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Abstract—Wireless Sensor Network (WSN) technologies have
developed considerably over the past decade or so and, now,
feasible solutions exist for various applications, both critical
and otherwise. Often these solutions are achieved by using
commercial off the shelf components combined with standardized
open-access protocols. As deployments diverge into safety-critical
areas, attack incentives intensify, leading to persistent malicious
intrusion challenges, which are ever-changing as interference
techniques evolve and dynamic hardware becomes increasingly
accessible. Unique WSN security vulnerabilities, a fluctuating
radio frequency (RF) spectrum and physical environment and
spectrum co-existence escalate the problem. Thus, securing WSNs
is a critical and demanding requirement, heightened by the
burden of protecting sensitive transmitted information. This
paper, by utilizing ZigBee and Monte Carlo simulations, aims
to develop an initial framework for interference detection in
WSNs. Initially, bit error location analysis motivates a feature-
based detection strategy, relating to both subtle and crude forms
of interference. The work expands to analyze Matlab simulated
error-free and erroneous transmissions to investigate whether
feature useful differences exist. A feature set, including the
measured probability density function of, and statistics on, the
in-phase and quadrature-phase samples is demonstrated and
initially validated/feasibility tested using a designed support
vector machine.

Keywords-IEEE802.15.4, Detection, Interference, IoT, Machine
Learning, Security, Support Vector Machine, WSN and ZigBee.

I. INTRODUCTION

WSNs are continuing to become integrated into safety
critical applications [1] and are, simultaneously, becoming an
indispensable component of modern technology. Due to this
use of WSNs in safety conscious applications and increasing
congestion levels in the RF spectrum, new challenges con-
cerning security, spectral coexistence and threat identification
emerge. Utilizing WSNs is a direct result of over a decade
of research and development, resulting in feasible solutions to
various innovative application challenges. Consequently, this
leads to strict operational and availability requirements being
imposed on computationally constrained devices. Embracing
WSNs will, likely, continue in the modern cost-centered age,
as WSNs permit the benefits of easier design, installation and
maintenance, while simultaneously providing new deployment

options. The diverse range of applications include space-based
WSNs [1], the Internet of Things (IoT), smart homes and
cities, wireless networked control systems [2], aerospace [3]
and using low earth orbit satellites as WSN components [4].

WSN protocols in use, typically, have very similar physical
(PHY) and medium access control (MAC) layers [5] and
are, generally, based on an open access standard, for exam-
ple, IEEE 802.15.4. Typical device resources hinder the use
of computationally intensive security protocols and publicly
known standards can typically be reverse engineered by avail-
able tools. Both WSN operations and IoT devices operating
in the RF spectrum continue to expand, leading to increased
levels of congestion, especially in the 2.4 GHz industrial
scientific and medical (ISM) band. Therefore, WSN security
is becoming increasingly important and network compromise,
whether malicious or unintentional, is achievable, can have
significant consequences for privacy and safety and requires
each communication link to be secure.

This paper presents Matlab simulation results revealing
how different types of jammers influence the positions and
probability of bit errors in 802.15.4 frames as a foundation
for potential interference detection and classification strategies.
The simulated samples are analyzed under additive noise,
different jammer types and varying jammer-to-signal ratios
(JSR) by employing the low rate wireless personal area
network (LR-WPAN) protocol, ZigBee. Bit error locations
are identified under varying JSR values to motivate feature
analysis. Contributions focus on identifying features extracted
from received in-phase (I) and quadrature-phase (Q) samples
for varying JSR values. Error free and erroneous packets,
containing one or more bit errors, are statistically compared to
determine if any significant differences exist. Differentiation
is achieved by neglecting network-wide operative analysis and
information from higher up the protocol stack. Thus, packet
delivery rates (PDRs), packet sending rates and received signal
strength (RSSI) are neglected. Extracted features are experi-
mentally validated and the approaches feasibility established
by a support vector machine (SVM) classifier.

