuprates to enones.177 
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Scheme 1.34 Asymmetric Michael additions using 2-benzylidenemalonates and 

2-benzylidenemalononitriles as acceptors. 
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2.1  Background to project 
The α-alkylation of ketones is a fundamental reaction in organic synthesis.  

However, there are few methodologies available to carry out this transformation 

in an asymmetric manner.  The use of SAMP/RAMP-methodology almost 

exclusively accounts for these transformations.  There remains significant scope 

for the exploration of new, easily prepared chiral auxiliaries for use in the synthesis 

of chiral α-alkylated ketones.       

 The aim of this project was to investigate if a nitrogen (as part of a 

pyrrolidine system) could ligate to lithium as effectively as in the SAMP/RAMP 

system (where a methoxy group is utilised) and whether alkylation with  benzyl 

based alkylating reagents, which is rarely reported in this area, would provide the 

desired products in good selectivity.      

 In the following section, the chromatography-free synthesis of a novel 

chiral auxiliary incorporating a pyrrolidine ring is reported.  Previous work within 

the group had established this novel chiral auxiliary as being a viable alternative 

to SAMP, however it was thought that improvements to the synthesis could be 

made, as well as attempting to improve both the low yields and very limited 

substrate scope previously investigated.   The chiral hydrazine is available in five 

steps from N-protected proline or only two steps from commercially available (S)-

(+)-1-(2-(pyrrolidinylmethyl)pyrrolidine).  Subsequent reaction with symmetrical 

and unsymmetrical ketones followed by deprotonation, alkylation (using both 

alkyl and benzyl electrophiles) and hydrolysis gave valuable chiral ketones in very 

good enantiomeric excess and moderate yields.      

 The chiral auxiliary also showed potential in both aldol and Michael 

reactions.         

 The diamine synthesised as an intermediate en route to the chiral auxiliary 

and chiral diamine sparteine were also investigated as chiral ligands in α-

alkylations of a carboxylic acid. 
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2.2  Synthesis of chiral auxiliary 
The novel chiral auxiliary had previously been synthesised within the 

group, however yields in many of the steps were moderate to low and problematic.1  

With this in mind, it was postulated that an improved synthetic methodology could 

be used to afford the desired chiral product.     

 The novel chiral auxiliary is formed in a five step, chromatography-free 

sequence (Scheme 2.1) starting with a N,N'-dicyclohexylcarbodiimide (DCC) 

coupling reaction of commercially available (S)-N-(benzyloxycarbonyl)proline 

(S)-128 with pyrrolidine to afford amide (S)-129 in 81% yield.2 Subsequent 

hydrogenolysis allows clean removal of the carboxybenzyl protecting group 

yielding the free amine (S)-130 in 95% yield with no further purification required 

as the by-products (toluene and carbon dioxide) are removed in vacuo.2  A lithium 

aluminium hydride reduction affords (S)-131 in 64% yield, followed by nitrosation 

using ethyl nitrite to yield nitrosamine (S)-132 in 91% yield.3  A final lithium 

aluminium hydride reduction yields the novel chiral auxiliary, hydrazine (S)-133 
in 86% yield.  

 

Scheme 2.1 Synthesis of novel chiral auxiliary. 

The mechanism for formation of (S)-129 (Scheme 2.2) begins with the lone 

pair of electrons on one of the amine nitrogens in DCC 134 being used to 

deprotonate the carboxylic acid of (S)-128 to yield the carboxylate. The protonated 
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DCC now acts as an electrophile and the negative charge on the oxygen of the 

carboxylate attacks the carbon of the central bond of the protonated DCC, yielding 

a good leaving group.  The lone pair on the nitrogen of pyrrolidine can then attack 

the carbon of the carbonyl bond of (S)-135, forming a tetrahedral intermediate 

which collapses to yield the desired amide (S)-129 and side product, N,N'-

dicyclohexylurea 136 which is removed by filtration of the reaction mixture over 

Celite®.  The filtrate is washed with 0.5M HCl, saturated aq. NaHCO3, H2O and 

brine to provide the crude product, which is purified by recrystallisation from ethyl 

acetate to provide (S)-129 as a white solid.   
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Scheme 2.2 Mechanism of formation of (S)-129. 

The Cbz-protected product (S)-129 was shown to exist as a mixture of syn- 

and anti-rotamers by NMR spectroscopy (Scheme 2.3), due to the specific 

character of the carbamate N-C bond.4-6  There is precedence in the literature for 

the free rotation of carbamate bonds of proline derivatives at physiological 

temperatures.7  The lone pair of electrons on the nitrogen atoms are tied up in 

conjugation with the carbonyl group, meaning the carbamate N-C bond has partial 

single and double bond property, hence the observation of rotamers (two sets of 
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signals) in NMR spectra, most notable in 13C NMR spectrum (Figure 2.1).  

Mechanistic studies would be required to determine which rotamer is most stable. 

 

 

 

 

 

Scheme 2.3 Depiction of syn- and anti-(S)-129 rotamers. 
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Figure 2.1 13C NMR spectrum of (S)-129 with magnification of peaks and 

examples of peak doubling due to rotamers highlighted (CDCl3, 75 MHz). 
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Removal of the carboxybenzyl group is achieved via hydrogenolysis which 

undergoes the following series of events (Scheme 2.4).8  Cbz-protected amide (S)-

129 coordinates to the palladium catalyst via the electron-rich aromatic ring. This 

brings the benzylic C-O bond in close proximity to the palladium-bound hydrogen 

atoms and it is reduced, resulting in the carboxylic acid (S)-137 and toluene.  The 

acid is in equilibrium with its ionised form, which collapses to give (S)-130 and 

carbon dioxide.  Because of the need for initial coordination with the catalyst, only 

benzylic or allylic carbon-heteroatom bonds can be reduced.  (S)-130 was isolated 

as a yellow oil with no purification required. 

Scheme 2.4 Removal of protecting group by hydrogenolysis. 
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The third step in the synthesis of the chiral auxiliary is a standard lithium 

aluminium hydride reduction of an amide (S)-130 to give amine (S)-131 (Scheme 
2.5).  Lithium aluminium hydride acts as a source of “H-”, adding to the carbon of 

the carbonyl group in (S)-130 to form a tetrahedral intermediate, which then 

collapses to form the iminium ion (S)-138.  (S)-138 is more electrophilic than (S)-

130, so it reacts with a further equivalent of LiAlH4 to be reduced to secondary 

amine (S)-131, which was purified by Kugelrohr distillation to yield the pure 

product as a colourless oil. 

 

Scheme 2.5 LiAlH4 reduction of amide (S)-130. 

Amine (S)-131 is then reacted with ethyl nitrite (supplied as a 10–20% 

solution in ethanol) to form nitrosamine (S)-132 (Scheme 2.6).  Ethyl nitrite 139 

is converted to a nitrosyl cation, which is then able to pick up the lone pair of 

electrons on the secondary amine of (S)-131, forming a new N-N bond.  

Abstraction of the proton provided the target compound (S)-132.  Caution was 

exercised with (S)-132 due to the potential toxicity of the compound.9-11  No 

purification was carried out and only 1H and 13C NMR data were obtained. 
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Scheme 2.6 Nitrosation of amine (S)-131. 

A lithium aluminium hydride reduction is carried out to convert 

nitrosamine (S)-132 to the hydrazine chiral auxiliary (S)-133 via a tetrahedral 

intermediate which collapses to give the azo compound (S)-140 (Scheme 2.7). 

 

Scheme 2.7 LiAlH4 reduction of (S)-132 to hydrazine. 
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2.3  Synthesis of racemic ketones 
In order to be able to state enantiomeric excess of chiral compounds with 

certainty, it is necessary to have standards for comparison of gas chromatography 

(GC) traces.  This can be achieved by synthesising racemic ketones and obtaining 

a GC trace prior to attaining the GC trace of the chiral ketone.  

 Racemic ketones 142 are formed by deprotonation of the desired ketone or 

aldehyde 141 using LDA in a suitable solvent, alkylation of the resulting enolate 

using the electrophile of choice and purification by silica gel column 

chromatography (Scheme 2.8).  A sample of the pure ketone was then dissolved 

in distilled DCM to a concentration of 1 mg/mL and subjected to GC analysis using 

suitable conditions to allow 2 peaks of equal area to be identified.   

 

 

Scheme 2.8 Formation of racemic α-alkylated ketones or aldehydes. 

The reaction of lithium enolates with alkyl halides is undoubtedly one of 

the most important carbon-carbon bond forming reactions in organic 

chemistry.12,13  The reaction consists of two steps.  The first step involves 

formation of the enolate by deprotonation with base.  A sufficiently strong base is 

required to ensure complete deprotonation of the enolisable proton at the α-

position of ketones and aldehydes.  Deprotonation occurs in a cyclic mechanism 

(Scheme 2.9), with the basic nitrogen atom of LDA removing the proton of 141 as 

the lithium is delivered to produce the enolate.  In the subsequent step, the 

alkylating agent is added dropwise and adds to the enolate to provide 142 in an 

SN2 fashion.12  The reaction conditions employed in the synthesis of racemic 

ketones was that typical of enolate formation – deprotonation was carried out by 

addition of LDA dropwise at -78 °C in anhydrous THF.  The alkylating agent is 
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added dropwise, also at low temperature (-78 °C), as the lithium enolates may not 

be stable at higher temperatures.  After allowing the reaction to stir for 30 min at 

this temperature, the reaction is allowed to warm to room temperature to increase 

the rate of reaction of the SN2 alkylation.  The low yields observed in this type of 

reaction may be due to self-condensation of the enolate, which may occur while 

the enolate is still forming.          

 

Scheme 2.9 Mechanism of deprotonation of ketones and aldehydes. 

A number of racemic ketones were synthesised for this project based on 

either 3-pentanone (Figure 2.2) or propiophenone (Figure 2.5).  A wide variety 

of electrophiles was selected to investigate if electronic effects had any effect on 

the observed yields of the reaction.       

 Yields for benzylation of 3-pentanone (Figure 2.2) varied from 12-55%, 

with no obvious correlation between the electrophile used and the yield of ketone 

obtained.  Spectral characteristics of ketones 143, 145, 146 and 148 corresponded 

with that previously reported in the literature, with the structure of novel ketones 

144 and 147 confirmed by spectral analysis.  Elemental analysis of 147 provided 

additional structural confirmation.  Allylation of 3-pentanone provided product 

ketones 149-151 in low to moderate yields, with no trend apparent between 

electrophile utilised and yield obtained (Figure 2.2).  Spectral characteristics of 

149 were consistent with that previously reported in the literature.  The structure 

of novel allylated ketones 150 and 151 was confirmed by full experimental 

analysis. 
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Figure 2.2 Racemic α-alkylated and α-benzylated 3-pentanone based ketones. 

The 13C NMR spectrum of 144 was particularly interesting due to the 

presence of five fluorine atoms on the benzyl ring (Figure 2.3).     
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Figure 2.3 13C NMR spectrum of 2-methyl-1-(perfluorophenyl)pentan-3-one 144. 

On closer examination of the aromatic region (Figure 2.4), it was apparent 

that the quaternary carbon of the benzyl ring appeared as an apparent triplet of 

doublets at 113.0 ppm, with splitting caused by the neighbouring fluorine atoms.  

Similarly, a doublet of triplet of triplets is observed at 139.8 ppm, corresponding 

to the carbon atoms α- to the quaternary carbon of the benzyl ring, with the splitting 

due to the multiple neighbouring fluorine atoms.  The other carbon atoms of the 

benzyl ring appeared as doublets of multiplets, with the coupling constants of the 

doublets around 250 Hz, typical of that observed for a carbon bonded to a fluorine 

atom.  The observation of multiplets for these peaks is as expected as it is known 

that 19F has the property of coupling across several bonds, even in saturated 

systems.14 The 19F NMR spectrum of 144 consisted of 3 peaks with the splitting 

patterns observed as expected.   
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Figure 2.4 Magnified aromatic region of 13C NMR spectrum of 2-methyl-1-

(perfluorophenyl)pentan-3-one 144.  

Racemic α-alkylated and α-benzylated propiophenone-based ketones were 

synthesised as these were to be investigated using the chiral auxiliary method 

described in Chapter 1.  Ketones 152-155 were synthesised in the same manner as 

the 3-pentanone based ketones, with deprotonation achieved with LDA in THF 

and alkylation with either benzyl bromide to provide 152 or allyl bromide to 

provide 153-155 (Figure 2.5).  Spectral characteristics for 152-154 were 

consistent with previously reported data. The structure of novel alkylated ketone 

155 was confirmed by full experimental analysis.  The presence of a fluorine atom 

on the phenyl ring of 155 accounted for the doublets observed in the 13C NMR 

spectrum.  Yields of 152-155 are low, with the exception of 155 which was 

obtained in a moderate yield. 
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Figure 2.5 Racemic α-alkylated and α-benzylated propiophenone based ketones. 

Racemic ketones were formed in low to moderate yields.  In many cases, 

the product ketone has a small molecular weight and is volatile, so mass may have 

been lost whilst removing solvent in vacuo (a notable decrease in mass was 

observed that upon lengthy rotary evaporation). 

2.4  Synthesis of chiral hydrazones 
Chiral auxiliary (S)-133 can be combined with either a ketone or an 

aldehyde to form the desired chiral hydrazone.  Two ketones were used in this 

investigation.  3-Pentanone was chosen as an alkyl ketone for its symmetry to 

avoid the possible problems of regioselectivity and propiophenone (substituted 

and unsubstituted) as an aryl ketone with only one enolisable proton. 

 3-Pentanone hydrazone (S)-156 is easily formed in 80% yield (46% yield 

after purification by Kugelrohr distillation) by reaction of 3-pentanone with chiral 

auxiliary (S)-133 in cyclohexane at room temperature (Scheme 2.10), which is in 

contrast with formation of SAMP hydrazones which requires heating for the 

reaction to go to completion.15   
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Scheme 2.10 Synthesis of 3-pentanone hydrazone (S)-156. 

In a similar manner, (S)-133 is combined with propiophenone, p-

methoxypropiophenone and p-fluoropropiophenone to afford hydrazones (S)-157, 
(S)-158 and (S)-159 in 52%, 54% and 48% yields respectively (Scheme 2.11).  

Purification of (S)-157 was achieved by Kugelrohr distillation, whilst (S)-158 and 

(S)-159 were purified using silica gel column chromatography.  It was postulated 

that the boiling point of (S)-158 and (S)-159 would be high, even under the vacuum 

conditions used in the Kugelrohr distillation.  It was therefore decided to purify 

these compounds using silica column chromatography rather than expose them to 

high temperatures as a precaution against possible degradation. 

 

Scheme 2.11 Synthesis of propiophenone-based hydrazones (S)-157-159. 

The mechanism for hydrazone formation is analogous to that for imine 

formation.  The lone pair on the nitrogen of the hydrazine chiral auxiliary (S)-133 

attacks the electrophilic carbon of the ketone or aldehyde 141, pushing electrons 

from the double bond onto the oxygen.  The now negatively charged oxygen picks 

up a proton from the positively charged nitrogen to provide tetrahedral 

intermediate (S)-160.  The hydroxyl group picks up a proton to form water which 

acts a good leaving group, driving the formation of the carbon-nitrogen double 
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bond.  Loss of a proton neutralises the compound to provide (S)-156-159 with 

concomitant loss of water (Scheme 2.12). 

 
Scheme 2.12 Mechanism of formation of hydrazones.  

2.5  Synthesis of chiral ketones 
Chiral ketones are synthesised by deprotonation of the desired chiral 

hydrazone, alkylation with a suitable electrophile and cleavage of the hydrazone 

to the parent ketone using a suitable cleavage method.   

 The first step in this investigation was to perform a solvent screen to 

ascertain which solvent gave the best enantioselectivity for the alkylation of the 

chiral hydrazone.  The alkylation of 3-pentanone hydrazone (S)-156 was carried 

out using benzyl bromide as the electrophile in three different solvents (Table 2.1) 

to provide alkylated chiral hydrazone (S)-161.  Cleavage was implemented using 

a biphasic HCl/diethyl ether system to provide desired chiral ketone (S)-143.  The 
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highest enantioselectivity of (S)-143 was observed when diethyl ether was the 

solvent used in the reaction (Table 2.1, entry 1) and so deemed to be the solvent 

of choice for the rest of the investigation.  This was as expected, as SAMP-

hydrazone methodologies also usually involve diethyl ether as solvent.15-17  

Table 2.1 Solvent Screen for alkylation of hydrazone. 

 

Entry Solvent Yield (S)-143            
(%)a 

ee (S)-143     
(%)b 

1 Diethyl ether 10 89 

2 THF 12 66 

3 Toluene 15 61 

a Isolated yields quoted over 2 steps; b as determined by chiral GC analysis. 

Next, it was necessary to establish how many equivalents of LDA would 

be required and at what temperature the deprotonation step was most successful.  

A range of equivalents of LDA and temperatures were chosen (Table 2.2) for the 

alkylation of 3-pentanone hydrazone (S)-156 with allyl bromide. 
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Table 2.2 Investigation into deprotonation conditions required for alkylation. 

  

Entry Deprotonation 
Conditions 

LDA           
(equiv.) 

Conversiona    
(S)-156 → (S)-162 

1 33 °C, 5 h 1.1 82% 

2 RT, 5 h 2.1 100% 

3 0 °C, 16 h 1.1 100% 

aAs determined by 1H NMR. 

Two of the conditions investigated achieved 100% conversion (Table 2.2, 

Entries 2 and 3).  However, in the interest of keeping the amount of LDA used at 

a minimum, it was decided to proceed with deprotonation conditions using 1.1 

equivalents of LDA at 0 °C for 16 h for the rest of the investigation. 

 Various methods for the cleavage of α-substituted hydrazones to the 

corresponding ketone are available.18  Oxalic acid has been reported as a 

convenient, high yielding, racemisation-free method for the hydrolytic cleavage of 

SAMP hydrazones.19  Two biphasic cleavage methods, oxalic acid/diethyl ether 

and the well-established HCl/diethyl ether, were investigated with both the novel 

chiral auxiliary and SAMP.  Hydrazone (S)-157 and the corresponding SAMP 

variant (S)-163 were prepared and subjected to LDA and benzyl bromide (Table 
2.3).  Both alkylated hydrazones were hydrolysed using oxalic acid/diethyl ether 

and HCl/diethyl ether.  Using the SAMP hydrazone (S)-163, benzylated 

propiophenone (S)-152 was obtained in 92% ee and 88% ee using oxalic acid and 

HCl/diethyl ether cleavage methods, respectively (Table 2.3, entries 3 and 4).  A 

larger variation in enantioselectivity was observed between the two cleavage 

methods when hydrazone (S)-157 was employed in the reaction, with 51% and 

78% ee observed when using oxalic acid and HCl/diethyl ether cleavage methods, 
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respectively (Table 2.3, entries 1 and 2).  The low yields of benzylated ketones 

observed using both the novel chiral auxiliary and SAMP reflect the challenges of 

this particular transformation. 

Table 2.3 Racemisation studies of chiral hydrazones (S)-157 and SAMP variant 

(S)-163.  

 

Conditions: (a) 1. n-BuLi (1.15 equiv.)/DIPA (1.10 equiv.), diethyl ether; 2. 

Benzyl bromide (1.20 equiv.); (b) Oxalic acid, diethyl ether; (c) 4M HCl, diethyl 

ether. 

Entry Hydrazone Cleavage 
method 

Yield (S)-152 
(%)a 

ee (S)-152 
(%)b     

1 (S)-157 Oxalic acid, 
Et2O 

15 51 

2 (S)-157 4M HCl, 
Et2O  

31 78 

3 (S)-163 Oxalic acid, 
Et2O 

36 92 

4 (S)-163 4M HCl, 
Et2O 

26 88 

a Isolated yields quoted over 2 steps; b as determined by chiral GC analysis. 

It is possible that the decrease in enantioselectivity was caused by either 

epimerisation of the chiral benzylated hydrazone or by racemisation of the chiral 

ketone itself.  To investigate which of these was the case, (S)-152 was exposed to 

the oxalic acid cleavage conditions for 28 h and subsequent enantiopurity 

determined (78% ee).  As no change to the value of the enantiopurity (78% ee) 

was observed, this indicates that epimerisation of the chiral benzylated hydrazone 
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occurs when oxalic acid is used in combination with our hydrazone.  This may be 

due to protonation of the pyrrolidine in the chiral arm, resulting in increased 

solubility and exposure to the aqueous acidic layer.  This result underlines the need 

for thorough investigation of cleavage methods in such cases.   

 With usable hydrolysis conditions in hand, a variety of electrophiles was 

reacted with the azaenolate derived from (S)-156.  Cleavage of the hydrazone 

moiety resulted in chiral ketones with good to excellent enantioselectivity, albeit 

in low yield (Figure 2.6).  In all cases, the alkylated hydrazone was not isolated.  

 The use of benzyl bromides as electrophiles in hydrazone chiral auxiliary 

methodology has been very limited.  In fact, no thorough investigation of benzyl 

based electrophiles has been reported using chiral hydrazone methodology.  A 

plethora of electrophiles were used affording ketones (S)-143-148 and (S)-164-

165, all with moderate to high enantioselectivity.  Substituted benzyl groups 

allowed investigation of the effect of electron donating and electron withdrawing 

groups present on the electrophile.  From Figure 2.6, it is apparent that the 

presence of electron withdrawing groups on the benzyl moiety caused a decrease 

in enantioselectivity of the resultant ketone when compared to the unsubstituted 

benzyl bromide [(S)-143, 89% ee], which is most apparent with the use of 

perfluorobenzyl bromide [(S)-144, 48% ee] and p-nitrobenzyl bromide [(S)-147, 

58% ee].  The presence of an electron donating group, for example the use of p-

methoxybenzyl bromide [(S)-146, 84% ee] and t-butylbenzyl bromide [(S)-148, 

87% ee], had little effect on the enantioselectivity observed.  When 2-bromobenzyl 

bromide was used as the alkylating agent, the final ketone (S)-145 was obtained in 

86% ee.  This is similar to the enantioselectivity of the ketone obtained when 

benzyl bromide is used as the electrophile [(S)-143], which suggests that the 

position of the substituent on the benzyl ring, as well as the nature of the substituent 

itself, is crucial to affecting the enantioselectivity.  The cleavage of p-

bromobenzylated and p-trifluoromethylbenzylated hydrazones was carried out 

using sat. aq. oxalic acid/diethyl ether prior to the discovery that this method 

resulted in racemisation.  Thus the enantioselectivity of  chiral ketones (S)-164 and 

(S)-165 obtained cannot be directly compared with that of (S)-143, however it can 

be speculated that the enantioselectivity obtained would be lower than that 

observed for (S)-143 due to the presence of electron withdrawing groups at the 

para-position.         
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 To the best of our knowledge, the enzymatic cleavage of chiral hydrazones 

has not been reported.  Mino and co-workers20 reported the use of porcine 

pancreatic lipase (PPL) as an effective method of deprotecting ketone 

dimethylhydrazones.  The reaction was carried out on achiral substrates and 

achieved generally high yields.  As a lipase-catalysed deprotection of chiral 

hydrazones had not been attempted to date, it was decided to investigate how 

successfully this methodology could be applied to our system.  Results obtained 

from the cleavage of chiral benzylated 3-pentanone hydrazone gave the chiral 

product (S)-143 in 83% ee, albeit in a low yield of ca. 10 % over 2 steps.  Due to 

the increasing emphasis on green chemistry in both industry and academia, this 

result is promising and encouraging as a method for hydrolysis of chiral 

hydrazones as the reaction is carried out in a biphasic acetone/water mixture at 

ambient temperature.          
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Figure 2.6 Chiral ketones synthesised using novel chiral hydrazone methodology.  

Yield is calculated over 2 steps – alkylated hydrazone not isolated. a HCl/Et2O 

hydrolysis; b PPL hydrolysis; c sat. aq. oxalic acid hydrolysis; d t-BuLi used as base. 
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Reaction of (S)-156 with allyl bromide, 3,3-dimethylallyl bromide and 

geranyl bromide provided (S)-149-151 respectively in similar enantioselectivity 

(Figure 2.6), suggesting that an increase in alkyl chain length has no detrimental 

effect on the enantioselectivity of the product.  The reaction of 3-pentanone 

hydrazone (S)-156 with LDA and pentyliodide provided (S)-166 in 92% ee 

(Figure 2.7), albeit in moderate yield.  When t-BuLi was employed as the base 

instead of LDA, the selectivity dropped slightly to 82% ee, reaffirming that LDA 

is the optimum base for the reaction.   

 

 

 

Figure 2.7 GC trace of product of reaction of (S)-156 with n-pentyl iodide showing 

(S)-166 obtained in 92% ee. 

Further to these studies, it was decided to investigate the effect of electronic 

substituents present on the hydrazone moiety.  Propiophenone, p-

methoxypropiophenone and p-fluoropropiophenone hydrazones (S)-157-159 were 

chosen as substrates and subjected to the standard conditions using allyl bromide 

as the electrophile.  The resultant ketones (Figure 2.8) demonstrate that the 

presence of an electron donating substituent on the ring ((S)-154, 79% ee) results 

in a decrease in enantioselectivity when compared to the unsubstituted ketone ((S)-

153, 89% ee).  The presence of an electron withdrawing substituent ((S)-155, 90% 
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ee) had little effect on the enantioselectivity.  It was also noted that an increase in 

enantioselectivity was observed when allylbromide was used as the electrophile 

((S)-153, 89% ee) compared to when benzyl bromide was used as the electrophile 

((S)-152, 78% ee), suggesting that the structure of the electrophile may have an 

influence on the enantioselectivity of the final product, at least when dealing with 

propiophenone-based hydrazones. 

 

Figure 2.8 Chiral ketones synthesised using novel chiral hydrazone methodology.  

Yield is calculated over 2 steps – alkylated hydrazone not isolated. a HCl/Et2O 

hydrolysis; b sat. aq. oxalic acid hydrolysis. 

 The ketone products (S)-143-155 and (S)-164-166 have been assigned as 

(S) by comparison of the optical rotation value of chiral 153 with that reported in 

the literature21 and others by analogy.  All ee values were determined using chiral 

GC analysis and confirmed by comparison with independently prepared racemic 

ketones. 
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2.6  Origin of stereoselectivity in alkylation reactions with novel hydrazone 
 The selectivity of the chiral ketones obtained from the alkylation of novel 

hydrazones was observed to be the same as those obtained from the alkylation of 

SAMP hydrazones.  This suggests that a similar azaenolate intermediate occurs, 

with an ECCZCN configuration resulting on deprotonation with LDA.  This rigid 

intermediate allows attack of an electrophile to proceed under high diastereofacial 

differentiation, yielding highly diastereomerically enriched hydrazones and 

ultimately enantiomerically enriched α-substituted ketones upon cleavage of the 

chiral auxiliary.  Attack of the electrophile from the top (re) face is sterically 

disfavoured, so preferential attack occurs from the bottom (si) face. 

Scheme 2.13 Origin of selectivity in novel hydrazone alkylations. 
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2.7  Application of chiral auxiliary to Michael and aldol reactions 
 Chiral auxiliaries, in particular SAMP and RAMP, have been successfully 

applied in both asymmetric aldol and Michael reactions.22  With this in mind, it 

was postulated that the novel chiral auxiliary could also be applied to these 

reactions and provide similar results (Scheme 2.14). 

 
Scheme 2.14 Aldol and Michael reactions carried out using novel chiral auxiliary. 

 In both cases, (S)-156 was treated with LDA in diethyl ether and allowed 

to stir at 0 °C for 16 h to ensure complete deprotonation.  To furnish the aldol 

product 167, a solution of benzaldehyde in diethyl ether was added dropwise to 

the reaction mixture.  The resultant chiral hydrazone was converted to 167 by 

treatment with Amberlyst® 15 hydrogen form beads in a biphasic acetone/water 

mixture.23,24  The crude product was subjected to chiral GC analysis and 

enantiomeric excesses of 63% and 15% were obtained for anti- and syn-167 

respectively.  A diastereomeric ratio of 86:14 anti:syn, determined by chiral GC 

analysis, was identical to that observed by 1H NMR spectroscopy.  Purification 

was attempted using silica gel column chromatography, however, an inseparable 

mixture of diastereomers resulted.  A point of note was that the relative 

stereochemistry observed (anti) was the opposite to that normally seen in aldol 

reactions using SAMP (syn).22        

 To furnish the Michael product, the deprotonated hydrazone was reacted 

with trans-β-nitrostyrene and subsequent hydrolysis afforded crude 168 which was 

subject to chiral GC analysis.  Enantiomeric excesses of 84% and 47% were 

determined for syn- and anti-168 respectively, with an excellent diastereomeric 
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ratio of 94:6 syn:anti as determined by chiral GC analysis and 1H NMR 

spectroscopy.  Purification by silica column chromatography allowed isolation of 

syn-168 in 84% ee and 13% yield over 2 steps.  Again, the relative orientation was 

opposite to that usually found when using a SAMP chiral auxiliary in Michael 

reactions.22           

 There are no reports in the literature of either the aldol or Michael reaction 

using these specific conditions and reagents with SAMP as the chiral auxiliary.  

As relative orientation of the product in both cases was the opposite of what was 

expected, it was decided to carry out the Michael reaction using SAMP-based 3-

pentanone hydrazone (S)-114 (Scheme 2.15) using trans-β-nitrostyrene as the 

Michael acceptor as this has not been used in the literature with SAMP-based 

hydrazones.  

 

Scheme 2.15 Michael reaction of SAMP-hydrazone (S)-114 with trans-β-

nitrostyrene. 

 Gratifyingly, crude 168 was determined to have a diastereomeric ratio of 

85:15 syn:anti as determined by chiral GC analysis and 1H NMR spectroscopy, 

with enantiomeric excesses of 30% and 46% observed for syn- and anti-168 
respectively (Figure 2.9).  This confirmed that the syn diastereomer was the major 

product obtained, which is in keeping with the result observed when the novel 

chiral auxiliary was used for the Michael reaction.  It follows that the relative 

stereochemistry observed in the aldol reaction using the novel chiral auxiliary 

(anti) should be the same as that which would be obtained if the reaction was 

carried out using SAMP.  As these results are the opposite selectivity to that 

previously reported for these types of reaction in the literature, it suggests that the 
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nature of the acceptor molecule (benzaldehyde and trans-β-nitrostyrene) and its 

interaction with the azaenolates intermediate causes the observed stereochemical 

outcome of the reaction. 

 

 

 

 

Figure 2.9 GC trace of product of Michael reaction using SAMP. 

 With respect to the intermediate formed during the Michael reaction of 

SAMP-based hydrazones, little appears to be known about its nature.  As the 

product of the Michael reaction using this particular acceptor (trans-β-

nitrostyrene) provides the syn product as the major diastereomer, it would appear 

that the selectivity is based on the properties of the acceptor rather than the 

hydrazone donor.  A plausible explanation for the observed syn selectivity of the 

final ketone product is as follows.  Deprotonation of the hydrazone with LDA 

provides the azaenolate, which will react with the acceptor in the same way it 

would with an allylating or benzylating reagent, giving rise to the observed 

selectivity at the α-position.  Due to the presence of the bulky pyrrolidine ring on 

one face of the hydrazone, the phenyl group will be orientated towards the opposite 

face as it would be more favoured sterically, resulting in the observed syn 

syn 

syn 

anti 

anti 
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selectivity.  Further mechanistic work would be required to determine the 

intermediate in this reaction sequence. 

2.8  Organocatalytic Michael reaction using diamine 
 In a recent paper published by Singh and Chimni, various pyrrolidine based 

chiral di- and triamines have been successfully utilised as organocatalysts in the 

Michael reaction of various ketones with a variety of nitro-olefins in brine.25  The 

authors chose to focus on pyrrolidine-based chiral amines as the organocatalysts 

based on the assumption that the pyrrolidine ring should act as the catalytic site by 

forming an enamine with the donor ketones, while the side chain would provide 

the chirality of the desired ketone product by appropriately orientating the nitro-

olefins due to steric and hydrophobic interactions.25  The aqueous solvent of choice 

was brine rather than water as it has been reported that nitrostyrenes can 

polymerise in the presence of amines, however if the reaction is carried out in an 

electrolyte solution, this polymerisation can be inhibited.26  The authors found that 

on addition of trichloroacetic acid (TCA) as an acid co-catalyst, an improvement 

in both yield and enantioselectivity was observed.   When their reaction was 

carried out with 3-pentanone 170 and trans-β-nitrostyrene 169 with catalyst (S)-

171 and TCA in brine, syn-168 was obtained in 64% yield and 87% ee after stirring 

for 3 d at 25 °C (Scheme 2.16). 

 

Scheme 2.16 Organocatalytic Michael reaction using (S)-171 as catalyst.25 
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 Considering these results, it was postulated that diamine (S)-131 (formed 

as an intermediate in the synthesis of our novel chiral auxiliary) could be utilised 

in this reaction, as (S)-131 has not been used by Singh and Chimni in their 

investigations.  Thus 3-pentanone 170, trans-β-nitrostyrene 169 and (S)-131 were 

added to a solution of brine and TCA and allowed to stir at 25 °C (Scheme 2.17).  

The reaction was monitored by TLC analysis and was deemed to be complete after 

36 h.  Although 168 was obtained in a much lower yield (4%) than those observed 

by Singh and Chimni,26 a gratifyingly high selectivity was attained, both in terms 

of diastereomeric ratio (91:9 syn:anti) and enantioselectivity (91% ee syn, 89% ee 

anti) (Figure 2.10). 

 

Scheme 2.17 Organocatalytic Michael reaction using (S)-131 as catalyst. 

 Reaction progress was monitored by TLC, with absence of 169 indicating 

completion of reaction.  It is likely that due to the polar nature of 168, product may 

have lost in aqueous washes during workup of the reaction, resulting in the 

observed low yield.  The orientation of 168 was determined to be 4S, 5R by 

comparison of the optical rotation value with the literature value.27 
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Figure 2.10 GC trace of product of organocatalytic Michael reaction. 

2.9  α- and β-Allylations of carboxylic acids 
 Chiral lithium amides have been successfully utilised as traceless 

auxiliaries in the single-step α-allylation of arylacetic acids, with allylation of 

phenylacetic acid 172 providing (S)-173 in excellent yield and enantioselectivity 

(Scheme 2.18).28  High enantioselectivities were achieved with only a slight excess 

of chiral amine required (1.03 equiv.) which was easily recoverable from the 

aqueous layer of the workup.   

Scheme 2.18 Allylation of phenylacetic acid using chiral lithium amides as 
traceless auxiliaries.28 

syn 

syn 

anti anti 
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With these results in mind, it was postulated that similar results could be 

achieved using chiral diamine (S)-131 and methylated variation (S)-174 (Figure 
2.11). 

 

Figure 2.11 Diamines used as traceless auxiliaries in α-allylation of carboxylic 

acid. 

(+)-Sparteine 175 (Figure 2.11) is a chiral diamine ligand which has 

previously been used in the research group29 and as a supply was readily available, 

it was also used in the reaction.  As the best published results had been achieved 

with phenylacetic acid and allylbromide, these reagents were used in the 

investigation.  The reaction was first carried out using the conditions outlined by 

Stivala and Zakarian with (S)-174 and 175 (Scheme 2.19), however yields were 

disappointingly low when compared with those obtained in the literature.28 

 

 

Scheme 2.19 α-Allylation of phenyl acetic acid using chiral diamine (S)-174 and 

(+)-sparteine 175. 

Derivatisation of the alkylated phenyl acetic acid (S)-173 was deemed 

necessary due to the nature of the chiral GC column available.  Attempts were 

made to convert the carboxylic acid to a methyl ester using K2CO3 and 

methyliodide in DCM, however the reaction was unsuccessful (Scheme 2.20).  
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Due to the failure of the esterification and possible potential for racemisation of 

the chiral centre in basic conditions, it was decided to determine enantioselectivity 

by comparison of optical rotation of the synthesised α-alkylated phenyl acetic 

acids against racemic 173 and against literature data. 

 

Scheme 2.20 Attempt at conversion of chiral carboxylic acid (S)-173 to ester. 

 The allylation reaction was repeated using three chiral amines as ligands 

(Table 2.4).  On comparison of optical rotation data of (S)-173 obtained from 

reactions using chiral ligands (S)-131, (S)-174 and 175 (Table 2.4, entries 1-3) 

with both racemic 173 and the published result from Stivala and Zakarian using 

Koga’s amine 176 (Table 2.4, entries 4 and 5) our chiral ligands proved 

disappointing in terms of both yield and selectivity.  It was also noted that in all 

three chiral reactions, a significant amount of starting material was present upon 

analysis of the crude mixture.  This suggests that complete deprotonation has not 

occurred, perhaps due to the nature of the ligands involved. 
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Table 2.4 α-Allylation of phenylacetic acid using chiral amines as ligands. 

 

Entry Ligand n-BuLi 
(equiv.) 

Yield       
(S)-173 

(%)a 

[α] 𝟐𝟑
𝐃   

(CHCl3) 

1 

 

2.1 22 -1.294  

(c = 0.85) 

2 

 

3.3 9 -1.667 

(c = 0.9) 

3 

 

2.2 5 +0.857 

(c = 0.35) 

4  None 

(racemic)  

2.2 >98 +0.248 

(c = 1.01) 

5 

 

4.0 84 +77.2          
(c = 1.01) 

a Isolated yield. 

Regioselective β-allylations of β-aryl secondary amides using 2.5 equiv. of 

(-)-sparteine has been reported (Scheme 2.21).30  The authors found that the degree 

of enantioselectivity of the product was dependant on the electrophile used with a 

wide range of electrophiles tolerated under the reaction conditions.  
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Scheme 2.21 Enantioselective β-allylation of 3-phenylpropanamide 174 using       

(-)-sparteine as chiral ligand. 

With these results in mind, the reaction was attempted using carboxylic 

acid 179 rather than the amide as the starting material.  Supplies of (S)-131 and 

(S)-174 had been exhausted in attempts at α-allylation of phenylacetic acid, so the 

β-allylation of 3-phenylpropanoic acid was attempted with (+)-sparteine 175 and 

Koga’s amine 176, the chiral ligand which gave the best results in Stivala and 

Zakarian’s α-allylation of phenylacetic acid.28  Disappointingly in both cases, 

allylation occurred solely at the α-position with low enantioselectivity determined 

by optical rotation data: reaction with 175: [α] 25
D  = +0.58 (c 1.12, CHCl3); reaction 

with 176: [α] 25
D  = +3.66 (c 0.56, CHCl3); lit.31 99% ee: [α] 25

D  = +0.58 (c 1.12, 

CHCl3), suggesting a nitrogen atom may be required to provide a coordination 

point for the chiral ligand to encourage allylation to take place at the β-position 

(Scheme 2.22). 

 
Scheme 2.22 Attempts at β-allylation of 3-phenylpropanoic acid 179. 
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2.10  Conclusions and future work 
 Novel chiral hydrazone methodology has been established involving 3-

pentanone and propiophenone based ketones with the chiral auxiliary containing a 

pyrrolidine ring in the chiral arm.  The chiral auxiliary has been formed in good 

yields in five steps from commercially available (S)-N-

(benzyloxycarbonyl)proline (S)-128 (or only two steps from commercially 

available (S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine (S)-131) without the need 

for silica column chromatography purification.  Enantiomeric excesses of up to 

92% were achieved in the α-alkylated aliphatic ketones formed and up to 89% in 

less studied aromatic ketones.  While the overall yields were moderate (in most 

cases due to product volatility), comparison studies with SAMP showed 

comparable yields.  However, given the remarkably few methods available to 

access these compounds and the excellent enantioselectivities observed, the novel 

chiral auxiliary reported can be considered a viable route to these chiral synthons.

 Initial unoptimised studies into the use of the novel chiral auxiliary in 

Michael reactions have proven to be successful and further research will be carried 

out in this area and in its potential in aldol reactions.     

 Although initial studies into the α- and β-allylation of carboxylic acids 

proved unsuccessful, future investigations in the area will involve alternative chiral 

amines including tertiary diamines and sparteine surrogates to act as ligands in 

these reactions.         
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3.1  General experimental 
Solvents and reagents were used as obtained from commercial sources and without 

purification with the following exceptions: THF and diethyl ether were freshly 

distilled from sodium/benzophenone under nitrogen.  DCM and diisopropylamine 

were distilled from CaH2 and stored under nitrogen.   

Wet flash column chromatography was carried out using Kieselgel silica gel 60, 

0.040–0.063 mm (Merck).  TLC was carried out on pre-coated silica gel plates 

(Merck 60 PF254).  Visualisation was achieved by UV and potassium 

permanganate staining. 

Melting points were carried out on a uni-melt Thomas Hoover Capillary melting 

point apparatus.   

IR spectra were recorded on Perkin-Elmer FT-IR Paragon 1000 

spectrophotometer.  Liquid samples were examined as thin films on NaCl plates.  

Solid samples were dispersed in KBr and recorded as pressed discs.  The intensity 

of peaks were expressed as strong (s), medium (m) and weak (w). 

NMR spectra were run in CDCl3 using TMS as the internal standard at 20 qC unless 

otherwise specified.  1H NMR (400 MHz) spectra and 1H NMR (300 MHz) spectra 

were recorded on Bruker Avance 400 and Bruker Avance 300 NMR spectrometers 

respectively in proton coupled mode. 19F NMR (282 MHz) spectra and 19F NMR 

(470 MHz) were recorded on Bruker Avance 300 NMR and Bruker Avance 600 

NMR spectrometers respectively in proton decoupled mode. 13C NMR (150 MHz), 
13C NMR (125 MHz) and 13C NMR (75.5 MHz) spectra were recorded on Bruker 

Avance 600 Bruker Avance 500 and Bruker Avance 300 NMR spectrometers 

respectively in proton decoupled mode.  All spectra were recorded at University 

College Cork.  Chemical shifts GH and GC are expressed as parts per million (ppm), 

positive shift being downfield from TMS; coupling constants (J) are expressed in 

hertz (Hz).  Splitting patterns in 1H NMR spectra are designated as s (singlet), bs 

(broad singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), dq 

(doublet of quartets), and m (multiplet).  For 13C NMR spectra, the number of 

attached protons for each signal was determined using the DEPT pulse sequence 

run in the DEPT-90 and DEPT-135 modes.  COSY, HSQC and HMBC 
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experiments were routinely performed to aid the NMR assignment of novel 

chemical structures. 

LRMS were recorded on a Waters Quattro Micro triple quadrupole instrument in 

ESI mode using 50% acetonitrile-water containing 0.1% formic acid as eluent; 

samples were made up in acetonitrile or methanol.  HRMS were recorded on a 

Waters LCT Premier Tof LC-MS instrument in ESI mode using 50% acetonitrile-

water containing 0.1% formic acid as eluent; samples were made up in acetonitrile 

or methanol.    

Enantiopurity of the chiral compounds was determined by chiral gas 

chromatography performed on an Astec CHIRALDEXTM G-TA, fused silica 

capillary column, 20 m u 0.25 mm u 0.12 µm film thickness.  GC analysis was 

performed on an Agilent Technologies 7820 A GC system.  All chiral columns 

were purchased from Sigma-Aldrich Supelco.  Conditions for separation were 

determined using the following operating conditions as standard, flow rate: 1 

mL/min, injection volume: 0.2 µL, split ratio: 10 : 1, front inlet temperature: 150 

°C, detector temperature: 155 °C.  Samples were prepared for GC analysis by 

dissolving in distilled DCM to 2 mg/ml and passing through silica gel. 

Optical rotations were measure on a Perkin-Elmer Polarimeter 341 at 589 nm in a 

10 cm cell; concentrations (c) are expressed in g/100 ml.  [D]D is the specific 

rotation of a compound and is expressed in units of 10-1 deg cm2 g-1. Specific 

rotations were employed to indicate the direction of enantioselection.   

The Microanalysis Laboratory, National University of Ireland, Cork, performed 

elemental analysis using a Perkin-Elmer 240 and Exeter Analytical CE440 

elemental analysers.  

3.1.1  Analysis of known and novel compounds 
1H NMR spectra, 13C NMR spectra, 19F NMR (where applicable), LRMS and 

melting point (if solid) analyses were recorded for all previously prepared 

compounds.  For novel compounds, in addition to the previously mentioned 

analysis, IR, HRMS and elemental analysis (if possible) were also obtained.  

Optical rotations were used to assign the absolute stereochemistry for known 

compounds. 
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3.2  Procedures for synthesis of hydrazones 
 Benzyl (S)-2-(pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate, (S)-129 

 To a stirred solution of (S)-N-(benzyloxycarbonyl)proline 

(S)-128 (74.57 g, 0.3 mol) in DCM (120 mL)  was added 

dropwise a solution of DCC (61.69 g, 0.3 mol) in DCM 

(130 mL)  at 0 °C under a N2 atmosphere.  After stirring for 

30 min, a solution of pyrrolidine (24.7 mL, 0.3 mol) in 

DCM (120 mL) was added dropwise to the reaction mixture 

at 0 °C via an addition funnel.  The reaction mixture was allowed slowly warm 

overnight.  The precipitate was removed by filtration through a pad of Celite® and 

washed with DCM to elute the product.  The filtrate was washed with 0.5 M HCl 

(2  u 150 mL), saturated aq. NaHCO3 solution (150 mL), water (150 mL) and brine 

(150 mL).  The organic layer was dried over MgSO4, concentrated in vacuo and 

crude product (86.91 g, 96%) recrystallised from ethyl acetate to yield (S)-129 as 

a white crystalline solid (73.52 g, 81%).                            

Spectral characteristics were consistent with previously reported data.1                  

m.p. 129–131 °C [lit.2 130–133 °C].  [α] 
22
D  = -13.3 (c 1.60, MeOH) [lit.2 [α] 22

D  =      

-14.1 (c 1.61, MeOH)]; 1H NMR (300 MHz, CDCl3): G (mixture of rotamers) 1.56–

2.20 (8H, m, 4 u CH2), 3.25–3.75 (6H, m, 3 u NCH2), 4.39–4.54 (1H, m, NCH), 

4.97–5.22 (2H, m, OCH2Ph), 7.28–7.37 (5H, m, 5 u CH arom.) ppm; 13C NMR 

(75.5 MHz, CDCl3): G (mixture of rotamers) 23.8, 23.9; 24.1, 24.4; 26.0, 26.3 (3 

u NCH2CH2), 29.5, 30.5 (NCHCH2), 45.9, 46.0; 46.1, 46.3; 46.7, 47.3 (3 u NCH2), 

57.7, 58.2 (CH), 66.9, 67.1 (OCH2), 127.8, 127.9; 128.0, 128.1; 128.4, 128.4 (5 u 

CH arom.), 136.7, 136.8 (COOCH2C), 154.2, 154.9 (CHCON), 170.7, 171.0 

(NCOO) ppm;  MS (ESI) m/z: 303 [(M + H)+, 100%]. 
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(S)-Pyrrolidin-1-yl(pyrrolidin-1-yl)methanone, (S)-130 

To a stirred solution of (S)-129 (75.40 g, 250 mmol) in 

methanol (350 mL) was added palladium on carbon (5 wt. % 

loading, 4.78 g).  The reaction mixture was stirred under 

hydrogen at atmospheric pressure for 22 h while monitoring the 

reaction progress by TLC analysis.  The crude reaction mixture was filtered 

through a pad of Celite® and washed with methanol to elute the product.  The 

filtrate was concentrated in vacuo to yield amide (S)-130 as a yellow oil (39.84 g, 

95%) with no purification required. 

Spectral characteristics were consistent with previously reported data.1 

[α]26
D  = -89.6 (c 1.7, EtOH) [lit.3 [α] 26

D
 = -112.2 (c 1.7, EtOH)]; 1H NMR (300 MHz, 

CDCl3): G 1.60–2.02 (7H, m, 3 u NCH2CH2, one of NCHCH2), 2.05–2.14 (1H, m, 

one of NCHCH2), 2.77–2.85 (1H, m, 1 of NHCH2), 2.93 (1H, bs, NH), 3.15–3.22 

(1H, m, 1 of NHCH2), 3.36–3.57 (4H, m, 2 u NCH2CH2), 3.73–3.77 (1H, dd, J = 

6.5, 8.6 Hz, NHCH) ppm; 13C NMR (75.5 MHz, CDCl3): G 24.0, 26.0, 26.5 (3 u 

NCH2CH2), 30.4 (NCHCH2), 45.9, 46.0, 47.7 (3 u NCH2), 59.5 (NCH), 172.7 

(C=O) ppm; MS (ESI) m/z: 169 [(M + H)+, 100%]. 

(S)-2-(1-Pyrrolidinylmethyl)-pyrrolidine, (S)-131  

To a stirred suspension of LiAlH4 (15 g, 396 mmol) in THF (140 

mL) was added a solution of amide (S)-130 (19.02 g, 113 mmol) 

in THF (80 mL) dropwise over 3 h at 0 °C under a N2 

atmosphere.  The reaction mixture was slowly heated to reflux, then allowed to stir 

at this temperature for 4 h.  The reaction was allowed to cool then quenched by 

dropwise addition of saturated aq. Na2SO4 solution (20 mL).  The crude reaction 

mixture was then filtered through a pad of Celite® and washed with ethyl acetate 

to elute the product.  The mother liquor was concentrated in vacuo to yield the 

crude product as a yellow oil (14.54 g, 83%), which was purified using Kugelrohr 

distillation to yield (S)-131 as a colourless oil (11.22 g, 64%).                                                                                                

Spectral characteristics were consistent with previously reported data.1                                    

[α]20
D  = +8.2 (c 2.4, EtOH) [lit.4 [α] 20

D  = +8.9 (c 2.4, EtOH)]; 1H NMR (300 MHz, 

CDCl3): G 1.22–1.37 (1H, m, one of NCHCH2), 1.61–1.74 (6H, m, 3 u NCH2CH2), 

1.76–1.91 (1H, m, one of NCHCH2), 2.21 (1H, bs, NH), 2.28 (1H, dd, J = 5.2, 
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11.9 Hz, one of NHCHCH2N), 2.38–2.54 (5H, m, 2 u NCH2CH2 pyrrolidine ring 

and one of NHCHCH2N), 2.75–2.83 (1H, m, one of NHCH2), 2.88–2.96 (1H, m, 

one of NHCH2), 3.11–3.20 (1H, m, NHCH) ppm; 13C NMR (75.5 MHz, CDCl3): 

G 23.4, 25.0 (3 u NCH2CH2), 30.1 (NHCHCH2), 46.1 (NHCH2), 54.6 (2 u 

NCH2CH2 pyrrolidine ring), 57.4 (NHCH), 62.1 (NHCHCH2N) ppm; MS (ESI) 

m/z: 155 [(M + H)+, 100%]. 

(S)-1-Nitroso-2-(pyrrolidin-1-ylmethyl)pyrrolidine, (S)-132 

 Ethyl nitrite in ethanol (10-20%, taken to be 15%) (5.45 mL, 

8.63 mmol) was added to (S)-131 (1.065 g, 6.90 mmol).  The 

reaction vessel was covered in aluminium foil and allowed to 

stir at room temperature with progress monitored by 1H NMR spectroscopy.  After 

45 h, ethanol was removed in vacuo to yield (S)-132 as a yellow oil (1.15 g, 91%).     

N.B. Due to the potential toxicity of this compound, only 1H and 13C spectra were 

obtained and the crude reaction mixture used without purification in the next step.  
1H NMR (300 MHz, CDCl3): G 1.76–1.81 (4H, m, 2 u NCH2CH2 pyrrolidine ring), 

1.91–2.25 (4H, m, NCH2CH2 and NCHCH2), 2.54–2.67 (4H, m, 2 u NCH2CH2 

pyrrolidine ring), 2.80 (1H, dd, J = 8.8, 12.2 Hz, one of NCHCH2N), 3.00 (1H, dd, 

J = 5.1, 12.2 Hz, one of NCHCH2N), 3.52–3.62 (2H, m, NCH2), 4.59–4.67 (1H, 

m, NCH) ppm; 13C NMR (75.5 MHz, CDCl3): G 20.7 (NCH2CH2), 23.5 (2 u 

NCH2CH2 pyrrolidine ring), 28.7 (NCHCH2), 45.6 (NCH2), 54.7 (2 u NCH2CH2 

pyrrolidine ring), 59.5 (NCHCH2N), 60.3 (NCH) ppm. 

(S)-2-(Pyrrolidin-1-ylmethyl)pyrrolidin-1-amine, (S)-133 

To a stirred suspension of LiAlH4 (2.611 g, 68.8 mmol) in THF 

(120 mL) was added a solution of (S)-132 (6.300 g, 34.4 mmol) 

in THF (60 mL) at 0 °C under a N2 atmosphere.  The reaction 

mixture was allowed stir at room temperature for 15 min before being heated to 

reflux for 4 h, then stirred at room temperature overnight.  Reaction progress was 

monitored by 1H NMR spectroscopy.  The reaction was quenched by dropwise 

addition of saturated aq. Na2SO4 solution (20 mL).  The crude reaction mixture 

was filtered through a pad of Celite® washing with diethyl ether to elute the 

product.  The mother liquor was concentrated in vacuo to yield (S)-133 as a yellow 
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oil (4.98 g, 86%) with no purification required.                                       

[α] 20
D

 = -49.4 (c 1.08, EtOH); IR (NaCl) Qmax: 3370 (N-H stretch, m), 2961, 2798 (C-

H alkyl stretch, s), 1459, 1447 (C-H alkyl bend, m), 1139 (C-N stretch, m) cm�1; 1H 

NMR (300 MHz, CDCl3): G 1.41–1.54 (1H, m, one of  NCHCH2), 1.68–1.85 (6H, 

m, 2 u NCH2CH2 pyrrolidine ring and NCH2CH2), 1.93–2.07 (1H, m, one of 

NCHCH2), 2.26–2.41 (3H, m, one of NCHCH2N and NCH2), 2.45–2.53 (2H, m, 

NCH2CH2 pyrrolidine ring), 2.54–2.62 (2H, m, 2 u NCH2CH2 pyrrolidine ring), 

2.87 (1H, dd, J = 6.5, 11.8 Hz, one of NCHCH2N), 3.22–3.41 (3H, m, NCH and 

NH2) ppm; 13C NMR (150 MHz, CDCl3): G 20.6 (NCH2CH2), 23.5 (2 u NCH2CH2 

pyrrolidine ring), 28.7 (NCHCH2), 54.9 (2 u NCH2CH2 pyrrolidine ring), 59.6 

(NCHCH2N), 61.5 (NH2NCH2), 67.8 (NH2NCH) ppm; HRMS (ESI) m/z calcd for 

C9H20N3 [(M + H)+]: 170.1657, found 170.1674. 

(S)-N-(Pentan-3-ylidine)-2-(pyrrolidin-1-ylmethyl)pyrrolidin-1-amine,        
(S)-156 

 To a stirred solution of (S)-133 (4.98 g, 29.4 mmol) in 

cyclohexane (10 mL) was added 3-pentanone (7.60 g, 88.2 

mmol) dropwise under a N2 atmosphere.  The reaction 

mixture was allowed stir at room temperature overnight and 

reaction progress monitored by 1H NMR spectroscopy.  On completion, the 

reaction mixture was poured into a 6:1 DCM:water mixture, shaken and layers 

separated. The organic layer was dried over MgSO4 and concentrated in vacuo to 

give crude product (5.614 g, 80%) which was purified using Kugelrohr distillation 

to yield (S)-156 as a pale yellow oil (4.52 g, 65%).                                                            

[α] 20
D  = +67.3 (c 1, EtOH); IR (NaCl) Qmax: 2874, 2794 (C-H alkyl stretch, s), 1658 

(C=N stretch, s), 1460 (C-H alkyl bend, m), 1146 (C-N stretch, m) cm�1; 1H NMR 

(300 MHz, CDCl3): G 1.06 (3H, t, J = 7.5 Hz, CH3), 1.08 (3H, t, J = 7.5 Hz, CH3), 

1.53–1.66 (1H, m, one of NCHCH2), 1.69–1.91 (6H, m, NCH2CH2, 2 u NCH2CH2 

pyrrolidine ring), 2.02–2.14 (1H, m, one of NCHCH2), 2.17–2.29 (2H, m, 

CH3CH2), 2.30–2.55 (9H, m, CH3CH2, NCHCH2N, 2 u NCH2CH2 pyrrolidine 

ring and one of NCH2), 2.97–3.10 (2H, m, one of NCH2 and NCH) ppm; 13C NMR 

(75.5 MHz, CDCl3): G 10.9 (CH3), 11.8 (CH3), 21.8 (NCH2CH2), 23.4 (CH3CH2), 
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23.5 (2 u NCH2CH2 pyrrolidine ring), 28.6 (CH3CH2), 28.7 (NCHCH2) 54.8 (2 u 

NCH2CH2 pyrrolidine ring), 55.0 (NCH2), 61.4 (NCHCH2N), 66.1 (NCH), 173.3 

(C=N) ppm; HRMS (ESI) m/z calcd for C14H28N3 [(M + H)+]: 238.2283, found 

238.2288.  

(S)-N-(1-Phenylpropylidene)-2-(pyrrolidin-1-ylmethyl)pyrrolidin-1-amine, 
(S)-157 

To a stirred solution of (S)-133 (1.21 g, 7.14 mmol) in 

cyclohexane (4 mL) was added propiophenone (2.38 g, 

17.7 mmol) dropwise under a N2 atmosphere.  The 

reaction mixture was allowed stir at room temperature 

overnight and the reaction progress monitored by 1H NMR spectroscopy.  On 

completion, the reaction mixture was poured into a 6:1 DCM:water mixture, 

shaken and layers separated. The organic layer was dried over MgSO4 and 

concentrated in vacuo to give crude product as a brown oil (1.27 g, 62%) which 

was purified by Kugelrohr distillation to yield (S)-157 as a colourless oil (1.06 g, 

52%). [α] 20
D  = +418.5 (c 1.09, EtOH); IR (NaCl) Qmax:  2965, 2875, 2790 (alkyl C-

H stretch, s), 1608 (C=N stretch, w), 1445, 1459 (aromatic C=C stretch, m), 1144 

(C-N stretch, m), 696 (mono substituted benzene ring bend, s) cm�1; 1H NMR (300 

MHz, CDCl3): G (mixture of E/Z isomers, 85:15 major:minor) 1.03 and 1.08 (3H, 

2 u overlapping t, J = 7.6 Hz, CH3CH2), 1.43–1.79 (6H, m , one of NCHCH2 and 

2 u NCH2CH2 pyrrolidine ring), 1.82–2.03 (1.9H, m, NCH2CH2), 2.08–2.29 

(1.4H, m, one of NCHCH2), 2.44–2.68 (7.7H, m, NCHCH2N, 2 u NCH2CH2 

pyrrolidine ring, one of NCH2), 2.70–2.94 (2H, m, CH3CH2), 3.25–3.40 (2H, m, 

NCH and one of NCH2), 7.28–7.39 (3H, m, CH arom.), 7.67–7.71 (1.6H, m, CH 

arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G (only major isomer reported) 11.7 

(CH3), 22.47 (NCH2CH2), 22.50 (NCHCH2), 23.5 (2 u NCH2CH2 pyrrolidine 

ring), 28.7 (CH3CH2), 55.0 (NCH2), 55.3 (2 u NCH2CH2 pyrrolidine ring), 61.6 

(NCHCH2N), 66.9 (NCH), 126.8, 128.2, 128.6 (5 u CH arom.), 138.2 (CHCC=N), 

165.1 (C=N); HRMS (ESI) m/z calcd for C18H28N3 [(M + H)+]: 286.2283, found 

286.2288. 

 



Chapter 3  Experimental 

101 
 

(S)-N-(1-(4-Methoxyphenyl)propylidene)-2-(pyrrolidin-1-ylmethyl)-pyrro- 
lidin-1-amine, (S)-158 

To a stirred solution of (S)-133 (0.94 g, 5.57 mmol) 

in cyclohexane (9 mL) was added p-

methoxypropiophenone (0.92 g, 5.57 mmol) 

dropwise under a N2 atmosphere.  The reaction 

mixture was allowed stir at reflux overnight and the reaction progress monitored 

by 1H NMR spectroscopy.  On completion, the reaction mixture was poured into a 

6:1 DCM:water mixture, shaken and layers separated. The organic layer was dried 

over MgSO4 and concentrated in vacuo to give crude product as a dark orange oil 

(1.53 g, 87%) which was purified using silica column chromatography eluting with 

90:10 hexane:ethyl acetate to yield (S)-158 as an orange oil (0.95 g, 54%).          

[α] 20
D  = +122.1 (c 1, Et2O); IR (NaCl) Qmax: 2965 (C-H alkyl stretch, s), 1608 (C=N 

stretch, m), 1512 (C=C arom. stretch, s), 1250 (C-N stretch, s), 1176 (C-O stretch, 

m) cm�1; 1H NMR (300 MHz, CDCl3): G (mixture of E/Z isomers, 96:4 

major:minor) 1.08 (3.5H, 2 u overlapping t, J = 7.6 Hz, CH3CH2 major and minor), 

1.59–1.70 (1.2H, one of NCHCH2), 1.72–1.81 (4.5H, m, 2 u NCH2CH2 pyrrolidine 

ring), 1.82–1.93 (2.3H, m, NCH2CH2), 2.09–2.20 (1.4H, m, one of NCHCH2), 

2.49–2.63 (8.1H, m, one of NCH, NCHCH2N, 2 u NCH2CH2 pyrrolidine ring), 

2.71–2.89 (2H, m, CH3CH2), 2.96 (0.2H, q, CH3CH2 minor), 3.20–3.35 (2.1H, m, 

NCH and one of NCH2), 3.83 (3H, s, OCH3), 3.87 (0.12H, s, OCH3 minor) 6.88 

(2H, d, J = 8.9 Hz, 2 u CHCOCH3), 7.37 (0.1H, d, J = 10.9 Hz, 2 u CHCOCH3 

minor), 7.65 (2H, d, J = 8.9 Hz, 2 u CHCHCOCH3), 7.96 (0.08H, d, J = 8.9 Hz, 2 

u CHCHCOCH3 minor) ppm; 13C NMR (75.5 MHz, CDCl3) G (only major isomer 

reported) 12.0 (CH3), 22.2 (NCH2CH2), 22.3 (NCHCH2), 23.5 (2 u NCH2CH2 

pyrrolidine ring), 28.7 (CH3CH2), 55.1 (NCH2), 55.2 (2 u NCH2CH2 pyrrolidine 

ring), 55.3 (OCH3), 61.6 (NCHCH2N), 66.7 (NCH), 113.6 (2 u CHCOCH3), 128.2 

(2 u CHCHCOCH3), 130.6 (CHCC=N), 160.2 (COCH3), 165.7 (C=N) ppm;  

HRMS (ESI) m/z calcd for C19H30N3O [(M + H)+]:  316.2389, found 316.2388. 
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(S)-N-(1-(4-Fluorophenyl)propylidene)-2-(pyrrolidin-1-ylmethyl)pyrrolidin-
1-amine, (S)-159 

To a stirred solution of (S)-133 (0.99 g, 5.85 mmol) 

in cyclohexane (9 mL) was added p-

fluoropropiophenone (0.89 g, 5.85 mmol) dropwise 

under a N2 atmosphere.  The reaction mixture was 

allowed stir at reflux overnight and the reaction 

progress monitored by 1H NMR spectroscopy.  On completion, the reaction 

mixture was poured into a 6:1 DCM:water mixture, shaken and layers separated. 

The organic layer was dried over MgSO4 and concentrated in vacuo to give crude 

product as a brown oil (1.42 g, 80%) which was purified by silica column 

chromatography eluting with 90:10 hexane:ethyl acetate to yield (S)-159 as an 

orange oil (0.86 g, 48%).                                        

[α] 20
D  = +289.4 (c 1, Et2O); IR (NaCl) Qmax: 2969, 2934 (C-H alkyl stretch, s), 1600 

(C=N stretch, s), 1508, 1460 (C=C arom. stretch, m), 1223(C-F stretch, m), 1157 

(C-N stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): G (mixture of major and minor 

E/Z isomers, 74:26 major:minor) 1.03 and 1.07 (3.3H, 2 u overlapping t, CH3CH2), 

1.61–1.71 (1.9H, m, one of NCHCH2), 1.73–1.81 (5.8H, m, 2 u NCH2CH2 

pyrrolidine ring), 2.09–2.20 (1.8H, m,  one of NCHCH2), 2.46–2.66 (9.8H, m, one 

of NCH2, NCHCH2N, 2 u NCH2CH2 pyrrolidine ring), 2.73–2.90 (2H, m, 

CH3CH2 major), 2.94–3.01 (0.7H, q, J = 7.2 Hz, CH3CH2 minor), 3.24–3.40 (3H, 

m, NCH and one of NCH2), 7.03 (2H, t, J = 8.8 Hz, 2 u CHCF major), 7.09–7.15 

(0.6H, m, 2 u CHCF minor), 7.37 (0.7H, dd, J = 5.6, 8.8 Hz, 2 u CHCHCF minor), 

7.67 (2H, dd, J = 5.5, 8.9 Hz, 2 u CHCHCF major) ppm; 13C NMR (75.5 MHz, 

CDCl3): G (only major isomer reported) 11.7 (CH3CH2), 22.4 (NCH2CH2), 22.5 

(NCHCH2), 23.5 (2 u NCH2CH2 pyrrolidine ring), 28.6 (CH3CH2C=N), 55.0 

(NCH2), 55.4 (2 u NCH2CH2 pyrrolidine ring), 61.5 (NCHCH2N), 66.9 (NCH), 

115.1 (d, 2JC-F = 21.4 Hz, 2 u CHCF), 128.5 (d, 3JC-F = 8.1 Hz, 2 u CHCHCF), 

134.2 (d, 4JC-F = 3.2 Hz CC=N), 163.3 (d, 1JC-F = 248.7 Hz, CF), 163.9 (C=N) 

ppm; 19F NMR (282 MHz, CDCl3): -113.3 (major), -113.5 (minor) ppm; HRMS 

(ESI) m/z calcd for C18H27N3F [(M + H)+]: 304.2189, found 304.2176. 
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(S)-2-(Methoxymethyl)-N-(1-phenylpropylidene)pyrrolidin-1-amine, (S)-163 

To a stirred solution of (S)-(-)-1-amino-2-

(methoxymethyl)pyrrolidine (S)-19 (0.300 g, 2.30 mmol) in 

cyclohexane (10 mL) was added propiophenone (0.309 g, 

2.30 mmol) dropwise under a N2 atmosphere.  The reaction 

mixture was allowed stir at 60 °C overnight and reaction progress monitored by 

TLC analysis.  On completion, the reaction mixture was poured into a 6:1 

DCM:water mixture and layers separated. The organic layer was dried over 

MgSO4 and concentrated in vacuo to give the crude product as an orange oil which 

was purified by silica column chromatography eluting with 90:10 hexane:ethyl 

acetate to yield (S)-163 as a yellow oil (300 mg, 52%).                                  

[α] 20
D  = +651.0 (c 1.3, CHCl3) [lit.5 [α] 20

D  = +733.0 (c 1.3, C6H6)]; IR (NaCl) Qmax: 

2936, 2827 (C-H alkyl stretch, s), 1690 (C=N stretch, m), 1460, 1445 (C=C arom. 

stretch, s), 1101 (C-O stretch, s) cm-1; 1H NMR (300 MHz, CDCl3): G (mixture of 

E/Z isomers, 86:14 major:minor) 1.03 and 1.08 (3.4H, 2 u overlapping t, J = 7.6 

Hz, CH3CH2 major and minor), 1.48–1.64 (0.4H, m, NCHCH2 minor), 1.67–1.79 

(1.5H, m, one of NCHCH2 major and NCH2CH2 minor), 1.84–1.95 (2H, m, 

NCH2CH2 major), 2.01–2.12 (1H, m, one of NCHCH2 major), 2.21–2.29 (0.15H, 

m, one of NCH2 minor), 2.49–2.68 (1.4H, m, one of NCH2 major and minor and 

one of CH3CH2 minor), 2.84 (2H, 2 u overlapping q, J = 7.7 Hz, CH3CH2 major), 

3.00 (0.14H, q, J = 7.3 Hz, one of CH3CH2 minor),  3.27–3.43 (3.8H, m, one of 

CH2OCH3 major and minor, NCH major and minor and one of NCH2 and OCH3 

minor), 3.36 (3H, s, OCH3 major), 3.51 (1H, dd, J = 3.7, 8.9 Hz, one of CH2OCH3 

major), 3.61 (0.16H, dd, J = 3.7, 8.9 Hz, one of CH2OCH3 minor), 7.34–7.36 

(3.49H, m, 3 u CH arom. major and minor), 7.42–7.48 (0.13 H, m, CH arom. 

minor), 7.66–7.69 (2H, m, 2 u CH arom. major), 7.95–7.98 (0.13H, m, CH arom. 

minor) ppm; 13C NMR (75.5 MHz, CDCl3): G (only major isomer reported) 11.8 

(CH3CH2), 22.5 (NCH2CH2), 22.6 (CH3CH2), 26.7 (NCHCH2), 55.6 (NCH2), 59.2 

(OCH3), 66.8 (NCH), 75.6 (CH2OCH3), 126.8, 128.2, 128.7 (5 u CH arom.), 138.1 

(CH3CH2C=NC), 165.5 (C=N) ppm; HRMS (ESI) m/z calcd for C15H23N2O [(M 

+ H)+]: 247.1810, found 247.1800; Anal. calcd for C15H22N2O: C, 73.13; H, 9.00; 

N, 11.37%. Found: C, 73.53; H, 9.12; N, 11.49%.  
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(S)-2-(Methoxymethyl)-N-(pentan-3-ylidene)pyrrolidin-1-amine, (S)-114 

To a stirred solution of (S)-(-)-1-amino-2-

(methoxymethyl)pyrrolidine (S)-19 (0.500 g, 3.84 mmol) in 

cyclohexane (10 mL) was added 3-pentanone (0.331 g, 3.84 

mmol) dropwise under a N2 atmosphere.  The reaction mixture 

was allowed stir at 60 °C overnight and reaction progress monitored by TLC 

analysis.  On completion, the reaction mixture was poured into a 6:1 DCM:water 

mixture and layers separated. The organic layer was dried over MgSO4 and 

concentrated in vacuo to give (S)-114 as an orange oil (0.578 g, 76%).                               

[α] 20
D  = +321.5 (c 1.1, CHCl3) [lit.5 [α] 20

D  = +297.0 (c 1.0, C6H6)]; IR (NaCl) Qmax: 

2970, 2877 (C-H alkyl stretch, s), 1636 (C=N stretch, m), 1100 (C-O stretch, s) 

cm�1; 1H NMR (300 MHz, CDCl3): G 1.06 (3H, t, J = 7.5 Hz, CH3), 1.08 (3H, t, J 

= 7.5 Hz, CH3), 1.60–1.72 (1H, m, one of NCH2), 1.77–1.87 (2H, m, NCH2CH2), 

1.95–2.07 (1H, m, one of NCH2), 2.17–2.28 (2H, m, CH3CH2), 2.32–2.54 (3H, m, 

CH3CH2 and one of NCH2), 3.01–3.16 (2H, m, NCH and one of NCHCH2), 3.21 

(1H, dd, J = 9.2, 7.0 Hz, one of CHCH2OCH3), 3.33 (3H, s, OCH3), 3.39 (1H, dd, 

J = 9.2, 3.9 Hz, one of CHCH2OCH3) ppm; GC (CDCl3, 75.5 MHz) 10.9 (CH3), 

11.8 (CH3), 21.9 (NCH2CH2), 23.5 (CH3CH2), 26.6 (NCH2), 28.7 (CH3CH2), 55.0 

(NCH2), 59.1 (OCH3), 66.0 (NCH), 75.4 (CH2OCH3), 178.5 (C=N) ppm; HRMS 

(ESI) m/z calcd for C11H23N2O [(M + H)+]: 199.1810, found 199.1812.  

3.3  General procedure for synthesis of racemic α-alkylated ketones for use 

as GC standards  
To a stirred solution of commercially available 1.6 M LDA (1.1 equiv.) in freshly 

distilled THF (5 mL) in a Schlenk tube under N2 atmosphere was added ketone 

(1.0 equiv.) dropwise at -78 °C and the reaction was stirred at this temperature for 

30 min. A solution of the electrophile (1.2 equiv.) in THF (3 mL) was added 

dropwise at -78 °C and reaction allowed to stir at this temperature for 1 h. The 

reaction was allowed warm to room temperature overnight.  Saturated aq. NH4Cl 

solution (10 mL) was added and the crude product extracted with ethyl acetate or 

diethyl ether (3 u 15 mL).  The organic layer was dried over MgSO4 and 
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concentrated in vacuo to yield crude product, which was purified by column 

chromatography on silica gel. 

2-Methyl-1-phenylpentan-3-one, 143 

3-Pentanone (91 mg, 1.06 mmol) was alkylated with benzyl 

bromide (200 mg, 1.17 mmol) as per general procedure 3.3 and 

purified by silica column chromatography 30:1 hexane:diethyl 

ether to yield 143 as a pale yellow oil (58 mg, 31%).        

Spectral characteristics were consistent with previously reported data.6                      
1H NMR (300 MHz, CDCl3): G 0.97 (3H, t, J = 7.3 Hz, CH3CH2), 1.08 (3H, d, J = 

6.9 Hz, CH3CH), 2.19–2.32 (1H, m, one of CH3CH2), 2.37–2.50 (1H, m, one of 

CH3CH2), 2.57 (1H, dd, J = 7.2, 13.2 Hz, one of CH3CHCH2), 2.84 (1H, m, 

CH3CH), 2.97 (1H, dd, J = 7.2, 13.2 Hz, one of CH3CHCH2), 7.12–7.16 (2H, m, 

2 u CH arom.), 7.18–7.21 (1H, m, CH arom.), 7.24–7.30 (2H, m, 2 u CH arom.) 

ppm; 13C NMR (75.5 MHz, CDCl3): G 7.6 (CH3CH2), 16.6 (CH3CH), 35.2 

(CH3CH2), 39.3 (CH3CHCH2), 47.9 (CH3CH), 126.2 (CH arom.), 128.4 (2 u CH 

arom.), 128.9 (2 u CH arom.), 139.9 (CH3CHCH2C), 214.8 (C=O) ppm; MS (ESI) 

m/z: 177 [(M + H)+, 2%]. 

2-Methyl-1-(perfluorophenyl)pentan-3-one, 144 

3-Pentanone (155 mg, 1.8 mmol) was alkylated with 

pentafluorobenzyl bromide (520 mg, 2.0 mmol) as per 

general procedure 3.3 and purified by silica column 

chromatography 90:10 hexane:diethyl ether to yield 144 as 

a yellow oil (136 mg, 28%).  IR (NaCl) Qmax: 2980 (C-H 

alkyl stretch, m), 2941 (C-H alkyl stretch, m), 1717 (C=O stretch, s), 1503, 1522 

(C=C  arom. stretch, s), 1124 (C-F stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): 

G 1.06 (3H, t, J = 7.3 Hz, CH3CH2), 1.11 (3H, d, J = 6.9 Hz, CH3CH), 2.37–2.64 

(2H, m CH3CH2), 2.71–2.91 (2H, m, CH3CHCH2), 2.97–3.03 (1H, m, CH3CH) 

ppm; 13C NMR (125 MHz, CDCl3): G 7.7 (CH3CH2), 16.1 (CH3CH), 25.1 

(CH3CHCH2), 34.2 (CH3CH2), 45.1 (CH3CH), 113.0 (apparent td, J = 3.8, 17.5 

Hz, CH3CHCH2C), 136.3–136.6, 138.3–138.7 (dm, J = 248.8 Hz, 2 u CH2CCF), 

139.8 (dtt, J = 5.0, 13.8, 256.3 Hz, CH2CCFCFCF), 144.1–144.4, 146.1–146.3 
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(dm, J = 247.5 Hz, 2 u CH2CCFCF), 212.7 (C=O) ppm; 19F NMR (470 MHz, 

CDCl3): G ˗142.7 (dd, J = 4.7, 18.8 Hz, 2 u CCFCFCF), ˗156.8 (t, J = 18.8 Hz, 

CCFCFCF), ˗162.6 (m, 2 u CCFCFCF) ppm; HRMS (ESI) m/z calcd for 

C12H12F5O [(M + H)+]: 267.0808, found 267.0821.   

1-(2-Bromophenyl)-2-methylpentan-3-one, 145 

3-Pentanone (860 mg, 10 mmol) was alkylated with 2-

bromobenzyl bromide (2.750 g, 11 mmol) as per general 

procedure 3.3 and purified by silica column chromatography 

40:1 hexane:ethyl acetate to yield 145 as a yellow oil (1.40 g, 

55%).  Spectral characteristics were consistent with previously reported data.7       
1H NMR (300 MHz, CDCl3): G 0.98 (3H, t, J = 7.3 Hz, CH3CH2), 1.09 (3H, d, J = 

6.9 Hz, CH3CH), 2.28 (1H, dq, J = 7.3, 17.8 Hz, one of CH3CH2), 2.47 (1H, dq, J 

= 7.3, 17.8 Hz, one of CH3CH2), 2.68 (1H, dd, J = 6.9, 12.8 Hz, one of CHCH2), 

2.95–3.13 (2H, m, CH3CH and one of CHCH2), 7.04–7.09 (1H, m, CH arom.), 

7.13–7.23 (2H, m, 2 u CH arom.), 7.53 (1H, dd, J = 1.2, 7.9 Hz, CH arom.) ppm; 
13C NMR (75.5 MHz, CDCl3): G 7.6 (CH3CH2), 16.5 (CH3CH), 35.3 (CH3CH2), 

39.3 (CHCH2), 45.4 (CH3CH), 124.6 (CBr), 127.3 (CH arom.), 128.0 (CH arom.), 

131.6 (CH arom.), 132.9 (CH arom.), 139.2 (CH3CHCH2C), 214.5 (C=O) ppm; 

MS (ESI) m/z: 256 [(M + H)+, 6%].      

1-(4-Methoxyphenyl)-2-methylpentan-3-one, 146 

3-Pentanone (223 mg, 2.71 mmol) was alkylated with 4-

methoxybenzyl bromide (600 mg, 2.98 mmol) as per 

general procedure 3.3 and purified by silica column 

chromatography 20:1 hexane:ethyl acetate to yield 146 as 

a pale yellow oil (194 mg, 35%).  Spectral characteristics were consistent with 

previously reported data.8               
1H NMR (300 MHz, CDCl3): G 0.97 (3H, t, J = 7.3 Hz, CH3CH2), 1.07 (3H, d, J = 

6.8 Hz, CH3CH), 2.24 (1H, dq, J = 7.3, 17.9 Hz, one of CH3CH2), 2.42 (1H, dq, J 

= 7.3, 17.9 Hz, one of CH3CH2), 2.51 (1H, dd, J = 6.9, 13.1 Hz, one of CHCH2), 

2.80 (1H, m, CH), 2.90 (1H, dd, J = 7.3, 13Hz, one of CHCH2), 3.78 (3H, s, 

OCH3), 6.81 (2H, d, J = 8.7 Hz, 2 u CH arom.), 7.05 (2H, d, J = 8.6 Hz, 2 u CH 
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arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 7.6 (CH3CH2), 16.6 (CH3CH), 35.3 

(CH3CH2), 38.5 (CHCH2), 48.1 (CH3CH), 55.2 (OCH3), 113.8 (2 u CH arom.), 

129.9 (2 u CH arom.), 131.9 (CH3CHCH2C), 158.0 (COCH3), 215.1 (C=O) ppm; 

MS (ESI) m/z: 207 [(M + H)+, 10%].       

2-Methyl-1-(4-nitrophenyl)pentan-3-one, 147 

3-Pentanone (172 mg, 2.0 mmol) was alkylated with 4-

nitrobenzyl bromide (475 mg, 2.2 mmol) as per general 

procedure 3.3 and purified by silica column 

chromatography 90:10 hexane: diethyl ether to yield 147 
as a colourless oil (124 mg, 28%).               

IR (NaCl) Qmax: 2975 (C-H alkyl stretch, m), 2937 (C-H alkyl stretch, m), 1712 

(C=O stretch, s), 1519 (NO2 asymmetric stretch, s), 1346 (NO2 symmetric stretch, 

s) cm-1; 1H NMR (300 MHz, CDCl3): G 0.99 (3H, t, J = 7.3 Hz, CH3CH2), 1.13 

(3H, d, J = 7.0 Hz, CH3CH), 2.26 (1H, dq, J = 7.3, 17.9 Hz, one of CH3CH2), 2.50 

(1H, dq, J = 7.3, 17.9 Hz, one of CH3CH2), 2.68 (1H, dd, J = 6.8, 13.4 Hz, one of 

CHCH2), 2.88 (1H, m, CH3CH), 3.11 (1H, dd, J = 7.6, 13.4 Hz, one of CHCH2), 

7.31 (2H, d, J = 8.8 Hz, 2 u  CH arom.), 8.14 (2H, d, J = 8.8 Hz, 2 u CH arom.) 

ppm; 13C NMR (75.5 MHz, CDCl3): G 7.6 (CH3CH2), 17.0 (CH3CH), 35.1 

(CH3CH2), 38.6 (CHCH2), 47.5 (CH3CH), 123.7 (2 u CHCNO2, 129.8 (2 u 

CHCHCNO2) 146.6 (CH3CHCH2C), 147.9 (CN), 213.6 (C=O) ppm; HRMS (ESI) 

m/z calcd for C12H16NO3 [(M + H)+]: 222.1130, found 222.1122; Anal. calcd for 

C12H15NO3: C, 65.14; H, 6.83; N, 6.33%. Found: C, 65.28; H, 6.77; N, 6.41%. 

1-(4-(tert-Butyl)phenyl)-2-methylpentan-3-one, 148 

3-Pentanone (200 mg, 2.32 mmol) was alkylated with 4-

t-butylbenzyl bromide (631 mg, 2.78 mmol) as per 

general procedure 3.3 and purified by silica column 

chromatography 90:10 hexane:ethyl acetate to yield 148 
as a pale yellow oil (63 mg, 12%).                                   

