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Graphical Abstract 

 

Abstract 

Despite countless advances in recent decades across various in vitro, in vivo and in silico tools, 

anticipation of whether a drug will show a human food effect (FE) remains challenging. One means to 

predict potential FE involves probing any dependence between FE and drug properties. Accordingly, 

this study explored the potential for two machine learning (ML) algorithms to predict likely FE. Using a 

collated database of drugs licensed from 2016-2020, drugs were classified into three groups; positive, 

                  



negative or no FE. Greater than 250 drug properties were predicted for each drug which were used to 

train predictive models using Support Vector Machine (SVM) and Artificial Neural Network (ANN) 

algorithms. When compared, ANN outperformed SVM for FE classification upon training (82%, 72%) 

and testing (72%, 69%). Both models demonstrated higher FE prediction accuracy than the 

Biopharmaceutics Classification System (BCS) (46%). This exploratory work provided new insights 

into the connection between FE and drug properties as the Octanol Water Partition Coefficient 

(S+logP), Number of Hydrogen Bond Donors (HBD), Topological Polar Surface Area (T_PSA) and 

Dose (mg) were all significant for prediction. Overall, this study demonstrated the utility of ML to 

facilitate early anticipation of likely FE in pre-clinical development using four well-known drug 

properties.  
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Introduction 

It is widely recognised that concomitant administration of oral dosage forms with food can alter drug 

pharmacokinetic profiles (1-3). As oral dosage forms are both widely and often chronically 

administered, understanding of the biological processes triggered by food consumption and its 

complex and drug-specific impact on oral bioavailability. The numerous underlying mechanisms by 

which food exerts this effect on drug absorption include physiological changes in pH, gastric emptying 

times, fluid volumes, bile salt concentrations and intestinal enzyme activity, in addition to specific food 

effects including binding, metabolism or interference with transporters (1, 3, 4). The clinical 

consequences of these changes are assessed through comparison of pharmacokinetic parameters 

describing the rate and extent of bioavailability i.e. peak plasma concentration (Cmax), time to peak 

plasma concentration (Tmax) and area under the curve (AUC) in both the fed and fasted state (5). A 

food effect (FE) is defined as when the 90% confidence intervals for the ratio of population geometric 

means, based on log transformed data, for either AUC0→∞ or Cmax fall outside the 80–125% 

bioequivalence limits relative to the same formulation administered in the fasted stated (5). These FE 

studies are subject to stringent regulatory requirements (5, 6), and the consequences of food-

mediated effects on bioavailability have been widely reported (3, 7-12).  

Previous research that 40% of drugs licensed between 2010 and 2017 displayed significant FE (1) 

suggests that within the current drug development paradigm, anticipation of the impact of food on 

drug absorption is pertinent. Moreover, in addition to guiding the design of improved formulations that 

are food effect resistant, this information is fundamental to optimise exposure of medicines with 

narrow therapeutic ranges in a clinical setting, to meet strict fed state bioequivalence study 

requirements of international regulatory authorities and reduce costs associated with product failures 

due to variability in exposure (1, 3, 7, 13). Consequently, the ability to predict and anticipate FE on 

oral drug delivery is of immense value to drug development. To date, extensive mechanistic tools 

spanning a wide range in vitro, in vivo and in silico methods to predict FE have been described in 

literature (14-18). Typically, drug performance under fasted and fed conditions are anticipated in vitro 

with dissolution tests in biorelevant media mimicking the human gastrointestinal environment (19-21) 

while in vivo predictions using various animal models (14, 16, 22), including canine and porcine 

examples, have also been employed, along with drug solubility testing in aspirated intestinal fluids 

(15, 23). However, despite the varying levels of success achieved by these methods, the multifaceted 

factors associated with drug, meal type and physiological conditions mean that, as of yet, no 

universally comprehensive approach for FE prediction has been found and that all current models 

exhibit limitations. 

Owing to the limitations of in vitro methods, and the challenges in performing in vivo pharmacokinetic 

studies, in silico methods have emerged as the “go-to” approaches for predictive biopharmaceutics 

(24). Drug classification tools comprising rules of thumb based on drug biopharmaceutical properties, 

                  



and both the Biopharmaceutics and Biopharmaceutical Drug Disposition Classification Systems (BCS 

and BDDCS), provide simple guides to anticipate FE based upon related drug physicochemical 

properties (14, 25, 26). While such approaches provide a readily accessible prediction of likely FE, the 

relatively low accuracy and precision of these predictions has necessitated the development of 

mechanistic and data driven in silico models of FE (9).  Physiologically based pharmacokinetic 

(PBPK) models lie at the centre of this diversifying modelling and simulation (M&S) toolbox, and have 

achieved increasingly accurate predictions of FE (27-30). Using mathematical equations to model 

physiological processes and anatomical parameters, these compartment-based absorption models 

mechanistically simulate a drugs plasma concentration-time profile in the fasted and fed states and 

can be applied in both pre-clinical studies with further potential application as decision-making aids for 

regulatory agencies (31). While PBPK models require comprehensive data about the physiological, 

biochemical, and physicochemical processes that occur, data-driven modelling tools which establish 

statistical relationships between FE and drug molecular properties, signify complementary additions to 

this ever-expanding M&S toolbox without the need for such. To date several attempts, spanning the 

last three decades, have been made to probe dependence between FE and drug physicochemical or 

molecular properties. These include quantitative linear correlations of AUC with individual drug 

properties (32) and a tool for computational biopharmaceutical profiling of ligands, based on predicted 

increases in fed state simulated intestinal fluid (FeSSIF) solubility to signal a positive FE (17). Finally, 

qualitative computational models predicting if a drug displays a positive, negative, or no FE according 

to the AUCfed/AUCfasted ratio, have also been published, using logistic regression (33) and more 

recently decision tree analysis (34).  

Consequently, while modelling efforts to correlate the effect of food on AUC with drug properties exist, 

the application of multiple machine learning (ML) classification algorithms to predict FE remains 

unexplored. Support Vector Machine (SVM) classification and Artificial Neural Network (ANN) 

algorithms have been gaining interest across various facets of drug design and development, 

supporting streamlined and decision-based pre-clinical testing (35-41). SVM is a pattern recognition 

method widely used in data mining which works by finding an optimal separation line (hyperplane) 

which accurately separates and maximises the margins between two or more classes. Separation of 

non-linear data is also achievable through kernel functions which map the original data to a higher-

dimensional “feature space” facilitating linear separation, as previously described (42, 43). While as a 

ML algorithm, ANN detects complex non-linear relationships between datasets, by mimicking basic 

human biological information processing methods. Adopting a general structure consisting of an input 

layer, hidden layer(s), output layer and using activation functions and connection weights, nodes 

(artificial neurons) from the input layer send data to the hidden and output layers through weighted 

connections (“synapses”) to predict Y, as described in detail previously (44, 45). Using these ML 

algorithms, the broad objective of this work sought to develop a in silico model which could identify 

important drug properties for accurate FE prediction. Here, drugs were classified as displaying a 

positive, negative or no FE according to change in the extent of drug absorption (AUC) in the fed 

versus fasted states. Using a collated database of newly licensed drugs from 2016-2020, both SVM 

and ANN were employed to explore any relationship between the three FE classes and drug 

                  



properties. The study design facilitated investigation into the prevalence of FE among drugs licensed 

in the last 5 years, while also assessing if either ML algorithm or the BCS classification tool provided 

the highest prediction accuracy for this dataset. Accordingly, this study provides the first evidence of 

the capacity of ANN and SVM to facilitate early anticipation of likely FE.  

Methods 

Database collation 
The drug database used in this study was obtained from drug products licensed in the European 

Medicines Agency (EMA) and Food and Drug Authority (FDA) between January 2016 and December 

2020. The database of original new drug applications (NDA’s) on the FDA website was searched by 

month from January 2016 to September 2020 along with the European Public Assessment Report 

(EPAR) of the EMA licensed products each year from 2016-2020. Exclusion criteria were any non-oral 

product, any biological product, any modified release product, any product where no FE information 

was available, any generic of a previously authorised product or any authorisation submission 

referring purely to changes of product indication. The products eligible for analysis were new 

molecular entities (NME), new combination products and reformulations of products which have been 

previously marketed. General information recorded included year of licensing, generic name, 

commercial name and any label restriction of the drug administration regarding food. Information 

regarding FE on absorption was obtained from the product EPAR or FDA label for each product 

where the ratios of AUCfed/AUCfasted were recorded. In cases where the documentation stated a 

product showed no change or a non-significant change in AUCfed/AUCfasted, with no values or ratios 

provided, a value of 1 was assigned. As FE information was obtained from regulatory submissions 

only, variables related to meal composition that might affect the interpretation of results were 

minimised.  