The remainder of this paper is organized as follows: Section



II outlines similar work in the area. Section III discusses
WSNs, the chosen protocol, ZigBee, and WSN security in
terms of requirements, vulnerabilities, attacks and defenses.
Section IV outlines and discusses the executed experiments
and how errors were indicated. Section V explains the main
results, including the feature set and validation through the
use of a SVM. Finally, section VI concludes this paper and
provides the necessary future work.

II. RELATED WORK

Detecting interference and intrusions in wireless communi-
cations is not an original concept, but an approach which,
typically, requires enhancements to match current deploy-
ments and trends. Conventional WSN techniques and intrusion
detection systems (IDSs), defined as software or hardware
tools that monitor networks to detect internal or external
attacks, typically use analysis of the RSSI and packet rates [6].
Machine learning techniques can also use network information
to detect intrusions [7]. Detailed surveys on intrusion detection
in WSNs, the main concepts, and the vital areas can be found
in [8], [9]. Chip sequence error patterns are used in [10] to
identify the channel and, as a result, the emitting interference.
However, this technique requires edge devices to buffer known
patterns and calculate a pattern recognition classifier. SonIC
[11] samples received RSSI values to extract features for
a decision tree classifier for edge device applications. The
process requires a successful retransmission of an error packet
for comparison and a buffer is required to store the most recent
error packet. SVMs and RSSI samples are used in [12] to
develop an accurate and fast interference detection process,
which consists of four SVMs and a logic decision stage. The
work in this paper differs from the above previous work as
a methodology which can adapt to new channels and new
environments is being developed. The solution focuses entirely
on the effects of the wireless channel on received I/Q samples.
In contrast to previous work, only the designed machine
learning model is required to be on the device and both
malicious and unintentional interference are being addressed.

III. WSN DISCUSSION

Here, the IEEE 802.15.4 based LR-WPAN protocol, Zig-
Bee, is the adopted protocol during simulations. ZigBee is
the de-facto standard for WSNs as almost all available com-
mercial and research sensor nodes are equipped with ZigBee
transceivers [13]. ZigBee’s PHY (Table I) and MAC are based
on the IEEE 802.15.4 protocol, specifically the unlicensed
2.4 GHz ISM RF band. Operating centre frequencies cor-
respond to (1), where the range is 2.405 − 2.4835 GHz,
Fc is the centre frequency and i is the channel number.
Direct sequence spread spectrum (DSSS) splits every byte
into two 4-bit symbols, which are each spread to a predefined
32-bit pseudo-noise (PN) sequence. Offset quadrature-phase
shift keying (O-QPSK) modulation is applied to ensure bit
transmissions for the I and Q components occur at different
time instants, as the components are mutually offset by half a
symbol duration. Transmitted signals are pulse shaped using

the raised cosine or half-sine method, which ideally achieves
zero inter-symbol-interference at the maximum effect points.
The carrier sense multiple access with collision avoidance pro-
tocol accesses the channel and uses a clear channel assessment
before transmission to determine whether a channel is free
or busy. A Tektronix RSA306B real time spectrum analyzer
[14] and its associated digital phosphor technology (DPX)
[15], which performs hardware digital signal processing and
rasterizing of samples into pixel information, enables ZigBee
signal visualization. Fig. 1 displays the structure of multiple
ZigBee signals coexisting in the same geographical region.

TABLE I
IEEE 802.15.4 (ZIGBEE) PHY PARAMETERS

Parameter: 2.4 GHz PHY Value:
Number of Channels 16

Channel Width / Spacing 2 MHz / 5 MHz
Data Rate 250 kb/s

Symbol Rate 62.5 ksymbols/s
Chip Rate 2 Mchips/s

Modulation Scheme O-QPSK
Pulse Shaping Half Sine/Normal Raised Cosine
Byte Spreading DSSS

Maximum Packet Length 133 bytes

Fc = 2405 + 5(i− 11)MHz, for i = 11, 12, ...26 (1)

2.435 2.439 2.443 2.447 2.451 2.455 2.459 2.463 2.467 2.471 2.475
Frequency (GHz)

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

P
ow

er
 (

dB
m

)