Spectral characteristics were consistent with previously reported data.8                      
1H NMR (300 MHz, CDCl3): G 0.98 (3H, t, J = 7.3 Hz, CH3CH2), 1.08 (3H, d, J = 

6.9 Hz, CH3CH), 1.30 (9H, s, 3 u CH3), 2.29 (1H, dq, J = 7.3, 17.8 Hz, one of 
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CH3CH2), 2.44 (1H, dq, J = 7.3, 17.8 Hz, one of CH3CH2), 2.53 (1H, dd, J = 7.4, 

13.3 Hz, one of CH3CHCH2), 2.82 (1H, m, CH3CH), 2.95 (1H, dd, J = 6.9, 13.3 

Hz, one of CH3CHCH2), 7.06 (2H, d, J = 8.4Hz, 2 u CH arom.), 7.29 (2H, d, J = 

8.4 Hz, 2 u CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 7.6 (CH3CH2), 16.6 

(CH3CH), 31.4 (3 u CH3), 34.4 (C(CH3)3), 35.0 (CH3CH2), 38.7 (CH3CHCH2), 

47.9 (CH3CH), 125.3 (2 u CH arom.), 128.6 (2 u CH arom.), 136.7 

(CH3CHCH2C), 149.0 (CC(CH3)3), 215.0 (C=O) ppm; MS (ESI) m/z: 233 [(M + 

H)+, 16%].  

4-Methylhept-6-en-3-one, 149 

3-Pentanone (0.800 g, 9.29 mmol) was alkylated with 

allylbromide (1.349 g, 11.15 mmol) as per general procedure 3.3 

and purified by silica column chromatography 90:10 

hexane:diethyl ether to yield 149 as a yellow oil (0.441 g, 38%).              

Spectral characteristics were consistent with previously reported data.9, 10              

1H NMR (300 MHz, CDCl3): G 1.04 (3H, t, J = 7.3 Hz, CH3CH2), 1.08 (3H, d, J = 

7.0 Hz, CH3CH), 2.04–2.17 (1H, m, one of CH3CHCH2), 2.34–2.42 (1H, m, one 

of CH3CHCH2), 2.46 (2H, m, CH3CH2), 2.61 (1H, m, CH3CH), 4.98–5.07 (2H, 

m, CH2 alkene), 5.65–5.79 (1H, m, CH alkene) ppm; 13C NMR (75.5 MHz, 

CDCl3): G 7.7 (CH3CH2), 16.2 (CH3CH), 34.4 (CH3CH2), 37.2 ( CHCH2), 45.7 

(CH3CH), 116.7 (CH2 alkene), 135.8 (CH alkene), 214.5 (C=O) ppm; MS (ESI)  

m/z: 127 [(M + H)+, 20%].     

4,7-Dimethyloct-6-en-3-one, 150 

3-Pentanone (0.600 g, 6.97 mmol) was alkylated with 3,3-

dimethylallyl bromide (1.140 g, 7.67 mmol) as per general 

procedure 3.3 and purified by silica column chromatography 

90:10 hexane:diethyl ether to yield 150 as a pale yellow oil (0.265 g, 25%).                 

IR (NaCl) Qmax: 2972, 2935 (C-H alkyl stretch, s), 1714 (C=O stretch, s), 1458 

(C=C alkene stretch, m) cm-1; 1H NMR  (300 MHz, CDCl3): G 1.03 (3H, t, J = 7.3 

Hz, CH3CH2), 1.06 (3H, d, J = 6.9 Hz, CH3CH), 1.60 (3H, s, CH3 alkene), 1.68 

(3H, s, CH3 alkene), 2.00–2.10 (1H, m, one of CH3CHCH2), 2.24–2.34 (1H, m, 

one of CH3CHCH2), 2.45 (2H, q, J = 7.3 Hz, CH3CH2), 2.57 (1H, m, CH), 5.04 
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(1H, m, CH alkene) ppm; 13C NMR  (75.5 MHz, CDCl3): G 7.7 (CH3CH2), 16.1 

(CH3CH), 17.7, 25.7 (2 u CH3 alkene), 31.6 (CH3CHCH2), 34.5 (CH3CH2), 46.3 

(CH3CH), 121.5 (CH alkene), 133.5 (C=C(CH3)2), 215.2 (C=O) ppm; HRMS 

(ESI) m/z calcd for C10H19O [(M + H)+]: 155.1436, found 155.1432. 

4,7,11-Trimethyldodeca-6,10-dien-3-one, 151 

3-Pentanone (0.860 g, 10 mmol) was alkylated with geranyl 

bromide (2.170 g, 10 mmol) as per general procedure 3.3 

and purified by silica column chromatography 90:10 

hexane:diethyl ether to yield 151 as a colourless oil (0.821 

g, 37%).  IR (NaCl) Qmax: 2970, 2932 (C-H alkyl stretch, s), 

1715 (C=O stretch, s), 1671 (C=C stretch, m), 1456 (C-H 

alkyl bend, m) cm�1; 1H NMR (300 MHz, CDCl3): G  1.04 (3H, t, J = 7.3 Hz, 

CH3CH2), 1.06 (3H, d, J = 6.9 Hz, CH3CH), 1.59 (6H, s, CH3CCH3), 1.67 (3H, s, 

CH3C=CHCH2), 1.93–2.11 (5H, m, (CH3)2C=CHCH2CH2 and one of 

CH3CHCH2), 2.25–2.35 (1H, m, one of CH3CHCH2), 2.44 (2H, q, J = 7.3 Hz, 

CH3CH2), 2.56 (1H, m, CH3CH), 5.02–5.09 (2H, m, 2 u CH alkene) ppm; 13C 

NMR (75.5 MHz, CDCl3): G 7.8 (CH3CH2), 16.0 (CH3CCH3), 16.1 (CH3CH), 17.7 

(CH3CCH3), 25.7 (CH3C=CHCH2), 26.6 ((CH3)2C=CHCH2), 31.6 (CH3CHCH2), 

34.6 (CH3CH2), 39.8 ((CH3)2C=CHCH2CH2), 46.4 (CH3CH), 121.5 

(CH3CHCH2CH=C), 124.2 ((CH3)2C=CHCH2), 131.4 (CH3CCH3), 137.1 

(CH3CHCH2CH=CCH3), 215.2 (C=O) ppm; HRMS (ESI) m/z calcd for C15H27O 

[(M + H)+]: 223.2062, found 223.2054; Anal. calcd. for C15H26O: C, 81.02; H, 

11.79%  Found: C, 80.70; H, 12.00%. 

2-Methyl-1,3-diphenylpropan-1-one, 152 

Propiophenone (0.500 g, 3.73 mmol) was alkylated with 

benzyl bromide (0.701 g, 4.10 mmol) as per general 

procedure 3.3 and purified by silica column 

chromatography 20:1 hexane:diethyl ether to yield 152 as a pale yellow oil (0.142 

g, 17%).  Spectral characteristics were consistent with previously reported data.11    
1H NMR (300 MHz, CDCl3): G 1.20 (3H, d, J = 6.9 Hz, CH3), 2.69 (1H, dd, J = 

7.9, 13.7 Hz, one of CH3CHCH2), 3.17 (1H, dd, J = 6.3, 13.7 Hz, one of 
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CH3CHCH2), 3.75 (1H, m, CH3CH), 7.15–7.29 (5H, m, 5 u CH arom.), 7.41–7.47 

(2H, m, 2 u CH arom.), 7.51–7.57 (1H, m, CH arom.), 7.91–7.95 (2H, m, 2 u CH 

arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 17.4 (CH3), 39.4 (CH2), 42.8 

(CH3CHCH2) 126.3 (CH2CCHCHCH), 128.3 (2 u CH arom.), 128.4 (2 u CH 

arom.), 128.7 (2 u CH arom.), 129.1 (2 u CH arom.), 133.0 (C=OCCHCHCH), 

136.4 (CC=OCH), 140.0 (CCH2CH), 203.8 (C=O) ppm; MS (ESI) m/z: 225 [(M + 

H)+, 10%]. 

2-Methyl-1-phenylpent-4-en-1-one, 153 

Propiophenone (0.500 g, 3.73 mmol) was alkylated with 

allylbromide (0.496 g, 4.10 mmol) as per general procedure 

3.3 and purified by silica column chromatography 90:10 

hexane:diethyl ether to yield 153 as a pale yellow oil (0.141 g, 22%).               

Spectral characteristics were consistent with previously reported data.12,13                     

1H NMR (300 MHz, CDCl3): G 1.21 (3H, d, J = 6.9 Hz, CH3), 2.15–2.25 (1H, m, 

one of CH3CHCH2), 2.52–2.61 (1H, m, one of CH3CHCH2), 3.54 (1H, m, 

CH3CH), 4.99–5.09 (2H, m, CH2 alkene), 5.72–5.86 (1H, m, CH alkene), 7.47 

(2H, t, J = 7.7 Hz, 2 u CHCHCCO), 7.56 (1H, t, J = 7.2 Hz, CHCHCHCCO), 7.96 

(2H, d, J = 7.0 Hz, 2 u CHCCO) ppm; 13C NMR (75.5 MHz, CDCl3): G 17.0 (CH3), 

37.6 (CH3CHCH2), 40.4 (CH), 116.8 (CH2 alkene), 128.3 (2 u CHCHCCO), 128.7 

(2 u CHCCO), 132.9 (CHCHCHCCO), 135.8 (CH alkene), 136.5 (CH3CHCOC), 

203.7 (C=O) ppm; MS (ESI) m/z: 175 [(M + H)+, 100%]. 

1-(4-Methoxyphenyl)-2-methylpent-4-en-1-one, 154 

4-Methoxypropiophenone (0.600 g, 3.65 mmol) was 

alkylated with allylbromide (0.486 g, 4.02 mmol) as 

per general procedure 3.3 and purified by silica column 

chromatography 90:10 hexane:ethyl acetate to yield 154 as a yellow oil (0.194 g, 

26%).                  

Spectral characteristics were consistent with previously reported data.14                    
1H NMR (300 MHz, CDCl3): G 1.20 (3H, d, J = 6.9 Hz, CH3), 2.13–2.24 (1H, m, 

one of CH3CHCH2), 2.50–2.60 (1H, m, one of CH3CHCH2), 3.50 (1H, m, 

CH3CH), 3.87 (3H, s, OCH3), 4.99–5.09 (2H, m, CH2 alkene), 5.72–5.85 (1H, m, 
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CH alkene), 6.95 (2H, d, J = 8.9 Hz, 2 u CHCHOCH3), 7.95 (2H, d, J = 8.9 Hz, 2 

u CHCOCH3) ppm; 13C NMR (75.5 MHz, CDCl3): G 17.2 (CH3), 37.8 

(CH3CHCH2), 40.0 (CH3CH), 55.5 (OCH3), 113.8 (2 u CHCOCH3), 116.6 (CH2 

alkene), 129.4 (CH3CHCOC), 130.6 (2 u CHCHCOCH3), 136.0 (CH alkene), 

163.4 (COCH3), 202.2 (C=O) ppm; MS (ESI) m/z: 205.3 [(M + H)+, 100%]. 

1-(4-Fluorophenyl)-2-methylpent-4-en-1-one, 155 

4-Fluoropropiophenone (0.600 g, 3.94 mmol) was 

alkylated with allylbromide (0.524 g, 4.33 mmol) as per 

general procedure 3.3 and purified by silica column 

chromatography 90:10 hexane:ethyl acetate to yield 155 as a yellow oil (0.392 g, 

52%).               

IR (NaCl) Qmax: 2977, 2935 (C-H alkyl stretch, s), 1683 (C=O stretch, s), 1641 

(C=C alkene stretch), 1598, 1506 (C=C arom. stretch, s), 1158 (C-F stretch, s) 

cm�1; 1H NMR (300 MHz, CDCl3): G 1.13 (3H, d, J = 6.9 Hz, CH3), 2.08–2.18 

(1H, m, one of CH3CHCH2), 2.43–2.53 (1H, m, one of CH3CHCH2), 3.42 (1H, m, 

CH3CH), 4.92–5.01 (2H, m, CH2 alkene), 5.63–5.77 (1H, m, CH alkene), 7.07 

(2H, t, J = 8.7 Hz, 2 u CHCF), 7.91 (2H, dd, J = 5.4, 8.9 Hz, 2 u CHCHCF) ppm; 
13C NMR (75.5 MHz, CDCl3): G 17.1 (CH3), 37.6 (CH3CHCH2), 40.4 (CH3CH), 

115.7 (d, 2JC-F = 21.9 Hz, 2 u CHCF), 116.9 (CH2 alkene), 130.9 (d, 3JC-F = 9.3 Hz, 

2 u CHCHCF), 132.8 (d, 4JC-F = 2.9 Hz, CH3CHCOC), 135.7 (CH alkene), 165.6 

(d, JC-F = 254.5 Hz, CF), 202.0 (C=O) ppm; 19F NMR (282 MHz, CDCl3): G -105.7 

(s, F) ppm; HRMS (ESI) m/z calcd for C12H14OF [(M + H)+]: 193.1029, found 

193.1034. 

3.4  General procedure for synthesis of chiral ketones 

3.4.1  General procedure for alkylation of chiral hydrazone 

To a stirred solution of freshly distilled diisopropylamine (1.1 equiv.) in freshly 

distilled diethyl ether (4 mL) in a N2 backfilled Schlenk tube at -78 °C was added 

1.6M n-BuLi (1.15 equiv.).  The solution was allowed to stir at 0 °C for 30 min to 

generate a solution of LDA.  Hydrazone (1.0 equiv.) was added dropwise at -78 

°C and allowed to stir at 0 °C for 16 h.  A solution of electrophile (1.2 equiv.) in 
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dry diethyl ether (2-3 mL) in a separate Schlenk, which was previously evacuated 

and backfilled with N2, was added dropwise to the solution of deprotonated 

hydrazone at -110 °C.  The temperature of the reaction was held at -110 °C for 1 

h, then at -70 °C for 5 h before being allowed to warm gradually to room 

temperature overnight.  Saturated aq. NH4Cl solution (10 mL) was added to 

quench the reaction, followed by extraction with diethyl ether (3 u 20 mL).  The 

organic layers were combined, dried over MgSO4 and concentrated in vacuo to 

yield crude alkylated hydrazone which was hydrolysed without purification. 

3.4.2  General procedures for hydrazone cleavage 

Method A – HCl/diethyl ether hydrolysis            
To a vigorously stirred solution of alkylated hydrazone in diethyl ether (5 

mL/mmol alkylated hydrazone) was added 4 M HCl (3 mL/mmol alkylated 

hydrazone) and water (3 mL/mmol alkylated hydrazone).  The reaction progress 

was monitored by TLC analysis every 10 min.  On completion, water (10 mL) was 

added, followed by extraction with diethyl ether (3 u 25 mL).  The organic layers 

were combined and washed with water (2 u 20 mL), dried over MgSO4 and 

concentrated in vacuo to yield the desired ketone which was purified by silica 

column chromatography. 

Method B – PPL hydrolysis             
To a suspension of PPL (100 mg) in water (10 mL) was added a solution of 

alkylated hydrazone (1.05 mmol) in acetone (6 mL).  The reaction was allowed to 

stir at room temperature for 23 h, diluted with diethyl ether (20 mL), washed with 

brine (3 u 15 mL), dried over MgSO4 and concentrated in vacuo to yield the desired 

ketone which was purified by silica column chromatography. 

Method C – Oxalic acid hydrolysis              
To a vigorously stirred solution of alkylated hydrazone in diethyl ether (4 ml/mmol 

hydrazone) was added saturated aq. oxalic acid (1.5 ml/mmol hydrazone).  The 

reaction progress was monitored by TLC analysis and on completion was added 

water (5 mL) and reaction mixture extracted with diethyl ether (3 u 20 mL).  

Combined organic extracts were dried over MgSO4 and concentrated in vacuo to 

yield desired ketone which was purified by silica column chromatography. 
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(S)-2-Methyl-1-phenylpentan-3-one, (S)-143 

Hydrazone (S)-156 (195 mg, 0.82 mmol (HCl/diethyl ether 

hydrolysis); 250 mg, 1.05 mmol (PPL hydrolysis)) was 

alkylated with benzyl bromide as per general procedure 3.4.1 
and hydrolysed using either general procedure 3.4.2 Method 

A to yield (S)-143 as a pale yellow oil (10 mg, 7% over 2 steps, 89% ee), or 

Method B (19 mg, 10% over 2 steps, 83% ee).                         

Spectral characteristics were consistent with previously reported data6 and with 

racemic 143.                     

[α] 23
D  = +94.4 (c 1.3, CHCl3) [lit.6  [α] 23

D  = +70.9 (c 1.1, CHCl3)].                     

Enantioselectivity was determined by GC analysis: Method A: 5.3 : 94.7 er, tR = 

25.6 (R-enantiomer) and 28.4 min (S-enantiomer) (90 °C hold for 33 min, ramp 10 

°C/min to 140 °C, hold for 5 min).  Method C: 8.4 : 91.6 er,  , tR = 7.5 (R-

enantiomer) and 7.9 min (S-enantiomer) (120 °C hold for 10 min, ramp 5 °C/min 

to 140 °C, hold for 5 min). Note difference in retention times and conditions due 

to use of older column for product of Method A and newer column for product of 

Method C.     

(S)-2-Methyl-1-(perfluorophenyl)pentan-3-one, (S)-144 

Hydrazone (S)-156 (300 mg, 1.26 mmol) was alkylated with 

pentafluorobenzyl bromide as per general procedure 3.4.1 
and hydrolysed using general procedure 3.4.2 Method A to 

yield (S)-144 as a yellow oil (115 mg, 34% over 2 steps, 

49% ee).  Spectral characteristics were identical to racemic 

144.                      

[α] 20
D  = +4.7 (c 1, Et2O).                       

Enantioselectivity was determined by GC analysis: 25.3 : 74.7 er, tR = 5.9 (R-

enantiomer) and 7.7 min (S-enantiomer) (120 °C hold for 10 min, ramp 5 °C/min 

to 140 °C, hold for 10 min).  
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(S)-1-(2-Bromophenyl)-2-methylpentan-3-one, (S)-145 

Hydrazone (S)-156 (579 mg, 2.44 mmol) was alkylated with 

2-bromobenzyl bromide as per general procedure 3.4.1 and 

hydrolysed using general procedure 3.4.2 Method A to 

yield (S)-145 as a yellow oil (131 mg, 21% over 2 steps, 86% 

ee).                                 

Spectral characteristics were consistent with previously reported data7  and with 

racemic 145.                              

[α] 20
D

 = +48.6 (c 1.5, Et2O).                       

Enantioselectivity was determined by GC analysis: 7.0 : 93.0 er, tR = 18.6 (R-

enantiomer) and 19.7 min (S-enantiomer) (125 °C hold for 25 min, ramp 5 °C/min 

to 140 °C, hold for 5 min).     

(S)-1-(4-Methoxyphenyl)-2-methylpentan-3-one, (S)-146 

Hydrazone (S)-156 (300 mg, 1.26 mmol) was alkylated 

with 4-methoxybenzyl bromide as per general procedure 

3.4.1 and hydrolysed using general procedure 3.4.2 
Method A to yield (S)-146 as a pale yellow oil (63 mg, 

24% over 2 steps, 84% ee).                             

Spectral characteristics were consistent with previously reported data8 and with 

racemic 146.                

[α] 20
D

 = +0.5 (c 0.1, CH2Cl2).                    

Enantioselectivity was determined by GC analysis: 8.2 : 91.8 er, tR = 23.3 (R-

enantiomer) and 23.9 min (S-enantiomer) (120 °C hold for 15 min, ramp 5 °C/min 

to 140 °C, hold for 10 min). 

(S)-2-Methyl-1-(4-nitrophenyl)pentan-3-one, (S)-147 

Hydrazone (S)-156 (250 mg, 1.05 mmol) was alkylated 

with 4-nitrobenzyl bromide as per general procedure 

3.4.1 and hydrolysed using general procedure 3.4.2 
Method A to yield (S)-147 as a colourless oil (13 mg, 

6% over 2 steps, 59% ee).                      

Spectral characteristics were consistent with racemic 147.           
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[α] 20
D

 = +10.0 (c 0.3, Et2O).              

Enantioselectivity was determined by GC analysis: 20.5 : 79.5 er, tR = 78.5 (R-

enantiomer) and 91.8 min (S-enantiomer) (140 °C hold for 100 min). 

(S)-1-(4-(tert-Butyl)phenyl)-2-methylpentan-3-one, (S)-148 

Hydrazone (S)-156 (600 mg, 2.53 mmol) was alkylated 

with 4-tert-butylbenzyl bromide as per general 

procedure 3.4.1 and hydrolysed using general 

procedure 3.4.2 to yield (S)-148 as a pale yellow oil 

(164 mg, 28% over 2 steps, 86% ee).  Spectral 

characteristics were consistent with previously reported 

data8 and with racemic 148.              

[α] 20
D  = +59.4 (c 1.5, Et2O).              

Enantioselectivity was determined by GC analysis: 6.6 : 93.4 er, tR = 12.8 (R-

enantiomer) and 13.3 min (S-enantiomer) (140 °C hold for 25 min).   

(S)-4-Methylhept-6-en-3-one, (S)-149 

Hydrazone (S)-156 was alkylated with either allyl iodide (213 

mg, 0.90 mmol) or allyl bromide (295 mg, 1.24 mmol) as per 

general procedure 3.4.1 and hydrolysed using either general 

procedure 3.4.2 Method A (allyl bromide) to yield (S)-149 as a yellow oil (39 mg, 

25% over 2 steps, 90% ee) or Method B (allyl iodide) (72 mg, 63% over 2 steps, 

55% ee).                               

Spectral characteristics were consistent with previously reported data9, 10 and with 

racemic 149.                

[α] 20
D

 = +2.8 (c 0.3, Et2O).             

Enantioselectivity was determined by GC analysis: Method A: 5.1 : 94.9 er, tR = 

2.9 (R-enantiomer) and 3.0 min (S-enantiomer); Method B: 22.5 : 77.5 er, tR = 3.1 

(R-enantiomer) and 3.2 min (S-enantiomer) (90 °C hold for 6 min, ramp 5 °C/min 

to 140 °C, hold for 10 min). 
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(S)-4,7-Dimethyloct-6-en-3-one, (S)-150 

Hydrazone (S)-156 (300 mg, 1.26 mmol) was alkylated with 

3,3-dimethylallyl bromide as per general procedure 3.4.1 and 

hydrolysed using general procedure 3.4.2 Method A to yield 

(S)-150 as a pale yellow oil (36 mg, 19% over 2 steps, 90% 

ee).                                 

Spectral characteristics were consistent with racemic 150.         

[α] 20
D

 = +2.5 (c 0.6, Et2O).                        

Enantioselectivity was determined by GC analysis: 4.9 : 95.1 er, tR = 9.1 (R-

enantiomer) and 9.4 min (S-enantiomer) (75 °C hold for 10 min, ramp 5 °C/min to 

140 °C, hold for 10 min).        

(S)-4,7,11-Trimethyldodeca-6,10-dien-3-one, (S)-151 

Hydrazone (S)-156 (250 mg, 1.05 mmol) was alkylated with 

geranyl bromide as per general procedure 3.4.1 and 

hydrolysed using general procedure 3.4.2 Method A to yield 

(S)-151 as a colourless oil (36 mg, 15% over 2 steps, 86% 

ee).  Spectral characteristics were consistent with racemic 

151.  [α] 20
D  = +13.02 (c 1.94, Et2O).                        

Enantioselectivity was determined by GC analysis: 7.1 : 92.9 er, tR = 45.7 (R-

enantiomer) and 46.3 min (S-enantiomer) (100 °C hold for 40 min, ramp 5 °C/min 

to 140 °C, hold for 5 min).       

(S)-2-Methyl-1,3-diphenylpropan-1-one, (S)-152 

Novel hydrazone method:  Hydrazone (S)-157 (146 mg, 

0.51 mmol) was alkylated with benzyl bromide as per 

general procedure 3.4.1 and hydrolysed using either 

general procedure 3.4.2 Method A (180 mg alkylated hydrazone) or general 

procedure 3.4.2 Method C (120 mg alkylated hydrazone) to yield (S)-152 as a pale 

yellow oil (3.4.2 Method A–52 mg, 48% or 3.4.2 Method C–27 mg, 38%).     

SAMP hydrazone method: Hydrazone (S)-163 (187 mg, 0.76 mmol) was alkylated 

with benzyl bromide as per general procedure 3.4.1 (using SAMP hydrazone in 

place of novel diamine hydrazone) and hydrolysed using either general procedure 
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3.4.2 Method A (156 mg alkylated hydrazone) or general procedure 3.4.2 Method 
C (227 mg alkylated hydrazone) to yield (S)-152 as a pale yellow oil (3.4.2. 
Method A – 30 mg, 29%, or 3.4.2 Method C – 48 mg, 32%).               

Spectral characteristics were consistent with previously reported data11 and with 

racemic 152.                 

[α]23
D

 = +94.5 (c 2.5, CHCl3)  [lit.6  [α] 23
D  = + 88.9 (c 1.1, CHCl3)].  

Enantioselectivity was determined by GC analysis (Table 3.1): tR = 48.7 (R-

enantiomer) and 53.1 min (S-enantiomer) (140 °C hold for 30 min, ramp 5 °C/min 

to 110 °C, hold for 30 min). 

Table 3.1  GC results for comparison of novel diamine auxiliary with SAMP and 

racemisation investigation.         

Entry Hydrazone Hydrolysis 
Method 

Enantiomeric 
ratio 

ee      
(%) 

1 (S)-157 HCl/diethyl 
ether 

11.0 : 89.0 78 

2 (S)-157 Oxalic acid 23.5 : 76.5 53 

3 (S)-163 HCl/diethyl 
ether 

4.8 : 95.2 91 

4 (S)-163 Oxalic acid 4.6 : 95.4 91 

 

 (S)-2-Methyl-1-phenylpent-4-en-1-one, (S)-153 

Hydrazone (S)-157 (175 mg, 0.61 mmol) was alkylated with 

allyl bromide as per general procedure 3.4.1 and hydrolysed 

using general procedure 3.4.2 Method A to yield (S)-153 as 

a pale yellow oil (27 mg, 25% over 2 steps, 89% ee).                           

Spectral characteristics were consistent with previously reported data12,13  and with 

racemic 153.                

[α]25
D  = +25.5 (c 1.25, CH2Cl2)   [lit.12  [α] 25

D  = +39.7 (c 1.5, CH2Cl2)].  

Enantioselectivity was determined by GC analysis: 5.4 : 94.6 er, tR = 24.7 (R-

enantiomer) and 25.7 min (S-enantiomer) (100 °C hold for 30 min, ramp 5 °C/min 

to 140 °C, hold for 10 min).            
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 (S)-1-(4-Methoxyphenyl)-2-methylpent-4-en-1-one, (S)-154   

Hydrazone (S)-158 (191 mg, 0.61 mmol) was alkylated 

with allyl bromide as per general procedure 3.4.1 and 

hydrolysed using general procedure 3.4.2 Method A to 

yield (S)-154 as a colourless oil (22 mg, 29% over 2 steps, 79% ee).                         

Spectral characteristics were consistent with previously reported data14 and with 

racemic 154.                    

[α]20
D

 = +3.8 (c 0.9, CHCl3)  [lit.14  [α] 20
D  = +31.77 (c 0.93, CDCl3)].                 

Enantioselectivity was determined by GC analysis: 10.6 : 89.4 er, tR = 78.0 (R-

enantiomer) and 78.6 min (S-enantiomer) (110 °C hold for 60 min, ramp 2 °C/min 

to 140 °C, hold for 5 min).        

(S)-1-(4-Fluorophenyl)-2-methylpenten-4-en-1-one, (S)-155   

Hydrazone (S)-159 (291 mg, 0.96 mmol) was alkylated 

with allyl bromide as per general procedure 3.4.1 and 

hydrolysed (276 mg, 0.80 mmol) using general procedure 

3.4.2 Method A to yield (S)-155 as a pale yellow oil (51 mg, 33% over 2 steps, 

90% ee).                      

Spectral characteristics were consistent with racemic 155.          

[α] 20
D  = +27.2 (c 2.1, Et2O).                        

Enantioselectivity was determined by GC analysis: 5.2 : 94.8 er, tR = 42.0 (R-

enantiomer) and 42.5 min (S-enantiomer) (90 °C hold for 40 min, ramp  5 °C/min 

to 140 °C, hold for 10 min).    

 (S)-1-(4-Bromophenyl)-2-methylpentan-3-one, (S)-164 

Hydrazone (S)-156 (300 mg, 1.26 mmol) was alkylated 

with 4-bromobenzyl bromide as per general procedure 

3.4.1 and hydrolysed using general procedure 3.4.2 
Method C to yield (S)-164 as a colourless oil (59 mg, 

23% over 2 steps, 62% ee).  [α] 20
D  = +22.2 (c 0.9, Et2O).  

IR (NaCl) Qmax: 2973, 2936 (C-H alkyl stretch, s), 1713 (C=O stretch, s), 1488, 

1458 (C=C arom. stretch, s); 1H NMR (300 MHz, CDCl3): G 0.97 (3H, t, J = 7.3 

Hz, CH3CH2), 1.07 (3H, d, J = 6.9 Hz, CH3CH), 2.25 (1H, dq, J = 7.3, 17.9 Hz, 
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one of CH3CH2), 2.45 (1H, dq, J = 7.3, 17.9 Hz, one of CH3CH2), 2.51 (1H, dd, J 

= 6.9, 13.3 Hz, one of CH3CHCH2), 2.80 (1H, m, CH3CH), 2.93 (1H, dd, J = 7.4, 

13.3 Hz, one of CH3CHCH2), 7.01 (2H, d, J = 8.5 Hz, 2 u CH arom.), 7.38 (2H, 

dd, J = 8.4 Hz, 2 u CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 7.6 

(CH3CH2), 16.7 (CH3CH), 35.2 (CH3CH2), 38.5 (CH3CHCH2), 47.7 (CH3CH), 

120.2 (CBr), 130.7 (2 u CH arom.), 131.4 (2 u CH arom.), 138.9 (CH3CHCH2C), 

214.2, (C=O) ppm; HRMS (ESI) m/z calcd for C12H16BrO [(M + H)+]: 255.0384, 

found 255.0385; Anal. calcd for C12H15BrO: C, 56.49; H, 5.93%. Found: C, 56.20; 

H, 5.96%.                                    

Racemic 164 was previously synthesised within the group.                                  

Spectral characteristics were identical to chiral (S)-164.         

Enantioselectivity was determined by GC analysis: 19.3 : 80.7 er, tR = 16.3 (R-

enantiomer) and 17.4 min (S-enantiomer) (140 °C hold for 20 min).    

(S)-2-Methyl-1-(4-(trifluoromethyl)phenyl)pentan-3-one, (S)-165 

Hydrazone (S)-156 (300 mg, 1.26 mmol) was alkylated 

with 4-trifluoromethylbenzyl bromide as per general 

procedure 3.4.1 and hydrolysed using general procedure 

3.4.2 Method C to yield (S)-165 as a colourless oil (44 

mg, 14% over 2 steps, 72% ee).                             

Spectral characteristics were consistent with previously reported data.8        

[α] 20
D  = +1.0 (c 1, Et2O); 1H NMR (300 MHz, CDCl3): G  0.99 (3H, t, J = 7.3 Hz, 

CH3CH2), 1.10 (3H, d, J = 6.9 Hz, CH3CH), 2.25 (1H, dq, J = 7.3, 17.7 Hz, one 

of CH3CH2), 2.47 (1H, dq, J = 7.3, 17.8 Hz, one of CH3CH2), 2.62 (1H, dd, J = 

7.1, 13.4 Hz, one of CH3CHCH2), 2.85 (1H, m, CH3CH), 3.05 (1H, dd, J = 7.3, 

13.4 Hz, one of CH3CHCH2), 7.25 (2H, d, J = 7.9 Hz, 2 u CH arom.), 7.52 (2H, 

d, J = 8.0 Hz, 2 u CH arom.) ppm; 13C NMR  (75.5 MHz, CDCl3): G 7.6 (CH3CH2), 

16.7 (CH3CH), 35.0 (CH3CH2), 38.7 (CH3CHCH2), 47.6 (CH3CH), 124.3 (q, JC-F 

= 271.7 Hz, CF), 125.6 (q, 3JC-F = 3.8 Hz, 2 u CH arom.), 128.6 (q, 2JC-F = 32.3 

Hz, CCF3), 129.3 (2 u CH arom.), 144.1 (CH3CHCH2C), 213.0 (C=O) ppm; 

HRMS (ESI) m/z calcd for C13H16OF3 [(M + H)+]: 245.1153, found 245.1144.  

Racemic 165 was previously synthesised within the group.  Spectral characteristics 

were identical to chiral (S)-165.             
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Enantioselectivity was determined by GC analysis: 13.9 : 86.1 er, tR = 10.8 (R-

enantiomer) and 12.5 min (S-enantiomer) (120 °C hold for 10 min, ramp 5 °C/min 

to 140 °C, hold for 10 min).              

 (S)-4-Methylnonan-3-one, (S)-166 

Hydrazone (S)-156 (250 mg, 1.05 mmol) was alkylated with 1-

iodopentane as per general procedure 3.4.1 and hydrolysed 

using general procedure 3.4.2 Method A to yield (S)-166 as a 

pale yellow oil (22 mg, 13% over 2 steps, 92% ee).  [α] 20
D  = 

+5.5 (c 0.2, Et2O); IR (NaCl) Qmax: 2961, 2932 (C-H alkyl 

stretch, m), 1714 (C=O stretch, s),  cm�1; 1H NMR (300 MHz, CDCl3): G 0.88 (3H, 

t, J = 6.8 Hz, CH3CH2CH2), 1.04 (3H, t, J = 7.3 Hz, CH3CH2CO), 1.06 (3H, d, J 

= 6.9 Hz, CH3CH), 1.17–1.35 (8H, m, 4 u CH2), 2.46 (2H, dq, J = 1.5, 7.3 Hz, 

CH3CH2CO), 2.48–2.58 (1H, m, CH) ppm; 13C NMR (75.5 MHz, CDCl3): G 7.8 

(CH3CH2CO), 14.1 (CH3CH2CH2CH2CH2), 16.5 (CH3CH), 22.5 

(CH3CH2CH2CH2CH2), 27.0 (CH3CH2CH2CH2CH2), 31.9 (CH3CH-

2CH2CH2CH2), 33.1 (CH3CH2CH2CH2CH2), 34.2 (CH3CH2CO), 46.1 (CH), 215.7 

(C=O) ppm; HRMS (ESI) m/z calcd for C10H21O [(M + H)+]: 157.1592, found 

157.1584.                               
Racemic 166 was previously synthesised within the group.  Spectral characteristics 

were identical to chiral (S)-166.                    

The reaction was also carried out employing t-BuLi as base in place of LDA and 

hydrolysis using general procedure 3.4.2 Method A, yielding (S)-166 in 29% over 

2 steps, 82% ee.             

Enantioselectivity was determined by GC analysis: 4.2 : 95.8 er, tR = 3.6 (R-

enantiomer) and 3.9 min (S-enantiomer) (105 °C hold for 10 min, ramp °C/min to 

140 °C, hold for 5 min).    
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1-Hydroxy-2-methyl-1-phenyl-3-pentanone, 167   

To a stirred solution of dry diisopropylamine (0.2 mL, 1.39 

mmol) in dry diethyl ether (4 mL) in a N2 filled Schlenk tube 

at -78 °C was added 1.6M n-BuLi (0.91 mL, 1.45 mmol).  The 

solution was allowed to stir at 0 °C for 30 min to generate a 

solution of LDA.  Hydrazone (S)-156 (299 mg, 1.26 mmol) was added dropwise 

at -78 °C allowed to stir at 0 °C for 16 h.  A solution of benzaldehyde (245 mg, 

1.64 mmol) in dry diethyl ether (3 mL) in a separate Schlenk tube, which was 

previously evacuated and filled with N2, was added dropwise to the solution of 

deprotonated hydrazone at -110 °C.  The temperature of the reaction was held at -

110 °C for 1 h, then at -70 °C for 5 h before being allowed to warm gradually to 

room temperature overnight.  Saturated aq. NH4Cl solution (10 mL) was added to 

quench the reaction, followed by extraction with diethyl ether (3 u 20 mL).  The 

organic layers were combined, dried over MgSO4 and concentrated in vacuo to 

yield crude alkylated hydrazone as a dark yellow solid.  To a stirred solution of 

alkylated hydrazone in acetone (8 mL) and water (0.5 mL) was added Amberlyst® 

15 hydrogen form beads15,16 and reaction allowed stir at room temperature with 

progress monitored by TLC analysis.  On completion, reaction mixture was filtered 

and acetone removed in vacuo.  The residue was dissolved in diethyl ether (10 mL) 

and water (5 mL) and extracted with diethyl ether (3 u 15 mL).  The organic layers 

were combined, dried over MgSO4 and solvent removed in vacuo to yield the crude 

ketone as a mixture of syn- and anti-iosmers as a yellow oil (165 mg, 68% over 2 

steps).  Purification by silica column chromatography eluting with 90:10 

hexane:diethyl ether afforded a mixture of inseparable diasteroisomers which was 

analysed by chiral GC (90 mg, 37% over 2 steps, 86:14 syn:anti, 15% ee syn-167, 

63% ee anti-167).                              

Spectral characteristics were consistent with previously reported data.17                  

[α] 20
D  mixture-167= -13.7 (c 0.9, Et2O); 1H NMR (300 MHz, CDCl3): G (mixture 

of syn- and anti-isomers) 0.94 (3H, d, J  = 7.2 Hz, CH3CH), 1.04 (3H, t, J = 7.2 

Hz, CH3CH2), 2.36–2.62 (2H, m, CH3CH2), 2.83–2.98 (2H, m, CH3CH, OH), 4.76 

(1H, d, J  = 8.3 Hz, CHOH anti), 5.06 (0.16H, d, J  = 4.0 Hz, CHOH syn), 7.29–

7.36 (5H, m, CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 5.6 (CH3CH2), 12.6 

(CH3CH), 34.6 (CH3CH2), 50.8 (CH3CH), 63.5 (CHOH), 124.7, 125.1, 126.7 (5 u 
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CH arom.), 139.1 (CH2CHOHC), 214.3 (C=O) ppm;                                                          

MS (ESI) m/z: 191 [(M - H)-, 6%].                              

Racemic 167 was previously synthesised within the group.  Spectral characteristics 

were identical to chiral 167.                

Enantioselectivity was determined by GC analysis: tR = 27.5 (syn), 29.1 (anti), 

30.7 (anti) and 31.0 (syn) min (130 °C hold for 30 min, ramp 10 °C/min to 140 °C, 

hold for 5 min).        

4-Methyl-6-nitro-5-phenylhexan-3-one, 168 

Method A – alkylation of chiral hydrazone: To a stirred 

solution of dry diisopropylamine (0.2 mL, 1.39 mmol) in 

dry diethyl ether (4 mL) in a N2 filled Schlenk tube at              

-78 °C was added 1.6M n-BuLi (0.91 mL, 1.45 mmol).  The 

solution was allowed to stir at 0 °C for 30 min to generate a solution of LDA.  

Hydrazone (S)-156 (299 mg, 1.26 mmol) was added slowly dropwise at -78 °C 

allowed to stir at 0 °C for 16 h.  A solution of trans-β-nitrostyrene (245 mg, 1.64 

mmol) in dry diethyl ether (3 mL) in a separate Schlenk tube, which was previously 

evacuated and filled with N2, was added slowly dropwise via cannula to the 

solution of deprotonated hydrazone at -110 °C.  The temperature of the reaction 

was held at -110 °C for 1 h, then at -70 °C for 5 h before being allowed to warm 

gradually to room temperature overnight.  Saturated aq. NH4Cl solution (10 mL) 

was added to quench the reaction, followed by extraction with diethyl ether (3 u 

20 mL).  The organic layers were combined, dried over MgSO4 and concentrated 

in vacuo to yield crude alkylated hydrazone as a dark yellow solid.  The crude was 

hydrolysed using HCl/diethyl ether to yield the crude ketone as a pale brown oil 

(GC analysis of crude obtained) which was purified by silica column 

chromatography eluting with 90:10 hexane:diethyl ether afforded syn-168 as a 

yellow oil (37 mg, 13% yield, 84% ee).                  

Method B – Organocatalytic reaction: To a stirred solution of diamine (S)-131 (50 

mg, 0.3 mmol) in brine (10 mL) was added trichloroacetic acid (50 mg, 0.3 mmol) 

at 25 °C.  The solution was allowed to stir at 25 °C for 2 min.  3-Pentanone (741 

mg, 8.6 mmol) and trans-β-nitrostyrene (426 mg, 2.9 mmol) were added and the 

reaction mixture allowed to stir at 25 °C for 36 h with reaction progress monitored 

by TLC analysis.  On completion, the reaction mixture was extracted with ethyl 
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acetate (3 u 15 mL).  The organic layer was dried over MgSO4 and solvent 

removed in vacuo to yield crude product (74 mg, 11%) as a yellow oil which was 

purified by silica column chromatography eluting with 80:20 hexane:diethyl ether 

to yield syn-168 as a pale yellow oil (30 mg, 4%, 91% ee).                                     

Spectral characteristics were consistent with previously reported data for both syn  

and anti.18, 19                             

Syn: Pale yellow oil.  [α] 22
D  syn-168= +3.5 (c 0.2, CHCl3)  [lit.20 [α] 22

D  = +8.9 (c 

0.2, CHCl3).];  1H NMR (300 MHz, CDCl3): G 0.97 (3H, d, J = 7.1 Hz, CH3CH), 

1.07 (3H, t, J = 7.3 Hz, CH3CH2), 2.41 (1H, dq, J = 7.3, 18.0 Hz, CH3CH2), 2.61 

(1H, dq, J = 7.3, 18.0 Hz, CH3CH2), 2.94–3.05 (1H, m, CH3CH), 3.66–3.73 (1H, 

m, CHC6H5), 4.57–4.71 (2H, m, CH2NO2), 7.14–7.17 (2H, m, 2 u CH arom.), 

7.29–7.33 (3H, m, 3 u CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 7.6 

(CH3CH2), 16.3 (CH3CH), 35.4 (CH3CH2), 46.1 (CHC6H5), 48.3 (CH3CH), 78.3 

(CH2NO2), 127.9, 129.0 (5 u CH arom.), 137.6 (CH3CHCHC), 213.6 (C=O) ppm; 

Anti: white solid. M.p. 60–62 °C [lit.19 61 °C].   1H NMR (300 MHz, CDCl3): G 

0.83 (3H, t, J = 7.2 Hz, CH3CH2), 1.19 (3H, d, J = 7.0 Hz, CH3CH), 1.98–2.12 

(1H, m, one of CH3CH2), 2.25–2.38 (1H, m, one of CH3CH2), 2.93–3.03 (1H, m, 

CH3CH), 3.74–3.82 (1H, m, CHC6H5), 4.71 (1H, dd, J = 9.7, 12.6 Hz, one of 

CH2NO2), 4.80 (1H, dd, J = 5.3, 12.7 Hz, one of CH2NO2), 7.16–7.19 (2H, m, 2 u 

CH arom.), 7.24–7.33 (3H, m, 3 u CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): 

G 7.3 (CH3CH2), 14.5 (CH3CH), 35.8 (CH3CH2), 46.0 (CHC6H5), 49.1 (2 u 

CH3CH), 77.6 (CH2NO2), 127.85, 127.88, 128.9 (5 u CH arom.), 138.0 

(CH3CHCHC), 212.5 (C=O) ppm;  MS (ESI) m/z: 236 [(M + H)+, 20%].         

Racemic 168 was synthesised in 52% yield as per general procedure 3.3.  Spectral 

characteristics were identical to chiral 168.             

Enantioselectivity was determined by GC analysis: tR = 49.1 (syn), 54.9 (anti), 

56.4 (syn) and 60.0 min (anti) (140 °C hold for 80 min).    
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3.5  Alkylation of carboxylic acid 
2-Phenylpent-4-enoic acid, 173 

To a stirred solution of phenylacetic acid (1.0 equiv.) and 

ligand (1.03 equiv.) in THF (0.15 M) was added n-BuLi (2.1–

3.3 equiv.) at 0 °C.  The reaction mixture was allowed to stir at 

0 °C for 15 min.  The reaction mixture was cooled to -78 °C 

and stirred for an additional 5 min.  Allyl bromide (4.0 equiv.) was added dropwise 

at -78 °C over 10 min.  On completion of addition of the electrophile, the reaction 

was immediately quenched with a 3:1 THF:MeOH (8.0 equiv. MeOH) at -78 °C.  

1M HCl (3 mL) was added after 4 min.  The reaction mixture was diluted with 

ethyl acetate (8 mL) and water (8 mL).  The aqueous layer was extracted with ethyl 

acetate (3 u 20 mL).  The combined organic layers were washed with 1M aq. HCl 

(20 mL) and brine (20 mL), dried over anhydrous MgSO4 and concentrated in 

vacuo to yield the crude product which was purified by silica column 

chromatography eluting with 80:20 hexane:ethyl acetate to yield 173 as a pale 

yellow oil (Table 3.2).                                                   

Spectral characteristics were consistent with previously reported data.21         
1H NMR (300 MHz, CDCl3): G 2.42–2.51 (1H, m, one of CH2CHCOOH), 2.72–

2.82 (1H, m, one of CH2CHCOOH), 3.59 (1H, dd, J = 7.4, 7.5 Hz, CHCOOH), 

4.93 – 5.06 (2H, m, CH2 alkene), 5.59 – 5.73 (1H, m, CH alkene), 7.18 – 7.24 (5H, 

m, 5 u CH arom.), 10.42 (1H, bs, OH) ppm; 13C NMR (75.5 MHz, CDCl3): G 37.1 

(CH2CHCOOH), 51.4 (CHCOOH), 117.3 (CH2 alkene), 127.6, 128.1, 128.8 (5 u 

CH arom.), 134.9 (CH alkene), 137.8 (CCHCOOH), 179.8 (C=O) ppm.  MS (ESI) 

m/z: 176 [(M + H)+, 58%]. 
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Table 3.2  Optical rotations of α-alkylated phenylacetic acid with different chiral 

ligands used in the reaction. 

Entry Ligand n-BuLi 
(equiv.) 

Yield       
(S)-173 

(%)a 

[α] 𝟐𝟑
𝐃   

(CHCl3) 

1 

 

2.1 22 -1.294  

(c = 0.85) 

2 

 

3.3 9 -1.667 

(c = 0.9) 

3 

 

2.2 5 +0.857 

(c = 0.35) 

4  None 

(racemic)  

2.2 >98 +0.248 

(c = 1.01) 

5 

 

4.0 84 +77.2          
(c = 1.01) 
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(S)-1-methyl-2-(pyrrolidin-1-ylmethyl)pyrrolidine, (S)-174 

To a stirred solution of (S)-131 (0.885 g, 5.74 mmol) in water 

(7 mL) was added formic acid (4.7 mL, 126 mmol) and formalin 

(2.3 mL, 63.1 mmol) dropwise at room temperature.  The 

reaction mixture was allowed stir at reflux for 24 h then cooled to room 

temperature, basified by addition of 10% NaOH to pH 11 and extracted with ethyl 

acetate (3 u 20 mL).  The combined organic extracts were dried over MgSO4 and 

concentrated in vacuo to yield (S)-174 as a pale yellow oil which did not require 

purification (0.472 g, 49%).                           

Spectral characteristics were consistent with previously reported data.4         

[α] 
21
D  = -84.0 (c 0.55, EtOH) [lit22 [α] 21

D  = -84.5 (c 0.53, EtOH)]; 1H NMR (300 

MHz, CDCl3): G 1.53–1.85 (7H, m, 3 u NCH2CH2 and one of NCHCH2), 1.95–

2.08 (1H, m, one of NCHCH2), 2.12–2.36 (3H, m, CH3NCH2 and one of 

CH3NCHCH2N), 2.39 (3H, s, CH3), 2.46–2.54 (4H, m, 2 u NCH2CH2 pyrrolidine 

ring), 2.66 (1H, dd, J = 3.9, 11.5 Hz, one of CH3NCHCH2N), 3.02–3.08 (1H, m, 

CH3NCH) ppm; 13C NMR (75.5 MHz, CDCl3): G 22.6, 23.5 (3 u NCH2CH2), 31.1 

(NCHCH2), 41.4 (CH3), 55.0 (2 u NCH2CH2 pyrrolidine ring), 57.6 (CH3NCH2), 

61.6 (CH3NCHCH2N), 64.9 (CH3NCH) ppm.  MS (ESI) m/z: 169 [(M + H)+, 

100%]. 
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a b s t r a c t

A novel chiral auxiliary containing a pyrrolidine ring has been utilised in the preparation of various chiral
ketones with good to excellent enantioselectivities (up to 92%). It has been successfully employed in aldol
and Michael reactions giving moderate to high selectivity.

! 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The a-alkylation of ketones is a fundamental reaction in organic
synthesis. However there exists a very limited number of methods
to carry out this transformation in an asymmetric manner. The use
of SAMP/RAMP methodology almost exclusively accounts for these
types of transformations.1 SAMP/RAMP hydrazones have been
widely employed as key steps in the synthesis of numerous natural
products, for example, indanomycine,2 (+)-eremophilenolide3 and
stigmatellin A.4 Previous alteration of the basic SAMP/RAMP
framework has included the use of more sterically hindered groups
on the arm to give chiral auxiliaries such as SADP, SAEP, SAPP5 and
RAMBO.6 Replacement of the terminal methoxy group with a trim-
ethylsiloxy group showed comparable enantioselectivities to SAMP
in asymmetric a-alkylation reactions and very good selectivities
with aldol reactions.7 More recently, Coltart has successfully used
chiral N-amino cyclic carbamate hydrazones as an alternative to
SAMP-type hydrazones, allowing the preparation of both a-alkyl-
ated and a,a-bisalkylated ketones in a convenient and scalable
manner.8

With such a limited number of routes available to chiral
a-alkylated ketones, there remains significant scope for the explo-
ration of new, easily prepared chiral auxiliaries for use in their syn-
thesis. We set out to investigate if a nitrogen (as part of a
pyrrolidine system) could ligate to lithium as effectively as in the
SAMP/RAMP system (where a –OMe group is utilised). We herein
report the chromatography-free synthesis of a novel chiral auxil-
iary incorporating a pyrrolidine ring. The chiral hydrazine is avail-
able in four steps from N-protected proline 1 or only two steps
from commercially available (S)-(+)-1-(2-pyrrolidinylmethyl)pyr-
rolidine 3. Subsequent reaction with symmetrical and unsymmet-
rical ketones followed by deprotonation, alkylation (using both
alkyl and the rarely reported benzyl electrophiles) and hydrolysis

gave valuable chiral ketones in very good ee and moderate yields.
The chiral auxiliary can be applied to both aldol and Michael
reactions.

2. Results and discussion

Chiral auxiliary 5 was formed in a five step sequence from com-
mercially available (S)-N-(benzyloxycarbonyl)proline 1 via DCC
coupling to provide amide 2 in 81% yield. Two reduction steps
afforded chiral diamine 3 in good yield. Nitrosation gave 4 and a
final LiAlH4 reduction furnished hydrazine 5. Chiral auxiliary 5
was reacted with 3-pentanone to give chiral hydrazone 6 in 80%
yield (46% yield after purification by distillation) (Scheme 1). In a
similar manner, 5 was combined with propiophenone, p-methoxy-
propiophenone and p-fluoropropiophenone to afford hydrazones
7a, 7b and 7c in 52%, 54% and 48% yields, respectively (Scheme 2).

Chiral hydrazone 6 was then subjected to LDA (5 h, room tem-
perature) deprotonation and alkylated with benzyl bromide (addi-
tion at !110 "C, temperature held for 1 h at !110 "C then for 5 h at
!70 "C) in either diethyl ether, toluene or tetrahydrofuran. The
resultant alkylated hydrazone 8 was hydrolysed using a biphasic
4 M HCl/diethyl ether system and ketone 9 was analysed for
enantioselectivity using chiral gas chromatography (Scheme 3).
The use of diethyl ether as the solvent for the alkylation step affor-
ded 9 with very good enantioselectivity (89% ee) in comparison to
toluene and tetrahydrofuran (66% and 61% ee, respectively) albeit
in moderate yields (20–30%).9

Improved yields were obtained on extension of the deprotona-
tion time to 16 h and by decreasing the temperature to 0 "C. In
these cases complete conversion to the alkylated hydrazone was
observed. Yields remained moderate, most likely due to the high
volatility of the resulting ketones.10

Various methods for the cleavage of a-substituted hydrazones
to the corresponding ketones have been utilised.11 Oxalic acid is re-
ported as a convenient, high yielding, racemisation-free method
for the hydrolytic cleavage of SAMP hydrazones.12 However, when
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we employed oxalic acid as a hydrazone cleavage method only
moderate enantioselectivity was observed in the chiral ketones.13

We suspected that racemisation was occurring, possibly due to
some protonation of the pyrrolidine and increased solubility and
exposure to the aqueous acidic layer. In order to investigate this
possibility, both chiral hydrazone 7a and the corresponding SAMP
variant 11 were prepared and subjected to LDA and benzylbromide
(Scheme 4). Both hydrazones were hydrolysed using oxalic acid
and HCl/diethyl ether. Using the SAMP hydrazine, benzylated pro-
piophenone 10 was obtained in 92% and 88% ee using oxalic acid

and HCl/diethyl ether cleavage methods, respectively. A larger var-
iation in the enantioselectivity was observed between the two
cleavage methods when chiral auxiliary 7a was employed in the
reaction (51% and 78% ee). This clearly indicates that racemisation
does occur when oxalic acid is used in combination with our chiral
auxiliary and underlines the need for a thorough investigation of
cleavage methods in such cases. To the best of our knowledge,
the enzymatic cleavage of chiral hydrazones has not been reported.
Porcine pancreatic lipase (PPL) was chosen as an appropriate en-
zyme because of its use in the cleavage of dimethylhydrazones.14

Its use furnished ketone 9 in low (ca. 10%) yield (over two steps)
albeit in 83% ee (Table 1, entry 8). Finally, a biphasic hydrolysis
method (HCl/diethylether) was attempted. Clean conversion from
alkylated hydrazones to ketones was observed with little or no rac-
emisation occurring.

With usable hydrolysis conditions in hand, a variety of electro-
philes were reacted with the azaenolate derived from 6. The reac-
tion of 3-pentanone hydrazone 6 with LDA and pentyliodide gave
ketone 12 with 92% ee, albeit in moderate yield (Table 1, entry
1). When t-BuLi was employed as the base instead of LDA, the
selectivity dropped to 82% ee (entry 2). Various other aliphatic
electrophiles were employed to afford ketones 13–16 (entries
3–6) with very good enantioselectivities. We next turned our
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Scheme 1. Synthesis of the chiral auxiliary and the corresponding 3-pentanone hydrazone.
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Scheme 4. Racemisation studies of chiral hydrazone 7a and the SAMP variant 11 using oxalic acid (OA) or a biphasic 4 M HCl mediated cleavage. Isolated yields quoted over
two steps.
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attention to the use of benzyl bromides as electrophiles. Their use in
hydrazone chiral auxiliary methodology has been very limited. In
fact, no thorough investigation of benzyl based electrophiles has
been reported using chiral hydrazone methodology. A plethora of
electrophiles were used affording ketones 9, and 17–23, all with
good enantioselectivity. Substituted benzyl groups allowed us to
probe the effect of electron withdrawing and donating groups pres-
ent on the electrophiles. The presence of electron withdrawing
groups on the benzyl moiety caused a decrease in the enantioselec-
tivity of the resultant ketone when compared to the unsubstituted
benzyl bromide (entry 7, 89%), which is most apparent with the
use of perfluorobenzyl bromide (entry 9, 48%). The presence of an
electron donating group, for example the use of p-methoxybenzyl
bromide (entry 10, 84%), had little effect on the enantioselectivity
observed.

Further to these studies it was decided to investigate the effect
of the electronic substituents on the hydrazone moiety. Propiophe-
none, p-methyoxypropiophenone and p-fluoropropiophenone
hydrazones 7a–c were chosen as substrates and subjected to the
standard conditions using allyl bromide as the electrophile. The
resultant ketones 24–26 demonstrate that the presence of an elec-
tron donating substituent on the ring (entry 18, 79% ee) results in a
decrease in the enantioselectivity when compared to the unsubsti-
tuted ketone (entry 17, 89% ee). The presence of an electron with-
drawing substituent (entry 19, 90% ee), had little effect on the
enantioselectivity.

We then applied our methodology to an aldol reaction
(Scheme 5). Hydrazone 6 was deprotonated using LDA, reacted
with benzaldehyde and hydrolysed using Amberlyst# to afford 27
in 39% yield over two steps. Enantiomeric excesses of 63% and

Table 1
Results of alkylation reactions of hydrazones

Entry Hydrazone Electrophile Product ketone % Yield (over two steps) % eee

1 6 I 12 13 92a

2 6 12 29 82a,b

3 6 I 13 63 55c

4 6 Br 14 23 90a

5 6
Br

15 15 86a

6 6
Br

16 19 89a

7 6 Br 9 7 89a

8 6 9 10 83d

9 6
Br

F

F

F

F

F
17 34 48a

10 6
Br

O
18 24 84a

11 6 Br

Br

19 21 86a

12 6
Br

Br
20 19 62c

13 6
Br

F3C
21 14 73c

14 6
Br

O2N
22 6 58a

15 6

Br

23 28 87a

16 7a
Br

10 15 78a

17 7a Br 24 25 89a

18 7b 25 29 79a

19 7c 26 33 90a

Yield is calculated over two steps; alkylation of the parent hydrazone and hydrolysis of the alkylated hydrazone to the product ketone. Alkylated hydrazone is not isolated.
a HCl/diethyl ether hydrolysis.
b t-BuLi used as the base.
c Satd aq oxalic acid/diethyl ether hydrolysis.
d PPL hydrolysis. The ketone products have been assigned as (S) by comparison of the specific rotation value of 24 with that reported in the literature and others by

analogy.15

e All ee values were determined using chiral GC analysis and confirmed by comparison with independently prepared racemic ketones.
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15% were obtained for anti- and syn-27, respectively. A diastereo-
meric ratio of 86:14 anti/syn, determined by GC, was identical to
that observed by 1H NMR.16 The relative stereochemistry observed
(anti) was opposite to that usually seen in aldol reactions using
SAMP (syn).

Our novel chiral auxiliary was then applied to a Michael reac-
tion (Scheme 5). Hydrazone 6 was treated with LDA and trans-b-
nitrostyrene followed by subsequent hydrolysis to afford crude
28, which was subjected to GC analysis. Enantiomeric excesses of
84% and 47% were determined for syn- and anti-28, respectively,
with an excellent diastereomeric ratio of 94:6 syn/anti as deter-
mined by GC and NMR analysis. Again the relative orientation
was opposite to that usually formed when using a SAMP chiral
auxiliary in Michael reactions.1c,17 Purification using column chro-
matography allowed isolation of syn-28 in 84% ee and 13% yield
over two steps.

3. Conclusion

A novel hydrazone-based chiral auxiliary has been established
involving a pyrrolidine arm. The chiral auxiliary has been formed
in good yields in five steps from commercially available (S)-N-
(benzyloxycarbonyl)proline 1 (or only two steps from commer-
cially available (S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine 3)
without the need for silica column chromatography purification.
Enantiomeric excesses of up to 92% were achieved in the a-alkyl-
ated aliphatic ketones formed and up to 89% in the less studied
aromatic ketones. While the overall yields were moderate (in many
cases due to product volatility), comparison studies with the SAMP
chiral auxiliary showed comparable yields (Scheme 4). However,
given the remarkably few methods available to access these com-
pounds and the excellent enantioselectivities observed, we are
pleased to report our novel chiral auxiliary as a viable route to
these chiral synthons. Initial unoptimised studies into the use of
our chiral auxiliary in Michael reactions have proven to be
successful.

4. Experimental

4.1. Procedure for synthesis of the chiral auxiliary:

4.1.1. (S)-1-[N-(benzyloxycarbonyl)proly]-pyrrolidine 218

To a CH2Cl2 solution (120 mL) of (S)-N-(benzyloxycarbonyl)pro-
line (74.57 g, 0.3 mol) was added dropwise a CH2Cl2 solution
(120 mL) of DCC (61.69 g, 0.3 mol) at 0 "C under a nitrogen atmo-
sphere. After stirring for 30 min, a CH2Cl2 solution (120 mL) of pyr-
rolidine (24.7 mL, 0.3 mol) was slowly added dropwise to the
reaction mixture at 0 "C via an addition funnel. The reaction mix-
ture was allowed to warm to room temperature overnight. The
precipitate was removed by filtration through a pad of Celite#

and washed with CH2Cl2. The filtrate was washed with 0.5 M HCl
(2 " 150 mL), satd aq NaHCO3 solution (150 mL), H2O (150 mL)
and brine (150 mL). The organic layer was dried over MgSO4, con-
centrated in vacuo and the crude product recrystallised from ethyl

acetate to yield product 2 as a white, crystalline solid (73.52 g, 81%
yield). ½a$22

D ¼ !13:3 (c 1.60, MeOH) {lit.19 ½a$22
D ¼ !14:1 (c 1.61,

MeOH)}. Mp 123–125 "C [lit.19 130–130 "C]. dH (CDCl3, 300 MHz)
(mixture of rotamers) 1.56–2.20 (8H, m, 4" CH2), 3.25–3.75 (6H,
m, 3" CH2), 4.39–4.54 (1H, m, CH), 4.97–5.22 (2H, m, CH2), 7.28–
7.37 (5H, m, ArH). dC (CDCl3, 75.5 MHz) (mixture of rotamers)
23.8, 23.9 (CH2), 24.1, 24.4 (CH2), 26.0, 26.3 (CH2), 29.5, 30.5
(CH2), 46.0, 46.0 (CH2), 46.1, 46.3 (CH2), 46.7, 47.3 (CH2), 57.7,
58.2 (CH2), 66.9, 67.1 (CH), 127.8, 127.9 (2" ArCH), 128.0, 128.1
(ArCH), 128.4, 128.4 (2" ArCH), 136.7, 136.8 (quaternary C),
154.2, 154.9 (C@O), 170.7, 171.0 (C@O). m/z (ES+) 303 [(M+H)+,
100%].

4.1.2. (S)-2-(1-Pyrrolidinylmethyl)-pyrrolidine 320

To a methanol (350 mL) solution of 2 (75.40 g, 250 mmol) was
added Pd/C (5%, 4.78 g). The reaction mixture was then stirred un-
der hydrogen at atmospheric pressure for 22 h while monitoring
the reaction progress by TLC analysis. The crude reaction mixture
was filtered through a pad of Celite# and washed with methanol
to elute the product. The filtrate was concentrated in vacuo to yield
the crude amide as a yellow oil (39.84 g, 95% yield). ½a$26

D ¼ !89:6
(c 1.7, EtOH) {lit.21 ½a$26

D ¼ !112:2 (c 1.7, EtOH)}. dH (CDCl3,
300 MHz) 1.60–2.02 (7H, m, 7" CH2), 2.05–2.14 (1H, m, CH2),
2.77–2.85 (1H, m, CH2), 2.93 (1H, br s, NH), 3.15–3.22 (1H, m,
CH2), 3.36–3.57 (4H, m, 2" CH2), 3.73–3.77 (1H, dd, J = 6.5,
8.6 Hz, CH). dC (CDCl3, 75.5 MHz) 24.0, 26.0, 26.5, 30.4, 45.9, 46.0,
47.7 (7" CH2), 59.5 (CH), 172.7 (C@O). m/z (ES+) 169 [(M+H)+,
100%]. A solution of amide (19.02 g, 113 mmol) in dry THF
(80 mL) was added dropwise over 3 h to LiAlH4 (15.00 g,
396 mmol) in dry THF (140 mL) under a nitrogen atmosphere at
0 "C. The reaction mixture was allowed to stir at room temperature
overnight, heated at reflux for 4 h, then allowed to stir at room
temperature overnight. The reaction mixture was quenched by
the dropwise addition of satd aq Na2SO4 solution (20 mL). The
crude reaction mixture was filtered through a pad of Celite# and
washed with ethyl acetate. The mother liquor was concentrated
in vacuo to give the crude product as a yellow oil (14.54 g, 83%
yield). Additional purification was achieved by Kugelrohr distilla-
tion yielding 3 as a colourless oil (11.22 g, 64% yield).
½a$20

D ¼ þ5:2 (c 2.4, EtOH) [lit.21 ½a$20
D ¼ þ8:9 (c 2.4, EtOH)]. dH

(CDCl3, 300 MHz) 1.22–1.43 (1H, m, CH2), 1.68–1.81 (6H, m, 3"
CH2), 1.82–1.95 (1H, m, CH2), 2.31–2.37 (1H, dd, J = 5.2, 11.9 Hz,
CH2), 2.45–2.61 (6H, m, 3" CH2, NH), 2.81–2.89 (1H, m, CH2),
2.94–3.02 (1H, m, CH2), 3.17–3.26 (1H, m, CH). dC (CDCl3,
75.5 MHz) 23.4 (2" CH2), 25.0, 30.1, 46.1 (3" CH2), 54.6 (2"
CH2), 57.4 (CH), 62.1 (CH2). m/z (ES+) 155 [(M+H)+, 100%].

4.1.3. (S)-1-Nitroso-2-(pyrrolidin-1-ylmethyl)pyrrolidine 4
At first, 10–20% ethyl nitrite in ethanol (taken to be 15%)

(5.45 mL, 8.63 mmol) was added to 3 (1.065 g, 6.90 mmol). The
reaction vessel was covered in aluminium foil and allowed to stir
at room temperature with progress monitored by 1H NMR
spectroscopy. After 45 h, ethanol was removed in vacuo to yield
4 as a yellow oil (1.15 g, 91% yield). dH (CDCl3, 300 MHz) 1.76–

N
N

N

6

1.  LDA
diethyl ether

benzaldehyde

2.  acetone
H2O

Amberlyst

O

27

1.  LDA
diethyl ether

2.  4M aq. HCl
diethyl ether

28

O

NO2

NO2

OH

Scheme 5. Aldol and Michael reactions. Absolute stereochemistry unknown.
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1.81 (4H, m, 2" CH2), 1.91–2.25 (4H, m, 2" CH2), 2.54–2.67 (4H, m,
2" CH2), 2.80 (1H, dd, J = 8.8, 12.2 Hz, CH2), 3.00 (1H, dd, J = 5.1,
12.2 Hz, CH2), 3.52–3.75 (2H, m, CH2), 4.59–4.67 (1H, m, CH). dC

(CDCl3, 75.5 MHz) 20.7 (CH2), 23.5 (2" CH2), 28.7, 45.6 (2" CH2),
54.7 (2" CH2), 59.5 (CH2), 60.3 (CH). Since nitrosamines are poten-
tially carcinogenic, no further data was obtained and the crude
reaction mixture was used without purification in the next step.

4.1.4. (S)-2-(Pyrrolidin-1-ylmethyl)pyrrolidin-1-amine 5
To a solution of LiAlH4 (2.61 g, 69 mmol) in dry THF (120 mL)

was added dropwise a solution of 4 (6.30 g, 34 mmol) in dry THF
(60 mL) under a nitrogen atmosphere at 0 "C. The reaction mixture
was allowed to stir at 0 "C for 1 h, then at room temperature for 1 h
before being heated at reflux for 4.5 h and stirred at room temper-
ature overnight. The reaction progress was monitored by 1H NMR
spectroscopy. On completion, the reaction vessel was transferred
to an ice bath and quenched by the dropwise addition of H2O
(2.6 mL), 3 M aq NaOH (2.6 mL) and H2O (7.2 mL). The reaction
mixture was filtered through a pad of Celite# using ether to elute
the product. The mother liquor was concentrated in vacuo to yield
5 as a yellow oil (4.98 g, 86%). ½a$20

D ¼ !11:4 (c 1, EtOH). mmax/cm!1

(KBr): 3306 (N–H stretch, m), 1591 (N–H bending, m), 1137 (C–N
stretch, m). dH (CDCl3, 300 MHz) 1.41–1.54 (1H, m, CH2), 1.68–
1.85 (6H, m, 3" CH2), 1.93–2.07 (1H, m, CH2), 2.26–2.41 (3H, m,
2" CH2), 2.45–2.53 (2H, m, CH2), 2.54–2.62 (2H, m, CH2), 2.69–
2.72 (3H, m/br s, CH2/NH2), 2.85–2.91 (1H, m, CH2), 3.22–3.29
(1H, m, CH). dC (CDCl3, 75.5 MHz) 20.6 (CH2), 23.5 (2" CH2), 28.7
(CH2), 54.8 (2" CH2), 59.6 (CH2), 61.5 (CH2), 67.8 (CH). Exact mass
calcd for C8H11IO2 [(M+H)+], 170.1657. Found 170.1674.

4.1.5. (S)-N-(Pentan-3-ylidine)-2-(pyrrolidin-1-ylmethyl)pyrroli-
din-1-amine 6

3-Pentanone (9.34 mL, 88 mmol) was added dropwise to a stir-
red solution of 5 (4.98 g, 29 mmol) in cyclohexane (8 mL) under an
atmosphere of nitrogen. The reaction mixture was then allowed to
stir at room temperature overnight and reaction progress moni-
tored by 1H NMR spectroscopy. On completion, the reaction mix-
ture was poured into 6:1 DCM/H2O and the organic layer
extracted. The organic layer was dried over MgSO4 and concen-
trated in vacuo to give the crude product as a yellow oil (5.61 g,
80% yield). Purification was achieved by Kugelrohr distillation to
yield the product as a colourless oil (4.52 g, 65% yield).
½a$20

D ¼ þ114 (c 1, EtOH). mmax/cm!1 (NaCl): 1637 (C@N stretch, s),
1342, 1138 (C–N stretch, m). dH (CDCl3, 300 MHz) 1.07 (6H, q, 2"
CH3), 1.53–1.66 (1H, m, CH2), 1.69–1.91 (6H, m, 3" CH2),
2.02–2.14 (1H, m, CH2), 2.17–2.29 (2H, m, CH2), 2.30–2.55 (9H,
m, 4" CH2, CH), 2.97–3.10 (2H, m, CH2). dC (CDCl3, 75.5 MHz)
10.9 (2" CH3), 11.8, 21.8, 23.5, 23.5, 28.6, 28.7, 54.8, 55.0, 61.4
(10" CH2), 66.1 (CH), 173.3 (CN). Exact mass calcd for C14H27N3

[(M+H)+], 238.2277. Found 238.2283.

4.2. General procedure for synthesis of racemic ketones
To THF (5 mL) was added commercially available LDA (1.1 equiv)

at !78 "C. The reaction was stirred for 5 min and 3-pentanone was
added dropwise. The reaction was stirred at !78 "C for 30 min and
the electrophile (1.1 equiv) was added (in 3 mL THF if solid). The
reaction was allowed to warm to room temperature overnight. Next,
at. aq NH4Cl solution (10 mL) was added and the crude product ex-
tracted with ethyl acetate or ether (3"15 mL), dried over MgSO4 and
concentrated in vacuo to yield the crude product, which was purified
by silica column chromatography.

4.3. General procedure for HCl/diethyl ether hydrolysis
At first, 4 M HCl (0.5 mL) and water (0.5 mL) were added to a

vigorously stirred solution of alkylated hydrazone in diethyl ether
(5 mL). The reaction progress was monitored by TLC analysis every

10 min. On completion, water (10 mL) was added, followed by
extraction with diethyl ether (3" 25 mL). The organic layers were
combined and washed with water (2" 10 mL), dried over MgSO4

and concentrated in vacuo to yield the ketone, which was purified
by silica column chromatography.

4.4. Procedure for PPL hydrolysis
To a solution of PPL (100 mg) in water (10 mL) was added a

solution of alkylated hydrazone (1.05 mmol) in acetone (6 mL).
The reaction was allowed to stir at room temperature for 23 h, di-
luted with diethyl ether (20 mL), washed with brine (3" 15 mL),
dried over MgSO4 and concentrated in vacuo. Purification was
achieved using silica column chromatography to yield 9 as a yellow
oil (19.3 mg, 10% yield over two steps).

4.5. General procedure for oxalic acid hydrolysis
At first, satd aq oxalic acid (1.5 vol with respect to mmol hydra-

zone) was added to a vigorously stirred solution of alkylated
hydrazone in diethyl ether (4 vol with respect to mmol hydrazone).
The reaction progress was monitored by TLC analysis and on com-
pletion were added water (5 mL) and diethyl ether (3" 20 mL). Or-
ganic extracts were combined, dried over MgSO4 and concentrated
in vacuo to yield the ketone which was purified by silica column
chromatography.

4.6. Example procedure for the alkylation of chiral hydrazone
To a stirred solution of dry diisopropylamine (0.16 mL,

1.16 mmol) in dry diethyl ether (4 mL) in an N2 filled Schlenk tube
at !78 "C was added 1.6 M n-BuLi (0.86 mL, 1.21 mmol). The solu-
tion was allowed to stir at 0 "C for 30 min to generate a solution of
LDA. Hydrazone 6 (250 mg, 1.05 mmol) was added slowly drop-
wise at !78 "C and allowed to stir at 0 "C for 16 h. A solution of
n-pentyl iodide (250 mg, 1.26 mmol) in dry diethyl ether (2 mL)
in a separate Schlenk, which was previously evacuated and filled
with N2 three times, was added dropwise to a solution of deproto-
nated hydrazone at !110 "C. The temperature of the reaction was
kept at !110 "C for 1 h, then at !70 "C for 5 h before being allowed
to warm gradually to room temperature overnight. Next, satd aq
NH4Cl solution (10 mL) was added to quench the reaction followed
by extraction with diethyl ether (3 " 20 mL). The organic layers
were combined, dried over MgSO4 and concentrated in vacuo to
yield the crude alkylated hydrazone as a yellow oil, which was
hydrolysed using HCl/diethyl ether to yield the crude product as
a yellow oil. Purification was carried out using silica column chro-
matography eluting with 95:5 hexane/diethyl ether to afford 12 as
a pale yellow oil (22 mg, 13% and 92% ee). ½a$20

D ¼ þ5:5 (c 0.2, Et2O).
mmax/cm!1 (film) 2961, 2932 (alkane CH stretches), 1714 (C@O). dH

(CDCl3, 300 MHz) 0.88 (3H, t, J = 6.8 Hz, CH3), 1.04 (3H, t, J = 7.3 Hz,
CH3) 1.06 (3H, d, J = 6.9 Hz, CH3), 1.17–1.35 (8H, m, 4" CH2), 2.46
(2H, dq, J = 1.5, 7.3 Hz, CH2), 2.48–2.58 (1H, m, CH). dC (CDCl3,
125 MHz) 7.8, 14.1, 16.5 (3" CH3), 22.5, 27.0, 31.9, 33.1, 34.2 (5"
CH2), 46.1 (CH), 215.7 (C@O). Exact mass calcd for C10H21O
[(M+H)+], 157.1592. Found 157.1584. Sample for GC made up at
1 mg/mL in dry dichloromethane and run on Agilent Technologies
7820A GC System using G4513A Injector and Astec Chiraldex G-TA
fused silica capillary column purchased from Sigma Aldrich Supe-
lco using conditions 105 "C hold 10 min, ramp 10 "C/min to
140 "C hold 5 min, flow 1 mL/min, inj. vol. 0.2 lL, split ratio 10:1,
front inlet 150 "C, detector 155 "C. Retention time: 3.63 min (min-
or), 3.87 min (major).

4.7. Example of the procedure for the Michael reaction
To a stirred solution of dry diisopropylamine (0.2 mL,

1.39 mmol) in dry diethyl ether (4 mL) in an N2 filled Schlenk tube
at !78 "C was added 1.6 M n-BuLi (0.91 mL, 1.45 mmol). The
solution was then allowed to stir at 0 "C for 30 min to generate a
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solution of LDA. Hydrazone 6 (299 mg, 1.26 mmol) was slowly
added dropwise at !78 "C and allowed to stir at 0 "C for 16 h. Next,
trans-b-nitrostyrene (245 mg, 1.64 mmol) was dissolved in dry
diethyl ether (3 mL), cooled to !78 "C and then slowly added drop-
wise to a solution of deprotonated hydrazone at !110 "C via a can-
nula. The temperature of the reaction was kept at !110 "C for 1 h,
then at !70 "C for 5 h before being allowed to warm gradually to
room temperature overnight. Next, satd aq NH4Cl solution
(10 mL) was added to quench the reaction followed by extraction
with diethyl ether (3" 20 mL). The organic layers were combined,
dried over MgSO4 and concentrated in vacuo to yield a product as a
dark yellow solid, which was hydrolysed using HCl/diethyl ether to
yield the crude product as a pale brown oil (GC analysis of crude
obtained), which was purified using silica column chromatography
eluting with 90:10 hexane/diethyl ether to afford syn-28 as a yel-
low oil (37 mg, 13% and 84% ee). ½a$22

D ¼ þ3:5 (c 0.2, CHCl3). {lit.22

½a$22
D ¼ þ8:9 (c 0.2, CHCl3)}. dH (CDCl3, 300 MHz) 0.97 (3H, d,

J = 7.1 Hz, CH3), 1.07 (3H, t, J = 7.3 Hz, CH3), 2.41 (1H, dq, J = 7.3,
18.0 Hz, CH3CH2), 2.61 (1H, dq, J = 7.3, 18.0 Hz, CH3CH2), 2.94–
3.05 (1H, m, CH3CH), 3.66–3.73 (1H, m, CHAr), 4.57–4.71 (2H, m,
CH2NO2), 7.14–7.17 (2H, m, ArH), 7.29–7.33 (3H, m, ArH). dC

(CDCl3, 75.5 MHz) 7.6, 16.3 (2" CH3), 35.4 (CH2), 46.1, 48.3 (2"
CH), 78.3 (CH2), 127.9, 129.0 (5" ArC), 137.6 (quaternary C),
213.6 (C@O). m/z (ES+) 235 [(M+H)+, 78%]. Samples for GC made
up at 1 mg/mL in dry dichloromethane and ran on Agilent Technol-
ogies 7820A GC System using G4513A Injector and Astec Chiraldex
G-TA fused silica capillary column purchased from Sigma Aldrich
Supelco using conditions 140 "C hold 70 min, flow 1 mL/min, inj.
vol. 0.2 lL, split ratio 10:1, front inlet 150 "C, detector 155 "C.
anti-28 could not be isolated. Retention times: 44.95 min (syn),
51.05 min (anti), 52.40 min (syn), 55.53 min (anti).
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4.1  General Introduction 
One of the greatest technological achievements of the 20th century was the 

ability to control the growth of pathogenic and unwanted bacteria. Compounds that 

aim to either kill or inhibit the growth of microorganisms have been applied in 

many areas of everyday life. The most obvious applications are in food 

preservation, farming and in the treatment of bacterial infections. Today, it is 

impossible to imagine health care systems that are not able to cope with bacterial 

infections. The widespread use of antibiotics however, has led to a crisis in health 

care systems worldwide. The mode of action of antibiotics is to kill the bacteria 

they encounter but the result of this is that bacteria are under intense selective 

pressure to develop resistance, leading to strains of bacteria which are now multi-

drug resistant.  These are commonly known as superbugs.   

 In recent years, there has been a dramatic increase in the amount of multi-

drug resistant bacteria, resulting in some strains which are now unharmed by 

nearly all the drugs designed to kill them and as a result, infections that were once 

easily treatable are almost untreatable.1    

 Between 1930 and 1962, more than twenty novel classes of antibiotics 

were identified, produced and marketed.2  Since then, only two new classes of 

antibiotics, oxazolidinones3 and cyclic lipopeptides,4 have been marketed.  The 

discovery of the newest antibiotic, teixobactin, was reported in early 2015.5 

 In the race against these superbugs we are already well behind.  It is 

conceivable that in a number of years, routine medical procedures such as cancer 

chemotherapy and organ transplant surgery will become higher risk as the 

available antibiotics are rendered ineffective.  Thus there is a need for the 

development of alternative strategies to tackle the problem of antibiotic resistance.  

An ideal approach is to target the control apparatus of the virulence and pathogenic 

traits of bacteria rather than killing the bacteria.  In this way, there should be no 

natural selection of mutant strains and hence no resistance. 
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4.2  Bacteria 
Between fifteen and twenty billion years ago, the universe arose as a 

cataclysmic eruption of hot, energy-rich, sub-atomic particles, resulting in the 

formation of the simplest elements, hydrogen and helium, within seconds.6  As the 

universe expanded and cooled, stars were formed due to the condensing of material 

under the influence of gravity.  Some stars became supernovae due to their 

incredibly large size, with their explosion releasing the energy required to fuse 

simple atomic nuclei into more complex chemical elements.  In this manner, over 

billions of years, the Earth and all the chemical elements found on it today were 

produced.  The introduction of life occurred around four billion years ago, and the 

first signs of life were that of simple microorganisms which had the ability to 

extract energy from organic compounds or from sunlight which they used to make 

a wealth of more complex biomolecules from the simple elements and compounds 

on the surface of the Earth – these were the early forms of bacteria.6 

 The first observation of bacteria was made in 1676 by Antoine van 

Leeuwenhoek.  He described bacteria as “animalcules” and published his findings 

in a series of letters to the Royal Society.7  It was more than 160 years later that 

the term bacterium would be introduced by Christian Gottfried Ehrenberg, in 1838.

 The unity and diversity of organisms becomes apparent even at cellular 

level.  Bacteria (prokaryotes) are single-celled, microscopic organisms, typically 

1–2 μm in length, whereas larger organisms (for example animals and humans) are 

multicellular containing many different types of cells, which vary in shape, size 

and function.  Animal and plant cells (eukaryotes) are typically 5–100 μm in 

diameter.6         

 All living organisms can be classified into one of three groups that define 

three branches of evolution from a common progenitor (Figure 4.1).6  Prokaryotes 

can be split into two distinct groups based on their biochemical background – 

archaebacteria and eubacteria.  Eubacteria can be found in soil and surface waters 

and in the tissues of other decaying organisms.  Common eubacteria include the 

well-studied Escherichia coli.8 Archaebacteria typically inhabit extreme 

environments such as salt lakes, hot springs, highly acidic bogs and ocean depths.  

It is thought that archaebacterial and eubacteria diverged early in evolution and so 

are seen as two separate domains, also known as Archae and Bacteria.  All 
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eukaryotic organisms evolved from the same branch that gave rise to the Archae, 

meaning archaebacterial are more closely related to eukaryotes than bacteria. 