 

Food Effect Classification  
In this study drugs were predicted to belong to one of 3 FE classes designated according to the 

change in the extent of drug absorption in the fed versus fasted state (AUCfed/AUCfasted) alone, with 

“positive” referring to significantly increased and “negative” referring to significantly decreased extent 

of drug absorption in the fed state. This lone classification parameter was chosen as information 

regarding Cmax was more frequently omitted from EPARs and FDA drug labels. Previous comparative 

studies also used this classification criterion, and the toxicity, efficacy and clinical significance of 

numerous drugs including those which are chronically dosed, correlates better with total exposure 

(AUC) than Cmax (1, 32). The FE ratio (AUCfed/AUCfasted) was obtained for all drugs in the final dataset 

(141 drugs). A positive or negative FE was considered significant if the ratio fell outside 80–125% in 

reference to the currently accepted 90% CI for the ratio of population geometric means between fed 

and fasted treatments for concluding a lack of food-effect (5). Drugs with AUCfed/fasted >1.25 were 

classified with a “positive FE”, AUCfed/fasted between 0.8-1.25 were deemed to have “no FE” and 

                  



AUCfed/fasted <0.8 a “negative FE”. The final database of 141 drug compounds consisted of 44 Positive 

FE, 80 No FE and 17 Negative FE drugs.  

 

Compilation of Physicochemical Descriptors 
More than 250 descriptors for each drug were obtained from ADMET Predictor 9.5 (Simulations Plus, 

USA). Molecular structures were acquired as smiles from PubChem and used as inputs for the 

ADMET Predictor software (Version 9.5, Simulations Plus, California, USA) to calculate the molecular 

descriptors. A conscious effort was made to ensure repetition of drug properties found to be 

significantly correlated with food effect in previously published reports, to facilitate comparisons (32-

34). The drug dosage strength used in the FE bioequivalence study for each drug was obtained from 

the EPAR or FDA product label respectively. A maximum absorbable dose (MAD) was calculated 

using a predicted fasted state simulated intestinal fluid (FaSSIF) solubility, again using ADMET 

Predictor, using the equation described previously (46). The Dose Solubility ratio was calculated using 

the dose as described above divided by an aqueous drug solubility predicted from ADMET Predictor.  

 

Statistical analysis 
Prior to employment of ML, to analyse any linear univariate correlations between FE classification and 

selected drug properties, a stepwise statistical analysis approach, as described previously (47), was 

adopted using SPSS (IBM Corporation, US) on the full drug database. It was hoped that these 

preliminary results could inform which properties may be significant for ML prediction. In brief, 

frequency distributions of the variables were graphed for each FE classification (positive, negative, no 

FE) and normality was checked visually with Q-Q and P-P plots. Ratios of samples sizes between the 

3 groups were obtained. Variances of the datasets were analysed and compared to Levene’s Test for 

Equality of Variances. A p-value <0.05 indicated a violation of equal variance. The null hypotheses 

were that no statistical differences were seen in a drug property between drug classes. Three 

separate comparisons were made i.e. Negative versus No FE, No FE versus Positive, Positive versus 

Negative. Comparison between groups were made using the t-test, Welch’s test or Bootstrap 

independent samples test (5000 samples.) A p-value of 0.05 was used as the significance level for all 

tests. Boxplots were produced to facilitate visual interpretation of the data again using SPSS (IBM 

Corporation, US) and descriptive statistics including Median, Mean, Standard Deviation of Mean, Q1, 

Q3, Minimum, Maximum, Variance were obtained for each drug property for the 3 groups. The 

properties selected were S+logP (Octanol Water Partition Coefficient), HBD (Number of Hydrogen 

Bond Donors), HBA (Number of Hydrogen Bond Acceptors), T_PSA (Topological Polar Surface 

Area), Dose (mg), S+logD (Partition Coefficient pH 7.4), S+Sw (Aqueous Solubility), MAD (Maximum 

Absorbable Dose), D/S (Dose/Solubility Ratio), MWt (Molecular Weight) and RB (Rotatable Bonds). 

 

                  



BCS Classification 
The BCS class of the drugs studied were obtained where available from the EPAR, FDA label or from 

literature. Fleisher et al. (4) previously described the general trend of FE on drug absorption (AUC) 

based on BCS classification where, BCS Class I compounds are likely to have no FE; BCS Class II 

compounds are likely to have a positive effect; BCS Class III compounds are likely to exhibit a 

negative effect while there is insufficient evidence for any clear identifiable trends for BCS Class IV 

compounds. Further separation of drugs within BCS classes as previously recognised (15), was not 

conducted to facilitate comparisons to a previously published analysis (33). Accordingly, the database 

was classified into these 3 FE categories, while BCS class 4 drugs were disregarded for this portion 

of the analysis.  

 

Machine Learning/Model Development 
FE classifications were predicted using two ML algorithms, ANN and SVM. To facilitate direct 

comparison of the predictive power of both algorithms the same training:test split was used. Principal 

Component Analysis (PCA) using the Unscrambler XI (Camo Analytics, US) was applied for a 

randomised assignment of training:test data. Training set criteria was that it covered the chemical 

space of the test set and ensured an almost equal representation of positive, negative and no FE 

drugs in the training set to avoid any potential for classification bias. Such imbalance in datasets has 

proved to be a widely reported obstacle to classification problems in ML in the past (42). In 

accordance with previous reports of classification prediction using ML algorithms (41, 48), initial 

variable reduction was conducted. Either a one-way ANOVA analysis with Tukey Multiple 

comparisons test (parametric) or Kruskal-Wallis analysis with Dunn’s multiple comparison test (non-

parametric) were applied to the training data. Variables with a p-value less than 0.05 for at least one 

class pair in the respective post tests were highlighted for further investigation. A correlation analysis 

of these identified variables was carried out with highly correlated variables clustered into the same 

group and the most significant variable of the group chosen for inclusion in the model development. 

Final models as well as BCS predictions were compared in terms of various accuracy statistics 

including, overall accuracy of prediction, as well as sensitivity, precision, specificity and Matthews 

Correlation Coefficient (MCC) for each FE class, as previously defined (49), where TP, FP, TN and 

FN refer to true positive, false positive, true negative and false negative results respectively. MCC 

was previously suggested as a reliable statistical metric for ML performance quality evaluation (50). A 

high MCC score (close to 1) is only achieved if the model obtained good results in all four confusion 

matrix metrics (TP, FP, TN, FN).  
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Support Vector Machine Classification 
A SVM algorithm was used to build a classification prediction model using Unscrambler XI (Camo 

Analytics). Resulting variables from the initial variable reduction protocol were mean centred, de-

identified and standardized through scaling by standard deviation. Variables were added one-by-one 

to assess which combinations produced the highest accuracy in both the training and test sets. C-

SVC was used, where as part of the optimisation procedure the optimum values of key parameters of 

the regularization parameter C and gamma were sought from a grid search, performed across 10 

orders of magnitude in logarithmic scale. In this grid search these key parameters were varied 

systematically to monitor which combination provided the highest classification accuracy in training 

and cross validation. This grid search was repeated for each variable combination using various 

kernel types (linear, polynomial, radial basis function and sigmoid) until the combination of kernel, C, 

gamma and input variables resulting in the best classification performance was obtained. The 

variables with the highest contribution to SVM classification were interpreted from the loadings plot of 

the PCA analysis which mapped the multidimensional data into a two-dimensional space. 

 

Artificial Neural Networks 
Multilayer Perception Artificial Neural Networks (MLP-ANN) were produced using SPSS Statistics 

(Version 26, IBM Corporation, US). The output layer consisted of three responses/categories: 

positive, negative or no FE. After initial variable reduction, as described above, the remaining 

significant variables were rescaled through standardisation where values were converted to their z-

scores. Hyperbolic tangent was chosen as the activation function for the hidden layer, while an 

identity output function was used as the output layer activation function (51). Supervised learning 

using the Scaled Conjugate Gradient algorithm was chosen (52). Batch training was selected. 

Topologies with only one hidden layer were considered. The optimum number of neurons in the 

hidden layer was identified following a systematic trial-and-error approach were the number of 

neurons in the hidden layer were manually altered between 2 and 50, with runs being performed in 

triplicate. The optimal network size was chosen from the solution which resulted in the highest 

prediction accuracy in the training and test sets. All combinations of the significant variables were 

tested to ascertain which combination produced the highest prediction accuracy. This procedure was 

repeated until no improvement in model performance was observed. The relative contributions of 

each variable in the final network were elucidated from the Normalised Importance Chart. 

                  



 

                  



Results 

Analysis of Trends in Physicochemical Descriptors between Food Effect Classifications 
 

A selection of well-known molecular and physicochemical properties of drugs licensed in the last five 

years were statistically compared with respect to the three FE classes. It was anticipated that as a 

result of this preliminary analysis of the entire dataset, any significant differences in properties 

between classes could inform which properties may be significant for subsequent ML prediction. 