ZigBee Signal 
@ 2.440 GHz

ZigBee Signal 
@ 2.455 GHz ZigBee Signal 

@ 2.470 GHz

Fig. 1. DPX visualization of coexisting ZigBee signals on channels 18, 21
and 24 in the 2.4 GHz ISM band

Typically, WSNs consist of multiple low-cost lightweight
devices used to sense the physical world and, generally,
incorporate a radio transceiver, a micro-controller, sensors
and a limited energy source. WSNs use a star, mesh or
peer-to-peer topology and, in each case, are self-organizing,
self-repairing and can exploit clustering techniques, where a
cluster head aggregates and forwards data to a centralized
sink or access point. The ZigBee protocol and devices are
essential for the all-inclusive IoT communication architec-
ture [16], shown in Fig. 2, as the sensing/actuating devices
communicate with other sensing/actuating equipment and the
gateway/coordinator using a LR-WPAN, like ZigBee. An
internet connection is achieved by the sink, and so, for the



envisioned IoT deployment to be successful, WSN links must
be secure and maintain uninterrupted, safe and non-malicious
operation [5]. Additionally, WSN application areas are abun-
dant, leading to a diverse range of deployment scenarios,
environments and use cases. Examples can be classified into
precision agriculture, environmental monitoring, vehicle track-
ing, health care, smart buildings, military and animal tracking
[5]. Therefore, WSNs require security across a wide range of
physical environments, deployment scenarios and structures, in
which privacy and safety are pivotal. This, coupled with the
sensitive data being transmitted and valuable application areas,
incentivizes attackers to maliciously disrupt or compromise
network operation.

Wearables, Sensors, Actuators, ...

Communication Link (A): 

LR-WPAN (ZigBee) / NFC / WiFi / Bluetooth

Communication Link (B): 

Internet Protocol (4G / 5G / Ethernet) / Optical Fibre

Communication Link (C): 

Internet Protocol (4G / 5G / Ethernet) /

 Optical Fibre

User/Security Manager 
/Network Manager

Cloud/Services/ 
Command Center

Gateway/Aggregation/
Coordinator/Sink/ 
IoT Access Point  

Sensing Platform 

Operating Environment /  "Things"
Sensing  

(A)

(B)

(C)

Fig. 2. IoT Communication Model, highlighting the potential use of WSN
protocols as the communication link between sensing devices (“Things”) and
the IoT access point

Security in WSNs can, generally, be described in terms of
four interlinked distinct components; requirements, vulnera-
bilities, attacks and defenses. Example requirements include
confidentiality, which ensures the secrecy of important data
being transmitted in the wireless channel, and authenticity,
which asserts that received packets have not been modified
in transit (data integrity) and originate from known locations
(origin authenticity). However, guaranteeing requirements are
met can be difficult as WSNs have known security vulnera-
bilities [5]. Examples include the open interface of the wire-
less channel, (unavoidably) publicly known WSN protocols
and how nodes are frequently deployed and left unattended
and physically available to potential attackers in hostile or
remote environments, where continued surveillance is difficult
to guarantee. Also, the low processing power, memory and
speed of WSN devices, coupled with a finite energy source,
impedes using conventional security protocols. WSN attack
types are various and can occur across the entire commu-
nication protocol stack. The sensitive data and application
scenario incentivizes attacks, which can vary from specific
denial of service (DoS) attacks, which can corrupt all packets,
to privacy attacks, which can seize sensitive data. However,
techniques exist which are employed to protect important data
and provide resilience against malicious attacks. For example,
cryptography stops intruders from accessing data by simply
listening to the wireless channel and DSSS adds resilience to

interference as transmitted data resembles white noise and only
receivers who know the spreading code can recover encoded
information. Other security techniques exist and, in Sections
IV and V, a detection technique is presented.