 

Figure 4.1 The three domains of life. 

Bacteria can be divided into two main classes, Gram-positive and Gram-

negative, based on their different abilities to retain an iodine-crystal violet stain 

when treated with organic solvents.  Those that retain the stain are termed Gram-

positive while those that do not are Gram-negative.  Response to the staining 

technique depends primarily on the composition and morphology of the bacterial 

cell wall, the fundamental difference between the two types is the possession of an 

outer membrane within the cell wall of Gram-negative bacteria (Figure 4.2).6 
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Figure 4.2 Differences between Gram-positive and Gram-negative bacteria. 

Bacterial cells all have certain common structural features (Figure 4.3),6 

but they also show group-specific specifications.  E. coli is a well-known bacterial 

species which is usually a harmless inhabitant of the human intestinal tract.  An E. 

coli cell is about 2 μm long and has a diameter of just less than 1 μm. The 

cytoplasm and nucleoid (containing all the genetic material of the bacterium) are 

enclosed by the inner plasma membrane and the protective outer layer with a layer 

of polymers called peptidoglycans in between the two layers, giving the cell its 

shape and rigidity. These layers form what is known as the cell envelope.  The 

cytoplasm of bacteria will contain ribosomes, enzymes, numerous metabolites, co-

factors and inorganic ions.  The nucleoid contains a single, circular molecule of 

DNA, and the cytoplasm contains one or more smaller, circular segments of DNA, 

known as plasmids. In nature, some plasmids can confer resistance to toxins and 

antibiotics however they are also responsive to manipulation in the laboratory.6 
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Figure 4.3  Common structural features of bacterial cells.6 

 Bacteria are ubiquitous on Earth, with typically 40 million bacterial cells 

in 1 g of soil and 1 million/mL of fresh water, for example.  Overall, there are 

approximately 5 nonillion (5 u 1030) bacteria on Earth, unsurprisingly forming 

much of the world’s biomass.9  Bacteria play a vital role in many important 

processes on Earth, such as putrefaction and in the fixation of nitrogen from the 

atmosphere.  Interestingly though, most bacteria have not been characterised, and 

only about half of the phyla of bacteria have species that can be grown in the 

laboratory.10         

 Surprisingly, there are ten times more bacterial cells than human cells in 
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the human body.  Most of these bacterial cells are present on the skin and in the 

gut.11  The majority of bacteria in the body are rendered harmless by the protective 

effects of the immune system.  In fact, some are required as they have a crucial, 

beneficial effect.  However, some species of bacteria have a detrimental effect on 

a human host as they are pathogenic and cause infectious diseases, for example the 

bacterium Vibrio cholera causes cholera and Yersinia pestis is the bacterium 

responsible for the bubonic plague, to name two.  In developed countries, 

antibiotics are used for the treatment of bacterial infections, however their overuse 

has presented the problem of many strains of mutant bacteria which are now 

resistant to many, if not all, antibiotics currently available.  Bacteria often attach 

to surfaces and form dense aggregations known as biofilms, which can range from 

a few micrometres up to half a metre in depth and contain multiple species of 

bacteria.  Bacteria that live in biofilms display a complex arrangement of cells and 

extracellular components and form secondary structures such as microcolonies, 

which have the benefit of having networks of channels running through them to 

enable better diffusion of nutrients.12,13  The majority of bacteria bound to surfaces 

in the natural environment, for example soil or the surfaces of plants, live in 

biofilms.14  Bacteria are able to use biofilms as a method of protection against 

attack from antibiotics and are often present during chronic bacterial infections 

and in infections of implanted medical devices.  Treatment of bacteria 

encapsulated by a biofilm is much more difficult than unprotected isolated 

bacteria.15 

4.2.1 Antibiotics and the rise of antibiotic resistance 
The remarkable success of antibiotics in the 1960s and 1970s led to the 

misconception that infectious diseases had been conquered.  However, infectious 

diseases are still a major problem and in a report by the World Health Organisation 

in 2002, were cited as being the second-leading cause of death worldwide.16 

 Antibiotics are unique among pharmaceutical remedies in that they direct 

their action selectively towards foreign cells rather than host cells, meaning they 

can be prescribed less strictly than other pharmaceuticals.  This selective action 

means that they must target physiological and biochemical differences between 

host cells and bacterial cells in order to exert their effect.  Interestingly, it was 

noted that in the search for new antibiotics in moulds and other organisms, for 
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example with Penicillium, many selective and useful antibiotics were found 

(including streptomycin and rifampicin), but others were also found which 

although had a good antibacterial effect, did not exhibit selectivity and so were 

deemed unusable for the clinical treatment of bacterial infections.17  

 In many cases, antibiotics are prescribed when signs of infection are 

present, without a strict bacterial diagnosis being made, which has contributed 

heavily to the unnecessarily large consumption of antibiotics worldwide.17  In a 

1983 World Health Organisation report, it was estimated that antibiotics are used 

by doctors irrationally or inappropriately on anything between two fifths and two 

thirds of all occasions.18  Indeed, Tomasz reported in 1994 that every year in the 

USA, 60,000–70,000 patients die from hospital infections, half or more of which 

are caused by antibiotic-resistant superbugs and that hospital infections costs the 

US healthcare system a minimum of $4.5 billion per annum.19  

 Bacterial resistance to antibiotics has developed quickly over a short period 

of time.  This phenomenon can be partially explained by the short generation span 

of bacteria, which allows them to undergo a Darwinian evolution in a much shorter 

time than is possible for animals – the smaller and simpler the species, the faster it 

can undergo evolution to respond to changes in its environment.  Another aspect 

which explains the quick development of resistance to antibiotics is the fact that 

bacteria have the ability to manipulate their own genetic makeup, which leads to a 

faster adaption of the toxic effects of antibiotics and hence resistance.  This can be 

seen as the natural genetic engineering of bacteria, including the uptake and 

incorporation of resistance-mediating genes from related organisms by adaption 

of evolutionary old genetic mechanisms to the new environmental situation 

involving the presence of antibiotics.17    

 Antibiotics function by either killing bacteria (bactericidal) or by 

preventing them from multiplying (bacteriostatic).  Notably, a bacteriostatic drug 

can be bactericidal if it is used in high enough doses.  Antibiotics can also be 

classed as either ‘narrow-spectrum’ or ‘broad-spectrum’ depending on the range 

of bacterial species they work against.  The broad-spectrum antibiotics tend to do 

the most damage as the risk of developing antibiotic resistant bacteria is much 

higher.  Penicillins, for example, sabotage the synthesis of the bacterial cell wall, 

rupturing the cell.  However, the effectiveness of penicillins has decreased quickly 

due to the evolution of bacteria which produced β-lactamase or penicillase, which 
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attacks the drug and cleaves the β-lactam ring.20    

 A great deal of the early prosperity of pharmaceutical companies was due 

to the development of antibacterial drugs, and as a consequence the market 

encompasses several of the oldest drug classes.21  Despite the rise in the use of 

generic antibiotics, there is still growth in this area due to increasing sales volume, 

as well as the rise of premium-priced novel treatments for resistant bacteria (for 

example, Pfizer’s Zyvox (linezolid) 180, Figure 4.4).21  The reason why this 

market is still expanding is due to the growing number of people with depressed 

immune systems, including the elderly, human immunodeficiency virus (HIV) 

patients and organ donors, for example.21  Antibiotics are an unattractive target for 

the pharmaceutical industry for various reasons, including the fact that there is the 

current problem of antibiotic resistance, meaning drugs have relatively short life 

cycles and also that antibacterial therapy is acute rather than chronic.  Indeed, 10 

of the 15 largest pharmaceutical companies have either fully abandoned, or 

significantly diminished, their discovery efforts in the field of antibiotics since 

1999.22  This has left a niche for smaller companies to take over the drug 

development role, both by identifying innovative drugs or formulations, and/or by 

picking up clinical programmes aborted by the larger companies.  However, the 

larger companies in the pharmaceutical industry often become involved in the 

latter stages of a promising drug as a strong salesforce is the key to success in the 

community antibacterial market.21 

 

Figure 4.4 Pfizer’s Zyvox (linezolid). 

The market for antibiotics can be split into two distinct groups.  The larger 

community market (estimated at 62% of total antibacterial sales), with a lower 

average drug price and growth prospects and the smaller but more attractive 

hospital market, with a higher average drug price and growth prospects.21 
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 The most widely used antibiotics are penicillins for Gram-positive bacteria 

and cephalosporins for both Gram-positive and Gram-negative bacteria.  

Fluoroquinolones are also widely used for Gram-negative pathogens.  

 Although there are good treatment options available for most common 

infections, there are several areas where choices are limited, for example there is 

a severe lack of oral drugs available to treat methicillin-resistant Staphylococcus 

aureus (MRSA), the prevalence of which has increased dramatically in recent 

years.  Others include antibiotic resistant Gram-negative bacterial infections, in 

particular those from Pseudomonas.  Few pharmaceutical companies are focusing 

on addressing the need for efficient treatment of these bacteria.21 

 During the last number of decades that antibiotics have been in ever-

widening therapeutic use, the development of antibiotic resistance has followed.  

It is clear that whenever a new antibiotic, broader-spectrum forms of an existing 

antibiotic, or a new class of antibiotic is introduced into wide-spread use, clinically 

significant resistance appears.  This can occur very quickly, even in a matter of 

months (Table 4.1).  Vancomycin (Table 4.1, entry 7) is the exception to the rule 

as resistance came about 30 years after clinical introduction, most probably due to 

the limited use of vancomycin in the first 25 years.  However, as it became more 

commonly used, resistance has developed.23,24    

 Due to the constant, intense exposure of bacteria to antibiotics in a hospital 

environment, bacteria become antibiotic-resistant much more rapidly than in the 

community.  In these microenvironments, there is selective pressure for antibiotic-

resistant bacteria to maintain those determinants, survive and even dominate the 

bacterial populations.  Given a large population of bacteria which are exposed to 

a drug, there is a competition between the death of all the bacteria and the 

development of rare mutations that confer resistance.  Given the short time 

required for bacterial division and replication along with a typical frequency of 

one error per 107 bases as their DNA polymerases copy DNA, then 100 million 

bacteria will contain about 10 mutants in the population.25  If these mutations are 

randomly dispersed in the genome of a bacterium the size of E. coli, with 3000 

genes, then 0.3% (10/3000) of the genes will have one mutation.  If one of these 

gene mutations is a target for an antibiotic and the mutation confers some degree 

of resistance that means the bacteria is less sensitive to the antibiotic, it will have 

a selective survival advantage.  As its neighbours without the mutation die, it will 
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persist and have the advantage of having space to grow and dominate the culture.  

The resistant strain will continue to be selected for by the continuing presence of 

antibiotic in an environment such as a hospital ward.25 

Table 4.1 Evolution of the resistance to antibiotics.23 

Entry Antibiotic Year deployed Resistance 
observed 

1 Sulfonamides 1930s 1940s 

2 Penicillin 1943 1946 

3 Streptomycin 1943 1959 

4 Chloramphenicol 1947 1959 

5 Tetracycline 1948 1953 

6 Erythromycin 1952 1988 

7 Vancomycin 1956 1988 

8 Methicillin 1960 1961 

9 Ampicillin 1961 1973 

10 Cephalosporins 1960s Late 1960s 

 

These findings show that bacterial resistance to antibiotics is an eventuality 

in every case, suggesting that there is a constant need for new cycles of antibiotic 

discovery and development.  As soon as an antibiotic is introduced for widespread 

clinical use, selection for resistant strains will occur and hence a finite therapeutic 

lifetime will occur before the resistance becomes sufficiently widespread to lessen 

the efficacy of the drug.25         

 It is clear that alternative strategies must be investigated as another method 

for treatment of bacterial infection, whereby treatment would not involve killing 

the bacteria.  Rather, there is a need to develop new drugs that circumvent the 

bacterial resistance mechanisms or that act on different bacterial targets. 
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4.3  Vibrio Fischeri and the discovery of quorum-sensing (QS) 
Bacteria must constantly monitor their environment for changes that 

require an adaptive response.  Bacteria are too small to exert their effect on a large 

host if they act as individuals.  They must act in a different way in order to exert 

their pathogenicity.  Bacteria have achieved this and have developed a method to 

communicate with one another using chemical molecules in a process termed 

quorum-sensing (QS).26-29  QS bacteria produce, release, detect and respond to 

chemical signal molecules, termed autoinducers, whose external concentration 

increases in proportion to increasing cell-population density.  Bacteria detect the 

accumulation of a minimal threshold stimulatory concentration of these 

autoinducers and alter gene expression, and ultimately behaviour, in response.  The 

information supplied by these molecules is critical for synchronising the activities 

of large groups of bacteria and allowing them to alter their behaviour on a 

population-wide scale in response to changes in the number and/or species present 

in a community.  Most processes that are controlled by QS are unproductive when 

undertaken by an individual bacterium acting alone, but when carried out 

simultaneously by a large number of cells it becomes beneficial.  In a sense, QS 

blurs the barrier between prokaryotic and eukaryotic behaviour because it enables 

bacteria to act as multicellular organisms.28     

 The first described QS system is that of the bioluminescent marine 

bacterium Vibrio fischeri, which colonises a specially developed light organ in the 

Hawaiian bobtail squid (Figure 4.5).30  In this light organ, V. fischeri grow to high 

cell density and induce the expression of genes required for bioluminescence.  The 

squid and the V. fisheri have a symbiotic relationship.  The squid is a nocturnal 

animal that inhabits shallow waters off the coast of Hawaii.  On bright nights, the 

moonlight can penetrate the depth of the water that the squid lives in, meaning the 

squid itself will block the moonlight, cast a shadow and prey will see it coming.  

The squid can, however, use the bioluminsence of the V. fischeri to its advantage. 

The squid has a detector on its back that allows it to detect the amount of moonlight 

that is hitting it.  It also has shutters over its light organ that it can open and close 

as desired.  The squid can thus detect the amount of moonlight hitting its back and 

open the shutters on its light organ accordingly to allow the same amount of light 

to penetrate from its underside to the sea bed.  This allows it to be able to mask its 

shadow and overall, this process acts as an anti-predation device.31  The bacteria 
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benefit from this symbiosis because the light organ is rich in nutrients and allows 

proliferation in numbers which would be unachievable in seawater,28 so the QS 

system in V. fischeri has evolved to specifically enable the bacteria to produce light 

only under favourable conditions in which there is a positive selective advantage 

for light. This QS system is considered the paradigm for QS in most Gram-

negative bacteria. 

 

Figure 4.5 Hawaiian bobtail squid with large populations of V. fischeri colonising 

the light organ and showing bioluminescence due to QS.32  

 Studies carried out by Engebrecht and Silverman set the standard for all 

subsequent studies of QS in Gram-negative bacteria.33  They identified, cloned and 

analysed the genes encoding the luciferase enzyme complex (the oxidative enzyme 

responsible for the bioluminescence) and the genes responsible for its density-

dependent regulation from V. fischeri.  The authors showed that bioluminescence 

in V. fischeri is controlled by two regulatory proteins, LuxI and LuxR.  LuxI is the 

autoinducer synthase that is responsible for the synthesis of the acyl-homoserine 

lactone (AHL) 3-oxohexanoyl-homoserine lactone 181 (3-oxo-C6-HSL) (Figure 
4.6).  LuxR is the autoinducer receptor/DNA-binding transcriptional activator, 

which is found in the cytoplasm.34  Once the AHL molecules are produced, they 

can diffuse freely in and out of the cell.  The amount of AHL present increases 

with increasing cell density.35  Once the amount of AHL reaches a crucial 

threshold concentration, it is bound by LuxR and this complex activates 

transcription of the operon encoding luciferase.36  This LuxR-AHL complex also 

induces expression of luxI as it is encoded in the luciferase operon.  This operation 

is incredibly important as this regulatory configuration floods the environment 

with the signal, creating a positive feedback loop that causes the entire population 

to switch into QS mode and produce light (Figure 4.6).28  
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Figure 4.6 Quorum sensing regulation in V. fischeri via a LuxIR signalling circuit.  

Red triangles indicate the autoinducer, 3-oxo-C6-HSL 181, which is produced by 

LuxI.  OM – outer membrane; IM – inner membrane. 

 Most other Gram-negative bacteria which possess LuxIR-type proteins 

communicate using AHL signalling molecules.37  These systems are 

predominantly used for intraspecies communication as exquisite specificity exists 

between the LuxR proteins and their related AHL signals.  These AHL signals are 

synthesised by LuxI-type proteins which link and lactonise the methionine moiety 

from S-adenosylmethionine (SAM) to specific acyl chains carried on acyl-acyl 

carrier proteins.38,39  A diverse set of acyl side chains which vary in length, 

backbone saturation and side-chain substitution are found in AHL signalling 

molecules.  These minor differences are crucial for signalling specificity.40  AHLs 
181 and 182, for example, are signals used by bacteria which produce light, and 

183 and 184 are some of the signalling molecules used by Pseudomonas 

aeruginosa (Figure 4.7).   

181 
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Figure 4.7 Examples of acyl-homoserine lactones used as signalling molecules in 

various species of bacteria. 

 Structural studies carried out in LuxI-type proteins indicate that each 

protein possesses a specific acyl-binding pocket that precisely fits a particular side 

chain moiety.41,42  This structural feature configures specificity in signal 

production.  This means that each LuxI protein can reliably produce the correct 

signal molecule.  The structures of the LuxR proteins suggest that they too possess 

specific acyl-binding pockets that allow each LuxR to bind and be activated only 

by its specific signal.43,44  Hence, in an environment where a number of different 

bacterial species are present, and therefore multiple AHL signal molecules, each 

species can easily distinguish, measure and respond only to the increase in 

concentration of its own signal.  Another important factor is that bacteria rarely 

rely exclusively on one LuxIR QS system but instead use one or more LuxIR 

systems in collaboration with other types of QS circuits.28   

 As can be seen from Figure 4.6, the signal and detector can interact in the 

cytoplasm of the bacterial cell and so mechanisms must exist to prevent premature 

activation of LuxIR-type QS circuits.  In 1999, Zhu and Winans demonstrated that 

one such mechanism is in play in the case of the LuxR homologue TraR in the 

plant pathogen Agrobacterium tumefaciens, where the stability of the LuxR-type 

proteins increases upon binding of autoinducer.45  It was noted that in the absence 

of autoinducer, the half-life of TraR is only a few minutes.  In contrast, when the 

AHL molecule is present, the half-life of TraR increase to over 30 minutes.  A 

crystal structure of TraR has been obtained and it predicts that binding of the AHL 
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is required for folding of the emerging polypeptide.44  Radiolabelling studies 

demonstrated that radiolabelled TraR was only stabilised when its associated AHL 

was added prior to labelling of the protein.46  This means that only when the 

concentration of AHL accumulates to a significant concentration, both outside and 

inside the cell, can TraR bind it, fold and then initiate the QS cascade.  Another 

method that prevents premature activation of LuxIR systems is the active export 

of AHL molecules.47  When a significant concentration of AHL has accumulated, 

which indicates the presence of a high number of bacterial cells, diffusion of AHL 

into the cell overwhelms export and thus engages the QS circuit.  AHLs which 

contain long acyl side chains are thought to require active export in order to 

transverse the bacterial membrane.47      

 In contrast to Gram-negative bacteria, Gram-positive bacteria produce 

small linear or cyclic peptides for use as signalling molecules, which can be 

customised by chemical modifications that confer specificity.  These cyclic 

peptides are perceived by a two-component regulatory system by means of a 

phosphorelay cascade to induce changes in gene expression.48,49  

 The use of QS as a means of cell density-dependent gene regulation is 

widely accepted, however two additional models have called into question its 

comprehensiveness and suggest alternative explanations as to why bacteria 

evolved diffusible signal molecules.50,51  One of these models, known as diffusion 

sensing, proposes that signal molecules are inexpensive probes that allow a 

bacterium to assess the flux and mass transfer of an environment, which allows the 

cell the determine whether production of certain molecules, such as extracellular 

proteins and secondary metabolites, is viable.51  The second method, termed 

efficiency sensing, combines the basic views of QS and diffusion sensing.  In this 

method, flux, mass transfer, cell density and spatial distribution are important for 

signalling.50 

4.4  Pseudomonas aeruginosa 
At the end of the nineteenth century, after Pasteur’s development of sterile 

culture medium, the first description of Pseudomonas aeruginosa as a distinct 

bacterial species was reported.  The first scientific study on P. aeruginosa was 

published by Carle Gessard in 1882,52 entitled “On the blue and green colouration 

of bandages.”  This characteristic pigmentation, which would later be attributed to 
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pyocyanin (a phenazine derivative), is reflected in the old names Bascillus 

pyocyaneus, Pseudomonas polycolor, Bakterium aeruginosa and Pseudomonas 

pyocyaneus.  As early as 1889, it was noted that P. aeruginosa was able to cause 

infections.53  However, P. aeruingosa was not considered to be pathogenic54 and 

in fact was seen as a source of potent antimicrobial substances.55    

 Prior to 1947, only 91 cases of septicaemia attributable to P. aeruginosa 

were reported in the literature.56,57  It was not until the second half of the twentieth 

century that the importance of P. aeruginosa  as a human pathogen, in particular 

in hospital patients, was realised.58      

 P. aeruginosa (Figure 4.8) is an antibiotic-resistant bacterium that is 

commonly found in soil and water, it can metabolise a wide range of carbon 

sources and is capable of growing in conditions of extremely low nutrient 

content.59  With regards to water environments, P. aeruginosa is not found in 

seawater, most probably due to the high salt concentration restricting growth.  In 

areas near to sewage outlets and other types of pollution it can be detected.60-62  It 

has been identified in low concentrations in samples from private homes, schools, 

rivers and drinking water sources.60,63  P. aeruginosa has been isolated from sink 

drains, toilets, showers and other bathroom fixtures, humidifiers and many medical 

devices and equipment that work with water.63  In a study carried out in 1989, it 

was found that sinks in hospitals are generally more highly contaminated with P. 

aeruginosa than those in private homes.64  In newer hospitals, sinks are mostly free 

of P. aeruginosa however they rapidly become contaminated.65  This proves that 

humans that are contaminated or infected play an important, crucial role in 

transmission.  The presence of P. aeruginosa has also been detected in warmer 

aquatic environments, such as on the recirculation system and filters in swimming 

pools and whirlpools, where higher temperatures are conducive to its growth.60  

Interestingly, it has been shown that P. aeruginosa can colonise many different 

types of surfaces, including stainless steel.66,67  It appears to be almost impossible 

to purify water to the extent that prevents P. aeruginosa from growing.  Even in 

distilled water with a purity of 71,000 ohms, multiplication of P. aeruginosa has, 

surprisingly, been observed.68  P. aeruginosa has also been isolated from the soil, 

in particular from the rhizosphere.69,70  It has also been found in a number of plants 

and vegetables.70 
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Figure 4.8 Scanning electron microscopy images of P. aeruginosa isolates 

attaching to glass surfaces.  Weakly adherent P. aeruginosa isolated formed a 

monolayer (B and D), while the moderate and strongly adherent isolates formed 

clumps of cells (A and C) when biofilms were grown on glass cover slips.  

Microbial attachment first presented as clumps of cells (A and B, 7 and 14 h 

respectively after inoculation) and as the biofilm matured the spaces between the 

clumps were covered with a cell lawn (C and D, 20 and 40 h respectively).71 

P. aeruginosa is classed as an opportunistic human pathogen as it can 

exploit a crack in a host defences to instigate an infection.  In fact, it is the epitome 

of an opportunistic pathogen – the bacterium almost never infects uncompromised 

tissues but there is hardly any tissue it cannot infect if the defences are in some 

way compromised.  Indeed, P. aeruginosa was only found in 1.2–2.3% of faeces 

from non-hospitalised, healthy individuals.70,72-74  However, it is thought that in 

these cases, the source of the P. aeruginosa may be by ingestion of food 

contaminated with this organism.75  Gastric acid and substances produced by 

anaerobic bacteria in the gut are thought to be involved in protection against 

colonisation by P. aeruginosa.76  The formation of a biofilm, where the bacterial 
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cells on a surface are embedded in a self-produced polymer matrix consisting of 

polysaccharide, protein and DNA, is necessary for persistent, chronic infection.77  

A bacterial biofilm causes a chronic infection because the bacteria show increased 

tolerance to antibiotics and they resist phagocytosis, as well as other components 

of both the innate and adaptive immune system.77    P. aeruginosa causes a wide 

range of syndromes in humans that can vary from local to systemic, subacute to 

chronic, and superficial and self-limiting to life-threatening.59  For example, it is 

the etiological agent for eye and ear infections, for super-infection of burn wounds 

and nosocomial pneumonia.78  It primarily causes disease in predisposed or 

immunocompromised individuals and is one of the most common pathogens found 

in hospitals.59  P. aeruginosa is the most common Gram-negative bacterium found 

in hospital-acquired and life-threatening infections of immunocompromised 

patients.79  As it is naturally resistant to many commonly used antibiotics, it can 

persist in hospital disinfectants and sanitary facilities, more than likely 

contributing to its persistence in hospital environments.  These facts are not 

surprising when it is considered that P. aeruginosa is one of the five most common 

pathogens isolated in hospital-wide surveillance and is the most common in 

intensive care units.80         

 In 1986, data from the US Centre for Disease Control in Atlanta publicised 

that P. aeruginosa was responsible for 11.4% of hospital-acquired infections of all 

sites, 12.7% of urinary tract infections, 16.9% of lower respiratory tract infections 

and 8.9% of surgical wound infections.81  From 1984–1988 it was reported that P. 

aeruginosa went from being the fourth most frequent pathogen in hospital acquired 

septicaemia to being the most frequent.82  The most probable reason for this trend 

is the increased resistance of P. aeruginosa to various antibiotics, including 

aminoglycosides, cephalosporins and quinolones.83-85 Transmission of P. 

aeruginosa in a hospital setting can occur via a number of routes – either through 

patient to patient contact, contact between patients and hospital staff or contact 

between the patient and environmental sources.  In particular, there are high 

contamination rates in hospital sinks and toilets.  In a publication from 1991, it 

was found that when hand washing was performed in a sink contaminated with P. 

aeruginosa without the use of soap, 2400 colony forming units (CFU) of wild-type 

PAO1 strain were grown on the filter membrane after the hands were dried and 

placed in a sterile plastic bag containing 100 mL of physiological saline.  In 
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contrast, when soap was used, the result was 1200 PAO1 CFU per 100ml saline.86  

These results show that it is necessary to use appropriate disinfection while hand 

washing in sinks contaminated with P. aeruginosa.  It follows that patients who 

are susceptible to infection are at a high risk of acquiring P. aeruginosa, or other 

bacterial infections, when they wash their hands or brush their teeth in 

contaminated sinks.  

4.4.1 QS-signalling molecules in P. aeruginosa 
 P. aeruginosa uses QS in expressing virulence as well as in the production 

of biofilm.87  There are two distinct but related QS circuits at play in P. aeruginosa.  

Both systems are genetically similar as they consist of genes encoding the 

transcriptional activator proteins, lasR and rhlR, as well as for the genes 

responsible for the production of AHLs, lasI and rhlI.88-92  These systems are 

arranged hierarchically, with the las system on top of the signalling cascade, 

positively regulating expression of both rhlR and rhlI.93  The QS systems of P. 

aeruginosa involve two distinct  types of signalling molecules: two AHLs: N-

butyryl-L-homoserine lactone (C4-HSL) 183 and N-(3-oxododecanoyl)-L-

homoserine lactone (3-oxo-C12-HSL) 184 and the Pseudomonas quinolone signal 

(PQS) 185, a 2-alkyl-4-quinolone (Figure 4.9).94  2-Heptyl-4(1H)-quinolone 

(HHQ) 186, the biological precursor of PQS, has also shown to function as a signal 

molecule in P. aeruginosa.95  In addition to HHQ and PQS, P. aeruginosa 

produces more than 50 other 2-alkyl-4-quinolones, most of which are functionally 

uncharacterised.96,97  PQS was first isolated and chemically characterised in 1959 

from P. aeruginosa culture supernatants, although its biological role was not 

known at this point.98  AHL-dependent signalling is extensive among Gram-

negative bacteria,99 however 2-alkyl-4-quinolone signalling is more specific, and 

so far has only been detected in P. aeruginosa and certain Burkholderia and 

Alteromonas species.100,101  Interestingly, the 2-alkyl-4-quinolones produced by 

Burkholderia species possess a methyl group at the C-3 position and it has been 

found that the presence of this methyl group is necessary for signalling.101   
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Figure 4.9 Signalling molecules used by P. aeruginosa. 

The intercellular signals for the las and rhl QS systems are C4-HSL 183 
and 3-oxo-C12-HSL 184, respectively.102,103  These signals have been shown to 

control hundreds of genes, representative of 4–12% of the P. aeruginosa 

genome.104-106  Studies have shown that PQS 185 induces the expression of the 

virulence factor elastase and rhlI, the gene which encodes C4-HSL synthase,94,107 

suggesting that PQS acts as a connector signal between the las and rhl QS systems.  

In a study carried out by McGrath et al., it was found that transcription of pqsA 

and subsequent production of PQS was induced by the las QS system but repressed 

by the rhl QS system.108  In the same study, it was found that production of PQS 

was dependent on the ratio of C4-HSL 183 to 3-oxo-C12-HSL 184, providing more 

evidence of its role as a regulatory balance between QS systems.108  

 Unlike many QS signals, PQS is only slightly soluble in aqueous solutions, 

posing an interesting question as to how it is trafficked between cells.  It has been 

shown that in vitro, PQS is solubilised by rhamnolipids, which are QS-regulated 

biosurfactants produced by P. aeruginosa that increase the solubility of molecules 

such as PQS which incorporate long alkyl chains.109  It was later demonstrated that 

outer-membrane vesicles (MVs) are used to package and traffic PQS.110  

 It has been proven that the QS-signalling systems of P. aeruginosa are 

necessary for virulence and pathogenesis in multiple models of infection.111    

Several animal infection models have highlighted the involvement of QS-

regulated virulence factors in the pathogenicity of P. aeruginosa.  The simplest 

infection model is that in the nematode Caenorhabditis elegans, a worm which can 

feed on bacteria.  In the case of an opportunistic pathogen such as P. aeruginosa, 
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the worm is often killed within a short period of time after ingestion of the bacteria, 

due to the cyanide and phenazines secreted by the bacteria.  However, when the 

worm feeds on bacteria which possess mutations in the QS regulatory systems, the 

worm remains alive.112-114  It has been shown that QS plays a significant role in 

wound infections using the burned mouse model.  The initial stages of chronic 

pulmonary infection can be modelled by casting P. aeruginosa into alginate beads 

which are then surgically inserted into the lungs of rats and mice.115  When mice 

are infected with a strain of P. aeruginosa that have mutations in the QS systems, 

the mortality of the mice, horizontal spread of the infection, and dissemination of 

the bacteria throughout the body were all greatly reduced.116  Additionally, the 

presence of a fully function QS system has been found to be important for both 

establishment and reduced clearance of a P. aeruginosa infection.  Studies has 

proven that when animals are infected with QS mutants, the immune response is 

faster, the polymorphonuclear leucocytes (PMNs) respond by development of 

stronger oxidative bursts and antibodies accumulate faster in the infected lung.117-

120  Studies have found that AHL signalling can occur in vivo in the mouse lung, 

and AHL signal molecules are produced by P. aeruginosa growing ex vivo within 

sputum samples obtained from patients with Cystic Fibrosis (CF).121,122 

 The two different types of signalling (that using AHLs and that using PQS) 

are regulated differently.  Whereas AHL signals are produced at a time of rapid 

population growth, PQS is produced maximally in the late stationary phase of 

growth.107  These findings suggest that PQS signalling is important when P. 

aeruginosa cells are under stressful conditions, which would be typical of the 

conditions found during chronic infection in the lungs of a patient with CF.123  PQS 

has been found in sputum samples of CF patients in estimated minimal 

concentration of ca. 2 μM, indicating that the presence of this molecule may be a 

crucial factor in the establishment of chronic infections, and thus may be a unique 

drug target for development of new therapies for treating P. aeruginosa 

infections.123   

4.4.2 PQS and HHQ as modulators for interspecies and interkingdom 
behaviour 
 As stated previously, signalling molecules used by bacteria are often 

species-specific, however the ability of one species to be able to ‘listen in’ and 
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decipher the messages of a competitive species, known as interspecies or 

interkingdom signalling, is a valuable asset in communities where a number of 

microbes coexist, such as those that exist during infection of the CF lung.  This 

phenomenon is emerging as a key influence on the outcome of infectious diseases.

 In 2006, Diggle et al.100 examined genome databases and identified 

homologues of the pqs genes in other bacteria and found that Burkholderia 

pseudomallei and B. thailandensis contained the complete pqsA-E operon (termed 

hhqA-E), as in P. aeruginosa.  When the authors introduced the B. pseudomallei 

hhqA and hhqE genes into P. aeruginosa pqsA and pqsE mutants, it was observed 

that virulence factor and PQS production was restored.  It was also noted that B. 

pseudomallei, B. thailandensis, B. cenocepacia and P. putida all produce HHQ but 

not PQS.  These findings divulge a role for alkyl-quinolone signalling in bacterial 

cell-to-cell communication beyond that seen in P. aeruginosa.  A later study by 

Vial et al.101 identified twenty nine different 4-hydroxy-2-alkylquinolines in three 

Burkholderia species, bearing a methyl group at the 3-position.  While the function 

of HHQ analogues in these species has yet to be elucidated, strong structural 

similarities with the P. aeruginosa signalling molecule HHQ suggest the presence 

of a conserved interspecies signalling system.    

 In 2011, Reen et al.124 investigated the possibility of HHQ and PQS playing 

a role in interspecies communication.  In their study, the authors found that both 

HHQ and PQS were modulators of key phenotypes in Gram-positive and Gram-

negative bacteria, as well as towards the eukaryotic yeast Candida albicans.  

Motility, which is associated with virulence in several bacterial species, was 

repressed in a broad range of bacteria, while biofilm formation in Bacillus subtilis 

and Candida albicans was repressed in the presence of HHQ.  From their results, 

they were able to provide evidence for the structural requirements that define the 

interspecies role of these molecules.  In particular, the presence of the alkyl chain 

at C-2 proved to be fundamental.  

4.5  Cystic Fibrosis (CF) 
CF is a genetically inherited disease which affects many organs in the body, 

but in particular the lungs.125 Ireland has the highest incidence of CF in the world 

with approximately 1 in 19 people being carriers of the defective gene.126  The 

main symptom of the disease is a build-up of thick, sticky mucus due to a mutation 
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in both copies of the gene coding for CF transmembrane conductance regulator 

(CFTR) protein, which is expressed in many epithelial and blood cells.  CFTR 

functions as a chloride ion transporter across the membrane of cells that produce 

mucus, sweat, saliva, tears and digestive enzymes, controlling the movement of 

water in tissues.  A mutation in the CFTR gene disrupts the function of the chloride 

channel, preventing normal flow in and out of cells, resulting in the cells lining the 

passageways of the lungs, pancreas and other organs producing mucus that is 

abnormally think and sticky.  This is problematic in the lungs in particular as it 

leads to bacterial infection and airway obstruction (Figure 4.10).127 

 

Figure 4.10 Comparison of airway in healthy individual and individual with CF.127 

Patients with CF are particularly disposed to infection from P. aeruginosa 

(Figure 4.11) and it is responsible for high rates of morbidity and mortality 

associated with the disease.128  The chronic infection by P. aeruginosa is also 

problematic in that it has an important psychosocial impact on the quality of life 

of the sufferer as the regular doses of antibacterial chemotherapy required to 

control the infection are time-consuming to administer.129,130  Airway infections 

with P. aeruginosa in CF patients are unique in that they chronically affect a host 

who is immunocompetent in terms of cellular and humoral responses but is 
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immunocompromised by impaired airway clearance.131  Most CF patients who 

have P. aeruginosa infection become colonised during school age or early 

adolescence.  Once infection by P. aeruginosa has become established, the 

bacteria are notoriously resistant to eradication by chemotherapy.131  The 

pseudomonads chronically colonise the bronchiolar lumen and virtually never 

breach the epithelial barrier.132 

 

Figure 4.11 Comparison of (a) the radiograph of the right lung of an adolescent 
with CF who has been suffering from chronic P. aeruginosa infection for more 
than 10 years with (b) the left lung of a sex- and age-matched healthy non-CF 
control.  The light micrographs show sections from (c) the bronchus and (d) the 
alveoli of a lung explant of another CF patient at the time of transplantation and 
normal (e) bronchus and (f) alveoli.  Destructive emphysema, fibrosis (c) and 
massive immigration of neutrophils (d) are apparent in the remodelled CF tissue 
inhabited by P. aeruginosa for more than 20 years.  The plate (g) shows typical 
colonies of P. aeruginosa found in mucus isolated from the sputum of a patient 
with CF and grown in vitro for 72 h at 37 °C.80 

Genomic fingerprinting has shown that most CF patients become colonised 

with a single clone of P. aeruginosa that remains throughout their lifetime.133  

However, co-colonisation with more than one clone of P. aeruginosa occurs in 20-

30% of patients in an either permanent or temporary manner.80  
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 Biofilm growth associated with P. aeruginosa in the lungs of individuals 

with CF is particularly problematic.  Due to the nature of the biofilm, chronic 

infection with the bacteria is quickly established and the result is an increased 

tolerance to antibiotics and the bacteria are also able to resist phagocytosis.  A 

consequence of this is that a pronounced antibody response develops, leading to 

immune complex-mediated chronic inflammation, which is the major cause of 

lung tissue damage in individuals with CF.  The growth of P. aeruginosa biofilm 

in the lungs of individuals with CF is associated with an increased frequency of 

mutations, slow growth and adaption of the bacteria to the conditions in the lungs 

and to antibiotic therapy.  Low bacterial metabolic activity and increase of the 

doubling times of the bacterial cells in CF lungs are responsible for some of the 

tolerance to antibiotics.  Biofilms can be prevented by early aggressive antibiotic 

prophylaxis or therapy, and they can be treated by chronic suppressive therapy.77

 In a study by Yoon et al.134 it was found that P. aeruginosa in the lungs of 

CF patients live in anaerobic biofilms and adopt a metabolic pattern and phenotype 

that differ significantly from those grown in vitro and from those that grow in 

aerobic biofilms.  These results show not only that P. aeruginosa can grow in 

anaerobic conditions but also that this is the preferred mode of growth.135 

4.5.1  Treatment of CF-associated P. aeruginosa airway infections 
 Antimicrobial chemotherapy is the basis of all attempts to control bacterial 

infections in CF.136  If infection by P. aeruginosa is identified at an early stage 

while it is still in the initial phase of colonisation, long-term aerosol antibiotics are 

an efficient way of eradicating the infection.137  If the infection by P. aeruginosa 

is at the chronic stage, treatment with antipseudomonal antibiotics in two to four-

week courses per year is necessary129,130 along with long-term administration of 

aerosolised antibiotics.  P. aeruginosa co-exists with other species of bacteria in 

the airways of CF patients, including Staphylococcus aureus, which is treated with 

antistaphylococcal drugs and Burkholderia cepacia, the treatment of which is more 

difficult due to its intrinsic resistance to a broad range of antimicrobial agents.  

Usually treatment requires synergistic drug combinations in order to be effective.  

Other measures taken to treat chronic infection include following a high-calorie 

diet, the correction of nutritional deficits and the application of anti-inflammatory, 

mucolytic or antiobstructive drugs.  Sports and physiotherapy sessions help with 
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drainage and expectoration of the infected bronchial secretions.80  The final stage 

therapeutic option for patients with end-stage lung disease is a lung transplant, 

however chronic rejection of the donor lung is a major issue.  The average five-

year survival after double lung transplantation of individuals with CF at the 

Hannover centre was 70% in 1998.80       

 It has been shown that when CF patients are isolated upon hospitalisation, 

there is a decrease in the number of P. aeruginosa pulmonary infections.138,139  As 

it has been established that spread of both P. aeruginosa and B. cepacia has been 

demonstrated whenever adequate genotyping has been carried out,130,131,133,140 

grouping of patients according to bacteriological status has become a routine 

hygienic measure in many hospitals and CF centres.  The natural habitat for both 

species of bacteria is an aquatic one, and filter devices reduce the contamination 

of water supplies, sinks, and basins with pseudomonads in CF clinics, but thermal 

and chemical disinfection are not useful.  Care must also be taken when dealing 

with moist medical aids to ensure control of bacterial infection.  Following these 

simple, but time-consuming and potentially expensive measures significantly 

reduce the incidence and prevalence of the major CF pathogens.80  The ability of 

P. aeruginosa to rapidly develop antibiotic resistance, as well as the severe 

consequences it has on patients with CF and other diseases, has been a driving 

force in the search for novel therapeutic targets, such as the intercellular signals 

and their synthetic pathways.131,141 

4.6  Quorum-sensing inhibitors as anti-pathogenic drugs 
Treatment of a bacterial infection with traditional antibiotics has a major 

drawback – when growth of bacteria is blocked, the bacteria are under harsh 

pressure to develop resistance.  A highly attractive target for the development of 

new alternatives to traditional antibiotics is to interrupt the QS-signalling systems 

of pathogens which use this method to regulate their pathogenicity, known as the 

anti-pathogenic drug principle.142  By selectively blocking the control apparatus of 

virulence and pathogenic traits of bacteria, the infecting bacteria may fail to adapt 

to the host environment and be unable to establish an infection.143  In interrupting 

the QS-signalling system, bacterial growth and survival are unaffected, 

eliminating the immediate risk of development of resistance.  As bacterial growth 

is, therefore, normal, mutations affecting pathogenicity inhibition are not selected.  
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The bacterium does not know that it is exposed to an inhibitory agent and can 

continue to grow as normal but will not switch on the genes encoding for its 

pathogenicity.         

 There are three different targets in Gram-negative quorum sensing systems 

– the signal generator, the signal molecule itself and the signal receptor.143  Screens 

can be carried out on compound libraries to investigate if signal molecules can be 

prevented from being synthesised by the relevant protein.  If no signal molecule is 

produced then the bacteria will be unable to determine if and when a quorum has 

been achieved and QS-controlled genes will not be activated.  The signal molecule 

itself can be targeted by either metabolic, chemical or enzymatic degradation, 

again preventing accumulation of the signal molecule.  The most thoroughly 

studied target of the three is that of the signal receptor. If the signal molecule is 

prevented from binding to the receptor protein, it is stopped from being able to act 

as a transcriptional regulator. 

4.6.1 Targeting the signal generator 
 In vitro tests have been performed by Parsek et al.39 which have shown that 

analogues of SAM 187, a precursor for the AHL signals produced by P. 

aeruginosa, are potent inhibitors of the P. aeruginosa AHL synthase, RhlI.  Of the 

analogues tested, the most effective, S-adenosyl-L-homocysteine 188, was found 

to lower the activity of RhlI by 97% (Figure 4.12).  

 

Figure 4.12 Structures of S-adenosyl methionine, SAM, a precursor for the AHL 

signals produced by P. aeruginosa and the most potent analogue which proved to 

be an inhibitor of RhlI, S-adenosyl-L-homocysteine. 
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4.6.2 Targeting the signal molecule 
 Unsurprisingly, the homoserine lactone ring moiety present in AHLs 

(Figure 4.9) is unstable at pH levels above 7.  At alkaline pH, the molecule 

undergoes lactonolysis and the biological activity is lost.144  It has been shown that 

in stationary-phase cultures of Erwinia carotovora, P. aeruginosa and Yersinia 

pseudotuberculosis which are grown in unbuffered media have high pH levels and 

accordingly, only low levels of active AHL molecules are detected.  AHLs which 

were introduced to the system exogenously also rapidly lose their ability to activate 

QS systems.  It must be noted that pH dependency is not the only factor in play 

with regards to the ring opening.  Temperature and the nature of the acyl side chain 

are factors which must also be considered.  As would be expected, higher 

temperatures increase the rate of ring opening.  In general, AHLs which possess 

longer acyl side chains take longer to undergo lactonolysis than those which have 

shorter acyl side chains.  These findings indicate that in order for molecules to be 

active at physiological pH, the acyl side chain must be at least four carbons in 

length.144,145  Interestingly, host organisms appear to take advantage of this 

property when they are attacked by bacteria which produce AHL signalling 

molecules.  Byers et al. found that plants which are infected with the tissue-

macerating pathogen E. carotovora, which uses QS to control expression of 

virulence factors, increase the pH level at the site of infection.145  This alteration 

to an alkaline environment leads to inhibition of AHL dependent QS and reduced 

the extent of the degradative attack.        

 The marine alga Laminaria digitata has devised a different strategy to 

inactivate QS molecules, in this way avoiding biofouling.146  L. digitata produces 

and secretes oxidised halogen compounds including hypochlorous and 

hypobromous acids, which have been used extensively for the eradication of 

microbes in industrial settings but they are also capable of reacting with oxidised 

AHL signal molecules.  QS is known to be involved in the development of biofilms 

and their maintenance, and so secretion of compounds that destroy the AHL signal 

molecules, blocking QS, may be of benefit to the alga in its competition with 

biofouling organisms.146       

 The identification of acyl-homoserine lactonase (AHL-lactonase) from a 

Gram-positive Bacillus species 240B1 brought to the fore another method of QS 

molecule inactivation.147  This enzyme inactivates AHLs by hydrolysing the 
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lactone bond of the molecules, and lowers the amount of bio-active AHL.148,149  

Indeed, Dong et al. demonstrated that complete inactivation of 20 μM 3-oxo-C6-

HSL can be achieved within two hours by a suspension culture.148  The virulence 

of E. caratovora towards various plants and vegetables is greatly diminished when 

this enzyme is expressed from a plasmid transformed into the bacteria.  Transgenic 

tobacco plants that express AHL-lactonase are much less prone to maceration by 

E. caratovora than their wild-type counterparts, suggesting that production of 

AHL-degrading enzymes would be a protective mechanism and an advantage for 

plants.  Production of lactonases may also be a bacterial strategy in the competition 

with AHL-producing strains in their environment.  AHL-lactonases hold potential 

commercial interest, however their application is more than likely limited to 

topical use as there are significant problems associated with the delivery of 

proteinaceous agents systematically.  One must keep in mind the fact that the 

reaction is reversible, whether the lactonolysis occurs via chemical or enzymatic 

methods.  In an acidic environment, a ring opened AHL will undergo ring 

formation producing the bio-active ring compound which is then able to activate 

QS-controlled virulence genes.150      

 Variovorax paradoxus and P. aeruginosa are able to grow on AHL 

molecules by using them as a source of carbon, energy and nitrogen.  A correlation 

is observed between the length of the acyl side chain of the AHL and the molar 

growth yield, indicating that the side chain is used as a carbon source.151  The 

bacteria achieve this by producing an enzyme that cleaves the amide bond of the 

signal molecule, an aminoacyclase, which yields a fatty acid and a homoserine 

lactone.  The acid undergoes β-oxidation and it can be used as a source of both 

carbon and energy.  The nitrogen is made available for the bacteria by the action 

of enzymes which release ammonia from the homoserine lactone ring moiety.152  

P. aeruginosa produces an AHL-inactivating enzyme encoded by pvdQ.  When 

this gene is expressed in recombinant E. coli, the culture is able to rapidly 

inactivate exogenously supplied AHLs.  When the gene is expressed in P. 

aeruginosa, the culture does not accumulate AHL molecules.  When a strain is 

used which does not have the pvdQ gene present, P. aeruginosa is still able to 

utilise 3-oxo-C12-HSL as the sole source of carbon, nitrogen and energy.  This 

suggests that P. aeruginosa actually has several systems that it uses for degradation 

of AHL molecules.152 
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4.6.3 Targeting the signal receptor 
 The methodology of using small molecules to block the activation of LuxR 

homologues in order to inhibit QS is probably the most thoroughly studied of the 

three categories.  Using a molecule that can be considered analogous to the native 

AHL molecules to block the receptor site is a classical pharmacological approach 

to receptor antagonism.        

 In a study carried out by Schaefer et al.,153 analogues of 3-oxo-C6-HSL 181 
(Figure 4.13), the signalling molecule used by V. fischeri, involving substitution 

and other alterations to the acyl side chain, were identified which could displace 
3H-labelled 3-oxo-C6-HSL from LuxR.  It was found that the compounds that were 

able to bind to LuxR were able to displace the AHL and also activate the LuxR 

protein.  

 

Figure 4.13 Signalling molecule used by V. fischeri. 

 Another strategy to generate compounds to block the AHL receptor site 

has been to replace the HSL ring part of the AHL with an alternative ring structure.  

In the case of P. aeruginosa, alterations to two of the signal molecules used by the 

bacteria, 3-oxo-C12-HSL 184 and C4-HSL 183 (Figure 4.14) were made whereby 

an amino cycloalcohol or amino cycloketone containing either five or six carbon 

atoms in the ring were incorporated in place of the lactone ring (189-196).154  The 

authors of this study identified new agonists of both HSL autoinducers used by P. 

aeruginosa, allowing important information about the unique R protein-

autoinducer interaction in each cognate pair to be ascertained.  It was found that 

189 and 192 were activators of LasR, while 193 and 195 were activators of RhlR.  

Compound 190 was found to be a moderately active antagonist of 184, and 191 a 

strong antagonist, inhibiting the QS cascade, which resulted in reduced expression 

of important virulence factors and biofilm.154 
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Figure 4.14 Structures of autoinducers and analogues. 

 Inihibitors of QS have been identified by random screening of pure 

compound libraries.114  Using the QS inhibitor selector screen a number of 

compounds were identified that were able to block both LuxR- and LasR-based 

QS, with 4-nitropyridine-N-oxide 197 being the most effective inhibitor of this 

group of compounds (Figure 4.15).  It was found that 197 significantly down 

regulated 37% of the QS regulated genes in P. aeruginosa.  The genes targeted by 

197 were regulated either by RhlR alone or else in conjunction with LasR, 

indicating that RhlR is the possible target for this compound.  This screening 

system successfully identifies compounds able to interfere with LuxR-homologues 

protein but as the structure of these compounds is very different from the native 

AHLs, their mode of action is unknown.114 
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Figure 4.15 QS inhibitor 4-nitropyridine-N-oxide. 

Halogenated furanones 198-202 (Figure 4.16) produced by the Australian 

macroalga Delisea pulchra have been shown to interfere with several AHL-

regulated bacterial processes without having any effect on bacterial growth or 

general protein synthesis capability.155-158  The current hypothesis is that furanones 

act as antagonists of AHL molecules as they compete for the binding site on the 

receptor protein.  Manefield et al. reported that when halogenated furanones are 

present at concentrations similar to that produced by the alga, they are capable of 

displacing the native AHL molecules from the LuxR receptor protein.157  

 

 

 

 

 

 

 

Figure 4.16 Halogenated furanones produced by Delisea pulchra. 

With regards to P. aeruginosa, several studies that investigate both QS and 

inhibition of QS have shown that furanones can inhibit biofilm formation in in 

vitro experiments.159,160  One such synthetic furanone is characterised by lack of a 

side chain at position 3 of the furanone ring, a bromine substituent at the methylene 

group and no bromine substituents on the furanone ring itself (203, Figure 
4.17).159  This furanone displays enhanced AHL-antagonistic properties, has little 

to no effect on the growth of P. aeruginosa, and is active against the rhl QS system.  

 R1 R2 R3 R4 

198 H Br Br Br 

199 H Br H Br 

200 OAc Br H Br 

201 OH Br H I 

202 H H Br Br 
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Although early formation and attachment of the biofilm was not affected by 203, 

when wild-type biofilm was grown in its presence, the biofilm failed to mature, 

suggesting 203 may inhibit expression of the gene responsible for biofilm 

maturation.  These results posed an interesting question: Can these types of 

compounds be used to render a biofilm more susceptible to antimicrobial 

compounds?  The answer is yes, demonstrated by Hentzer et al. when they reported 

that a P. aeruginosa biofilm, when treated with 203, was easily killed by 

subsequent treatment with tobramycin, suggesting that a combination treatment of 

QS inhibitors and antibiotics may prove useful.142  It was also noted that the 

furanone-treated biofilm was also more prone to dispersal by the detergent sodium 

dodecyl sulfate (SDS).  Unfortunately, the halogenated furanones are unsuitable 

for clinical use due to their instability.143 

 

Figure 4.17 Halogenated furanone that inhibits maturation of biofilm in P. 

aeruginosa. 

Due to the coexistence of prokaryotes and eukaryotes over billions of 

years, it is unsurprising to find that at least a few eukaryotes have developed 

bacterial defence systems based on inhibitors of QS systems.  Many plants and 

vegetables, including carrots, garlic, habanero (chili) and water lily produce 

compounds that interfere with bacterial QS.114  Garlic extracts contain two 

compounds 204 and 205  (Figure 4.18) which have shown to be inhibitors of 

bacterial QS, however they exist in very low concentration and are not as potent 

as other QS inhibitors, and use in a clinical setting would therefore be limited.161 

 

Figure 4.18 QS inhibitors found in garlic extracts. 
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Since Alexander Fleming’s discovery of penicillin, several antibiotics and 

medically important compounds have been isolated from various fungi.  

Rasmussen et al.162 carried out a screen on a selection of Penicillium species and 

were able to identify several strains which produced compounds that acted as 

inhibitors of QS.  Two of these compounds were identified as patulin 206 and 

penicillic acid 207 (Figure 4.19), and were found to downregulate 45% and 60% 

of QS-regulated genes in P. aeruginosa respectively, indicating specificity for QS-

regulated gene expression.  Despite this result, 206 and 207 are known mycotoxins, 

which limits their pharmaceutical relevance.162 

 

Figure 4.19 QS inhibitors isolated from Penicillium species. 

4.6.3.1 Targeting the signal receptor in P. aeruginosa using analogues of 
PQS 
 PQS plays a particularly important role with regards to the virulence of P. 

aeruginosa.  However there has only been one comprehensive structure-activity 

relationship (SAR) investigation carried out on a diverse range of PQS analogues 

(208-223), with variations on the alkyl chain as well as the anthranilate ring 

(Figure 4.20).163          

 Structure-activity studies prior to this focussed on the activity of analogues 

with variations in the alkyl chain, in particular with the effect of these analogues 

on membrane vesicle (MV) formation which are used to transport hydrophobic 

PQS out of the bacterial cells.164  The authors found that both the hydroxyl group 

at the 3-position and the alkyl chain at the 2-position are necessary for stimulation 

of MV production.164  In another study, the dependence of alkyl chain length on 

stimulating transcription of pqsA and lecA promoters was investigated with only 

slight variations in alkyl chain length being tolerated.165 
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Figure 4.20 Structures of PQS analogues by Hodgkinson and co-workers.163 
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From the results of the comprehensive SAR study carried out by 

Hodgkinson et al., it was discovered that the length of the alkyl chain had a strong 

effect on the agonism of the compound towards PqsR.163  PQS and HHQ are 

known to activate PqsR, also known as MvfR, the multiple virulence factor 

regulator in P. aeruginosa that drives the coordinated expression of nearly 200 

genes and is necessary for full virulence.166,95  Many of these genes are related to 

virulence factors, for example phzA1-G1, which are involved in the biosynthesis 

of pyocyanin; hcnAB, responsible for the production of hydrogen cyanide; lasB, 

which encodes elastase B; rhlAB, which is involved in the synthesis of 

rhamnolipids and lecA, which codes for Lectin A.166,167  The production and 

formation of biofilm is also controlled by this system.168  This signalling system is 

also used to control MV formation.  These factors all contribute to making PqsR 

an attractive target for anti-QS molecules.  Where a methyl group was in place at 

C-2 (208), it was noted that the compound was effectively inactive towards PqsR.  

As the length of the alkyl chain increased in length (209 and 210), so too did the 

agonism of the compounds.  Interestingly, compounds which had alkyl chains of 

greater than 7 carbons (211, 212 and 213) retained substantial agonist activity, 

indicating the PQS receptor can accommodate these variants.  These results are 

consistent with those obtained in an earlier SAR study by Fletcher and co-workers, 

who noted similar alkyl chain length dependency for agonism.165  Compounds 

where phenyl groups were present at C-2 in place of the alkyl chain (214 and 215) 

were not tolerated by the binding pocket of the receptor as agonist activity was 

either dramatically reduced or eliminated.  Substituents at various positions on the 

anthranilate ring were then investigated.  An electron-withdrawing chloro 

substituent was placed at each of the four available positions on the anthranilate 

ring (216-219) however a decrease in agonist activity was observed in all cases.  

The introduction of an electronegative fluorine atom at position 5 however 

appeared to have no effect in comparison with the equivalent chloro analogue (221 

and 216 respectively).  Conversely, the introduction of electron-donating hydroxyl 

or methoxy groups at position 6 (220 and 223) or position 7 (222) led to a 

significant decrease in activity, suggesting that the electron density of the aromatic 

ring may also have an influence.163        

 In 2012, the first antagonists of PqsR which acted as QS inhibitors were 

published.169  The authors, following a ligand-based drug design approach, 
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synthesised a set of HHQ and PQS analogues, with variations made on the alkyl 

chain and substitutions made at various positions on the anthranilate ring.  As the 

protein structure for PqsR is yet to be determined and antagonists of the receptor 

have not been identified, the researchers used the natural ligands, which are 

agonists, for the design of possible antagonists (ligand-based approach) as it has 

previously been shown that structural modification of agonists can provide 

antagonists.170  Although PQS is the more potent of the two natural ligands, 

analogues were based on the less potent HHQ.95  This was chosen for a number of 

reasons.  Firstly, it has been shown that the hydroxyl group at C-3 in PQS is 

responsible for interaction with the lipid A portion of lipopolysaccharides (the lipid 

A portion serves as the liquid anchor and is commonly composed of fatty acids, 

sugars and phosphate groups).171  Synthesising analogues of HHQ, which do not 

possess this group at C-3, should therefore exhibit a lower tendency to membrane 

association.  Another reason for this preference with regards to the synthesis of 

potential antagonist analogues is the fact that HHQ does not exhibit iron-chelating 

or pro-oxidant properties, and so modifications to HHQ should avoid these 

unwanted interactions.172-174  From the analogues synthesised, those which 

possessed strong electron-withdrawing groups such as nitro, trifluoromethyl or 

nitrile (224-226, Figure 4.21), exhibited strong antagonistic properties by either 

completely or substantially inhibiting PqsR stimulation.  

 

Figure 4.21 Analogues with electron-withdrawing groups present at C-6. 

 When the position of the electron-withdrawing group was varied to other 

positions on the anthranilate ring, the analogues lost their antagonistic ability.  

These results implied that the position of the electron-withdrawing group, as well 
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as the electron-withdrawing effects, are of utmost importance in synthesising an 

antagonist.  Compound 224 was deemed capable of reducing pyocyanin 

production in P. aeruginosa PA14 (a highly virulent strain of the bacteria) 

supernatants by 74% at a concentration of 3 μM.169  An important finding was 

obtained regarding the growth kinetics of this strain in the presence of 225 and 226 

– the growth of the bacteria remained unaffected despite the presence of the 

antagonists, proving that this methodology of selectively targeting bacterial QS-

controlled virulence has no impact on bacterial viability and thus should not induce 

natural selection pressure.       

 Although 224 was highly active towards PqsR, only a moderate reduction 

in pyocyanin production was observed.  This prompted Lu et al. to further 

characterise the behaviour of the antagonist in P. aeruginosa.175  Investigations 

suggested that a biotransformation of 224 to 227 may have occurred in P. 

aeruginosa by the action of the enzyme PqsH, which hydroxylates HHQ to form 

PQS (Figure 4.22).  The study proved that this was indeed the case, and 227 

restored PqsR stimulation.  

 

Figure 4.22 Biotransformation of 224 by PqsH. 

 The authors then investigated blocking of the 3-position with an 

appropriate functional group which would prevent this biotransformation from 

occurring.175  Of the 3-substituted compounds synthesised, carboxamide 228 

proved to be a highly potent, antivirulence agent.  This is a significant finding and 

suggests these compounds could overcome the shortcomings of traditional 

antibiotics, which are quickly rendered useless due to the problem of bacterial 

resistance.169   
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Figure 4.23 Blocking the susceptible positon of 224. 
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5.1  Background to project 
The aim of this project was to synthesise a number of analogues of 

communication molecules PQS and HHQ which could potentially act as QS 

inhibitors in P. aeruginosa.  Work focused on introducing atoms at the C-3 

position of the HHQ framework as this particular position has been understudied 

in the literature,1-3 with only one recent publication beginning to probe the area.4   

In particular, atoms introduced at C-3 were chosen to have similar properties to 

those present in the quorum sensing molecules themselves (i.e. a hydroxyl group 

in PQS and a hydrogen in HHQ).  These analogues would then be sent for 

biological testing in collaboration with Prof. Fergal O’Gara in the Department of 

Microbiology in University College Cork.     

 The first objective of the project was to synthesis HHQ, which would be 

achieved via a five-step synthesis.5        

 The second objective of the project was to synthesise various C-3 

analogues of HHQ, including 3-bromo-HHQ, 3-chloro-HHQ, 3-iodo-HHQ and 3-

fluoro-HHQ via electrophilic aromatic substitution using the appropriate reagents.  

Installation of a fluorine at the 3-position was of particular interest as the product 

would be sterically similar to the native molecule, HHQ.  While previous work 

within the group has involved the synthesis of 3-bromo, 3-iodo and 3-chloro 

analogues, it was postulated that alternative methodologies of the 3-bromo and 3-

iodo analogues could provide the desired products in increased yields.  An 

analogue with a methyl group at the 3-position would also be synthesised and 

tested for biological activity as this particular compound is known to be produced 

by Burkholderia species.6  The introduction of a nitrogen atom at the 3-position, 

rather than the usual carbon, was also achieved.    

 The next objective was to add protecting groups to HHQ and some 

halogenated analogues.7-9  Two protecting groups were installed to HHQ and the3-

bromo analogue and the products were isolated as O-protected quinolones.  A 

Suzuki-Miyaura reaction was attempted on the Cbz protected 3-bromo analogue.

 It was hoped that the analogues synthesised would block the binding site 

in PqsR and thus prevent the native QS molecules from binding (Figure 5.1). 
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Figure 5.1 Simple depiction of native QS signalling molecules (blue triangles) 

blocked from the binding site in the receptor (green rectangle) as QS signalling 

analogue (orange triangle) is occupying that site. 

5.2  Synthesis of HHQ 
HHQ can be isolated as its HCl salt 233 via a four step synthesis, starting 

from commercially available 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum’s 

acid) 229.  The HCl salt 233 can then be neutralised, as required, to afford free 

HHQ 186 in excellent yield (Scheme 5.1).   
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Scheme 5.1 Synthesis of HHQ 186. 

In the first step of the synthesis, a highly acidic proton (pKa 4.97)10 α- to 

the carbonyl group in Meldrum’s acid 229 was deprotonated by pyridine and 

reacted with octanoyl chloride to form acylated Meldrum’s acid 230 in almost 

quantitative yield, with the product existing predominantly in its enol form.11 

 β-Ketoester 231 was successfully prepared in 35% yield (after purification 

by vacuum distillation) by refluxing 230 in methanol.12  It was originally thought 

that the mechanism proceeded via nucleophilic attack of one of the carbonyls of 

the acyl Meldrum’s acid 230 at elevated temperature, with subsequent 

fragmentation expelling acetone and carbon dioxide, leaving the desired β-

ketoester 231 (Scheme 5.2 (a)).11  In a more recent and detailed study by Xu et al., 

a new mechanism was proposed that does not involve direct attack of the 

nucleophile and subsequent fragmentation.13  Based on rate laws and monitoring 
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of the reaction using IR spectroscopy, the authors have shown that heat initiates 

decomposition of the acyl Meldrum’s acid 230 into an α-oxoketene species 234 

which then accepts the nucleophile (Scheme 5.2 (b)).  

 

Scheme 5.2 (a) Initial mechanism proposed and (b) currently accepted mechanism 

for the fragmentation of acyl Meldrum’s acid adduct to yield β-ketoester. 

The next step of the synthesis involves the formation of enamine 232.  This 

was accomplished by refluxing the β-ketoester 231 with aniline and a catalytic 

amount of p-toluenesulfonic acid in hexane, affording the crude enamine 232 in 

almost quantitative yield, which was carried forward to the next step without 

purification.14  The catalytic p-toluenesulfonic acid is necessary to protonate the 

ketone of β-ketoester 231 and encourage nucleophilic attack by aniline.  

Subsequent proton transfer allows for loss of water.  An acidic proton is removed 

to allow the positive charge on the nitrogen to be neutralised to give enamine 232 

(Scheme 5.3). 
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Scheme 5.3 Mechanism of formation of enamine from β-ketoester. 

The final step involves formation of HHQ 186 from enamine 232, via a 

Conrad-Limpach quinoline synthesis (Scheme 5.4).15  A series of tautomerisations 

of the enamine 232 take place, firstly from the enamine to the imine and then keto-

enol tautomerism of the carbonyl of the ester to the enol.  This is now a high energy 

imine-enol tautomer and is the ultimate substrate for the rate-determining 

cyclisation step.  A solvent with a very high boiling point must be employed for 

the cyclisation to the hemiketal as the aromaticity of the phenyl ring is being 

broken in this step.16  The typical solvent of choice is diphenyl ether and the 

reaction was carried out at 270 °C.  Once the cyclisation has occurred, aromaticity 

is restored by loss of methanol and a final deprotonation of the acidic hydrogen to 

provide quinolone product 186.  The quinolone was first isolated as its HCl salt 

233 in low yield (27%) and subsequently converted to 186 by basification.  Yields 

of the cyclisation step in high boiling point solvents are known to be low to 

moderate.17 
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Scheme 5.4 Mechanism of Conrad-Limpach cyclisation. 

5.3  Synthesis of HHQ-halo analogues 
The next step of the project involved the synthesis of analogues of PQS 

which contained small polar groups at the C-3 position.  It was hoped that they 

would act as a mimic for the hydroxyl group present at C-3 in PQS, bind to PqsR 

and hence prevent binding of the native QS signalling molecules.  It was decided 

to introduce various halogen atoms to this position in an effort to investigate the 

effect of electronegative atoms on the biological activity. 

5.3.1  Synthesis of bromo-, chloro- and iodo- analogues 
3-Bromo-2-heptylquinolin-4-one 235 was synthesised via two routes by 

reacting HHQ 186 with either N-bromosuccinimide to provide 235 in 37% yield, 

or bromine in glacial acetic acid to afford 235 in 76% yield, in a similar fashion to 

the published methodology for the halogenation of pyridones.18  3-Chloro-2-

heptylquinolin-4-one 236 was synthesised in moderate yield by reacting HHQ 186 

with sodium dichloroisocyanurate in methanol and water.19  3-Iodo-2-



Chapter 5  Results and Discussion 
 

184 
 

heptylquinolin-4-one 237 was synthesised in moderate yield by reacting HHQ 186 
with N-iodosuccinimide in glacial acetic acid, providing the product in moderate 

yield after purification by silica column chromatography (Scheme 5.5).  The yields 

in all cases were moderate, perhaps due to the presence of a sterically demanding 

alkyl chain at C-2.  

 

Scheme 5.5  (a) NBS (2.0 equiv.), MeOH, 37%; (b) Br2 (1.1 equiv.), AcOH, 76%; 
(c) sodium dichloroisocyanurate (0.55 equiv.), MeOH/H2O, 46%; (d) NIS (1.02 
equiv.), AcOH, 48%. 

 The mechanism of halogenation using the N-halosuccinimides is likely to 

progress in similar fashion (Scheme 5.6).  The available lone pair of electrons 

present on the nitrogen of the quinolone promotes attack of the double bond to the 

halogen atom on the N-halosuccinimide, with the new bond formed between the 

carbon at position 3 and the halogen atom.  Aromaticity of the compound (while 

it could be suggested that the quinolone bear some aromaticity, certainly its 

tautomer, the quinoline, is aromatic) is restored by abstraction of a proton at C-3 

and subsequent movement of electrons to neutralise the nitrogen of the quinolone.  

Succinimide is formed as a byproduct of the reaction and is removed in water 

washes upon workup. 
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Scheme 5.6 Mechanism of halogenation using N-halosuccinimides. 

 Due to the electron-rich nature of the quinolone, it is possible to brominate 

using Br2 in glacial acetic acid at C-3 without the presence of a Lewis acid catalyst.  

The mechanism is similar to that observed when using N-halosuccinimides as the 

halogen donor, however in this case HBr is the side product (Scheme 5.7).  The 

use of glacial acetic acid as solvent is due to its polar, protic nature, allowing 

stabilisation of the intermediate with the added benefit that it can be easily 

removed in the workup of the reaction. 
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Scheme 5.7 Mechanism of bromination using bromine in glacial acetic acid. 

Sodium dichloroisocyanurate (sodium 3,5-dichloro-2,4,6-trioxo-1,3,5-

triazinan-1-ide) 240 is a solid N-halo imide, usually employed as a source of active 

chlorine for water treatment and as a disinfectant.  Staskun demonstrated its use as 

a reliable reagent for the preparation of chlorinated quinolinones.19  It was found 

that on treating 2,6-dimethyl-4(1H)-quinolinone 238 with 0.55 equiv. of sodium 

dichloroisocyanurate 240, the 3-chloro derivative 241 was afforded in ca. 60% 

yield.  Similarly, when the starting material possessed a phenyl group at C-2 (239), 

the 3-chloro product 242 was obtained in 71% yield.  With these results in mind, 

it is proposed that chlorination of HHQ 186 takes place via the same pathway to 

provide 3-chloro-HHQ 236 in 46% yield (Scheme 5.8). 
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Scheme 5.8 Route for synthesis of 3-chloro-quinolinone analogues. 

 Analogues 235-237 were found to be insoluble in many common organic 

solvents.  NMR spectra of the final compounds were obtained in deuterated 

DMSO.  In all cases the absence of a singlet peak corresponding to a proton at C-

3 provided evidence that the substitution had successfully taken place.  This is 

exemplified in comparison of the 1H NMR spectra of 186 and 235 (Figure 5.2). 
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Figure 5.2 Comparison of 1H NMR spectra of HHQ 186 and 3-bromo-HHQ 235. 

5.3.2  Fluorination attempts 
 The introduction of a fluorine atom at C-3 is of particular interest.  Due to 

fluorine’s steric and polar characteristics, the introduction of even a single fluorine 

substituent can have a remarkable effect on the physical and chemical properties 

of that molecule.20  Replacement of a hydrogen or hydroxyl group in bioactive 

compounds with a fluorine atom is a common strategy in the field of medicinal 

chemistry.  This substitution introduces minimal steric alterations, and it was 

hoped that interaction of fluorinated HHQ with the receptor site would be 

successful and thereby prevent the native signal molecules from binding. 

5.3.2.1  Selectfluor® 
Fluorination of HHQ 186 to provide HHQF 244 was initially attempted via 

electrophilic fluorination with the use of commercially available reagent 

Selectfluor® (243), an extremely stable, hazard-free, virtually non-hydroscopic 

crystalline solid (Scheme 5.9).21 
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Scheme 5.9 Synthesis of 3-fluoro-HHQ using Selectfluor®. 

 The reaction was carried out using a variety of conditions and solvents 

(Table 5.1) however overall results were disappointing.  In some cases, the 

reaction conditions used were not suitable for the reagents.  When DBU was added 

to a solution of 186 and 243 in acetonitrile, the reaction turned into a viscous black 

oil (Table 5.1, entry 10).  Similarly when the reaction was attempted using DMSO 

as solvent, it was discovered that 243 is not compatible with this solvent and 

decomposed (Table 5.1, entry 11).  Many of the reactions attempted resulted in 

complex mixtures of products as determined by 1H NMR (Table 5.1, entries 2, 8, 
12 and 17), whilst in others, only starting material was obtained (Table 5.1, entries 
3, 4, 6, 7, 9, 13 and 15).  In some cases, a trace amount of 244 was detected by 

mass spectrometry, however the product was not visible by 1H NMR and 

purification of the crude reaction material was not attempted (Table 5.1, entries 1 
and 14).  When the reaction was carried out using 1.2 equiv. of 243 in a mixture 

of ethanol and acetonitrile at -10 °C for 3 days, the product was successfully 

isolated, albeit in a very low yield of 3% (Table 5.1, entry 5).  When the reaction 

was carried out using higher equiv. of 243 in ethanol and the reaction allowed to 

stir at room temperature for 1 week, 244 was successfully isolated in 8% yield 

(Table 5.1, entry 16). 
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Table 5.1 Fluorination attempts of HHQ using Selectfluor®. 

Entry Selectfluor® 
(equiv.) 

Solvent Additive 
(equiv.) 

Conditions Result  
(yield) 

1 1 EtOH – Reflux, o/n  244 
(trace) 

2 1 MeCN – Reflux, o/n CM 

3 1 MeCN, 1.1 
equiv. EtOH 

– Reflux, 2 d SM 

4 1 H2O Sodium 
tetraphenylborate 

105 °C,     
18 h 

SM 

5 1.2 MeCN, 10 
equiv. EtOH 

– -10 °C, 3 d 244 
(3%) 

6 1.2 EtOH DBU (1.2) Reflux, 5 d SM 

7 1.2 EtOH – μwave,     
120 °C, 10 

min 

SM 

8 1.2 5% H2O in 

MeOH 

– Reflux, 3 d CM 

9 1.2 MeOH H2SO4 (1) RT, o/n, 
50°C, o/n, 
65 °C, 2 d 

SM 

10 1.2  MeCN DBU (1.2) – – 

11 1.2 DMSO –          – – 

12 1.2 95:5 
MeCN:H2O 

       – RT, o/n, 
reflux, 3 d 

CM 

13 6 u 0.2 MeCN, 1 

equiv. EtOH 

– RT, 2 d SM 

14 1.3 MeCN NaBARF (0.275) RT, o/n, 
reflux, o/n 

244 
(trace) 

15 1.3 EtOH NaBARF (0.275) RT, o/n, 
reflux, o/n 

SM 

16 1.7 EtOH - RT, 1 week 17 
(8%) 

17 2.5 EtOH  Reflux, 5 d CM 

SM = Starting material; CM = Complex mixture. 

Evidence for the incorporation of fluorine was gleaned from the 1H NMR 

spectrum of 244 (Figure 5.3), due to the lack of a singlet in the alkene region.  An 

interesting point of note is that this analogue appeared to be soluble in deuterated 



Chapter 5  Results and Discussion 
 

191 
 

chloroform, in contrast to previously synthesised 3-halo analogues.  A second 

indication that the reaction had been successful is the fact that one peak was 

observed in 19F NMR spectrum at -143.3 ppm which is typical of a fluorine bonded 

to an aromatic carbon (Figure 5.4).  Splitting was also observed in the 13C NMR 

spectrum, consistent with the presence of fluorine at C-3 (Figure 5.5).  Further 

evidence for successful synthesis of 244 is obtained from the high resolution mass 

spectrum, with the mass found within 2.3 ppm of the calculated mass. 

 

Figure 5.3 1H NMR spectrum of purified 3-fluoro-HHQ. 
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Figure 5.4 19F NMR spectrum of 3-fluoro-HHQ. 
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Figure 5.5 Magnified 13C spectrum of 3-fluoro-HHQ showing doublets observed 
due to presence of fluorine at C-3. 
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5.3.2.2  Alternative electrophilic fluorinating agents 
 In an effort to synthesise 3-fluoro-HHQ 244 in better yield, it was 

necessary to investigate alternative electrophilic fluorination methods.  A range of 

N-fluoropyridinium salts were chosen for this task (Table 5.2).  N-

fluorobenzenesulfonimide 245 was the first of these reagents to be investigated.  

Both DCM and THF were used as solvents (Table 5.2, entries 1 and 2), however 

results were disappointing, with either a complex mixture being observed when 

DCM was employed as solvent, or starting material being observed when THF was 

utilised.    The use of other N-fluoropyridinium salts including 2,6-dichloro-1-

fluoropyridinium tetrafluoroborate 246 (Table 5.2, entry 3) resulted in a complex 

mixture of products.  Attempts using 1-fluoro-2,4,6-trimethylpyridinium 

tetrafluoroborate 247 (Table 5.2, entry 4) and 1-fluoropyridinium triflate 248 

(Table 5.2, entry 5) were unsuccessful and only starting material was observed by 
1H NMR spectroscopy. 
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Table 5.2 Summary of reactions using N-fluoropyridinium salts. 

 

Entry Fluorinating agent Solvent Conditions Result 
 

1 
 

 

DCM RT o/n, 
reflux o/n 

CM 

 
2 

 

THF RT 48 h, 
reflux 48 h 

SM 

 
3 

 

DCM RT,  o/n CM 

 
4 

 

DCM RT o/n, 
reflux 24 h 

SM 

 
5 

 

DCM RT o/n, 
reflux 24 h 

SM 

 

5.3.2.3  Fluorination of N-methyl HHQ 
 Considering the limited success in the fluorination of HHQ 186, it was 

thought that protecting the free –NH using a methyl group (previously prepared 

within the group) may give a better result.  It was postulated that blocking of the  

–NH with a robust group would prevent the formation of N-F compounds.  N-

methyl HHQ 249 and Selectfluor® 243 were dissolved in acetonitrile and allowed 

to stir at room temperature.  Samples were taken at regular intervals to monitor the 

progress of the reaction.  After 5 days, although a trace of product was observed 
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by mass spectrometry, only starting material was observed in the 1H NMR 

spectrum of the crude material. (Scheme 5.10). 

 

Scheme 5.10 Attempted fluorination of N-methyl HHQ. 

 Given that fluorination failed to occur with a methyl ‘protecting group’ on 

the nitrogen atom, no further easily-removable groups were tested. 

5.3.2.4  Building block strategy 
In an effort to improve the yield of the fluorinated product, our attention 

then turned to synthesis of the fluorinated analogue via a building block strategy.  

It was envisaged that HHQF 244 could be synthesised by firstly deprotonating 

ethyl 2-fluoroacetoacetate 250 using LDA and trapping the formed enolate with 

hexyliodide to yield fluorinated β-ketoester 251.22  Reaction with aniline and p-

toluenesulfonic acid in hexane to give fluorinated enamine 252 and finally a 

Conrad-Limpach cyclisation of formed enamine 252 by refluxing in diphenyl ether 

would afford 244 (Scheme 5.11).   

 

Scheme 5.11 Building block strategy for synthesis of 3-fluoro-HHQ. 
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Formation of fluorinated β-ketoester 251 was successfully achieved in 55% 

yield.  The reaction required 2.1 equiv. of LDA as there are two sites for 

deprotonation.  However, addition of hexyliodide under kinetic conditions allows 

selective addition at the least sterically hindered site.  Formation of the fluorinated 

enamine 252 proved to be problematic.  The enamine formation was attempted 

twice using the same conditions required as in the synthesis of HHQ.  However on 

both occasions, only traces of fluorinated enamine were present by 1H NMR 

(Table 5.3, entries 1 and 2).  The reaction was repeated with the addition of 3Å 

molecular sieves in case water formation was preventing the reaction from going 

to completion.  However by 1H NMR, only starting material was observed (Table 
5.3, entry 3).  There is precedence in the literature for the formation of enamines 

from β-ketoesters in solvent-free conditions using ultrasound.23  This methodology 

was attempted using fluorinated β-ketoester 251 (Table 5.3, entry 4).  The reaction 

appeared to go to around 50% completion (as deduced by 1H NMR); however on 

workup, this converted back to the fluorinated β-ketoester, suggesting the 

instability or reversibility of 252 may be why it is problematic to synthesise and 

isolate.  
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Table 5.3 Attempts at enamine formation. 

 

Entry Conditions Result 

1 Aniline, 

p-TsOH, hexane 

Trace of enamine 

2 Aniline, 

p-TsOH, hexane 

Trace of enamine 

3 Aniline, 

p-TsOH, hexane,  

3Å mol. sieves 

SM 

4 Aniline, AcOH 

Ultrasound 

Trace of enamine 

 

It was postulated that if the crude mixture from formation of fluorinated 

enamine 252 was carried through to the cyclisation step directly, the high 

temperature required may push the reaction to form the cyclised product 244.  Thus 

the reactions with traces of enamine obtained (Table 5.3, entries 1, 2 and 4) were 

added to refluxing diphenyl ether, however all reactions resulted in complex 

mixtures of products.   A one-pot synthesis of HHQF 244 was attempted to convert 

the β-ketoester 251 directly to 244 however a complex mixture of products was 

again obtained.        

 Alternative cyclisation methods were explored in an effort to achieve 244 

in good yield.  Cyclisation of enamines to quinolones using polyphosphoric acid 

has previously been reported in the literature.24  This method was attempted with 

our system and although a trace of product was identified by mass spectrometry, a 

complex mixture was revealed by 1H NMR.  Another cyclisation method that has 

been reported in the literature is that using diphenyl ether under microwave 

conditions.25  Results using this methodology were also disappointing, with a 

complex mixture of products (deduced by 1H NMR) resulting.  It has been reported 
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that the Conrad-Limpach cyclisation can be successfully carried out under solvent-

free conditions by heating the desired β-ketoester and aniline at 100 °C with a 

catalytic amount of InCl3, acting as a Lewis acid.26  This method was attempted 

using both fluorinated β-ketoester 251 and β-ketoester 231, however in both cases 

the reaction was unsuccessful and only starting material was observed. 

5.4  Synthesis of C-3 methyl analogue 
The synthesis of 3-methyl HHQ proceeds in a similar fashion to the route 

used to afford HHQ.  β-Ketoester 231 is synthesised as before, however an extra 

step is required at this point to afford methylated β-ketoester 253.27  The 

methylated enamine 254 and final methylated HHQ product 255 are synthesised 

via the same routes as per the synthesis of HHQ (Scheme 5.12). 

 

Scheme 5.12 Synthesis of 3-methyl-HHQ. 

 The desired product 255 was afforded in 10% yield after purification by 

recrystallisation from methanol, with analysis consistent with that previously 
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reported.28  However, a recent paper, published after this synthesis, affords 255 in 

47% yield and in 2 steps (Scheme 5.13).29 

 

Scheme 5.13 Alternative route to 3-methyl-HHQ. 

5.5  Synthesis of N analogue 
2-Heptylquinazolin-4(3H)-one 259 is synthesised in one step from 

anthranilamide 258 and octanal by refluxing in DMA with sodium bisulfite 

(Scheme 5.14), following the procedure published by Imai and co-workers.30  In 

this analogue, a nitrogen is incorporated at the 3-position in place of carbon.  This 

compound will show the effect a hydrogen-bonding group at the 3-position has on 

the phenotypes of P. aeruginosa and related species. 