Tabular results of the statistical analysis are shown in Supplementary Materials. A visual 

representation of properties which demonstrated significant differences is illustrated in Figure 1.  

Upon statistical analysis, the properties of S+logP, HBD, T_PSA, Dose, S+Sw, S+logD, MWt, D/S and 

MAD were all significantly different for at least one pairing i.e. negative versus positive, negative 

versus no FE or positive versus no FE. Of these, 6 properties, namely S+logP, HBD, Dose, S+Sw, 

D/S and S+logD were found to be significantly different between drugs classified as having either a 

positive or negative FE. In particular, the mean S+logP value was observed to be almost 2.5 times 

greater for positive FE drugs. Conversely, it was observed that drugs with a positive FE could be 

differentiated from drugs which displayed no FE in terms of the 8 properties of S+logP, T_PSA, Dose, 

S+Sw, S+logD, MWt, D/S and MAD. Where the median dosage strength for positive FE drugs was 

four times higher than that of drugs with no FE (200mg vs. 50mg). Finally, drugs classified as either 

displaying a negative or no FE appeared more difficult to differentiate as only three properties were 

found to be statistically different for this pairwise comparison, namely S+logP, HBD and T_PSA, 

where the median number of HBD for negative FE drugs was double that of no FE (4 vs 2). Overall, it 

was observed that only one property, S+logP, was found to be significantly different between the all 

three classification groups (Figure 1). Furthermore, the properties of HBA, RB, were not found to be 

significantly different between any of the three pairwise comparisons. 

 

Food Effect Prediction using BCS Classification  
The dataset collated in this study consisted of 61/141 (43%) drugs displaying either a significant 

positive or negative FE. Previous reports indicate that BCS classifications (BCS Class I, II, III), using 

dose:solubility ratio and extent of absorption, can aid identification of likely FE, and such an approach 

was investigated to facilitate comparison of this simple classification rule of thumb versus data-driven 

ML techniques (4). In this study, using classifications based on the BCS, a poor overall accuracy of 

prediction (46%) was obtained. While the sensitivity of the method was acceptable for positive (87%) 

and negative (69%) FE drugs, relating to lower numbers of false negative classifications, the same 

could not be said for the no FE class where only 22% of drugs found to display no FE were BCS class 

1 (Figure 2). While in terms of precision i.e. positive prediction rate, using the BCS tool, poor results 

were seen for positive (41%) and negative FE (35%) drugs with a poor rate of specificity also seen for 

                  



the positive FE group (49%). Finally, in terms of MCC, scores close to zero of 0.3 (positive), 0.2 

(negative) and 0.2 (no FE) respectively were calculated (Figure 2). Therefore, these results suggest 

that use of the BCS tool to predict FE classification results in high relative amounts of either false 

positive or false negative predictions.   

 

Applying ANN and SVM to Predict Food Effect Classification.  
Two ML algorithms, ANN and SVM were employed to qualitatively predict if a drug displayed positive, 

negative or no FE. Using the SVM algorithm, the optimum model required 6 drug properties for 

prediction, namely S+logP, HBD, T_PSA, dose, logarithm of the air-water partition coefficient (Henry's 

Law Constant at 25°C) (logHLC) and population average number of protons available for hydrogen 

bonding divided by the number of non-hydrogen atoms (F_HBP). Using the radial basis function 

(RBF) kernel which outperformed the other kernel functions tested, results demonstrated that the 

SVM model could correctly predict FE classification of the training and set sets with 72% and 69% 

overall accuracy respectively (Figure 3). No FE drugs were predicted with the highest sensitivity upon 

both training (86%) and testing (71%) (Supplementary Materials), demonstrating better or 

comparative performance to ANN in these cases. Conversely, it was observed that the SVM algorithm 

was less successful in differentiating drugs with a negative FE compared to the ANN model described 

below (59%). In terms of precision, positive prediction rates of 79%, 91% and 60% were observed for 

the positive, negative and no FE groups (Figure 3). The SVM model showed the highest specificity in 

negative FE prediction (98%) where the lowest specificity was calculated for no FE drugs (69%). 

Intermediate MCC scores of 0.6, 0.7 and 0.5 were observed for the positive, negative and no FE 

classes respectively. Upon interpretation of the PCA correlations loading plot, HBD was the most 

influential property for classification prediction using this SVM-based model.  

ANN model development resulted in an optimum three-layer feed forward network denoted MLP 4-13-

3 (Figure 4). This network consisted of a single input layer with four descriptors, octanol water 

partition coefficient (S+logP), number of hydrogen bond donors (HBD), Topological Polar Surface 

Area (T_PSA) and Dose (mg), a single hidden layer with 13 nodes and an output layer with three 

output variables representing the 3 possible FE classifications (positive, negative, no FE). This 

network achieved high overall prediction accuracy in both the training (82%) and test sets (72%) 

(Figure 3). In terms of the individual classes, in contrast to the SVM model, drugs displaying positive 

FE could be distinguished the easiest displaying the highest sensitivity rates in both the training (91%) 

and test sets (73%), while the lowest sensitivity was seen for the no FE group (76% training, 71% 

test). For the positive, negative and no FE groups respectively, the precision of the predictions were 

83%, 93% and 73%, specificity was 90%, 98% and 85% and higher MCC scores of 0.8, 0.8 and 0.6 

closer to 1 were obtained (Figure 3). From the normalised importance chart, the most important 

property for prediction was S+logP, followed by T_PSA, HBD and Dose. However, all properties 

displayed over 67% normalised importance to prediction.  

                  



Overall, relatively similar overall prediction accuracy was achieved using both ML algorithms, as ANN 

marginally outperformed SVM. The proposed ANN network demonstrated equivalent or higher 

sensitivity, precision and specificity statistics for all but one metric for the three FE classes. In terms 

MCC, which have been reported as a more reliable overall performance evaluator, comparatively 

higher scores were observed for the ANN model. Resultantly, considering these superior and more 

consistent classification results along with the requirement for less input descriptors, it was concluded 

that the ANN algorithm produced the more robust model for this dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  



 

 

Discussion 

The significant effects of concomitant food intake on the pharmacokinetics of many drugs highlights 

the importance of FE predictions The capability to predict FE early in the drug development process 

can  potentially expedite progression of drug products through pipelines, and streamline the 

regulatory approval process through identifying where clinical FE studies may or may not be required. 

As a result, the earliest possible elucidation of important drug properties which indicate a likely FE is 

vital as it was seen in this study that 43% of drugs licensed in the last 5 years reported either a 

significant positive or negative FE. While various efforts, dating as far back as 1996 (53), have been 

made to correlate FE with drug properties, the purpose of this study was to investigate if modern ML 

capabilities could predict the FE classification of drugs. As the dataset employed embodied drugs 

brought to market in the last 5 years, which are largely diverse in terms of their structural, 

physiochemical and pharmacokinetic properties, it was analysed if these ML algorithms could yield 

predictive tools relevant for the contemporary drug development landscape.  

Our study demonstrated the capability of ML algorithms to predict FE classification based on 

physicochemical drug descriptors. Upon comparison of the two ML algorithms, results suggested that 

while both approaches demonstrated capacity for prediction, ANN outperformed SVM. The optimum 

ANN, containing 1 hidden layer of 13 nodes and using 4 input properties (S+logP, T_ PSA, HBD, 

Dose), yielded strong overall accuracy in classification for both training (82%) and test sets (72%). 

Comparatively, the SVM model which employed 6 input properties (S+logP, T_PSA, HBD, Dose, 

F_HBP, logHLC) for prediction, did also demonstrate relatively good accuracy upon training (72%) 

and testing (69%). However, in terms of the performance metrics analysed i.e. precision, sensitivity, 

specificity and MCC, the ANN model proved either superior or equivalent to SVM in 11/12 cases, 

including MCC scores closer to 1 for all three classes. The exact reason for the improvement in 

performance metrics and requirement for less inputs for ANN, while difficult to pinpoint, may be 

attributable to the varying mathematical approaches used by both methods to classify this non-linearly 

separable dataset and map the data to higher dimensional spaces, i.e. kernel tricks (SVM) and non-

linear activation functions (ANN) (44, 49, 54, 55). While the comparative accuracy of SVM versus 

ANN modelling is dependent on the specific dataset involved, the easily interpretable, readily 

obtainable, and widely recognisable nature of the four properties used in the ANN model to 

formulation scientists expands its applicability in a preclinical setting, as at this time only limited 

resources and preliminary information are available regarding a model compound. Accordingly, this 

study supports the application of ML algorithms, in particular ANN, to provide accessible tools for FE 

prediction of newly licensed drugs.  