IV. EXPERIMENTAL METHOD

Here, designed and executed Matlab simulations describe bit
error locations in ZigBee PHY frames (Fig. 3) under various
jamming power levels to provide motivation for an interfer-
ence detection strategy. The simulations investigated ZigBee
transmissions, particularly node-to-node communications, and
used the Monte Carlo method to obtain each numerical result.
Every simulated transmission includes additive noise, which
satisfies a Gaussian distribution, to support a simplified au-
thentic transmission model. Different forms of interference
are applied, with varying levels of power, to understand the
effects of interference on wireless transmissions. A random
phase offset is added to each interference signal to aid in
resembling real world transceiver conditions. The selected
intrusion types are continuous wave (CW) jamming, matched
signal interference [17], which mimics the protocol in use
(ZigBee), and WiFi (802.11b) coexistence. A CW jammer
forms the baseline interference model as it corresponds to typ-
ical spurious jammers, including constant, random, deceptive
and reactive approaches. The CW method does not need to
know what protocol is in use and simply operates by emitting
spurious RF signals into busy wireless channels. Matched
signal interference operates by monitoring the network and
identifying the operating protocol before injecting protocol
specific interference, which is difficult to detect compared to
conventional jamming techniques [17]. An example is emitting
RF signals with the signal and frame structures as per Table
I and Fig. 3, respectively. WiFi signals, at the three possible
frequency offsets (2, 3 and 7MHz), investigate the problem
of system coexistence and whether it can lead to malicious
interference when misused. Using these attacks, executed
simulations develop a database of transmitted and received
ZigBee samples across a range of JSR values, which are
statistically analyzed to identify differences, if any, between
received error free and erroneous transmissions (packets).

A maximum likelihood decoder (MLD) operates as the re-
ceiver in these simulations. In the MLD, each received 32-chip
PN sequence P is compared with a lookup table of ZigBee’s
predefined sixteen DSSS PN codes (PN1, PN2, ..., PN16).
Here, the received samples are compared to an ideal set of
samples for each PN code. In either case, the comparison
produces a set of results, (k1, k2, ..., k16), indicating the Ham-
ming distances, h, of the received PN sequence and each
sequence in the lookup table. The Hamming distance indicates
the number of chips/samples which are mis-aligned between
the two sequences being compared. Hence, minimizing k
maximizes the correlation and, so, k is chosen as the minimum
value in (2).

arg
k
min h(P, PNk), for k = (1, 2, ..., 16) (2)



Each of the PN codes are designed to have a sharp au-
tocorrelation peak, low cross-correlation values and to be 2-
leveled with an equal number of 1′s and 0′s. This approach
produces sequences resembling white noise, which increases
resistance to both unintentional and intentional interference.
However, during packet transmissions, chips can be corrupted
due to spurious intentional and unintentional interference, co-
existence, fading, path losses or obstacles. As long as the value
of k (chip errors per PN code) is below a certain correlator
error threshold (identified as 10 chip errors in [10]), the
correct symbol will be selected. Next, the question of ”What
constitutes an error?” arises and is answered by a correlation
failure, which is an incorrect symbol having the minimum
Hamming distance. Here, a single bit error corresponds to a
packet error, as this produces a failed correlation calculation.

By applying the described Matlab approaches, two distinct
sets of experiments were performed, namely bit error location
identification and feature analysis of error samples. The aim of
the former procedure was to highlight where bit errors occur in
the ZigBee PHY frame (Fig. 3), especially at lower JSR values.
It was envisaged that this approach would provide sufficient
support for the design of a detection scheme. Both error free
and erroneous received samples were then explored to detect if
any statistical differences (features) exist, which could identify
interference signals. Particularly, erroneous packets at JSR
values of 15 dB and lower were analyzed, as matched signal
interference attains a packet error rate (PER) of approximately
0.18 at 0dB and 1 at 15dB [17]. JSR values above this point
would be readily detectable due to high power levels and
packet loss rates. Hence, both subtle and brute force attacks
can have destructive results.