 

Scheme 5.14 Synthesis of 2-heptylquinazolin-4(3H)-one. 

The reaction proceeds via a direct cyclodehydration-dehydrogenation of 

anthranilamide 258 with octanal in the presence of sodium bisulfite.  The presence 

of sodium bisulfite is necessary to ensure the desired product is obtained in good 

yield.  It is known that when aldehydes are reacted with diamines the major 

byproducts, and in many cases the major product, are disubstituted 

benzimidazoles, also known as aldehydines.31  It is predicted that these 

disubstituted benzimidazoles arise from the diimines formed in the initial stages 

of the reaction.  Under the reaction conditions utilised, the diimines undergo a 

rearrangement to produce the disubstituted benzimidazoles.  With this knowledge, 

it is thought that the addition of bisulfite will produce the bisulfite adduct of the 
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aldehyde.  This is presumed to be less reactive than the free aldehyde, thereby 

allowing more time for ring closure and preventing formation of the disubstituted 

benzimidazoles.        

 On comparison of the 1H NMR spectra of HHQ 186 and quinazolinone 259 
(Figure 5.6), an obvious difference is the lack of a singlet around 6.2 ppm 

(highlighted by the green box in the 1H NMR spectrum of 186) in the 1H NMR 

spectrum of 259, proving there is no alkene proton present in the molecule. 

 

Figure 5.6 Comparison of 1H NMR spectra of HHQ 186 and product 259. 

5.6  Synthesis of protected HHQ analogues 
The next stage of the project was to attempt to add protecting groups (PG) 

to HHQ and various HHQ analogues to allow further functionalisation of the 

molecule (for example Pd mediated cross-coupling).  Previous work in this area 

has shown that carbamate protection, in particular the use of a carboxybenzyl 

group (Cbz), can be achieved in good yield when starting with 4(1H)quinolone 

260, with the Cbz-product 261 formed in 77% yield (Scheme 5.15).7  The first step 

of the reaction involved deprotonation of the amine hydrogen using sodium 

hydride followed by dropwise addition of benzyl chloroformate to yield 261.   

 An additional protection was achieved by addition of benzylbromide to a 
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methanolic solution of potassium hydroxide and 4(1H)quinolone 260 resulting in 

262 in 42% yield.8      

 

Scheme 5.15 Protection of 4(1H)quinolone.  Conditions (a) 1. NaH, THF, 55 °C 

15 min; 2. Benzylchloroformate, 21 h, RT.  (b) KOH, MeOH, benzylbromide, RT. 

Benzoylation of a selection of 2-substituted, and thus sterically 

encumbered, quinolones 263 has been successful using a variety of p-substituted 

benzoyl chlorides in good to high yield.  This was achieved by deprotonation using 

trimethylamine in a mixture of anhydrous DCM and DMF and refluxing with the 

desired benzoyl chloride for 3 h providing products 264 in excellent yield (Scheme 
5.16).9    

 

Scheme 5.16 Benzoylation of a variety of 2-carboxylate quinolones. 

With these results in mind, it was postulated that protection of HHQ could 

be achieved in a similar manner.  A variety of conditions and reagents were 

employed (Table 5.4).  An interesting observation was that from spectral evidence, 

it was apparent that protection occurred at the oxygen of the quinolone in all cases, 

rather than the nitrogen, as was expected.  When deprotonation occurs at the 
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nitrogen, the resultant negative charge will be delocalised between the nitrogen 

and the oxygen due to the possible resonance forms of the compound.  The fact 

that protection was only observed at the oxygen suggests that this is the most stable 

position for bulky groups to attach.  This could be due to the presence of the 

sterically demanding alkyl chain present at C-2 which could make protection at 

the neighbouring nitrogen difficult.  Initial results were promising, with Cbz-

protected HHQ 265 synthesised in 20% yield using the conditions employed by 

Shintani and co-workers (Table 5.4, entry 1).7  It was apparent that starting 

material was still present at the end of the reaction, as deduced by 1H NMR 

spectroscopy, suggesting complete deprotonation or reaction with the acid chloride 

had not taken place.  The deprotonation conditions were altered to allow for a 

longer deprotonation time (Table 5.4, entry 2), and indeed an increase to 52% 

yield of 265 was observed.  In an effort to increase the scope of protecting groups 

being used, 2-methoxyethoxymethyl chloride (MEM-Cl) was then used in place 

of benzylchloroformate under the same deprotonation conditions (Table 5.4, 
entry 3).  However results were disappointing and only starting material was 

observed by 1H NMR spectroscopy.  The next step in the investigation was to 

attempt to protect the halo-HHQ analogues using similar conditions.  Gratifyingly, 

3-bromo-HHQ 235 could be protected to give Cbz-protected analogue 265 in good 

yield using the shorter deprotonation time of 15 min (Table 5.4, entry 4).  3-

Bromo-HHQ 235 can also be successfully benzylated using the conditions outlined 

by Li et al.8 to provide 267, albeit in a low yield (Table 5.4, entry 5).  Protection 

of 3-iodo-HHQ 237 proved problematic, most probably due to the low solubility 

of the compound (Table 5.4, entry 6). 
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Table 5.4 Summary of protecting group strategies. 

 

Entry X Deprotonation 
Conditions 

Solvent PG 
reagent 

Result 
(yield) 

1 H NaH (4.7 equiv.), 
55 °C,15 min 

THF Benzylchloroformate 
(1.5 equiv.) 

RT, 21 h 

265 
(20%) 

2 H NaH (4.7 equiv.), 
55 °C, 5 h 

THF Benzylchloroformate 
(1.5 equiv.) 

RT, 21 h 

265 
(52%) 

3 H NaH (4.7 equiv.), 
55 °C, 5 h 

THF MEM-Cl  
(1.5 equiv.) 

RT, 21 h 

SM 

4 Br NaH (4.7 equiv.), 
55 °C, 15 min 

THF Benzylchloroformate 
(1.5 equiv.) 

RT, 21 h 

266 
(61%) 

5 Br KOH (1.5 equiv.) MeOH Benzylbromide  
(10.0 equiv.) 
RT, overnight 

267 
(28%) 

6 I NaH (4.7 equiv.), 
55 °C, 15 min 

THF Benzylchloroformate 
(1.5 equiv.) 

RT, 21 h 

No 
reaction 

7 I KOH (1.5 equiv.) MeOH Benzylbromide  
(10.0 equiv.) 

RT, 21 h 

(<10%)a 

a Product could not be isolated without impurities.  

 When 1H NMR spectra of HHQ 186 and Cbz-protected HHQ 265 are 

compared (Figure 5.7), noticeable shifts are observed for both the proton at C-3 

(highlighted in green) and the CH2 group of the alkyl chain bonded to C-2 

(highlighted in purple).  Further investigation using 2D-NMR methods provided 

more evidence that protection occurred at the oxygen of 186.  Using HMBC 

analysis, it was determined that the protons of the OCH2 group were coupling to 

the quaternary carbon at 151.5 ppm, which was assigned as the carbon in position 
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4 of the ring attached to the oxygen.  If protection had occurred at the nitrogen 

rather than the oxygen, this coupling would not have been observed.  The IR 

spectrum of 265 showed only one carbonyl peak at 1#769 cm-1, corresponding to 

the carbonyl group present in the Cbz moiety.  In the IR spectrum of 186, a 

carbonyl peak is present at 1640 cm-1, which is absent in that of 265, again 

providing proof that protection has occurred on the oxygen rather than the 

nitrogen.    

 

Figure 5.7 Comparison of 1H NMR spectra of HHQ 186 and Cbz-protected HHQ 

265. 

Similar conclusions can be drawn when the spectra of 266 and 267 are 

examined.  In these cases, a direct comparison of 1H NMR of products with 3-

bromo-HHQ 235 cannot be made due to the difference in NMR solvents used.  

However a comparison can be made between 1H NMR spectra of Cbz-protected 

HHQ 265 and 3-bromo Cbz-protected HHQ 266 (Figure 5.8).  The spectra are 

similar, however for 266 a downfield shift is observed for the CH2 of the alkyl 

chain bonded to C-2, most probably due to the influence of the bromine at C-3.  

There is a notable absence of a singlet alkene peak, as expected.  Further evidence 

for protection occurring at the oxygen rather than the nitrogen is found when the 

IR spectrum of 266 is taken into account.  Similar to 265, there is only one carbonyl 
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peak present at 1772 cm-1, corresponding to the carbonyl group in the Cbz 

protecting group. 

 

Figure 5.8 Comparison of 1H NMR of 265 and 266. 

On changing the protecting group to a benzyl, there is little difference in 

the 1H NMR spectra of 266 and 267 apart from in the aromatic region, which is as 

expected (Figure 5.9).  2D-NMR experiments again proved that benzylation 

occurs on the oxygen to provide 267, with HMBC analysis showing coupling 

between the protons of the OCH2 group and the quaternary carbon at 159.5 ppm, 

which was assigned as the carbon in position 4 of the ring attached to the oxygen.  

If protection had occurred at the nitrogen rather than the oxygen, this coupling 

would not have been observed.  Confirmation of protection at the oxygen was 

obtained from the IR spectrum, where no carbonyl peaks are observed. 

 Overall, the addition of the benzoyl and benzyl groups at the oxygen was 

not deemed a problem.  Subsequent to a cross-coupling, for example, reaction 

deprotection could be carried out and the quinolone structure would return via 

isomerisation. 
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Figure 5.9 Comparison of 1H NMR of 266 and 267. 

A point of note is that when bromination of protected HHQ using bromine 

in acetic acid was carried out after the protection step, it was found that the HBr 

produced in the reaction causes removal of the Cbz group, necessitating that the 

halogen group be in place prior to protection. 

5.7  Suzuki reactions 
In a recent paper by Cross and Manetsch,32 palladium cross-coupling 

reactions were successfully carried out on 2-methyl-3-halo-quinolones 268 using 

a Pd/SPHOS catalyst/ligand system, with good to excellent yields of coupled 

product 269 being achieved (Scheme 5.17).  

 

Scheme 5.17 Palladium cross-coupling reaction of 2-methyl-3-halo quinolones. 

Compared to the use of the standard Pd(PPh3)4 catalyst, the reactions were 

complete in a shorter period of time and gave higher yields.  Where N-methylated 
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quinolones were employed, toluene was found to be the solvent of choice.  In the 

case where both R and R1 corresponded to H, the reaction was found to give a 

significantly higher yield of the product when carried out in DMF compared to 

when the reaction was carried out in toluene.  With these results in mind, it was 

decided to test these reaction conditions with 3-iodo-HHQ 237 and 3-bromo-HHQ 

235 (Scheme 5.18).   The reactions were carried out as per the literature 

procedure,32 however the resultant crude product in both cases was a complex 

mixture of products as determined by 1H NMR spectroscopy.   

Scheme 5.18 Attempt at palladium cross-coupling reaction on HHQ using 

SPHOS. 

Previous work within the group has shown that iodinated HHQ 237 can be 

easily methylated under standard conditions to provide 270, which can then 

successfully undergo palladium catalysed cross-coupling reactions to afford 271 

and 272 (Scheme 5.19).5 
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Scheme 5.19 Palladium cross-coupling reactions of N-methylated HHQ. 

Although results for palladium cross-coupling with N-methylated 3-iodo-

HHQ 270 were promising, there was scope for investigation into the reaction as it 

was envisaged that a better protecting group (which would be easier to remove 

after the coupling) could be utilised as well as using the conditions employed by 

Cross and Manetsch which gave high yields.32  Cbz-protected 3-bromo HHQ 266 

was subjected to these conditions (Scheme 5.20) however the reaction resulted in 

complex mixture of products as deduced by 1H NMR spectroscopy.  It could be 

that the steric size of the Cbz protecting group blocks the C-3 position and prevents 

the reaction from taking place. 

Scheme 5.20 Attempted cross-coupling reaction of Cbz-protected 3-bromo-HHQ. 
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5.8  Biological testing of analogues 
In order to assess the importance of the C-3 position to the biological 

activity of HHQ and PQS, the capacity for analogues functionalised at this position 

(with the exception of 3-fluoro-HHQ 244) to replace the native compounds in P. 

aeruginosa was investigated in collaboration with Professor Fergal O’Gara, 

Department of Microbiology, University College Cork.28     

 The PQS signalling system is known to control production of a range of 

virulence factors in P. aeruginosa including elastase, rhamnolipid and the 

phenazine redox compound pyocyanin.33,34  It has been reported that phenazines, 

in μM concentrations, can support anaerobic survival of P. aeruginosa, typical of 

the conditions found in the lungs of CF patients, assisting in the formation of 

biofilms.35  The first investigation on the synthesised analogues was using a pqsA 

mutant, which is a strain in which the biosynthetic steps for 2-alkyl-4-quinolones 

have been disrupted and these compounds are not produced.  The analogues were 

assessed for restoration of phenazine production using this mutant.  Whilst HHQ 

and PQS both restored phenazine production in the pqsA mutant, the analogues 

synthesised were much less effective in triggering production of the pigment, with 

259 being the least effective (Figure 5.10 (A)).  These results suggest that the C-

3 position is crucial for control of phenazine production in P. aeruginosa.  When 

the analogues were introduced in equimolar concentration to two wild-type strains 

which produce both HHQ and PQS (PAO1 and PA14) phenazine production was 

not interrupted (Figure 5.10 (B)). 

 

 

Figure 5.10 Influence of 3-substituted derivatives on PQS-dependent phenotypes 

in P. aeruginosa.  (A) The ability of HHQ and PQS (10 μM) to restore phenazine 
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production in a pqsA mutant was lost to derivative compounds, indicating that the 

C-3 position is crucial in this regard.  (B) Addition of 10 μM concentrations of 

derivative compounds did not interfere with phenazine production in the wild-type 

PAO1 strain.  Data presented is representative of three independent experiments 

(Student’s t-test, **p-value ≤ 0.005). 

In P. aeruginosa, PQS plays a fundamental role in the formation of 

biofilms.  Mutant strains which are deficient in PQS have been shown to produce 

thin, flat biofilms, which are markedly different to the mushroom shaped structures 

produced by the wild-type strain.36  The addition of the analogues did not have an 

influence on biofilm formation in P. aeruginosa as seen in crystal violet multi-well 

assays (Figure 5.11).  

 

Figure 5.11 Crystal violet staining of 18 h cultures grown static in multi-well 

plates revealed HHQ interferes with B. subtilis biofilm formation irrespective of 

its tautomeric form.  This anti-biofilm activity was abolished with C-3 substituted 

derivatives.  All compounds were added at a final concentration of 10 μM and 

statistical significance was provided by paired Student’s t-test (***, p-value ≤ 

0.001).          

 Apart from their key role as signalling molecules in P. aeruginosa, both 

HHQ and PQS exert distinct influences on the behaviour of a range of microbial 
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pathogens, modulating interspecies and interkingdom behaviour.37  The fact that 

these two molecules differ only at the C-3 position yet display diverse biological 

functionalities suggests the C-3 position plays a key role in modulating 

interspecies microbial behaviour.  Microbial swarming motility and biofilm 

formation require cooperative multicellular behaviour and provide a mechanism 

for bacterial cells to establish and persist during infection.  In S. aureus, motility 

was shown to be altered in the presence of HHQ and PQS and in C. albicans, the 

formation of biofilm was found to be repressed in the presence of HHQ.  Both 

phenotypes have been affected in B. subtilis (a bacterial species also found in soil) 

in the presence of HHQ, and so this organism was chosen as a model organism 

upon which to test the interspecies influence of the alkylquinolone analogues.  

Unlike HHQ and HHQ.HCl, analogues 235-237 and 259 did not exhibit anti-

biofilm activity towards B. subtilis, thus highlighting the importance of the C-3 

position in underpinning the biological role of these compounds.  The influence of 

analogues 235-237, 255 and 259 on microbial swarming motility was negligible 

in comparison to HHQ and PQS (Figure 5.12). 

 

Figure 5.12 B. Subtilis swarming motility was assessed after 16 h on 0.3% (w/v) 

Trypticase Soy Agar (TSA) plates.  C-3 substituted analogues (235, 236, 255 and 

259) abolished the anti-swarming activity, highlighting the structural specificity 

underpinning the biological activity of these compounds.  

        Control                          186 HHQ                      233 HHQ·HCl                     185 PQS 

       255 3-Me                           235 3-Br                      236 3-Cl                           259 NH 
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  The methyl and halogen substituted analogues 235-237 and 255 retained 

antimicrobial activity towards an Algoriphagus marine isolate, which had 

previously been shown to be susceptible towards HHQ, while PQS and 

quinazolinone 259 did not suppress growth of this species (Figure 5.13). 

 

Figure 5.13 The ability of HHQ and C-3 substituted analogues to repress the 

growth of a marine isolate on Starch Yeast Peptone (SYP) marine agar. 

 Both HHQ and PQS have previously been shown to influence transcription 

in a mouse monocyte/macrophage cell line.38  However, although PQS has been 

found in the sputum of CF patients,39 the impact of potential cytotoxic effects of 

these compounds on airway epithelial cells has not been investigated.  HHQ, PQS 

and analogues 235-237, 255 and 259 were tested for cytotoxicity towards a human 

airway epithelial cell line (IB3-1 cells) for 16 h at concentrations ranging from 10 

to 100 μM by quantification of the lactate dehydrogenase (LDH) release, in 

comparison with treatment by 0.1% Triton X-100, used as a positive control for 

cytotoxicity (Figure 5.14).  HHQ was found to be cytotoxic towards IB3-1 cells 

however PQS did not exhibit any toxicity.  Decreasing cytotoxicity of HHQ was 

observed with decreasing concentrations and was less than 10% at 10 μM.  With 

the exception of quinazolinone 259 which exhibited a significant level of 

cytotoxicity, the C-3 substituted analogues 235-237 and 235 did not exhibit 

cytotoxicity towards IB3-1 cells, reinforcing the importance of the C-3 position in 

the functionality of the native signal molecules.  When the concentration of HHQ 

        Control                          185 PQS                        186 HHQ                     233 HHQ·HCl                      

       255 3-Me                           236 3-Cl                        237 3-I                           259 NH 
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was 100 μM, significant cellular damage of IB3-1 cells was observed by cellular 

morphological analysis.  When analogue 259 was used, significant cellular change 

was noted by the same method.  PQS and analogues 235-237 and 255 caused only 

moderate changes to cellular morphology and the plasma membrane remained 

intact, consistent with the lack of LDH release, in comparison with 0.1% Triton 

X-100. 

 

Figure 5.14 Substitution at C-3 abolishes cytotoxic activity of HHQ.  Cytotoxicity 

is expressed as a percentage of the total amount of LDH released from cells treated 

with 0.1% Triton X-100.  The release of LDH was measured in cell culture medium 

of IB3-1 cells treated with methanol or ethanol, or with 100 μM of HHQ, PQS or 

C-3 substituted analogues.  Data (means ± SD) are representative of 3 independent 

biological experiments.  Two-tailed unpaired student’s t-test was performed by 

comparison of IB3-1 cells treated with HHQ analogue molecules with IB3-1 cells 

treated with methanol or ethanol (**, p-value ≤ 0.01; ***, p-value ≤ 0.001).  Phase-

contrast microscopy of IB3-1 cells untreated (CONT) or treated with HHQ, PQS 
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or 259 at a concentration of 100μM for 16 h.  Triton X-100 (0.1%) was used as a 

control in these studies.  Original magnification 40u. 

Methylation at the C-3 position provided analogue 255 which is a known 

signal molecule produced by several Burkholderia species, which do not have the 

capacity to produce PQS.  Interestingly, 255 appeared to have lost its ability to 

restore phenazine production or influence interspecies multicellular behaviour, 

although it did retain antibacterial activity against Algoriphagus species.  Although 

255 and PQS are structurally similar, and produced by important pathogens of the 

CF-lung, their interspecies profiles are distinct. 

5.9  Conclusions and future work 
 Various C-3 analogues of HHQ have been successfully synthesised, 

including bromo 235, chloro 236, iodo 237, fluoro 244, methyl 255 and 

quinazolinone 259.        

 The results from the biological testing of analogues 235-237, 255 and 259 

highlight, for the first time, the strict structural requirements at the C-3 position 

which underpin the biological activity of HHQ and PQS.  The inability of any of 

the analogues to restore phenazine production in P. aeruginosa pqsA mutant 

suggests the C-3 position is crucial for control of phenazine production in this 

pathogen.  When analogues were added to wild-type PAO1 and PA14 strains 

which produced both HHQ and PQS, there was no effect on phenazine production, 

suggesting they may not be effective inhibitors in P. aeruginosa.  The analogues 

were also found not to interfere with the initial stages of biofilm formation in P. 

aeruginosa.  The correlation between loss of function both within P. aeruginosa 

and towards other microbial species upon alteration of the C-3 position is 

remarkable.         

 If it was the case that a simple electron withdrawing group was required at 

the C-3 position, then halogenation at this point (analogues 235-237) would be 

expected to produce molecules with similar biological activity.  Alternatively, 

introduction of an NH group as in analogue 259 provides a molecule with 

hydrogen bonding properties at this position, potentially mimicking the hydrogen 

atom at this position in HHQ.  However in both cases the capacity to modulate 

either P. aeruginosa or interkingdom behaviour was lost with these compounds.  

It is therefore clear that the hydrogen and hydroxyl groups present at C-3 in HHQ 
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and PQS respectively, play a more complex role in these biological systems. 

 When a nitrogen was introduced in place of carbon at C-3 (259), a complete 

loss of biological activity in relation to HHQ was observed.  Previous work within 

the research group has shown that when an aldehyde group was present at C-3, 

intermediate activity in relation to both compounds was observed.37  From a 

chemical perspective, the bacterial biosynthesis of PQS via HHQ and the aldehyde 

analogue, would go some way to explaining this observation, however the 

evolutionary rationale supporting this has yet to be established. 

 Further investigation into manipulation of the C-3 position will be carried 

out, with a view towards attaining a deeper understanding of the complex roles of 

these molecules in bacterial and fungal species.  Alternative methodologies for 

synthesis of 3-fluoro-HHQ will also be investigated in order to attempt to increase 

the yield of the reaction and allow subsequent biological testing of the molecule.
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6.1  General experimental 
Solvents and reagents were used as obtained from commercial sources and 

without purification with the following exceptions: THF was freshly distilled 

from sodium/benzophenone under nitrogen.  DCM, hexane, acetone and 

diisopropylamine were distilled from CaH2 under nitrogen.   

Wet flash column chromatography was carried out using Kieselgel silica gel 60, 

0.040–0.063 mm (Merck).  TLC was carried out on pre-coated silica gel plates 

(Merck 60 PF254).  Visualisation was achieved by UV light and potassium 

permanganate staining. 

Melting points were carried out on a uni-melt Thomas Hoover Capillary melting 

point apparatus.   

IR spectra were recorded on Perkin-Elmer FT-IR Paragon 1000 

spectrophotometer.  Liquid samples were examined as thin films interspersed on 

NaCl plates.  Solid samples were dispersed in KBr and recorded as pressed discs.  

The intensity of peaks were expressed as strong (s), medium (m) and weak (w) 

and broad (b). 

NMR spectra were run in CDCl3 using TMS as the internal standard at 20 qC 

unless otherwise specified.  1H NMR (600 MHz) spectra, 1H NMR (400 MHz) 

spectra and 1H NMR (300 MHz) spectra were recorded on Bruker Avance 600, 

Bruker Avance 400 and Bruker Avance 300 NMR spectrometers respectively in 

proton coupled mode. 19F NMR (470 MHz) spectra and 19F NMR (282 MHz) 

were recorded on Bruker Avance 600 NMR and Bruker Avance 300 NMR 

spectrometers respectively in proton decoupled mode. 13C NMR (150 MHz) 

spectra and 13C NMR (75 MHz) spectra were recorded on Bruker Avance 600 

and Bruker Avance 300 NMR spectrometers respectively in proton decoupled 

mode.  All spectra were recorded at University College Cork.  Chemical shifts GH 

and GC are expressed as parts per million (ppm), positive shift being downfield 

from TMS; coupling constants (J) are expressed in hertz (Hz).  Splitting patterns 

in 1H NMR spectra are designated as s (singlet), bs (broad singlet), d (doublet), 

dd (doublet of doublets), dt (doublet of triplets), t (triplet), q (quartet) and m 

(multiplet).  For 13C NMR spectra, the number of attached protons for each 
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signal was determined using the DEPT pulse sequence run in the DEPT-90 and 

DEPT-135 modes.  COSY, HSQC and HMBC experiments were routinely 

performed to aid the NMR assignment of novel chemical structures. 

LRMS were recorded on a Waters Quattro Micro triple quadrupole instrument in 

ESI mode using 50% acetonitrile-water containing 0.1% formic acid as eluent; 

samples were made up in acetonitrile or methanol. HRMS were recorded on a 

Waters LCT Premier Tof LC-MS instrument in ESI mode using 50% 

acetonitrile-water containing 0.1% formic acid as eluent; samples were made up 

in acetonitrile or methanol.    

The Microanalysis Laboratory, National University of Ireland, Cork, performed 

elemental analysis using a Perkin-Elmer 240 and Exeter Analytical CE440 

elemental analysers.  

6.1.1  Analysis of known and novel compounds 
1H NMR spectra, 13C NMR spectra, LRMS and melting point (if solid) analyses 

were recorded for all previously prepared compounds.  For novel compounds, in 

addition to the previously mentioned analysis, 19F NMR (where applicable), IR, 

HRMS and elemental analysis (if possible) were also obtained.  
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6.2  Synthesis of HHQ  
5-(1-Hydroxyoctylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione, 230 

To a stirred solution of 2,2-dimethyl-1,3-dioxane-4,6-dione 229 

(Meldrum’s Acid) (40.32 g, 0.28 mol) in distilled DCM (350 

mL) at 0 °C under a N2 atmosphere was added pyridine (45.3 

mL, 0.56 mol), followed by the dropwise addition of octanoyl 

chloride (54.6 mL, 0.32 mol) over 5 min.  The resulting orange 

liquid was allowed stir at 0 °C for 1 h, then room-temperature 

for 1 h. The mixture was washed with 5% aq. HCl (3 u 110 mL) and water (110 

mL). The organic layer was dried over anhydrous MgSO4, filtered, and 

concentrated in vacuo to yield acyl Meldrum’s acid 230 as a brown oil (75.16 g, 

99%), which was used in the next step without further purification.             

Spectral characteristics were consistent with previously reported data.1  
1H NMR (300 MHz, CDCl3, only signals of the predominant enol tautomer are 

given): δ 0.88 (3H, t, J = 6.7 Hz, CH3CH2), 1.29–1.44 (8H, m, 4 u CH2) 1.62–

1.76 (2H, m, CH2CH2COH), 1.73 (6H, s, 2 u CCH3), 3.07 (2H, t, J = 7.6 Hz, 

CH2COH), 15.30 (1H, bs, OH) ppm; 13C NMR (75 MHz, CDCl3, only signals of 

the predominant enol tautomer are given): δ 14.1 (CH3), 22.6, 26.1 (2 u CH2), 

26.8 (2 u CCH3), 28.9, 29.3, 31.6, 35.8 (4 u CH2), 91.2 (CCOO), 104.8 

(C(CH3)2), 160.2, 170.6 (2 u COO), 198.3 (COH) ppm; MS (ESI) m/z: 269 [(M - 

H)-, 100%]. 

Methyl 3-oxodecanoate, 231 

A stirred solution of acyl Meldrum’s acid 230 
(75.02 g, 0.28 mol) in methanol (350 mL) was 

heated at reflux for 3 h. The reaction mixture was allowed to cool to room-

temperature and solvent removed in vacuo to yield an orange oil which was 

purified by fractional distillation to afford β-keto ester 231 as a colourless oil 

(45.02 g, 80%).                             

Spectral characteristics were consistent with previously reported data.1 
1H NMR (400 MHz, CDCl3, only the signals of the predominant keto tautomer 

are given): G 0.86 (3H, t, J = 6.9 Hz, CH3CH2), 1.22–1.27 (8H, m, 4 u CH2), 

1.53–1.59 (2H, m, CH2CH2CO), 2.50 (2H, t, J = 7.3 Hz, CH2CH2CO), 3.42 (2H, 
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s, COCH2CO), 3.71 (3H, s, OCH3) ppm; 13C NMR (75 MHz, CDCl3, only the 

signals of the predominant keto tautomer are given): G 14.0 (CH3), 22.5, 23.4, 

28.9, 29.0, 31.6, 43.0 (6 u CH2), 49.0 (COCH2CO), 52.2 (OCH3), 167.7 (C=O 

ester), 202.8 (C=O ketone) ppm; HRMS (ESI) m/z calcd for C11H21O3 [(M + 

H)+]: 201.1491, found 201.1482. 

Methyl 3-(phenylamino)dec-2-enoate, 232    

To a stirred solution of methyl-3-oxodecanoate 

231 (44.97 g, 0.22 mol) in dry hexane (270 mL) 

was added aniline (21.9 mL, 0.24 mol) and p-

toluene sulfonic acid (0.837 g, 4.4 mmol) and reaction vessel was fitted with 

Dean-Stark apparatus.  The resulting reaction mixture was allowed to stir at 

reflux under a N2 atmosphere for 16 h.  The reaction mixture was allowed to cool 

and the solvent removed in vacuo to yield 232 as an orange oil (60.24 g, 99%) 

which was used in the next step without purification.                                              

IR (NaCl) Qmax: 2928, 2857 (alkyl C-H stretch, s), 1736 (C=O stretch), 1623 

(alkene C=C stretch, s), 1500, 1448 (aromatic C=C stretch, s), 1263 (C-N stretch, 

s), 1169 (ester C-O stretch, s) cm�1; 1H NMR (400 MHz, CDCl3): G 0.84 (3H, t, J 

= 7.0 Hz, CH3CH2), 1.14–1.32 (8H, m, 4 u CH2), 1.37–1.45 (2H, m, CH2CH2C), 

2.26–2.30 (2H, m, CH2C), 3.68 (3H, s, OCH3), 4.73 (1H, s, CH), 7.09 (2H, d, J 

= 7.4 Hz, 2 u CH arom.), 7.15–7.19 (1H, m, CH arom.), 7.26–7.35 (2H, m, 2 u 

CH arom.), 10.28 (1H, bs, NH) ppm; 13C NMR (75 MHz, CDCl3): G 14.0 (CH3), 

22.6, 27.7, 28.7, 28.8, 29.4, 31.6 (6 u CH2), 50.7 (OCH3), 84.5 (CHCOOCH3), 

125.1, 125.6, 129.1 (5 u CH arom.), 139.2 (CHCHCNH) 163.8 (CHCNH), 171.8 

(C=O) ppm; HRMS (ESI) m/z calcd for C17H26NO2 [(M + H)+]: 276.1964, found 

276.1964. 

2-Heptyl-4-hydroxyquinolin-1-ium chloride, 233   

To a refluxing solution of diphenyl ether (45 mL, 

0.264 mol) was added enamine 232 (61.02 g, 0.22 

mol) dropwise over 90 min, ensuring vigorous 

reflux was maintained.  On completion of 

addition, the reaction mixture was allowed to reflux for 1 h.  The reaction 
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mixture was cooled to room temperature and the formed methanol removed in 

vacuo.  To the isolated residue was added diethyl ether (120 mL) and 2M aq. 

HCl (120 mL) and the reaction mixture was allowed to stand at room 

temperature for 18 h, then the refrigerator for 2 h.  The resulting precipitate was 

filtered and washed with diethyl ether to afford the crude product as a yellow 

solid which was purified by recrystallisation from ethyl acetate to yield product 

233 as a cream solid (16.57 g, 27%).            

m.p. 110–113 °C.  IR (KBr) Qmax: 2930, 2738 (alkyl C-H stretch, s), 1639 (C=O 

stretch, s), 1594 (aromatic C=C stretch, s), 1488 (alkyl C-H bend, m) cm�1; 1H 

NMR (400 MHz, CDCl3): G 0.77 (3H, t, J = 6.6 Hz, CH3), 1.14–1.38 (8H, m, 4 u 

CH2), 1.82–1.87 (2H, m, CH2CH2C), 3.17 (2H, t, J = 7.6 Hz, CH2C), 7.61 (1H, t, 

J = 7.7 Hz, CH arom.), 7.64 (1H, s, CH), 7.83 (1H, t, J = 7.5 Hz, CH arom.), 

8.31 (1H, d, J = 8.3 Hz, CH arom.), 8.52 (1H, d, J = 8.4 Hz, CH arom.) ppm; 13C 

NMR (75 MHz, CDCl3): G 14.0 (CH3), 22.5, 28.9, 29.3, 29.8, 31.6, 34.3 (6 u 

CH2), 105.5 (CH), 119.6 (CHCC=O), 119.9, 123.7, 127.2, 133.9 (4 u CH arom.), 

139.7 (CHCNH), 161.0 (CH2CNH), 169.7 (C=O) ppm; HRMS (ESI) m/z calcd 

for C16H22NO [(M + H)+]: 244.1701, found 244.1696 (HHQ); Anal. calcd for 

C16H22ClNO: C, 68.68; H, 7.93; N, 5.01%. Found: C, 68.99; H, 7.91; N, 5.02%. 

2-Heptylquinolin-4(1H)-one (HHQ), 186 

To a stirred solution of HHQ·HCl 233 (8.01 g, 

28.6 mmol) in CHCl3 (70 mL) was added 2M aq. 

NaOH to pH neutral.  The layers were separated 

and the aqueous layer extracted with CHCl3 (3 u 

40 mL).  Organic layers were combined, dried over MgSO4 and concentrated in 

vacuo to yield 186 as an off-white solid (6.56 g, 94%).                       

Spectral characteristics were consistent with previously reported data.2           

m.p. 143–146 °C [lit.3 146–147 °C].  IR (KBr) Qmax: 2923, 2850 (alkyl C-H 

stretch, s), 1640 (C=O stretch, s), 1594 (aromatic C=C stretch, s), 1473 (alkyl C-

H bend, m) cm�1; 1H NMR (400 MHz, CDCl3): G 0.81 (3H, t, J = 6.9 Hz, CH3), 

1.14–1.30 (8H, m, 4 u CH2), 1.68–1.75 (2H, m, CH2CH2C), 2.69 (2H, t, J = 7.7 

Hz, CH2C), 6.24 (1H, s, CH), 7.30–7.34 (1H, m, CH arom.), 7.56–7.60 (1H, m, 

CH arom.), 7.75 (1H, d, J = 8.3 Hz, CH arom.), 8.36 (1H, dd, J = 1.3, 8.2 Hz, 



Chapter 6  Experimental 

225 
 

CH arom.), 11.97 (1H, bs, NH) ppm; 13C NMR (75 MHz, CDCl3): G 14.0 (CH3), 

22.6, 29.0, 29.1, 29.2, 31.7, 34.4 (6 u CH2), 108.2 (CH), 118.5, 123.6 (2 u CH 

arom.), 125.0 (CHCC=O), 125.3, 131.8 (2 u CH arom.), 140.6 (CHCNH), 155.1 

(NHCCH2), 178.9 (C=O) ppm; HRMS (ESI) m/z calcd for C16H22NO [(M + H)+]: 

244.1701, found 244.1707; Anal. calcd for C16H21NO: C, 78.97; H, 8.70; N, 

5.76%. Found: C, 79.19; H, 8.81; N, 5.83%. 

6.3  Synthesis of 3-methyl analogue 
Methyl 2-methyl-3-oxodecanoate, 253 

To a round bottomed flask containing dry 

potassium carbonate (2.46 g, 17.8 mmol) was 

added a solution of β-ketoester 231 (2.74 g, 13.7 

mmol) in dry acetone (35 mL) under a N2 atmosphere.  The resulting mixture 

was allowed to stir for 20 min before the addition of methyliodide (1.02 mL, 16.4 

mmol).  The reaction mixture was allowed to stir at reflux for 6 h.  The mixture 

was removed from the heat, allowed to cool and the solvent removed in vacuo to 

yield crude product which was purified by silica column chromatography eluting 

with 98:2 hexane:ethyl acetate to yield 253 as a pale yellow oil (1.17 g, 40%).   

IR (NaCl) Qmax: 2930, 2857 (alkyl C-H stretch, s), 1749 (ketone C=O stretch, s), 

1717 (ester C=O stretch, s), 1204 (ester C-O stretch, m) cm�1; 1H NMR (300 

MHz, CDCl3): G 0.86 (3H, t, J = 6.7 Hz, CH3CH2), 1.22–1.28 (8H, m, 4 u CH2), 

1.32 (3H, d, J = 7.2 Hz, CH3CH), 1.54–1.59 (2H, m, CH2CH2CO), 2.45–2.61 

(2H, m, CH2CO), 3.51 (1H, q, J = 7.1 Hz, CH3CH), 3.71 (3H, s, OCH3) ppm; 
13C NMR (75 MHz, CDCl3): G 12.8 (CH3CH), 14.0 (CH3), 22.6, 23.5, 28.98, 

29.00, 31.6, 41.4 (6 u CH2), 52.3 (COCHCO), 52.7 (OCH3), 171.1 (C=O ester), 

205.9 (C=O ketone) ppm; HRMS (ESI) m/z calcd for C12H23O3 [(M + H)+]: 

215.1647, found 215.1642; Anal. calcd for C12H22O3: C, 67.26; H, 10.35%. 

Found: C, 67.15; H, 10.22%. 
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Methyl 2-methyl-3-(phenylamino)dec-2-enoate, 254  

To a stirred solution of methyl 2-methyl-3-

oxodecanoate 253 (1.27 g, 5.94 mmol) in dry 

hexane (30 mL) was added aniline (0.57 mL, 

6.24 mmol) and p-toluene sulfonic acid (0.023 g, 

0.12 mmol) and reaction vessel was fitted with Dean-Stark apparatus.  The 

resulting reaction mixture was allowed to stir at reflux under a N2 atmosphere for 

16 h.  The reaction mixture was allowed to cool and the solvent removed in 

vacuo to yield 254 as an orange oil (1.35 g, 79%) which was used in the next step 

without purification.                     

IR (NaCl) Qmax: 2952, 2928 (alkyl C-H stretch, s), 1744 (C=O stretch, s), 1657 

(alkene C=C stretch, s), 1612, 1594 (aromatic C=C stretch, s), 1252 (C-N stretch, 

s), 1229 (C-O stretch, s) cm�1; 1H NMR (400 MHz, CDCl3, only signals of 

predominant enamine tautomer are given): G 0.84 (3H, t, J = 7.0 Hz, CH3CH2), 

1.17–1.29 (8H, m, 4 u CH2), 1.37–1.46 (2H, m, CH2CH2C), 1.86 (3H, s, CH3C), 

2.34–2.38 (2H, m, CH2C), 3.72 (3H, s, OCH3), 7.06 (2H, d, J = 7.6 Hz, 2 u CH 

arom.), 7.13–7.19 (1H, m, CH arom.), 7.26–7.35 (2H, m, 2 u CH arom.), 10.81 

(1H, bs, NH) ppm; 13C NMR (75 MHz, CDCl3, only signals of predominant 

enamine tautomer are given): G 12.5 (CH3C), 14.0 (CH3), 22.6, 27.7, 28.7, 28.8, 

29.4, 31.6 (6 u CH2), 50.7 (OCH3), 90.4 (CH3CCO), 125.1, 125.6, 129.1 (5 u CH 

arom.), 140.3 (CHCNH), 163.8 (CHCNH), 171.7 (C=O) ppm; HRMS (ESI) m/z 

calcd for C18H28NO2 [(M + H)+]: 290.2120, found 290.2116; Anal. calcd for 

C18H27NO2: C, 74.70; H, 9.40; N, 4.84%. Found: C, 74.30; H, 9.20; N, 5.20%. 

2-Heptyl-3-methylquinolin-4(1H)-one, 255 

To a solution of refluxing diphenyl ether (45 mL) 

was added enamine 254 (1.35 g, 4.68 mmol) 

dropwise over 90 min.  Reflux was maintained 

for 1 h before being allowed to cool to room 

temperature.  The formed methanol was removed in vacuo to yield crude product 

as a brown oil.  Purification was achieved by recrystallisation from methanol to 

yield 255 as a white solid (0.010 g, 10%).                             

Spectral characteristics were consistent with previously reported data.4        
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m.p. 228–230 °C [lit.4 227–228 °C].  1H NMR (400 MHz, CD3OD): G 0.88 (3H, 

t, J = 6.8 Hz, CH3CH2), 1.30–1.46 (8H, m, 4 u CH2), 1.68–1.75 (2H, m, 

CH2CH2C), 2.15 (3H, s, CCH3), 2.81 (2H, t, J = 7.9 Hz, CH2C), 7.33 (1H, ddd, J 

= 1.1, 7.1, 8.1 Hz, CH arom.), 7.53 (1H, d, J = 8.0 Hz, CH arom.), 7.60–7.64 

(1H, m, CH arom.), 8.22 (1H, dd, J = 0.7, 8.4 Hz, CH arom.) ppm; 13C NMR (75 

MHz, CD3OD): G 10.8 (CCH3), 14.4 (CH3), 23.7, 30.0, 30.2, 30.5, 32.9, 33.5 (6 u 

CH2), 116.2 (CCH3), 118.7 (CH arom.), 124.4 (CHCC=O), 124.5, 126.2, 132.7 

(3 u CH arom.), 140.6 (CHCNH), 153.4 (CH2CNH), 179.5 (C=O) ppm; HRMS 

(ESI) m/z calcd for C17H24NO [(M + H)+]: 258.1858, found 258.1849. 

6.4  Synthesis of 3-halo analogues 
3-Bromo-2-heptylquinolin-4-ol, 235  

Method A: To a stirred solution of HHQ 186 
(2.094 g, 8.61 mmol) in acetic acid (10 mL) was 

added a solution of bromine (0.5 mL, 9.72 

mmol) in acetic acid (5 mL) dropwise over 30 

min.  The reaction vessel was covered in aluminium foil and reaction allowed to 

stir at room temperature for 5 h.  On completion, the reaction mixture was poured 

into 1% aq. sodium sulfite (100 mL).  The precipitate was filtered and washed 

with water to yield the crude product as a pale yellow solid which was purified 

by recrystallisation from ethanol to yield 235 as a white solid (2.113 g, 76%).  

Method B: To a stirred solution of HHQ 186 (0.50 g, 2.05 mmol) in DCM (10 

mL) and methanol (2.5 mL) was added N-bromosuccinimide (0.73 g, 4.10 mmol) 

portionwise and the resulting reaction mixture stirred at room temperature for 24 

h with reaction progress monitored by TLC analysis. The solvent was removed in 

vacuo to yield the crude product as a yellow solid which was purified by 

recrystallisation from ethanol to yield 235 as a white solid (0.245 g, 37%).       

m.p.  245–248 °C.  IR (KBr) Qmax: 3432 (NH stretch, w), 2926, 2855 (alkyl C-H 

stretch, s), 1631 (C=O stretch, m), 1582, 1559, 1550 (aromatic C=C stretch, s), 

1475 (alkyl C-H bend, s), 1353 (C-N stretch, m) cm�1; 1H NMR (400 MHz, 

(CD3)2SO): G 0.86 (3H, t, J = 6.9 Hz, CH3CH2), 1.23–1.41 (8H, m, 4 u CH2), 

1.66–1.74 (2H, m, CH2CH2C), 2.87 (2H, t, J = 7.9 Hz, CH2C), 7.34–7.38 (1H, 

m, CH arom.) 7.58 (1H, d, J = 8.2 Hz, CH arom.), 7.66–7.70 (1H, m, CH arom.) 
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8.09 (1H, dd, J = 1.2, 8.2 Hz, CH arom.), 12.01 (1H, bs, NH) ppm; 13C NMR (75 

MHz, (CD3)2SO): G 13.9 (CH3), 22.0, 27.6, 28.3, 28.6, 31.1 34.5 (6 u CH2), 

105.5 (CBr), 117.8 (CH arom.), 122.7 (CHCC=O), 123.6, 125.2, 131.9 (3 u CH 

arom), 138.7 (CHCNH), 152.0 (CH2CNH), 171.2 (C=O) ppm; HRMS (ESI) m/z 

calcd for C16H21BrNO [(M + H)+]: 322.0807, found 322.0794; Anal. calcd for 

C16H20BrNO: C, 59.64; H, 6.26; N, 4.35%. Found: C, 59.55; H, 6.11; N, 4.28%. 

3-Chloro-2-heptylquinolin-4(1H)-one, 236 

To a stirred solution of HHQ·HCl 233 (0.839 g, 

3.0 mmol) in methanol (50 mL), was added 2M 

aq. NaOH until neutral pH, followed by water 

(10 mL).  Sodium dichloroisocyanurate (0.363 g, 

1.65 mmol) was added and the reaction allowed to stir at room temperature 

overnight.  The precipitate was filtered and washed with methanol.  The filtrate 

was acidified to pH 4 and placed in the refrigerator overnight.  The resulting 

precipitate was filtered to yield an off-white solid which was purified by 

recrystallisation from ethanol to yield 236 as a white solid (0.167 g, 46%).         
m.p. 269–272 °C.  IR (KBr) Qmax: 3454 (NH stretch, w), 2927, 2857 (alkyl C-H 

stretch, s), 1634 (C=O stretch, m), 1562, 1504 (aromatic C=C stretch, s), 1477 

(alkyl C-H bend, s), 1355 (C-N stretch, m) cm�1; 1H NMR (300 MHz, 

(CD3)2SO): G 0.85 (3H, t,  J = 6.7  Hz, CH3), 1.26–1.34 (8H, m, 4 u CH2), 1.65–

1.75 (2H, m, CH2CH2C), 2.84 (2H, t, J = 7.8 Hz, CH2C), 7.32–7.37 (1H, m, CH 

arom.), 7.58 (1H, d, J = 7.8 Hz, CH arom.), 7.64–7.70 (1H, m, CH arom.), 8.08–

8.11 (1H, m, CH arom.), 12.03 (1H, bs, NH) ppm; 13C NMR (150 MHz, 

(CD3)2SO): G 13.9 (CH3), 22.0, 27.5, 28.4, 28.6, 31.1, 32.1 (6 u CH2), 113.3 

(CCl), 118.0 (CH arom.), 123.4 (CHCC=O), 123.5, 125.1, 131.8 (3 u CH arom.) 

138.6 (CHCN), 150.7 (CH2CN), 170.9 (C=O) ppm; HRMS (ESI) m/z calcd for 

C16H21ClNO [(M + H)+]: 278.1312, found 278.1317; Anal. calcd for 

C16H20ClNO: C, 69.18; H, 7.26; N, 5.04; Cl, 12.76%. Found: C, 68.67; H, 7.14; 

N, 5.09; Cl, 12.52%. 

 

 



Chapter 6  Experimental 

229 
 

3-Iodo-2-heptylquinolin-4(1H)-one, 237 

 To a stirred solution of HHQ 186 (0.333 g, 1.37 

mmol) in glacial acetic acid (10 mL) was added N-

iodosuccinimide (0.315 g, 1.40 mmol) portionwise 

and the reaction mixture allowed to stir at room 

temperature for 2 h reaction.  The precipitate was filtered and washed with acetic 

acid and acetonitrile.  Purification was achieved using silica column 

chromatography eluting with 80:20 ethyl acetate:hexane to yield 237 as a white 

solid (0.22 g, 48%).                  

m.p. 221–225 °C.  IR (KBr): Qmax: 3419 (N-H stretch, w), 2921 (alkyl C-H 

stretch, s), 1627 (C=O stretch, s), 1557 (aromatic C=C stretch, s), 1474 (alkyl C-

H bend, s), 1351 (C-N stretch, m) cm�1; 1H NMR (300 MHz, (CD3)2SO): G 0.86 

(3H, t, J = 6.9 Hz, CH3CH2), 1.27–1.36 (8H, m, 4 u CH2), 1.63–1.70 (2H, m, 

CH2CH2C), 2.90 (2H, t, J = 7.9 Hz, CH2C), 7.28–7.31 (1H, m, CH arom.), 7.55–

7.64 (2H, m, 2 u CH arom.), 8.06 (1H, dd, J = 1.0, 8.2 Hz, CH arom.), 12.08 

(1H, bs, NH) ppm; 13C NMR (75 MHz, (CD3)2SO): G 14.4 (CH3), 22.5, 28.85, 

28.94, 29.4, 31.7, 41.0 (6 u CH2), 86.7 (CI), 122.2, 122.6 (2 u CH arom.), 123.0 

(CHCC=O), 125.6, 130.4 (2 u CH arom.), 144.0 (CHCN), 158.4 (CH2CN), 172.4 

(C=O) ppm; HRMS (ESI) m/z calcd for C16H21INO [(M + H)+]: 370.0668, found 

370.0670.  

3-Fluoro-2-heptylquinolin-4(1H)-one, 244 

 Method A: To a stirred solution of Selectfluor® 

242 (0.154 g, 0.436 mmol) in acetonitrile (4 mL) 

and ethanol (0.21 mL, 10 equiv.) was added 

HHQ 186 (0.088 g, 0.363 mmol).  The reaction 

was allowed to stir at -10 °C for 3 days.  The reaction mixture was filtered while 

cold and solvent removed in vacuo to yield the crude product as a bright yellow 

solid.  Purification was achieved using silica column chromatography eluting 

with 90:10 ethyl acetate:hexane to yield 244 as a white solid (0.003 g, 3%).       

Method B:  To a stirred solution of Selectfluor® 243 (0.509 g, 1.44 mmol) in 

ethanol (6 mL) was added HHQ 186 (0.206 g, 0.85 mmol).  The reaction was 

allowed to stir at room temperature for 7 days.  The reaction mixture was filtered 
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and solvent removed in vacuo to yield the crude product as a bright yellow solid.  

Purification was achieved using silica column chromatography eluting with 

90:10 ethyl acetate:hexane to yield 244 as a white solid (0.018 g, 8%).                               

m.p. 152–155 °C.  IR (KBr) Qmax: 3369 (N-H stretch, m), 2957, 2928 (alkyl C-H 

stretch, s), 1694 (C=O stretch, s), 1615, 1508, 1483 (aromatic C=C stretch, s), 

1108 (C-N stretch, s) cm�1; 1H NMR (600 MHz, CDCl3): G 0.78 (3H t, J = 6.8 

Hz, CH3), 1.10–1.34 (8H, m, 4 u CH2), 1.60–1.76 (2H, m, CH2CH2C), 2.89–2.93 

(2H, m, CH2C), 7.37 (1H, t, J = 7.5 Hz, CH arom.), 7.62 (1H, t, J = 7.3 Hz, CH 

arom.), 7.89 (1H, d, J = 7.2 Hz, CH arom.), 8.44 (1H, d, J = 8.2 Hz, CH arom.), 

12.70 (1H, bs, NH) ppm; 13C NMR (150 MHz, CDCl3): G 14.0 (CH3), 22.5, 28.4, 

28.7, 28.9, 29.3, 31.6 (6 u CH2), 119.0, 123.4, 125.0 (d, 4J C-F = 4.5 Hz) (3 u CH 

arom.), 125.8 (d, 3J C-F = 7.5 Hz, CHCC=O), 131.5 (CH arom.), 138.8 (CHCNH), 

142.9 (d, 2J C-F = 27.2 Hz, CH2CNH), 145.6 (d, 1J C-F = 229.5 Hz, CF) 168.2 (d, 
2J C-F = 13.6 Hz, C=O) ppm; 19F NMR (470 MHz, CDCl3): G -143.3 (CF) ppm; 

HRMS (ESI) m/z calcd for C16H21FNO [(M + H)+]: 262.1607, found 262.1601. 

Ethyl 2-fluoro-3-oxodecanoate, 251 

To a stirred solution of diisopropylamine 

(11.9 mL, 0.085 mol) in THF (210 mL) was 

added n-BuLi (60 mL, 0.085 mol) dropwise at 

-78 °C.  The resulting reaction mixture was allowed to stir at 0 °C for 30 min to 

generate a solution of LDA.  Ethyl-2-fluoroacetoacetate 250 (4.2 mL, 0.034 mol) 

was added dropwise at 0 °C and allowed to stir at this temperature for 1 h.  

Iodohexane (5.99 mL, 0.041 mol) was added dropwise at -78 °C.  The resulting 

reaction mixture was allowed to warm to room temperature over 14 h with 

stirring.  10% aq. HCl (15 mL) was added to the reaction mixture and the layers 

separated.  The aqueous layer was extracted with diethyl ether (3 u 25 mL).  The 

combined organic extracts were dried over MgSO4, filtered and concentrated in 

vacuo to give the crude product which was purified using silica column 

chromatography eluting with 90:10 hexane:ethyl acetate to yield 251 as a yellow 

oil (4.34 g, 55%).                   
Spectral characteristics were consistent with previously reported data.5      
1H NMR (400 MHz, CDCl3): G 0.88 (3H, t, J = 6.8 Hz, CH3CH2), 1.26–1.34 
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(11H,  m, 4 u CH2 and OCH2CH3), 1.58–1.65 (2H, m, CH2CH2CO), 2.64–2.70 

(2H, m, CH2CO), 4.31 (2H, q, J = 7.2 Hz, OCH2CH3), 5.21 (1H, d, 1JH-F = 49.5 

Hz, CH) ppm; 13C NMR (75 MHz, (CDCl3): G 14.0 (2 u CH3), 22.5, 22.7 (d, 3J C-

F = 1.5 Hz), 28.86, 28.89, 31.6, 38.4 (6 u CH2), 62.6 (OCH2CH3), 91.3 (d, 1JC-F = 

197.8 Hz, CH), 164.2 (d, 2J C-F = 23.9 Hz, C=O ester), 201.3 (d, 2J C-F = 22.7 Hz, 

C=O ketone) ppm; MS (ESI) m/z: 233 [(M + H)+, 8%]. 

6.5  Synthesis of quinazolinone analogue 
2-Heptylquinazolin-4(3H)-one, 259 

To a stirred solution of anthranilamide 258 

(2.791 g, 20.5 mmol) in DMA (30 mL) was 

added n-octanal (3.2 mL, 20.5 mmol) and 

sodium bisulfite (3.2 g, 30.8 mmol).  The 

resulting reaction mixture was allowed to stir at reflux for 2 h.  The reaction 

mixture was poured into water (500 mL) and the precipitate filtered.  The 

precipitate was recrystallised from ethanol to yield 259 as an off-white 

crystalline solid (3.82 g, 76%).                        

m.p.  124–127 °C.  IR (KBr) Qmax: 2919, 2854 (alkyl C-H stretch, s), 1674 (amide 

C=O stretch, s), 1616 (C=N stretch, s), 1470 (alkyl C-H bend, s), 1341 (C-N 

stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): G 0.88 (3H, t, J = 6.8 Hz, CH3), 

1.25–1.51 (8H, m, 4 u CH2), 1.82–1.92 (2H, m, CH2CH2C), 2.76 (2H, t, J = 7.7 

Hz, CH2C), 7.43–7.49 (1H, m, CH arom.) 7.70 (1H, d, J = 7.3 Hz, CH arom.), 

7.74–7.80 (1H, m, CH arom.) 8.29 (1H, dd, J = 1.1, 8.0 Hz, CH arom.), 11.74 

(1H, bs, NH) ppm; 13C NMR (75 MHz, CDCl3): G 14.0 (CH3), 22.6, 27.6, 28.9, 

29.2, 31.7, 36.0 (6 u CH2), 120.5 (CHCC=O), 126.2, 126.3, 127.2, 134.8 (4 u CH 

arom.), 149.5 (CHCN), 156.9 (C=N), 164.2 (C=O) ppm; HRMS (ESI) m/z calcd 

for C15H21N2O [(M + H)+]: 245.1654, found 245.1654; Anal. calcd for 

C15H20N2O: C, 73.74; H, 8.25; N, 11.47%. Found: C, 73.38; H, 8.20; N, 11.38%. 
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6.6  Synthesis of protected HHQ analogues 
Benzyl (2-heptylquinolin-4-yl) carbonate, 265 

 To a stirred suspension of 60% NaH (0.605 g, 

25.2 mmol) in dry THF (20 mL) was added a 

solution of HHQ 186 (1.315 g, 5.40 mmol) in 

dry THF (15 mL) and the resulting reaction 

mixture allowed to stir at 55 °C for 30 min.  Benzyl chloroformate (1.16 mL, 

8.11 mmol) was added dropwise, and the reaction mixture allowed to stir at room 

temperature for 21 h.  The reaction mixture was quenched by addition of water (8 

mL) and extracted with diethyl ether (3 u 15 mL).  Organic layers were 

combined, dried over MgSO4 and concentrated in vacuo to yield crude product as 

a yellow oil which was purified using silica column chromatography eluting with 

70:30 ethyl acetate:hexane to yield 265 as a pale yellow oil (0.385 g, 20%).          

IR (NaCl) Qmax: 2955, 2856 (alkyl C-H stretch, s), 1769 (C=O stretch, s), 1624 

(C=N stretch, m), 1605, 1505 (aromatic C=C stretch, s), 1224 (ester C-O stretch, 

s) cm�1; 1H NMR (400 MHz, CDCl3): G 0.87 (3H, t, J = 6.8 Hz, CH3), 1.26–1.44 

(8H, m, 4 u CH2), 1.76–1.84 (2H, m, CH2CH2C), 2.95 (2H, dd, J = 7.8, 8.0 Hz, 

CH2C), 5.30 (2H, s, OCH2Ph), 7.31 (1H, s, CH), 7.33–7.45 (6H, m, 6 u CH 

arom.), 7.62–7.67 (1H, m, CH arom.), 7.94 (1H, dd, J = 0.8, 8.4 Hz, CH arom.), 

8.06 (1H, d, J = 8.4 Hz, CH arom.) ppm; 13C NMR (75 MHz, CDCl3): G 14.1 

(CH3), 22.7, 29.2, 29.5, 29.8, 31.8, 39.6 (6 u CH2), 70.9 (OCH2Ph), 111.8 (CH), 

120.4 (CHCCO), 120.9, 126.1, 128.6, 128.8, 128.9, 129.0, 130.0 (9 u CH arom.), 

134.5 (OCH2C), 149.6 (CHCN), 152.4 (C=O), 154.3 (COCOOCH2Ph), 164.0 

(CH2C=N) ppm; HRMS (ESI) m/z calcd for C24H28NO3 [(M + H)+]: 378.2069, 

found 378.2071; Anal. calcd for C24H27NO3: C, 76.36; H, 7.21; N, 3.71%. Found: 

C, 76.37; H, 7.12; N, 3.47%. 
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Benzyl (3-bromo-2-heptylquinolin-4-yl) carbonate, 266 

 To a stirred suspension of 60% NaH (0.097 g, 

4.06 mmol) in dry THF (4 mL) was added a 

solution of 3-bromo-2-heptylquinolin-4(1H)-one 

235 (0.280 g, 0.87 mmol) in dry THF (6 mL) and 

the resulting reaction mixture stirred at 55 °C for 30 min.  Benzyl chloroformate 

(0.19 mL, 1.31 mmol) was added dropwise and reaction removed from oil bath 

and allowed to stir at room temperature for 21 h.  The reaction mixture was 

quenched by addition of water (8 mL) and extracted with diethyl ether (3 u 15 

mL).  Organic layers were combined, dried over MgSO4 and concentrated in 

vacuo to yield crude product as a yellow oil which was purified using silica 

column chromatography eluting with 50:50 hexane:diethyl ether to yield 266 as a 

pale yellow oil (0.242 g, 61 %).                         
IR (NaCl) Qmax: 2927, 2856 (alkyl C-H stretch, s), 1772 (ester C=O stretch, s), 

1589 (aromatic C=C stretch, m), 1224 (ester C-O stretch, s) cm�1; 1H NMR (300 

MHz, CDCl3): G 0.89 (3H, t, J = 6.7 Hz, CH3), 1.26–1.49 (8H, m, 4 u CH2), 

1.78–1.88 (2H, m, CH2CH2C), 3.16 (2H, dd, J = 6.1, 7.8 Hz, CH2C), 5.36 (2H, s, 

OCH2Ph), 7.36–7.53 (6H, m, 6 u CH arom.), 7.68–7.75 (1H, m, CH arom.), 7.80 

(1H, dq J = 0.6, 8.3 Hz, CH arom.), 8.05 (1H, d, J = 8.4 Hz, CH arom.) ppm; 13C 

NMR (75 MHz, CDCl3): G 14.1 (CH3), 22.7, 28.5, 29.1, 29.6, 31.8, 38.7 (6 u 

CH2), 71.4 (OCH2), 112.2 (CBr), 120.8 (CH arom.), 122.0 (CHCCO), 127.1, 

128.5, 128.8, 128.99, 129.04, 130.3 (8 u CH arom.), 134.4 (OCH2C), 147.7 

(CHCN), 151.4 (C=O), 151.5 (COCOOCH2Ph), 162.0 (CH2CN) ppm; HRMS 

(ESI) m/z calcd for C24H27BrNO3 [(M + H)+]: 456.1174, found 456.1176; Anal. 

calcd for C24H26BrNO3: C, 63.16; H, 5.74; N, 3.07%. Found: C, 63.46; H, 5.86; 

N, 2.96%. 
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4-(Benzyloxy)-3-bromo-2-heptylquinoline, 267 

To a methanol solution of KOH (0.030 g, 0.53 

mmol) and 3-bromo-2-heptylquinolin-4(1H)-one 

235 (0.114 g, 0.35 mmol) in methanol (c = 1.0 

M) was added benzyl bromide (0.42 mL, 3.54 

mmol) in one aliquot and the resulting reaction 

mixture allowed to stir at room temperature overnight.  The precipitate was 

removed by filtration, the solvent evaporated and the resulting residue purified 

by silica column chromatography eluting with 50:50 hexane:diethyl ether to yield 

267 as a white solid (0.040 g, 28 %).            

m.p. 62–64 °C.  IR (KBr) Qmax: 2927, 2855 (alkyl C-H stretch, s), 1577 (C=N 

stretch, s), 1356 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 0.89 

(3H, t, J = 6.7 Hz, CH3), 1.26–1.53 (8H, m, 4 u CH2), 1.79–1.89 (2H, m, 

CH2CH2C), 3.17 (2H, dd, J = 7.9. 8.1 Hz, CH2CH2C), 5.19 (2H, s, OCH2), 7.36–

7.48 (4H, m, 4 u CH arom.), 7.56–7.59 (2H, m, 2 u CH arom.), 7.64–7.70 (1H, 

m, CH arom.), 7.99 (1H, dd, J = 1.0, 8.6 Hz, CH arom.), 8.03 (1H, d, J = 8.5 Hz, 

CH arom.) ppm; 13C NMR (75 MHz, CDCl3): G 14.1 (CH3), 22.7, 28.8, 29.2, 

29.6, 31.8, 39.0 (6 u CH2), 76.0 (OCH2), 112.1(CBr), 121.9 (CH arom.), 123.6 

(CHCCO), 126.3, 128.3, 128.6, 128.7, 129.0, 129.9 (8 u CH arom.), 136.2 

(COCH2C), 148.1 (CHCN=C), 159.5 (COCH2Ph), 162.6 (CH2C=N) ppm; 

HRMS (ESI) m/z calcd for C23H27NOBr [(M + H)+]: 412.1276, found 412.1270. 
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Structure–function analysis of the C-3 position in analogues of microbial
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2-Heptyl-3-hydroxy-4-quinolone (PQS) and its precursor 2-heptyl-4-quinolone (HHQ) are key signalling
molecules of the important nosocomial pathogen Pseudomonas aeruginosa. We have recently reported an
interkingdom dimension to these molecules, influencing key virulence traits in a broad spectrum of
microbial species and in the human pathogenic yeast Candida albicans. For the first time, targeted
chemical derivatisation of the C-3 position was undertaken to investigate the structural and molecular
properties underpinning the biological activity of these compounds in P. aeruginosa, and using Bacillus
subtilis as a suitable model system for investigating modulation of interspecies behaviour.

Microbial populations coordinate cellular behaviour through the
mobilisation of diffusible signal molecules, which activate gene
expression upon accumulation above a threshold or quorum.1

This phenomenon (quorum sensing), is an essential communi-
cation system utilised by a broad spectrum of Gram-negative and
Gram-positive bacteria, and is a central control mechanism for
virulence and pathogenesis.2 2-Heptyl-3-hydroxy-4-quinolone,
the Pseudomonas Quinolone Signal (PQS) is a key regulator of
quorum sensing in Pseudomonas aeruginosa.1,3,4 P. aeruginosa
is best known as an antibiotic resistant human pathogen associ-
ated with hospital-acquired infections and is the primary cause
of morbidity and mortality in people with cystic fibrosis (CF).5

Controlling P. aeruginosa infection is thus of great clinical
importance.6–9 Research into PQS activity has revealed a vast
and varied array of biological functions.10–16 In addition to con-
trolling expression of key components of the QS regulon, PQS
also modulates biofilm formation, secondary metabolite pro-
duction, pigment and virulence factor production, motility and
membrane vesicle formation.11–13,15 2-Heptyl-4-quinolone
(HHQ), the biological precursor of PQS, also possesses a
plethora of roles including quorum sensing responsibilities.13

PQS has been detected at 2 μM in CF samples from sputum,

bronchoalveolar lavage fluid and mucopurulent fluid from distal
airways of end-stage lungs removed at transplant.17 Isolates
obtained from infant CF-patients under 3 years of age overpro-
duce PQS, suggesting that it may be instrumental in adaptation
of P. aeruginosa to the airways of young CF-patients.18 Trans-
criptomic and functional genomics studies have provided further
evidence for the importance of PQS and its precursor HHQ
during adaptation to the CF-lung19,20 while Kim et al.21,22

reported immunomodulation and inhibition of macrophage acti-
vation by HHQ and PQS. Diggle et al. reported that pathogenic
bacteria other than P. aeruginosa synthesise 2-alkyl-4-quinolones
(AQs). Burkholderia pseudomallei, for example, produces AQs
and employs a structurally similar molecule to HHQ but does
not produce PQS.13,23 Intriguingly, it has recently been shown
that both PQS and HHQ can also control the behaviour of other
bacterial and fungal species.24,25 We found that surface-associ-
ated phenotypes were repressed in a number of Gram-positive
and Gram-negative bacteria as well as in pathogenic yeast in
response to PQS and HHQ.24 Motility was repressed in a broad
range of bacteria, while biofilm formation in Bacillus subtilis
and Candida albicans was repressed in the presence of HHQ,
though initial adhesion was unaffected. Furthermore, HHQ
exhibited potent bacteriostatic activity against several marine
species of Gram-negative bacteria, including pathogenic Vibrio
vulnificus.

To take advantage of signalling pathways in a clinical setting
we take two routes: (1) the early detection of biomarkers such as
HHQ and PQS26–28 and (2) interference with bacterial signals by
the synthesis of molecular analogues capable of interrupting key
virulence traits such as biofilm formation and motility. To date,
the limited structure–function analysis performed on HHQ and
PQS has centred on the alkyl chain length7,29 and substitution of
the anthranilate ring.7 The crucial C-3 position has not been
investigated, notwithstanding the divergent biological activities

†Electronic supplementary information (ESI) available: Full experimen-
tal procedures, biological data, 1H spectra of novel compounds and
additional crystallographical data are included. CCDC 885400. For ESI
and crystallographic data in CIF or other electronic format see DOI:
10.1039/c2ob26823j
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identified for HHQ and PQS towards other bacterial and fungal
pathogens. Therefore, the structure–function analysis detailed in
this study was designed to provide key insights into the activity
of the HHQ and PQS compounds both within P. aeruginosa and
also towards non-pseudomonal bacterial and fungal species.
These included several key cystic fibrosis pathogens such as
Staphylococcus aureus and C. albicans, for which B. subtilis
proved to be a suitable model for single species analysis of
swarming motility and biofilm formation. Assigning the struc-
tural modules of the quinolone compounds to biological func-
tions would provide significant insight into their underlying
mechanism of action. This would form the basis for develop-
ment of innovative therapies, for example where disruption of
biofilm formation would expose microbial pathogens to normal
antibacterial action. In this report we present our findings on the
biological activity of eight molecules of interest, 2-heptyl-4-
quinolone (3, HHQ), aldehyde 4, 2-heptyl-3-hydroxyquinolin-
4(1H)-one (5, PQS), 3-methyl analogue 8, halogenated versions
9, 10 and 11 and finally 12 which possesses a potential hydrogen
donor/acceptor at the 3-position.

Chemical synthesis

HHQ was prepared starting with Meldrum’s acid (0.14 mol)
which was reacted with octanoyl chloride followed by boiling in
methanol (MeOH), reaction with aniline30 and a Conrad–
Umpach cyclisation (Scheme 1).†31 An alternative cyclisation
method reported by Woschek et al. failed to give any product in
our hands.32 As quantities of 4 and PQS were also required, their
synthesis from HHQ was achieved using conditions described by
Pesci et al.33 although an excellent method for the direct syn-
thesis of PQS has recently been reported.34 The Duff formylation
of HHQ proved problematic and 2 equivalents of hexamine
(HMTA) was found to be crucial to obtaining decent yields.35

Reaction of aldehyde 4 with MCPBA gave PQS in 29% yield.
The 3-methyl analogue 8 was synthesised in a similar fashion

over five steps (Scheme 2).† Again Meldrum’s acid was reacted
with octanoyl chloride followed by β-ketoester formation.
Methylation was carried out using K2CO3 and MeI giving 6.
Reaction with aniline gave enamine 7 and a final Conrad–
Limpach cyclisation in diphenyl ether afforded analogue 8.31,35

Bromo-analogue 9 was prepared using N-bromosuccinimide
in 37% yield (after recrystallisation) or using Br2 in 47% yield
(Scheme 3). The 3-chloro-quinolone 10 was synthesised in one
step using sodium dichloroisocyanurate (DCIC).36 Recrystallisa-
tion afforded 10 in 46% yield. Iodo-analogue 11 was formed in
the presence of N-iodosuccinimide in 48% yield (halogenation
yields not optimised).

Novel 2-heptylquinazolin-4-one 12 was synthesised via a con-
venient one-step synthesis by reaction of anthranilamide with
octanal, and following recrystallisation from ethanol, afforded
the product in 76% yield (Scheme 4).

Given that both the quinolone and quinoline tautomeric struc-
tures (both structures have been arbitrarily depicted in the litera-
ture37) of HHQ were accessible, the latter as its hydrochloride
salt (Fig. 1), we felt it would be valuable to confirm that both

Scheme 1 Synthesis of HHQ and PQS. Conditions: (a) octanoyl chloride, pyridine, DCM (b) MeOH, reflux, 34% over 2 steps (c) PhNH2, reflux,
79% (d) Ph2O, reflux, 33% (e) HMTA, TFA, reflux, 56% (f) H2O2, NaOH, 29%.

Scheme 2 Synthesis of 3-Me analogue 8. Conditions: (a) K2CO3, MeI,
reflux, 40%. (b) PhNH2, reflux, 79% (c) Ph2O, reflux, 10%.

Scheme 3 Halogenation of HHQ. Conditions: (a) NBS, MeOH, 37%
(b) Br2, AcOH, 47% (c) DCIC, H2O, 46% (d) NIS, AcOH, 48%.

8904 | Org. Biomol. Chem., 2012, 10, 8903–8910 This journal is © The Royal Society of Chemistry 2012
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the free quinolone and quinoline hydrochloride exhibited identi-
cal biological activities. Both compounds 3 (HHQ) and 3·HCl
(HHQ·HCl) were found to be interchangeable when used in
biological systems and exerted a common influence on inter-
kingdom behaviour. Both motility and biofilm formation were
similarly influenced in B. subtilis in the presence of 3 and 3·HCl
when tested under physiological pH (Fig. 3 and 4).

Biological studies

In order to assess the importance of the C-3 position to the bio-
logical activity of HHQ and PQS, the capacity for analogues
functionalised at this position to replace the native compounds in

P. aeruginosa was investigated. The PQS signalling system, a
key component of QS in P. aeruginosa, is known to control pro-
duction of a range of virulence factors, including elastase,
rhamnolipid and the phenazine redox compound pyocyanin.11,38

Therefore, the analogues were first assessed for restoration of
phenazine production in a pqsA mutant, in which the biosyn-
thetic steps required for AQ production have been disrupted.
While both HHQ and PQS restored phenazine production in the
pqsA mutant strain, the analogues were significantly less effec-
tive in triggering production of the pigment, with 12 being the
least effective (Fig. 2A), suggesting that the C-3 position is
crucial for control of phenazine production in P. aeruginosa.
Interestingly, addition of equimolar concentrations of the ana-
logues to the wild-type PAO1 and PA14 strains, which produce
both HHQ and PQS, did not interfere with phenazine production
(Fig. 2B). In P. aeruginosa, PQS also plays a fundamental role
in the structural formation of biofilms and PQS-deficient mutants
have been shown to produce thin flat biofilms, which are mark-
edly different to the mushroom shaped structures produced by
the wild-type strain.39 However, neither mutation of pqsA nor
addition of analogues markedly influenced the initial stages of
biofilm formation in P. aeruginosa as seen in crystal violet
multi-well assays (ESI†).

Aside from their key role as signalling compounds in P. aeru-
ginosa, both HHQ and PQS exert distinct influences on the be-
haviour of a range of microbial pathogens.24 Differing only at
the 3-position, yet displaying diverse biological functionalities
suggests a key role for the C-3 position in modulating inter-
species microbial behaviour. Microbial swarming motility and
biofilm formation require cooperative multicellular behaviour
and provide a mechanism for bacterial cells to establish and
persist during infection. While motility was shown to be altered
in S. aureus in the presence of HHQ and PQS, C. albicans
biofilm formation was repressed in the presence of HHQ. As we
have previously shown both phenotypes to be affected in B.
subtilis in the presence of HHQ, this species was chosen as a
model organism upon which to test the interspecies influence of
the alkylquinolone compounds.

Scheme 4 Synthesis of PQS analogue. Conditions: (a) NaSO3H,
DMA, reflux, 76%.

Fig. 1 Crystal structure of 3·HCl (HHQ·HCl).†

Fig. 2 Influence of functionalised derivatives on PQS-dependent phenotypes in P. aeruginosa. (A) The ability of HHQ and PQS (10 μM) to restore
phenazine production in a pqsA mutant was lost to the derivative compounds indicating that the C-3 position is crucial in this regard. (B) Addition of
10 μM concentrations of derivative compounds did not interfere with phenazine production in the wild-type PAO1 strain. Data presented is representa-
tive of three independent experiments (Students t-test, **p-value ≤ 0.005).

This journal is © The Royal Society of Chemistry 2012 Org. Biomol. Chem., 2012, 10, 8903–8910 | 8905
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Unlike 3 and 3·HCl, analogues 6–12 did not exhibit anti-
biofilm activity towards B. subtilis (Fig. 3A), highlighting the
importance of the C-3 position in underpinning the biological

role of these compounds. Furthermore, the inability of 10 to
affect biofilm formation in C. albicans, a human pathogenic
yeast and an important CF pathogen (data not shown), underlines
the importance of the C-3 position for biological functionality of
the AQ compounds. The influence of 6–12 on microbial swarm-
ing motility was negligible compared to HHQ and PQS
(Fig. 3B). Interestingly, the methyl and halogen substituted com-
pounds 8–11 retained antimicrobial activity towards an Algori-
phagus marine isolate, which was previously shown to be
susceptible to HHQ, while PQS and quinazolinone 12 did not
suppress growth of this species (Fig. 3C).

HHQ and PQS have previously been shown to influence trans-
cription in a mouse monocyte/macrophage cell line.40 However,
although PQS has been found in CF sputum,17 the impact and
potential cytotoxic effects of these compounds on airway epi-
thelial cells has not been investigated. Therefore, HHQ, PQS and
compounds 8–12 were tested for cytotoxicity towards a human
airway epithelial cell line (IB3-1 cells) for 16 h at concentrations
ranging from 10 to 100 μM by quantification of the lactate dehy-
drogenase (LDH) release, in comparison with treatment by 0.1%
Triton X-100, used as a positive control for cytotoxicity. Interest-
ingly, HHQ was found to be cytotoxic towards IB3-1 cells while
PQS did not exhibit any cytotoxic activity (Fig. 4). The cytotox-
icity of HHQ decreased with decreasing concentrations and was
less than 10% at 10 μM (data not shown). As above, the cytotox-
icity of both the quinolone and quinoline compounds towards
IB3-1 cells was comparable (∼60%). With the exception of quin-
azolinone 12 which exhibited a significant level of cytotoxicity,
the C-3 substituted analogues (8–11) did not exhibit cytotoxicity
towards IB3-1 cells, reinforcing the importance of the C-3 pos-
ition in the functionality of the HHQ and PQS molecules.
Notably, IB3-1 cellular morphological analysis revealed massive
cellular damage caused by HHQ at a concentration of 100 μM
(Fig. 4) and significant cellular change for 12. While PQS
(Fig. 4) and to a lesser extent 8–11 (data not shown) caused
moderate changes in cellular morphology, the plasma membrane
remained intact, consistent with the lack of LDH release, com-
pared to 0.1% Triton X-100.

Conclusions

The P. aeruginosa AQ signalling molecules are emerging as key
components of the highly dynamic and bidirectional molecular
dialogue that exists between pathogen and host and within the
mixed microbial populations that are characteristic of infection.
This is the first report highlighting the strict structural require-
ments at the C-3 position underpinning the biological activity of
HHQ and PQS. The control of phenazine production in P. aeru-
ginosa involves a complex interplay between PqsR, AQs and the
last component of the PQS biosynthetic operon, PqsE.38,41,42

The inability of any of the AQ analogues described in this study
to restore phenazine production in a P. aeruginosa pqsA mutant
suggests that the C-3 position is crucial for HHQ and PQS
activity in this important nosocomial pathogen. Interestingly,
addition of the analogues to wild-type cultures did not interfere
with phenazine production, suggesting that they may not be
effective inhibitors in P. aeruginosa. Multi-well biofilm assays
suggest that the analogues do not interfere with the initial stages

Fig. 3 Structural variation of the C-3 position interferes with the bio-
logical activity of P. aeruginosa AQ molecules. (A) Crystal violet stain-
ing of 18 h cultures grown static in multi-well plates revealed that HHQ
interferes with B. subtilis biofilm formation irrespective of its tautomeric
form (HHQone and HHQine). Furthermore, the anti-biofilm activity of
the HHQ chloride salt was comparable to HHQ. However, this anti-
biofilm activity was abolished upon substitution at the C-3 position, irre-
spective of the nature of that substitution (8–12). All compounds were
added at a final concentration of 10 μM and statistical significance was
provided by paired Student’s t-test (***, p-value ≤ 0.001). (B) B. subtilis
swarming motility was assessed after 16 h on 0.3% (w/v) TSA plates.
Notably, substitution with methyl and halogen groups (8–11) which
would be sterically consistent with PQS, was enough to abolish the anti-
swarming activity of the parent compounds, again highlighting the struc-
tural specificity underpinning the biological activity of these compounds.
All images are provided to scale. (C) The ability of HHQ to repress the
growth of a marine isolate on SYP agar was maintained in both tauto-
meric forms, and upon substitution with methyl and halogen groups
(8–11). However, 12 did not exhibit antibacterial activity towards the
marine bacteria, similar to PQS. Data presented is representative of at
least three independent biological replicates.

8906 | Org. Biomol. Chem., 2012, 10, 8903–8910 This journal is © The Royal Society of Chemistry 2012
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of biofilm formation in P. aeruginosa, which is perhaps unsur-
prising as attachment and microcolony formation in pqsA
mutants have previously been shown to be largely comparable to
wild-type.43,44 Flow-cell technology and confocal laser
microscopy will be required to assess the full impact of these
analogues on P. aeruginosa biofilm architecture and maturation.
Notwithstanding this, the correlation between loss of function
both within P. aeruginosa and towards other microbial species
upon functionalisation of the C-3 position is striking. While the
molecular mechanism underpinning the response to HHQ and
PQS in other microbial species remains to be defined, it is inter-
esting to speculate that some structural conservation may exist.

If a simple electron withdrawing group was required at C-3
then halogenation at this point (9–11) would be expected to
produce molecules with similar biological activity. Alternatively
introduction of an NH-group as in 12 (another tautomer can exist
here also) could mimic the –OH group in PQS. However in both
cases the capacity to modulate either P. aeruginosa or interking-
dom behaviour was lost in these compounds. Therefore it is
clear that the 3-H and 3-OH groups in HHQ and PQS respecti-
vely, play a more complex role in these biological systems.
Methylation of the C-3 position (8) led to the generation of a
known signal molecule produced by several Burkholderia
species, which do not have the capacity to produce PQS.

Interestingly, 8 appeared to have lost its ability to restore phen-
azine production or influence interspecies multicellular behaviour,
although it did retain antibacterial activity against Algoriphagus
sp. Therefore, although both compounds are structurally similar,
and produced by important pathogens of the CF-lung, their inter-
species activity profiles are distinct. Again introduction of a
nitrogen at C-3 (12) led to complete loss of biological activity
relative to HHQ, while we have previously shown that an alde-
hyde substituted analogue (4) had intermediate activity relative
to both compounds.24 Although from a chemical perspective,
bacterial conversion of HHQ to PQS would go some way to
explaining this observation, the evolutionary rationale underpin-
ning this has yet to be established. Future structural studies will
involve further manipulation of the 3-site with a view towards
attaining a deeper understanding of the complex roles of these
molecules in bacterial and fungal species.

Experimental (see ESI† for full details)

Preparation of 6

To 3-oxo-methyl-decanoate45 (2.74 g, 13.7 mmol) was added
dry acetone (35 mL). This solution was added to a flask contain-
ing dry potassium carbonate (1.76 g, 12.7 mmol) over a N2

Fig. 4 C-3 substitution abrogates cytotoxic activity of HHQ. Cytotoxicity is expressed as a percentage of the total amount of LDH released from
cells treated with 0.1% Triton X-100 (given the percentage of 100). The release of LDH was measured in cell culture medium of IB3-1 cells treated
with methanol or ethanol, or with 100 μM of HHQ, the HHQ chloride salt, PQS, methylated HHQ analogue 8, halogenated HHQ analogues 9–11 or
analogue 12. Data (means ± SD) are representative of three independent biological experiments. Two-tailed unpaired student’s t-test was performed by
comparison of IB3-1 cells treated with HHQ analogue molecules with IB3-1 cells treated with methanol or ethanol (**, p-value ≤ 0.01; ***, p-value
≤ 0.001). Phase-contrast microscopy of IB3-1 cells untreated (CONT) or treated with HHQ, PQS, or 12 at a concentration of 100 μM for 16 h. Triton
X-100 (0.1%) was used as a control in these studies. Original magnification 40×.