                  



Our models identified key physicochemical and molecular properties which contribute to the 

classification of newly licensed drugs according to the likely effect of food on extent of drug 

absorption. While the ANN model found four properties of S+logP, Dose, HBD and T_PSA to be 

noteworthy, using SVM the properties of logHLC and F_HBP were also required. The inclusion of 

S+logP as the most important property for ANN prediction matches observations from our preliminary 

statistical analysis. There S+logP, a widely used drug parameter used in PBPK modelling (56), was 

the only property significantly different between all three pairwise comparisons (Figure 1). While 

another type of partition coefficient, logHLC was also significant for SVM modelling, S+logP or 

increasing drug lipophilicity in particular has previously been linked with increased susceptibility to 

positive FE (17, 32, 57), through the increased dissolution and solubilisation effects of food for 

lipophilic drugs. This is a partition property, while a hypothesis for its significance may relate to 

ingestion of fatty foods resulting in greater partitioning of lipophilic drugs between the digestion 

phases which could be related to the kinetics of partition between octanol and water. Using a cohort 

of pre-2005 drugs, Singh et al. found a significant positive correlation between AUC ratio and logP, 

where the positive effect of food was more pronounced for lipophilic drugs (32). In agreement, in this 

study, we observed that 41% of drugs with a positive FE had S+logP values >4, with 84% >2. Gu et 

al. and Omachi et al. have also successfully utilised logP or the closely related logD as a critical 

parameter to predict FE on AUC using both logistic regression and decision tree analysis (33, 34). 

Nevertheless, while the significance of S+logP in our model suggests the importance of a lipophilicity 

indicator to predict FE on AUC, caution has previously been advised in terms of using this blanket 

generalisation of likely positive FE for all PWSD as exceptions exist (32). In addition to its importance 

as a partition property, the requirement for S+logP may also reflect its significance to predict other 

biopharmaceutical properties such as membrane permeability, as it is possible that some dietary 

foods may affect permeability, however, it is unlikely that this would be unique to certain drugs. 

Lipophilicity has previously been correlated with permeability measurements for compounds which 

are passively transported (58-62).  

In this study S+logP alone did not prove sufficient for accurate prediction of FE, as other properties 

including HBD and T_PSA were found in the final models. While these were not previously significant 

parameters for FE classification using logistic regression (33), using this contemporary cohort of 

drugs ML identified their predictive abilities. Both parameters, have been formerly associated with 

membrane permeability (59), as poor permeation is suggested to be likely with drugs of PSA >140Å 

(63, 64), where T_PSA is the commonly used PSA descriptor (17), and an excessive number of HBD 

groups impairs permeability across a membrane bilayer (65-67), as specified by a cut-off of 5 in 

Lipinski’s rule of 5 developability criteria (59). Both parameters were used previously along with logP, 

to predict human jejunal permeability (Peff) using partial least squares regression (60). It could be 

suggested that the role of both T_PSA and HBD in the ML models was to aid identification of drugs 

with negative FE as HBD and T_PSA demonstrated the highest mean values for the negative FE 

class upon preliminarily statistical analysis (Figure 1). This finding correlates well to the Fleisher et al. 

summary of FE prediction based on BCS class where Class 3 drugs, of poor permeability and good 

                  



solubility, are likely to exhibit negative FE (4). Such negative food effects were previously associated 

with highly hydrophilic drugs displaying a narrow window of absorption (18, 33).  

Dose was also a significant parameter in classify drugs by food effects on AUC. Upon early statistical 

analysis, it was observed that over 18% of drugs displaying a positive FE used a dose >500 mg in 

their respective pharmacokinetic studies, compared to 0% and 6.25% of negative and no FE drugs 

respectively, with 59% of this positive class using a dose >200 mg. While the exact reason for this 

substantial difference in dosage strength between classes is unknown, previously a logistic regression 

model found dose number and MAD to be significant for FE classification (33). However, when tested 

neither were found to be significant in our ML models. In addition, the Dose/Solubility ratio of a drug 

was previously significantly correlated with AUC however, in our analysis neither this ratio nor S+Sw, 

despite displaying significant differences between classes in our preliminary statistics, were important 

for ML prediction. It could be hypothesised that this dose parameter aided the prediction of positive 

FE drugs due to its ability to differentiate positive FE drugs from both negative and no FE classes in 

our initial statistical analysis (Figure 1). Overall, the properties most significant for FE classification 

demonstrate the importance of both solubility and permeability for FE prediction. These properties 

reflect widely known drug-likeness filters, drug classification systems and properties used in previous 

models for FE prediction. It is likely that any differences in significant properties compared with 

previous publications reflect the different datasets of drugs used to build the respective models, as 

this study reflects the most contemporary drug products licensed in the last 5 years.  

As previously stated, in terms of accuracy the ANN model outperformed SVM for FE classification. 

However, when compared to predictions using BCS class, both ML models performed strongly as the 

overall BCS accuracy (46%) was substantially weaker than that of the ML algorithms. BCS 

classifications appeared inadequate compared to ML in terms of consistency in precision, sensitivity, 

specificity and MCC scores. Owing in part to a large number of false positive predictions (58 drugs), 

this BCS accuracy of 46% is substantially lower than its previous 67% accuracy in classifying FE for a 

database of pre-2007 drugs (33). Possible reasons for this inaccuracy compared to pre-2007 drugs 

are unclear but may reflect that the drugs licensed between 2016-2020 represent a different chemical 

design space. While direct accuracy comparisons with the ML models are not achievable as no trends 

in FE have been suggested for BCS class IV drugs, perhaps improved predictions with the BCS tool 

could be obtained going forward with further subdivision of categories into weak acids, weak bases, 

and lipophilic compounds (15), however this was not within the scope of this study. Additionally, the 

accuracy of the ANN model compared favourably to accuracies of 80% and 66% achieved in previous 

computational approaches to predict FE classification (33, 34). Ultimately, direct comparisons of 

prediction accuracies are unachievable due to the absence of external test sets in these previous 

publications and differences in the datasets used to build the respective models. However, this work 

identifies ANN as an accurate and efficient solution in detecting correlations between FE and drug 

properties from a cohort of newly licensed drugs using only 4 well-known drug properties. In the grand 

paradigm of drug development and computational pharmaceutics this model would provide early 

indication if significant FE are relevant, allowing informed decisions in drug development. Including 

                  



whether redesign of the drug candidate may be relevant based on drug properties or whether a bio-

enabling strategy should be applied, prompting subsequent application of other computational models 

such a previous example from our own group (68-71), which would give an indication as to whether a 

lipid-based formulation (LBF) or other formulation strategies which are reported to overcome FE, may 

offer a high likelihood of success.  

The effects of food on bioavailability are multifaceted, involving physiological, physicochemical and 

biochemical mechanisms, and as a result, similar to all current methods to anticipate FE, limitations of 

our models are acknowledged. By design, data-driven modelling approaches identify correlations 

between individual drug properties of the dataset and classifications, thereby facilitating prediction of 

the general physiological changes exert by food on drug absorption. However, such an approach, 

limited by the physiochemical parameters employed, cannot capture all contributing factors drug 

specific FE such as effect on metabolism, bile-micelle binding, specific chelation between food and a 

drug or activity of a specific transporter or enzyme (1, 14, 15). As understanding of such effects 

continues to grow across future studies, in line with continued improvements and understanding of 

other approaches of FE prediction, opportunities will exist to broaden the utility of these predictions to 

incorporate such factors. This aside, these current models successfully predict FE category, providing 

evidence of a computational tool suited for easy integration within current pre-clinical drug 

development.  

 

Conclusion 

In this study, innovative predictive models using two ML algorithms (SVM and ANN) were developed 

which accurately predicted the FE category of drugs licensed between 2016-2020, of which 43% 

demonstrated significant FE. These models were found to possess greater prediction accuracy than 

FE predictions using the BCS criteria and performed strongly upon comparison to previously 

published tools using older drug datasets. This predictive modelling enabled key physiochemical 

parameters that contribute to the effect of food on the extent of drug absorption to be identified, 

namely S+logP, T_PSA, HBD and Dose. Therefore, this exploratory work provides a further 

mechanistic basis to understand a drugs behaviour in fed and fasted conditions using a contemporary 

cohort of licensed drugs. Of course, the rationale and requirements for FE determination will differ 

depending on the stage of drug development, be that preliminarily formulation testing or the 

investigation of specific pharmacokinetic parameters. Regardless, the ML tools, particularly the ANN 

produced in this study can facilitate screening of drug candidates for potential FE, with little cost and 

effort at the early stages of drug development, utilising only easily recognisable drug properties. 

 

mmc1.pdf 

                  



Credit Author Statement:  

 

Harriet Bennett-Lenane: Writing - Original draft, Methodology, Computational Modelling, 

Conceptualization. 