In practice, it is initially envisaged that a software defined
radio (SDR) setup can be utilized for the collection of trans-
mitted samples, which can be emitted using a ZigBee testbed
as described in [18]. The collection of ZigBee samples can be
achieved using available software programs, like Simulink or
GNU Radio, and hardware, like the LimeSDR Mini or Analog
Pluto SDR. If the feature approach proves to be useful based
on real world data, which will be initially discussed in Section
V, the availability of the received samples on a real WSN
node, for example, TelosB, can be investigated. This is seen
as achievable as the samples should be available in debug
mode, at the very least. In this approach, the computational
and energy costs and overhead of the IF sampling will need to
be examined. However, notably, the simulated process can be
reproduced using available low-cost hardware and software.

Synchronization 
Header  (SHR)

PHY Header 
(PHY)

PHY Service Data 
Unit  (PSDU) 

Preamble
4 Bytes

SFD 
1 Byte

Length
1 Byte

Payload 
0 - 125  Bytes

FCS 
2 Bytes 

Fig. 3. Simplified ZigBee physical layer frame

V. RESULTS

Initially, bit error locations were produced for simulated
ZigBee packet transmissions under specific interference sig-
nals. The transmissions were investigated using ≈ 18, 000 sim-
ulations and three different jamming conditions, as discussed
in Section IV. The results are expanded as per the packet
segments outlined in Fig. 3 and provided in Figures 4, 5 and
6. These figures provide an insight into how bit errors vary in
the ZigBee PHY frame as the jamming power increases. This
reveals the fact that the probability of bit errors occurring in
the packet preambles decreases with jamming power. Thus, the
probability of synchronizations to packets under the presence
of a jammer increases at lower jamming powers. Therefore, an
interference detection approach will need to analyze packets
with bit errors and when no packets are being received, leading
to approaches which can work using received packets and
received channel samples. In this study, clearly, significantly
more errors occur at low JSR values for matched signal
interference compared to the other methods while, above
15dB, high levels of packet corruption are evident in all but
the 7 MHz WiFi interference, which requires a JSR of 22dB
before errors begin to occur. The WiFi results suggest that
at high JSR levels, the protocol can become malicious. In
both the CW and matched signal cases, as the JSR value
decreases, the probability of receiving an error free preamble
increases, which is evident at ≤ 10dB for CW and ≤ −5dB
for matched interference. Overall, the results demonstrate that,
at high levels of jamming, bit errors and, consequently, packet
errors, occur across the frame, which is as expected. However,
as the interference signal becomes more subtle, the probability
of receiving an error free preamble increases and bit errors
are, likely, confined to the payload. Thus, nodes attempt to
process erroneous packets, which eventually fail a frame check
sequence and are rejected. This causes retransmissions and
increased network and/or system latency which, potentially,
has severe consequences for time-critical safety applications.
The results illustrate that the cause of packet loss in the
wireless channel becomes more challenging to identify, as
power levels are as expected (JSR = 0dB). Retransmissions
are also required at high levels of JSR, but, due to the high
jamming power, it is typically easier to identify the presence
of a jammer. Consequently, this error location work provided
motivation to look at methods for identifying the presence
of interference signals across the range of JSR values. For a
distributed edge device investigative approach, it was decided
to focus only on features based on the received I/Q samples
and to neglect all network and packet rate information.

For the feature analysis, the results focused on matched
signal interference, as it produced errors across the largest JSR
range (Fig. 4 - 6) and, according to [17], it can achieve a PER
of ≈ 0.18, even at a JSR of 0dB. Attention was aimed at de-
termining features based on the statistical analysis of received
I/Q samples. As the signals are all mathematically created in
Matlab, each received signal can be equated to the appropriate
transmitted signal to determine the bit errors present, even
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Fig. 5. ZigBee frame bit error locations under matched signal interference
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if the received packet was erroneous. As the probability of
error (Pe) increases with JSR, the number of Monte Carlo
simulations executed rises as the JSR decreases. For the
matched interference method, simulations were executed in
a logarithmic scale from 4,700 at 30dB JSR to 50,000 at -
25dB JSR and for transmissions without interference present,
10, 000 simulations were completed.