This journal is © The Royal Society of Chemistry 2012 Org. Biomol. Chem., 2012, 10, 8903–8910 | 8907
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atmosphere. The reaction mixture was allowed stir for 20 min
before the addition of methyliodide (1.02 mL, 16.4 mmol). Stir-
ring was continued at room temperature overnight before being
heated at reflux for 6 h. The mixture was allowed to cool and the
solvent was removed in vacuo to yield the crude product as a
yellow oil. Purification was carried out using silica column
chromatography to yield 6 as a pale yellow oil (1.17 g, 40%).
(Found: C, 67.15; H, 10.2. C12H22O3 requires C, 67.3; H,
10.35%.) νmax (film)/cm−1 2930 (CH stretch), 2857 (CH
stretch), 1749 (CvO ketone), 1717 (CvO ester), 1456 (CH
scissor, bending), 1204 (C–O ester). δH (CDCl3, 300 MHz) 0.88
(3H, t, J = 6.7 Hz, CH3), 1.23–1.27 (8H, m, 4 × CH2), 1.33 (3H,
d, J = 7.2 Hz, CO–CH(CH3)–CO), 1.53–1.66 (2H, m,
CH2CH2CO), 2.52 (2H, qt, J = 7.4, 17.2, 27.4, 44.6 Hz,
CH2CO), 3.53 (1H, q, J = 7.1 Hz, CO–CH(CH3)–CO), 3.73
(3H, s, OCH3). δC (CDCl3, 75.5 MHz) 12.8, 14.0 (2 × CH3),
22.6, 23.5, 28.98, 29.00, 31.6, 41.4 (6 × CH2), 52.3 (CO–CH–
CO), 52.7 (OCH3), 171.1 (CvO ester), 205.9 (CvO ketone).
Exact mass calculated for C12H23O3 [(M + H)+], 215.1647.
Found 215.1642, m/z (ES+) 215 [(M + H)+, 30%].

Preparation of 7

To a solution of 2-methyl-3-oxo-methyl-decanoate (1.27 g,
5.94 mmol) in dry hexane (30 mL) was added aniline (0.57 mL,
6.24 mmol) and p-toluene sulfonic acid (0.023 g, 0.12 mmol).
The reaction mixture was heated at reflux under a N2 atmosphere
for 16 h. The reaction was allowed to cool and the solvent was
removed in vacuo yielding 7 as an orange oil (1.35 g, 79%).
(Found: C, 74.3; H, 9.2; N, 5.2. C18H27NO2 requires C, 74.7; H,
9.4; N, 4.8%.) νmax (film)/cm−1 3216 (NH stretch), 2952 (CH
stretch), 2928 (CH stretch), 2856 (CH stretch), 1744 (CvO),
1657 (CvC), 1612, 1594 (NH bend), 1252 (C–O), 1229 (C–O),
1164 (C–O). δH (CDCl3, 400 MHz) 0.84 (3H, t, J = 7.0 Hz,
CH3), 1.17–1.29 (8H, m, 4 × CH2), 1.37–1.46 (2H, m, CH2),
1.59 (1H, s, CH3), 1.86 (1H, s, CH3), 2.26–2.30 (1H, m, CH2),
2.34–2.38 (1H, m, CH2), 3.52–3.75 (4H, m, CH3), 7.03–7.10
(2H, m, 2 × ArH), 7.13–7.19 (1H, m, ArH), 7.26–7.35 (2H, m, 2
× ArH), 10.81 (1H, bs, OH). δC (CDCl3, 75.5 MHz) 12.5, 14.0
(2 × CH3), 22.6, 27.7, 28.7, 28.8, 29.4, 31.6 (6 × CH2), 50.7
(CH3), 124.8 (quaternary C), 125.1, 125.6, 128.9, 129.1, 129.3
(5 × ArC), 160.8 (ArC–N), 163.8 (C–N), 171.7 (CvO). Exact
mass calculated for C18H28NO2 [(M + H)+], 290.2120. Found
290.2116, m/z (ES+) 290 [(M + H)+, 56%].

Preparation of 8

Diphenyl ether (45 mL) was heated at reflux (270 °C) and the
enamine (1.35 g, 4.68 mmol) was added dropwise over 90 min
ensuring reflux was maintained and the mixture was heated for
an additional 1 h. The mixture was then allowed cool to room
temperature and the formed methanol was removed in vacuo.
4 M HCl (6 mL) was then added and the organic layer extracted
with ethyl acetate (2 × 8 mL) dried over anhydrous MgSO4,
filtered and the solvent removed in vacuo to yield crude product
as a brown oil. Purification was achieved using silica column
chromatography to yield product as a dark brown solid followed
by two recrystallisations from methanol to yield 8 as a white

crystalline solid (10.6 mg, 10%). δH (CD3OD, 400 MHz) 0.88
(3H, t, J = 6.8 Hz, CH3), 1.30–1.46 (8H, m, 4 × CH2),
1.68–1.75 (2H, m, CH2), 2.15 (3H, s, CH3), 2.81 (2H, t, J =
7.9 Hz, CH2), 7.33 (1H, t, J = 8.1 Hz, ArH), 7.53–7.55 (1H, m,
ArH), 7.60–7.64 (1H, m, ArH), 8.22 (1H, d, J = 7.5 Hz, ArH).
δC (CD3OD, 75.5 MHz) 10.8, 14.4 (2 × CH3), 23.7, 30.0, 30.2,
30.5, 32.9, 33.5 (6 × CH2), 116.2 (quaternary C), 118.7 (ArC),
124.4 (quaternary C), 124.5, 126.2, 132.7 (3 × ArC), 140.6,
153.4 (2 × quaternary C), 179.5 (CvO), m/z (ES+) 258
[(M + H)+, 100%].

Preparation of 3-bromo-2-heptylquinolin-4(1H)-one, 9

Method A. To a stirred solution of 3 (0.5 g, 2.05 mmol) in
dichloromethane (10 mL) and methanol (2.5 mL) was added
portionwise N-bromosuccinimide (0.73 g, 4.1 mmol) and the
reaction was stirred at room temperature for 24 h. The solvent
was removed in vacuo and the crude product was purified by
recrystallisation in ethanol yielding 9 as a white solid (0.245 g,
37%).

Method B. To a stirred solution of 3 (0.389 g, 1.6 mmol) in
acetic acid (4 mL) was added dropwise over 30 min, a solution
of bromine (0.1 mL, 1.8 mmol) in acetic acid (1 mL). Reaction
progress was monitored by TLC analysis. After 1 h, the reaction
mixture was poured into 1% aqueous sodium sulfite (100 mL).
The precipitate was filtered and washed with water yielding the
product 9 as a white solid (0.245 g, 47%). Mp 245–248 °C
(EtOH). νmax (KBr)/cm

−1 3432 (OH stretch), 2926 (CH stretch),
2855 (CH stretch), 1631 (CvN), 1607 (aromatic), 1559 (CvN
conjugated), 1475 (CvC stretch aromatic), 572 (C–Br). δH
([CD3]2SO, 300 MHz) 0.85 (3H, s, CH3), 1.26–1.34 (8H, m, 4 ×
CH2), 1.70 (2H, m, CH2), 2.84–2.89 (2H, m, CH2), 7.33–7.38
(1H, m, ArH), 7.57–7.70 (2H, m, 2 × ArH), 8.09 (1H, d, J =
7.9 Hz, ArH), 12.03 (1H, bs, OH). δC ([CD3]2SO, 75 MHz) 13.9
(CH3), 22.0, 27.6, 28.3, 28.6, 31.1, 34.5 (6 × CH2), 105.5
(C–Br), 117.8 (ArC), 122.7 (quaternary C), 123.6, 125.2 131.9
(3 × ArC), 138.7 (quaternary C), 152.0 (CvN), 171.24 (C–OH).
Exact mass calculated for C16H21NOBr [(M + H)+], 322.0807.
Found 322.0792, m/z ES+ 322.3 [(M + H)+, 100%].

Preparation of 3-chloro-2-heptylquinolin-4(1H)-one, 10

HHQ·HCl (3·HCl)† (0.839 g, 3.0 mmol) was dissolved in
methanol (50 mL) before addition of 2 M NaOH until neutral
followed by water (10 mL). Sodium dichloroisocyanurate
(0.363 g, 1.65 mmol) was then added to the reaction mixture.
The reaction was allowed stir at room temperature overnight. The
precipitate was filtered and washed with methanol. The filtrate
was then acidified to pH 4 and placed in the fridge overnight.
The precipitate was filtered to give an off-white solid. Purifi-
cation by recrystallisation in ethanol yielded 10 as a white crys-
talline solid (0.167 g, 46%). Mp 269–272 °C (EtOH). (Found:
C, 68.7; H, 7.1; N, 5.1; Cl, 12.5. C16H20ONCl requires C, 69.2;
H, 7.3; N, 5.0; Cl, 12.8%.) νmax (KBr)/cm

−1 3454 (OH stretch),
2927 (CH stretch), 2857 (CH stretch), 1634 (CvC stretch, con-
jugated), 1563 (CvN conjugated), 1504 (C–C stretch, in ring,
aromatic), 1477 (CvC stretch, aromatic), 1356 (CN stretch),
584 (C–Cl). δH ([CD3]2SO, 300 MHz) 0.88 (3H, t, J = 6.7 Hz,

8908 | Org. Biomol. Chem., 2012, 10, 8903–8910 This journal is © The Royal Society of Chemistry 2012
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CH3), 1.26–1.34 (8H, m, 4 × CH2), 1.65–1.75 (2H, m, CH2),
2.84 (2H, t, J = 7.8 Hz, CH2), 7.32–7.37 (1H, m, ArH),
7.57–7.70 (2H, m, 2 × ArH), 8.1 (1H, d, J = 8.1 Hz, ArH),
12.03 (1H, bs, OH). δC ([CD3]2SO, 150 MHz) 13.9 (CH3), 22.0,
27.5, 28.4, 28.6, 31.1, 32.1 (6 × CH2), 113.3 (C–Cl), 118.0 (Ar–
CH), 123.4 (quaternary C), 123.5, 125.1, 131.8 (3 × Ar–CH),
138.6 (quaternary C), 150.7 (ArC), 170.9 (CvO). Exact mass
calculated for C16H21NOCl [(M + H)+], 278.1312. Found
278.1317, m/z (ES+) 278 [(M + H)+, 100%].

Preparation of 3-iodo-2-heptylquinolin-4(1H)-one, 11

To a stirred solution of 3 (0.333 g, 1.37 mmol) in glacial acetic
acid (10 mL) was added portionwise N-iodosuccinimide
(0.315 g, 1.40 mmol). Reaction progress was monitored by TLC
analysis and after 2 h, the precipitate was filtered, washed with
acetic acid and acetonitrile. Purification was achieved by silica
column chromatography (80/20 ethyl acetate/hexane, ramping to
100% ethyl acetate) to yield 11 as a white crystalline solid
(0.22 g, 48%). Mp 221–225 °C (EtOAc). (Found: C, 52.4; H,
5.4; N, 3.9. C16H20INO requires C, 52.0; H, 5.5; N, 3.8%.) νmax

(film)/cm−1 3419 (OH stretch), 2921 (CH stretch), 1627 (CvN),
1557 (CvN conjugated), 1474 (CvC stretch aromatic), 1134
(C–O alcohol), 571 (C–I). δH ([CD3]2SO, 300 MHz) 0.84–0.88
(3H, m, CH3). 1.27–1.37 (8H, m, 4 × CH2), 1.63–1.71 (2H, m,
CH2), 2.88–2.93 (2H, m, CH2), 7.30–7.35 (1H, m, ArH),
7.57–7.68 (2H, m, 2 × ArH), 8.05–8.08 (1H, d, J = 8.1 Hz,
ArH). δC ([CD3]2SO, 75 MHz) 13.9 (CH3), 22.0, 27.9, 28.3,
28.7, 31.1, 38.7 (6 × CH2), 85.8 (C–I), 117.8 (ArC), 120.6 (qua-
ternary C), 123.8, 125.4, 131.9 (3 × ArC), 139.0 (quaternary C),
154.5 (CvN), 173.1 (C–OH). Exact mass calculated for
C16H21NOI [(M + H)+], 370.0668. Found 370.0664, m/z ES+

370.3 [(M + H)+, 100%]. (Assigned as the quinoline tautomer.)

Preparation of 12

A mixture of anthranilamide (20.5 mmol, 2.791 g), n-octanal
(20.5 mmol, 3.2 mL) and sodium bisulfite (30.75 mmol, 3.2 g)
in dimethylacetamide (30 mL) was stirred at 150 °C for 2 h.
Reaction progress was monitored by TLC analysis. The reaction
mixture was poured into water (500 mL) and the precipitate
filtered. The precipitate was recrystallised from ethanol to give
product 12 as an off-white crystalline solid (3.82 g, 76%). Mp
124–127 °C (EtOH). (Found: C, 73.4; H, 8.2; N, 11.4.
C15H20N2O requires C, 73.7; H, 8.25; N, 11.5%.) νmax (KBr)/
cm−1 3448 (OH stretch), 3034 (C–H stretch aromatic), 2919 (CH
stretch), 2855 (CH stretch) 1674 (CvC), 1616 (CvN), 1470
(CH2 bend), 1341 (C–N stretch), 1149 (C–O alcohol). δH
(CDCl3, 300 MHz) 0.88 (3H, t, J = 6.8 Hz, CH3), 1.25–1.51
(8H, m, 4 × CH2), 1.82–1.92 (2H, m, CH2), 2.74–2.79 (2H, m,
CH2), 7.44–7.49 (1H, m, ArH), 7.68–7.80 (2H, m, 2 × ArH),
8.29 (1H, dd, J = 1.1, 8.0 Hz, ArH), 11.10 (1H, bs, OH). δC
(CDCl3, 75 MHz) 14.1 (CH3), 22.6, 27.6, 29.0, 29.2, 31.7, 36.1
(6 × CH2), 120.5 (quaternary C), 126.3, 126.4, 127.2, 134.8 (4 ×
ArC), 149.4 (quaternary C), 156.8 (CvN), 164.0 (C–OH).
Exact mass calculated for C15H20N2O [(M + H)+], 245.1654.
Found 245.1654, m/z ES+ 245 [(M + H)+, 80%].
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a  b  s  t  r  a  c  t

Coated  capillary  electrophoresis  equipped  with  a boron  doped  diamond  (BDD)  electrode  was  developed
for  analysis  of  chemically  synthesised  2-heptyl-3-hydroxy-4-quinolone  (HHQ),  2-heptyl-3-hydroxy-4-
quinolone  (PQS),  and  2-methyl  analogues.  Detection  was  then  extended  to  biological  samples.  PQS  and  its
biological  precursor,  HHQ,  are  two  key  regulators  of  bacterial  cooperative  behaviour  known  as  quorum
sensing  in  the  nosocomial  pathogen  Pseudomonas  aeruginosa.  The  fused  silica  capillary  was coated  with
a thin  layer  of  poly  (diallyldimethylammonium)  chloride  to  reverse  the  electroosmosis,  allowing  fast
migration  of PQS  and  HHQ  with  improved  selectivity.  The  four model  compounds  were  baseline  resolved
using  a 50  mM  H3PO4–Tris,  pH  2.0  buffer  with  20%  (v/v)  acetonitrile  as buffer  additive.  With  an  injection
time  of  3 s,  the  detection  limits  of  four  analytes  ranging  from  60  to 100  nM  (S/N  =  3)  were  observed  when
the BDD  electrode  was  poised  at +1.5  V vs. 3 M  Ag/AgCl.  As expected,  no  PQS or  HHQ  was  detected  from
the supernatant  of  the  P.  aeruginosa  (pqsA)  mutant.  A concentration  of  HHQ  of  247  !M was  detected  from
the  supernatant  of  the pqsH  mutant,  which  catalyses  the conversion  of  HHQ  to  PQS  in  the presence  of
molecular  oxygen  by monooxygenase.  The  separation  and  detection  scheme  was  applicable  to follow
the conversion  of HHQ  to  PQS in  P. aeruginosa  when  entering  the  stationary  phase  of  growth.  The  results
obtained  by  coated  capillary  electrophoresis  with  BDD  detection  were  validated  and  compared  well  with
LC–MS data.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

2-Heptyl-3-hydroxy-4-quinolone, the Pseudomonas Quinolone
Signal (PQS) is a key regulator of bacterial cooperative behaviour
known as quorum sensing in Pseudomonas aeruginosa [1–3]. P.
aeruginosa is best known as an antibiotic resistant human pathogen
associated with hospital-acquired infections and is the primary
cause of morbidity and mortality in cystic fibrosis sufferers [4].
Controlling P. aeruginosa is thus of great clinical importance [5–8].
Research into PQS activity has revealed a vast and varied array
of biological functions [9–15]. 2-Heptyl-4-quinolone (HHQ) is the

∗ Corresponding author. Tel.: +353 21 4902866; fax: +353 21 4274097.
∗∗ Corresponding author. Tel.: +1 514 496 6175; fax: +1 514 496 6265.
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(J.H.T. Luong), g.mcglacken@ucc.ie (G.P. McGlacken).

biological precursor of PQS and also possesses a plethora of bio-
logical functions including signalling responsibilities [12]. It has
recently been shown that HHQ can also control the behaviour of
other bacteria species [16]. Diggle et al. reported that pathogenic
bacteria other than P. aeruginosa synthesise 2-alkyl-4-quinolones
(AHQs). Burkholderia pseudomallei, for example, produces AHQs and
employs a structurally similar molecule to 2-heptyl-4-quinolone
(HHQ) as a signalling molecule but does not produce PQS [12,17].
The chain-shortened analogue of PQS, quinolone 2 (Fig. 1) can act
as an important iron entrapment molecule [12] and it is thought to
be utilised by Arthobacter nitroguajacolicus [18]. Thus convenient,
early stage detection of potential biomarkers PQS, HHQ and other 2-
alkyl quinolones is of great clinical significance. To date, there have
been very few efficient, simple and inexpensive methods for the
detection of these chemically synthesised, or biologically produced,
quinolones.

Analysis of 2-alkyl quinolones has been carried out by Ortori
et al. using LC–MS/MS [19]. These, along with MS  methods

0021-9673/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.chroma.2012.06.064
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Fig. 1. Synthesis of quinolones.

developed by Lépine et al., require expensive instrumentation and
the latter depends on the availability of the synthetic deuter-
ated PQS standard [20]. Fluorometric methods lack selectivity and
others such as chromatographic procedures require sample pre-
treatment, long analysis times and high costs, preventing them
from being applied in routine analysis. Gas chromatography–mass
spectrometry has been used to determine quinolone antibiotics
in food and environmental samples [21]. High-performance liquid
chromatography (HPLC) has also been applied for their separa-
tion and detection [22–25].  A biosensor based detection of PQS
and HHQ has been reported by Williams and co-workers [26].
We recently showed that cyclic voltammetry and amperometry
using a boron-doped diamond (BDD) thin-film electrode proved
an excellent method for the sensitive detection of HHQ, PQS and
other 3-alkyl quinolones [27]. Although the cyclic voltammetric
system selectively detects PQS in the presence of its biological
precursor HHQ, it is likely that PQS analogues (containing a 3-OH
group) with shorter or longer C-2 alkyl chains are present in the
supernatant, would not be suppressed, and may  contribute to the
response signal. Thus, accurate determination of individual compo-
nents which bear very close similarity to PQS is difficult. Capillary
electrophoresis (CE) is increasingly being applied to small molecule
separation because of short analysis times and low consumption of
reagents [28–33].  Improved separation can be achieved by judi-
cious alteration of the capillary wall by electrostatic, hydrogen and
hydrophobic interactions [34]. Cationic polymers such as poly (dial-
lyldimethylammonium) chloride (PDDA) are usually more stable
than neutral polymers [35,36] and make a suitable coating mate-
rial for the capillary wall. PDDA coated capillaries performed very
well for the analysis of peptides and proteins at acidic pH [37–39].

This work herein describes a new approach for the analysis of
chemically synthesised PQS, HHQ and their 2-methyl analogues
using a PDDA coated capillary coupled to a BDD electrode. The
fused silica capillary is coated with a thin layer of PDDA to reverse
the electroosmotic flow (EOF), allowing fast migration and excel-
lent selectivity of chemically synthesised PQS and HHQ and other
quinolones. Extension to biological systems is investigated for the
detection of HHQ and PQS in several supernatant samples from P.
aeruginosa wild-type and mutant strains.

2. Experimental

2.1. Chemical synthesis

Quinolones are synthesised as outlined vide infra.

2.2. Chemicals and materials

Poly (diallyldimethylammonium) chloride (PDDA,
Mw = 200,000–350,000, 20 wt% in water), tris (hydroxymethyl)
aminomethane (Tris), acetonitrile (ACN) and phosphoric acid

(H3PO4) and all the standards were purchased from Sigma–Aldrich
(Dublin, Ireland). The buffer solution for CE contained 50 mM
H3PO4 solution adjusted to pH 2.0 with 0.5 M Tris solution, 20%
(v/v) ACN. Stock solutions (5.0 mM)  of PQS and HHQ were prepared
in 50 mM NaHPO4–Na2HPO4, pH 7, 50% (v/v) ACN. All solutions
were prepared in Milli-Q ultrapure water and filtered through a
0.22 !m pore size membrane followed by sonication for 5 min
prior to use.

2.3. Instrumentation

Amperometric measurement (I/t) and cyclic voltammetry (CV)
were performed using a CHI 1040 electrochemical workstation (CH
Instruments, Austin, TX) at room temperature. The three-electrode
system consists of a boron doped diamond electrode (Windsor Sci-
entific, Slough, Berkshire, UK), an Ag/AgCl (3 M NaCl) reference
electrode (BAS, West Layette, IN) and a Pt wire counter electrode
(Sigma, Dublin, Ireland).

2.4. Electrode preparation

A boron doped diamond (BDD) electrode, 3 mm diameter, 0.1%
doped boron (Windsor Scientific, Slough, Berkshire, UK) was pol-
ished with polishing paper (grid 2000, Hand American Made
Hardwood Products, South Plainfield, NJ) and subsequently with
alumina (Buehler, UK) until a mirror finish was obtained. After
thorough rinsing with deionised water, the electrode was  sonicated
in 2-propanol and deionised water for 5 and 10 min, respectively.
The electrode was cyclised between −0.5 and +2.0 V versus Ag/AgCl
(3 M NaCl, BAS, West Layette, IN) at 0.1 V s−1 in 50 mM phosphate
buffer, pH 7 until a stable CV profile was  obtained. Capillary elec-
trophoresis with BDD electrode detection setup was  as described
previously [40] (see supplementary material).

2.5. Preparation of the coated capillary

A fused-silica capillary (50 !m ID and 365 !m OD) purchased
from Polymicro Technologies (Composite Metal, Shipley, UK) was
cut to 30 cm as the effective capillary length for analysis of the
chemically synthesised quinolones. For the biological samples a
longer capillary of 45 com length was needed to facilitate separa-
tion from other supernatant components. The fused-silica capillary
was rinsed with 1.0 M NaOH and deionised water for 15 min  each
to expose the maximum number of silanol groups on the silica sur-
face. The preconditioned capillary was then rinsed with the 0.2%
(v/v) PDDA in H2O solution followed by 15 min  of incubation. The
coated capillary was  gently rinsed with deionised water for 3 min  to
flush out unsorbed coating materials. Before the first run, the coated
capillary was  equilibrated with the running buffer for 15 min  but
only 3 min  between runs. All these procedures were performed at
25 ◦C. For overnight or prolonged storage, the capillary was rinsed
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Fig. 2. Quinolone protonation and tautomerisation with pH variation.

with deionised water for 15 min  and then stored with the capillary
ends dipped in deionised water.

2.6. Preparation of the biological samples

Supernatant extracts for PQS analysis were obtained using a
modified version of the Fletcher protocol [41]. Briefly, cultures of
the P. aeruginosa mutant strain were incubated overnight in Luria
Bertani broth at 37 ◦C (total 40 mL). Culture supernatants were
obtained by centrifugation (5000 rpm for 10 min) and subsequently
filter sterilised using Minisart (Sartorius) 0.2 !M filters into clean
centrifuge tubes. An equal volume of acidified ethyl acetate (0.01%
(v/v) glacial acetic acid) was added to the cell-free supernatant and
vortexed for 30 s. After centrifugation (5000 rpm for 5 min), the top
organic phase was removed and the process repeated a further two
times to maximise the extraction (total 40 mL). The sample was
then evaporated to dryness using a rotary evaporator. The running
buffer (1 mL)  was then added to the flask to dissolve the sample
which was injected into the capillary.

3. Results and discussion

3.1. Chemical synthesis

HHQ was prepared starting with Meldrum’s acid (0.14 mol)
which was reacted with octanoyl chloride followed by boiling in
MeOH, reaction with aniline [42] and a Conrad–Umpach cyclisa-
tion (Fig. 1) [43]. An alternative cyclisation method reported by
Woschek et al. failed to give any product in our hands [44]. As
quantities of PQS were also required, its synthesis from HHQ was
achieved using conditions described by Pesci et al. [45]. The two-
step procedure proved problematic and 2 equivalents of hexamine
(HMTA) in the initial Duff formylation step was  crucial to obtain-
ing decent yields [46]. The chained-shortened compound 1 was
prepared by refluxing ethyl acetoacetate and aniline followed by
cyclisation in refluxing diphenylether [47]. Quinolone 2 was pre-
pared as described by Hradil et al. [48]. The N-oxide 3 was prepared
by protection of HHQ by esterification, followed by reaction with
MCPBA and base hydrolysis (deprotection) [49]. While quinolones
1–3 may  well be involved in bacterial cooperative behaviour, far
more is known about HHQ and PQS. Thus, these two molecules are
the main focus of this investigation.

3.2. Separation of PQS and HHQ on a bare capillary and a PDDA
coated capillary

Capillary zone electrophoresis (CZE) performed at very high and
very low pH values using high ionic-strength buffers is known
to reduce the electrostatic interaction between the capillary wall
and analytes and can aid separation [50]. Initially, basic condi-
tions were tried for the CE separation of chemically synthesised
quinolones HHQ and PQS. However baseline separation was  not

Table 1
Estimated pKa values using Marvin 6.8, ChemAxon software.

Analytes pKa1 (4) pKa2 (5/6) pKa3

PQS 3.43 9.89 13.86
HHQ 3.02 11.46 –
Qn1  3.57 9.96 13.89
Qn2  3.16 11.49 –

achieved. We  next turned our attention to analysis at lower pH val-
ues. The pKa values and solubilities of the analytes were obtained
using the ACD/Structure Designer software (Advanced Chemistry
Development, Toronto, ON, Canada). 2-Alkyl-4-quinolones (of the
form shown in Figs. 1 and 2, compounds 6) are tautomeric with
2-alkyl-4-hydroxyquinolines (Fig. 2, compounds 5) of which the
predominance of one form is pH dependent [51–53].  It was rea-
soned by lowering the pH, the molecular structure would take
the quinoline form depicted as 5, and may  become protonated as
depicted in form 4, Fig. 2. This would better facilitate separation
based on differentiated pKa values. Based on the pKa calculations
(Table 1) all the analytes are protonated at pH 2.

However, when the normal polarity of CZE was applied, poor
peak shape and resolution was  observed. At pH 2, the positively
charged analytes may  have adsorbed onto the untreated anode
capillary wall, leading to decrease in peak efficiency and poor repro-
ducibility [54] (Fig. 3A).

Coating the capillary wall minimises the electrostatic interac-
tion between the capillary wall and analytes [55,56]. Thus the
cationic polymer 0.2% poly (diallyldimethylammonium chloride)
(PDDA) was used to coat the capillary inner wall of the capillary
[57,58]. Importantly this leads to reversion of the surface charge
of the capillary wall. In a previous report [59] we compared the
electroosmotic mobility for bared fused silica and PDDA coated
capillaries. The electroosmotic mobility of a PDDA-coated capil-
lary (!eof), determined with mesityl oxide as the EOF  marker, was
estimated to be −3.95 × 10−4 cm2 V−1 s−1 (reversal of the flow)
compared to 4.63 × 10−4 cm2 V−1 s−1 for the bare fused silica coun-
terpart. Such a result indicates that the PDDA-coated capillary
become positively charged, owing to the abundance of the qua-
ternary ammonium groups, effecting a reversal of the EOF. It was
expected that at high PDDA concentrations, not all quaternary
ammonium groups of the polymer were engaged in ionic interac-
tions with SiOH of fused silica. As shown in Fig. 3B, all the analytes
are well separated. PQS and HHQ are of higher molecular weight
and are more hydrophobic than quinolones 1 and 2 and migrate
faster in acetonitrile. At pH 2, PQS is more mobile in the EOF
direction compared with HHQ. Interestingly N-oxide 3 shows no
observable peak, perhaps indicative of the need for quinolinium
cation formation for easy detection.
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Fig. 3. Electropherograms obtained using (A) bare capillary, (B) 0.2% PDDA coated
capillary (50 !m id and 40 cm effective length) for the separation of 100 !M (1)
PQS, (2) HHQ, (3) Quinolone 1 (Qn1) and (4) Quinolone 2 (Qn2). The running buffer
consisted of 50 mM H3PO4-Tris, pH 2, 20% (v/v) ACN. The separation voltage was
applied at −10 kV with an injection time of 5 s at −10 kV. BDD poised at +1.5 V vs
Ag/AgCl, 3 M NaCl.

3.3. Buffer condition optimisation

The separation of PQS and HHQ was investigated under differ-
ent buffer conditions to examine the effect of pH. At pH 2, 25 mM
(Fig. 4A(i)), good resolution of PQS, HHQ, quinolone 1 and 2 was
achieved. In order to improve baseline separation for the PQS–HHQ
pair and the HHQ–Qn1 pair, the buffer concentration was  increased
to 50 or 60 mM  (Fig. 4A (ii) and (iii)). As ionic strength increases,
EOF decreases since an increase in buffer electrolyte concentra-
tion has been known to affect the double layer thickness and the
surface charge. The peak current was largely increased with longer
migration time, particularly when the run was performed at 60 mM.
A concentration of 50 mM was chosen as the optimal buffer con-
centration since all four peaks were baseline resolved within a
migration time of ∼330 s. Fine-tuning of the ideal pH for peak
separation was  then carried out using phosphate buffers. Well-
separated peaks were obtained with good sensitivity at pH 1.8 and
2.0, respectively (Fig. 4B (i) and (ii)). The use of buffers with even
slightly higher pH values resulted in poor peak resolution (Fig. 4B
(iii)). Considering the hydrophobicity of PQS and HHQ, ACN was an
essential component of the running buffer to improve the mobil-
ity and help avoid precipitation of the analytes in the capillary. 20%
(v/v) ACN proved optimal (Fig. 4C (i–iv)). The final buffer conditions
were thus optimised as 50 mM H3PO4–Tris, pH 2.0, with 20% (v/v)
ACN as buffer additive.

To further improve peak shape, efficiency and resolution, sep-
arations were performed at different separation voltages (Fig. 5A)
and injection times (Fig. 5B). Below 7.5 kV (Fig. 5A (ii)), migration
times were quite long and peak broadening was observed. At 15 kV,
the baseline noise proved a significant problem. The Ohm’s law plot
(Fig. 5A inset) was  obtained using the 50 mM H3PO4–Tris, pH 2.0,
with 20% (v/v) ACN as running buffer. Above 10 kV, Joule heating
was observed. Therefore, 10 kV (Fig. 5A (iii)) was selected as the
optimal voltage for further experiments. For the injection time, 7 s
gave best results (Fig. 5B (iii)). The detection potential poised at
+0.8 V (Fig. 5C (i)) failed to allow detection of quinolones 1 and
2. Although the detection focused on HHQ and PQS in biological
samples, it would be advantageous if all four quinolones could be

Fig. 4. Optimisation of (A) buffer concentration, (B) pH and (C) ACN content. Electropherograms obtained using PDDA coated capillary (50 !m id and 30 cm effective length)
for  the separation of 100 !M (1) PQS, (2) HHQ, (3) Quinolone 1 (Qn1) and (4) Quinolone 2 (Qn2). The separation voltage was  applied at −10 kV with an injection time of 5 s
at  −10 kV. BDD poised at +1.5 V vs Ag/AgCl, 3 M NaCl. (A) Different buffer concentration: the running buffer consisted of (i) 25 mM,  (ii) 50 mM,  and (iii) 60 mM H3PO4–Tris,
pH  2, 20% (v/v) ACN. (B) Different pH: the running buffer consisted of 50 mM H3PO4–Tris, pH (i) 1.8, (ii) 2.0 and (iii) 3.2, 20% (v/v) ACN. (C) Different percentage of ACN: the
running buffer consisted of 60 mM H3PO4–Tris, pH 2.0, (i) 5%, (ii) 10%, (iii) 20%, and (iv) 40% (v/v) ACN.
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Fig. 5. Variation of (A) separation voltage, (B) injection time and (C) detection potential. Electropherograms obtained using PDDA coated capillary (50 !m id and 30 cm
effective length) for the separation of 100 !M (1) PQS, (2) HHQ, (3) Quinolone 1(Qn1) and (4) Quinolone 2 (Qn2). The running buffer consisted of 60 mM H3PO4–Tris, pH
2,  20% (v/v) ACN. (A) The separation voltage was  applied at (i) −5 kV, (ii) −7.5 kV, (iii) −10 kV, and (iv) −15 kV with an injection time of 5 s. Inlet: Ohm’s law plot. (B) The
separation voltage was applied at −10 kV with an injection time of (i) 3 s, (ii) 5 s and (iii) 7 s. BDD poised at +1.5 V vs Ag/AgCl, 3 M NaCl. (C) BDD electrode poised at (i) +0.8 V,
(ii)  +1.2 V and (iii) +1.5 V vs Ag/AgCl, 3 M NaCl.

detected and separated using a common optimised process. Finally,
a detection potential of +1.5 V (Fig. 5C (iii)) vs. Ag/AgCl gave excel-
lent amperometric detection of all four analytes using the BDD
electrode.

3.4. Limit of detection

Under the optimal separation conditions, each analyte exhib-
ited good linearity (R2 > 0.99, n = 5) between peak height and the
injection time (Table 2). Without loss of resolution, the LODs
(signal-to-noise ratio of 3) of the four analytes range from 60 to
100 nM.  The reproducibility values of migration time were less than
0.4%.

3.5. Determination of HHQ and PQS in supernatant samples of P.
aeruginosa

3.5.1. PA14 pqsA mutant
Synthesis of HHQ proceeds through condensation of anthranilic

acid and a "-keto acid, in a reaction catalysed by the PqsA
enzyme[60]. PqsA is encoded as the first gene in a quintet operon
pqsA-E,  which encodes four enzymatic activities required for HHQ
synthesis, as well as a fifth activity (PqsE) required for activation of
the PQS molecule [61]. The pqsA mutant, therefore, does not pro-
duce HHQ or PQS, and typically lacks several virulence factors and
toxins as a result [61]. A comparison of the supernatant sample with
a spiked sample confirms that no HHQ or PQS was  present (Fig. 6).

3.5.2. PA14 pqsH mutant
Conversion of HHQ to PQS proceeds through the activity of

monooxygenase (PqsH) encoded distant to the pqsA-E operon [61].
PqsH catalyses the conversion of HHQ to PQS in the presence
of molecular oxygen [62], and is unique to P. aeruginosa.  The
pqsH mutant, therefore, produces HHQ but lacks the capacity to

Fig. 6. Analysis of P. aeruginosa pqsA mutant strain using the PDDA coated capil-
lary  (50 !m id and 45 cm effective length). (a) pqsA mutant strains diluted 10-fold
with the running buffer. (b) pqsA mutant strains diluted 10-fold with running
buffer spiked with 100 !M standard (1) PQS and (2) HHQ. Running buffer, 50 mM
H3PO4–Tris, pH 2, 20% (v/v) ACN; separation voltage, −10 kV; injection time, 5 s at
−10  kV; BDD electrode poised at +1.5 V vs. Ag/AgCl.

convert HHQ to PQS (Fig. 7). A concentration of HHQ of 247 !M
was estimated from the electropherogram.

3.5.3. PA14 wild type
PA14 is a clinical isolate of P. aeruginosa originally obtained from

a burn wound patient and has been shown to be highly pathogenic
in a broad spectrum of animal models [63]. This wild-type clin-
ical isolate converts HHQ to PQS upon entry into the stationary
phase of growth (typically over a period of about 12 h). A sample
taken after 8 h showed a conversion from HHQ to PQS of about
60% (Fig. 8).
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Table 2
Calibration curve and limit of detection.

Compound Linear range (!M) Calibration equation R2 LOD (nM) Migration time (s)

PQS 1–100 I (nA) = 0.549 C(!M)  + 0.445 0.996 65 320
HHQ 1–100 I  (nA) = 0.530 C(!M)  − 0.4931 0.990 94 360
Quinolone 1 1–100 I (nA) = 0.411 C(!M)  + 1.170 0.984 61 400
Quinolone 2 1–100 I (nA) = 0.405 C(!M)  + 0.474 0.991 79 490

Fig. 7. Analysis of P. aeruginosa pqsH mutant strain using the PDDA coated capil-
lary  (50 !m id and 45 cm effective length). (a) pqsH mutant strains diluted 10-fold
with the running buffer. (b) pqsH mutant strains diluted 10-fold with the running
buffer spiked with 50 !M standard (1) PQS and (2) HHQ. Running buffer, 50 mM
H3PO4–Tris, pH 2, 20% (v/v) ACN; separation voltage, −10 kV; injection time, 5 s at
−10  kV; BDD electrode poised at +1.5 V vs. Ag/AgCl.

Fig. 8. Analysis of the P. aeruginosa PA14 wild type mutant strain using the PDDA
coated capillary (50 !m id and 45 cm effective length). PA14 wild type cultured 8 h
diluted 10-fold with the running buffer, (a) without spiked standard, (b) spiked with
100 !M standard (1) PQS, (2) HHQ. Running buffer, 50 mM H3PO4–Tris, pH 2, 20%
(v/v) ACN; separation voltage, −10 kV; injection time, 5 s at −10 kV; BDD electrode
poised at +1.5 V vs. Ag/AgCl.

3.5.4. PAO1 mutant
PAO1, a P. aeruginosa reference strain that was initially isolated

from an infected burn wound patient [64]. The strain was  the first P.
aeruginosa isolate to have its genome sequenced [65] and has been
the focus of the majority of research studies. This isolate, which
is less virulent than PA14, nonetheless displayed the capacity to
produce HHQ and PQS in a similar way to PA14, converting HHQ to
PQS upon entry into the stationary phase of growth (Fig. 9). HHQ
and PQS were also detected in this isolate and a conversion of 83%
was calculated.

Fig. 9. Analysis of the P. aeruginosa PAO1 mutant strain using the PDDA coated
capillary (50 !m id and 45 cm effective length). PAO1 cultured 8 h diluted 10-fold
with running buffer, (a) without spiked standard, (b) spiked with 100 !M standard
(1) PQS, (2) HHQ. Running buffer, 50 mM H3PO4–Tris, pH 2, 20% (v/v) ACN; separation
voltage, −10 kV; injection time, 5 s at −10 kV; BDD electrode poised at +1.5 V vs.
Ag/AgCl.

Table 3
Comparison of PQS and HHQ concentration detected from CE-ECD and LC–MS.a

Mutant Concentration CE-ECD
(!M)

Concentration LC–MS
(!M)

PQS HHQ PQS HHQ

PA14 pqsA 0 0 0 0
PA14 pqsH 0 248 0 219
PA14 399 282 323 287
PAO1 212 44 220 43

a Due to a shoulder peak eluted with PQS the area was calculated using OriginPro
8.5.1 software.

3.5.5. Comparison with LC–MS data
Selected samples were also analysed using LC–MS and were

comparable with the values obtained using CE (Table 3 and
supplementary data Fig. SM5). For PA14 pqsA, no PQS  or HHQ was
observed. For PA14 pqsH, a 248 !M HHQ concentration was deter-
mined by CE-ECD compared to 219 !M by LC–MS. PQS was detected
at a concentration of 399 !M in PA14 by CE-ECD and 323 !M by
LC–MS.

4. Conclusion

Our recently published report on the detection of quinolone
biomarkers in P. aeruginosa utilised cyclic voltammetry and amper-
ometric detection [27]. While this method proved efficient and
cost effective for the positive and selective determination of HHQ
and PQS, close analogues could contribute to the signal response
and thus accurate determination of their concentrations is diffi-
cult. Herein we describe the use of capillary electrophoresis in
the separation of key biomarkers for the antibiotic resistant bac-
terium P. aeruginosa. Thus interference from other quinolones can
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be greatly reduced. Capillary electrophoresis with amperometric
detection using different electrode materials is a powerful ana-
lytical tool owing to its high sensitivity and tuneable applied
potential for a variety of electroactive compounds. The experiments
presented here illustrated that this technique is capable of satisfac-
torily separating a number of potential P. aeruginosa biomarkers.
CE equipped with amperometric detection can be miniaturised
and used together with solid-phase microextraction to improve
detection sensitivity for clinical applications. A capillary-electrode
holder could be easily constructed for positioning of the detect-
ing electrode at the end of the capillary column without the aid of
micropositioners or microscopes. The detection limit obtained was
considerably below the normal physiological levels in, for example,
sputum samples of Cystic Fibrosis patients [66]. The applicability of
this technique to clinical isolates is a subject of future endeavour.
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7.1  General introduction 
Fluorine is the element of extremes.1  It is the most electronegative of all 

the elements2 and consequently, a carbon-fluorine bond is highly polar and is the 

strongest bond in organic chemistry.3  Fluorine is the second smallest element in 

the periodic table,4 with a van der Waals radius of 1.47Å, only 20% larger than 

that of hydrogen and significantly less than those of other halogens.5  With regards 

to its steric impact, fluorine is the smallest substance that can replace a hydrogen 

in a molecule, other than an isotope of hydrogen.6  Due to its similarity in size to 

hydrogen, it has been shown that microorganisms or enzymes often do not 

recognise the difference between a natural substrate and its analogue where a C-H 

group has been replaced by a C-F group.4  Fluorine is the 13th most abundant 

element (and the most abundant halogen) in the Earth’s crust, where it is trapped 

as fluorides in minerals such as fluorite and fluorspar.7    

 Despite its relatively high natural abundance, very few compounds 

containing fluorine, have been found in nature.8  Surprisingly, fluorine has been 

identified as a component of only five secondary metabolites (273-277) produced 

in nature (Figure 7.1)8,9 and around 30 minor lipid metabolites of 277 that are ω-

fluorinated homologues of long chain fatty acids found as co-metabolites in the 

seeds of the same plant, Dichapaetalum toxicarium.10  This is in contrast to the 

other halogens.  Chlorine, bromine and even iodine feature in ca. 3000 secondary 

metabolites produced via biosynthetic pathways in plants, fungi and 

microorganisms.11  The underlying reason for this scarcity of fluorinated natural 

products, compared with the relative abundance of other halogenated metabolites, 

is due to the unique chemical attributes of fluorine.  Fluorine has very different 

properties to those of the other halogens and has even been described as a 

‘superhalogen’.12 
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Figure 7.1 Naturally occurring fluorine-containing compounds.8 

7.2  Development of organofluorine chemistry  
 The history of fluorine and its compounds is a relatively short one, most 

likely due to the hazardous nature of hydrofluoric acid and the difficulty in 

accessing elemental fluorine itself.  The first synthesis of hydrofluoric acid from 

fluorspar and sulfuric acid was carried out in 1764 by Marggraf13 and was repeated 

in 1771 by Scheele.14  Surprisingly, it was over 100 years later that the real 

breakthrough in this area of organic chemistry came about, with the first synthesis 

of elemental fluorine in 1886 by Moissan.15-17  The importance of this synthesis 

was highlighted by the Nobel Prize award in Chemistry to Moissan in 1906 "in 

recognition of the great services rendered by him in his investigation and isolation 

of the element fluorine, and for the adoption in the service of science of the electric 

furnace called after him."18  The first examples of nucleophilic and electrophilic 

fluorinaton were reported in the late 19th century,19-21 however the industrial 

application of organofluorine compounds did not start until the beginning of the 

1930s with the introduction of chlorofluorocarbons (CFCs) as refrigerants.22  The 

major turning point in the use of organofluorine compounds in industry was the 

Manhattan Project in 1941, which was the starting point for the development of 

nuclear weapons.23,24  The Manhattan Project required highly resistant materials, 

lubricants, coolants and the improvement of technology for handling extremely 

corrosive inorganic fluorine-containing compounds.  The main precursor for all of 

these materials was hydrofluoric acid and as a result, its consumption increased 

rapidly during the 1940s. There was further development in this area with the onset 
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of the Cold War in 1945 and the subsequent arms race.  After the Cold War, 

attention turned to the use of organofluorine compounds in civilian materials and 

pharmaceuticals.25        

 In 1974, a report published by Molina and Rowland predicted the 

devastating effects of CFCs on the ozone layer.26  The Montreal Protocol, 13 years 

later was the beginning of phasing-out of the use of CFCs.27  Some of the CFCs 

were replaced with other fluorine-containing chemicals, for example 

hydrofluorocarbons, HFCs,28 but on the whole the fluorochemical industry had to 

turn their attention to other fields of application, for example fluoropolymers, 

fluorosurfactants and fluorinated intermediates for pharmaceuticals and 

agrochemicals.25,29        

 A rapidly growing market for organofluorine compounds involves the use 

of these chemicals as intermediates in the pharmaceutical, agrochemicals and 

electronics industries.1 Indeed, in 2011, 3 of the 10 best-selling drugs and 7 of the 

35 newly approved drugs contained fluorine atoms.30  As a result, methods for the 

introduction of fluorine atoms into compounds at both early and late stages of a 

synthesis is an exciting aspect of modern synthetic organic chemistry. 

7.3  Methods of fluorination 
 Despite being a relatively new area of organic chemistry, there are many 

methodologies available that allow the incorporation of fluorine into organic 

molecules.  In recent years in particular, many new reagents and synthetic 

strategies have come to the fore which involve easier use and handling and 

extensive reviews on fluorination methodologies are available in the literature.31-

36  Fluorination procedures are conveniently divided into methods that involve 

electrophilic fluorine and those that involve nucleophilic fluorine. 

7.3.1  Electrophilic fluorination 
 Organic chemists have developed F+ equivalents which allow transfer of 

fluorine to an electron-rich centre.  Various methodologies have been developed 

to allow this transformation, including the use of elemental fluorine, O-F reagents 

and N-F reagents.       

 Shortly after the isolation of elemental fluorine by Moissan in 1886, several 

reactions were carried out whereby organic substances were treated with this 
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highly reactive gas.15-17  Disappointingly, these reactions resulted in sometimes 

violent explosions, whether they were carried out at room temperature or 

extremely low temperatures and no major defined reaction products could be 

isolated.  This is most probably due to the energy released by formation of the 

highly stable carbon-fluorine bonds (~116 kcal mol-1) compared to the energy 

required for dissociation of carbon-carbon (~83 kcal mol-1) or carbon-hydrogen 

bonds (~99 kcal mol-1).  Another contributory factor is the particularly low 

homolytic dissociation energy of elemental fluorine (37 kcal mol-1), which permits 

swift initiation of uncontrollable radical chain reactions, even at low temperatures 

and in the absence of light.1         

 Direct fluorination of aliphatic compounds was achieved in liquid reaction 

media by Bockemüller in 1933.37  By diluting the fluorine gas with either nitrogen 

or carbon dioxide and dissolving the organic substrate in a cooled inert solvent 

(such as CCl4 or CF2Cl2), it was possible to control the reaction enthalpy and 

successfully achieve direct fluorination.38    

 Studies carried out by Fredenhagen and Cadenbach described fluorination 

of volatile organic substances in the gas phase on contact with a copper mesh.39  

This work was further developed by Fukuhara and Bigelow, who reported the 

successful preparation of polyfluorinated products from aliphatic hydrocarbons, 

benzene or acetone via vapour phase fluorination, however very specific apparatus 

was required to carry out these reactions.40     

 An improved methodology using a nickel reactor with different 

temperature zones and silver-doped copper filings as a catalyst was developed in 

the early 1970s by Lagow and Margrave, known as the LaMar direct fluorination 

process.41,42  In this methodology, the concentration of fluorine to inert gas is 

slowly increased, allowing the energy to be liberated in a controlled manner. 

 Selective fluorination of pyridine, quinoline and quinoxaline derivatives 

have been successfully accomplished using fluorine–iodine mixtures.43  In these 

cases, hydrogen atoms α- to the heteroatom were replaced by fluorine.  Specialised 

equipment was required for this methodology.    

 Due to the special equipment and techniques required, as well as their 

potentially explosive, toxic, unstable and hygroscopic nature, alternative reagents 

for electrophilic fluorination were sought after.  N-fluoropyridone44,45 and N-

alkylarenesulfonamides46,47 were all successfully developed and although they 
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proved much easier to handle than previous fluorination reagents, their reactivity 

was considerably lower.  N-fluoropyridinium salts were first developed in the 

1980s and have become an important source of electrophilic fluorine for 

fluorination reactions.48  Studies were carried out by Umemoto et al. into various 

N-fluoropyridinium reagents where it was found that they functioned as useful 

fluorinating agents.49,50  Previous work carried out by Meinert showed that when 

a dilute solution of F2 in N2 was bubbled into a solution of pyridine in CFCl3 at -

80 °C, a moisture-sensitive, unstable, white precipitate – a pyridine-F2 adduct – 

was formed.  This adduct was found to decompose violently at temperatures 

greater than -2 °C, leaving a red-brown oil containing 2-fluoropyridine.  Although 

no physical or spectral data was reported for the adduct, an ionic structure was 

theorised.51  Umemoto and Tomita suggested that the instability of the pyridine-F2 

adduct was due to some nucleophilicity of F- in an ionic form 279, and this could 

be improved by exchanging F- for a non-nucleophilic anion.  A variety of methods 

were used to transform pyridine 278 into N-fluoropyridinium triflate 280 (Scheme 
7.1) in moderate to good yield.48  The results of these reactions support the 

previous suggestion of Meinert that the pyridine-fluorine adduct exists in an ionic 

form.51 

 

Scheme 7.1 Methods for synthesis of N-fluoropyridinium triflate 280. (a) Adduct 

279 prepared in CFCl3 then reacted with TfONa, 67%; (b) TfONa, 71%; (c) 

TfOSiMe3, 45%; (d) TfOH, 44%; (e) TfONa present with F2:N2 mixture, 80%. 

N-Fluoropyridinium salts possessing several different counter-anions 281-
285 were prepared using these methodologies (Figure 7.2).  A series of N-

fluoropyridinium triflates containing electron-donating or electron-withdrawing 

substituents (286-293) was also synthesised (Figure 7.2).  It was found that the 

electrophilic fluorinating power of these reagents increased with decreasing 

electron density of the N+-F site, which can be controlled by altering substituents 
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on the ring itself.48  All of the N-fluoropyridinium salts were deemed to be highly 

stable under anhydrous conditions.48  In 2003, a crystal structure of 280 was 

obtained by Banks et al., with the N-F bond length established as being 1.357 Å, 

which suggests strong back donation of p-electrons of the fluorine atom to the 

nitrogen of the ring.52           

 Although specialised equipment is necessary for the initial fluorination 

step in the synthesis of these N-fluoropyridinium salts,53 many are commercially 

available.54      

 

Figure 7.2 N-Fluoropyridinium salts with alternative counter-anions 281-285 and 

N-fluoropyridinium triflates with electron-withdrawing and electron-donating 

substituents 286-293. 

Fluorination using N-fluoropyridinium salts has been successfully applied 

to aromatics, carbanions, enol alkyl ethers, enol silyl ethers, vinyl esters, enamines 

and alkenes.55         

 These results led to further development of these classes of electrophilic 

fluorinating reagents.  In 1984, a publication by Barnette highlighted the use of N-

fluorosulfonamides 294 as a new class of broadly applicable fluorinating reagents 

that were easily prepared by the reaction of N-alkylsulfonamides with elemental 
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fluorine.46  This finding led the way for development of additional fluorinating 

agents of this type, including N-fluorobis[(trifluoromethyl)sulfonyl]imide56 295 or 

N-fluorobenzenesulfonimide (NFSI) 296 (Figure 7.3).57   

 

Figure 7.3 N-Fluoroalkylsulfonamides employed as fluorinating agents. 

In recent years, structural alterations in N-fluoropyridinium salts have 

resulted in increased yield and specificity of fluorination as well as the elimination 

of side reactions.55  Despite this, it is apparent that on the whole, N-

fluoropyridinium salts are gradually being replaced by more effective and specific 

agents based on the diazabicyclooctane moiety, such as 1-chloromethyl-4-fluoro-

1,4-diazoniabicyclo[2.2.2]octane (Selectfluor® or F-TEDA-BF4) 243 (Figure 
7.4).58,59 

 

Figure 7.4 Commercially available 1-chloromethyl-4-fluoro-1,4-

diazoniabicyclo[2.2.2]octane (Selectfluor®). 

 Selectfluor® is a stable, virtually non-hydroscopic crystalline solid that is 

particularly easy to handle and store.  Indeed, in a self-accelerating decomposition 

test (SADT) carried out to demonstrate its stability, a 55-gallon drum was filled 

with Selectfluor® and heated to 56 °C for 7 days.  During this time, the temperature 

remained constant within ±5 °C.60  Selectfluor® has been found to be stable at 

temperatures up to 195 °C, however the inventors warn that when dealing with 

bulk samples, caution should be exerted when heating above 80 °C.58  Selectfluor® 

is commercially available but can be easily prepared in the laboratory in three steps 

from 1,4-diazabicyclo[2.2.2]octane 297 (DABCO, also known as 
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triethylenediamine (TEDA)) (Scheme 7.2).  Alkylation of 297 using DCM takes 

place in the initial step.  Counterion exchange with sodium tetrafluoroborate 

provides 298, which is fluorinated to give 299 in good yield.  Subsequent reaction 

of 299 with elemental fluorine and sodium tetrafluoroborate affords Selectfluor® 

243 in high yield.58  

 

Scheme 7.2 Synthesis of Selectfluor®. 

 Since the introduction of Selectfluor® in the 1990s, it has demonstrated a 

broad scope of application, as demonstrated by a comprehensive review by 

Nyffeler et al.61    Selectfluor® is soluble in only a few polar solvents, namely, 

acetonitrile, DMF and water.58  Nitromethane has also been found to be a suitable 

solvent as it is inert and sufficiently polar to dissolve Selectfluor®.62,63  In reactions 

where acidic conditions must be avoided, the use of nitromethane as solvent is 

ideal as it precludes the need for a base or proton sponge.  Ionic liquids have also 

been successfully used in fluorination reactions involving Selectfluor®.64,65  The 

mechanism of electrophilic fluorination of compounds using N-fluoropyrimidine 

salts has also been much debated and two possible pathways are suggested for the 

reaction: single-electron transfer (SET) or nucleophilic substitution at the fluorine 

atom (SN2) (Scheme 7.3).  Differding and coworkers have conducted several 

studies into the mechanism of the reactions, which support the SN2 mechanism.66,67  

Vincent et al. reported on the electrophilic fluorination–nucleophilic addition 

reactions of Selectfluor® on glycals.62  Using a hypersensitive radical probe, no 
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product characteristic of a radical process was isolated, suggesting no single 

electron transfer occurs during the attack of the glycal on Selectfluor®.  Borodkin 

et al. used kinetic isotope effects in studying the reaction of 243 and 230 to 

establish that fluorination reactions mediated by Selectfluor® proceed via a polar 

reaction mechanism to provide 302.68  Carbon-fluorine bond formation was found 

to be the rate-determining step in the reaction rather than the step involving 

formation of the Wheland complex 301, based on the small values of kH/kD 

observed (0.86–1.00), meaning no primary kinetic isotope effect was found.  In 

contrast, work by Zhang69 and Kralj et al.70 suggest that the reaction proceeds via 

a SET mechanism.  There is precedence for electrophilic aromatic substitution 

occurring via SET71-73 and a recent publication on the reaction of Selectfluor® and 

chloride provides more evidence for the reaction occurring via this mechanism.74  

In the most recent mechanistic work, Geng et al. reported on a systematic 

theoretical investigation of the fluorination of aromatic compounds using 

Selectfluor® using computational analysis.75  The results indicating that the SET 

mechanism is preferred over the SN2.   

 

Scheme 7.3 Two possible mechanistic routes for fluorination of aromatic 

compounds using NF-reagents, illustrated with Selectfluor®. 

 Selectfluor® has been used in the synthesis of α-fluorinated carbonyl 

compounds and thioethers,76-81 glycosyl fluorides,82 fluorinated aromatic 

compounds,58,83,84 fluorinated alkenes76,85-88,62,63,82,89 and indoles,90,91 vinyl and 

alkyl fluorides92-94 and fluorinated pyrimidines.95  A recent publication by 
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Rangwala et al. demonstrated the use of Selectfluor® in the direct fluorination of 

uracil in the synthesis of radiolabelled 5-fluorouracil ([2-13C]-5-fluorouracil), a 

potential diagnostic agent for measuring 5-fluorouracil induced toxicity in cancer 

patients.96  The synthesis of radiolabelled 5-fluorouracil was achieved in three 

steps starting from reaction of [13C]-urea and propiolic acid to provide [2-13C]-

pyrimidine-2,4(1H,3H)-ione 303.  Selectfluor® 243 was added to a solution of [2-
13C]-pyrimidine-2,4(1H,3H)-ione 303 in distilled water and stirred at 105 °C for 

16 h.  Sodium tetraphenylborate was added and the mixture stirred at 0 °C for 30 

min to afford intermediate fluorohydrin 304, which was converted to the desired 

product 305 via fractionated sublimation (Scheme 7.4).  Addition of sodium 

tetraphenylborate was necessary to separate the spent reagent (consisting of a 

mixture of fluoride, bifluoride and tetrafluoroborate salts of 1-(chloromethyl)-4-

protiotriethylenediamine) from the aqueous solution by conversion to the water 

insoluble salt 1-(chloromethyl)-4-protiotriethylenediamine 

bis(tetraphenylborate).95 

 

Scheme 7.4 Use of Selectfluor® in the preparation of radiolabelled 5-fluorouracil. 

 Liu et al. reported that the direct fluorination of ketones, ketals and 

enamides was accomplished using Selectfluor® with sulphuric acid as an 

additive.97  In order for direct α-fluorination of ketones to occur, initial formation 

of a nucleophilic enol intermediate must take place.  The authors surmised that as 

acidic conditions promote enol formation, improved rate and yield of α-fluorinated 

ketones could be achieved.  A variety of α-fluorinated products 307 were 

synthesised from 306 in this manner in good to high yield (Scheme 7.5). 



Chapter 7  Introduction 

246 
 

 

Scheme 7.5 Synthesis of α-fluorinated ketones using Selectfluor® and H2SO4 as 

an additive. 

 Fluorination reactions of heterocyclic nitro compounds have also been 

accomplished by irradiation with ultrasound in the presence of ammonium acetate 

as a base and Selectfluor®, providing products in low to good yield in 4–6 h.98  

Similarly, Selectfluor® performs well under microwave conditions, with 1,3-

dicarbonyl compounds being successfully fluorinated in 10 min at 82 °C.99 

7.3.2  Nucleophilic fluorination 
 Fluorine can also be introduced into a molecule in a nucleophilic manner, 

in particular in electron-deficient arenes via nucleophilic aromatic substitution.  

The most common methodology for this transformation is a halogen exchange 

(halex) reaction, in which halogen atoms serve as leaving groups and inexpensive, 

inorganic fluoride sources are used as nucleophiles.100  The most suitable 

substrates for halex reactions are arylchlorides due to the higher electronegativity 

of chlorine in comparison to bromine and iodine, however it is usually necessary 

to activate the chloro group by other moieties on the ring to ensure that substitution 

will take place.  The rate determining step in this reaction is the addition of fluoride 

to 308 to form a Meisenheimer complex 309 as aromaticity is lost.  Restoration of 

aromaticity is achieved by elimination of the leaving group to provide 310 
(Scheme 7.6).  The use of high reaction temperatures and phase-transfer catalysts 

can increase the efficiency of halex reactions due to the increased solubility of the 

fluoride.100  
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Scheme 7.6 A typical halex reaction.101 

 Due to the limitations of halex reactions, alternatives such as 

fluorodenitration have been developed.  In fluorodenitration reactions, the nitro 

group functions as a leaving group however activation by other groups on the ring 

is still necessary to ensure a successful substitution reaction.  This is demonstrated 

in the fluorodenitration of 2,3,5,6-tetrachloronitrobenzene 311 to provide 312 

(Scheme 7.7).102 

 

Scheme 7.7 Illustration of fluorodenitration. 

 Other leaving groups that are suitable for displacement by fluoride in 

nucleophilic fluorination reactions are ammonium substituents.  In particular, this 

methodology is useful for the introduction of radio labelled fluoride (18F–).  

Trimethylammonium groups tend to be more electron-withdrawing than nitro 

groups and undergo the transformation to fluorinated compounds more effectively 

than nitroarenes.103        

 Another commonly used nucleophilic fluorinating agent is commercially 

available tetrabutylammonium fluroride (TBAF) 313, which is available as a 

trihydrate.  The use of tetraalkylammonium as counterions for fluoride results in a 
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reduction in the strength of the ionic bond as well as an increase in solubility in 

organic solvents.104  In general, the presence of water in the trihydrate is 

problematic as it reduces the nucleophilicity of the fluoride by hydrogen bonding 

and side reactions are more likely to occur due to the presence of a source of 

hydroxide.  Attempts to dry quaternary ammonium fluorides by heat usually 

results in competing E2-elimination (Hofmann elimination) as fluoride acts as a 

strong base under anhydrous conditions (Scheme 7.8).105 

 

Scheme 7.8 Hofmann elimination observed when attempting to dry TBAF using 

heat. 

 Due to the problems associated with generating anhydrous TBAF using 

heat, alternative methods were investigated.  In 2005, Sun and DiMagno reported 

the successful synthesis of anhydrous TBAF directly from hexafluorobenzene 315 

and tetrabutylammonium cyanide 314 in aprotic solvents (THF, acetonitrile or 

DMS) via nucleophilic aromatic substitution at low temperatures (Scheme 
7.9).106,107  The anhydrous TBAF was found to be stable under nitrogen at -35 °C 

for weeks, however it decomposed slowly in THF or in the solid state by Hofmann 

elimination if warmed above 0 °C.  Conveniently, anhydrous TBAF can be 

prepared in situ in polar aprotic solvents at room temperature and used without 

isolation or purification. 

 

Scheme 7.9 Methodology for the successful preparation of anhydrous TBAF. 
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 In general, fluorination reactions carried out using anhydrous TBAF have 

significant advantages over other nucleophilic fluorinating agents, with increased 

yield of fluorinated products obtained under less harsh conditions.  An example of 

this is demonstrated in the synthesis of 2,6-difluoropyridine 317.  Under regular 

halex conditions, the fluorination of 2,6-dichloropyridine 316, provided 317 in 

56% yield after heating for 10 h at 200 °C (Scheme 7.10 (a)).108  In contrast, when 

the same transformation was carried out using anhydrous TBAF the reaction 

proceeded much quicker and at a lower temperature, with 317 obtained in >95% 

yield after 1.5 h at 20 °C (Scheme 7.10 (b)).107 

 

Scheme 7.10 Comparison of nucleophilic aromatic substitution under (a) regular 

halex conditions and (b) anhydrous TBAF. 

 Tetramethylammonium fluoride (TMAF) has been successfully used to 

provide arylfluroides and has an advantage over TBAF in that it lacks β-hydrogen 

atoms (meaning a Hofmann elimination pathway is avoided) and can be obtained 

as an anhydrous salt.109      

 Traditionally, aryl fluorides 319 are prepared from anilines 318 by the 

Balz-Schiemann reaction, a special class of nucleophilic aromatic fluorination 

reactions involving the pyrolysis of aromatic diazonium tetrafluoroborates 

(ArN2
+BF4

-) (Scheme 7.11, (a)).110  Diazotisation of an aniline in the presence of 

hydrogen tetrafluoroborate (HBF4) followed by either thermal or photochemical 

decomposition of the resulting diazonium tetrafluoroborate provides the desired 

aryl fluoride.  However, due to the acidic conditions, the toxicity of the reagents 

and the potential for explosion, this reaction methodology is not ideal.111  In an 

alternative methodology, aryl fluorides possessing electron-withdrawing groups 

321 have been prepared by halex reactions, where electron-deficient aryl chlorides 

or nitroarenes 320 undergo nucleophilic aromatic substitution at high temperatures 

(Scheme 7.11, (b)).100   
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Scheme 7.11 (a) Balz-Schiemann preparation of aryl fluorides; (b) Halex process 

for the preparation of aryl fluorides. 

7.3.3 Metal-catalysed fluorination 
 Reactions which are performed in the presence of a catalyst usually require 

much milder conditions as they selectively reduce the activation barriers from 

starting material to product.  It is only recently that metal-catalysed cross-coupling 

fluorination reactions have been reported.34  Conceptually, transition metal 

complexes have the potential to selectively reduce the barrier of activation for 

carbon-fluorine bond formation, making a thermodynamically favoured process 

more kinetically accessible.  However due to the high strength of metal-fluorine 

bonds, design of appropriate catalysts to overcome the activation barrier to carbon-

fluorine bond formation is challenging.  It has been reported that the most 

challenging step in cross-coupling aryl fluorinations is the reductive elimination 

step, where both carbon and fluorine, initially bound to the metal, expel the catalyst 

and form a new carbon-fluorine bond.112  In order for reductive elimination of two 

species to take place, there must be sufficient orbital overlap between both metal-

ligand σ-bonds.  Reductive elimination from arylpalladium alkyl complexes 

containing an electron withdrawing group occurs more slowly than complexes 

containing other functional groups.36  Due to fluorine’s high electronegativity and 

small size, metal-fluorine bonds are significantly polarised towards fluorine, 

meaning that electron density is lacking in the region where it is required for 

carbon-fluorine bond formation.  The high polarisation of the metal-fluorine bond 

results in a significant ionic contribution to the bond, strengthening it and in turn 

increasing the energy barrier to carbon-fluorine reductive elimination.  

Methodologies which are used to form metal-fluorine bonds include ligand 
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exchange with nucleophilic fluoride and oxidative addition with electrophilic 

fluorination reagents.34       

 Choice of appropriate transition metals for carbon-fluorine bond formation 

can be directed by assessment of metal-fluorine bond strength: early transition 

metal fluorides generally have stronger metal-fluorine bonds compared to late 

transition metals.  As a result, research into carbon-fluorine bond formation 

catalysis has largely focused on late transition metal complexes.34  

 In 2002, Subramanian and Manzer reported that the electrophilic reagent 

CuF2 had been successfully used in the oxidation of benzene 322 to fluorobenzene 

323, albeit at high temperature (450–550 °C).113  In this approach, the copper 

reagent can be regenerated after fluorination, however only structurally simple 

arenes appear to be amenable to this methodology.  Also, low regioselectivity has 

been observed when substituents are present on the arene (Scheme 7.12). 

 

Scheme 7.12 Use of CuF2 in the preparation of fluorobenzene. 

 By using directing groups, regioselective functionalisation of aryl carbon-

hydrogen bonds can be achieved using milder conditions.  When directing groups 

are attached to an aryl ring, they coordinate to a transition metal and preferentially 

lower the activation energy for carbon-hydrogen bond cleavage by positioning the 

transition metal in close proximity to specific carbon-hydrogen bonds.114  The first 

report on the use of directing groups with transition metal catalysts to afford aryl 

fluorides was described in 2006 by Hull et al.115  The authors described the first 

Pd-catalysed carbon-hydrogen activation/carbon-fluorine bond forming reaction, 

achieved under oxidising conditions using electrophilic (rather than nucleophilic) 

fluorinating reagents. Initial investigations were carried out on 8-methylquinoline 

as it undergoes facile quinoline-directed carbon-hydrogen activation at PdII to 

generate a σ-benzyl Pd species and therefore has proved to be an excellent 
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substrate for related Pd-catalysed carbon-hydrogen activation/oxidative 

functionalisation reactions.116-118  A screen was carried out using a variety of 

electrophilic fluorinating reagents and although initially yields were low to 

moderate, on carrying out the reaction under microwave irradiation, a vast 

improvement in yield was observed.  N-Fluoro-2,4,6-trimethylpyridnium 

tetrafluoroborate 325 was deemed to be the most effective F+ source of those 

tested, affording 326 from 324 in 75% yield (Scheme 7.13). 

 

Scheme 7.13 Initial investigations into Pd-catalysed fluorination of carbon-

hydrogen bonds. 

 The scope of the reaction was then investigated using quinoline/pyridine-

directed benzylic and aromatic substrates 327.  A screen of fluorinating reagents 

determined N-fluoropyridinium tetrafluoroborate 281 to be the optimal source of 

F+ in this case, and microwave irradiation under similar conditions to those used 

previously provided the ortho-fluorinated products 329 in moderate to good yield 

(Scheme 7.14).  The methodology is tolerant of many common functional groups, 

including aryl halides, nonenolisable ketones and esters, trifluoromethyl 

substituents and methyl esters.  The methodology is limited due to the harsh 

reaction conditions required as well as the necessity for ortho-directing groups and 

the need for blocking groups in the ortho'- or meta'-position to avoid 

difluorination. 
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Scheme 7.14 Investigation of substrate scope in Pd-catalysed fluorination of 

carbon-hydrogen bonds. 

 In 2009, Wang et al. published their work on a similar palladium-catalysed 

directed electrophilic fluorination of aromatic carbon-hydrogen bonds of N-

benzyltriflamide derivatives 329 to desired products 330 in moderate to good yield 

(Scheme 7.15).119  In order for the reaction to proceed in synthetically useful 

yields, a new fluorinating reagent, N-fluoro-2,4,6-trimethylpyridinium triflate 288, 

Pd(OTf)2·2H2O and 0.5 equivalents of NMP had to be employed.  Although the 

reaction conditions required were not as harsh as those used by Hull et al., the 

requirement of an ortho-directing group and ortho'- or meta'- blocking group was 

still necessary. 

 

Scheme 7.15 Pd(OTf)2·2H2O-catalysed ortho-fluorination. 

 To improve the scope of aryl fluoride synthesis, the authors demonstrated 

that triflamide 331 can be readily transformed to a broad range of synthetically 

useful functional groups exploiting known reactivities.120,121  These 
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transformations provided access to five major classes of ortho-fluorinated 

synthons including benzylamine 332, benzylazide 333, phenylacetonitrile 334, 

phenylpropanoate 335 and benzaldehyde 336 (Scheme 7.16). 

 

Scheme 7.16 Transformation of triflamides: (a) (i) MeI (3.0 equiv.), K2CO3 (1.5 

equiv.), acetone, reflux, 8 h; (ii) LiAlH4 (2.0 equiv.), THF, reflux, 10 h; (b) (i) ibid; 

(ii) NaH (3.0 equiv.), DMF, 100 °C, 10 h; (iii) HCl (2N):THF (1:2), reflux, 2 h; 

(c-e) (i) NaH (1.0 equiv.), Tf2O (1.0 equiv.), DCM, -78 °C–0 °C, 2 h; (ii) NaN3, 

NaCN or NaCH(COOt-Bu)2 (1.5 equiv.), HMPT, 24 °C, 8 h. 

 As yet, the mechanism for directed electrophilic fluorination has not been 

established.  It is thought that after cyclopalladation, the crucial carbon-fluorine 

bond forming event could occur from a Pd(II) centre without change in the 

oxidation state of the metal (as in the electrophilic fluorination of an aryl Grignard 

reagent122,123) or from a higher oxidation state complex (such as Pd(III)124 or 

Pd(IV)125,126) via carbon-fluorine reductive elimination.  Preliminary mechanistic 

studies by Zhang et al. in 2015 on Pd(II)-catalysed fluorination of sp3 C-H bonds 

suggest that the reaction mechanism proceeds via an inner sphere mechanism.127  

The results were consistent with direct C-F reductive elimination from a high-

valent intermediate as previously predicted.     

 Palladium-mediated electrophilic fluorination without directing groups has 

also been reported, with the carbon-palladium bond introduced by transmetallation 
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rather than cyclopalladation.34  When no directing group is present on the 

substrate, the potential substrate scope is significantly larger than for directed 

fluorinations.  However, this methodology does require the prefunctionalisation of 

substrates to allow the transmetallation step to occur.  Oxidation of an 

arylpalladium(II) complex with an electrophilic fluorinating reagent can produce 

a high-valent arylpalladium(IV) complex which can then undergo reductive 

elimination to form a carbon-fluorine bond (Scheme 7.17).  The reductive 

elimination from Pd(IV) species occurs much easier than from Pd(II) species.128  

 

Scheme 7.17 General scheme of Pd-mediated electrophilic fluorination. 

 A 2012 publication by Fier and Hartwig reported on the fluorination of a 

functionally diverse set of aryl iodides with a simple copper reagent and a 

nucleophilic fluoride source.129  The authors hypothesised that reductive 

elimination from an arylcopper(III) fluoride species would be enabled by a non-

coordinating counterion and weakly donating ligands.  Initial investigation by the 

team showed that when the reaction was carried out in the absence of copper, no 

reaction occurred, meaning a direct reaction between the aryl fluoride and aryl 

iodide did not take place.  The authors next investigated the effect of nitrile ligands 

and counterions on the halex reaction, with the results showing that reactions 

conducted with t-BuCN-ligated CuOTf were more reproducible than those carried 

out with t-BuCN-ligated CuSbF6.  Also, in order for the reaction to occur in high 

yield, it was necessary to have an excess of AgF in the reaction.  Investigation of 
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substrate scope into the conversion of aryl iodides 339 into aryl fluorides 340 

showed that both electron-rich and electron-poor aryl iodides are suitable for the 

reaction (Scheme 7.18).  Reactions carried out with sterically hindered aryl iodides 

were particularly successful, with corresponding aryl fluorides produced in almost 

quantitative yield.  Esters, amides, aldehydes, ketones and indole heterocycles 

were all well tolerated under the reaction conditions.  The authors proposed that 

the reaction occurs by oxidative addition to form a Cu(III) intermediate and 

carbon-fluorine reductive elimination from an arylcopper(III)fluoride.129   

 

Scheme 7.18 Copper-mediated fluorination of aryl iodides. 

 In 2009, Furuya et al. reported their findings on silver-mediated 

fluorination of functionalised aryl stannanes,130 based on literature reports of facile 

transmetallation from aryl stannanes to silver(I) nitrate.131,132  Initial investigations 

using 2.0 equiv. of AgOTf as the Ag(I) source and 1.2 equiv. of Selectfluor® in 

acetone at 23 °C resulted in the aryl fluoride being isolated in 70% yield after 20 

min.  When the fluorinating agent F-TEDA-PF6 342 was used instead of 

Selectfluor®, the yield of fluorinated product increased to 83%.  The authors 

suggested that the increase in yield observed may be due to arylation of the 

tetrafluoroborate anion of Selectfluor® by the aryl stannane to afford aryl 

borates.133  A wide range of aryl stannane substrates 341 were subjected to the 

reaction conditions to provide arylfluorides 340 in good to high yield (Scheme 
7.19).  The silver-mediated fluorination tolerates electron-rich, electron-poor, 

ortho,ortho-disubstituted and heterocyclic aromatics, as well as protic functional 

groups.  The authors then successfully applied the methodology to late-stage 

fluorination of biomedically active aromatics such as camptothecin and quinine. 
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Scheme 7.19 Electrophilic fluorination of aryl stannanes. 

 Preliminary investigations into the mechanism of the reaction suggest that 

fluorination may occur from a redox active aryl silver species with the 

participation of more than one silver atom per carbon-fluorine bond formation 

event, in a bimetallic oxidation-reductive elimination process (Scheme 7.20).  The 

postulated intermediate 343 was observed by 1H and 19F NMR but not isolated.  

The reductive elimination step could proceed in one of two ways: either in a two 

electron process or via one-electron redox participation of two silver atoms.  

Although the authors did not observe high-valent silver fluoride intermediates, the 

addition of various radical scavengers did not have an effect on the yield of 

fluorinated products obtained, suggesting that that formation of free radical 

intermediates is unlikely.  A disadvantage of this method is the toxicity of the 

organotin compounds and consistent formation of 10-20% byproduct, resulting 

from photodestannylation, which can make purification problematic. 

 

Scheme 7.20 Proposed bimetallic oxidation-reductive elimination. 

 This silver(I) triflate methodology was then further developed to allow the 

fluorination of boronic acids and esters using Selectfluor®.134  The reaction uses 
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commercially available reagents, does not require the addition of exogeneous 

ligands, displays high functional group tolerance and results in no detectable 

byproducts resulting from carbon-hydrogen bond formation.  Upon addition of a 

methanol solution of sodium hydroxide to arylboronic acids such as 344, arylsilver 

complexes such as 345 were formed via transmetallation.  Subsequent evaporation 

of methanol and addition of acetone and Selectfluor® for the fluorination step 

provided arylfluorides such as 346 in a one pot synthesis (Scheme 7.21).  Acetone 

was deemed to be the best solvent for the fluorination step, however this was not 

a suitable solvent for the transmetallation step.  Methanol was necessary to ensure 

efficient transmetallation but cannot be used for the fluorination step due to the 

formation of aryl methyl ethers instead for arylfluorides.  Finally, the authors 

found it necessary to include 3 Å molecular sieves as the presence of water resulted 

in undesired phenol formation.  Electron-rich, electron-poor, protic, halogenated 

and ortho,ortho-disubstituted arenes and heterocycles were all tolerated under the 

reaction conditions.  Unfortunately, the stoichiometric accumulation of the 

thermally unstable arylsilver complex proved to be increasingly problematic when 

more complex substrates were exposed to the reaction conditions, limiting the 

methodology somewhat.  The authors suggested that the mechanism may proceed 

via a high-valent silver species from which carbon-fluorine reductive elimination 

can occur. 

 

Scheme 7.21 One-pot fluorination of (4-fluorophenyl)boronic acid. 

7.4  Methods of trifluoromethylation 
 The trifluoromethyl group is an important structural moiety which is 

present in many classes of bioactive organic molecules, most importantly in 

pharmaceuticals and agrochemicals.135,136  The –CF3 group is becoming 

increasingly popular in compounds synthesised for biological application due to 

its high lipophilicity, powerful electron-withdrawing properties and small 

size.4,137,138  In vivo metabolism of drugs by cytochrome P450 oxidases can be 
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problematic as it increases the rate of drug excretion from the body.139  A common 

strategy to protect against in vivo metabolism is to incorporate the trifluoromethyl 

moiety at specific sites of drug candidate molecules.140  When incorporated into 

small molecules, the trifluoromethyl group can often enhance drug efficacy by 

promoting electrostatic interactions with targets, improving cellular permeability 

and increasing robustness towards oxidative metabolism of the drug.141-143  

Trifluoromethylation has also found application in the dye industry, where 

trifluoromethylation of chromophores results in increased light fastness (resistance 

of colours to fading, changing shade or darkening on exposure to light) as well as 

a shift in colour in comparison to their non-fluorinated counterparts.144,145  

Polymers which contain the trifluoromethyl moiety have been reported to possess 

improved chemical and thermal stability, increased solubility and diverse 

mechanical and electrical properties.146  Methodologies for the 

trifluoromethylation of various substrates have been extensively reviewed in the 

literature.147,30,148,136,34        

 The introduction of the trifluoromethyl moiety at a late stage in a synthesis 

is particularly challenging, as many of the synthetic methodologies to incorporate 

the –CF3 group require harsh reaction conditions which can only be applied to 

fairly simple molecules.  In many cases, if more complex trifluoromethylated 

molecules are required, it is necessary to start from a simple molecule containing 

the trifluoromethyl moiety and build the structure around it.149  

 The first method of trifluoromethylation was a halex reaction developed by 

Swarts in 1898.21  Here, antimony trifluoride was used to convert benzotrichloride 

347 to benzotrifluoride 348 (Scheme 7.22).21  Some years later, it was reported 

that anhydrous hydrogen fluoride could also be used to synthesise 348 from 347.150  

A drawback of these methods is that they show low functional-group tolerance, 

the reagents used are hazardous and environmentally unfriendly and large volumes 

of chlorinated waste are formed.   
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Scheme 7.22 Early use of antimony trifluoride as a method of 

trifluoromethylation. 

 Attempts were made to develop alternative reaction conditions for this 

transformation and aluminium trichloride/fluorotrichloromethane151-153 and silver 

tetrafluoroborate154 proved to be successful substitutes for the more hazardous 

reagents.         

 In a similar manner, aromatic orthothioesters can be used to synthesise 

aromatic trifluoromethyl compounds in two steps by the sequential addition of 1,3-

dibromo-5,5-dimethylhydantoin (DBH) or NBS followed by HF in pyridine.155  

The reaction is carried out at a low temperature and yields range from moderate to 

good (34–67%) depending on the nature of the substrate.  The preparation of 

aromatic trifluoromethyl compounds 350 has also been accomplished in moderate 

to good yield (40-77%) by reaction of xenon difluoride and aromatic 

dithiocarboxylic acids 349 (Scheme 7.23), however the high cost and toxicity of 

xenon difluoride diminishes the attractiveness of this methodology.156   

 

Scheme 7.23 Trifluoromethylation of aromatic dithiocarboxylic acids with xenon 

difluoride. 

 Sulfur tetrafluoride has also been successfully utilised for 

trifluoromethylation reactions,157 however application is rather limited due to the 

need for specialised equipment to minimise exposure to sulfur tetrafluoride and 

hydrogen fluoride.158  Diethylaminosulfur trifluoride (DAST), a more easily 
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handled derivative of sulfur tetrafluoride has been reported to trifluoromethylate 

benzoic acid to provide benzotrifluoride in 50% yield in the presence of sodium 

fluoride.159          

 In the late 1940s, Haszeldine published the first report on 

trifluoromethylation via a radical mechanism.160   In his findings, he states that 

trifluoromethyl radicals are generated from iodotrifluoromethane through C-I 

bond homolysis upon irradiation or heating.  In the presence of ethene, 3-iodo-

1,1,1-trifluoropropane was observed as the major product from a radical 

addition/iodine transfer reaction (Scheme 7.24).  The reaction proceeds by the 

addition of a trifluoromethyl radical to ethene to form the corresponding adduct 

radical, which then abstracts an iodine atom from the starting iodotrifluoromethane 

resulting in the observed product and the trifluoromethyl radical which propagates 

the chain.   