Brendan T. Griffin, Joseph P. O’Shea:
 
Supervision and Editing. 

 

Acknowledgements 

This work was supported under funding from the Irish Research Council Post Graduate Scholarship 

Project number GOIPG/2018/883.  

 

 

 

 

References 

1. O'Shea JP, Holm R, O'Driscoll CM, Griffin BT. Food for thought: formulating away the food 
effect - a PEARRL review. J Pharm Pharmacol. 2019;71(4):510-35. 
2. Welling PG. Effects of food on drug absorption. Annu Rev Nutr. 1996;16:383-415. 
3. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of 
pharmacokinetic food-drug interactions – A perspective from the UNGAP group. European Journal of 
Pharmaceutical Sciences. 2019;134:31-59. 
4. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. Drug, meal and formulation interactions influencing 
drug absorption after oral administration. Clinical implications. Clin Pharmacokinet. 1999;36(3):233-
54. 
5. FDA. Food-effect bioavailability and fed 

bioequivalence studies: guidance for industry. 2002 [Available from: Guidances/UCM126833.pdf. 
6. Farha M, Masson E, Tomkinson H, Mugundu G. Food Effect Study Design With Oral Drugs: 
Lessons Learned From Recently Approved Drugs in Oncology. J Clin Pharmacol. 2019;59(4):463-71. 
7. Varum FJ, Hatton GB, Basit AW. Food, physiology and drug delivery. Int J Pharm. 
2013;457(2):446-60. 
8. Yasuji T, Kondo H, Sako K. The effect of food on the oral bioavailability of drugs: a review of 
current developments and pharmaceutical technologies for pharmacokinetic control. Ther Deliv. 
2012;3(1):81-90. 
9. Yan J-H. Food Effect on Oral Bioavailability: Old and New Questions. Clinical Pharmacology in 
Drug Development. 2017;6(4):323-30. 
10. Zhuang X, Lu C. PBPK modeling and simulation in drug research and development. Acta 
Pharmaceutica Sinica B. 2016;6(5):430-40. 

                  



11. Toothaker RD, Welling PG. The Effect of Food on Drug Bioavailability. Annual Review of 
Pharmacology and Toxicology. 1980;20(1):173-99. 
12. Koziolek M, Schneider F, Grimm M, Modeβ C, Seekamp A, Roustom T, et al. Intragastric pH 
and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J 
Control Release. 2015;220(Pt A):71-8. 
13. Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved 
drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017;43(11):1743-58. 
14. Zhang T, Wells E. A Review of Current Methods for Food Effect Prediction During Drug 
Development. Current Pharmacology Reports. 2020;6(5):267-79. 
15. Lentz KA. Current methods for predicting human food effect. Aaps j. 2008;10(2):282-8. 
16. Christiansen ML, Müllertz A, Garmer M, Kristensen J, Jacobsen J, Abrahamsson B, et al. 
Evaluation of the Use of Göttingen Minipigs to Predict Food Effects on the Oral Absorption of Drugs 
in Humans. Journal of Pharmaceutical Sciences. 2015;104(1):135-43. 
17. Bergstrom CAS, Charman WN, Porter CJH. Computational prediction of formulation 
strategies for beyond-rule-of-5 compounds. Adv Drug Deliv Rev. 2016;101:6-21. 
18. Kawai Y, Fujii Y, Tabata F, Ito J, Metsugi Y, Kameda A, et al. Profiling and trend analysis of 
food effects on oral drug absorption considering micelle interaction and solubilization by bile 
micelles. Drug Metab Pharmacokinet. 2011;26(2):180-91. 
19. Borbás E, Kádár S, Tsinman K, Tsinman O, Csicsák D, Takács-Novák K, et al. Prediction of 
Bioequivalence and Food Effect Using Flux- and Solubility-Based Methods. Mol Pharm. 
2019;16(10):4121-30. 
20. Shono Y, Jantratid E, Janssen N, Kesisoglou F, Mao Y, Vertzoni M, et al. Prediction of food 
effects on the absorption of celecoxib based on biorelevant dissolution testing coupled with 
physiologically based pharmacokinetic modeling. European Journal of Pharmaceutics and 
Biopharmaceutics. 2009;73(1):107-14. 
21. Gamsiz ED, Ashtikar M, Crison J, Woltosz W, Bolger MB, Carrier RL. Predicting the effect of 
fed-state intestinal contents on drug dissolution. Pharm Res. 2010;27(12):2646-56. 
22. Henze LJ, Koehl NJ, O'Shea JP, Holm R, Vertzoni M, Griffin BT. Toward the establishment of a 
standardized pre-clinical porcine model to predict food effects – Case studies on fenofibrate and 
paracetamol. International Journal of Pharmaceutics: X. 2019;1:100017. 
23. Bennett-Lenane H, Jørgensen JR, Koehl NJ, Henze LJ, O'Shea JP, Müllertz A, et al. Exploring 
porcine gastric and intestinal fluids using microscopic and solubility estimates: Impact of placebo 
self-emulsifying drug delivery system administration to inform bio-predictive in vitro tools. Eur J 
Pharm Sci. 2021;161:105778. 
24. Lennernäs H, Aarons L, Augustijns P, Beato S, Bolger M, Box K, et al. Oral biopharmaceutics 
tools - time for a new initiative - an introduction to the IMI project OrBiTo. Eur J Pharm Sci. 
2014;57:292-9. 
25. Heimbach T, Xia B, Lin TH, He H. Case studies for practical food effect assessments across 
BCS/BDDCS class compounds using in silico, in vitro, and preclinical in vivo data. Aaps j. 
2013;15(1):143-58. 
26. Custodio JM, Wu CY, Benet LZ. Predicting drug disposition, 
absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug 
Deliv Rev. 2008;60(6):717-33. 
27. Cheng L, Wong H. Food Effects on Oral Drug Absorption: Application of Physiologically-Based 
Pharmacokinetic Modeling as a Predictive Tool. Pharmaceutics. 2020;12(7). 
28. O'Shea JP, Faisal W, Ruane-O'Hora T, Devine KJ, Kostewicz ES, O'Driscoll CM, et al. Lipidic 
dispersion to reduce food dependent oral bioavailability of fenofibrate: In vitro, in vivo and in silico 
assessments. Eur J Pharm Biopharm. 2015;96:207-16. 
29. Gao H, Wang W, Dong J, Ye Z, Ouyang D. An integrated computational methodology with 
data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion 
formulation design. Eur J Pharm Biopharm. 2021;158:336-46. 

                  



30. Riedmaier AE, DeMent K, Huckle J, Bransford P, Stillhart C, Lloyd R, et al. Use of 
Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an 
Industry Perspective. The AAPS Journal. 2020;22(6):123. 
31. Kesisoglou F. Can PBPK Modeling Streamline Food Effect Assessments? J Clin Pharmacol. 
2020;60 Suppl 1:S98-s104. 
32. Singh BN. A quantitative approach to probe the dependence and correlation of food-effect 
with aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) for orally active drugs 
administered as immediate-release formulations. Drug Development Research. 2005;65(2):55-75. 
33. Gu CH, Li H, Levons J, Lentz K, Gandhi RB, Raghavan K, et al. Predicting effect of food on 
extent of drug absorption based on physicochemical properties. Pharm Res. 2007;24(6):1118-30. 
34. Omachi F, Kaneko M, Iijima R, Watanabe M, Itagaki F. Relationship between the effects of 
food on the pharmacokinetics of oral antineoplastic drugs and their physicochemical properties. J 
Pharm Health Care Sci. 2019;5:26. 
35. Aksu B, Paradkar A, de Matas M, Ozer O, Güneri T, York P. Quality by design approach: 
application of artificial intelligence techniques of tablets manufactured by direct compression. AAPS 
PharmSciTech. 2012;13(4):1138-46. 
36. Damiati SA, Martini LG, Smith NW, Lawrence MJ, Barlow DJ. Application of machine learning 
in prediction of hydrotrope-enhanced solubilisation of indomethacin. International Journal of 
Pharmaceutics. 2017;530(1):99-106. 
37. Manda A, Walker RB, Khamanga SMM. An Artificial Neural Network Approach to Predict the 
Effects of Formulation and Process Variables on Prednisone Release from a Multipartite System. 
Pharmaceutics. 2019;11(3). 
38. Zhang Y, Evans JRG, Yang S. Exploring Correlations Between Properties Using Artificial Neural 
Networks. Metallurgical and Materials Transactions A. 2020;51(1):58-75. 
39. DeBoyace K, Wildfong PLD. The Application of Modeling and Prediction to the Formation and 
Stability of Amorphous Solid Dispersions. J Pharm Sci. 2018;107(1):57-74. 
40. Alhalaweh A, Alzghoul A, Mahlin D, Bergström CAS. Physical stability of drugs after storage 
above and below the glass transition temperature: Relationship to glass-forming ability. Int J Pharm. 
2015;495(1):312-7. 
41. Alhalaweh A, Alzghoul A, Kaialy W, Mahlin D, Bergström CAS. Computational Predictions of 
Glass-Forming Ability and Crystallization Tendency of Drug Molecules. Molecular Pharmaceutics. 
2014;11(9):3123-32. 
42. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A. A comprehensive survey on 
support vector machine classification: Applications, challenges and trends. Neurocomputing. 
2020;408:189-215. 
43. Kausar N, Belhaouari Samir B, Abdullah A, Ahmad I, Hussain M, editors. A Review of 
Classification Approaches Using Support Vector Machine in Intrusion Detection. Informatics 
Engineering and Information Science; 2011 2011//; Berlin, Heidelberg: Springer Berlin Heidelberg. 
44. Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H. Basic concepts of artificial neural 
networks (ANN) modeling in the application to pharmaceutical development. Pharm Dev Technol. 
1997;2(2):95-109. 
45. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic 
regression for predicting medical outcomes. Journal of Clinical Epidemiology. 1996;49(11):1225-31. 
46. Ding X, Rose JP, Van Gelder J. Developability assessment of clinical drug products with 
maximum absorbable doses. Int J Pharm. 2012;427(2):260-9. 
47. Bennett-Lenane H, O'Shea J. P., O'Driscoll, C. M., Griffin, B. T. A Retrospective 
Biopharmacetical Analysis of >800 Approved Oral Products: Are Drug Properties of Solid Dispersions 
and Lipid-Based Formulations Distinctive? J Pharm Sci (In Review)2021. 
48. Alhalaweh A, Alzghoul A, Mahlin D, Bergström CAS. Physical stability of drugs after storage 
above and below the glass transition temperature: Relationship to glass-forming ability. 
International Journal of Pharmaceutics. 2015;495(1):312-7. 