At first, the statistical analysis focused on the measured
probability density function (PDF) of the I/Q samples. For er-
ror free packets, a low-variance, unimodal sample distribution
was expected while for erroneous packets a high variance, or
bimodal, distribution was anticipated. Fig. 7 indicates that the
compact distribution becomes a wide bimodal shape as JSR

values increase. Notably, the error free PDF closely resembles
what is seen in the spectrum, Fig. 1, as the zero bin is
slightly smaller than its two nearest neighbors. This trend
under increasing levels of JSR allows features to be extracted
from the distribution by analyzing the area within certain
regions, determining the maximum peak and the number of
non-zero populations. These results are provided in Fig. 8,
where JSR values of 5dB and above can be clearly identified.
The I/Q samples, which are used to compute the PDF, can
also be individually analyzed to produce features as per Fig. 9,
where the variance (and standard deviation, which is provided
as a consistency check), absolute maximum and mean of the
samples, along with the entropy, all contain useful trends
which can identify the presence of an interference signal. The
entropy is described as ”a statistical measure of randomness”
and defined by (3), thus, implying that noise signals have
a higher entropy value, when compared to high powered
dominant signals, and this phenomenon is seen in Fig. 9 (d)
as the JSR values increase. Essentially, the extracted features
should, theoretically, allow an edge node to determine why
erroneous packets are being received by analyzing received
samples.

S = −
∑
i

Pi log2 Pi (3)
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Separately, Table II evaluates the same features for error free
packets using 10, 000 individual iterations, where the average,
maximum and minimum values are provided to present value
fluctuation. Table II demonstrates that the error free trans-
missions are likely to contain different values compared to
erroneous samples. For example, the minimum area of the
centre of the PDF for an error free transmission is 0.9065,
while the highest error value in Fig. 8 is 0.8445. Additionally,
the maximum variance in the error free I/Q samples is 2.4407,
while the minimum value in Fig. 9 is 3.677. Hence, the
simulated results have extracted features, which can be used
to analyze received I/Q samples and, potentially, determine
the presence of intentional interference. The initial results
implied a threshold of 5dB JSR, but by exploiting a machine
learning approach this threshold could be lowered based on
the minimum and maximum values identified in Table II and
the corresponding values in Figures 8 and 9.

TABLE II
ERROR FREE FEATURES BASED ON 10,000 PACKETS

Feature: Error Free Packet
Average Value Max. Value: Min. Value

Area Centre 0.9122 0.9189 0.9065
Area Side 5.0044 e-04 9.3700 e-04 1.56 e-04

PDF Maximum 0.2874 0.2964 0.2786
Non Zero Entries 7 8 7

I/Q Samples - Variance 2.3925 2.4407 2.3464
I/Q Samples - 1.5468 1.5623 1.5318Standard Deviation

I/Q Samples - Abs. Max. 3.2069 4.0274 2.888
I/Q Samples Mean 0.005 0.0196 7.4 e-05

I/Q Samples Entropy 3.6486 3.7412 3.5510

To initially validate the usefulness of these features and
to provide an initial indication of how effective they are in
detecting interference, a SVM was formulated, evaluated and
tested. A SVM is a supervised binary classification algorithm
and was chosen as the introductory classification approach.
Generally, the number of support vectors is much smaller
than the total number of elements in the training dataset,
hence, training a SVM can be resource intensive, but the
actual classification algorithm can be lightweight. This is an
important concept for the ability to implement this type of
classification on an edge device. The data used to formulate the

TABLE III
SVM RESULTS (VALIDATION DATA): MULTIPLE DETECTION

THRESHOLDS AND RADIAL BASIS FUNCTION KERNEL

JSR Detection Selection 10-Fold Cross Test Data
Threshold: Reason Validation Error Error

≥ 5 dB
Identified Initial

7.1099% 4.5205%Threshold from
Feature Trends

≥ 0 dB Expected Spectral 3.9800% 2.6818%Power

≥ -5 dB
Below -5dB: Likely

0.9736% 0.8390%Error-Free SHR
(Preamble and SFD)

≥ -10 dB Lowest Training 0.0016% 0.0020%JSR Point

TABLE IV
SVM RESULTS (TRAINING DATA): MULTIPLE DETECTION THRESHOLDS

AND RADIAL BASIS FUNCTION KERNEL

JSR Detection Selection 10-Fold Cross Test Data
Threshold: Reason Validation Error Error