 

Scheme 7.24 Radical trifluoromethylation of ethene published by Haszeldine in 

1949. 

 Due to the gaseous nature of iodotrifluoromethane, it is not a convenient 

reagent to work with.  It is not easy to control the concentration, in particular when 

reactions are carried out at higher temperatures.  This prompted the investigation 

of more convenient alternatives, including the electrochemical oxidation of 

trifluoroacetic acid to allow the clean generation of trifluoromethyl radicals161-163 

and the use of Barton thiohydroxamic trifluoromethyl ester as a precursor of 

trifluoromethyl radicals.164       

7.4.1  Metal-catalysed trifluoromethylation 
 In 1969, the first cross-coupling reaction to form trifluoromethylated 

aromatic compounds was reported.165  Upon heating iodobenzene and 

trifluoroiodomethane in DMF with activated copper at 150 °C, benzotrifluoride 

was obtained in 45% yield.  This initial finding prompted more exploration in the 
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area and modifications to reaction conditions and reagents have been 

reported.166,167  The first copper-catalysed trifluoromethylation of aromatic 

compounds was accomplished in 2009, using a diamine ligand to form a copper(I)-

diamine complex.168  Electron-poor aryl iodides 351 were converted to 

benzotrifluorides 352 with a catalytic amount of CuI and 1,10-phenanthroline 

(Scheme 7.25).  Although the mechanism of the reaction has not been investigated, 

it is proposed that it proceeds via generation of a trifluoromethylcopper (“CuCF3”) 

complex,169-171 followed by oxidative addition to form an arylcopper(III) 

intermediate.172-175 

 

Scheme 7.25 First reported copper-catalysed trifluoromethylation of aromatic 

compounds. 

 Copper-catalysed trifluoromethylation of aryl iodides has also been 

accomplished with potassium (trifluoromethyl)trimethoxyborate as a nucleophilic 

trifluoromethylation source.  This reagent provides benzotrifluorides from aryl 

iodides in high yields in mild, base-free conditions in the presence of a catalytic 

amount of CuI and 1,10-phenanthroline.176     

 Wang et al. recently reported Pd(II)-catalysed arene trifluoromethylation 

via C-H activation using a directing group strategy (Scheme 7.26).177  The authors 

found that the use of an electrophilic trifluoromethylating reagent S-

(trifluoromethyl)dibenzothiophenium tetrafluoroborate 354 is more reactive with 

the ArPd(II) species than the corresponding triflate reagent.  TFA was identified 

as a crucial additive for the success of the trifluoromethyl bond-forming protocol 

and Cu(OAc)2 (the role of which remains to be elucidated) was found to be 

effective for enhancing the catalytic turnover.  Electron-donating groups on 

substrates 353 were well-tolerated, as are moderately electron-withdrawing groups 

such as Cl.  On the other hand, substrates which contained strong electron-

withdrawing groups provided trifluoromethylated products in low yield.  Various 
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heterocycles such as pyridine, pyrimidine, imidazole and thiazole can be used as 

the directing group to provide products 355.177  Although this methodology 

obviates the need for pre-functionalisation, the requirement of a directing group as 

well as low functional group tolerance limits the general applicability of the 

reaction. 

 

Scheme 7.26 Pd-catalysed directed electrophilic Ar-CF3 bond forming reaction. 

In 2010, Cho et al. reported the first palladium-catalysed 

trifluoromethylation of aryl halides using (trifluoromethyl)triethylsilyane 

(TESCF3) and potassium fluoride (Scheme 7.27).178  The authors proposed that 

this methodology would have the potential to overcome the limitations associated 

with previously reported copper-catalysed trifluoromethylations: Less harsh 

reaction conditions are required due to the use of a trifluoromethyl source as a 

transmetallating agent and a wide substrate scope for the reaction is possible.  

Previous attempts at this process have proven futile, with several complexes of 

type 358 bearing bidentate ligands providing either no179,180 or only trace 

amounts181 of benzotrifluoride products 348.  When chelating biphosphine ligands 

1,2-bis(diphenylphosphino)ethane (dppe) and 1,3-bis(diphenylphosphino)propane 

(dppp) were employed the results were also disappointing, with benzotrifluoride 

348 obtained in 10-60% yield after 64 h at 145 °C.180  Benzotrifluoride could be 

obtained within 3 h via quantitative conversion of the complex 

XantphosPd(Ph)(CF3), however replacement of the Xantphos ligand in 359 with 

trifluoromethyl ions competes with transmetallation to 358 and as a result, no 

catalytic system was reported.182,183  Complexes 357 were treated with 

(trifluoromethyl)trimethylsilyane and a fluoride source such as CsF (necessary to 

activate the silyl group for transmetallation) to form complexes 358, with the 
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driving force of the reaction being the formation of a silicon-fluorine bond.179-181  

When using trifluoromethylsilanes in the presence of fluoride, fluoride-initiated 

self-decomposition of R3SiCF3 can occur, resulting in R3SiF and 

difluorocarbene.184  In catalytic reactions where high temperatures are necessary 

to promote reductive elimination from 358 to 348, transmetallation must be 

significantly faster than this self-decomposition process in order for the reaction 

to proceed efficiently. 

 

Scheme 7.27 Generalised catalytic cycle for Pd-catalysed aryl 

trifluoromethylation. 

 Previous work by Wang et al. has shown that trifluoromethylated arenes 

can be achieved from pyridine derivatives via C-H activation, oxidation of the 

Pd(II) intermediate with an electrophilic CF3
+ source and a final reductive 

elimination, but the substrate scope was limited to compounds containing specific 

directing groups.177  In contrast, the methodology developed by Cho et al. was 

suitable for a wide range of substrates, however those with protic functional groups 

did not undergo trifluoromethylation, likely due to the fact that such functional 

groups accelerate decomposition of TESCF3 or aryl(trifluoromethyl)palladium(II) 

and arylpalladium(II) fluoride complexes.178  As the nucleophilic trifluoromethyl 

group is slowly generated in situ in the reaction with TESCF3 and KF, the potential 
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for the occurrence of side reactions is diminished.  In a typical experiment 

(Scheme 7.28), a solution of the palladium source and ligand 361 or 362 in dioxane 

was added to spray-dried KF and the aryl chloride.  TESCF3 was added and the 

reaction allowed to stir at 120–140 °C for 6–20 h.  Due to the hygroscopic nature 

of KF, reactions were carried out in a nitrogen-filled glovebox to prevent the 

hydrolysis of TESCF3 during the course of the reaction.  A wide range of both 

electron-rich and electron-poor substrates 360 were exposed to the reaction 

conditions to provide trifluoromethylated products 352 in good to high yield.  

Various heteroaromatic substrates have also been successfully trifluoromethylated 

using these reaction conditions, such as indoles, carbazoles, quinolines and 

benzofuranes.  It was found that substrates containing aldehyde or ketone moieties 

were not suitable for this transformation.  Furthermore, substrates which contained 

unprotected OH or NH groups proved to be problematic under the reaction 

conditions, presumably due to protonation of the CF3 anion to form fluoroform, 

reaction at the silicon centre of TESCF3 and/or competing protonation at the 

palladium centre.178 

 

Scheme 7.28 Pd-catalysed trifluoromethylation of aryl and heteroaryl chlorides. 

 In 2011, a publication from Hartwig’s group provided another 

methodology for the introduction of a trifluoromethyl group, in this case from a 
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pre-functionalised iodinated starting material.185  The authors isolated a 

trifluoromethylcopper(I) reagent ligated by 1,10-phenanthroline 363 that reacts 

with a range of aryl halides 351 in polar, aprotic solvents at mild temperatures (RT 

to 50 °C) to provide trifluoromethylated products 352 in good to excellent yield 

(Scheme 7.29).  Compound 363 can be synthesised, isolated and stored under 

nitrogen or prepared in situ with similar yields of trifluoromethylated product 

obtained in each case.  The reaction conditions are reported to tolerate a wide range 

of functional groups, basic heterocycles and substrates with steric bulk.   

 

Scheme 7.29 Hartwig’s trifluoromethylation using [(phen)CuCF3]. 

 An exciting advance in the area of metal-catalysed trifluoromethylation 

was recently reported by Fang et al., who developed a copper(I)-catalysed, 

regioselective α-trifluoromethylation of a diverse range of α,β-unsaturated 

carbonyl compounds 364 using Togni’s reagent 365 to provide (E)-366 in good to 

high yields (Scheme 7.30).186  The authors carried out investigations into the 

mechanism of the reaction.  A radical mechanism was proposed due to the 

significant inhibition of the reaction observed based on experiments using a radical 

scavenger.   
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Scheme 7.30 Use of Togni’s reagent to directly trifluoromethylate α,β-unsaturated 

carbonyl compounds. 

7.4.2 Trifluromethylation by means of photoredox catalysis 
 In 2011, Nagib and MacMillan reported a novel methodology for 

trifluoromethylation of unactivated arenes and heteroarenes through a radical-

mediated mechanism using commercial photocatalysts and a household light 

bulb.187  The authors sought to take advantage of photoredox catalysis, which 

provides a mild, efficient method for accessing electrophilic radicals, such as ·CF3, 

via photosynthesis-inspired redox chemistry.188-190  This methodology employs 

polypyridyl organometallic complexes whose excitation at room temperature by a 

source of light (such as a common household light bulb) provides a strongly 

oxidising or reducing catalyst that can rapidly engage a variety of substrates to 

provide high energy, reactive species.191  Two redox catalysts were used in the 

study, the choice of which depended on of the starting material they wished to 

functionalise.  Ru(phen)3Cl2 was chosen as catalyst for reaction with five-atom 

electron rich heteroarenes 367 to provide trifluoromethylated products 370.  

Ir(Fppy)3, an iridium photocatalyst with a longer lived excitation state, was used 

with six-atom electron deficient heteroarenes 368 and unactivated arenes 369 to 

afford products 371 and 372 (Scheme 7.31).  Triflyl chloride was the reagent of 

choice to introduce the trifluoromethyl moiety.  The authors noted that the reaction 

tolerates several equivalents of water or alcohol with only a moderate decrease in 

efficiency.  Trifluoromethylated products were obtained in excellent yields of up 

to 94% and the methodology has been successfully applied to the 

trifluoromethylation of biologically active molecules.187  A disadvantage of this 



Chapter 7  Introduction 

268 
 

route is that the photoredox catalysts used are costly, although only 0.01 – 0.02 

equivalents are required per reaction.   

 

Scheme 7.31 Trifluoromethylation of unactivated arenes and heteroatoms by 

means of a photoredox catalyst. 

 Nagib and MacMillan have proposed a mechanism for the reaction 

(Scheme 7.32).  In the proposed photoredox catalytic cycle, initiation occurs via 

initiation of photocatalyst 374 to excited state 373 with a household light bulb.  

The authors assumed that SET reduction of triflyl chloride would be simultaneous 

with the oxidation of *Ru(phen)3
2+ 374 to Ru(phen)3

3+ 375.  This produced a 

CF3SO2Cl radical anion, which would be unstable and would quickly collapse to 

produce stabilised ·CF3, a process that should be entropically driven due to the 

release of SO2 and chloride.192  The resultant electron-deficient trifluoromethyl 

radical is an ideal candidate to add to the most electron-rich position of an arene 

or heteroarene in a selective manner.  The resultant cyclohexadienyl radical 376 

then undergoes a second SET with the now strongly oxidising Ru(phen)3
3+ 

photocatalyst 375 which regenerates the ground-state photocatalyst 374.  Finally, 

deprotonation of 377 with a suitable base provides the desired trifluoromethylated 

arene.  Overall, the reaction proceeds in a redox, catalytic fashion without the need 

for pre-functionalisation.187 
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Scheme 7.32 Proposed mechanism for the direct trifluoromethylation of aryl C-H 

bonds via photoredox catalysis. 

7.4.3  Methyl fluorosulfonyldifluoroacetate (MFSDA) 
 MFSDA was first reported as a suitable reagent for trifluoromethylation in 

1989 by Chen and Wu.193  It is an easy to handle liquid which is readily obtained 

from the corresponding acid fluoride, which is a starting material for producing 

commercial Nafion H® ion-exchange resins.194  Gratifyingly, MFSDA is 

commercially available from a number of chemical suppliers at reasonable cost.  

However, if necessary, it may be prepared in the laboratory via a number of 

different methods. MFSDA can be prepared by reacting 3,3,4,4-

tetrafluoro[1,2]oxathiethane-2,2-dioxide with sodium methoxide;194 in two steps 

from difluoro(fluorosulfonyl)acetic acid;195 or by the dropwise addition of 

methanol to trimethylsilyl fluorosulfonyldifluoroacetate.196  Trifluoromethylated 

compounds 380 were obtained upon heating a solution of MFSDA 378, aryl, 

alkenyl or alkyl halide 379 and a catalytic amount of CuI (12 mol%) in DMF at 

60-80 °C for 2-6 h (Scheme 7.33).193  
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Scheme 7.33 Reaction of MFSDA with halogenated compounds to form 

trifluoromethylated products. 

 Chen and Wu deemed the order of reactivity of the halides to be RI > RBr 

> RCl, with the bromo derivatives being quite efficient and the chloro derivatives 

more sluggish.  The presence of CuI is essential to the success of the reaction.  

When the reaction was carried out without a catalytic amount of CuI, no reaction 

occurred.  The authors also tested KI as an alternative to CuI, however in this 

reaction the alkyl halide was recovered and fluoroform was the major product.  

DMF was used as solvent for the reaction, however the authors noted that DMSO 

could be used to provide products in comparable yields.193   

 The accepted mechanism for the reaction (Scheme 7.34) comprises an 

initial step involving the formation of a copper salt 381 from MFSDA 378 with 

the elimination of methyl halide.  The salt then decomposes to release 

difluorocarbene and a fluoride ion, which are in equilibrium with a DMF stabilised 

trifluoromethyl anion 382.  In the presence of CuI, the equilibrium shifts to form 

[CF3CuI–] 383, which reacts with a halogenated starting material 379, to provide 

trifluoromethylated product 380, following release of CuX and I–.193  A radical 

mechanism has been ruled out on the basis of experimental and computational 

data.197 
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Scheme 7.34 Accepted mechanism for trifluoromethylation reactions using 

MFSDA. 

MFSDA has been used to trifluoromethylate 1,1-dibromo-1-alkenes 384, 

which resulted in a novel type of trifluoromethyl-containing building block.198  

When the reaction was carried out under the usual conditions required for 

trifluoromethylation using this reagent, a mixture of bistrifluoromethylated 

compound 385, monotrifluoromethylated compounds (E)-386 and (Z)-386 along 

with unreacted 384 was isolated.  These compounds were difficult to separate, with 

a ratio of 2:1:1 of 385:(E)-386:(Z)-386 (Scheme 7.35, (a)).  Addition of a 

palladium catalyst (Pd(PPh3)4) in an attempt the provide a single product and 

improve the reaction efficiency greatly improved the bistrifluoromethylation,  with 

385 isolated in up to 90% (Scheme 7.35, (b)).198   

 

 



Chapter 7  Introduction 

272 
 

 

Scheme 7.35 Trifluoromethylation of 1,1-dibromo-1-alkenes (a) without 

palladium catalyst and (b) with palladium catalyst. 

Stereospecific and highly regioselective trifluoromethylation of trans-1,2-

diiodoalkenes was achieved in excellent yields using MFSDA.199  In cases where 

the diiodoalkene is substituted by an aryl or a carboethoxy group 387, the iodo 

substituent at the terminal position is replaced by a trifluoromethyl group to 

provide products 388 in high yield in a regio- and stereospecific manner (Scheme 
7.36). 

 

Scheme 7.36 Stereospecific and highly regioselective trifluoromethylation of 

trans-1,2-diiodoalkenes. 

In 2000, Zhang et al. demonstrated that MFSDA could be used to provide 

trifluoromethylated α,β-unsaturated esters in very good yields.200,201  In this route, 

aldehydes 389 were reacted with ylide 390 to provide α-bromo- α,β-unsaturated 

esters 391 with the (Z)-isomer as the major product.  Trifluoromethylation was 

then accomplished using MFSDA to provide 392 in a mixture of (E)- and (Z)-
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conformations (Scheme 7.37).  This was later extended to a one-pot synthesis to 

provide a stereoselective synthesis of (E)-α-trifluoromethyl-α,β-unsaturated 

esters.202 

 

Scheme 7.37 Use of MFSDA to synthesis trifluoromethylated α,β-unsaturated 

esters. 

 MFSDA has also been used in the trifluoromethylation of 4-iodosydnones 

393, with products 394 being obtained in moderate to good yield (Scheme 7.38).203  

When the reaction was carried out with 4-iodo-N-phenylsydnone, the resultant 

trifluoromethylated product was obtained in 79% yield.  The presence of an 

electron-donating p-methoxy phenyl group on the ring had little effect on the 

reaction and a similar yield was obtained (80%).  When an electron-withdrawing 

p-nitro phenyl substituent was present, trifluoromethylation required a longer 

reaction time to provide the desired product in moderate yield (55%).  Non-

aromatic groups present on the nitrogen atom were also well tolerated under the 

reaction conditions.  

 

Scheme 7.38 Trifluoromethylation of 4-iodosydnones using MFSDA. 

In 2001 the first report involving MFSDA with nucleosides was 

published.204  In this paper, the authors reported the synthesis and characterisation 

of RNA containing an analogue of adenosine in which the C6 amine was replaced 

with a trifluoromethyl group to give 6-trifluoromethylpurine ribonucleoside 396.  

Although 396 had previously been synthesised by the reaction of a sugar-protected 
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6-chloropurine ribonucleoside and trifluoromethyl copper,205 the long reaction 

time (60 h) and low yield (29%) warranted investigation of alternative methods.  

Thus Véliz et al. attempted the trifluoromethylation with tri-O-acetyl-6-bromo-

purine ribonucleoside 395 via two methods.204  Using MFSDA, compound 396 

was prepared in 91% yield (Scheme 7.39), or in 96% using CF3I/Zn/CuI/DMF.  

However, due to the ease of manipulation of the liquid MFSDA in comparison to 

the gaseous CF3I, the former reaction is certainly more desirable.  

 

Scheme 7.39 The first reported use of MFSDA as a trifluoromethylating agent in 

nucleoside synthesis. 

 In 2010, Dong et al. reported the use of MFSDA to introduce the 

trifluoromethyl moiety at the 8-position of purine nucleosides.206  When the 

trifluoromethylation of 397 was carried out using MFSDA, CuI and 

hexamethylphosphoric triamide (HMPA) in DMF, trifluoromethylated product 

398 was obtained, however it was discovered that decomposition of 398 occurred 

after several hours in the reaction solution.  If 397 was protected by reaction with 

2-(chloromethoxy)ethyl acetate to provide 399 prior to trifluoromethylation, 400 

could be obtained as a more stable compound (Scheme 7.40).  This strategy was 

then successfully used to synthesise the first reported cyclic-ADP-ribose mimic. 



Chapter 7  Introduction 

275 
 

 

Scheme 7.40 Model reaction for the trifluoromethylation at the 8-position of 

purine nucleoside. 

 Pyrazoles possessing fluorocarbon substituents are becoming increasingly 

prevalent as synthetic targets and building blocks within the fine chemical 

sector.207,208  Some noteworthy examples of bioactive fluorinated pyrazoles 

include nonsteroidal anti-inflammatory drug (NSAID) celecoxib 401 

(Celebrex®)209 and the herbicide fluazolate 402 (Figure 7.5).  Trifluoromethylated 

pyrazoles are classically synthesised using 1,1,1-trifluoromethyl-1,3-diketones, as 

this approach exploits the ready availability of trifluoroacetic acid derived 

precursors.210-212  To some extent, regiocontrol can be achieved by careful choice 

of solvent,213 however often mixtures of products result. 
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Figure 7.5 Examples of bioactive trifluoromethylated pyrazoles. 

 Foster et al. developed a more convenient strategy to allow late stage 

trifluoromethylation of pyrazoles using MFSDA.214  Trifluoromethylation of 4-

iodo-N-phenylsydnone 403 was carried out using typical conditions for MFSDA 

trifluoromethylations to provide product 404 in good yield (Scheme 7.41).  The 

authors then successfully applied their methodology to the synthesis of the 

herbicide fluazolate5  

 

Scheme 7.41 Application of MFSDA in the synthesis of trifluoromethylated 

pyrazoles. 

 The 3-iodo-4-phenoxypyridinone (IOPY) is characteristic of a new family 

of pyridinone based non-nucleoside reverse transcriptase inhibitors (NNRTI’s) 

which are highly active in vitro against a comprehensive panel of HIV-1 mutant 

strains found in AIDS patients.215  It was conceived that the iodo substituent at the 

C-3 position could be substituted for a variety of different functional groups, 

providing a range of compounds which could be tested for anti-HIV activity.  

Benjahad et al. effectively utilised MFSDA to incorporate a trifluoromethyl group 

at the C-3 position.216  Successful preparation of 407 involved first alkylating 

IOPY 405 under Mitsunobu conditions to provide 2-O-para-methoxybenzyl 
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pyridine 406 in 58% yield.  Subsequent reaction of 406 with MFSDA and CuI in 

DMF afforded the desired trifluoromethylated product 407 in 87% yield (Scheme 
7.42).  Compound 407 was then subjected to testing on wild-type HIV and showed 

anti-HIV activity similar to IOPY 405.  Further evaluation of 407 against HIV 

mutant strains, however, showed that it was less active than the parent compound 

405.216 

 

Scheme 7.42 Synthesis of 3-trifluoromethyl-4-phenoxypyridinone 407 using 

MFSDA. 

 Late-stage trifluoromethylation is of particular importance in the synthesis 

of steroids, where the use of a trifluoromethylated building block strategy can be 

extremely difficult.  In 1998, Fei et al. published their findings on a new, 

convenient route for the trifluoromethylation of steroidal molecules.217  Steroidal 

4-en-3-ones 408 were first brominated with bromine in a mixture of acetic acid 

and diethyl ether in the presence of 2,4,6-trimethylpyridine (collidine), a proton 

acceptor.  This suppressed allylic bromination and provided the monobromo 

derivative at C-4 409 in 62-81% yield (Scheme 7.43, (a)).  The authors found 

MFSDA to be the most suitable route for the trifluoromethylation of these steroidal 

compounds, with catalytic amounts of CuI required to provide the corresponding 

4-trifluoromethylated products 410 in 70-91% yield.218  Attempts were made to 

introduce the trifluoromethyl moiety at the C-3 position, firstly by brominating 

411 to provide 412219 and subsequent reaction with MFSDA to yield 413, however 

these products were obtained in disappointing yields (ca. 30%) (Scheme 7.43, 
(b)).217 
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Scheme 7.43 Use of MFSDA in the trifluoromethylation of steroidal molecules at 

(a) C-4 and (b) C-3. 

 Aryl triflates are important synthetic molecules as they undergo 

regioselective cross-coupling reactions with different organometallic 

compounds.220-223  It was postulated that trifluoromethylated aryl triflates would 

be ideal intermediates in the synthesis of bioactive trifluoromethylated aromatic 

compounds.  In 1997, Qing et al. reported an efficient synthesis of ortho-

trifluoromethylated aryl triflates using MFSDA.224  In this methodology, the 

triflate group is introduced prior to the trifluoromethylation.  Initial attempts at the 

MFSDA trifluoromethylation proved disappointing, with the reaction taking place 

slowly and only partial conversion to product taking place.  When the reaction was 

carried out for longer times and higher reaction temperatures, it was found that 

decomposition occurred.  This is most probably due to the concomitant formation 

of perfluoroethyl derivatives (which are difficult to remove during work up and 

purification) by the competing carbene insertion reaction to trifluoromethyl 

copper.  Trifluoromethyl copper can be stabilised by addition of HMPA to the 

reaction mixture.169  When Qing et al. carried out the MFSDA trifluoromethylation 

reaction on 414 with the addition of HMPA, ortho-trifluoromethylated aryl triflate 

415 was obtained in 84% yield and no decomposition product was detected, 

indicating the importance of the stabilisation of the reactive trifluoromethylcopper 
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species by HMPA (Scheme 7.44).224  The methodology has also been successful 

for meta- and para-trifluoromethylation, as well as for more complex starting aryl 

iodides.  

 

Scheme 7.44 Synthesis of trifluoromethylated aryl triflates using MFSDA with 

HMPA. 

 Tetrahydrofluoroene 418 has been identified as a potent agonist of 

oestrogen receptor subtype ERβ, a potential therapeutic agent for the treatment of 

symptoms associated with reduced oestrogen levels in postmenopausal 

women.225,226  In the discovery chemistry of 418, the trifluoromethyl moiety was 

successfully incorporated by iodination of 416 and subsequent reaction with 

MFSDA and CuI in DMF to provide trifluoromethylated product 417 in 79% yield.  

Further transformations provided the desired product 418 (Scheme 7.45).227  

However, due to the long linear synthesis required to produce 418, this route was 

deemed not to be viable for scale-up.   
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Scheme 7.45 Use of MFSDA to incorporate a trifluoromethyl group in an 

intermediate en route to desired product 418. 

 An alternative synthesis was used to provide 418 on scale-up.227 

Compound 419 was iodinated using NIS in acetic acid to provide iodinated product 

in 92% yield. Trifluoromethylation to afford 420 was accomplished using MFSDA 

and CuI in DMF, with the MFSDA added in a dropwise fashion to the preheated 

reaction mixture (90 °C) in order to control the heat of reaction on kilo-scale 

(Scheme 7.46).   



Chapter 7  Introduction 

281 
 

 

Scheme 7.46 Alternative synthesis of 418 with MFSDA used to incorporate the 

trifluoromethyl group. 

 MFSDA has also been used to introduce the trifluoromethyl moiety in the 

synthesis of various complex structures and bioactive molecules.228-240 

7.4.4  Enantioselective trifluoromethylation 
 Enantioselective α-trifluoromethylation of carbonyls has also been 

successfully accomplished with appropriate electrophilic reagents.  The 

enantioselective α-trifluoromethylation of aldehydes has been reported using two 

different methods.  One methodology proceeds via photoredox catalysis via a 

radical mechanism.  Using iodotrifluoromethane as trifluoromethylating agent, 

chiral organocatalyst 422, iridium catalyst 423 and light from a fluorescent light 

bulb, aldehydes 421 were transformed into the corresponding α-trifluoromethyl 

aldehydes 424 in high yield (61–86%) and  selectivity (90–99% ee) (Scheme 
7.47).241  
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Scheme 7.47 Enantioselective trifluoromethylation of aldehydes using 

trifluoroiodomethane as the trifluoromethyl source, amine catalyst 422, Ir catalyst 

423 and light. 

 In a more recent publication from the MacMillan group, a novel 

methodology for the enantioselective synthesis of α-trifluoromethylated aldehydes 

has been developed via the merger of Lewis acid and organocatalysis with an 

electrophilic trifluoromethyl alkylating agent.242  In this non-photolytic approach, 

the desired trifluoromethylated products can be obtained under mild reaction 

conditions using commercially available, bench-stable reagents and catalysts 

without the requirement of a light source.  Products 424 were obtained in high 

yields (70–87%) and selectivities (93–97% ee) from simple aldehyde substrates 

421 using Togni’s reagent, a hypervalent iodine reagent 426 as the electrophilic 

trifluoromethylating reagent and a chiral imidazole catalyst 425 (Scheme 7.48).  
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Scheme 7.48 Enantioselective trifluoromethylation of aldehydes using 

hypervalent iodine 426 as the trifluoromethyl source with amine catalyst 425. 

 In 2012, a publication from Zakarian’s group reported on a simple method 

for asymmetric trifluoromethylation of N-acyl oxazolidinones 427 via ruthenium-

catalysed radical addition to zirconium enolates to provide trifluoromethylated 

products 428 in moderate to good yield (34-79%) and selectivities (up to >98:2 dr) 

(Scheme 7.49).  The zirconium enolates generated in situ from ZrCl4 and Et3N act 

as radical acceptors in these transformations.243 

 

Scheme 7.49 Ruthenium-catalysed diastereoselective radical trifluoromethylation 

of chiral N-acyloxazolidinones. 

7.5  Importance of fluorine in pharmaceuticals and agrochemicals 
 Despite the scarcity of fluorine in natural products, a vast number of 

synthetic fluorine-containing compounds have been used in a multitude of 

applications due to the unique properties attributed to fluorine containing 
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molecules.  Due to the similarity in size between hydrogen and fluorine, it is often 

the case that enzymes or microorganisms cannot differentiate between a natural 

substrate and its fluorinated analogue – known as the “mimic effect” of fluorine 

for hydrogen.  Also, the introduction of a single fluorine substituent can induce 

electronic effects on its neighbours by affecting the electron density of various 

functional groups, for example hydroxyl and amino groups.  This results in a 

decrease in both the pKa value and Lewis basicity of these functional groups and 

thus slows their oxidation.4  The bioavailability of a drug molecule is highly 

dependent on its lipophilicity, hydrophobicity and ionisation.  It is widely thought 

that incorporation of a fluorine atom or fluorinated group increases the 

lipophilicity of aromatic compounds, thereby increasing the bioavailability of the 

compound.  In contrast, a decrease in lipophilicity is observed when fluorine is 

introduced into aliphatic compounds.4  Due to the fact that fluorine is the most 

electronegative element, groups containing fluorine have unique inductive effects 

on the physicochemical properties of the molecules which possess them.  Indeed, 

substantial changes in pKa values of carboxylic acids, alcohols or protonated 

amines are noted when fluorine is incorporated into these molecules.  Thus 

whenever fluorine atoms are incorporated into bioactive compounds, these 

substituents will exert strong effects on the binding affinity for the receptors or 

target enzymes, biological activities and pharmacokinetics.4    

 Two of the most early examples of pharmaceuticals which contain fluorine 

are 9α-fluorohydrocortisone 429, an anti-inflammatory drug,244 and 5-fluorouracil, 

an anticancer drug 430 (Figure 7.6).245  Both 429 and 430 were developed in the 

1950s, with the introduction of a single fluorine atom to the corresponding natural 

products bringing about remarkable pharmacological properties.  Since then, the 

incorporation of fluorine into pharmaceutical and veterinary drugs to enhance their 

pharmacological properties has become almost standard practice.4  Indeed, one of 

the best-selling drugs of all time, atorvastatin 431 (Figure 7.6) (marketed as 

Lipitor® by Pfizer), a member of the statin drug class used to lower blood 

cholesterol, contains a fluorine molecule in its structure.  Over 14.5 years, from 

1996 to 2011, Lipitor® generated over $125 billion in sales.246  
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Figure 7.6 Structures of 9α-fluorohydrocortisone 429, 5-fluorouracil 430 and 

atorvastatin 431. 

 In a report in Genetic Engineering and Biotechnology News listing the top 

25 best-selling drugs of 2014, 7 contained at least one fluorine atom.247  In fact, 

one of the newest drugs to the market which contains a fluorine atom is sofosbuvir 

(Sovaldi®) 432, a nucleotide analogue used in combination with other drugs for 

the treatment of Hepatitis C.  Sofosbuvir reached sales of ~$10 billion in 2014, 

making it the second best-selling drug of 2014.  Advair® (a combination of 

fluticasone 433 and salmeterol) and rosuvastatin (Crestor®) 434 also made it into 

the top 10.  Sitagliptin (Januvia®) 435, an antihyperglycemic drug for the treatment 

of diabetes mellitus type 2, placed 19th based on its annual sales, followed by HIV 

treatments Atripla® and Truvada® at 22nd and 23rd respectively, both of which 

contain fluorine containing components such as efavirenz 436 and emtricitabine 

437 as part of a fixed-dose multi-drug combination.  Based on sales of ~$2.7 billion 

in 2014, Celebrex® 401 which contains a trifluoromethyl group, was deemed to be 

the 25th best-selling drug of the year (Figure 7.7). 
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Figure 7.7 Top-selling drugs of 2014 which contain at least one fluorine atom. 

 The huge success observed with fluorine-containing drugs in recent years 

has inspired research into the incorporation of fluorine and trifluoromethyl groups 

(at both late-stage development and in early-stage building blocks) in many drug 
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discovery programmes.  Every new drug development programme, without 

exception, explores fluorine-containing drug candidates.4  In many cases, a wide 

range of fluorine-containing compounds based either on known natural products 

or on novel skeletons have been synthesised and subject to biological evaluation.  

The interest in incorporation of fluorine into molecules has provided expansion 

and development into safe, efficient methodologies for these transformations.  The 

limited availability of fluorochemicals for pharmaceutical and agrochemical 

applications is largely due to the exceptional properties and perilous nature of 

fluorine and fluorochemical sources.  Also, in many cases, established synthetic 

methods for ordinary organic molecules do not work well for fluorochemicals 

owing to their distinctive reactivity.4      

 An additional role of fluorine is the use of radioactive 18F–labelled organic 

compounds for positron emission tomography (PET) imaging in hospitals.  Due to 

its optimal physical half-life of 110 min, 18F is the most important positron 

emitting isotope as it allows for multistep radiosynthesis and longer in vivo 

investigation.248,249 

7.6  Biological importance of 2-pyrones 
 2-Pyrones are a privileged biological scaffold with broad-spectrum 

biological activity spanning cytotoxic, antibiotic and antifungal activity.250-252  The 

2-pyrone scaffold 438 is a six-membered cyclic unsaturated ester that shares 

chemical and physical properties reminiscent of alkene and aromatic compounds.  

This structural moiety is commonly found in bacteria, microbial, plant, insect and 

animal systems and partakes in a variety of biological processes, including defence 

against other organisms, as key biosynthetic intermediates and metabolites.  

Simple 2-pyrones such as triacetic acid lactone 439 and tetraacetic acid lactone 

440 (Figure 7.8) are used as precursors in the synthesis of biologically important 

compounds including pheromones,253 solanapyrones,254 α-chymotrypsin,255 

elastase,256 coumarins257 and analogues.258  Prominent examples of biologically 

active 2-pyrones include the bufadienolide class, an important group of steroidal 

molecules characterised by a 2-pyrone connected through a steroid nucleus, such 

as in bufalin 441.259  Bufadienolides have been shown to have diverse biological 

effects, including causing cardiac poisoning in animals and showing inhibitory 

activity towards leukaemia cell lines.250 
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Figure 7.8 Biologically important compounds containing the 2-pyrone moiety. 

Numerous protocols have been designed for the synthesis and decoration 

of 2-pyrones.260-265  More specifically, functionalisation of the 3-position of 4-

alkoxy-2-pyrones has been accomplished under Suzuki–Miyaura266-268 and 

Sonogashira269 conditions.  3,4-Difluorinated pyrones 444 have been synthesised 

in moderate to good yield from (2E)-2,3-difluoro-3-iodoacrylic acid 442 with 

terminal acetylenes 443 under Sonogashira alkynylation conditions using 

PdCl2(PPh3)2 in combination with CuI as a co-catalyst (Scheme 7.50).270  Apart 

from palladium, the formation of 2-pyrones has also been successful with various 

other metal-based catalysts including gold,271,272 rhodium,273,274 ruthenium275-277 

and nickel.278 

 

Scheme 7.50 Synthesis of difluorinated 2-pyrones involving Sonogashira-type 

alkynylation. 

 In a recent publication by Yeh et al. 6-trifluoromethyl-2-pyrones 448 have 

successfully been prepared in moderate to excellent yield in a one-pot isothiourea-

mediated Michael addition/lacontisation/thiol elimination cascade sequence from 

(phenylthio)acetic acids 445 and α,β-unsaturated trifluoromethyl ketones 446 

using an organocatalyst 447 (Scheme 7.51)279 
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Scheme 7.51 Synthesis of 2-pyrones using an organocatalyst, DHPB (3,4-dihydro-

2H-pyrimido[2,1-b]benzo-thiazole). 

  C-3 substituted 2-pyrones are present in bioactive polyketides such as 

nigerapyrone E 449 which possesses a methyl group at C-3 (Figure 7.9).280  The 

trifluoromethyl moiety is present (incorporated prior to cyclisation and ring 

formation) at the C-3 position of the 2-pyrone moiety of fused bicyclic 

heterocycles 450 and 451 (Figure 7.10), which exhibit antifungal activity.281   

 

Figure 7.9 Biologically active structures containing the 3-substituted 2-pyrone 

moiety. 

7.7  Biological importance of 2-pyridones 
 2-Pyridones are also an attractive target for synthetic organic chemists as a 

number of biologically active molecules contain this structural moiety.282-284  The 

first pyridone alkaloid, a poisonous crystalline solid named ricinine 452, was 

isolated from castor beans in the19th century by Tuson.285  The 2-pyridone moiety 

is present in many naturally occurring compounds which possess both antibacterial 

and antifungal activity,286 such as 2-pyridone alkaloids 453–455 (Figure 7.10) 
which have been isolated from a New Zealand marine-derived Penicillium 
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species.287  Some 2-pyridones are also reported to possess antitumour,288 

antibacterial282 and other biological activities.289,290  2-Pyridones also play an 

important role as key intermediates in the synthesis of pyridine, piperidine, 

quinolizidine and indolizidine alkaloids.291  In general, 2-pyridones are more 

highly active in vitro and in vivo and are more water soluble than their respective 

4-quinolone analogues.282   

 

Figure 7.10 Structures of biologically active molecules containing the 2-pyridone 

moiety. 

 2-Pyridones can be synthesised either from other heterocyclic systems or 

by condensation of acyclic systems.291  Conversion of 2-pyrones 456 to 2-

pyridones 457 can be achieved by reaction with a desired amine (Scheme 7.52), 

however yields for these reactions are low to moderate.292  Alternative syntheses 

include the oxidation of pyridines293 and the Guareschi-Thorpe condensation of 

acyclic precursors such as cyanoacetamide with 1,3-diketones in the presence of 

ammonia.294,295 

 

Scheme 7.52 Conversion of 2-pyrones to 2-pyridones by reaction with amines. 

 Direct functionalisation of the 3-position of 2-pyridones is limited and in 

general, the desired function groups are added to the acyclic precursor prior to 

cyclisation or are already present on the molecule before transformation to the 2-

pyridone.291  However there are some instances where direct functionalistion of 2-

pyridones has been achieved, for example in the synthesis of nucleic acid related 

compounds such as 5-bromo-3-deazauridine 461.296  Bromination of 4-hydroxy-
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2-pyridone 458 provided the dibrominated product 459 in good yield.  Selective 

debromination at C-3 was then carried out to afford 460 in good yield, which was 

further transformed to the desired product 461 (Scheme 7.53).   

 

Scheme 7.53 Direct functionalisation of 4-hydroxy-2-pyridone in the synthesis of 

5-bromo-3-deazauridine 461. 

Another example of direct functionalisation includes iodination at the 3-

position of 5-bromo-2-pyridone which was achieved in high yield by refluxing 

with NIS in acetonitrile.297  Other successful functionalisation strategies include 

halogenation and nitration at the 3-position of 4-amino-2-pyridone or 4-hydroxy-

2-pyridone.298         
 Many 2-pyridones with substitutions at the 3-position possess interesting 

biological activity.  2-Pyridone 462 (Figure 7.11) has been identified as a specific 

non-nucleoside reverse transcriptase inhibitor of human immunodeficiency virus-

1 (HIV-1).299,300  Other biologically active molecules containing substitutions at 

the 3-position include milrinone 463 and amrinone 464301 (Figure 7.11) and their 

analogues,302-304 which are used for the treatment of cardiac failure.  2-Pyridone 

407, which contains a trifluoromethyl group at the C-3 position was synthesised 

using MFSDA and has potential as a HIV treatment.216  However, a significant 
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disadvantage in the synthesis of 407 was the requirement for carbonyl protection 

prior to trifluoromethylation.   

 

Figure 7.11 Structures of biologically active molecules containing the 2-pyridone 

moiety. 

7.8  Biological importance of 2-coumarins 
 Coumarins are an important class of O-heterocyclic natural products.  The 

parent substance of this benzo-α-pyrone group, coumarin 465 (Figure 7.12), was 

isolated in 1820 from tonka beans (Dipteryx odorata) by Vogel.305  Naturally 

occurring coumarins are found in a variety of plant families and essential oils.306-

308  The coumarin moiety is found in a variety of compounds which display a wide 

range of biological activities such as anticoagulants (including warfarin 466 and 

phenprocoumon 467),309 antineurodegeneratives,310 antioxidants,311 anticancer312 

and antimicrobials.313  Additionally, coumarins have attracted much attention as 

potential fluorescent probes recently due to their excellent fluorescent capabilities 

resulting from the electron-rich and good charge-transport properties of the π-π 

conjugated system.314  
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Figure 7.12 Structure of some biologically active coumarins. 

 Due to the wide range of application of coumarin-containing compounds, 

methods for their synthesis is of particular interest to organic chemists and 

syntheses including the Pechmann condensation,315,316 the Perkin reaction,317 the 

Knoevenagel condensation,318 the Wittig reaction319-321 and the Baylis-Hillman 

reaction.322,323        

 Functionalisation of coumarins at the 3-position is possible by either 

adding the desired groups prior to cyclisation to give the coumarin product or, less 

commonly, substitution at this position at a late stage in the synthesis.  Typical late 

stage functionalization at the 3-position of coumarins involves simple substitution 

reactions such as amination and halogenation.  4-Hydroxycoumarin 468, for 

example, can be aminated selectively at the 3-position to provide 3-amino-4-

hydroxycoumarin 469 in moderate yield (Scheme 7.54).324  The presence of an 

amino group at the 3-position allows the potential for further functional group 

transformations at this position.    

 

Scheme 7.54 Direct amination of the 3-position of 4-hydroxycoumarin. 

 Direct fluorination of coumarins was reported in 1986 by Rozen and 

Brand.325  Coumarin 465 was treated with F2/N2 to provide difluoro adduct 470 in 

moderate yield.  Subsequent elimination of HF (by adsorbtion of 470 on a silica 

gel column) provided dehydrofluorinated product 471 in quantitative yield 

(Scheme 7.55). 
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Scheme 7.55 Fluorination of coumarin using F2/N2. 

The trifluoromethyl group has been successfully incorporated at the 3-

position of coumarins.  In 2014, Li et al. published a methodology that allowed 

the construction of trifluoromethylated coumarins 473 via copper-catalysed direct 

trifluoromethylation of propiolates 472 using Togni’s reagent 365 (Scheme 
7.56).326  Preliminary mechanistic studies by the authors suggest that the reaction 

proceeds via a CF3 radical addition to activated alkynes, followed by sequential 

oxidation cyclisation to provide the desired coumarin products. 

   

Scheme 7.56 Synthesis of 3-trifluoromethylated coumarins using Togni’s reagent. 

Also in 2014, Cao et al. reported selective 3-trifluoromethylation of 

coumarins 474 with sodium trifluoromethylsulfinate 475 (Langlois reagent) in the 

presence of Mn(OAc)3 via a radical mechanism.327  The reaction proceeds under 

mild conditions in air to afford selective 3-trifluoromethyl coumarins 476 in 

moderate to good yields (Scheme 7.57). 
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Scheme 7.57 Direct 3-trifluoromethylation of coumarins using Langlois reagent 

and Mn(OAc)3. 

7.9  Biological importance of 2-quinolones 
Many 2-quinolones have been discovered to possess biological activity.328  

In 2013, Sagong et al. synthesised a range of 3-hydroxyquinolin-2-(1H)-ones and 

tested their potential as inhibitors of the pandemic H1N1 influenza A 

endonuclease.329  The authors reported that two of the compounds synthesised, 6- 

and 7-(4-fluorophenyl)-3-hydroxyquinoline-2-(1H)-one 477 and 478 (Figure 
7.13) were potent inhibitors of H1N1 influenza A endonuclease, with the 

molecules found to chelate to two metal ions at the active site of the enzyme.  

Similar compounds have also been reported to possess selective inhibitory 

properties against HIV-1 reverse transcriptase associated ribonuclease H activity, 

however high cellular cytotoxicity limits their application as antiviral agents.330 

 

Figure 7.13 Biologically active 2-quinolones which were deemed to be potent 

inhibitors of H1N1 influenza A endonuclease. 

 In a recent publication by Abe et al., 4-hydroxy-3-methyl-2-quinolone 480 

is synthesised in high yield from 2-methyl-3-oxo-3-(phenylamino)propanoic acid 

479 using Eaton’s reagent.331  Subsequent steps provide intervenolin 481, which 

inhibited tumour growth in model mice (Scheme 7.58). 
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Scheme 7.58 Synthesis of intervenolin, a natural quinolone. 

The C-3 substituted quinolone moiety is found in potential therapeutic 

agents, including in 482 (Figure 7.14), which possesses a methyl group at C-3, a 

compound which has potential in the treatment of central nervous system disorders 

associated with phosphodiesterase 2 (PDE2).332 

 

Figure 7.14 3-substituted-2-quinolone which is a potential treatment for CNS 

disorders. 

7.10  Biological importance of 4-quinolones 
 Many 4-quinolones have also been discovered to possess biological 

activity.  The 4-quinolone class of antimicrobial agents has generated considerable 

interest since the discovery of nalidixic acid 483 more than 50 years ago.333-335  

Development of this class led to the now well-known fluoroquinolones, which 
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have been widely used as antimicrobial agents.  The first marketed 

fluoroquinolone, ciprofloxacin 484, came to the fore in the mid-1980s.  

Ciprofloxacin demonstrates excellent activity against both Gram-negative and 

Gram-positive bacteria and results in excellent clinical efficacy in a variety of 

infections.336  Since then, third- and fourth-generation fluoroquinolones such as 

levofloxacin 485 and gemifloxacin 486 have been developed (Figure 7.15), which 

are active against Streptococcus (third-generation) and act against DNA gyrase 

and topoisomerase IV (fourth-generation) with this dual action slowing the 

development of resistance.337,338,282,339     

 In addition to possessing bactericidal properties, the quinolone scaffold is 

present in the structures of certain anti-cancer340 and anti-viral341 drugs and also in 

anti-oxidants.342  The quinolone moiety is also present in compounds that display 

anti-malarial activity.343     

 

Figure 7.15 Biologically active molecules containing the quinolone moiety. 

Numerous methodologies are available for the synthesis and 

functionalisation of quinolones.344  A classical approach for the synthesis of 4-

quinolones is the use of the Conrad-Limpach synthesis, in which the desired 

aniline 487 is condensed with a β-ketoester 488 to form a Schiff base 489 which 

is cyclised to form the desired quinolone 490 (Scheme 7.59).345  High boiling point 

solvents are required for the final cyclisation step and yields for quinolones 

obtained from this methodology are known to be low.346  
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Scheme 7.59 Conrad-Limpach quinolone synthesis. 

 Other classical approaches to form quinolones include the Niementowski 

reaction of anthranilic acids with ketones or aldehydes347 and the Camps quinolone 

synthesis, in which an o-acylaminoacetphenone is reacted with a base to provide 

both 2- and 4-quinolones.348       

 Due to the significant biological activity associated with quinolones, 

interest in developing new methods for the preparation of these compounds has 

increased.  These improved synthetic methodologies include the use of transition 

metal catalysis such as that reported by Jones et al. using copper to catalyse the 

amidation of o-halophenones 491 followed by a base-promoted Camps cyclisation 

of the resulting N-(2-ketoaryl)amides 492 to provide the desired quinolones 493 in 

up to 97% yield (Scheme 7.60).349 

 

Scheme 7.60 Copper-catalysed formation of quinolones. 

 Palladium has also been successfully used to catalyse the formation of 4-

quinolones.  In 2009, Zhao and Xu reported an efficient one-step formation of 

functionalised 4-quinolones 494 via a palladium-catalysed tandem amination 

approach from easily accessible o-haloaryl acetylenic ketones 495 and primary 
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amines with the desired product obtained in excellent yields (Scheme 7.61).350  

This methodology was then successfully extended to the use of alkyl amines and 

in these cases, palladium was not required to catalyse the reaction.351 

 

Scheme 7.61 Palladium-catalysed formation of quinolones. 

 As can be seen from the above examples, functionalisation of quinolones 

is usually carried out prior to cyclisation, however there are some examples of late-

stage  functionalisation of these molecules, including a recent publication by Li et 

al. demonstrating the direct C-3 alkenylation of N-methylated quinolones via 

palladium-catalysed C-H functionalisation.352  Direct halogenation of the 3-

position of 4-quinolones has also be achieved using commercially available 

halogenating reagents.353  Regioselective iodination at the 3-position of N-

methylated 4-quinolone was recently achieved using a rhodium(III) catalyst.354  

Alternatively, specific groups can be incorporated prior to cyclisation which can 

be transformed to alternative functionalities.344    

 2-Trifluromethyl-4-quinolones 498 have found application as potential 

antimicrobial agents, with the library of compounds synthesised by Panda and Jain 

exhibiting good antibacterial activity towards Gram-positive bacteria and some 

showing moderate antifungal activity.355  The authors chose to incorporate a 

trifluoromethyl group in the compounds for a number of reasons: To increase the 

stability of the compounds, reduce the toxicity to eukaryotic cells and improve the 

antibacterial activity.  The library of 2-trifluoromethyl-4-quinolones were 

prepared in good yield by cyclocondensation of substituted anilines 496 with ethyl 

4,4,4-trifluoro-3-oxobutanoate 497 in polyphosphoric acid at 150 °C for 2 h 

(Scheme 7.62).  Again the trifluoromethyl group was in place before cyclisation. 
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Scheme 7.62 Formation of 2-trifluoromethyl-4-quinolones. 

 A recent publication by Fang et al. demonstrates late stage 

trifluoromethylation of N-phenyl-2-phenyl-4-quinolone 499 using Togni’s reagent 

365 with a catalytic amount of CuI.  The reaction provides 500 in moderate yield 

in 25 h (Scheme 7.63).186 

 

Scheme 7.63 Late stage trifluoromethylation of N-phenyl-2-phenyl-4-quinolone. 
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8.1  Background to project 
The aim of this project was to synthesise fluorinated and 

trifluoromethylated 2-pyrones, 2-pyridones and 2-quinolones using suitable 

methodologies.  Work focused on introducing a fluorine or trifluoromethyl moiety 

at the C-3 position of these molecules as this was not yet accomplished in the 

literature.  This was of particular interest as these molecules are privileged organic 

scaffolds which are found in numerous biologically active molecules.1-6  Also, it 

is well-known that introduction of a fluoro or trifluoromethyl moiety can have a 

dramatic effect on biological activity by increasing the lipophilicity and 

bioavailability of the molecules.7-9      

 The first objective of the project was to fluorinate a set of privileged 

biological scaffolds, namely pyrones, using safe, easy-to-handle electrophilic 

fluorinating agents.        

 The second objective of the project was to trifluoromethylate pyrones with 

various substituents present elsewhere on the molecule.   

 The third objective of the project was to extend this methodology to 

isosteres such as coumarins, pyridones and quinolones, each of which have their 

own prominent biological profile.      
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8.2  Direct fluorination 
Initial work focused on the direct fluorination of cheap, commercially 

available 4-hydroxy-6-methyl-2-pyrone 439.  The preferred method would involve 

safe, easy-to-handle electrophilic fluorinating agents to accomplish this 

transformation.  Methodologies that use fluorine gas were avoided due to the need 

for specialist equipment and the potentially explosive nature of the reactions.  The 

reaction was first attempted using Selectfluor® 243 in water in a manner similar to 

that used for the synthesis of radiolabelled 5-fluorouracil.10  Sodium 

tetraphenylborate was added to the reaction mixture to separate the spent reagent 

from the aqueous solution to a water insoluble salt.  Unfortunately, this reaction 

resulted in a complex mixture of products as deduced by 1H NMR spectroscopy 

(Table 8.1, entry 1).  When the reaction of pyrone 439 with 243 was carried out 

in acetonitrile, no product was observed (Table 8.1, entry 2).  The reaction was 

carried out using alternative solvents, additives and conditions, however the result 

in all cases was a complex mixture of products as determined 1H NMR 

spectroscopy (Table 8.1, entries 3 and 4).  The reaction was also attempted using 

NFSI 296 as the fluorinating agent, however no reaction occurred (Table 8.1, 
entry 5).  Due to the lack of success thus far, attention turned to other 

commercially available N-fluoropyridinium salts 325, 501 and 502.  The reactions 

were carried out in distilled DCM as this is the optimal medium for reactions 

involving these salts.11  Unfortunately in all cases, only starting material was 

observed by 1H NMR spectroscopy (Table 8.1, entries 6-8). 
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Table 8.1 Attempts at direct fluorination of 4-hydroxy-6-methyl-2-pyrone. 

 

Entry Fluorinating 
agent 

(equiv.) 

Solvent Additive Conditions Result 

1 243 (1.0) H2O Sodium 
tetraphenyl 

borate    
(2.2 equiv.) 

90 °C, 16 h CM 

2 243 (1.2) MeCN None RT, 5 d SM 

3 243 (1.1) MeCN:H2O    
4:1 

CF3CO2H 
(10% vol) 

80 °C, 2 d CM 

4 243 (1.2) MeNO2:MeOH 
5:1 

None RT, 2 d 
Reflux, 1 d 

CM 

5 296 (1.1) THF None Reflux, 4 d SM 

6 325 (1.0) DCM None RT, 3 d 
Reflux, 2 d 

SM 

7 501 (1.0) DCM None RT, 3 d 
Reflux, 2 d 

SM 

8 502 (1.0) DCM None RT, 3 d 
Reflux, 2 d 

SM 

 

Due to the disappointing results obtained with 439, attention turned to the 

synthesis of fluorinated coumarins.  4-Hydroxycoumarin 468 was subjected to the 

same fluorinating conditions and reagents as used previously in attempt to 

synthesise fluorinated 4-hydroxy-6-methyl-2-pyrone (Table 8.2).  However in all 
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cases results were disappointing, with either a complex mixture of products or 

solely starting material present by 1H NMR spectroscopy. 

Table 8.2 Attempts at direct fluorination of 4-hydroxycoumarin. 

 

Entry Fluorinating 
agent 

(equiv.) 

Solvent Additive Conditions Result 

1 243 (1.0) H2O Sodium 
tetraphenylborate 

(2.2 equiv.) 

90 °C, 16 h CM 

2 243 (1.2) MeCN None RT, 5 d SM 

3 243 (1.0) MeCN:H2O    
4:1 

CF3CO2H     
(10% vol) 

80 °C, 2 d CM 

4 243 (1.2) MeNO2:MeOH 
5:1 

None RT, 2 d 
Reflux, 1 d 

SM 

5 296 (1.1) THF None Reflux, 4 d SM 

 

 Given the lack of success with the fluorination of 4-hydroxy2-pyrone and 

2-coumarin, it was surmised that if 468 was first methylated at the oxygen to 

provide 4-methoxycoumarin 503 (Scheme 8.1), the reaction may be more fruitful 

as the presence of a free nucleophilic hydroxyl group may be inhibiting the 

reaction.  Additionally, many of the naturally-occurring and biologically active 

pyrones and coumarins possess an alkoxy group at the C-4 position.12,13  Coumarin 

503 was prepared in good yield as a white, fluffy solid by heating a stirred solution 

of 468, potassium carbonate and trimethyl phosphate at 140 °C for 1 h.14  
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Scheme 8.1 Methylation of 4-hydroxycoumarin in solvent-free conditions. 

 Once methylated coumarin 503 was successfully synthesised, it was 

subjected to a variety of fluorinating agents and reaction conditions.  Reactions of 

503 with Selectfluor® 243 resulted in either a complex mixture of products or 

starting material being observed by 1H NMR spectroscopy (Table 8.3, entries 1-
4, 8 and 11).  Selecfluor® II 504 was also employed in an attempt to achieve 

fluorination, however again these reactions resulted in either starting material or 

complex mixtures of products as observed by 1H NMR spectroscopy (Table 8.3, 
entries 6, 7 and 9).  Use of NFSI 296 and commercially available N-

fluoropyrimidine salts 325, 501 and 502 also proved disappointing (Table 8.3, 
entries 5, 10, 12-14).          
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Table 8.3 Attempts at the synthesis of 3-fluoro-4-methoxycoumarin. 

 

Entry Fluorinating 
agent (equiv.) 

Solvent Additive Conditions Result 

1 243 (1.2) EtOH None RT, 6 d 
Reflux, 2 d 

CM 

2 243 (1.2) MeOH H2SO4 
(0.1 

equiv.) 

Reflux, 6 d SM 

3 243 (1.2) MeCN None RT, 2 d    
50 °C, 3 d 

CM 

4 243 (1.2) MeNO2 None RT, o/n 
Reflux, 3 d 

CM 

5 296 (1.2) MeOH None RT, o/n 
Reflux, 5 d 

SM 

6 504 (1.2) EtOH None RT, o/n 
Reflux, o/n 

SM 

7 504 (1.2) MeOH H2SO4 
(0.1 

equiv.) 

50 °C, 6 d CM 

8 243 (1.2) H2O None Reflux, 6 d SM 

9 504 (1.2) MeCN None RT, 2 d 
Reflux, 3 d 

SM 

10 296 (1.1) THF None Reflux, 4 d SM 

11 243 (1.2) MeNO2:MeOH 
5:1 

None RT, 1 d 
Reflux, 2 d 

CM 

12 325 (1.0) DCM None RT, o/n 
Reflux, o/n 

CM 

13 501 (1.0) DCM None RT, o/n 
Reflux, o/n 

SM 

14 502 (1.0) DCM None RT, o/n 
Reflux, o/n 

SM 
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8.3  Trifluoromethylation 

Due to the lack of success with the fluorination of pyrones and coumarins, 

attention turned to methodologies to trifluoromethylate these important substrates.  

Initial attempts to gain access to trifluoromethylated products focused on the direct 

functionalisation of various starting materials using the published photoredox 

catalysts described by MacMillan.15  In this methodology, polypyridyl 

organometallic complexes are employed, whose excitation at room temperature by 

a source of light provides a strongly oxidising or reducing catalyst that can react 

with a variety of substrates to provide high energy, reactive species.16  Triflyl 

chloride was the trifluoromethylating agent of choice and the reaction could be 

carried out in acetonitrile at room temperature.  The properties of the starting 

material determined which photocatalyst would be most appropriate for the 

reaction.  Ru(phen)3Cl2 was employed with five-atom electron rich heteroarenes 

367 to furnish 370, whereas an iridium photocatalysis with a longer lived 

excitation state was used with six-atom electron deficient heteroarenes 368 and 

unactivated arenes 369 to provide 371 and 372 respectively (Scheme 8.2).   

 

Scheme 8.2 Trifluoromethylation by means of a photoredox catalyst. 

Attempts using both the iridium and ruthenium catalysts under the reported 

conditions were tried with a number of substrates (Table 8.4).  Having previously 

synthesised HHQ 186 and its protected analogue 265, these substrates were also 

subjected to the photocatalytic conditions.  However in all cases, only starting 
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material was observed by 1H NMR spectroscopy (Table 8.4, entries 1-4).  Both 

4-hydroxycoumarin 468 and 4-methoxycoumarin 503 were also used as substrates, 

however the reactions were unsuccessful with only starting material (Table 8.4, 
entries 5, 6 and 8) or a trace amount of product being observed by 1H NMR or 

mass spectrometry respectively.  Attempts to trifluoromethylate 4-hydroxy-2-

pyrone 439 or 4-methoxy-2-pyrone 505 also proved futile under the reaction 

conditions (Table 8.4, entries 9-12).      

 As trifluoromethylation reactions using MacMillan’s conditions with a 

number of our substrates had proved unsuccessful, it was decided to investigate 

the reproducibility of the reaction using 4-(3H)-pyrimidinone.  This substrate had 

been successfully used by MacMillan with the trifluoromethylated product 

obtained in 74% yield.  When the same reaction was attempted, no product was 

obtained in our hands, suggesting this type of methodology can be difficult to 

replicate. 
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Table 8.4 Attempts at photocatalytic trifluoromethylation. 

Entry   Starting Material Catalyst 
(mol%) 

CF3SO2Cl 
(equiv.) 

Result 

1 

 

Ir(dFppy)3 
(2) 

4 SM 

2 Ru(phen)3Cl2 
(1) 

2 SM 

3 

 

Ir(dFppy)3 
(2) 

4 SM 

4 Ru(phen)3Cl2 
(1) 

2 SM 

5 

 

Ir(dFppy)3 
(2) 

4 SM 

6 Ru(phen)3Cl2 
(1) 

2 SM 

7 

 

Ir(dFppy)3 
(2) 

4 Trace of 
product 
by MS 

8 Ru(phen)3Cl2 
(1) 

2 SM 

9 

 

Ir(dFppy)3 
(2) 

4 Trace of 
product 
by MS 

10 Ru(phen)3Cl2 
(1) 

2 SM 

11 

 

Ir(dFppy)3 
(2) 

4 SM 

12 Ru(phen)3Cl2 
(1) 

2 SM 

 

 Attention then turned to an alternative strategy in order to generate the 

desired products.  There have been numerous reports on the use of pre-
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functionalised starting materials to synthesise trifluoromethylated products.17-19  

One of the most successful methodologies to generate trifluoromethylated 

products 352 from a pre-functionalised substrate 351 is that reported by Hartwig’s 

group in 2011 using a phenanthroline-ligated copper(I) complex [(phen)CuCF3] 

363 (Scheme 8.3).20  A variety of iodinated substrates were successfully 

trifluoromethylated using this methodology in good to high yields.     

 

Scheme 8.3 Hartwig’s trifluoromethylation using [(phen)CuCF3]. 

With these results in mind, it was postulated that this methodology could 

be extrapolated to pyrones and related compounds.  Pyrone 505 was iodinated in 

a regioselective manner at C-3, the more nucleophilic site, using NIS in acetonitrile 

to provide 506 in 95% yield.  However, exposure to Hartwig’s trifluoromethylation 

methodology yielded a complex mixture of products.  The reaction was also 

attempted using a coumarin.  In this case, iodination of 503 was achieved using 

NIS and trifluoroacetic acid in acetonitrile to provide 507 in 45% yield after 

purification by recrystallisation.  When trifluoromethylation using Hartwig’s 

conditions was attempted on 507, a complex mixture of products again resulted 

(Scheme 8.4).  Due to the high cost of the catalyst required for this reaction, an 

alternative strategy for trifluoromethylation was sought. 
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Scheme 8.4 Attempts at trifluoromethylation of pre-functionalised substrates 

using Hartwig’s catalyst. 

An alternative route to trifluoromethylated compounds involves reaction 

of pre-functionalised starting materials with methyl fluorosulfonyldifluoroacetate 

(MFSDA) 378 as a trifluoromethylating agent.21  MFSDA came to the fore as a 

trifluoromethylating agent in the late 1980’s.  It was reported that 

trifluoromethylation of aryl, alkenyl and alkyl halides could be achieved in the 

presence of copper(I) iodide in DMF in good yields.21  The accepted mechanism 

for the reaction (Scheme 8.5) comprises an initial step involving the formation of 

a copper salt 381 from MFSDA 378 with the elimination of methyl halide.  The 

salt then decomposes to release difluorocarbene and a fluoride ion, which are in 

equilibrium with a DMF stabilised trifluoromethyl anion 382.  In the presence of 

CuI, the equilibrium shifts to form [CF3CuI–] 383, which reacts with a halogenated 

starting material to provide the trifluoromethylated product 380, following release 

of CuX and I–.21  A radical mechanism has been ruled out on the basis of 

experimental and computational data.22 
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Scheme 8.5 Mechanism of trifluoromethylation using methyl 

fluorosulfonyldifluoroacetate (MFSDA). 

Initial attempts at trifluoromethylation using this methodology were 

carried out on 4-hydroxy-6-methyl-2-pyrone 439 and 4-hydroxycoumarin 468.  

Both 439 and 468 proved difficult to iodinate and low yields of both 508 and 509 
were obtained.  However pyrone 508 was obtained upon reaction of 439 with 

iodine in aqueous KI and the minimum amount of ammonium hydroxide.  This 

methodology had previously been successfully used in the synthesis of 3-iodo-4-

acetoxy-coumarins.23  An alternative iodination strategy was used for the synthesis 

of coumarin 509, whereby 1M HCl was added dropwise to a solution of 468, 

potassium iodide and potassium iodide in a methanol/water mixture.24   With the 

4-hydroxy-3-iodo pyrone (508) and coumarin (509) in hand, the compounds were 

treated with 1.2 equiv. of MFSDA and 1.2 equiv. of CuI in DMF at 70 °C, however 

in both cases a complex mixture resulted and no trifluoromethylated product was 

obtained (Scheme 8.6). 
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Scheme 8.6 Initial trifluoromethylation attempts using MFSDA. 

 Again we decided to utilise the 4-methoxy variants having previously 

methylated and iodinated the pyrone and coumarin starting materials (Scheme 
8.4).  Trifluoromethylation was attempted using 1.2 equiv. of MFSDA and 1.2 

equiv. of CuI in DMF at 70 °C and although a complex mixture resulted on 

reaction with 507, reaction with 506 allowed trifluoromethylated product 510 to 

be obtained in 77% yield after purification (Scheme 8.7). 

 

Scheme 8.7 Trifluoromethylation on methoxy-based starting materials. 

Successful incorporation of the trifluoromethyl group into the pyrone was 

indicated by the presence of two quartets in the 13C NMR spectrum of 510.  Due 

to one- and two-bond carbon-fluorine coupling, the three fluorine atoms present 

cause splitting of the carbon of the trifluoromethyl group and the quaternary 
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carbon bonded to it (Figure 8.1).  The noticeable disappearance of the signal 

corresponding to the proton at C-3 in the 13C NMR spectrum also proves the 

trifluoromethyl group has been successfully incorporated. 

 

 

Figure 8.1 13C NMR of trifluoromethylated pyrone 510. 
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 The presence of a singlet in the 19F NMR spectrum of 510 also provides 

confirmation of successful incorporation of the trifluoromethyl group into the 

molecule (Figure 8.2).  Further evidence of the formation of 510 was obtained 

from both the HRMS and elemental analysis. 

  

Figure 8.2 19F NMR spectrum of trifluoromethylated pyrone 510. 

With successful synthesis of trifluoromethylated pyrone 510 now 

achieved, it was necessary to carry out optimisation of the reaction to determine 

the ideal conditions.  3-Iodo-4-methoxy-2-pyrone 506 was treated with 1.2 equiv. 

of MFSDA in the presence of 1.2 equiv. of copper(I) iodide in a number of 

anhydrous solvents.  When the reaction was carried out in THF and DMSO (Table 
8.5, entries 1 & 2), no product was observed, however a modest yield (53%) of 

trifluoromethylated product 510 was achieved when NMP was used as solvent 

(Table 8.5, entry 3).  Changing the solvent to DMF or DMA resulted in an 

increased yield of 77 and 79% respectively (Table 8.5, entries 6 & 7).  Higher 

equivalents of MFSDA caused a slight decrease in yield (Table 8.5, entry 5).  
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Gratifyingly, the reaction can be successfully carried out in commercially available 

DMF which was used without purification, albeit with a slightly reduced yield of 

63% (Table 8.5, entry 4).  From these screening reactions, a balance of yield and 

cost was struck and it was decided to proceed using 1.2 equiv. of MFSDA in 

anhydrous DMF.  The next step in the investigation involved determining the 

optimal amount of CuI required for the reaction.  3-Iodo-4-methoxy-2-pyrone 506 

was treated with 1.2 equiv. of MFSDA in the presence of various equivalents of 

copper(I) iodide in anhydrous DMF.  When the amount of CuI employed was equal 

to or less than 1.0 equiv., the yield of 510 was 61-65% (Table 8.5, entries 8 & 9).  

When 1.5 equiv. of CuI was used, the amount of 510 obtained increased (Table 
8.5, entry 10), however the best yield was obtained when 1.2 equiv. of MFSDA 

were employed (Table 8.5, entry 6). 
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Table 8.5 Optimisation of trifluoromethylation reaction. 

 

Entry Solvent CuI  
(equiv.) 

MFSDA 
(equiv.) 

Yield 510 
(%)a 

1 THF 1.2 1.2 No reaction 

2 DMSO 1.2 1.2 No reaction 

3 NMP 1.2 1.2 53 

4 DMFb 1.2 1.2 63 

5 DMF 1.2 5 66 

6 DMF 1.2 1.2 77 

7 DMA 1.2 1.2 79 

8 DMF 0.5 1.2 61 

9 DMF 1.0 1.2 65 

10 DMF 1.2 1.5 71 

a Isolated. b Commercially available DMF was employed as solvent without 
purification/drying. 

 With workable conditions in hand, the scope of the reaction was 

investigated.  Different protecting groups were incorporated at the oxygen at C-4 

to provide 511a-d (Table 8.6).  MOM-protected pyrone 511a was obtained in high 

yield following deprotonation with triethylamine and subsequent reaction with 

methyl bromomethyl ether.25  The same methodology was used to synthesise novel 

protected pyrones 511b and 511c however the yields achieved were more 

moderate.  Pyrone 511d was prepared in the same manner, however the yield 

obtained was much lower than that reported when potassium carbonate was used 

as the base.26  The nature of the base used for deprotonation should not be the 

reason for the low yield, as previous reactions using triethylamine have provided 

alkylated products in high yield.  This suggests that the problem may arise due to 
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incomplete reaction with the benzylbromide.  Compounds 511e and 511f were 

synthesised using the same methodology however yields were again low, likely 

due to the nature of the alkylating agents.  Phenoxy pyrone 511g was also obtained 

in high yield from 4-bromo-6-methyl-2-pyrone27 512.  Methoxy compounds 511i 
and 511j were synthesised from the corresponding 4-hydroxy-2-pyrones in low 

and high yield respectively.          

Table 8.6 Synthesis of 4-substituted 2-pyrones. 

 

Entry SM Reaction 
Conditions 

Compound R1 R2 Yield 
510 
(%)a 

1 439 A  a CH3 OMOM 92 

2 439 A b CH3  OMEM 65 

3 439 A c CH3 OCbz 45 

4 439 A d CH3 OCH2Ph 8 

5 439 A e CH3 OEt 12 

6 439 A f CH3 OPr 7 

7 512 B g CH3 OPh 91 

8 439 N/Ab h CH3 Cl 18b 

9 513 C i C6H4(p-Cl) OCH3 33c 

10 514 C j C6H4(p-CF3) OCH3 87c 

a Isolated.  b Previously synthesised within the group.  c Starting materials 513 and 
514 previously synthesised within the group.   
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 Iodination of 511a-j was smoothly accomplished using NIS in acetonitrile 

in all cases.  Products were afforded in good to excellent yields (Table 8.7), with 

iodination occurring solely at the 3-position for all compounds synthesised. 

Table 8.7 Synthesis of 3-iodo-2-pyrones. 

 

Entry Compound R1 R2 Yield 514 
(%)a 

1 a CH3 OMOM 74 

2 b CH3  OMEM 42 

3 c CH3 OCbz 81 

4 d CH3 OCH2Ph 84 

5 e CH3 OEt 75 

6 f CH3 OPr 96 

7 g CH3 OPh 96 

8 h CH3 Cl 75 

9 i C6H4(p-Cl) OCH3 77 

10 j C6H4(p-CF3) OCH3 76 

a Isolated.   

Trifluoromethylation was generally successful, however pyrones 

containing commonly used protecting groups including MOM, MEM and Cbz did 

not tolerate the reaction conditions and resulted in a complex mixtures of products 

(Table 8.8 entries 1-3).  When various other groups were present at the oxygen at 

C-4 (and a methyl group at C-6) (Table 8.8 entries 4-8), trifluoromethylated 

products were obtained in moderate yield and no trend was apparent.  Variation of 

the substituent at C-6 was then investigated (Table 8.8, entries 9 & 10).  A 
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dramatic difference in yield of trifluoromethylated products was observed 

depending on the nature of the substituent on the phenyl ring at C-6. 

Table 8.8 Synthesis of 3-trifluoromethyl-2-pyrones. 

 

Entry Compound R1 R2 Yield 515 
(%)a 

1 a CH3 OMOM CM 

2 b CH3  OMEM CM 

3 c CH3 OCbz CM 

4 d CH3 OCH2Ph 30 

5 e CH3 OEt 34 

6 f CH3 OPr 46 

7 g CH3 OPh 43 

8 h CH3 Cl 23 

9 i C6H4(p-Cl) OCH3 23 

10 j C6H4(p-CF3) OCH3 72 

a Isolated.   

The 13C NMR spectrum of 515j is particularly interesting due to the two 

trifluoromethyl groups present on the molecule.  In both cases the fluorine atoms 

cause splitting of adjacent carbon atoms into quartets (Figure 8.3).  The presence 

of two trifluoromethyl groups is evident from the two quartets at 122.6 ppm and 

123.4 ppm with coupling constants of 273.1 and 272.6 Hz respectively.  The 

quartet at 96.3 ppm with a coupling constant of 31.9 Hz corresponds to the 

quaternary carbon bonded to a trifluoromethyl group.  Similarly, the peak 

corresponding to the quaternary carbon of the phenyl ring which is directly bonded 

to the trifluoromethyl group appears as a quartet at 133.9 ppm with a coupling 

constant of 33.1 Hz.  Three-bond carbon-fluorine coupling is also apparent in this 
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spectrum, with the equivalent aromatic carbons appearing as a quartet at 126.2 

ppm with a coupling constant of 3.7 Hz, typical of that for three-bond carbon-

fluorine coupling.  Structural assignment of 515j was aided with 2D-NMR 

spectroscopy. 
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Figure 8.3 13C NMR spectrum of 515j with magnification of quartets.  
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It was then postulated that it may be possible to achieve selective 

trifluoromethylation when more than one iodine atom is present on a molecule.  In 

an effort to investigate this, iodination at both C-3 and C-5 of 505 was attempted.  

Initial efforts at diiodination were carried out on 505 (Table 8.9) however results 

were disappointing resulting in starting material, complex mixtures or 

monoiodination at C-3. 

Table 8.9 Attempts at diiodination of 4-methoxy-6-methyl-2-pyrone. 

 

Entry Conditions Result 

1 NIS (4.0 equiv.), MeCN Monoiodination at C-3 
(506) 

2 KI/KIO3, MeOH:H2O,      
1M HCl 

SM 

3 30% aq. H2O2, I2, H2O Monoiodination at C-3 
(506) 

4 NaIO4/KI/NaCl, AcOH:H2O 
9:1, 25 °C 

CM 

 

The next logical step was to investigate if the monoiodinated product could 

be further iodinated to produce the desired diiodinated product.  However results 

were again disappointing with either no reaction, a complex mixture resulting or 

even in some cases hydrodeiodination (Table 8.10) observed. 
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Table 8.10 Attempts at iodination of 3-iodo-4-methoxy-6-methyl-2-pyrone. 

 

Entry Conditions Result 

1 NIS (4.0 equiv.), MeCN, 
reflux 

SM 

2 TBAI, KOAc, Toluene CM 

3 30% aq. H2O2, I2, H2O Hydrodeiodination (505) 

4 KI/KIO3, MeOH:H2O, HCl 
(1M) 

Hydrodeiodination (505) 

5 NAIO4/KI/NaCl, AcOH:H2O 
9:1, 25 °C  

SM 

The next step in the investigation was to test the optimised reaction 

conditions using a brominated analogue.  Bromination of 505 in a regioselective 

manner was carried out using NBS to afford 516 in 45% yield.  

Trifluoromethylation was carried out as per the procedure used for the iodinated 

starting material, however 510 was obtained in only 10% yield.  In comparison to 

trifluoromethylation of 3-iodo-4-methoxy-2-pyrone 506, the yield was decreased 

dramatically.  This could be rationalised based on the order of reactivity observed 

by Chen and Wu (RI > RBr > RCl).21  In the formation of 516, the dibrominated 

pyrone 517 was also observed and isolated in 13% yield.  Dibrominated pyrone 

517 was also subjected to the trifluoromethylation conditions to investigate the 

regioselectivity of the protocol.  When 1.0 equiv. of MFSDA was employed, 

trifluoromethylation occurred at the sp3 carbon affording 518 in 30% yield and no 

product resulting from trifluoromethylation at the sp2 position was observed 

(Scheme 8.8). 
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Scheme 8.8 Trifluoromethylation of bromo compounds (a) NBS, MeCN; (b) 

MFSDA, CuI, DMF. 

 Confirmation that trifluoromethylation of 517 occurred at the sp3 carbon 

rather than the sp2 carbon was obtained from the 13C NMR spectrum (Figure 8.4).  

On the spectrum, three quartets are evident, with coupling constants typical of 

those for one- two- and three-bond carbon-fluorine coupling (277.8 Hz, 32.0 Hz 

and 3.5 Hz respectively).  The splitting of the CH2 group into a quartet at 38.8 ppm 

is due to the presence of a neighbouring trifluoromethyl group, providing proof 

that trifluoromethylation occurred at the sp3 carbon.  Further evidence to 

corroborate this is that the quaternary carbon at C-6 is also split into a quartet due 

to the effect of the near-by fluorine atoms.  If trifluoromethylation had instead 

occurred at the sp2 carbon, only two quartets would have been observed, and most 

obviously, the peak corresponding to the CH2 group would appear as a singlet.  

Further evidence for the successful incorporation of the trifluoromethyl group is 

obtained from the high resolution mass spectrum, with the found mass within 1.7 

ppm of the calculated mass.        

 With regards to the mechanism of the reaction, a recent publication 

suggests that trifluoromethylation reactions of aryl halides involving a source of 

in situ trifluoromethyl copper do not procced via a radical mechanism.  Rather, the 

authors state that the mechanism occurs via an oxidative addition-reductive 

elimination pathway.22  In the case of the selective trifluoromethylation of 517 

however, a radical mechanism for substitution at the sp3 carbon should be 

considered.  In this case, a benzylic-type radical would be formed which may 

promote this pathway.  Further mechanistic studies are required in this area. 



Chapter 8  Results and Discussion 

344 
 

 

Figure 8.4 13C NMR spectrum of trifluoromethylated pyrone 518 showing that 

trifluoromethylation occurred at the sp3 carbon. 

Due to the number of biologically important compounds containing the 

pyridone moiety,28-30 extension of the methodology to pyridones was then 

explored.  Pyridones 519a-e (Table 8.11) were synthesised following a literature 

procedure by heating the corresponding pyrone with the desired amine in water at 

reflux.31  The crude product was purified by carrying out a trituration in hot ethanol 

and filtering the hot precipitate.  Yields were low, however this is consistent with 

what has previously been found within the group.   
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Table 8.11 Synthesis of 2-pyridones from 2-pyrones.  

 

Entry Compound R Yield 519 
(%)a 

1 a CH3 55 

2 b CH2Ph 51b 

3 c Ph 14 

4 d C6H4(p-F) 13 

5 e C6H4(p-OCH3) 23 
a Isolated.  b Previously synthesised within the group. 

 Pyridones 519a-e were then methylated at the oxygen using the same 

procedure that had been used for methylation of pyrone 439 and coumarin 468.  

Methylated pyridones 520a-e were obtained in variable yields with no obvious 

trend apparent between the nature of the substrate and the yield of product (Table 
8.12).   
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Table 8.12 Methylation of 2-pyridones. 

 

Entry Compound R Yield 520 
(%)a 

1 a CH3 36 

2 b CH2Ph 57b 

3 c Ph 70 

4 d C6H4(p-F) 60 

5 e C6H4(p-OCH3) 44 

a Isolated.   

Iodination was successfully carried out in all cases to afford 521a-e.  It was 

noted that in some cases, the yield of the iodination step was low (Table 8.13, 
entries 1, 4 & 5).  This was discovered to be due to diiodination occurring as 

deduced by 1H and 13C NMR spectroscopy, however these products were not 

isolated from the reaction mixture.  This finding means that iodination of 520a-e 

must be carefully and frequently monitored to prevent this unwanted side reaction 

from occurring.  Subsequent trifluoromethylation of 521a-e provided the desired 

pyridones 522a-e in moderate to good yield (Table 8.14). 
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Table 8.13 Iodination of 4-alkoxy-2-pyrones. 

 

Entry Compound R Yield 521 
(%)a 

1 a CH3 36 

2 b CH2Ph 70 

3 c Ph 84 

4 d C6H4(p-F) 31 

5 e C6H4(p-OCH3) 13 

a Isolated.   

Table 8.14 Trifluoromethylation of 2-pyridones. 

 

Entry Compound R Yield 522   
(%)a 

1 a CH3 61 

2 b CH2Ph 62 

3 c Ph 29 

4 d C6H4(p-F) 52 

5 e C6H4(p-OCH3) 46 

a Isolated.   
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The reaction conditions are also suitable for the trifluoromethylation of 

quinolones (Scheme 8.9), as demonstrated with commercially available 523, 

which was methylated at the oxygen to yield 524, iodinated to provide 525 and 

trifluoromethylated to provide 526 in good yield.  Interestingly, in the 13C NMR 

spectrum of 526 five-bond carbon-fluorine coupling is observed for the carbon of 

the methoxy group.  However similar long-range coupling has previously been 

reported.32 

  

Scheme 8.9 Formation of trifluoromethylated quinolone (a) (CH3)3PO4, K2CO3; 

(b) NIS, MeCN, trifluoroacetic acid; (c) MFSDA, CuI, DMF. 

 It was then decided to investigate if methylation of 523 was necessary to 

ensure successful trifluoromethylation.  Thus 523 was successfully iodinated using 

potassium iodide/potassium iodate and isolated in a similar yield to that obtained 

when synthesised using a different methodology.33  However, upon exposing 527 

to our trifluoromethylation conditions, a complex mixture of products resulted 

(Scheme 8.10).  This suggests that regardless of the substrate used in the 

trifluoromethylation reaction, hydroxyl groups must first be protected to ensure a 

successful reaction. 