                  



49. Bisgin H, Bera T, Ding H, Semey HG, Wu L, Liu Z, et al. Comparing SVM and ANN based 
Machine Learning Methods for Species Identification of Food Contaminating Beetles. Scientific 
Reports. 2018;8(1):6532. 
50. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 
score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):6. 
51. Alshalif SA, Ibrahim N, Herawan T, editors. Artificial Neural Network with Hyperbolic Tangent 
Activation Function to Improve the Accuracy of COCOMO II Model. Recent Advances on Soft 
Computing and Data Mining; 2017 2017//; Cham: Springer International Publishing. 
52. Møller MF. A scaled conjugate gradient algorithm for fast supervised learning. Neural 
Networks. 1993;6(4):525-33. 
53. Milton KA, DJ N. The predictability of food effects  on bioavailability (BA). Eur J Pharm Sci. 
1996;4(Suppl. 1):S94. 
54. Ren J. ANN vs. SVM: Which one performs better in classification of MCCs in mammogram 
imaging. Knowledge-Based Systems. 2012;26:144-53. 
55. Kavzoglu T, Colkesen I. A kernel functions analysis for support vector machines for land 
cover classification. International Journal of Applied Earth Observation and Geoinformation. 
2009;11(5):352-9. 
56. Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. Aaps j. 
2009;11(1):155-66. 
57. Marasanapalle VP, Boinpally RR, Zhu H, Grill A, Tang F. Correlation between the systemic 
clearance of drugs and their food effects in humans. Drug Dev Ind Pharm. 2011;37(11):1311-7. 
58. Kristl A, Tukker JJ. Negative correlation of n-octanol/water partition coefficient and transport 
of some guanine derivatives through rat jejunum in vitro. Pharm Res. 1998;15(3):499-501. 
59. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational 
approaches to estimate solubility and permeability in drug discovery and development settings. 
Advanced Drug Delivery Reviews. 1997;23(1):3-25. 
60. Winiwarter S, Bonham NM, Ax F, Hallberg A, Lennernäs H, Karlén A. Correlation of Human 
Jejunal Permeability (in Vivo) of Drugs with Experimentally and Theoretically Derived Parameters. A 
Multivariate Data Analysis Approach. Journal of Medicinal Chemistry. 1998;41(25):4939-49. 
61. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent 
drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res 
Commun. 1991;175(3):880-5. 
62. Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A provisional 
biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, 
Spain, and Japan. Mol Pharm. 2006;3(6):631-43. 
63. Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system 
drugs. NeuroRx. 2005;2(4):541-53. 
64. Palm K, Stenberg P, Luthman K, Artursson P. Polar Molecular Surface Properties Predict the 
Intestinal Absorption of Drugs in Humans. Pharmaceutical Research. 1997;14(5):568-71. 
65. Abraham MH, Chadha HS, Whiting GS, Mitchell RC. Hydrogen bonding. 32. An analysis of 
water-octanol and water-alkane partitioning and the delta log P parameter of seiler. J Pharm Sci. 
1994;83(8):1085-100. 
66. Paterson DA, Conradi RA, Hilgers AR, Vidmar TJ, Burton PS. A Non-aqueous Partitioning 
System for Predicting the Oral Absorption Potential of Peptides. Quantitative Structure-Activity 
Relationships. 1994;13(1):4-10. 
67. Norinder U, Bergström CA. Prediction of ADMET Properties. ChemMedChem. 2006;1(9):920-
37. 
68. Bennett-Lenane H, Koehl NJ, O'Dwyer PJ, Box KJ, O'Shea JP, Griffin BT. Applying 
Computational Predictions of Biorelevant Solubility Ratio Upon Self-Emulsifying Lipid-Based 
Formulations Dispersion to Predict Dose Number. J Pharm Sci. 2020. 

                  



69. Persson LC, Porter CJ, Charman WN, Bergstrom CA. Computational prediction of drug 
solubility in lipid based formulation excipients. Pharm Res. 2013;30(12):3225-37. 
70. Alsenz J, Kuentz M. From Quantum Chemistry to Prediction of Drug Solubility in Glycerides. 
Molecular Pharmaceutics. 2019;16(11):4661-9. 
71. Kuentz M, Imanidis G. In silico prediction of the solubility advantage for amorphous drugs - 
Are there property-based rules for drug discovery and early pharmaceutical development? Eur J 
Pharm Sci. 2013;48(3):554-62. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Legends 

                  



 

                  



Figure 1 A+B: Visual representation of the statistically significant differences found between Positive, Negative 

and No Food Effect Classes as part of the preliminary statistical analysis. p-values for the statistically significant 

pairwise comparisons are shown. The dark line in the middle of the boxes is the median. The bottom and top of 

the box indicates the 25th (Q1) and 75th percentile (Q3). The T-bars are inner fences/whiskers which extend to 

1.5 times the box height. The points are outliers that do not fall in the inner fences. The asterisks are extreme 

outliers which have values greater than three times the height of the boxes. 

 

Figure 2: Visual representation of the sensitivity, precision, specificity and Matthews Correlation Coefficient 

(MCC) scores of the classification predictions (positive, negative and no Food Effect (FE)) using the 

biopharmaceutics classification system (BCS) criteria where an overall accuracy of 46% was achieved for the 

dataset. 

                  



 

Figure 3: Visual comparison of the sensitivity, precision, specificity and Matthews Correlation Coefficient (MCC) 

performance metrics calculated for the optimum Support Vector Machines (SVM) and Artificial Neural Networks 

(ANN) models produced in this study to predict food effect (FE) classification.  

                  



 

Figure 4: Schematic representation of the optimum multilayer perceptron (MLP) 4-13-3 Artificial Neural Network 

(ANN) produced which outperformed Support Vector Machines (SVM) for the food effect (FE) classification of 

drugs licensed from 2016-2020. H refers to hidden layer node.  

  

                  



Table 1: Compilation of licensed oral medicines from 2016-2020 and their AUCfed/AUCfasted ratio, clinical 

recommendation regarding food take, BCS and Food Effect (FE) Classification. LF, MF and HF refer to Low Fat, 

Medium Fat and High Fat Meals respectively, 
*
refers to the 90% CI limits and 

**
refers to the range of values 

quoted. 