≥ 5 dB
Identified Initial

6.9619% 4.4508%Threshold from
Feature Trends

≥ 0 dB Expected Spectral 3.9628% 2.6515%Power

≥ -5 dB
Below -5dB: Likely

0.9741% 0.8380%Error-Free SHR
(Preamble and SFD)

≥ -10 dB Lowest Training 2.35e-04% 0.0%JSR Point

features were divided into separate training (70%), validation
(20%) and testing (10%) datasets. For matched interference
transmissions, data were split for erroneous results at each
individual JSR value and simulation trials were increased
logarithmically from 10,000 at 40dB to 60,000 iterations at -
15dB, while error free data contained 220,000 trials. Training
and validation were both implemented using the data from
−10dB → 15dB, which provided extra points for testing,
and Matlab’s ”fitcsvm” function. Test points included the full
JSR range from 40dB to -15dB and no test data was used
in training. Initially, the validation data and built-in Matlab
functions were used to determine the appropriate SVM kernel
to use. The decision was based on the 10-fold cross-validation
error and the model training time. This approach encompassed
the linear, Gaussian, radial basis function (RBF) and third-
order polynomial kernels. The RBF kernel was determined
to be the optimal function and, so, was utilized in the SVM
analysis. Results for both the cross-validation and testing data
errors are supplied in Tables III and IV, which correspond to
the validation and training data, respectively. Each table spec-
ifies classification errors for different JSR thresholds, which
describe possible detection scenarios. For each dataset, the
test data error was determined by using each model to predict
the result for each data point in the testing dataset, where each
prediction was compared with the corresponding annotation to
determine the model generalization error. However, the results
in Tables III and IV, which exhibit low levels of error, are
artificially good as the data used to develop the SVM models
were simulated and, so, could not model live wireless signals



exactly. Therefore, wireless channel variations, for example,
fading levels, obstacles, path losses, spurious interference,
etc., are inadequately modeled with this approach. Therefore,
the designed models and methods need to be adapted for
wirelessly received I/Q samples. However, the objective of this
study was to provide an initial validation of the usefulness of
the extracted features and the varying thresholds show that
enough differences exist between the error free and erroneous
samples, even before the suggested 5dB threshold in figures
8 and 9. Notably, as the threshold reduces, so too does
the error, which suggests that features perform better when
distinguishing between error free and erroneous samples only.
These promising simulation results, which suggest that this
framework is a feasible solution, bode well for a hardware
approach that supplies real over the air live data signals.

VI. CONCLUSION

This paper contributed to interference detection in WSNs
by focusing on both subtle, where the JSR values are caus-
ing PERs of 20% and below, and crude jamming attacks.
Matlab, ZigBee and matched signal interference, which has
an associated high bit error rate at low JSR levels, were
utilized. Bit error location analysis motivated a detection
approach for subtle and crude interference attacks. By focusing
on received I/Q samples available on a single edge node,
features were extracted from the PDF and individual sam-
ples. Enough differentiation between error free and erroneous
samples existed to warrant an evaluation using a classifier.
A SVM was designed and tested using the simulated results
and was able to classify unknown signals. The extracted
features and SVM demonstrated that this detection method
can be suitable for subtle interference, when signals match
expected spectrum usage and jamming situations. Notably,
the approach neglects additional network information, as the
analysis is solely based on received samples. However, this
work requires expansion and needs to include real world
wireless signals by utilizing the ZigBee testbeds outlined in
[18] and software defined radios, for example, the Analog
Pluto, which has Matlab/Simulink toolboxes and open source
python and Linux libraries (“libiio”). The transition to live
signal analysis is a direct result of the favorable SVM feature
evaluation and feasibility test. Essentially, this paper developed
an initial WSN framework for distributed external interference
detection focused on received I/Q samples. The framework
designed in this paper can now be adapted for live wireless
signals and environments to attain genuine wireless results
and characterize the use of the extracted features on received
wireless I/Q samples.
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