 

Scheme 8.10 Attempt at trifluoromethylation of non O-functionalised quinolone 

(a) KI/KIO3, MeOH/H2O, 1M HCl ; (b) MFSDA, CuI, DMF. 
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 Attention then focussed on generating 2-heptyl-3-

(trifluoromethyl)quinolin-4(1H)-one, the C-3 trifluoromethyl analogue of HHQ, a 

quorum sensing molecule used by Pseudomonas aeruginosa.  Due to the ease of 

synthesising 526 in good yield and the similarity in structure to the 2- and 4-

quinolone basic structure, trifluoromethylation was attempted using the same 

strategy.  Thus, HHQI 237 (which had previously been synthesised for testing as 

a potential quorum sensing inhibitor (Chapter 5)) was exposed to 1.2 equiv. of 

MFSDA and 1.2 equiv. CuI in anhydrous DMF at 70 °C for 24 h.  The result of 

this experiment was disappointing (Table 8.15, entry 1) and no reaction took 

place.  A large scale repetition was also unsuccessful (Table 8.15, entry 2).  The 

reaction was then repeated with a larger excess of MFSDA (Table 8.15, entry 3), 

however only a trace of product was observed by 1H NMR spectroscopy.  The lack 

of success with this reaction may be due to the presence of the long alkyl chain at 

C-2, which could be causing severe steric hindrance of the C-3 position, preventing 

the reaction from taking place. 

Table 8.15 Attempts at synthesising trifluoromethylated HHQ. 

 

Entry SM 
(mmol) 

MFSDA 
(equiv.) 

CuI 
(equiv.) 

Solvent Result 

1 0.39 1.2 1.2 DMF SM 

2 1.42 1.2 1.2 DMF SM 

3 0.34 5.0 1.2 DMF Trace 
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8.4  Conclusions and future work 
 A successful methodology for the convenient, late stage 

trifluoromethylation of pyrones, pyridones and quinolones has been developed, 

utilising the relatively cheap, commercially available trifluoromethylating agent, 

MFSDA.  The remarkable biological activity of these compound classes, coupled 

with the growing significance attributed to the introduction of a trifluoromethyl 

group establishes the described protocol as a useful route to these compounds.  

Although substrates require pre-functionalisation, this route is more cost efficient 

than other methodologies that use iodinated starting materials and expensive 

catalysts.  Despite typical protecting groups on the oxygen not tolerating the 

reaction conditions, a variety of alkyl and benzyl groups were deemed to be 

suitable.           

 Future work in the area involves expanding the substrate scope of the 

reaction, in particular quinolones as they are a particularly biologically active set 

of compounds.  It is also hoped that the methodology can be applied to other 

heterocycles and in the synthesis of natural products.  The diiodination of 2-

pyridones 520a-e will be optimised to drive the reaction to completion.  The highly 

functionalised product will then be tested for selective trifluoromethylation.  The 

remaining C-I site would then provide a handle for further synthetic manipulation 

(e.g. cross-coupling reactions).  Finally, late stage trifluoromethylthiolation of 

these compounds will also be investigated due to the high prevalence of the SCF3 

group in biologically active compounds.     
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9.1  General experimental 
Solvents and reagents were used as obtained from commercial sources and without 

purification with the exception of THF, which was freshly distilled from 

sodium/benzophenone under nitrogen.   

Wet flash column chromatography was carried out using Kieselgel silica gel 60, 

0.040–0.063 mm (Merck).  TLC was carried out on pre-coated silica gel plates 

(Merck 60 PF254).  Visualisation was achieved by UV light and potassium 

permanganate staining. 

Melting points were carried out on a uni-melt Thomas Hoover Capillary melting 

point apparatus.   

IR spectra were recorded on Perkin-Elmer FT-IR Paragon 1000 

spectrophotometer.  Liquid samples were examined as thin films interspersed on 

NaCl plates.  Solid samples were dispersed in KBr and recorded as pressed discs.  

The intensity of peaks were expressed as strong (s), medium (m) and weak (w) and 

broad (b). 

NMR spectra were run in CDCl3 using TMS as the internal standard at 20 qC unless 

otherwise specified.  1H NMR (600 MHz) spectra, 1H NMR (400 MHz) spectra 

and 1H NMR (300 MHz) spectra were recorded on Bruker Avance 600, Bruker 

Avance 400 and Bruker Avance 300 NMR spectrometers respectively in proton 

coupled mode. 19F NMR (470 MHz) spectra and 19F NMR (282 MHz) were 

recorded on Bruker Avance 600 NMR and Bruker Avance 300 NMR 

spectrometers respectively in proton decoupled mode. 13C NMR (150 MHz) 

spectra and 13C NMR (75 MHz) spectra were recorded on Bruker Avance 600 and 

Bruker Avance 300 NMR spectrometers respectively in proton decoupled mode.  

All spectra were recorded at University College Cork.  Chemical shifts GH and GC 

are expressed as parts per million (ppm), positive shift being downfield from TMS; 

coupling constants (J) are expressed in hertz (Hz).  Splitting patterns in 1H NMR 

spectra are designated as s (singlet), bs (broad singlet), d (doublet), dd (doublet of 

doublets), ddd (doublet of doublet of doublets), t (triplet), q (quartet) and m 

(multiplet).  For 13C NMR spectra, the number of attached protons for each signal 

was determined using the DEPT pulse sequence run in the DEPT-90 and DEPT-
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135 modes.  COSY, HSQC and HMBC experiments were routinely performed to 

aid the NMR assignment of novel chemical structures. 

LRMS were recorded on a Waters Quattro Micro triple quadrupole instrument in 

ESI mode using 50% acetonitrile-water containing 0.1% formic acid as eluent; 

samples were made up in acetonitrile or methanol. HRMS were recorded on a 

Waters LCT Premier Tof LC-MS instrument in ESI mode using 50% acetonitrile-

water containing 0.1% formic acid as eluent; samples were made up in acetonitrile 

or methanol.    

The Microanalysis Laboratory, National University of Ireland, Cork, performed 

elemental analysis using a Perkin-Elmer 240 and Exeter Analytical CE440 

elemental analysers.  

9.1.1  Analysis of known and novel compounds  
1H NMR spectra, 13C NMR spectra, LRMS and melting point (if solid) analyses 

were recorded for all previously prepared compounds.  For novel compounds, in 

addition to the previously mentioned analysis, 19F NMR (where applicable), IR, 

HRMS and elemental analysis (if possible) were also obtained.  
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9.2  Synthesis of O-functionalised pyrones and coumarins 
4-Methoxy-2H-chromen-2-one, 503 

To a round bottomed flask containing 4-hydroxy-2H-chromen-2-

one 468 (5.262 g, 32.5 mmol) and K2CO3 (5.376 g, 38.9 mmol) 

was added trimethyl phosphate (7.87 mL, 67.3 mmol) and the 

resulting reaction mixture stirred at reflux for 1 h.  On completion, 

the reaction mixture was transferred to a separating funnel, washed with water (150 

mL) and extracted with ethyl acetate (3 u 150 mL).  The combined organic extract 

was dried over MgSO4 and concentrated in vacuo to yield crude product as an off-

white solid which was purified by recrystallisation from ethanol to yield 503 as a 

fluffy, white solid (4.175 g, 73%).  m.p. 123–125 °C [lit.1 122–124 °C].                                 

Spectral characteristics were consistent with previously reported data.1,2                             
1H NMR (300 MHz, CDCl3): G 4.00 (3H, s, CH3), 5.70 (1H, s, CH), 7.25–7.34 

(2H, m, 2 u CH arom.), 7.52–7.58 (1H, m, CH arom.), 7.81 (1H, dd, J = 1.6, 7.7 

Hz, CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 56.4 (OCH3), 90.1 

(CHC=O), 115.6 (C=CCOCH3), 116.7, 123.0, 123.9, 132.4 (4 u CH arom.), 153.3 

(COC=O), 162.8 (C=O), 166.4 (COCH3) ppm; MS (ESI) m/z: 177 [(M + H)+, 

90%]. 

4-Methoxy-6-methyl-2H-pyran-2-one, 505   

To a round bottomed flask containing 4-hydroxy-6-methyl-2H-

pyran-2-one 439 (4.503 g, 35.7 mmol) and K2CO3 (5.915 g, 42.8 

mmol) was added trimethylphosphate (8.65 mL, 73.9 mmol) and 

the resulting reaction mixture stirred at reflux for 1 h.  On completion, the reaction 

mixture was transferred to a separating funnel, washed with water (150 mL) and 

extracted with ethyl acetate (3 u 150 mL).  The combined organic extracts were 

dried over MgSO4 and concentrated in vacuo to yield crude product as a yellow 

solid which was purified by recrystallisation from ethanol to yield 505 as a pale 

yellow, crystalline solid (2.303 g, 46%).  m.p. 85–87 °C [lit.3 86–87.5 °C].                      

Spectral characteristics were consistent with previously reported data.4                      
1H NMR (300 MHz, CDCl3): G 2.21 (3H, s, CH3), 3.79 (3H, s, OCH3), 5.41 (1H, 

CHC=O), 5.77–5.78 (1H, m, CH3CCH) ppm; 13C NMR (75.5 MHz, CDCl3) G 19.8 
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(CH3), 55.8 (OCH3), 87.4 (CHC=O), 100.3 (CH3CCH), 162.0 (C=O), 164.9 

(CCH3), 171.3 (COCH3) ppm; MS (ESI) m/z: 141 [(M + H)+, 100%].   

4-(Methoxymethoxy)-6-methyl-2H-pyran-2-one, 511a 

To a stirred suspension of 4-hydroxy-6-methyl-2-pyrone 439 

(2.460 g, 19.5 mmol) in DCM (20 mL) was added triethylamine 

(3.00 mL, 21.5 mmol) dropwise and the mixture allowed stir at 0 

°C for 10 min, followed by dropwise addition of methyl bromomethyl ether (1.76 

mL, 21.5 mmol).  The resulting mixture was stirred at room temperature for 12 h.  

Water (10 mL) was added to the reaction mixture, the organic layer separated and 

the aqueous layer extracted with DCM (3 u 20 mL).  The combined organic 

extracts were dried over MgSO4 and concentrated in vacuo to yield 511a as a 

viscous pale white oil (3.059 g, 92%) which was subsequently used without 

purification due to sensitive nature of the protecting group.                                   

Spectral characteristics were consistent with previously reported data.5                      
1H NMR (300 MHz, CDCl3): G 2.20 (3H, s, CH3), 3.45 (3H, s, OCH3), 5.13 (2H, 

s, OCH2O), 5.57 (1H, d, J = 1.9 Hz, CHC=O), 5.80–5.81 (1H, m, CH3CCH) ppm; 
13C NMR (75.5 MHz, CDCl3): G 19.9 (CH3), 57.0 (OCH3), 90.3 (CHC=O), 94.2 

(OCH2O), 100.2 (CH3CCH), 162.6 (CH3CCH), 164.7 (C=O), 168.7 

(COCH2OCH3) ppm; HRMS (ESI) m/z calcd for C8H11O4 [(M + H)+]: 171.0657, 

found 171.0651.  

4-((2-Methoxyethoxy)methoxy)-6-methyl-2H-pyran-2-one, 511b 

To a stirred suspension of 4-hydroxy-6-methyl-2-pyrone 

439 (1.061 g, 8.41 mmol) in DCM (10 mL) was added 

triethylamine (1.29 mL, 9.26 mmol) dropwise and the 

mixture allowed stir at 0 °C for 10 min, followed by 

dropwise addition of 2-methoxy ethoxymethyl chloride (1.06 mL, 9.26 mmol).  

The resulting mixture was stirred at room temperature for 12 h.  Water (10 mL) 

was added to the reaction mixture, the organic layer separated and the aqueous 

layer extracted with DCM (3 u 20 mL).  The combined organic extracts were dried 

over MgSO4 and concentrated in vacuo to yield crude product which was purified 

using silica column chromatography eluting with 70:30 hexane:ethyl acetate to 
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yield 511b as a white solid (1.167 g, 65%).  m.p. 68–70 °C.                       

IR (KBr) Qmax: 2920, 2876 (C-H alkyl stretch, m), 1736 (C=O stretch, s), 1567 

(aromatic C=C stretch, s), 1112 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, 

CDCl3): G 2.21 (3H, s, CH3), 3.38 (3H, s, OCH3), 3.53–3.56 (2H, m, CH2OCH3), 

3.77–3.80 (2H, m, CH2CH2OCH3), 5.24 (2H, s, OCH2O), 5.61 (1H, d, J = 2.0 Hz, 

CH3CCH), 5.79 (1H, d, J = 0.9 Hz, CHC=O) ppm; 13C NMR (75.5 MHz, CDCl3): 

G 19.9 (CH3), 59.1 (OCH3), 68.9 (CH2CH2OCH3), 71.4 (CH2OCH3), 90.3 

(CHC=O), 93.2 (OCH2O), 100.1 (CH3CCH), 162.6 (CH3CCH), 164.6 (C=O), 

168.8 (CHCOCH2) ppm; HRMS (ESI) m/z calcd for C10H15O5 [(M + H)+]: 

215.0919, found 215.0910; Anal. calcd for C10H14O5: C, 56.07; H, 6.59%. Found: 

C, 56.29; H, 6.23%. 

Benzyl (6-methyl-2-oxo-2H-pyran-4-yl) carbonate, 511c 

To a stirred suspension of 4-hydroxy-6-methyl-2-pyrone 

439 (2.049 g, 16.2 mmol) in DCM (20 mL) was added 

triethylamine (2.50 mL, 17.9 mmol) dropwise and the 

mixture allowed stir at 0 °C for 10 min, followed by 

dropwise addition of benzyl chloroformate (2.51 mL, 17.9 mmol).  The resulting 

mixture was stirred at room temperature for 12 h.  Water (20 mL) was added to 

the reaction mixture, the organic layer separated and the aqueous layer extracted 

with DCM (3 u 20 mL).  The combined organic extracts were dried over MgSO4 

and concentrated in vacuo to yield crude product which was purified using silica 

column chromatography eluting with 80:20 hexane:ethyl acetate to yield 511c as 

a white solid (1.896 g, 45%).  m.p. 55–57 °C.             

IR (KBr) Qmax: 2966 (C-H alkyl stretch, m), 1776, 1737 (C=O stretch, s), 1576 

(aromatic C=C stretch, s), 1207 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, 

CDCl3): G 2.24 (3H, s, CH3), 5.26 (2H, s, OCH2Ph), 6.00 (1H, dd, J = 0.9, 2.1 Hz, 

CH3CCH), 6.15 (1H, dd, J = 0.6, 2.1 Hz, CHC=O), 7.36–7.42 (5H, m, 5 u CH 

arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 20.0 (CH3), 71.1(OCH2Ph), 99.7 

(CHC=O), 100.4 (CH3CCH), 128.6, 128.8, 129.1 (5 u CH arom.), 133.9 (OCH2C), 

150.6 (OC=OO), 163.0 (CHC=O), 163.4 (CH3CCH), 163.6 (CHCOC=O) ppm; 

HRMS (ESI) m/z calcd for C14H13O5 [(M + H)+]: 261.0763, found 261.0751; Anal. 

calcd for C14H12O5: C, 64.61; H, 4.65%. Found: C, 64.75; H, 4.62%. 
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4-(Benzyloxy)-6-methyl-2H-pyran-2-one, 511d 

To a stirred suspension of 4-hydroxy-6-methyl-2-pyrone 439 

(1.557 g, 12.3 mmol) in DCM (15 mL) was added triethylamine 

(1.89 mL, 13.6 mmol) dropwise and the mixture allowed stir at 

0 °C for 10 min, followed by dropwise addition of benzylbromide (1.62 mL, 13.6 

mmol).  The resulting mixture was stirred at room temperature for 12 h.  Water 

(10 mL) was added to the reaction mixture, the organic layer separated and the 

aqueous layer extracted with DCM (3 u 20 mL).  The combined organic extracts 

were dried over MgSO4 and concentrated in vacuo to yield crude product which 

was purified using silica column chromatography eluting with 90:10 hexane:ethyl 

acetate to yield 511d as a white solid (0.221 g, 8%). m.p. 90–92 °C [lit.6 92–94 °C].          

Spectral characteristics were consistent with previously reported data.7                            
1H NMR (300 MHz, CDCl3): G 2.21 (3H, s, CH3), 5.00 (2H, s, OCH2Ph), 5.50 (1H, 

d, J = 2.1 Hz, CHC=O), 5.84 (1H, d, J = 1.1 Hz, CH3CCH), 7.35–7.40 (5H, m, 5 

u ArH) ppm; 13C NMR (75.5 MHz, CDCl3): G 19.8 (CH3), 70.7 (CH2), 88.5 

(CHC=O), 100.5 (CH3CCH), 127.8, 128.79, 128.83 (5 u CH arom.), 134.4 

(OCH2C), 162.2 (CH3CCH), 164.8 (C=O), 170.2 (COCH2Ph) ppm; HRMS (ESI) 

m/z calcd for C13H13O3 [(M + H)+]: 217.0865, found 217.0868.   

4-Ethoxy-6-methyl-2H-pyran-2-one, 511e 

To a stirred suspension of 4-hydroxy-6-methyl-2-pyrone 439 

(1.671 g, 13.3 mmol) in DCM (15 mL) was added triethylamine 

(2.03 mL, 14.6 mmol) dropwise and the mixture allowed stir at 0 

°C for 10 min, followed by dropwise addition of bromoethane (1.09 mL, 14.6 

mmol).  The resulting mixture was stirred at room temperature for 12 h.  Water 

(10 mL) was added to the reaction mixture, the organic layer separated and the 

aqueous layer extracted with DCM (3 u 20 mL).  The combined organic extracts 

were dried over MgSO4 and concentrated in vacuo to yield crude product which 

was purified using silica column chromatography eluting with 50:50 hexane:ethyl 

acetate to yield 511e as a pale yellow solid (0.256 g, 12%). m.p. 63–64 °C [lit.8 

61°C].  IR (KBr) Qmax: 2986 (alkyl C-H stretch, m), 1720 (C=O stretch, s), 1567 

(aromatic C=C stretch, s), 1250 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, 

CDCl3): G 1.37 (3H, t, J = 7.0 Hz, OCH2CH3), 2.17 (3H, s, CH3), 3.98 (2H, q, J = 
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7.1 Hz, OCH2CH3), 5.34 (1H, d, J = 2.0 Hz, CHC=O), 5.73 (1H, d, J = 1.0 Hz, 

CH3CCH) ppm; 13C NMR (75.5 MHz, CDCl3): G 14.0 (OCH2CH3), 19.8 (CH3), 

64.5 (OCH2CH3), 87.6 (CHC=O), 100.6 (CH3CCH), 162.0 (CH3CCH), 165.1 

(C=O), 170.5 (COCH2CH3) ppm; HRMS (ESI) m/z calcd for C8H11O3 [(M + H)+]: 

155.0708, found 155.0704. 

6-Methyl-4-propoxy-2H-pyran-2-one, 511f 

To a stirred suspension of 4-hydroxy-6-methyl-2-pyrone 439 

(1.338 g, 10.6 mmol) in DCM (15 mL) was added triethylamine 

(1.63 mL, 11.7 mmol) dropwise and the mixture allowed stir at 0 

°C for 10 min, followed by dropwise addition of 1-iodopropane (1.14 mL, 11.7 

mmol).  The resulting mixture was stirred at room temperature for 12 h.  Water 

(10 mL) was added to the reaction mixture, the organic layer separated and the 

aqueous layer extracted with DCM (3 u 20 mL).  The combined organic extracts 

were dried over MgSO4 and concentrated in vacuo to yield crude product which 

was purified using silica column chromatography eluting with 50:50 hexane:ethyl 

acetate to yield 511f as a pale yellow viscous oil (0.122 g, 7%).                 

IR (KBr) Qmax: 2970 (alkyl C-H stretch, m), 1733 (C=O stretch, s), 1566 (aromatic 

C=C stretch, s), 1250 (ester C-O stretch) cm�1; 1H NMR (300 MHz, CDCl3): G 

0.93 (3H, t, J = 7.4 Hz, OCH2CH2CH3), 1.71 (2H, m, OCH2CH2CH3), 2.12 (3H, 

s, CH3), 3.82 (2H, t, J = 6.5 Hz, OCH2CH2CH3), 5.29 (1H, d, J = 1.1 Hz, CHC=O), 

5.71 (1H, d, J = 2.1 Hz,  CH3CCH) ppm; 13C NMR (75.5 MHz, CDCl3): G 10.2 

(OCH2CH2CH3), 19.7 (CH3), 21.8 (OCH2CH2CH3), 70.2 (OCH2CH2CH3), 87.6 

(CHC=O), 100.5 (CH3CCH), 161.9 (CH3CCH), 165.0 (C=O), 170.7 

(COCH2CH2CH3) ppm; HRMS (ESI) m/z calcd for C9H13O3 [(M + H)+]: 169.0865, 

found 169.0867. 

4-Bromo-6-methyl-2H-pyran-2-one, 512 

To a stirred solution of 4-hydroxy-6-methyl-2-pyrone 439 (4.173 g, 

33.1 mmol) in toluene (150 mL) was added 

tetrabutylammoniumbromide (12.37 g, 38.4 mmol) and phosphorus 

pentoxide (22.55 g, 79.44 mmol).  The reaction was allowed to stir at reflux for 3 

h.  The reaction mixture was filtered into a separating funnel and extracted with 
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toluene (25 mL), washed with saturated aq. NaHCO3 (40 mL) and brine (40 mL).  

The combined organic extracts were dried over MgSO4 and concentrated in vacuo 

to yield crude product which was filtered through a pad of silica with 50:50 

hexane:diethyl ether to provide 512 as an off-white solid (4.224 g, 68%).  m.p. 85–

87 °C [lit.9 87–89 °C].                      

Spectral characteristics were consistent with previously reported data.9          
1H NMR (CDCl3, 300 MHz): G 2.25 (3H, s, CH3), 6.19 (1H, s, CH3CCH), 6.46 

(1H, s, C=OCH) ppm; 13C NMR (75.5 MHz, CDCl3): G 19.7 (CH3), 108.4 

(CH3CCH), 114.8 (C=OCH), 141.1 (CBr), 160.6 (C=O), 162.1 (CH3CCH) ppm; 

HRMS (ESI) m/z calcd for C6H6O2Br [(M + H)+]: 188.9551, found 188.9553. 

6-Methyl-4-phenoxy-2H-pyran-2-one, 511g 

To a stirred solution of 4-bromo-6-methyl-2H-pyran-2-one 512 

(2.225 g, 11.8 mmol) and K2CO3 (2.934 g, 21.2 mmol) in acetone 

(60 mL) was added phenol (1.666 g, 17.7 mmol) and the resulting 

reaction mixture stirred at reflux for 24 h.  On completion was 

added H2O (20 mL), the reaction mixture extracted with ethyl acetate (3 u 25 mL) 

and washed with 10 % aq. NaOH (2 u 25 mL).  Organic layer was dried over 

MgSO4 and concentrated in vacuo to yield 511g a beige solid (2.182 g, 91%) with 

no purification required.  m.p. 86–88 °C [lit.10 89–91 °C].                  

IR (KBr) Qmax: 1722 (C=O stretch, s), 1564, 1447 (aromatic C=C stretch, s), 1290, 

1232 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.26 (3H, s, CH3), 

5.20 (1H, dd, J = 0.3, 2.2 Hz, CHC=O), 5.97 (1H, dd, J = 0.9, 2.2 Hz, CH3CCH), 

7.05–7.09 (2H, m, 2 u CH arom.), 7.26–7.32 (1H, m, CH arom.) 7.40–7.46 (2H, 

m, 2 u CH arom.)  ppm; 13C NMR (75.5 MHz, CDCl3): G 20.0 (CH3), 91.0 

(CHC=O), 99.9 (CH3CCH), 121.1, 126.5, 130.3 (5 u CH arom.), 152.4 (COC 

arom.), 163.3(CH3CCH), 164.6 (C=O), 170.8 (COPh) ppm; HRMS (ESI) m/z 

calcd for C12H11O3 [(M + H)+]: 203.0708, found 203.0702; Anal. calcd for 

C12H10O3: C, 71.28; H, 4.98%. Found: C, 71.20; H, 5.09%. 
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6-(4-Chlorophenyl)-4-methoxy-2H-pyran-2-one, 511i 

To a round bottomed flask containing 6-(4-chlorophenyl)-

4-hydroxy-2H-pyran-2-one (0.216 g, 0.97 mmol) and 

K2CO3 (0.161 g, 1.16 mmol) was added 

trimethylphosphate (2.36 mL, 20.1 mmol) and the 

resulting reaction mixture stirred at reflux for 1 h.  On completion, the reaction 

mixture was washed with water (15 mL) and extracted with ethyl acetate (3 u 25 

mL).  The combined organic extracts were dried over MgSO4 and concentrated in 

vacuo to yield crude product as a viscous, brown oil which was purified by silica 

column chromatography eluting with 50:50 hexane:ethyl acetate to yield 511i as 

an off-white solid (0.077 g, 33%).  m.p. 123–125 °C.                       

IR (KBr) Qmax: 1723 (C=O stretch, s), 1563 (aromatic C=C stretch, s), 1276 (ester 

C-O stretch, s), 730 (C-Cl stretch, w) cm�1; 1H NMR (300 MHz, CDCl3): G 3.86 

(3H, s, OCH3), 5.55 (1H, d, J = 2.1 Hz, CHC=O), 6.40 (1H, d, J = 2.1 Hz, CH), 

7.42 (2H, d, J = 8.7 Hz, 2 u CH arom.), 7.74 (2H, d, J = 8.7 Hz, 2 u CH arom.) 

ppm; 13C NMR (75.5 MHz, CDCl3): G 56.1 (OCH3), 88.7 (CHC=O), 98.2 

(CHCOCH3), 127.0 (2 u CH arom), 129.2 (2 u CH arom), 129.6 (qC arom.), 137.1 

(CCl), 159.0 (CCHCOCH3), 163.8 (C=O), 171.1 (COCH3) ppm; HRMS (ESI) m/z 

calcd for C12H10O3Cl [(M + H)+]: 237.0318, found 237.0313.  

4-Methoxy-6-(4-(trifluoromethyl)phenyl)-2H-pyran-2-one, 511j 

To a round bottomed flask containing 4-hydroxy-6-(4-

(trifluoromethyl)phenyl)-2H-pyran-2-one (0.142 g, 0.55 

mmol) and K2CO3 (0.091 g, 0.66 mmol) was added 

trimethylphosphate (2.36 mL, 20.1 mmol) and the 

resulting reaction mixture stirred at reflux overnight.  On 

completion, the reaction mixture was washed with water (15 mL) and extracted 

with ethyl acetate (3 u 25 mL).  The combined organic extracts were dried over 

MgSO4 and concentrated in vacuo to yield crude product as an orange oil which 

was purified by silica column chromatography eluting with 50:50 hexane:ethyl 

acetate to yield 511j a pale yellow solid (0.129 g, 87%).  m.p. 154–155 °C.              

IR (KBr) Qmax: 1740 (C=O stretch, s), 1641 (C=C stretch, m), 1566 (aromatic C=C 

stretch, m), 1116 (ester C-O stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): G 3.87 
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(3H, s, OCH3), 5.58 (1H, d, J = 2.1 Hz, CHC=O)  6.49 (1H, d, J = 2.1 Hz, 

CHCOCH3), 7.71 (2H, d, J = 8.3 Hz, 2 u CH arom.), 7.92 (2H, d, J = 8.3 Hz, 2 u 

CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 56.2 (OCH3), 89.4 (CHC=O), 

99.5 (CHCOCH3), 123.7 (q, JC-F = 272.4 Hz, CF3), 125.8, 125.89, 125.94, 126.0 

(4 u CH arom.), 132.6 (q, 2JC-F = 32.8 Hz, CCF3), 134.4 (qC arom.), 158.4 

(CCHCOCH3), 163.6 (C=O), 170.9 (COCH3) ppm; 19 F NMR (282 MHz, CDCl3): 

G -63.2 (CF3) ppm; HRMS (ESI) m/z calcd for C13H10O3F3 [(M + H)+]: 271.0582, 

found 271.0583; Anal. calcd for C13H9O3F3: C, 57.79; H, 3.36%. Found: C, 57.69; 

H, 3.10%.     

9.3  Iodination of O-functionalised pyrones and coumarins 
3-Iodo-4-methoxy-6-methyl-2H-pyran-2-one, 506 

To a stirred solution of 4-methoxy-6-methyl-pyrone 505 (1.988 g, 

14.2 mmol) in acetonitrile (40 mL) was added N-iodosuccinimide 

(4.790 g, 21.3 mmol). The reaction vessel was covered in 

aluminium foil and allowed stir at room temperature for 12 h.  On completion, the 

solvent was concentrated in vacuo, the resulting orange solid dissolved in DCM 

(15 mL) and washed with 5% aq. sodium thiosulfate (3 u 20 mL). The organic 

layer was dried over MgSO4 and concentrated in vacuo to yield 506 as a yellow 

solid (3.578 g, 95%) with no purification required.  m.p. 144–146 °C [lit.11 144–

146 °C].                               

Spectral characteristics were consistent with previously reported data.11                                  
1H NMR (300 MHz, CDCl3): G 2.30 (3H, s, CH3), 3.99 (3H, s, OCH3), 6.00 (1H, 

s, CH) ppm; 13C NMR (75.5 MHz, CDCl3): G 20.1 (CH3), 57.5 (OCH3), 62.3 (CI), 

94.7 (CH), 161.7 (C=O), 164.2 (CCH3), 170.5 (COCH3) ppm; MS (ESI)  m/z: 267 

[(M + H)+, 100%].  

3-Iodo-4-methoxy-2H-chromen-2-one, 507 

To a stirred solution of 4-methoxycoumarin 503 (2.56 g, 14.6 

mmol) in acetonitrile (40 mL) was added N-iodosuccinimide 

(4.256 g, 18.9 mmol) and trifluoroacetic acid (1.12 mL, 14.6 

mmol). The reaction vessel was covered in aluminium foil and allowed stir at room 

temperature for 60 h.  On completion, the solvent was concentrated in vacuo, the 
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resulting orange solid dissolved in DCM (15 mL) and washed with 5% aq. sodium 

thiosulfate (3 u 20 mL). The organic layer was dried over MgSO4 and concentrated 

in vacuo to yield crude product which was purified by recrystallisation from 

methanol to yield 507 as a cream solid (1.998 g, 45%).  m.p. 88–90 °C [lit.12 88–

89 °C].                               

Spectral characteristics were consistent with previously reported data.12                    
1H NMR (300 MHz, CDCl3): G 4.15 (3H, s, OCH3), 7.28–7.38 (2H, m, 2 u CH 

arom.), 7.58–7.64 (1H, m, CH  arom.), 7.77 (1H, dd, J = 1.6, 7.9 Hz, CH arom.) 

ppm; 13C NMR (75.5 MHz, CDCl3): G 61.6 (OCH3), 76.5 (CI), 116.7 

(C=CCOCH3), 116.8 (CH arom.), 123.2 (CH arom.), 124.5 (CH arom.), 133.0 (CH 

arom.), 153.2 (COC=O), 159.9 (C=O), 170.0 (COCH3) ppm; MS (ESI)  m/z: 303 

[(M + H)+, 100%].   

4-Hydroxy-3-iodo-6-methyl-2H-pyran-2-one, 508 

To a stirred solution of 4-hydroxy-6-methyl-2H-pyran-2-one 439 

(1.147 g, 9.10 mmol) in the minimum amount of ammonium 

hydroxide was added a solution of iodine (2.308 g, 9.10 mmol) in 

aq. KI (sufficient to dissolve iodine) dropwise at 0°C.  The resulting reaction 

mixture was allowed stir at 0°C for 2 h before being placed in the refrigerator 

overnight.  Reaction mixture was acidified to pH 4-5 and resulting precipitate was 

filtered and washed with water to yield crude product as a dark yellow solid which 

was purified by recrystallisation from ethyl acetate to yield 508 as a white solid 

(0.522 g, 23%).  m.p. 184–186 °C.               

IR (KBr) Qmax: 1728 (C=O stretch, s), 1643, 1545 (aromatic C=C stretch, s), 1398, 

1347 (ester C-O stretch, s), 1216 (alcohol C-O stretch, m) cm�1; 1H NMR (300 

MHz, (CD3)2SO): G 2.18 (3H, d, J = 0.7 Hz, CH3), 6.04 (1H, d, J = 0.8 Hz, CH) 

ppm; 13C NMR (75.5 M89Hz, (CD3)2SO): G 19.4 (CH3), 60.2 (CI), 99.5 (CH), 

162.0 (C=O), 163.0 (CCH3), 170.7 (COCH3) ppm; HRMS (ESI) m/z calcd for 

C6H6O3I  [(M + H)+]: 252.9362, found 252.9353; Anal. calcd for C6H5O3I: C, 

28.60; H, 2.00%. Found: C, 29.16; H, 1.99%. 
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4-Hydroxy-3-iodo-2H-chromen-2-one, 509 

To a stirred solution of 4-hydroxycoumarin 468 (2.227 g, 13.7 

mmol), potassium iodide (1.528 g, 9.2 mmol) and potassium 

iodate (0.970 g, 4.5 mmol) in methanol (8 mL) and H2O (40 mL) 

was added 1M HCl (14.1 mL) dropwise over 45 min.  The resulting reaction 

mixture was stirred at room temperature for 12 h.  The reaction mixture was diluted 

with H2O (50 mL) and extracted with DCM (3 u 25 mL).  The combined organic 

extracts were washed with 5% aq. sodium thiosulfate (25 mL), water (25 mL) and 

brine (25 mL), dried over MgSO4 and concentrated in vacuo to yield crude product 

509 as a brown solid (1.025 g, 26%) with no purification required. m.p. 155–157 

°C [lit.13 152–153 °C].                                 

IR (KBr) Qmax: 1725 (C=O stretch, s), 1548 (aromatic C=C stretch, s), 1156 (ester 

C-O stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): G 7.06 (1H, bs, OH), 7.31–

7.40 (2H, m, 2 u CH arom.), 7.61–7.66 (1H, m CH arom.), 7.91 (1H, dd, J = 1.6, 

8.0 Hz, CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 68.1 (CI), 113.4 

(CCOH), 116.6, 123.5, 124.6, 133.4 (4 u CH arom.), 153.0 (COC=O), 159.2 

(C=O), 164.4 (COH) ppm; HRMS (ESI) m/z calcd for C9H6O3I [(M + H)+]: 

288.9362, found 288.9357.  

3-Iodo-4-(methoxymethoxy)-6-methyl-2H-pyran-2-one, 514a 

To a stirred solution of 4-(methoxymethoxy)-6-methyl-2H-pyran-

2-one 511a (0.639 g, 3.76 mmol) in acetonitrile (20 mL) was 

added N-iodosuccinimide (2.542 g, 11.3 mmol). The reaction 

vessel was covered in aluminium foil and allowed stir at room temperature for 12 

h.  On completion, the solvent was concentrated in vacuo, the resulting orange 

solid dissolved in DCM (15 mL) and washed with 5% aq. sodium thiosulfate (3 u 

20 mL). The organic layer was dried over MgSO4 and concentrated in vacuo to 

yield crude product 514a as a yellow solid (0.829 g, 74%) which was subsequently 

used without purification due to sensitive nature of the protecting group.  m.p. 

109–111 °C.                                                                

IR (KBr) Qmax: 2925 (alkyl C-H stretch, m), 1716 (C=O stretch, s), 1523 (aromatic 

C=C stretch, s), 1158 (ester C-O stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): G 

2.26 (3H, s, CH3), 3.50 (3H, s, OCH3), 5.27 (2H, s, OCH2O), 6.10 (1H, s, CH) 
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ppm; 13C NMR (75.5 MHz, CDCl3): G 20.0 (CH3), 57.2 (OCH3), 64.5 (CI), 94.7 

(OCH2O), 96.5 (CH), 161.9 (C=O), 163.5 (CH3CCH), 168.9 (COCH2O) ppm; 

HRMS (ESI) calcd for C8H10O4I [(M + H)+]: 296.9624, found 296.9618.  

3-Iodo-4-((2-methoxyethoxy)methoxy)-6-methyl-2H-pyran-2-one, 514b 

To a stirred solution of 4-((2-methoxyethoxy)methoxy)-6-

methyl-2H-pyran-2-one 511b (0.303 g, 1.41 mmol) in 

acetonitrile (20 mL) was added N-iodosuccinimide (0.955 

g, 4.24 mmol). The reaction vessel was covered in aluminium foil and allowed stir 

at room temperature for 36 h.  On completion, the solvent was concentrated in 

vacuo, the resulting orange solid dissolved in DCM (15 mL) and washed with 5% 

aq. sodium thiosulfate (3 u 20 mL). The organic layer was dried over MgSO4 and 

concentrated in vacuo to give crude product which was purified using silica 

column chromatography eluting with 50:50 hexane:ethyl acetate to yield 514b as 

a viscous yellow oil (0.200 g, 42%).                         

IR (NaCl) Qmax: 2925 (alkyl C-H stretch, w), 1718 (C=O stretch, s), 1525 (aromatic 

C=C stretch, s), 1110 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 

2.24 (3H, s, CH3), 3.35 (3H, s, OCH3), 3.52–3.55 (2H, m, OCH2CH2OCH3), 3.81–

3.84 (2H, m, OCH2CH2OCH3), 5.35 (2H, s, OCH2O), 6.13 (1H, s, CH) ppm; 13C 

NMR (75.5 MHz, CDCl3): G 20.0 (CH3), 59.0 (OCH3), 64.5 (CI), 69.0 

(OCH2CH2OCH3), 71.2 (OCH2CH2OCH3), 93.7 (OCH2O), 96.5 (CH), 161.8 

(C=O), 163.5 (CH3CCH), 168.9 (COCH2O) ppm; HRMS (ESI) m/z calcd for 

C10H14O5I [(M + H)+]: 340.9886, found 340.9880.  

Benzyl (3-iodo-6-methyl-2-oxo-2H-pyran-4-yl) carbonate, 514c 

To a stirred solution of benzyl (6-methyl-2-oxo-2H-

pyran-4-yl) carbonate 511c (0.559 g, 2.15 mmol) in 

acetonitrile (20 mL) was added N-iodosuccinimide 

(0.967 g, 4.30 mmol). The reaction vessel was covered in 

aluminium foil and allowed stir at reflux for 48 h.  On completion, the solvent was 

concentrated in vacuo, the resulting orange solid dissolved in DCM (15 mL) and 

washed with 5% aq. sodium thiosulfate (3 u 20 mL). The organic layer was dried 

over MgSO4 and concentrated in vacuo to yield product 514c as a yellow solid 
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(0.670 g, 81%) with no purification required.  m.p. 116–118 °C.                                     

IR (KBr) Qmax: 1764, 1729 (C=O stretch, s), 1549 (aromatic C=C stretch, m), 1266, 

1241 (ester C-O stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): G 2.26 (3H, s, 

CH3), 5.32 (2H, s, OCH2Ph), 6.11 (1H, s, CH), 7.39–7.45 (5H, m, 5 u CH arom.)  

ppm; 13C NMR (75.5 MHz, CDCl3): G 19.7 (CH3), 71.7 (OCH2Ph), 74.2 (CI), 

101.4 (CH), 128.7, 128.8, 129.2 (5 u CH arom.), 133.8 (OCH2C), 150.1 (OC=OO), 

161.2 (C=O), 163.1 (CH3CCH), 164.5 (CHCOC=O) ppm; HRMS (ESI) m/z calcd 

for C14H12O5I  [(M + H)+]: 386.9730, found 386.9728. 

4-(Benzyloxy)-3-iodo-6-methyl-2H-pyran-2-one, 514d 

To a stirred solution of 4-(benzyloxy)-6-methyl-2H-pyran-2-one 

511d (0.204 g, 0.94 mmol) in acetonitrile (20 mL) was added N-

iodosuccinimide (0.637 g, 2.83 mmol). The reaction vessel was 

covered in aluminium foil and allowed stir at room temperature for 

48 h.  On completion, the solvent was concentrated in vacuo, the 

resulting orange solid dissolved in DCM (15 mL) and washed with 

5% aq. sodium thiosulfate (3 u 20 mL). The organic layer was dried over MgSO4 

and concentrated in vacuo to yield product 514d as an off-white solid (0.272 g, 

84%) with no purification required.  m.p. 125–126 °C.                                                          

IR (KBr) Qmax: 1705 (C=O stretch, s), 1524 (aromatic C=C stretch, s), 1318 (ester 

C-O stretch, m) cm�1; 1H NMR (CDCl3, 300 MHz) : G 2.22 (3H, s, CH3), 5.35 (2H, 

s, OCH2Ph), 5.97 (1H, s, CH), 7.32–7.40 (5H, m, 5 u CH arom.) ppm; 13C NMR 

(75.5 MHz, CDCl3): G 20.1 (CH3), 63.3 (CI), 71.8 (OCH2Ph), 95.8 (CH), 126.8, 

128.7, 128.9 (5 u CH arom.), 134.6 (OCH2C), 161.8 (C=O), 164.0 (CH3CCH), 

169.8 (COCH2Ph) ppm; HRMS (ESI) m/z calcd for C13H12O3I [(M + H)+]: 

342.9831, found 342.9824. 

4-Ethoxy-3-iodo-6-methyl-2H-pyran-2-one, 514e 

To a stirred solution of 4-ethoxy-6-methyl-2H-pyran-2-one 511e 
(0.150 g, 0.97 mmol) in acetonitrile (20 mL) was added N-

iodosuccinimide (0.657 g, 2.92 mmol). The reaction vessel was 

covered in aluminium foil and allowed stir at room temperature for 

12 h.  On completion, the solvent was concentrated in vacuo, the resulting orange 
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solid dissolved in DCM (15 mL) and washed with 5% aq. sodium thiosulfate (3 u 

20 mL). The organic layer was dried over MgSO4 and concentrated in vacuo to 

yield product 514e as a yellow solid (0.205 g, 75%) with no purification required.  

m.p. 130–131 °C.                                  

IR (KBr) Qmax: 3102, 2981 (alkyl C-H stretch, m), 1699 (C=O stretch, s), 1521 

(aromatic C=C stretch, s), 1314 (ester C-O stretch, m) cm�1; 1H NMR (300 MHz, 

CDCl3): G 1.45 (3H, t, J = 7.0 Hz, OCH2CH3), 2.25 (3H, s, CH3), 4.20 (2H, q, J = 

7.1 Hz, OCH2CH3), 5.92 (1H, s, CH) ppm; 13C NMR (75.5 MHz, CDCl3): G 14.7 

(OCH2CH3), 20.1 (CH3), 62.5 (CI), 66.4 (OCH2CH3), 95.3 (CH), 161.9 (C=O), 

163.9 (CH3CH), 169.9 (COCH2CH3) ppm; HRMS (ESI) m/z calcd for C8H10O3I 

[(M + H)+]: 280.967, found 280.9669; Anal. calcd for C8H9O3I: C, 34.21; H, 

3.24%. Found: C, 34.43; H, 3.00%. 

3-Iodo-6-methyl-4-propoxy-2H-pyran-2-one, 514f 

To a stirred solution of 6-methyl-4-propoxy-2H-pyran-2-one 

511f (0.056 g, 0.33 mmol) in acetonitrile (15 mL) was added N-

iodosuccinimide (0.225 g, 1.00 mmol). The reaction vessel was 

covered in aluminium foil and allowed stir at room temperature for 12 h.  On 

completion, the solvent was concentrated in vacuo, the resulting orange solid 

dissolved in DCM (15 mL) and washed with 5% aq. sodium thiosulfate (3 u 20 

mL). The organic layer was dried over MgSO4 and concentrated in vacuo to yield 

product 514f as a white solid (0.093 g, 96%) with no purification required.  m.p. 

113–115 °C.                    

IR (KBr) Qmax: 2969, 2920 (alkyl C-H stretch, s), 1709 (C=O stretch, s), 1522 

(aromatic C=C stretch, s), 1317 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, 

CDCl3): G 1.05 (3H, t, J = 7.4 Hz, OCH2CH2CH3), 1.83 (2H, m, OCH2CH2CH3), 

2.25 (3H, s, CH3), 4.09 (2H, t, J = 6.4 Hz, OCH2CH2CH3), 5.93 (1H, s, CH) ppm; 
13C NMR (75.5 MHz, CDCl3): G 10.4 (OCH2CH2CH3), 20.1 (CH3), 22.4 

(OCH2CH2CH3), 62.5 (CI), 72.0 (OCH2CH2CH3), 95.4 (CH), 161.9 (C=O), 163.9 

(CH3CCH), 170.0 (CHCOCH2CH2CH3) ppm; HRMS (ESI) m/z calcd for 

C9H12O3I [(M + H)+]: 294.9831, found 294.9820; Anal. calcd for C9H11O3I: C, 

36.76; H, 3.77%. Found: C, 36.93; H, 3.49%. 
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3-Iodo-6-methyl-4-phenoxy-2H-pyran-2-one, 514g 

To a stirred solution of 4-phenoxy-6-methyl-2H-pyran-2-one 

511g (0.657 g, 3.25 mmol) in acetonitrile (20 mL) was added N-

iodosuccinimide (1.096 g, 4.87 mmol). The reaction vessel was 

covered in aluminium foil and allowed stir at reflux for 36 h.  On 

completion, the solvent was concentrated in vacuo, the resulting orange solid 

dissolved in DCM (15 mL) and washed with 5% aq. sodium thiosulfate (3 u 20 

mL). The organic layer was dried over MgSO4 and concentrated in vacuo to yield 

product 514g as a yellow solid (1.022 g, 96%) with no purification required.  m.p. 

123–125 °C [lit.10 142 °C].                              

IR (KBr) Qmax: 1718 (C=O stretch, s), 1532, 1487 (aromatic C=C stretch, s), 1225 

(ester C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.16 (3H, s, CH3), 5.54 

(1H, s, CH),  7.07–7.09 (2H, m, 2 u CH arom.), 7.29–7.34 (1H, m, CH arom.), 

7.42–7.47 (2H, m, 2 u CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 19.9 

(CH3), 64.9 (CI), 97.3 (CH), 120.9, 126.5, 130.4 (5 u CH arom.), 153.0 (CHCOC), 

161.8 (C=O), 163.6 (CH3CCH), 169.4 (CHCOPh) ppm; HRMS (ESI) m/z calcd 

for C12H10O3I  [(M + H)+]: 328.9675, found 328.9667; Anal. calcd for C12H9O3I: 

C, 43.93; H, 2.76%. Found: C, 43.96; H, 2.63%. 

4-Chloro-3-iodo-6-methyl-2H-pyran-2-one, 514h 

To a stirred solution of 4-chloro-6-methyl-2H-pyran-2-one 511h 

(0.271 g, 1.87 mmol) in acetonitrile (20 mL) was added N-

iodosuccinimide (1.265 g, 5.62 mmol). The reaction vessel was 

covered in aluminium foil and allowed stir at reflux for 18 h.  On completion, the 

solvent was concentrated in vacuo, the resulting orange solid dissolved in DCM 

(15 mL) and washed with 5% aq. sodium thiosulfate (3 u 20 mL). The organic 

layer was dried over MgSO4 and concentrated in vacuo to yield product 514h as a 

yellow solid (0.381 g, 75%) with no purification required.  m.p. 121–123 °C.          

IR (KBr) Qmax: 1719 (C=O stretch, s), 1509 (aromatic C=C stretch, s), 1267 (ester 

C-O stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): G 2.22 (3H, s, CH3), 6.14 (1H, 

s, CH) ppm; 13C NMR (75.5 MHz, CDCl3): G 19.4 (CH3), 85.5 (CI), 106.4 (CH), 
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156.3 (CCl), 159.5 (C=O), 161.4 (CH3CCH) ppm; HRMS (ESI) m/z calcd for 

C6H5O2ICl [(M + H)+]: 270.9023, found 270.9017. 

6-(4-Chlorophenyl)-3-iodo-4-methoxy-2H-pyran-2-one, 514i 

To a stirred solution of 6-(4-chlorophenyl)-4-methoxy-

2H-pyran-2-one 511i (0.070 g, 0.30 mmol) in acetonitrile 

(15 mL) was added N-iodosuccinimide (0.202 g, 0.90 

mmol). The reaction vessel was covered in aluminium foil 

and allowed stir at room temperature for 18 h.  On completion, the solvent was 

concentrated in vacuo, the resulting orange solid dissolved in DCM (15 mL) and 

washed with 5% aq. sodium thiosulfate (3 u 20 mL). The organic layer was dried 

over MgSO4 and concentrated in vacuo to yield product 514i as a pale yellow solid 

(0.084 g, 77%) with no purification required.  m.p. 233–235 °C.                                     

IR (KBr) Qmax: 1687 (C=O stretch, s), 1508 (aromatic C=C stretch. s), 1380 (ester 

C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 4.08 (3H, s, OCH3), 6.52 (1H, 

s, CH), 7.45 (2H, d, J = 8.8 Hz, 2 u CH arom.), 7.81 (2H, d, J = 8.8 Hz, 2 u CH 

arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 57.5 (OCH3), 64.6 (CI), 91.8 

(CHCOCH3), 127.2 (2 u CH arom.), 129.0 (qC arom.), 129.5 (2 u CH arom.), 

137.9 (CCl), 160.72 (C=O), 160.74 (CCHCOCH3), 170.2 (CHCOCH3) ppm; 

HRMS (ESI) m/z calcd for C12H9O3ICl [(M + H)+]: 362.9285 , found 362.9272. 

3-Iodo-4-methoxy-6-(4-(trifluoromethyl)phenyl)-2H-pyran-2-one, 514j 

 To a stirred solution of 4-methoxy-6-(4-

(trifluoromethyl)phenyl)-2H-pyran-2-one 511j (0.120 g, 

0.44 mmol) in acetonitrile (15 mL) was added N-

iodosuccinimide (0.200 g, 0.89 mmol). The reaction 

vessel was covered in aluminium foil and allowed stir at 

room temperature for 18 h.  On completion, the solvent was concentrated in vacuo, 

the resulting orange solid dissolved in DCM (15 mL) and washed with 5 % 

aqueous sodium thiosulfate (3 u 20 mL). The organic layer was dried over MgSO4 

and concentrated in vacuo to yield product 514i as a white solid (0.133 g, 76%) 

with no purification required.  m.p. 207–208 °C.                         

IR (KBr) Qmax: 1699 (C=O stretch, s), 1521, 1508 (aromatic C=C stretch, s), 1111 
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(ether C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 4.11 (3H, s, OCH3), 

6.61 (1H, s, CH), 7.73 (2H, d, J = 8.3 Hz, 2 u CH arom.), 7.99 (2H, d, J = 8.3 Hz, 

2 u CH arom.) ppm; 13C NMR (75 MHz, CDCl3): G 57.6 (OCH3), 65.8 (CI), 92.9 

(CH), 123.5 (q, 1JC-F = 272.4 Hz, CF3), 126.1 (q, 3JC-F = 3.8 Hz, 2 u CH arom.), 

126.3 (2 u CH arom.), 133.2 (q, 2JC-F = 32.9 Hz, CF3C), 133.8 (qC arom.), 160.0 

(CCHCOCH3), 160.6 (C=O), 170.0 (COCH3) ppm; 19 F NMR (282 MHz, CDCl3): 

G -63.1 (CF3) ppm; HRMS (ESI) m/z calcd for C13H9F3O3I [(M + H)+]: 396.9549, 

found 396.9536. 

9.4  Synthesis of trifluoromethylated O-functionalised pyrones 
4-Methoxy-6-methyl-3-(trifluoromethyl)-2H-pyran-2-one, 510 

To a stirred solution of 3-iodo-4-methoxy-6-methyl-2-pyrone 506 

(0.101 g, 0.38 mmol) and copper (I) iodide (0.087 g, 0.46 mmol) 

in DMF (4 mL) was added methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (0.06 mL, 0.46 mmol).  The reaction mixture was allowed 

stir at 70 °C for 5 h.  On completion, the reaction was cooled to room temperature, 

diluted with diethyl ether (20 mL) and filtered.  The solution was poured into water 

(20 mL), extracted with diethyl ether (4 u 20 mL) and the combined organic 

extracts washed with water (3 u 5 mL).  The organic layer was dried over MgSO4 

and concentrated in vacuo to yield crude product which was purified using silica 

column chromatography eluting with 50:50 hexane:ethyl acetate to yield 510 as a 

pale yellow solid (0.061 g, 77%).  m.p. 120–122 °C.                       

IR (KBr) Qmax: 1747 (ester C=O stretch, s), 1560 (aromatic C=C stretch, s), 1266 

(ether C-O stretch, s), 1100 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, 

CDCl3): G 2.33 (3H, s, CH3), 4.00 (3H, s, OCH3), 6.11 (1H, s, CH) ppm; 13C NMR 

(100 MHz, CDCl3): G 20.7 (CH3), 57.5 (OCH3), 94.5 (CH), 94.3 (q, 2JC-F = 31.6 

Hz, CCF3), 124.2 (q, 1JC-F = 272.7 Hz, CF3), 159.1 (C=O), 167.8 (CCH3), 171.1 

(COCH3) ppm; 19F NMR (470 MHz, CDCl3): G -57.6 (CF3) ppm; HRMS (ESI) 

m/z calcd for C8H8F3O3 [(M + H)+]: 209.0426, found 209.0424; Anal. calcd for 

C8H7F3O3: C, 46.17; H, 3.39%. Found: C, 46.27; H, 3.49%.  
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4-(Benzyloxy)-6-methyl-3-(trifluoromethyl)-2H-pyran-2-one, 515d 

To a stirred solution of 3-iodo-4-benzyloxy-6-methyl-2-pyrone 

514d (0.259 g, 0.76 mmol) and copper (I) iodide (0.173 g, 0.91 

mmol) in DMF (4 mL) was added methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (0.12 mL, 0.91 mmol).  The reaction 

mixture was allowed stir at 70 °C overnight.  On completion, the 

reaction was cooled to room temperature, diluted with diethyl ether (20 mL) and 

filtered.  The solution was poured into water (20 mL), extracted with diethyl ether 

(4 u 20 mL) and the combined organic extracts washed with water (3 u 5 mL).  

The organic layer was dried over MgSO4 and concentrated in vacuo to yield crude 

product which was purified using silica column chromatography eluting with 

50:50 hexane:ethyl acetate to yield 515d as a pale yellow solid (0.065 g, 30%).  

m.p. 149–151 °C.                                              

IR (KBr) Qmax: 1715 (C=O stretch, s), 1556, 1414 (aromatic C=C stretch, s), 1364 

(ester C-O stretch, m) cm�1;  1H NMR (CDCl3, 300 MHz): G 2.28 (3H, s, CH3), 

5.27 (2H, s, OCH2Ph), 6.08 (1H, s, CH), 7.34–7.45 (5H, m, 5 u ArH) ppm; 13C 

NMR (CDCl3, 150 MHz): G 20.8 (CH3), 71.9 (OCH2Ph), 95.1 (q, 2JC-F = 29.4 Hz, 

CCF3), 95.3 (CH), 122.8 (q, 1JC-F = 271.5 Hz, CF3), 126.8, 128.9, 129.0 (5 u CH 

arom.), 134.0 (OCH2C), 159.0 (C=O), 167.5 (CH3CCH), 170.2 (CHCOCH2Ph); 
19F NMR (282 MHz, CDCl3): G -57.5 (CF3) ppm; HRMS (ESI) m/z calcd for 

C14H12F3O3 [(M + H)+]: 285.0739, found 285.0728.  

4-Ethoxy-6-methyl-3-(trifluoromethyl)-2H-pyran-2-one, 515e 

To a stirred solution of 3-iodo-4-ethoxy-6-methyl-2-pyrone 514e 

(0.190 g, 0.68 mmol) and copper (I) iodide (0.156 g, 0.82 mmol) 

in DMF (4 mL) was added methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (0.21 mL, 1.63 mmol).  The reaction mixture was allowed 

stir at 70 °C overnight.  On completion, the reaction was cooled to room 

temperature, diluted with diethyl ether (20 mL) and filtered.  The solution was 

poured into water (20 mL), extracted with diethyl ether (4 u 20 mL) and the 

combined organic extracts washed with water (3 u 5 mL).  The organic layer was 

dried over MgSO4 and concentrated in vacuo to yield crude product which was 

purified using silica column chromatography eluting with 70:30 hexane:ethyl 
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acetate to yield 515e as a pale yellow solid (0.052 g, 34%).  m.p. 129–131 °C.        

IR (KBr) Qmax: 1722 (C=O stretch, s), 1557 (aromatic C=C stretch, s), 1263 (ester 

C-O stretch, m) cm�1;  1H NMR (400 MHz, CDCl3): G 1.44 (3H, t, J = 7.0 Hz, 

OCH2CH3), 2.29 (3H, s, CH3), 4.23 (2H, q, J = 7.0 Hz, OCH2CH3), 6.05 (1H, s, 

CH) ppm; 13C NMR (100 MHz, CDCl3): G 14.4 (OCH2CH3), 20.7 (CH3), 66.7 

(OCH2CH3), 94.5 (q, 2JC-F = 31.5 Hz, CCF3), 95.0 (CH), 122.9 (q, 1JC-F = 272.8 

Hz, CF3), 159.2 (C=O), 167.4 (CH3CCH), 170.4 (COCH2CH3) ppm; 19F NMR 

(282 MHz, CDCl3): G -57.6 (CF3) ppm; HRMS (ESI) m/z calcd for C9H10F3O3 [(M 

+ H)+]: 223.0582, found 223.0574; Anal. calcd for C9H9F3O3: C, 48.66; H, 4.08%. 

Found: C, 48.48; H, 4.00%. 

6-Methyl-4-propoxy-3-(trifluoromethyl)-2H-pyran-2-one, 515f 

To a stirred solution of 3-iodo-4-propoxy-6-methyl pyrone 514f 
(0.093 g, 0.32 mmol) and copper (I) iodide (0.073 g, 0.38 mmol) 

in DMF (4 mL) was added methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (0.10 mL, 0.76 mmol).  The reaction mixture was allowed 

stir at 70 °C for 12 h.  On completion, the reaction was cooled to room temperature, 

diluted with diethyl ether (20 mL) and filtered.  The solution was poured into water 

(20 mL), extracted with diethyl ether (4 u 20 mL) and the combined organic 

extracts washed with water (3 u 5 mL).  The organic layer was dried over MgSO4 

and concentrated in vacuo to yield crude product which was purified using silica 

column chromatography eluting with 50:50 hexane:ethyl acetate to yield 515f as a 

yellow solid (0.035 g, 46%).  m.p. 107–109 °C.              

IR (KBr) Qmax: 1719 (C=O stretch, s), 1552 (aromatic C=C stretch, s), 1113 (ester 

C-O stretch, m) cm�1;  1H NMR (400 MHz, CDCl3): G 1.02 (3H, t, J = 7.4 Hz 

OCH2CH2CH3), 1.82 (2H, m, OCH2CH2CH3), 2.29 (3H, s, CH3), 4.11 (2H, t, J = 

6.3 Hz, OCH2CH2CH3), 6.06 (1H, s, CH) ppm; 13C NMR (100 MHz, CDCl3): G 

8.2 (OCH2CH2CH3), 18.8 (CH3), 20.4 (OCH2CH2CH3), 70.5 (OCH2CH2CH3), 

92.4 (q, 2JC-F = 31.6 Hz, CCF3), 93.3 (CH), 121.1(q, 1JC-F = 272.8 Hz, CF3), 157.4 

(C=O), 165.6 (CH3CCH), 168.9 (COCH2CH2CH3) ppm; 19 F NMR (282 MHz, 

CDCl3): G  -57.6 (CF3) ppm; HRMS (ESI) m/z calcd for C10H12O3F3 [(M + H)+]: 

237.0739, found 237.0735.  
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6-Methyl-4-phenoxy-3-(trifluoromethyl)-2H-pyran-2-one, 515g 

To a stirred solution of 3-iodo-4-phenoxy-6-methyl-2-pyrone 

514g (0.289 g, 0.88 mmol) and copper (I) iodide (0.201 g, 1.06 

mmol) in DMF (4 mL) was added methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (0.27 mL, 2.12 mmol).  The reaction 

mixture was allowed stir at 70 °C for 12 h.  On completion, the reaction was cooled 

to room temperature, diluted with diethyl ether (20 mL) and filtered.  The solution 

was poured into water (20 mL), extracted with diethyl ether (4 u 20 mL) and the 

combined organic extracts washed with water (3 u 5 mL).  The organic layer was 

dried over MgSO4 and concentrated in vacuo to yield crude product which was 

purified using silica column chromatography eluting with 80:20 hexane:ethyl 

acetate to yield 515g as a yellow solid (0.103 g, 43%).  m.p. 128–129 °C.          

IR (KBr) Qmax: 1730 (C=O stretch, s), 1563 (aromatic C=C stretch, s), 1261, 1123 

(ester C-O stretch, s) cm�1;  1H NMR (300 MHz, CDCl3): G 2.19 (3H, s, CH3), 5.62 

(1H, s, CH), 7.07–7.11 (2H, m, 2 u CH arom.), 7.31–7.37 (1H, m, CH arom.), 

7.44–7.50 (2H, m, 2 u CH arom.)  ppm; 13C NMR (100 MHz, CDCl3): G 20.5 

(CH3), 96.3 (q, 2JC-F = 32.1 Hz, CCF3), 96.9 (CH), 120.9 (2 u CH arom.), 122.5 (q, 
1JC-F = 273.1 Hz, CF3), 126.9 (CH arom.), 130.5 (2 u CH arom.), 152.4 (CHCOC), 

159.0 (C=O), 167.2 (CH3CCH), 169.2 (CHCO) ppm; 19 F NMR (282 MHz, 

CDCl3): G  -57.8 (CF3) ppm; HRMS (ESI) m/z calcd for C13H10F3O3 [(M + H)+]: 

271.0582, found 271.0583; Anal. calcd for C13H9F3O3: C, 57.79; H, 3.36%. Found: 

C, 57.61; H, 3.40%. 

4-Chloro-6-methyl-3-(trifluoromethyl)-2H-pyran-2-one, 515h 

To a stirred solution of 3-iodo-4-chloro-6-methyl-2-pyrone 514h 

(0.363 g, 1.34 mmol) and copper (I) iodide (0.307 g, 1.61 mmol) 

in DMF (4 mL) was added methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (0.41 mL, 3.22 mmol).  The reaction mixture was allowed 

stir at 70 °C for 12 h.  On completion, the reaction was cooled to room temperature, 

diluted with diethyl ether (20 mL) and filtered.  The solution was poured into water 

(20 mL), extracted with diethyl ether (4 u 20 mL) and the combined organic 

extracts washed with water (3 u 5 mL).  The organic layer was dried over MgSO4 

and concentrated in vacuo to yield crude product which was purified using silica 
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column chromatography eluting with 50:50 hexane:ethyl acetate to yield 515h as 

a yellow solid (0.076 g, 23%).  m.p. 50–52 °C.              

IR (KBr) Qmax: 1732 (C=O stretch, s), 1548 (aromatic C=C stretch, m), 1138 (ester 

C-O stretch, s) cm�1;  1H NMR (300 MHz, CDCl3): G 2.31 (3H, s, CH3), 6.17 (1H, 

s, CH) ppm; 13C NMR (100 MHz, CDCl3): G 19.9 (CH3), 107.6 (CH), 111.4 (q, 
2JC-F = 32.4 Hz, CCF3), 121.6 (q, 1JC-F = 274.5 Hz, CF3), 153.2 (CCl), 156.3 (C=O), 

164.8 (CH3CCH) ppm; 19 F NMR (282 MHz, CDCl3): G  -59.1 (CF3) ppm; HRMS 

(ESI) m/z calcd for C7H5O2F3Cl [(M + H)+]: 212.9930, found 212.9938;  

6-(4-Chlorophenyl)-4-methoxy-3-(trifluoromethyl)-2H-pyran-2-one, 515i 

 To a stirred solution of 6-(4-chlorophenyl)-3-iodo-4-

methoxy-2H-pyran-2-one 514i (0.060 g, 0.17 mmol) 

and copper (I) iodide (0.038 g, 0.20 mmol) in DMF (4 

mL) was added methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (0.03 mL, 0.20 mmol).  The reaction mixture was allowed 

stir at 70 °C for 12 h.  On completion, the reaction was cooled to room temperature, 

diluted with diethyl ether (20 mL) and filtered.  The solution was poured into water 

(20 mL), extracted with diethyl ether (4 u 20 mL) and the combined organic 

extracts washed with water (3 u 5 mL).  The organic layer was dried over MgSO4 

and concentrated in vacuo to yield crude product which was purified using silica 

column chromatography eluting with 50:50 hexane:ethyl acetate to yield 515i as a 

white solid (0.012 g, 23%). m.p. 211–214 °C.              

IR (KBr) Qmax: 1690 (C=O stretch, s), 1515 (aromatic C=C stretch. s), 1387 (ester 

C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 4.11 (3H, s, OCH3), 6.63 (1H, 

s, CH), 7.48 (2H, d, J = 8.8 Hz, 2 u CH arom.), 7.82 (2H, d, J = 8.8 Hz, 2 u CH 

arom.) ppm; 13C NMR (100 MHz, CDCl3): G 57.5 (OCH3), 91.4 (CH), 96.6 (q, 2JC-

F = 31.9 Hz, CCF3), 122.7 (q, 1JC-F = 272.9 Hz, CF3),  127.2 (2 u CH arom.), 128.7 

(qC arom.), 129.6 (2 u CH arom.) 138.9 (CCl), 158.1 (C=O), 163.4 (COCH3), 

170.8 (CH3CCH) ppm; 19 F NMR (282 MHz, CDCl3): G  -57.6 (CF3) ppm; HRMS 

(ESI) m/z calcd for C13H9ClF3O3 [(M + H)+]: 305.0114, found 305.0119. 
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4-Methoxy-3-(trifluoromethyl)-6-(4-(trifluoromethyl)phenyl)-2H-pyran-2-
one, 515j 

 To a stirred solution of 3-iodo-4-methoxy-6-(4-

(trifluoromethyl)phenyl)-2H-pyran-2-one 514j (0.094 

g, 0.24 mmol) and copper (I) iodide (0.054 g,  0.28 

mmol) in DMF (4 mL) was added methyl 2,2-difluoro-

2-(fluorosulfonyl)acetate (0.04 mL, 0.28 mmol).  The 

reaction mixture was allowed stir at 70 °C for 7 h.  On completion, the reaction 

was cooled to room temperature, diluted with diethyl ether (20 mL) and filtered.  

The solution was poured into water (20 mL), extracted with diethyl ether (4 u 20 

mL) and the combined organic extracts washed with water (3 u 5 mL).  The organic 

layer was dried over MgSO4 and concentrated in vacuo to yield crude product 

which was purified using silica column chromatography eluting with 70:30 

hexane:ethyl acetate to yield 515j as a white solid (0.058 g, 72%).  m.p. 141–143 

°C.                                                 

IR (KBr) Qmax: 1713 (C=O stretch, s), 1541 (aromatic C=C stretch, s), 1326 (ester 

C-O stretch, s), 1117 (ether C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 

4.13 (3H, s, OCH3), 6.74 (1H, s, CH), 7.76 (2H, d, J = 8.3 Hz, 2 u CH arom.), 7.99 

(2H, d, J = 8.3 Hz, 2 u CH arom.) ppm; 13C NMR (75 MHz, CDCl3): G 57.7 

(OCH3), 92.7 (CH), 96.3 (q, 2JC-F = 31.9 Hz, CCF3), 122.6 (q, 1JC-F = 273.1 Hz, 

CCF3), 123.4 (q, 1JC-F = 272.6 Hz, CF3 aryl), 126.2 (q, 3JC-F = 3.7 Hz, 2 u CH 

arom.), 126.8 (2 u CH arom.), 133.4 (qC arom.), 133.9 (q, 2JC-F = 33.1 Hz, 

CF3CCH), 157.8 (C=O), 162.7 (CCHCOCH3), 170.5 (COCH3) ppm; 19 F NMR 

(282 MHz, CDCl3): G  -57.8 (CF3), -63.2 (CF3 aryl) ppm; HRMS (ESI) m/z calcd 

for C14H9F6O3 [(M + H)+]: 339.0456, found 339.0444. 

9.5  Synthesis of 3-bromo-4-methoxy-2-pyrone and subsequent 
trifluoromethylation 
3-Bromo-4-methoxy-6-methyl-2H-pyran-2-one, 516 

To a stirred solution of 4-methoxy-6-methyl-2H-pyran-2-one 505 

(2.791 g, 19.9 mmol) in acetonitrile (30 mL) was added N-

bromosuccinimide (7.089 g, 39.8 mmol). The reaction vessel was 

covered in aluminium foil and allowed stir at reflux overnight.  On completion, the 
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solvent was concentrated in vacuo, the resulting orange solid dissolved in DCM 

(20 mL) and washed with 5% aq. sodium thiosulfate (2 u 25 mL), water (25 mL) 

and brine (25 mL). The organic layer was dried over MgSO4 and concentrated in 

vacuo to yield crude product which was purified by silica column chromatography 

eluting with 50:50 hexane:ethyl acetate to yield 516 as a pale yellow solid (1.980 

g, 45%).  m.p. 149–151 °C.  [lit.14 151–152 °C].                                  

Spectral characteristics were consistent with previously reported data.15  1H NMR 

(300 MHz, CDCl3): G 2.29 (3H, s, CH3), 3.98 (3H, s, OCH3), 6.05 (1H, s, CH) 

ppm; 13C NMR (75.5 MHz, CDCl3): G 20.3 (CH3), 57.3 (OCH3), 88.5 (CBr), 95.1 

(CH), 160.8 (C=O), 162.8 (CH3CCH), 166.8 (COCH3) ppm; HRMS (ESI) m/z 

calcd for C7H8O3Br  [(M + H)+]: 218.9657, found 218.9649. 

3-Bromo-6-(bromomethyl)-4-methoxy-2H-pyran-2-one, 517 

3-Bromo-6-(bromomethyl)-4-methoxy-2H-pyran-2-one 517 

was isolated as a side product from the bromination of 4-

methoxy-6-methyl-2H-pyran-2-one 505 as an off white 

solid(0.794 g, 13%). m.p. 159–161 °C. [lit.16 162–164 °C].                                  

Spectral characteristics were consistent with previously reported data.16          
1H NMR (300 MHz, CDCl3): G 4.03 (3H, s, OCH3), 4.19 (2H, s, CH2Br), 6.40 (1H, 

s, CH) ppm; 13C NMR (75.5 MHz, CDCl3): G 26.3 (CH2Br), 57.6 (OCH3), 91.3 

(CBr), 96.7 (CH), 159.1 (BrCH2CCH), 159.7 (C=O), 166.0 (COCH3) ppm; HRMS 

(ESI) m/z calcd for C7H7O3Br2 [(M + H)+]: 296.8762, found 296.8766. 

3-Bromo-4-methoxy-6-(2,2,2-trifluoroethyl)-2H-pyran-2-one, 518  

To a stirred solution of 517 (0.226 g, 0.76 mmol) and copper 

(I) iodide (0.173 g, 0.91 mmol) in DMF (4 mL) was added 

methyl 2,2-difluoro-2-(fluorosulfonyl)acetate (0.10 mL,  0.76 

mmol).  The reaction mixture was allowed stir at 70 °C for 5 h.  On completion, 

the reaction was cooled to room temperature, diluted with diethyl ether (20 mL) 

and filtered.  The solution was poured into water (20 mL), extracted with diethyl 

ether (4 u 20 mL) and the combined organic extracts washed with water (3 u 5 

mL).  The organic layer was dried over MgSO4 and concentrated in vacuo to yield 

crude product which was purified using silica column chromatography eluting 
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with 50:50 hexane:ethyl acetate to yield 518 as a yellow solid (0.065 g, 30%).  m.p. 

146–148 °C.                          

IR (KBr) Qmax: 1702 (ester C=O stretch, s), 1537 (aromatic C=C stretch, s), 1327 

(ester C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 3.35 (2H, q, J = 9.7 

Hz, CF3CH2), 4.02 (3H, s, OCH3), 6.28 (1H, s, CH) ppm; 13C NMR (75 MHz, 

CDCl3): G 38.8 (q, 2JC-F = 32.0 Hz, CF3CH2), 57.6 (OCH3), 91.3 (CBr), 98.4 (CH), 

123.5 (q, 1JC-F = 277.8 Hz, CF3), 154.0 (q, 3JC-F = 3.5 Hz, CCH2CF3), 159.7 (C=O), 

165.9 (COCH3) ppm; 19F NMR (282 MHz, CDCl3): G -64.2 (CF3) ppm; HRMS 

(ESI) m/z calcd for C8H7O3F3Br [(M + H)+]: 286.9531, found 286.9522. 

9.6  Synthesis of 4-hydroxypyridones 
4-Hydroxy-1,6-dimethylpyridin-2(1H)-one, 519a 

 To a round bottomed flask containing a suspension of 4-hydroxy-

6-methyl-2H-pyran-2-one 439 (3.661 g, 29.0 mmol) in water (20 

mL) was added methylamine (2.6 mL, 58.0 mmol).  The reaction 

vessel was placed in an oil bath set at 100 °C and reaction allowed 

to stir at reflux for 5 h.  The reaction vessel was removed from oil bath and placed 

in an ice-water bath for 2 h.  The resulting solid was filtered and triturated with hot 

ethanol to yield product 519a as an off-white solid (2.221 g, 55%).  m.p. 221–223 

°C [lit.17 230 °C].                        

Spectral characteristics were consistent with previously reported data.18                    
1H NMR (300 MHz, (CD3)2SO): G 2.26 (3H, s, CH3), 3.30 (3H, s, NCH3), 5.50 

(1H, d, J = 2.4 Hz, C=OCH), 5.76 (1H, d, J = 2.1 Hz, CH3CCH) ppm; 13C NMR 

(75.5 MHz, (CD3)2SO): G 20.1 (CH3), 30.2 (NCH3), 96.0 (CHC=O), 100.4 

(CH3CCH), 148.3 (CH3CCH), 164.5 (C=O), 166.2 (COH) ppm; HRMS (ESI) m/z 

calcd for C7H10NO2 [(M + H)+]: 140.0712, found 140.0711.     
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4-Hydroxy-6-methyl-1-phenylpyridin-2(1H)-one, 519c 

To a round bottomed flask containing a suspension of 4-hydroxy-

6-methyl-2H-pyran-2-one 439 (2.770 g, 22.0 mmol) in water (30 

mL) was added aniline (2.02 mL, 22.2 mmol).  The reaction vessel 

was placed in an oil bath set at 100 °C and reaction allowed to stir 

at reflux for 5 h.  The reaction vessel was removed from oil bath 

and placed in an ice-water bath for 2 h.  The resulting solid was filtered and 

triturated with hot ethanol to yield product 519c as a white solid (0.639 g, 14%).  

m.p. > 250 °C.  [lit.19 276 °C].                           

IR (KBr) Qmax: 2918 (alkyl CH stretch, m), 1639 (amide C=O stretch, s), 1483 

(aromatic C=C stretch, s), 1252 (ether C-O stretch, m) cm�1; 1H NMR (300 MHz, 

(CD3)2SO): G 1.83 (3H, s, CH3), 5.56 (1H, d, J = 2.3 Hz, CHC=O), 5.89 (1H, d, J 

= 1.9 Hz, CH3CCH), 7.17 (2H, d, J = 7.0 Hz, 2 u CH arom.), 7.40–7.52 (3H, m, 3 

u CH arom.), 10.59 (1H, bs, OH) ppm; 13C NMR (75.5 MHz, (CD3)2SO): G 21.5 

(CH3), 96.6 (CHC=O), 100.5 (CH3CCH), 128.6, 129.1, 129.7 (5 u CH arom.), 

139.3 (NC), 147.4 (CH3CCH), 164.5 (C=O), 166.9 (COH) ppm; HRMS (ESI) m/z 

calcd for C12H12NO2 [(M + H)+]: 202.0868, found 202.0858.  Anal. calcd for 

C12H11NO2: C, 71.63; H, 5.51; N, 6.96%. Found: C, 71.64; H, 5.71; N, 6.77%. 

1-(4-Fluorophenyl)-4-hydroxy-6-methylpyridin-2(1H)-one, 519d 

To a round bottomed flask containing a suspension of 4-hydroxy-

6-methyl-2H-pyran-2-one 439 (2.641 g, 20.9 mmol) in water (30 

mL) was added 4-fluoroaniline (2.00 mL, 21.2 mmol).  The 

reaction vessel was placed in an oil bath set at 100 °C and reaction 

allowed to stir at reflux for 5 h.  The reaction vessel was removed 

from oil bath and placed in an ice-water bath for 2 h.  The resulting 

solid was filtered and triturated with hot ethanol to yield product 519d as a white 

solid (0.597 g, 13%).  m.p. > 250 °C.                         

IR (KBr) Qmax: 1619 (amide C=O stretch, s), 1492 (aromatic C=C stretch, s), 1213 

(ether C-O stretch, s) cm�1; 1H NMR (300 MHz, (CD3)2SO): G 1.84 (3H, s, CH3), 

5.55 (1H, d, J = 2.1 Hz, CHC=O), 5.89 (1H, s, CH3CCH), 7.23–7.34 (4H, m, 4 u 

CH arom.), 10.62 (1H, bs, OH)  ppm; 13C NMR (75.5 MHz, (CD3)2SO): G 25.5 
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(CH3), 96.5 (CHC=O), 100.6 (CH3CCH), 116.5 (d, 2JC-F = 22.7 Hz, 2 u CH arom.), 

131.3 (d, 3JC-F = 8.8 Hz, 2 u CH arom.), 135.4 (d, 4JC-F = 3.1 Hz, FCCHCHCN), 

147.4 (CH3CCH), 161.9 (d, 1JC-F = 244.7 Hz, FCCH), 164.6 (C=O), 167.0 (COH) 

ppm; 19 F NMR (282 MHz, (CD3)2SO): G  -114.1 (CF) ppm; HRMS (ESI) m/z 

calcd for C12H11NO2F [(M + H)+]: 220.0774, found 220.0781. 

4-Hydroxy-1-(4-methoxyphenyl)-6-methylpyridin-2(1H)-one, 519e 

To a round bottomed flask containing a suspension of 4-hydroxy-

6-methyl-2H-pyran-2-one 439 (2.784 g, 22.1 mmol) in water (30 

mL) was added p-anisidine (2.72 mL, 22.3 mmol).  The reaction 

vessel was placed in an oil bath set at 100 °C and reaction allowed 

to stir at reflux for 5 h.  The reaction vessel was removed from oil 

bath and placed in an ice-water bath for 2 h.  The resulting solid 

was filtered and triturated with hot ethanol to yield product 519e as a white solid 

(1.185 g, 23%).  m.p. > 250 °C.               

IR (KBr) Qmax: 1619 (amide C=O stretch, s), 1531, 1507 (aromatic C=C stretch, s), 

1246 (ether C-O stretch, s), 1110 (alcohol C-O stretch, m) cm�1; 1H NMR (300 

MHz, (CD3)2SO): G 1.83 (3H, s, CH3), 3.80 (3H, s, OCH3), 5.23 (1H, s, CHC=O), 

5.86 (1H, s, CH3CCH), 7.01 (2H, d, J = 8.5 Hz, 2 u CH arom.), 7.09 (2H, d, J = 

8.6 Hz,  2 u CH arom.), 10.56 (1H, bs, OH) ppm; 13C NMR (75.5 MHz, 

(CD3)2SO): G 21.6 (CH3), 55.8 (OCH3), 96.5 (CHC=O), 100.3 (CH3CCH), 114.8 

(2 u CH arom.), 130.1 (2 u CH arom.), 131.8 (NC), 147.9 (CH3CCH), 159.1 

(COCH3), 164.7 (C=O), 166.8 (COH)  ppm; HRMS (ESI) m/z calcd for C13H14NO3 

[(M + H)+]: 232.0974, found 232.0965. 

9.7  Synthesis of 4-methoxypyridones 
4-Methoxy-1,6-dimethylpyridin-2(1H)-one, 520a 

To a round bottomed flask containing 4-hydroxy-1,6-

dimethylpyridin-2(1H)-one 519a (0.959 g, 6.9 mmol) and K2CO3 

(1.142 g, 14.3 mmol) was added trimethylphosphate (2.36 mL, 20.1 

mmol) and the resulting reaction mixture stirred at reflux for 3 h.  

On completion, the reaction was washed with water (15 mL) and extracted with 

ethyl acetate (3 u 25 mL).  The combined organic extracts were washed with brine 



Chapter 9  Experimental 

380 
 

(50 mL), dried over MgSO4 and concentrated in vacuo to yield crude product as a 

pale yellow solid which was purified by silica column chromatography eluting 

with ethyl acetate to yield 520a a pale yellow solid (0.375 g, 36%). m.p. 113–115 

°C [lit.20 115–116 °C].                       

IR (KBr) Qmax: 1652 (amide C=O stretch, s), 1570 (aromatic C=C stretch, s), 1244, 

1220 (ester C-O, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.27 (3H, s, CH3), 3.43 

(3H, s, NCH3), 3.71 (3H, s, OCH3), 5.57 (1H, dd, J = 0.8, 2.8 Hz, CH3CCH), 5.81 

(1H, d, J = 2.8 Hz, CHC=O) ppm; 13C NMR (75.5 MHz, CDCl3): G 20.8 

(CH3CCH), 30.5 (NCH3), 55.2 (OCH3), 94.5 (CHC=O), 100.7 (CH3CCH), 146.0 

(CH3CCH), 165.4 (C=O), 167.2 (COCH3) ppm; HRMS (ESI) m/z calcd for 

C8H12NO2 [(M + H)+]: 154.0868, found 154.0867. 

4-Methoxy-6-methyl-1-phenylpyridin-2(1H)-one, 520c 

To a round bottomed flask containing 4-hydroxy-6-methyl-1-

phenylpyridin-2(1H)-one 519c (0.776 g, 3.86 mmol) and K2CO3 

(0.640 g, 4.63 mmol) was added trimethylphosphate (0.93 mL, 8.01 

mmol) and the resulting reaction mixture stirred at reflux overnight.  

On completion, the reaction was washed with water (15 mL) and 

extracted with ethyl acetate (3 u 25 mL).  The combined organic extracts were 

dried over MgSO4 and concentrated in vacuo to yield crude product as an orange 

oil which was purified by silica column chromatography eluting with ethyl acetate 

to yield 520c a pale yellow solid (0.578 g, 70%).  m.p. 162–163 °C.         