 

Year 
Licen
sed 

Generic Name Comm
ercial 
Name 

Clinical Recommendation Food 
Effect 
Classifica
tion 

AUCfed/
AUCfast

ed 

BC
S 
Cla
ss 

2020 Avapritinib Ayvakit
/Ayvak
yt 

Taken on an empty stomach, at least one hour before 
and two hours after a meal 

Positive 1.27/1.
29 

2 

2020 Glasdegib Dauris
mo 

Taken with or without food No FE 0.84 4 

2020 Lefamulin Xenlet
a 

Taken on an empty stomach, at least 1 hour before or 
2 hours after a meal 

No FE  0.82 3 

2020 Pralsetinib Gavret
o 

Taken on an empty stomach (no food intake for at 
least 2 hours before and at least 1 hour after taking) 

Positive 2.22 2 

2020 Osilodrostat Isturisa Taken with or without food No FE  0.89 1 

2020 Filgotinib Jyselec
a 

Taken with or without food No FE  1 2 

2020 Ivacaftor Kaftrio Taken with fat-containing food Positive 1.9-
2.5

**
 

2 

 Tezacaftor   Positive  2.5-4
**

 2 

 Elexacaftor   No FE   1 4 

2020 Selumetinib  Koselu
go 

Take on an empty stomach. Do not consume food 2 
hours before each dose or 1 hour after each dose 

No FE  0. 62 4 

2020 Nifurtimox Lampit Taken with food Positive 1.71 2 

2020 Siponimod Mayze
nt 

Taken with or without food No FE  1 2 

2020 Bempedoic 
Acid 

Nilemd
o 

Taken with or without food No FE  1 2 

2020 Darolutamide Nubeq
a 

Taken with food Positive 2-2.5  2 

2020 Bempedoic 
Acid 

Nusten
di/Nexl
izet 

Taken with or without food No FE  1 2 

 Ezetimibe   No FE  1  2 

2020 Azacitidine Onureg Take with or without food Negative 0.79 1 

2020 Elagolix Sodium Oriahn
n 

No instructions with regard to food intake Negative 0.75 3 

 Estradiol   No FE  1 1 

 Norethindrone 
Acetate 

  No FE  1.23  2 

2020 Alpelisib Piqray Taken immediately after food, at approximately the 
same time each day 

Positive LF 1.77 
HF 1.73 

2 

2020 Pretomanid Pretom
anid 
FGK 

Taken with food Positive 1.88 2 

2020 Selpercatinib Retev
mo 

Taken with or without food No FE  1  

2020 Solriamfetol Sunosi Taken with or without food No FE  1 1 

2020 Capmatinib 
Hydrochloride 

Tabrec
ta 

Taken with or without food Positive LF 1 HF 
1.46 

2 

2020 Fostamatinib Tavless
e 

Taken with or without food No FE  1.23 4 

2020 Dolutegravir 
Sodium 

Tivicay 
pd 

Taken with or without food Positive 1.66 4 

                  



Year 
Licen
sed 

Generic Name Comm
ercial 
Name 

Clinical Recommendation Food 
Effect 
Classifica
tion 

AUCfed/
AUCfast

ed 

BC
S 
Cla
ss 

2020 Tucatinib Tukysa Taken with or without food Positive 1.5 2 

2020 Solifenacin 
Succinate 

Vesicar
e LS 

Avoid taking with food due to bitter taste  No FE  1 1 

2020 Enzalutamide Xtandi Taken with or without food  No FE  1  2 

2020 Ozanimod Zeposi
a 

Taken with or without food No FE  1 2 

2019 Isotretinoin Absoric
a Ld 

Taken with or without food No FE   1.2 2 

2019 Lumateperone 
Tosylate 

Caplyta Taken with food No FE  1.09 1 

2019 Ivabradine Corlan
or 

Taken with food Positive 1.2-
1.4

**
 

1 

2019 Trientine 
Dihydrochlorid
e 

Cufenc
e 

Take this medicine with water only. Avoid eating or 
drinking (except water) for 1 hour before, or 2 hours 
after taking. 

Negative 0.55 3 

2019 Lemborexant Dayvig
o 

Taken immediately before going to bed No FE  1.18 2 

2019 Avatrombopag 
Maleate 

Doptel
et 

Taken with food No FE  LF 1.0 
HF 1.0 

4 

2019 Dolutegravir 
Sodium 

Dovato Taken with or without food Positive 1.33  4  

 Lamivudine   No FE  1 3 

2019 Triclabendazole Egaten Taken with food Positive 2 2 

2019 Gilteritinib 
Fumarate 

Xospat
a 

Taken with or without food No FE  0.9 4 

2019 Riluzole Xserva
n 

Taken at least 1 hour before or 2 hours after a meal No FE  0.85 2 

2019 Apalutamide Erlead
a 

Taken with or without food No FE  1 2 

2019 Colchicine Gloper
ba 

Taken with or without food No FE  0.93 3 

2019 Ledipasvir Harvon
i 

Taken with or without food  No FE  1 2 

 Sofosbuvir   Positive ~2 3 

2019 Fedratinib 
Hydrochloride 

Inrebic Taken with or without food No FE  LF 1.24 
HF 1.24 

2 

2019 Lorlatinib Lorviqu
a 

Taken with or without food  No FE  1.05 4 

2019 Lusutrombopag Mulple
o 

Taken with or without food No FE  1 4 

2019 Istradefylline Nouria
nz 

Taken with or without food Positive 1.64 2 

2019 Voxelotor Oxbryt
a 

Taken with or without food Positive 1.42 2 

2019 Naldemedine Rizmoi
c/Sym
proic 

Taken with or without food No FE  1 4 

2019 Amifampridine Ruzurgi Taken with or without food No FE   1 3 

2019 Talazoparib Talzen
na 

Taken with or without food No FE  1 2 

2019 Elexacaftor Trikaft
a  

Taken with fat containing food Positive 1.9-
2.5

**
 

4 

 Ivacaftor (Copac
kaged) 

 Positive  2.5-4
**

 2 

 Tezacaftor   No FE  1 2 

2019 Pexidartinib 
Hydrochloride 

Turalio Taken on an empty stomach, at least 1 hour before or 
2 hours after a meal or snack 

Positive 2 2 

                  



Year 
Licen
sed 

Generic Name Comm
ercial 
Name 

Clinical Recommendation Food 
Effect 
Classifica
tion 

AUCfed/
AUCfast

ed 

BC
S 
Cla
ss 

2019 Ubrogepant Ubrelv
y 

Taken with or without food No FE   1 4 

2019 Larotrectinib Vitrakv
i 

Taken with or without food  No FE  1 1 

2019 Dacomitinib Vizimp
ro 

No instructions with regard to food intake No FE  1 2 

2019 Ceritinib Zykadi
a 

Taken with food Positive LF 1.64 
HF 1.39 

4 

2019 Sotagliflozin Zynqui
sta 

Taken once daily before the first meal of the day Positive 1.5 2 

2018 Brigatinib Alunbri
g 

Taken with or without food No FE  1 1 

2018 Tafenoquine 
Succinate 

Arakod
a 

Taken with food Positive 1.41  

2018 Bictegravir Biktarv
y 

Taken with or without food No FE  1.24 2 

 Emtricitabine   No FE  1 1 

 Tenofovir 
Alafenamide 

  Positive 1.64  3 

2018 Estradiol Bijuva Taken with food No FE  1 1 

 Progesterone   Positive 1.79 2 

       

2018 Encorafenib Braftov
i 

Taken with or without food No FE  1 2 

2018 Duvelisib Copiktr
a 

Taken with or without food Negative 0.63 4 

2018 Doravirine Delstri
go 

Taken with or without food No FE  1.1 2 

 Lamivudine   No FE  0.93 3 

 Tenofovir 
Disoproxil 
Fumarate 

  Positive 1.27 3 

2018 Baloxavir 
Marboxil 

Xofluza Taken with or without food  No FE  0.64 2 

2018 Ibrutinib Imbruv
ica 

No instructions with regard to food intake Positive 2 2 

2018 Dolutegravir 
Sodium 

Juluca Taken with a meal Positive 1.87 4 

 Rilpivirine 
Hydrochloride 

  Positive 1.72 2 

2018 Tolvaptan Jynarq
ue 

Taken with or without food No FE  1 4 

2018 Tafenoquine 
Succinate 

Krintaf
el 

Taken with food Positive 1.41  

2018 Binimetinib Mekto
vi 

Taken with or without food No FE  1 2 

2018 Mexiletine 
Hydrochloride 

Namus
cla 

Should be swallowed with water. In case of digestive 
intolerance, capsules should be taken during a meal. 

No FE  1 1 

2018 Neratinib Nerlyn
x 

Taken with food, preferably in the morning Positive 2.2 4 

2018 Omadacycline 
Tosylate 

Nuzyra Fast for at least 4 hours and then take  No FE  0.39 3 

2018 Elagolix Sodium Orilissa Taken with or without food No FE  0.76 3 

2018 Ivacaftor Orkam
bi 

Mixed with one teaspoon (5 mL) of age- Positive 3 2 

 Lumacaftor  appropriate soft food or liquid and the mixture 
completely consumed.  