IR (KBr) Qmax: 2968 (alkyl C-H stretch, m), 1650 (amide C=O stretch, s), 1597, 

1562 (aromatic C=C stretch, s), 1243 (C-O stretch, m) cm�1; 1H NMR (300 MHz, 

CDCl3): G 1.85 (3H, s, CH3), 3.73 (3H, s, OCH3), 5.81 (1H, s, CH3CCH), 5.85 

(1H, d, J = 2.5 Hz, CHC=O), 7.14 (2H, d, J = 7.4 Hz, 2 u CH arom.), 7.36–7.48 

(3H, m, 3 u CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 21.5 (CH3), 55.4 

(OCH3), 95.0 (CHC=O), 100.8 (CH3CCH), 128.3, 128.7, 129.7 (5 u CH arom.), 

138.7 (NC), 146.0 (CH3CCH), 165.5 (C=O), 167.9 (COCH3) ppm; HRMS (ESI) 

m/z calcd for C13H14NO2 [(M + H)+]: 216.1025, found 216.1018; Anal. calcd for 

C12H11NO2: C, 71.63; H, 5.51; N, 6.96%. Found: C, 71.64; H, 5.71; N, 6.77%. 
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1-(4-Fluorophenyl)-4-methoxy-6-methylpyridin-2(1H)-one, 520d 

To a round bottomed flask containing 1-(4-fluorophenyl)-4-

hydroxy-6-methylpyridin-2(1H)-one 519d (1.613 g, 7.36 mmol) 

and K2CO3 (1.221 g, 8.83 mmol) was added trimethylphosphate 

(1.79 mL, 15.3 mmol) and the resulting reaction mixture stirred at 

reflux for 2 h.  On completion, the reaction was washed with water 

(15 mL) and extracted with ethyl acetate (3 u 25 mL).  The 

combined organic extracts were washed with brine (50 mL), dried over MgSO4 

and concentrated in vacuo to yield crude product as a pale yellow solid which was 

purified by silica column chromatography eluting with ethyl acetate to yield 520d 
as a white solid (1.025 g,  60%).  m.p. 188–190 °C.             

IR (KBr) Qmax: 1651 (amide C=O stretch, s), 1558 (aromatic C=C stretch, s), 1245 

(ether C=O stretch, s) cm�1; 1H NMR (300 MHz, (CDCl3): G 1.90 (3H, s, CH3), 

3.78 (3H, s, OCH3), 5.84 (1H, d, J = Hz, CHC=O), 5.87 (1H, d, J = Hz, CH3CCH), 

7.16–7.18 (4H, m, 4 u CH arom.) ppm; 13C NMR (75.5 MHz, (CDCl3): G 21.5 

(CH3), 55.5 (OCH3), 95.0 (CHC=O),  101.1 (CH3CCH), 116.7 (d, 2JC-F = 22.8 Hz, 

2 u CH arom.), 130.1 (d, 3JC-F = 8.7 Hz, 2 u CH arom.), 134.5 (d 4JC-F = 3.3 Hz, 

qC arom.), 145.9 (CH3CCH), 162.4 (d, 1JC-F = 248.3 Hz, FC), 165.6 (C=O), 168.0 

(COCH3) ppm; 19 F NMR (282 MHz, (CDCl3): G  -112.7 (CF) ppm; HRMS (ESI) 

m/z calcd for C13H13NFO2 [(M + H)+]: 234.0930, found 234.0920; Anal. calcd for 

C13H12 FNO2: C, 66.94; H, 5.19; N, 6.01%. Found: C, 66.92; H, 5.19; N, 6.01%. 

4-Methoxy-1-(4-methoxyphenyl)-6-methylpyridin-2(1H)-one, 520e 

To a round bottomed flask containing 4-hydroxy-1-(4-

methoxyphenyl)-6-methylpyridin-2(1H)-one 519e (1.138 g, 4.92 

mmol) and K2CO3 (0.816 g, 5.91 mmol) was added 

trimethylphosphate (2.40 mL, 20.4 mmol) and the resulting 

reaction mixture stirred at reflux for 2 h.  On completion, the 

reaction was washed with water (15 mL) and extracted with ethyl 

acetate (3 u 25 mL).  The combined organic extracts were washed with brine (50 

mL), dried over MgSO4 and concentrated in vacuo to yield crude product as a pale 

yellow solid which was purified by column chromatography eluting with ethyl 

acetate to yield 520e an off-white sold (0.528 g, 44%).  m.p 171–173 °C.         
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IR (KBr) Qmax: 1652 (amide C=O stretch, s), 1560, 1511 (aromatic C=C stretch, s), 

1244 (ether C-O stretch, s) cm�1; 1H NMR (300 MHz, (CDCl3): G 1.90 (3H, s, 

CH3), 3.76 (3H, s, OCH3), 3.82 (3H, s, OCH3 phenyl ring), 5.81 (1H, s, CH3CCH), 

5.86 (1H, d, J = 2.6 Hz, CHC=O), 6.98 (2H, d, J = 8.9 Hz, 2 u CH arom.), 7.08 

(2H, d, J = 8.8 Hz, 2 u CH arom.) ppm; 13C NMR (75.5 MHz, (CDCl3): G 21.5 

(CH3), 55.3 (OCH3), 55.5 (OCH3 phenyl ring), 95.0 (CHC=O), 100.7 (CH3CCH), 

114.9 (2 u CH arom.), 129.2 (2 u CH arom.), 131.3 (qC arom.), 146.5 (CH3CCH), 

159.5 (COCH3 phenyl ring), 165.8 (C=O), 167.8 (COCH3) ppm; HRMS (ESI) m/z 

calcd for C14H16NO3 [(M + H)+]: 246.1130, found 246.1126; Anal. calcd for 

C14H15 NO3: C, 68.56; H, 6.16; N, 5.71%. Found: C, 68.42; H, 6.15; N, 5.72%. 

9.8  Iodination of 4-methoxypyridones 
3-Iodo-4-methoxy-1,6-dimethylpyridin-2(1H)-one, 521a 

To a stirred solution of 4-methoxy-1,6-dimethylpyridin-2(1H)-one 

520a (0.362 g, 2.36 mmol) in acetonitrile (15 mL) was added N-

iodosuccinimide (1.603 g, 4.73 mmol). The reaction vessel was 

covered in aluminium foil and allowed stir at reflux for 12 h.  On 

completion, the solvent was concentrated in vacuo, the resulting orange solid 

dissolved in DCM (20 mL) and washed with 5% aq. sodium thiosulfate (3 u 25 

mL). The organic layer was dried over MgSO4 and concentrated in vacuo to yield 

crude product which was purified by silica column chromatography eluting with 

70:30 hexane:ethyl acetate to yield 521a as a yellow solid (0.238 g, 36%).  m.p. 

191–193 °C.                                    

IR (KBr) Qmax: 1628 (amide C=O stretch, s), 1585 (aromatic C=C stretch, s), 1342 

(ester C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.35 (3H, s, CH3), 3.57 

(3H, s, NCH3), 3.88 (3H, s, OCH3), 5.86 (1H, s, CH) ppm; 13C NMR (75.5 MHz, 

CDCl3): G 21.4 (CH3), 32.5 (NCH3), 56.6 (OCH3), 71.8 (CI), 94.7 (CH), 147.6 

(CH3CCH), 162.0 (C=O), 166.5 (COCH3), ppm; HRMS (ESI) m/z calcd for 

C8H11NO2I  [(M + H)+]: 279.9835, found 279.9827.                            
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1-Benzyl-3-iodo-4-methoxy-6-methylpyridin-2(1H)-one, 521b  

To a stirred solution of 1-benzyl-4-methoxy-6-methylpyridin-

2(1H)-one 520b (0.343 g, 1.50 mmol) in acetonitrile (20 mL) was 

added N-iodosuccinimide (1.009 g, 4.49 mmol). The reaction 

vessel was covered in aluminium foil and allowed stir at room 

temperature for 12 h.  On completion, the solvent was 

concentrated in vacuo, the resulting orange solid dissolved in DCM (15 mL) and 

washed with 5% aq. sodium thiosulfate (3 u 20 mL). The organic layer was dried 

over MgSO4 and concentrated in vacuo to give crude product which was purified 

using silica column chromatography eluting with 50:50 hexane:ethyl acetate to 

yield 521b as a pale yellow solid (0.371 g, 70%).  m.p. 146–148 °C.                             

IR (KBr) Qmax: 2931, 2852 (alkyl C-H stretch, m), 1634 (C=O stretch, s), 1504 

(aromatic C=C stretch, s), 1323 (ester C-O stretch, m) cm�1; 1H NMR (300 MHz, 

CDCl3): G 2.30 (3H, s, CH3), 3.91 (3H, s, OCH3), 5.38 (2H, s, NCH2Ph), 5.88 (1H, 

s, CH), 7.14–7.16 (2H, m, 2 u CH arom.), 7.23–7.32 (3H, m, 3 u CH arom.) ppm; 
13C NMR (75.5 MHz, CDCl3): G 21.1 (CH3), 48.7 (NCH2Ph), 56.7 (OCH3), 72.1 

(CI), 95.3 (CH), 126.7, 127.5, 128.8 (5 u CH arom.), 136.3 (NCH2C), 147.9 

(CH3CCH), 162.2 (C=O), 166.7 (COCH3) ppm; HRMS (ESI) m/z calcd for 

C14H15O2NI [(M + H)+]: 356.0148, found 356.0141. 

3-Iodo-4-methoxy-6-methyl-1-phenylpyridin-2(1H)-one, 521c 

To a stirred solution of 4-methoxy-6-methyl-1-phenylpyridin-

2(1H)-one 520c (0.578 g, 2.69 mmol) in acetonitrile (25 mL) was 

added N-iodosuccinimide (1.208 g, 5.37 mmol). The reaction 

vessel was covered in aluminium foil and allowed stir at reflux for 

12 h.  On completion, the solvent was concentrated in vacuo, the 

resulting brown solid dissolved in DCM (20 mL) and washed with 5% aq. sodium 

thiosulfate (3 u 20 mL). The organic layer was dried over MgSO4 and concentrated 

in vacuo to give crude product which was purified using silica column 

chromatography eluting with 50:50 hexane:ethyl acetate to yield 521c as a pale 

brown solid (0.768 g, 84%).  m.p. 222–224 °C.                       

IR (KBr) Qmax: 1639 (amide C=O stretch, s), 1590, 1518 (aromatic C=C stretch, s), 
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1226 (ether C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.01 (3H, s, CH3), 

3.97 (3H, s, OCH3), 5.99 (1H, s, CH), 7.16 (2H, d, J = 7.6 Hz, 2 u CH arom.), 7.41 

– 7.52 (3H, m, 3 u CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 22.0 (CH3), 

56.8 (OCH3), 72.2 (CI), 94.7 (CH), 127.9, 128.9, 129.7 (5 u CH arom.), 138.9 

(NC), 147.6 (CH3CCH), 162.2 (C=O), 167.2 (COCH3) ppm; HRMS (ESI) m/z 

calcd for C13H13O2NI [(M + H)+]: 341.9991, found 341.9984; Anal. calcd for 

C13H12O2NI: C, 45.77; H, 3.55; N, 4.11%. Found: C, 45.81; H, 3.57; N, 3.77%. 

1-(4-Fluorophenyl)-3-iodo-4-methoxy-6-methylpyridin-2(1H)-one, 521d 

To a stirred solution of 1-(4-fluorophenyl)-4-methoxy-6-

methylpyridin-2(1H)-one 520d (0.895 g, 3.84 mmol) in acetonitrile 

(25 mL) was added N-iodosuccinimide (1.727 g, 7.67 mmol). The 

reaction vessel was covered in aluminium foil and allowed stir at 

reflux for 12 h.  On completion, the solvent was concentrated in 

vacuo, the resulting brown solid dissolved in DCM (20 mL) and 

washed with 5% aq. sodium thiosulfate (3 u 20 mL). The organic layer was dried 

over MgSO4 and concentrated in vacuo to give crude product which was purified 

using silica column chromatography eluting with 50:50 hexane:ethyl acetate to 

yield 521d as a pale brown solid (0.429 g, 31%).  m.p. 196–198 °C.                               

IR (KBr) Qmax: 1651 (amide C=O stretch, s), 1579, 1520 (aromatic C=C stretch, s), 

1343 (ester C-O stretch, s), 1214 (ether C-O stretch, s) cm�1; 1H NMR (300 MHz, 

CDCl3): G 2.01 (3H, s, CH3), 3.97 (3H, s, OCH3), 6.00 (1H, s, CH), 7.15–7.19 (4H, 

m, 4 u CH arom.) ppm; 13C NMR (75.5 MHz, CDCl3): G 22.0 (CH3), 56.8 (OCH3), 

72.1 (CI), 94.9 (CH), 116.7 (d, 2JC-F = 23.0 Hz, 2 u CH arom.), 129.8 (d, 3JC-F = 

8.7 Hz, 2 u CH arom.), 134.7 (d, 4JC-F = 3.5 Hz, qC arom.), 147.5 (CH3CCH), 

161.5 (d, 1JC-F = 248.8 Hz, CF), 162.2 (C=O), 167.3 (COCH3) ppm; 19F NMR (282 

MHz, CDCl3): G -112.2 (CF) ppm; HRMS (ESI) m/z calcd for C13H12O2NFI [(M 

+ H)+]: 359.9897, found 359.9894. 
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1-(4-Methoxyphenyl)-3-iodo-4-methoxy-6-methylpyridin-2(1H)-one, 521e 

To a stirred solution of 4-methoxy-1-(4-methoxyphenyl)-6-

methylpyridin-2(1H)-one 520e (0.475 g, 1.94 mmol) in 

acetonitrile (25 mL) was added N-iodosuccinimide (0.872 g, 3.88 

mmol). The reaction vessel was covered in aluminium foil and 

allowed stir at reflux for 12 h.  On completion, the solvent was 

concentrated in vacuo, the resulting brown solid dissolved in DCM 

(20 mL) and washed with 5% aq. sodium thiosulfate (3 u 20 mL). The organic 

layer was dried over MgSO4 and concentrated in vacuo to give crude product 

which was purified using silica column chromatography eluting with 50:50 

hexane:ethyl acetate to yield 521e as a yellow solid (0.090 g, 13%).  m.p. 190–193 

°C.                    

IR (KBr) Qmax: 1651 (amide C=O stretch, s), 1511 (aromatic C=C stretch, s), 1343 

(ether C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.02 (3H, s, CH3), 3.84 

(3H, s, OCH3 phenyl ring), 3.96 (3H, s, OCH3), 5.96 (1H, s, CH), 6.98 (2H, d, J = 

8.6 Hz, 2 u CH arom.), 7.07 (2H, d, J = 8.6 Hz, 2 u CH arom.) ppm; 13C NMR 

(75.5 MHz, CDCl3): G 22.0 (CH3), 55.5 (OCH3 phenyl ring), 56.7 (OCH3), 72.2 

(CI), 94.6 (CH), 114.9 (2 u CH arom.), 128.9 (2 u CH arom.), 131.5 (qCN arom.), 

148.1 (CH3CCH), 159.6 (COCH3 phenyl ring), 162.4 (C=O), 167.2 (COCH3); 

HRMS (ESI) m/z calcd for C14H15O3NI [(M + H)+]: 372.0097, found 372.0099. 

9.9  Trifluoromethylation of 3-iodo-4-methoxypyridones 
4-Methoxy-1,6-dimethyl-3-(trifluoromethyl)pyridin-2(1H)-one, 522a 

To a stirred solution of 3-iodo4-methoxy-1,6-dimethylpyridin-

2(1H)-one 521a (0.235 g, 0.84 mmol) and copper (I) iodide (0.192 

g,  1.01 mmol) in DMF (4 mL) was added methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate (0.13 mL, 1.01 mmol).  The reaction 

mixture was allowed stir at 70 °C for 7 h.  On completion, the reaction was cooled 

to room temperature, diluted with diethyl ether (20 mL) and filtered.  The solution 

was poured into water (20 mL), extracted with diethyl ether (4 u 20 mL) and the 

combined organic extracts washed with water (3 u 5 mL).  The organic layer was 

dried over MgSO4 and concentrated in vacuo to yield crude product which was 
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purified using silica column chromatography eluting with 70:30 hexane:ethyl 

acetate to yield 522a as a white solid (0.114 g, 61%).  m.p. 136–138 °C.           

IR (KBr) Qmax: 1651 (amide C=O stretch, s), 1598, 1563 (aromatic C=C stretch, s), 

1130 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.40 (3H, s, CH3), 

3.47 (3H, s, NCH3), 3.89 (3H, s, OCH3), 5.92 (1H, s, CH) ppm; 13C NMR (75 

MHz, CDCl3): G 21.8 (CH3), 30.9 (NCH3), 56.3 (OCH3), 94.1 (CH), 99.9 (q, 2JC-F 

= 29.2 Hz, CCF3), 124.0 (q, 1JC-F = 272.8 Hz, CF3), 151.4 (CH3CCH), 160.7 

(C=O), 166.4 (COCH3) ppm; 19 F NMR (282 MHz, CDCl3): G  -57.4 (CF3) ppm; 

HRMS (ESI) m/z calcd for C9H11F3NO2 [(M + H)+]: 222.0742, found 222.0736; 

Anal. calcd for C9H10F3NO2: C, 48.87; H, 4.56; N, 6.33%. Found: C, 49.09; H, 

4.43; N, 6.19%. 

1-Benzyl-4-methoxy-6-methyl-3-(trifluoromethyl)pyridin-2(1H)-one, 522b 

To a stirred solution of 1-benzyl-3-iodo-4-methoxy-6-

methylpyridin-2(1H)-one 521b (0.122 g, 0.34 mmol) and copper 

(I) iodide (0.079 g, 0.41 mmol) in DMF (4 mL) was added methyl 

2,2-difluoro-2-(fluorosulfonyl)acetate (0.10 mL, 0.75 mmol).  

The reaction mixture was allowed stir at 70 °C for 24 h.  On 

completion, the reaction was cooled to room temperature, diluted with diethyl 

ether (20 mL) and filtered.  The solution was poured into water (20 mL), extracted 

with diethyl ether (4 u 20 mL) and the combined organic extracts washed with 

water (3 u 5 mL).  The organic layer was dried over MgSO4 and concentrated in 

vacuo to yield crude product as a white solid which was purified by silica column 

chromatography eluting with 50:50 hexane:ethyl acetate to yield 522b as a pale 

yellow solid (0.064 g, 62%).  m.p. 132–133 °C.              

IR (KBr) Qmax: 1656 (amide C=O stretch, s), 1557, 1396 (aromatic C=C stretch, s), 

1108 (ester C-O stretch, m) cm�1; 1H NMR (300 MHz, CDCl3): G 2.33 (3H, s, 

CH3), 3.91 (3H, s, OCH3), 5.30 (2H, s, NCH2Ph), 5.90 (1H, s, CH), 7.15–7.18 

(2H, m, 2 u CH arom.), 7.25–7.34 (3H, m, 3 u CH arom.) ppm; 13C NMR (100 

MHz, CDCl3): G 21.5 (CH3), 47.0 (NCH2Ph), 56.3 (OCH3), 94.5 (CH), 100.4 (q, 
2JC-F = 29.4 Hz, CCF3), 123.9 (q, 1JC-F = 272.9 Hz, CF3), 126.6, 127.6, 128.9 (5 u 

CH aromatic), 136.0 (NCH2C), 151.6 (CCH3), 160.7 (C=O), 166.6 (COCH3) ppm; 
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19F NMR (282 MHz, CDCl3): G -57.2 (CF3) ppm; HRMS (ESI) m/z calcd for 

C15H15NO2F3 [(M + H)+]: 298.1055, found 298.1047. 

4-Methoxy-6-methyl-1-phenyl-3-(trifluoromethyl)pyridin-2(1H)-one, 522c 

To a stirred solution of 3-iodo-4-methoxy-6-methyl-1-

phenylpyridin-2(1H)-one 521c (0.356 g, 1.04 mmol) and copper 

(I) iodide (0.239 g, 1.25 mmol) in DMF (4 mL) was added methyl 

2,2-difluoro-2-(fluorosulfonyl)acetate (0.26 mL, 2.03 mmol).  

The reaction mixture was allowed stir at 70 °C for 24 h.  On 

completion, the reaction was cooled to room temperature, diluted with diethyl 

ether (20 mL) and filtered.  The solution was poured into water (20 mL), extracted 

with diethyl ether (4 u 20 mL) and the combined organic extracts washed with 

water (3 u 5 mL).  The organic layer was dried over MgSO4 and concentrated in 

vacuo to yield crude product as a white solid which was purified by silica column 

chromatography eluting with 80:20 hexane:ethyl acetate to yield 522c as a pale 

yellow solid (0.086 g, 29%).  m.p. 205–207 °C.                                                 

IR (KBr) Qmax: 1658 (amide C=O stretch, s), 1551 (aromatic C=C stretch, s), 1392 

(ether C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.03 (3H, s, CH3), 3.96 

(3H, s, OCH3), 6.01 (1H, s, CH), 7.16–7.18 (2H, m, 2 u CH arom.), 7.44–7.53 

(3H, m, 3 u CH arom.) ppm; 13C NMR (75 MHz, CDCl3): G 22.4 (CH3), 56.5 

(OCH3), 94.1 (CH), 100.5 (q, 2JC-F = 28.3 Hz, CCF3), 123.8 (q, 1JC-F = 273.0 Hz, 

CF3), 128.0, 129.1, 129.8 (5 u CH arom.), 137.8 (NC), 151.5 (CH3CCH), 160.9 

(C=O), 167.3 (COCH3) ppm; 19F NMR (282 MHz, CDCl3): G -57.2 (CF3) ppm; 

HRMS (ESI) m/z calcd for C14H13NO2F3 [(M + H)+]: 284.0898, found 284.0893. 
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1-(4-Fluorophenyl)-4-methoxy-6-methyl-3-(trifluoromethyl)pyridin-2(1H)-
one, 522d 

To a stirred solution of 1-(4-fluorophenyl)-3-iodo-4-methoxy-6-

methylpyridin-2(1H)-one 521d (0.245 g, 0.68 mmol) and copper 

(I) iodide (0.156 g, 0.82 mmol) in DMF (4 mL) was added methyl 

2,2-difluoro-2-(fluorosulfonyl)acetate (0.19 mL, 1.5 mmol).  The 

reaction mixture was allowed stir at 70 °C for 24 h.  On 

completion, the reaction was cooled to room temperature, diluted 

with diethyl ether (20 mL) and filtered.  The solution was poured into water (20 

mL), extracted with diethyl ether (4 u 20 mL) and the combined organic extracts 

washed with water (3 u 5 mL).  The organic layer was dried over MgSO4 and 

concentrated in vacuo to yield crude product as a pale yellow solid which was 

purified by silica column chromatography eluting with 80:20 hexane:ethyl acetate 

to yield 522d as a white solid (0.107 g, 52%).  m.p. 185–188 °C.            

IR (KBr) Qmax: 1664 (amide C=O stretch, s), 1555, 1509, 1464 (aromatic C=C 

stretch, s), 1261 (ether C-O stretch, s) cm�1; 1H NMR (300 MHz, CDCl3): G 2.03 

(3H, s, CH3), 3.95 (3H, s, OCH3), 6.03 (1H, s, CH), 7.12–7.21 (4H, m,  4 u CH 

arom.) ppm; 13C NMR (75 MHz, CDCl3): G 22.3 (CH3), 56.6 (OCH3), 94.4 (CH), 

100.5 (q, 2JC-F = 29.5 Hz, CCF3), 116.8 (d, 2JC-F = 23.0 Hz, 2 u CH arom.), 123.7 

(q, 1JC-F = 273.1 Hz, CF3), 129.9 (d, 3JC-F = 8.8 Hz, 2 u CH arom.), 133.6 (d, 4JC-F 

= 3.5 Hz, qC arom.), 151.4 (CH3CCH), 160.8 (C=O), 162.6 (d, 1JC-F = 248.8 Hz, 

FCCH), 167.4 (COCH3) ppm; 19F NMR (282 MHz, CDCl3): G -112.0 (CF), -57.2 

(CF3) ppm; HRMS (ESI) m/z calcd for C14H12NO2F4 [(M + H)+]: 302.0804, found 

302.0796. 
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4-Methoxy-1-(4-methoxyphenyl)-6-methyl-3-(trifluoromethyl)pyridin-2(1H)-
one, 522e 

To a stirred solution of  1-(4-methoxyphenyl)-3-iodo-4-methoxy-

6-methylpyridin-2(1H)-one 521e (0.202 g, 0.54 mmol) and 

copper (I) iodide (0.124 g, 0.65 mmol) in DMF (4 mL) was added 

methyl 2,2-difluoro-2-(fluorosulfonyl)acetate (0.14 mL, 1.09  

mmol).  The reaction mixture was allowed stir at 70 °C for 24 h.  

On completion, the reaction was cooled to room temperature, 

diluted with diethyl ether (20 mL) and filtered.  The solution was poured into water 

(20 mL), extracted with diethyl ether (4 u 20 mL) and the combined organic 

extracts washed with water (3 u 5 mL).  The organic layer was dried over MgSO4 

and concentrated in vacuo to yield crude product as a white solid which was 

purified by silica column chromatography eluting with 80:20 hexane:ethyl acetate 

to yield 522e as a white solid (0.077 g, 46%).  m.p. 153–156 °C.                      

IR (KBr) Qmax: 1662 (amide C=O stretch, s), 1552, 1514 (aromatic C=C stretch, s), 

1251 (ether C-O stretch, s), 1108 (ester C-O stretch, s) cm�1; 1H NMR (300 MHz, 

CDCl3): G 2.04 (3H, s, CH3), 3.84 (3H, s, OCH3 phenyl) 3.95 (3H, s, OCH3), 5.99 

(1H, s, CH), 6.98 (2H, d, J = 9.0 Hz, 2 u CH arom.), 7.07 (2H, d, J = 9.0 Hz, 2 u 

CH arom.) ppm; 13C NMR (75 MHz, CDCl3): G 22.4 (CH3), 55.5 (OCH3 phenyl) 

56.6 (OCH3), 93.9 (CH), 100.6 (q, 2JC-F = 29.3 Hz, CCF3), 115.0 (2 u CH arom.) 

123.8 (q, 1JC-F = 273.1 Hz, CF3), 129.0 (2 u CH arom.), 130.3 (qCN arom.), 151.9 

(CH3CCH), 159.8 (COCH3 phenyl), 161.0 (C=O), 167.2 (COCH3) ppm; 19F NMR 

(282 MHz, CDCl3): G -57.3 (CF3) ppm; HRMS (ESI) m/z calcd for C15H15NO3F3 

[(M + H)+]: 314.1004, found 314.0997. 

9.10  Synthesis of trifluoromethylated quinolone 
4-Methoxy-1-methylquinolin-2(1H)-one, 524 

To a round bottomed flask containing 4-hydroxyquinolin-2(1H)-

one 523 (1.085 g, 6.19 mmol) and K2CO3 (1.027 g, 7.43 mmol) 

was added trimethylphosphate (2.36 mL, 20.1 mmol) and the 

resulting reaction mixture stirred at reflux for 3 h.  On completion, 

the reaction was washed with water (15 mL) and extracted with ethyl acetate (3 u 
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25 mL).  The combined organic extracts were washed with brine (50 mL), dried 

over MgSO4 and concentrated in vacuo to yield crude product as a pale yellow 

solid which was purified by recrystallisation from water  to yield 524 an orange 

solid (0.953 g, 81%). m.p. 90–92 °C [lit.20 101–102 °C].                                                     

Spectral characteristics were consistent with previously reported data.21                    
1H NMR (300 MHz, (CD3)2SO): G 3.56 (3H, s, NCH3), 3.94 (3H, s, OCH3), 6.04 

(1H, s, CH), 7.26 (1H, t, J = 7.5 Hz, CH arom.) 7.49–7.52 (1H, m, CH arom.), 

7.65 (1H, t, J = 7.8 Hz, CH arom.), 7.88 (1H, dd, J = 1.5, 8.0 Hz, CH arom.) ppm; 
13C NMR (75.5 MHz, (CD3)2SO): G 29.1 (NCH3), 56.6 (OCH3), 96.8 (CH),s 115.1 

(CH arom.), 116.0 (CCOCH3), 122.0 (CH arom.), 123.1 (CH arom.), 131.9 (CH 

arom.), 139.9 (CNCH3), 162.3 (COCH3), 162.8 (C=O) ppm; HRMS (ESI) m/z 

calcd for C11H12NO2 [(M + H)+]: 190.0868, found 190.0864.          

3-Iodo-4-methoxy-1-methylquinolin-2(1H)-one, 525 

To a stirred solution of 4-methoxy-1-methylquinolin-2(1H)-one 

524 (0.900 g, 4.76 mmol) in acetonitrile (15 mL) was added N-

iodosuccinimide (1.605 g, 7.13 mmol) and trifluoroacetic acid 

(0.37 mL, 4.76 mmol). The reaction vessel was covered in 

aluminium foil and allowed stir at room temperature for 60 h.  On completion, the 

solvent was concentrated in vacuo, the resulting orange solid dissolved in DCM 

(15 mL) and washed with 5% aq. sodium thiosulfate (3 u 20 mL) and 10% NaOH 

(3 u 20 mL). The organic layer was dried over MgSO4 and concentrated in vacuo 

to yield crude product which was purified by silica column chromatography 

eluting with 90:10 hexane:ethyl acetate to yield 525 as a yellow solid (0.485 g, 

32%).  m.p. 115–117 °C.                                                

IR (KBr) Qmax: 1636 (amide C=O stretch, s), 1610, 1591 (aromatic C=C stretch, s) 

cm�1; 1H NMR (300 MHz, CDCl3): G 3.81 (3H, s, NCH3), 4.03 (3H, s, OCH3), 

7.25–7.31 (1H, m, CH arom.), 7.41 (1H, d, J = 1.6 Hz, CH arom.), 7.61–7.67 (1H, 

m, CH arom.), 7.89 (1H, ddd, J = 8.0, 1.5, 0.4 Hz, CH arom.) ppm; 13C NMR (75.5 

MHz, CDCl3): G 31.4 (NCH3), 61.3 (OCH3), 87.5 (CI), 114.5 (CH arom.), 117.5 

(CHCCOCH3), 122.4 (CH arom.), 123.8 (CH arom.), 131.7 (CH arom.), 139.9 

(CHCNCH3), 160.8 (C=O), 166.3 (COCH3) ppm; HRMS (ESI) m/z calcd for 
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C11H11NO2I [(M + H)+]: 315.9835, found 315.9828; Anal. calcd for C11H10NO2I: 

C, 41.93; H, 3.20; N, 4.45%. Found: C, 41.61; H, 3.09; N, 4.08%. 

4-Methoxy-1-methyl-3-(trifluoromethyl)quinolin-2(1H)-one, 526 

To a stirred solution of 3-Iodo-4-methoxy-1-methylquinolin-

2(1H)-one 525 (0.283 g, 0.90 mmol) and copper (I) iodide 

(0.205 g, 1.08 mmol) in DMF (4 mL) was added methyl 2,2-

difluoro-2-(fluorosulfonyl)acetate (0.14 mL, 1.08 mmol).  The 

reaction mixture was allowed stir at 70 °C for 12 h.  On completion, the reaction 

was cooled to room temperature, diluted with diethyl ether (20 mL) and filtered.  

The solution was poured into water (20 mL), extracted with diethyl ether (4 u 20 

mL) and the combined organic extracts washed with water (3 u 5 mL).  The organic 

layer was dried over MgSO4 and concentrated in vacuo to yield crude product 

which was purified using silica column chromatography eluting with 70:30 

hexane:ethyl acetate to yield 526 as a white solid (0.120 g, 52%).  m.p. 100–102 

°C.                                     

IR (KBr) Qmax: 1652 (amide C=O stretch, s), 1118 (ester C-O stretch, m) cm�1; 1H 

NMR (300 MHz, CDCl3): G 3.71 (3H, s, NCH3), 4.05 (3H, s, OCH3), 7.32 (1H, t, 

J = 7.6 Hz, CH arom.), 7.40 (1H, d, J = 8.5 Hz, CH arom.), 7.70 (1H, t, J = 7.9 

Hz, CH arom.), 7.96 (1H, dd, J = 1.4, 8.1 Hz, CH arom.) ppm; 13C NMR (75 MHz, 

CDCl3): G 29.6 (NCH3), 64.3 (q, 5JC-F = 2.5 Hz, OCH3), 111.0 (q, 2JC-F = 29.0 Hz, 

CCF3), 114.4 (CH arom.), 116.7 (CCOCH3), 122.6 (CH arom.), 122.7 (q, 1JC-F = 

273.7 Hz, CF3), 125.2 (CH arom.), 133.5 (CH arom.), 140.8 (CNCH3), 159.6 

(C=O), 165.6 (q, 3JC-F = 1.3 Hz, COCH3) ppm; 19 F NMR (282 MHz, CDCl3): G  -

59.7 (CF3) ppm; HRMS (ESI) m/z calcd for C12H11F3NO2 [(M + H)+]: 258.0742, 

found 258.0731; Anal. calcd for C12H10F3NO2: C, 56.04; H, 3.92; N, 5.45%. 

Found: C, 55.82; H, 3.85; N, 5.12%. 

4-Hydroxy-3-iodo-1-methylquinolin-2(1H)-one, 527 

To a stirred solution of 4-hydroxy-1-methylquinolin-2(1H)-one 

523 (0.621 g,  3.54 mmol), potassium iodide (0.395 g, 2.38 

mmol) and potassium iodate (0.250 g, 1.17 mmol) in methanol 

(4 mL) and water (20 mL) was added 1M HCl (3.66 mL) 

dropwise over 45 min.  The resulting reaction mixture was stirred at room 
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temperature for 12 h.  The reaction mixture was diluted with water (50 mL) and 

extracted with DCM (3 u 25 mL).  Combined organic extracts were washed with 

5% aq. sodium thiosulfate (25 mL), water (25 mL) and brine (25 mL), dried over 

MgSO4 and concentrated in vacuo to yield crude product 527 as a yellow solid 

(0.633 g, 59%) with no purification required.  m.p. 172–174 °C [lit.22 171–173 

°C].                                   

Spectral characteristics were consistent with previously reported data.22        
1H NMR (300 MHz, CDCl3): G 3.79 (3H, s, CH3), 6.25 (1H, bs, OH), 7.24–7.29 

(1H, m, CH arom.), 7.38 (1H, d, J = 8.5 Hz, CH arom.), 7.62–7.68 (1H, m, CH 

arom.), 8.05 (1H, dd, J = 0.4, 8.0 Hz, CH arom.) ppm; 13C NMR (75.5 MHz, 

CDCl3): G 31.1 (CH3), 77.8 (CI), 114.0 (CHCCOH), 114.2, 122.2, 124.2, 132.1 (4 

u CH arom.), 139.3 (CHCNCH3), 159.9 (C=O), 160.5 (COH) ppm; MS (ESI)  m/z: 

302 [(M + H)+, 100%].   
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a b s t r a c t

2-Pyrones, pyridones and quinolones represent classes of molecules with remarkable and diverse bi-
ological activity. The introduction of a trifluoromethyl group to a molecule can have dramatic and
beneficial effects in terms of lipophilicity and bioavailability. Herein we report a route to afford a library
of novel trifluoromethylated 2-pyrones, 2-pyridones and a 2-quinolone in moderate to good yield using
methyl fluorosulfonyldifluoroacetate as the trifluoromethylating agent.

! 2015 Published by Elsevier Ltd.

1. Introduction

2-Pyrones are a privileged biological scaffold with broad spec-
trum biological activity spanning cytotoxic, antibiotic and antifun-
gal activity.1e3 Prominent examples of biologically active 2-pyrones
include the bufadienolide class, which have been shown to have
diverse biological effects,1 including causing cardiac poisoning in
animals and showing inhibitory activity towards leukaemia cell
lines. Numerous protocols have been designed for the synthesis and
decoration of 2-pyrones.4e9 More specifically, functionalisation of
the 3-position of 4-alkoxy-2-pyrones has been accomplished under
SuzukieMiyaura10e12 and Sonogashira13 conditions. The 2-pyrone
moiety is also present in bioactive polyketides such as Niger-
apyrone E 1 (Fig. 1),14 which possesses a methyl group at C-3. A
methyl group is also present at C-3 in the 2-pyridone 2, a potential
therapeutic agent for treatment of central nervous system disorders
associated with phosphodiesterase 2 (PDE2).15 The trifluoromethyl
(CF3) moiety is present at the C-3 position of fused bicyclic het-
erocycles 3 and 4, which exhibit fungicidal activity.16 In the cases
shown, the CF3 groups were present prior to cyclisation and ring
formation.

In vivo metabolism of drugs by cytochrome P450 oxidases can
be problematic as it increases the rate of drug excretion from the
body.17 A common strategy to protect against in vivo metabolism is

to incorporate the CF3 moiety into drug candidate molecules.18

When incorporated into small molecules, the CF3 group can often
enhance drug efficacy by promoting electrostatic interactions with
targets, improving cellular permeability and increasing robustness
towards oxidative metabolism of the drug.19e21 Recent advances in
catalysis have made the incorporation of eF and eCF3 groups into
complex organic molecules more manageable, but selective, gen-
eral and practical fluorination and trifluoromethylation reactions
remain elusive.22 Herein we describe a protocol to access tri-
fluoromethylated 4-alkoxy-2-pyrones, pyridones and quinolones.

2. Results and discussion

Initial attempts to gain access to trifluoromethylated 2-pyrones
focused on the direct functionalisation of 4-methoxy-6-methyl-2-
pyrone23 5 using a photoredox catalyst as described by MacMil-
lan24 (Scheme 1). However despite numerous attempts using both
the iridiumand rutheniumcatalysts described, trifluoromethylation
was unsuccessful in our hands. Attempts using a number of pyr-
idone and quinolone substrates also proved fruitless. This led us to
focus on the use of pre-functionalised starting materials. Thus
pyrone 5 was iodinated in a regioselective manner using N-iodo-
succinimide in acetonitrile yielding 6 in 95% yield. However, expo-
sure to a trifluoromethylation catalyst, recently described by
Hartwig25 (Scheme 1) gave complex mixtures in all cases.

We then attempted the same trifluoromethylation reaction
using methyl fluorosulfonyldifluoroacetate (MFSDA).26 Since its

* Corresponding author. Tel.: þ353 21 4902866; fax: þ353 21 4274097; e-mail
address: g.mcglacken@ucc.ie (G.P. McGlacken).
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introduction, MFSDA has been used as a convenient source of
‘CuCF3’ and has proved useful in the trifluoromethylation of sub-
porphyrins,27 pyrazoles,28 purine nucleosides,29,30 oxazolyl in-
termediates,31 pyrazolopyridines,32 and others.33,34 The accepted
mechanism comprises an initial step involving the formation of
a copper salt with the elimination of methyl halide.26 The salt then
decomposes to release difluorocarbene and a fluoride ion, which
are in equilibrium with a DMF stabilised trifluoromethyl anion. In
the presence of CuI, the equilibrium shifts to form [CF3CuI"], which
reacts with a halogenated starting material, RX, to provide the
trifluoromethylated product, RCF3, following release of CuX and I".
A radical mechanism has been ruled out on the basis of experi-
mental and computation data.35 Thus iodinated methoxypyrone 6
was treated with MFSDA in the presence of copper (I) iodide in
a number of anhydrous solvents (Table 1). When the reaction
was carried out in THF and DMSO (Table 1, entries 1 & 2), no
product was observed. However a modest yield (53%) of tri-
fluoromethylated product 7 was achieved using NMP as solvent
(Table 1, entry 3). Changing the solvent to DMF or DMA resulted in

an increased yield of 77 and 79% respectively (Table 1, entries 6 &
7). Higher equivalents of MFSDA caused a slight decrease in yield
(Table 1, entry 5). Gratifyingly, the reaction can be successfully
carried out in bulk DMF, albeit with a slightly reduced yield of 63%
(Table 1, entry 4).

With workable conditions in hand, the scope of the reactionwas
investigated. Starting with 4-hydroxy-6-methyl-2-pyrone, a num-
ber of alkoxy groups were introduced using a literature procedure11

to afford pyrones 8e10, whilst 11 was prepare by heating 4-
hydroxy-6-methyl-2-pyrone with phenol and K2CO3 in acetone.
Pyrones 8e11 were then iodinated to give 12e15. Finally the
established protocol was applied and trifluoromethylated products
16e19 were obtained in moderate yield (Table 2, entries 1e4).

We then decided to test the optimised conditions using a bromo
analogue. Bromination of 5 (again in a regioselective manner) was
carried out using N-bromosuccinimide to afford 20 in 45% yield.
Trifluoromethylation was carried out as per the procedure used for
the iodo starting material, however 7 was obtained in only 10%
yield. In the formation of 20, the dibrominated compound 21 was
also observed, and isolated in 13% yield. Dibromo 21 was subjected
to our conditions to investigate the regioselectivity of the protocol.
When 1 equiv MFSDA was employed, trifluoromethylation oc-
curred at the sp3 hybridised carbon affording 22 in 30% yield and no
product resulting from trifluoromethylation at the 3-position of the
pyrone was isolated (Scheme 2).

We next sought to extrapolate the methodology to 2-pyridones,
which were prepared by heating the corresponding pyrone with
the desired amine in water36 to provide 23e25. The resulting 2-
pyridones were methylated to afford 26e28, iodinated with N-
iodosuccinimide in acetonitrile to afford 29e31 and finally tri-
fluoromethylated to provide 32e34 in moderate yield (Table 3,
entries 1e3). Both an electronwithdrawing group (4-FeC6H4e) and
an electron releasing group (4-MeOeC6H4e) on the nitrogen were
tolerated.

The reaction conditions are also suitable for the tri-
fluoromethylation of quinolones (Scheme 3). Commercially avail-
able 35, was methylated to afford 36, iodinated to provide 37 and
trifluoromethylated, affording 38 in good yield.

Fig. 1. Examples of biologically active compounds containing CH3 and CF3 functionalised, pyrone-derived moieties.

Scheme 1. Initial trifluoromethylation attempts.

Table 1
Optimisation studies

Entry Solvent MFSDA (equiv.) Yield 7 (%)a

1 THF 1.2 No reaction
2 DMSO 1.2 No reaction
3 NMP 1.2 53
4 DMFb 1.2 63
5 DMF 5 66
6 DMF 1.2 77
7 DMA 1.2 79

a Isolated.
b Bulk DMF was employed as solvent.
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Table 2
Pyrone reaction scope. Conditions: (a) NIS, MeCN; (b) MFSDA, CuI, DMF

Entry R Yield (%)a Yield (%)a

Step (a) Step (b)

1 CH2Ph 84 30
2 CH2CH3 75 34
3 CH2CH2CH3 96 46
4 Ph 96 43
a Isolated.

Scheme 2. Trifluoromethylation of bromo compounds (a) NBS, MeCN; (b) MFSDA, CuI, DMF.

Table 3
Pyridone reaction scope. Conditions: (a) K2CO3, (CH3)3PO4; (b) NIS, MeCN; (c) MFSDA, CuI, DMF

Entry R Yield (%)a Yield (%)a Yield (%)a

Step (a) Step (b) Step (c)

1 CH2Ph 57 70 62
2 C6H4(p-F) 60 31 52
3 C6H4(p-OMe) 44 13 46

a Isolated.

Scheme 3. (a) (CH3)3PO4, K2CO3; (b) NIS, MeCN, trifluoroacetic acid; (c) MFSDA, CuI, DMF.
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3. Conclusion

A method for the formation of trifluoromethylated 2-pyrones,
pyridones and quinolones has been established. The remarkable
biological activity of these compound classes, coupled with the
growing significance attributed to the introduction of the eCF3
group establishes the described protocol as a useful route to these
compounds. Efforts are currently underway to expand the substrate
scope and to apply the methodology to natural product syntheses
and in the formation of biologically active compounds such as those
depicted in Fig. 1.

4. Experimental

4.1. General experimental

Solvents and reagents were used as obtained from commercial
sources and without purification. Wet flash column chromatogra-
phy was carried out using Kieselgel silica gel 60, 0.040e0.063 mm
(Merck). Thin layer chromatography (TLC) was carried out on pre-
coated silica gel plates (Merck 60 PF254). Visualisation was ach-
ieved by UV and potassium permanganate staining. Melting points
were carried out on a uni-melt Thomas Hoover Capillary melting
point apparatus. Infrared (IR) spectra were recorded on Per-
kineElmer FTIR Paragon 1000 spectrophotometer. Liquid samples
were examined as thin films interspersed on sodium chloride
plates. Solid samples were dispersed in potassium bromide (KBr)
and recorded as pressed discs. NMR spectra were run in CDCl3
using tetramethylsilane (TMS) as the internal standard at 20 #C
unless otherwise specified. 1H NMR (400MHz) spectra and 1H NMR
(300 MHz) spectra were recorded on Bruker Avance 400 and
Bruker Avance 300 NMR spectrometers respectively in proton
coupled mode. 19F NMR (282 MHz) spectra and 19F NMR (470MHz)
were recorded on Bruker Avance 300 NMR and Bruker Avance 600
NMR spectrometers respectively in proton decoupled mode. 13C
NMR (125 MHz) spectra and 13C NMR (75.5 MHz) spectra were
recorded on Bruker Avance 500 and Bruker Avance 300 NMR
spectrometers respectively in proton decoupled mode. All spectra
were recorded at University College Cork. Chemical shifts dH and dC
are expressed as parts per million (ppm), positive shift being
downfield from TMS; coupling constants (J) are expressed in hertz
(Hz). Low resolution mass spectra (LRMS) were recorded on
a Waters Quattro Micro triple quadrupole instrument in electro-
spray ionisation (ESI) mode using 50% acetonitrileewater con-
taining 0.1% formic acid as eluent; samples were made up in
acetonitrile or methanol. High resolution precise mass spectra
(HRMS) were recorded on a Waters LCT Premier Tof LC-MS in-
strument in electrospray ionisation (ESI) mode using 50% aceto-
nitrileewater containing 0.1% formic acid as eluent; samples were
made up in acetonitrile or methanol. The Microanalysis Laboratory,
National University of Ireland, Cork, performed elemental analysis
using a PerkineElmer 240 and Exeter Analytical CE440 elemental
analysers.

4.2. General procedure for O-functionalisation

To a stirred suspension of 4-hydroxy-6-methyl-2-pyone
(1.0 equiv) in CH2Cl2 (15 mL) was added triethylamine (1.1 equiv)
dropwise. The mixture was allowed to stir at 0 #C for 10 min.
Benzylbromide (1.1 equiv) was then added dropwise. The resulting
mixture was stirred at room temperature for 12 h H2O (10 mL) was
added and the aqueous layer was extracted with CH2Cl2 (3$20mL).
The organic layers were combined, dried over MgSO4 and con-
centrated in vacuo to yield the crude product, which was purified
using silica column chromatography.

4.2.1. 4-(Benzyloxy)-6-methyl-2H-pyran-2-one, 8. White solid
(0.221 g, 8% yield). Mp 90e92 #C [lit.37 92e94 #C]. Spectral char-
acteristics were consistent with previously reported data.38 1H
NMR (300 MHz, CDCl3): d 2.21 (3H, s), 5.00 (2H, s), 5.50 (1H, d,
J¼2.1 Hz), 5.84 (1H, d, J¼1.1 Hz), 7.35e7.40 (5H, m) ppm; 13C NMR
(75.5 MHz, CDCl3): d 19.8, 70.7, 88.5, 100.5, 127.8, 128.79, 128.83,
134.4, 162.2, 164.8, 170.2 ppm; HRMS (ESI) m/z calcd for C13H13O3
[(MþH)þ]: 217.0865, found 217.0868.

4.2.2. 4-Ethoxy-6-methyl-2H-pyran-2-one, 9. Pale yellow solid
(0.256 g, 12% yield). Mp 63e64 #C. IR (KBr) nmax: 2986, 1720, 1567,
1250 cm"1; 1H NMR (300 MHz, CDCl3): d 1.37 (3H, t, J¼7.0 Hz), 2.17
(3H, s), 3.98 (2H, q, J¼7.1 Hz), 5.34 (1H, d, J¼2.0 Hz), 5.73 (1H, d,
J¼1.0 Hz) ppm; 13C NMR (75.5 MHz, CDCl3): d 14.0, 19.8, 64.5, 87.6,
100.6, 162.0, 165.1, 170.5 ppm; HRMS (ESI) m/z calcd for C8H11O3
[(MþH)þ]: 155.0708, found 155.0704.

4.2.3. 6-Methyl-4-propoxy-2H-pyran-2-one, 10. Pale yellow oil
(0.122 g, 7% yield). IR (KBr) nmax: 2970, 1733, 1566, 1250 cm"1; 1H
NMR (400 MHz, CDCl3): d 0.93 (3H, t, J¼7.4 Hz), 1.67e1.76 (2H, m),
2.12 (3H, s), 3.82 (2H, t, J¼6.5 Hz), 5.29 (1H, d, J¼1.1 Hz), 5.71 (1H, d,
J¼2.1 Hz) ppm; 13C NMR (75.5 MHz, CDCl3): d 10.2, 19.7, 21.8, 70.2,
87.6, 100.5, 161.9, 165.0, 170.7 ppm; HRMS (ESI) m/z calcd for
C9H13O3 [(MþH)þ]: 169.0865, found 169.0867.

4.2.4. 6-Methyl-4-phenoxy-2H-pyran-2-one, 11. To a stirred solu-
tionof 4-bromo-6-methyl-2H-pyran-2-one (2.225g,11.8mmol) and
K2CO3 (2.934 g, 21.2 mmol) in acetone (60 mL) was added phenol
(1.666 g, 17.7 mmol) and the resulting mixture stirred at reflux for
24 h. H2O (20 mL) was added and the aqueous layer extracted with
ethyl acetate (3$25 mL) and washed with 10% aq NaOH (2$25 mL).
The organic layers were combined, dried over MgSO4 and concen-
trated in vacuo to yield 11 as a beige solid (2.182 g, 91% yield)with no
purification required. Mp 86e88 #C [lit.39 89e91 #C]. Spectral
characteristics were consistent with previously reported data.39 IR
(KBr) nmax: 1722, 1564, 1447, 1290, 1232 cm"1; 1H NMR (300 MHz,
CDCl3): d 2.26 (3H, s), 5.20 (1H, dd, J¼0.3, 2.2 Hz), 5.97 (1H, dd, J¼0.9,
2.2 Hz), 7.05e7.09 (2H, m), 7.26e7.32 (1H, m) 7.40e7.46 (2H, m)
ppm; 13C NMR (75.5 MHz, CDCl3): d 20.0, 91.0, 99.9, 121.1, 126.5,
130.3, 152.4, 163.3, 164.6, 170.8 ppm; HRMS (ESI) m/z calcd for
C12H11O3 [(MþH)þ]: 203.0708, found 203.0702; Anal. Calcd for
C12H10O3: C, 71.28; H, 4.98%. Found: C, 71.20; H, 5.09%.

4.3. General procedure for formation of pyridones

To a suspension of 4-hydroxy-6-methyl-2H-pyran-2-one
(1.0 equiv) in water (4 mL/mmol pyrone) was added amine
(1.0 equiv). The reaction vessel was placed in an oil bath set at
100 #C and reactionwas allowed to stir at reflux for 5 h. The reaction
vessel was then placed in an iceewater bath for 2 h. The resulting
solid was filtered and triturated with hot ethanol to yield product.

4.3.1. 1-Benzyl-4-hydroxy-6-methylpyridin-2(1H)-one, 23. Off-
white solid (51% yield). Mp 201e207 #C [lit.40 205e208 #C]. Spectral
characteristics were consistent with previously reported data.40 1H
NMR (300 MHz, (CD3)2SO): d 2.17 (3H, s), 5.20 (2H, s), 5.61 (1H, d,
J¼2.6 Hz), 5.81 (1H, dd, J¼2.7, 0.8 Hz), 7.02e7.14 (2H, m), 7.20e7.40
(3H, m), 10.51 (1H, br s); 13C NMR (75 MHz, (CD3)2SO): d 20.4, 45.7,
96.3, 100.9, 127.3, 127.6, 129.0, 138.2, 148.1, 164.5, 166.4; MS (ESI)
m/z: 214 [(M"H)", 42%].

4.3.2. 1-(4-Fluorophenyl)-4-hydroxy-6-methylpyridin-2(1H)-one,
24. White solid (0.597 g, 13% yield). Mp >250 #C. IR (KBr) nmax:
1619, 1492, 1213 cm"1; 1H NMR (300 MHz, (CD3)2SO): d 1.84 (3H, s),
5.55 (1H, d, J¼2.1 Hz), 5.89 (1H, s), 7.23e7.34 (4H, m), 10.62 (1H, br
s) ppm; 13C NMR (75.5 MHz, (CD3)2SO): d 25.5, 96.5, 100.6, 116.5
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(d, 2JCeF¼22.7 Hz), 131.3 (d, 3JCeF¼8.8 Hz), 135.4 (d, 4JCeF¼3.1 Hz),
147.4, 161.9 (d, 1JCeF¼244.7 Hz), 164.6, 167.0 ppm; 19F NMR
(282 MHz, (CD3)2SO): d "114.1 ppm; HRMS (ESI) m/z calcd for
C12H11NO2F [(MþH)þ]: 220.0774, found 220.0781.

4.3.3. 4-Hydroxy-1-(4-methoxyphenyl)-6-methylpyridin-2(1H)-one,
25. White solid (1.185 g, 23% yield). Mp >250 #C. IR (KBr) nmax:
1617, 1531, 1507, 1246 cm"1; 1H NMR (300 MHz, (CD3)2SO): d 1.83
(3H, s), 3.80 (3H, s), 5.23 (1H, s), 5.86 (1H, s), 7.01 (2H, d, J¼8.5 Hz),
7.09 (2H, d, J¼8.6 Hz), 10.56 (1H, br s) ppm; 13C NMR (75.5 MHz,
(CD3)2SO): d 21.6, 55.8, 96.5, 100.3, 114.8, 130.1, 131.8, 147.9, 159.1,
164.7, 166.8 ppm; HRMS (ESI) m/z calcd for C13H14NO3 [(MþH)þ]:
232.0974, found 232.0965.

4.4. General procedure for methylation of pyrones, pyridones
and quinolone

To 4-hydroxy starting material (1.0 equiv) and K2CO3 (1.2 equiv)
was added trimethylphosphate (2.1 equiv) and the resulting mix-
ture stirred at reflux with progress monitored by TLC analysis. On
completion,H2O (30mL)was added and the aqueous layer extracted
with ethyl acetate (3$30 mL). The organic layers were combined,
washed with brine (50 mL), dried over MgSO4 and concentrated in
vacuo to yield crude product as a yellowsolid, whichwas purified by
recrystallisation from ethanol to yield product.

4.4.1. 4-Methoxy-6-methyl-2H-pyran-2-one, 5. Pale yellow, crys-
talline solid (2.303 g, 46% yield). Mp 85e87 #C [lit.41 86e87.5 #C].
Spectral characteristics were consistent with previously reported
data.42 1H NMR (300 MHz, CDCl3): d 2.21 (3H, s), 3.79 (3H, s), 5.41
(1H, d, J¼2.2 Hz), 5.77e5.78 (1H, m) ppm; 13C NMR (75.5 MHz,
CDCl3) d 19.8, 55.8, 87.4, 100.3, 162.0, 164.9, 171.3 ppm; MS (ESI) m/
z: 141 [(MþH)þ, 100%].

4.4.2. 1-Benzyl-4-methoxy-6-methylpyridin-2(1H)-one, 26. Yellow
solid (57% yield). Mp 115e116 #C. IR (KBr) nmax: 1655 cm"1; 1H NMR
(300 MHz, (CD3)2SO): d 2.19 (3H, s), 3.74 (3H, s), 5.22 (2H, s), 5.81
(1H, d, J¼2.8 Hz), 5.91 (1H, dd, J¼2.7, 0.7 Hz), 7.10 (2H, d, J¼7.0 Hz),
7.35e7.24 (3H, m) ppm; 13C NMR (75.5MHz, (CD3)2SO): d 20.2, 45.9,
55.8, 94.4, 100.4, 126.5, 127.4, 129.0, 138.0, 147.6, 164.4, 167.5; HRMS
(ESI) m/z calcd for C14H16NO2 [(MþH)þ]: 230.1181, found 230.1172.

4.4.3. 1-(4-Fluorophenyl)-4-methoxy-6-methylpyridin-2(1H)-one,
27. White solid (1.025 g, 60% yield). Mp 188e190 #C. IR (KBr) nmax:
1651, 1558, 1510, 1246, 1213, 1165 cm"1; 1H NMR (300 MHz, CDCl3):
d 1.90 (3H, s), 3.78 (3H, s), 5.84 (1H, d, J¼1.8 Hz), 5.87 (1H, d,
J¼2.6 Hz), 7.16e7.18 (4H, m) ppm; 13C NMR (75.5 MHz, CDCl3):
d 21.5, 55.5, 95.0, 101.1, 116.7 (d, 2JCeF¼22.8 Hz), 130.1 (d,
3JCeF¼8.7 Hz), 134.5 (d 4JCeF¼3.3 Hz), 145.9, 162.4 (d,
1JCeF¼248.3 Hz), 165.6, 168.0 ppm; 19F NMR (282 MHz, (CDCl3):
d "112.7 ppm; HRMS (ESI) m/z calcd for C13H13NO2F [(MþH)þ]:
234.0930, found 234.0920; Anal. Calcd for C13H12O2FN: C, 66.94; H,
5.19; N, 6.01%. Found: C, 66.92; H, 5.19; N, 6.01%.

4.4.4. 4-Methoxy-1-(4-methoxyphenyl)-6-methylpyridin-2(1H)-one,
28. Off-white solid (0.528 g, 44% yield). Mp 171e173 #C. IR (KBr)
nmax: 1652,1560,1511,1244 cm"1; 1H NMR (300MHz, CDCl3): d 1.90
(3H, s), 3.76 (3H, s), 3.82 (3H, s), 5.81 (1H, s), 5.86 (1H, d, J¼2.6 Hz),
6.98 (2H, d, J¼8.9 Hz), 7.08 (2H, d, J¼8.8 Hz) ppm; 13C NMR
(75.5 MHz, CDCl3): d 21.5, 55.3, 55.5, 95.0, 100.7, 114.9, 129.2, 131.3,
146.5, 159.5, 165.8, 167.8 ppm; HRMS (ESI) m/z calcd for C14H16NO3
[(MþH)þ]: 246.1130, found 246.1126; Anal. Calcd for C14H15O3N: C,
68.56; H, 6.16; N, 5.71%. Found: C, 68.42; H, 6.15; N, 5.72%.

4.4.5. 4-Methoxy-1-methylquinolin-2(1H)-one, 36. Orange solid
(0.953 g, 81% yield). Mp 90e92 #C. IR (KBr) nmax: 1638, 1587,

1236 cm"1; 1H NMR (300 MHz, (CD3)2SO): d 3.56 (3H, s), 3.94 (3H,
s), 6.04 (1H, s), 7.23e7.29 (1H, m) 7.49e7.52 (1H, m), 7.62e7.68 (1H,
m), 7.87e7.89 (1H, m) ppm; 13C NMR (75.5 MHz, (CD3)2SO): d 29.1,
56.6, 96.8, 115.1, 116.0, 122.0, 123.1, 131.9, 139.9, 162.3, 162.8 ppm;
HRMS (ESI) m/z calcd for C11H12NO2 [(MþH)þ]: 190.0868,
found190.0864.

4.5. General procedure for iodination

To a stirred solution of 4-alkoxy starting material (1.0 equiv)
in acetonitrile (30 mL) was added N-iodosuccinimide
(1.5e3.0 equiv). The reaction vessel was covered in aluminium
foil and allowed stir at room temperature with reaction progress
monitored by TLC analysis. On completion, the solvent was con-
centrated in vacuo, the resulting solid dissolved in CH2Cl2 (15 mL)
and washed with 5% aqueous sodium thiosulfate (3$20 mL). The
organic layer was dried over MgSO4 and concentrated in vacuo to
yield product, which was purified by silica column chromatog-
raphy if required.

4.5.1. 3-Iodo-4-methoxy-6-methyl-2H-pyran-2-one, 6. 1.5 equiv N-
iodosuccinimide required. No purification required. Yellow solid
(3.578 g, 95% yield). Mp 144e146 #C [lit.11 144e146 #C]. Spectral
characteristics were consistent with previously reported data.11 1H
NMR (300MHz, CDCl3): d 2.30 (3H, s), 3.99 (3H, s), 6.00 (1H, s) ppm;
13C NMR (75.5 MHz, CDCl3): d 20.1, 57.5, 62.3, 94.7, 161.7, 164.2,
170.5 ppm; MS (ESI) m/z: 267 [(MþH)þ, 100%].

4.5 .2 . 4- (Benzyloxy)-3- iodo-6-methyl-2H-pyran-2-one ,
12. 3.0 equivN-iodosuccinimide required. No purification required.
Off-white solid (0.272 g, 84% yield). Mp 125e126 #C. IR (KBr) nmax:
1705, 1524, 1318 cm"1; 1H NMR (CDCl3, 300 MHz): d 2.22 (3H, s),
5.35 (2H, s), 5.97 (1H, s), 7.32e7.40 (5H, m) ppm; 13C NMR
(75.5 MHz, CDCl3): d 20.1, 63.3, 71.8, 95.8, 126.8, 128.7, 128.9, 134.6,
161.8, 164.0, 169.8 ppm; HRMS (ESI) m/z calcd for C13H12O3I
[(MþH)þ]: 342.9831, found 342.9824.

4.5.3. 4-Ethoxy-3-iodo-6-methyl-2H-pyran-2-one, 13. 3.0 equiv N-
iodosuccinimide required. No purification required. Yellow solid
(0.205 g, 75% yield). Mp 130e131 #C. IR (KBr) nmax: 3102, 2981,1699,
1521, 1314 cm"1; 1H NMR (300MHz, CDCl3): d 1.45 (3H, t, J¼7.0 Hz),
2.25 (3H, s), 4.20 (2H, q, J¼7.1 Hz), 5.92 (1H, s) ppm; 13C NMR
(75.5 MHz, CDCl3): d 14.7, 20.1, 62.5, 66.4, 95.3, 161.9, 163.9,
169.9 ppm; HRMS (ESI) m/z calcd for C8H10O3I [(MþH)þ]: 280.967,
found 280.9669; Anal. Calcd for C8H9O3I: C, 34.21; H, 3.24%. Found:
C, 34.43; H, 3.00%.

4.5.4. 3-Iodo-6-methyl-4-propoxy-2H-pyran-2-one, 14. 3.0 equiv
N-iodosuccinimide required. No purification required. White
solid (0.093 g, 96% yield). Mp 113e115 #C. IR (KBr) nmax: 2969,
2920, 1709, 1522, 1317 cm"1; 1H NMR (300 MHz, CDCl3): d 1.08
(3H, t, J¼7.4 Hz), 1.80e1.91 (2H, m), 2.28 (3H, s), 4.10 (2H, q,
J¼6.4 Hz), 5.91 (1H, s) ppm; 13C NMR (75.5 MHz, CDCl3): d 10.4,
20.1, 22.4, 62.5, 72.0, 95.4, 161.9, 163.9, 170.0 ppm; HRMS (ESI)
m/z calcd for C9H12O3I [(MþH)þ]: 294.9831, found 294.9820;
Anal. Calcd for C9H11O3I: C, 36.76; H, 3.77%. Found: C, 36.93; H,
3.49%.

4.5.5. 3-Iodo-6-methyl-4-phenoxy-2H-pyran-2-one, 15. 1.5 equiv N-
iodosuccinimide required. No purification required. Yellow solid
(1.022 g, 96% yield). Mp 123e125 #C. IR (KBr) nmax: 1718, 1532, 1487,
1225 cm"1; 1H NMR (300 MHz, CDCl3): d 2.16 (3H, s), 5.54 (1H, s),
7.07e7.09 (2H, m), 7.29e7.34 (1H, m), 7.42e7.47 (2H, m) ppm; 13C
NMR (75.5 MHz, CDCl3): d 19.9, 64.9, 97.3, 120.9, 126.5, 130.4, 153.0,
161.8, 163.6, 169.4 ppm; HRMS (ESI) m/z calcd for C12H10O3I
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[(MþH)þ]: 328.9675, found 328.9667; Anal. Calcd for C12H9O3I: C,
43.93; H, 2.76%. Found: C, 43.96; H, 2.63%.

4.5.6. 1-Benzyl-3-iodo-4-methoxy-6-methylpyridin-2(1H)-one,
29. 3.0 equiv N-iodosuccinimide required. Purification using silica
column chromatography eluting with 50:50 hexane:ethyl acetate.
Pale yellow solid (0.371 g, 70% yield). Mp 146e148 #C. IR (KBr) nmax:
2931, 2852, 1634, 1504, 1323 cm"1; 1H NMR (300 MHz, CDCl3):
d 2.30 (3H, s), 3.91 (3H, s), 5.38 (2H, s), 5.88 (1H, s), 7.14e7.16 (2H,
m), 7.23e7.32 (3H, m) ppm; 13C NMR (75.5 MHz, CDCl3): d 21.1, 48.7,
56.7, 72.1, 95.3, 126.7, 127.5, 128.8, 136.3, 147.9, 162.2, 166.7 ppm;
HRMS (ESI) m/z calcd for C14H15O2NI [(MþH)þ]: 356.0148, found
356.0141.

4.5.7. 1-(4-Fluorophenyl)-3-iodo-4-methoxy-6-methylpyridin-
2(1H)-one, 30. 2 equiv N-iodosuccinimide required. Purification
using silica column chromatography eluting with 50:50 hex-
ane:ethyl acetate. Pale brown solid (0.429 g, 31% yield). Mp
196e198 #C. IR (KBr) nmax: 1651, 1579, 1520, 1343, 1214 cm"1; 1H
NMR (300 MHz, CDCl3): d 2.01 (3H, s), 3.97 (3H, s), 6.00 (1H, s),
7.15e7.19 (4H, m) ppm; 13C NMR (75.5 MHz, CDCl3): d 22.0, 56.8,
72.1, 94.9, 116.7 (d, 2JCeF¼23.0 Hz), 129.8 (d, 3JCeF¼8.7 Hz), 134.7 (d,
4JCeF¼3.5 Hz), 147.5, 161.5 (d, 1JCeF¼248.8 Hz), 162.2, 167.3 ppm; 19F
(282 MHz, CDCl3): d "112.2 ppm HRMS (ESI) m/z calcd for
C13H12O2NFI [(MþH)þ]: 359.9897, found 359.9894.

4.5.8. 1-(4-Methoxyphenyl)-3-iodo-4-methoxy-6-methylpyridin-
2(1H)-one, 31. 2.0 equiv N-iodosuccinimide required. Purification
using silica column chromatography eluting with 50:50 hex-
ane:ethyl acetate. Yellow solid (0.090 g, 13% yield). Mp 190e193 #C.
IR (KBr) nmax: 1651, 1511, 1343 cm"1; 1H NMR (300 MHz, CDCl3):
d 2.02 (3H, s), 3.84 (3H, s), 3.96 (3H, s), 5.96 (1H, s), 6.98 (2H, d,
J¼8.6 Hz), 7.07 (2H, d, J¼8.6 Hz) ppm; 13C NMR (75.5 MHz, CDCl3):
d 22.0, 55.5, 56.7, 72.2, 94.6, 114.9, 128.9, 131.5, 148.1, 159.6, 162.4,
167.2; HRMS (ESI) m/z calcd for C14H15O3NI [(MþH)þ]: 372.0097,
found 372.0099.

4.5.9. 3-Iodo-4-methoxy-1-methylquinolin-2(1H)-one, 37. 1.5 equiv
N-iodosuccinimide required. Purification using silica column
chromatography eluting with 80:20 hexane:ethyl acetate. Yellow
solid (0.485 g, 32% yield). Mp 115e117 #C. IR (KBr) nmax: 1636, 1610,
1591 cm"1; 1H NMR (300 MHz, CDCl3): d 3.81 (3H, s), 4.03 (3H, s),
7.25e7.31 (1H, m), 7.41 (1H, d, J¼1.6 Hz), 7.61e7.67 (1H, m),
7.88e7.91 (1H, m) ppm; 13C NMR (75.5 MHz, CDCl3): d 31.4, 61.3,
87.5, 114.5, 117.5, 122.4, 123.8, 131.7, 139.9, 160.8, 166.3 ppm; HRMS
(ESI) m/z calcd for C11H11NO2I [(MþH)þ]: 315.9835, found
315.9828; Anal. Calcd for C11H10NO2I: C, 41.93; H, 3.20; N, 4.45%.
Found: C, 41.61; H, 3.09; N, 4.08%.

4.6. Bromination of 4-methoxy-6-methyl-2H-pyran-2-one

4.6.1. 3-Bromo-4-methoxy-6-methyl-2H-pyran-2-one, 20. To a stir-
red solution of 4-methoxy-6-methyl-2H-pyran-2-one 5 (2.791 g,
19.9 mmol) in acetonitrile (30 mL) was added N-bromosuccinimide
(7.089 g, 39.8 mmol). The reaction vessel was covered in alumin-
ium foil and resulting mixture allowed to stir at reflux overnight.
The solvent was concentrated in vacuo, the resulting orange solid
dissolved in CH2Cl2 (20 mL) and washed with 5% aqueous sodium
thiosulfate (2$25 mL), water (25 mL) and brine (25 mL). The or-
ganic layer was dried over MgSO4 and concentrated in vacuo to
yield crude product, which was purified by silica column chro-
matography to yield 20 as a pale yellow solid (1.980 g, 45% yield).
Mp 149e151 #C [lit.43 151e152 #C]. Spectral characteristics were
consistent with previously reported data.44 1H NMR (300 MHz,
CDCl3): d 2.29 (3H, s), 3.98 (3H, s), 6.05 (1H, s) ppm; 13C NMR

(75.5 MHz, CDCl3): d 20.3, 57.3, 88.5, 95.1, 160.8, 162.8, 166.8 ppm;
HRMS (ESI) m/z calcd for C7H8O3Br [(MþH)þ]: 218.9657, found
218.9649.

4.6.2. 3-Bromo-6-(bromomethyl)-4-methoxy-2H-pyran-2-one,
21. 3-Bromo-6-(bromomethyl)-4-methoxy-2H-pyran-2-one 21
was isolated as a side product from the bromination of 4-methoxy-
6-methyl-2H-pyran-2-one as an off white solid (0.794 g, 13% yield).
Mp 159e161 #C [lit.45 162e164 #C]. Spectral characteristics were
consistent with previously reported data.45 1H NMR (300 MHz,
CDCl3): d 4.03 (3H, s), 4.19 (2H, s), 6.40 (1H, s) ppm; 13C NMR
(75.5 MHz, CDCl3): d 26.3, 57.6, 91.3, 96.7, 159.1, 159.7, 166.0 ppm;
HRMS (ESI) m/z calcd for C7H7O3Br2 [(MþH)þ]: 296.8762, found
296.8766.

4.7. General procedure for trifluoromethylation

To a stirred solution of iodo-substrate (1.0 equiv) and copper (I)
iodide (1.2 equiv) in DMF (4 mL) was added methyl 2,2-difluoro-2-
(fluorosulfonyl)acetate (1.2 equiv). The reaction mixture was
allowed stir at 70 #C overnight. On completion, reaction was cooled
to room temperature, diluted with diethyl ether (20 mL) and fil-
tered. H2O (20mL) was added and the aqueous layer extractedwith
diethyl ether (4$20 mL). The combined organic extracts washed
with water (3$5 mL), dried over MgSO4 and concentrated in vacuo
to yield crude product, which was purified using silica column
chromatography.

4.7.1. 4-Methoxy-6-methyl-3-(trifluoromethyl)-2H-pyran-2-one,
7. Pale yellow solid (0.061 g, 77% yield). Mp 120e122 #C. IR (KBr)
nmax: 1747,1560,1266,1100 cm"1; 1H NMR (300MHz, CDCl3): d 2.33
(3H, s), 4.00 (3H, s), 6.11 (1H, s) ppm; 13C NMR (100 MHz, CDCl3):
d 20.7, 57.5, 94.5, 94.3 (q, 2JCeF¼31.6 Hz), 124.2 (q, 1JCeF¼272.7 Hz),
159.1, 167.8, 171.1 ppm; 19F NMR (470 MHz, CDCl3): d "57.6 ppm;
HRMS (ESI) m/z calcd for C8H8O3F3 [(MþH)þ]: 209.0426, found
209.0424; Anal. Calcd for C8H7F3O3: C, 46.17; H, 3.39%. Found: C,
46.27; H, 3.49%.

4.7.2. 4-(Benzyloxy)-6-methyl-3-(trifluoromethyl)-2H-pyran-2-one,
16. Pale yellow solid (0.065 g, 30% yield). Mp 149e151 #C. IR (KBr)
nmax: 1715,1556,1414,1364 cm"1; 1H NMR (CDCl3, 300MHz): d 2.28
(3H, s), 5.27 (2H, s), 6.08 (1H, s), 7.34e7.45 (5H, m) ppm; 13C NMR
(CDCl3,150MHz): d 20.8, 71.9, 95.1 (q, 2JCeF¼29.4 Hz), 95.3,122.8 (q,
1JCeF¼271.5 Hz), 126.8, 128.9, 129.0, 134.0, 159.0, 167.5, 170.2; HRMS
(ESI) m/z calcd for C14H12O3F3 [(MþH)þ]: 285.0739, found
285.0728.

4.7.3. 4-Ethoxy-6-methyl-3-(trifluoromethyl)-2H-pyran-2-one,
17. Pale yellow solid (0.052 g, 34% yield). Mp 129e131 #C. IR (KBr)
nmax: 1722, 1557, 1263, 1229, 1110 cm"1; 1H NMR (400 MHz, CDCl3):
d 1.44 (3H, t, J¼7.0 Hz), 2.29 (3H, s), 4.23 (2H, q, J¼7.0 Hz), 6.05 (1H,
s) ppm; 13C NMR (100 MHz, CDCl3): d 14.4, 20.7, 66.7, 94.5 (q,
2JCeF¼31.5 Hz), 95.0, 122.9 (q, 1JCeF¼272.8 Hz), 159.2, 167.4,
170.4 ppm; 19F NMR (282 MHz, CDCl3): d "57.6 ppm; HRMS (ESI)
m/z calcd for C9H10O3F3 [(MþH)þ]: 223.0582, found 223.0574;
Anal. Calcd for C9H9F3O3: C, 48.66; H, 4.08%. Found: C, 48.48; H,
4.00%.

4.7.4. 6-Methyl-4-propoxy-3-(trifluoromethyl)-2H-pyran-2-one,
18. Yellow solid (0.035 g, 46% yield). Mp 107e109 #C. IR (KBr) nmax:
1719, 1552, 1113 cm"1; 1H NMR (400 MHz, CDCl3): d 1.02 (3H, t,
J¼7.4 Hz), 1.77e1.86 (2H, m), 2.29 (3H, s), 4.11 (2H, t, J¼6.3 Hz), 6.06
(1H, s) ppm; 13C NMR (100 MHz, CDCl3): d 8.2, 18.8, 20.4, 70.5, 92.4
(q, 2JCeF¼31.6 Hz), 93.3, 121.1 (q, 1JCeF¼272.8 Hz), 157.4, 165.6,
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168.9 ppm;19F NMR (282MHz, CDCl3): d"57.6 ppm; HRMS (ESI)m/
z calcd for C10H12O3F3 [(MþH)þ]: 237.0739, found 237.0735.

4.7.5. 6-Methyl-4-phenoxy-3-(trifluoromethyl)-2H-pyran-2-one,
19. Yellow solid (0.103 g, 43% yield). Mp 128e129 #C. IR (KBr) nmax:
1730, 1563, 1261, 1123 cm"1; 1H NMR (300 MHz, CDCl3): d 2.19 (3H,
s), 5.62 (1H, s), 7.07e7.11 (2H, m), 7.31e7.37 (1H, m), 7.44e7.50 (2H,
m) ppm; 13C NMR (100 MHz, CDCl3): d 20.5, 96.3 (q, 2JCeF¼32.1 Hz),
96.9, 120.9, 122.5 (q, 1JCeF¼273.1 Hz), 126.9, 130.5, 152.4, 159.0,
167.2, 169.2 ppm; 19F NMR (282 MHz, CDCl3): d "57.8 ppm; HRMS
(ESI)m/z calcd for C13H10O3F3 [(MþH)þ]: 271.0582, found 271.0583;
Anal. Calcd for C13H9F3O3: C, 57.79; H, 3.36%. Found: C, 57.61; H,
3.40%.

4.7.6. 3-Bromo-4-methoxy-6-(2,2,2-trifluoroethyl)-2H-pyran-2-one,
22. Yellow solid (0.065 g, 30% yield). Mp 146e148 #C. IR (KBr) nmax:
1702, 1537, 1327 cm"1; 1H NMR (300 MHz, CDCl3): d 3.35 (2H, q,
J¼9.7 Hz), 4.02 (3H, s), 6.28 (1H, s) ppm; 13C NMR (75 MHz, CDCl3):
d 38.8 (q, 2JCeF¼32.0 Hz), 57.6, 91.3, 98.4, 123.5 (q, JCeF¼277.8 Hz),
154.0 (q, 3JCeF¼3.5 Hz), 159.7, 165.9 ppm; 19F NMR (282 MHz,
CDCl3): d "64.2 ppm; HRMS (ESI) m/z calcd for C8H7O3F3Br
[(MþH)þ]: 286.9531, found 286.9522.

4.7.7. 1-Benzyl-4-methoxy-6-methyl-3-(trifluoromethyl)pyridin-
2(1H)-one, 32. Pale yellow solid (0.064 g, 62% yield). Mp
132e133 #C. IR (KBr) nmax: 1656, 1557, 1396, 1108 cm"1; 1H NMR
(300 MHz, CDCl3): d 2.33 (3H, s), 3.91 (3H, s), 5.30 (2H, s), 5.90 (1H,
s), 7.15e7.18 (2H, m), 7.25e7.34 (3H, m) ppm; 13C NMR (100 MHz,
CDCl3): d 21.5, 47.0, 56.3, 94.5, 100.4 (q, 2JCeF¼29.4 Hz), 123.9 (q,
1JCeF¼272.9 Hz), 126.6, 127.6, 128.9, 136.0, 151.6, 160.7, 166.6 ppm;
19F NMR (282 MHz, CDCl3): d "57.2 ppm; HRMS (ESI) m/z calcd for
C15H15NO2F3 [(MþH)þ]: 298.1055, found 298.1047.

4.7.8. 1-(4-Fluorophenyl)-4-methoxy-6-methyl-3-(trifluoromethyl)
pyridin-2(1H)-one, 33. White solid (0.107 g, 52% yield) mp
185e188 #C. IR (KBr) nmax: 1664, 1555, 1509, 1464, 1261 cm"1; 1H
NMR (300 MHz, CDCl3): d 2.03 (3H, s), 3.95 (3H, s), 6.03 (1H, s),
7.12e7.21 (4H, m) ppm; 13C NMR (75MHz, CDCl3): d 22.3, 56.6, 94.4,
100.5 (q, 2JCeF¼29.5 Hz), 116.8 (d, 2JCeF¼23.0 Hz), 123.7 (q,
1JCeF¼273.1 Hz), 129.9 (d, 3JCeF¼8.8 Hz), 133.6 (d, 4JCeF¼3.5 Hz),
151.4, 160.8, 162.6 (d, 1JCeF¼248.8 Hz), 167.4 ppm; 19F NMR
(282 MHz, CDCl3): d "112.0, "57.2 ppm; HRMS (ESI) m/z calcd for
C14H12NO2F4 [(MþH)þ]: 302.0804, found 302.0796; Anal. Calcd for
C14H11F4NO2: C, 55.82; H, 3.68; N, 4.65%. Found: C, 55.55; H, 3.61; N,
4.50%.

4.7 .9 . 4-Methoxy-1-(4-methoxyphenyl)-6-methyl-3-(tr i-
fluoromethyl)pyridin-2(1H)-one, 34. White solid (0.077 g, 46%
yield). Mp 153e156 #C. IR (KBr) nmax: 1662, 1552, 1514, 1251,
1108 cm"1; 1H NMR (300 MHz, CDCl3): d 2.04 (3H, s), 3.84 (3H, s)
3.95 (3H, s), 5.99 (1H, s), 6.98 (2H, d, J¼9.0 Hz), 7.07 (2H, d, J¼9.0 Hz)
ppm; 13C NMR (75 MHz, CDCl3): d 22.4, 55.5, 56.6, 93.9, 100.6 (q,
2JCeF¼29.3 Hz), 115.0, 123.8 (q, 1JCeF¼273.1 Hz), 129.0, 130.3, 151.9,
159.8, 161.0, 167.2 ppm; 19F NMR (282 MHz, CDCl3): d "57.3 ppm;
HRMS (ESI) m/z calcd for C15H15NO3F3 [(MþH)þ]: 314.1004, found
314.0997; Anal. Calcd for C15H14F3NO3: C, 57.51; H, 4.50; N, 4.47%.
Found: C, 57.80; H, 4.47; N, 4.13%.

4.7.10. 4-Methoxy-1-methyl-3-(trifluoromethyl)quinolin-2(1H)-one,
38. White solid (0.120 g, 52% yield). Mp 100e102 #C. IR (KBr) nmax:
1652,1118 cm"1; 1H NMR (300MHz, CDCl3): d 3.71 (3H, s), 4.05 (3H,
s), 7.29e7.35 (1H, m), 7.40 (1H, d, J¼8.5 Hz), 7.67e7.73 (1H, m),
7.94e7.98 (1H, m) ppm; 13C NMR (75 MHz, CDCl3): d 29.6, 64.3 (q,
5JCeF¼2.5 Hz), 111.0 (q, 2JCeF¼29.0 Hz), 114.4, 116.7, 122.6, 122.7 (q,
1JCeF¼273.7 Hz), 125.2, 133.5, 140.8, 159.6, 165.6 (q, 3JCeF¼1.3 Hz)
ppm; 19F NMR (282 MHz, CDCl3): d "59.7 ppm; HRMS (ESI) m/z

calcd for C12H11F3NO2 [(MþH)þ]: 258.0742, found 258.0731; Anal.
Calcd for C12H10F3NO2: C, 56.04; H, 3.92%. Found: C, 55.82; H, 3.85%.
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