 2 2 

                  



Year 
Licen
sed 

Generic Name Comm
ercial 
Name 

Clinical Recommendation Food 
Effect 
Classifica
tion 

AUCfed/
AUCfast

ed 

BC
S 
Cla
ss 

2018 Doravirine Pifeltro Taken with or without food No FE  1.16 2 

2018 Letermovir Prevy
mis 

Taken with or without food No FE  0.99 2 

2018 Tacrolimus Prograf Taken consistently with or without food. No FE  0.63 2 

2018 Rucaparib 
Camsylate 

Rubrac
a 

Taken with or without food Positive 1.38 2 

2018 Brexpiprazole Rxulti Taken with or without food No FE  1 2 

2018 Sarecycline 
Hydrochloride 

Seysar
a 

Taken with or without food Negative 0.73 3 

2018 Ertugliflozin Steglat
ro 

Taken with or without food No FE  1 1 

2018 Ertugliflozin Stegluj
an 

Taken with or without food No FE  1 1 

 Sitagliptin   No FE  1 2 

2018 Ivacaftor  Symde
ko/Sy
mkevi 

Taken with fat-containing food Positive 3 2 

 Tezacaftor   No FE  1 2 

2018 Ivosidenib Tibsov
o 

Taken with or without food. Do not administer with a 
high fat meal due to increase in concentration 

Positive 1.98 2 

2018 Riluzole Tiglutik 
Kit 

Taken at least 1 hour before or 2 hours after a meal No FE  0.91 2 

2018 Tecovirimat Tpoxx Taken within 30 minutes after a full meal of moderate 
or high fat 

Positive 1.39 2 

2018 Abemaciclib Verzen
ios 

Taken with or without food No FE  1.09 3 

2018 Abiraterone 
Acetate 

Yonsa Taken with or without food Positive 4.4 4 

2017 Alectinib Alecen
sa 

Taken with food Positive 3 4 

2017 Deutetrabenazi
ne 

Austed
o 

Taken with food No FE  1 2 

2017 Betrixaban Bevyxx
a 

Taken with food Negative LF 0.39 
HF 0.52 

3 

2017 Acalabrutinib Calque
nce 

Taken with or without food No FE  1 2 

2017 Spironolactone Carospi
r 

Taken with or without food, but should be taken 
consistently with respect to food 

Positive 1.9 2 

2017 Allopurinol Duzallo Taken with food No FE  1 4 

 Lesinurad   No FE  1 2 

2017 Deflazacort Emflaz
a 

Taken with or without food. Tablet and Suspension No FE  1  

2017 Tofacitinib Xeljanz Taken with or without food No FE  1 3 

2017 Telotristat 
Etiprate 

Xermel
o 

Taken with food No FE  3.64  

2017 Pirfenidone Esbriet Taken with food  No FE  0.84 1 

2017 Tivozanib  Fotivda Taken with or without food No FE  1 2 

2017 Valbenazine 
Tosylate 

Ingrezz
a 

Taken with or without food No FE  0.87 1 

2017 Deferasirox Jadenu 
Sprinkl
e 

Taken on an empty stomach or with a light meal No FE  LF 1 HF 
1.18 

2 

2017 Ribociclib 
Succinate 

Kisqali Taken with or without food No FE  1 4 

2017 Macimorelin 
Acetate 

Macril
en 

Taken after fasting for at least 8 hours Negative 0.51  

                  



Year 
Licen
sed 

Generic Name Comm
ercial 
Name 

Clinical Recommendation Food 
Effect 
Classifica
tion 

AUCfed/
AUCfast

ed 

BC
S 
Cla
ss 

2017 Cladribine Maven
clad 

Taken with or without food Negative 1 3 

2017 Glecaprevir Mavire
t 

Taken at the same time with food Positive 1.83-
2.63

**
 

4 

 Pibrentasvir   Positive 1.4-
1.53

**
 

4 

2017 Pitavastatin 
Sodium 

Nikita Taken with or without food No FE  1 2 

2017 Ritonavir Norvir Should be mixed with soft food  Negative 0.51 4 

2017 Baricitinib Olumia
nt 

Taken with or without food No FE  0.86 3 

2017 Valsartan Prexxa
rtan 

No instructions with regard to food intake No FE 0.92 2 

2017 Cariprazine Reagila Taken with or without food No FE  1.12 2 

2017 Edoxaban Roteas Taken with or without food No FE  1 4 

2017 Oxycodone 
Hydrochloride 

Roxybo
nd 

No instructions with regard to food intake No FE  1.23 3 

2017 Midostaurin Rydapt Taken with food No FE 1.6 2 

2017 Tenofovir 
Alafenamide 

Symtuz
a 

Taken with food No FE  1.20 3 

 Darunavir   Positive 1.52  2 

 Cobicistat   Positive 1.4 2 

 Emtricitabine   No FE  1 1 

2017 Tenofovir 
Alafenamide 

Vemlid
y 

Taken with food Positive 1.51-
1.81

**
 

3 

2017 Niraparib Zejula Taken with or without food No FE  1 1 

2017 Pitavastatin 
Magnesium 

Zypita
mag 

Taken with or without food No FE  1 2 

2016 Brivaracetam Briviact Taken with or without food No FE  0.95 1 

2016 Emtricitabine Descov
y 

Taken with or without food No FE  1 1 

 Tenofovir 
Alafenamide 

  Positive 1.17-
1.77

**
 

3 

2016 Sofosbuvir Epclus
a 

Taken with or without food Positive 1.78 3 

 Velpatasvir   No FE  1.21 4 

2016 Migalastat 
Hydrochloride 

Galafol
d 

Food should not be consumed at least 2 hours before 
and 2 hours after taking to give a minimum 4 hours 
fast 

Negative 0.63-
0.58

**
 

3 

2016 Empagliflozin Glyxam
bi 

Taken with or without food No FE  0.84 3 

 Lignagliptin   No FE  1 3 

2016 Palbociclib Ibranc
e 

Taken with food No FE  1.2 2 

2016 Lenvatinib 
Mesilate 

Kisplyx Taken at about the same time each day, with or 
without food 

No FE  1 2 

2016 Trifluridine Lonsurf No instructions with regard to food intake No FE  1 3 

 Tipiracil 
Hydrochloride 

  Negative 0.6 3 

2016 Sacubitril Neparv
is 

Taken with or without food No FE  1 4 

 Valsartan   No FE  1  2 

2016 Ixazomib Ninlaro Taken at least 1 hour before or at least 2 hours after 
food 

Negative 0.72 3 

2016 Pimavanserin Nuplazi Taken with or without food No FE  1.08  

                  



Year 
Licen
sed 

Generic Name Comm
ercial 
Name 

Clinical Recommendation Food 
Effect 
Classifica
tion 

AUCfed/
AUCfast

ed 

BC
S 
Cla
ss 

d 

2016 Obeticholic 
Acid 

Ocaliva Taken with or without food No FE  1 2 

2016 Emtricitabine Odefse
y 

Taken with food No FE  0.88 
(0.85-
0.9)

*
 

1 

 Rilpivirine 
Hydrochloride 

  Positive 1.72 
(1.49-
1.99)

*
 

2 

 Tenofovir 
Alafenamide 

  Positive 1.53 
(1.39-
1.69)

*
 

3 

2016 Opicapone Ongent
ys 

Should not eat food for 1 hour before and for at least 1 
hour after intake. 

Negative 0.69 2 

2016 Saxagliptin Qtern Taken with or without food Positive 1.27 3 

 Dapagliflozin 
Propanediol 
Monohydrate 

  No FE  1 3 

2016 Dronabinol Syndro
s 

Administer the first dose on an empty stomach at least 
30 minutes before eating. Subsequent doses can be 
taken without regard to meals. 

Positive 2.5 2 

2016 Osimertinib 
Mesylate 

Tagriss
o 

Taken with or without food No FE  1.06 3 

2016 Eluxadoline Truber
zi 

Taken with food Negative 0.4 3 

2016 Selexipag Uptravi Taken with food No FE  1.1 2 

2016 Venetoclax Vencly
xto 

Taken with a meal Positive MF 3.4 
HF 5.1-
5.3

**
 

4 

2016 Elbasvir Zepatie
r 

Taken with or without food No FE  0.89 2 

 Grazoprevir   Positive 1.5 2 

 

  

                  



 

Table 2: Overview of the Support Vector Machine (SVM) and Artificial Neural Network (ANN) machine learning 

models produced in this study, detailing the inputs, model architecture and the comparative overall accuracies 

upon training and testing.  

 

 

 

 

 

 

Model Type Input Properties 
Used 

Architecture Overall 
Accuracy 

Training Set 

Overall Accuracy 
Test Set 

SVM Dose, HBD, F_HBP, 
S+logP, T_PSA, 

logHLC 

Kernel: RBF 
Gamma: 0.01 
C value: 16.68 

72% 69% 

ANN Dose, HBD, S+logP, 
T_PSA 

1 hidden layer 
13 hidden nodes 

82% 72% 

                  


