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Abstract

Globally, agriculture is being intensified with mechanisation and increased use of

sYnthetic fertilisers and pesticides. There has been a scaling up of production to

satisfy the demands of supermarket distribution. Problems associated with

intensification of production, trade globalisation and a larger market demand for

greater volumes of fresh produce, include consumers' concern about pesticide

residues and leaching of nutrients and pesticides into the environment, as well as

increases in the transmission of human food-poisoning pathogens on raw vegetables

and in fruit juices.

The first part of this research was concerned with the evaluation of a biological

control strategy for soilborne pathogens, these are difficult to eliminate and the

chemicals of which the most effective fumigants e.g. methyl bromide, are being

withdrawn from use. Chitin-containing crustaceans shellfish waste was investigated

as a selective growth substrate amendment in the field, in glasshouse and in storage

trials against Sclerotinia disease of Helianthus tuberosus, Phytophthora fragariae

disease of Fragaria vesca and Fusarium disease of Dianthus. Results showed that

addition of the shellfish waste stimulated substrate microbial populations and lytic

activity and induced plant defense proteins, namely chitinases and cellulases.

Protective effects were seen in all crop models but the results indicate that further

trials are required to confirm long-term efficacy.

The second part of the research investigated the persistence of enteric bacteria in

raw salad vegetables using model food poisoning isolates. In clinical investigations

plants are sampled for bacterial contamination but no attempt is made to differentiate

between epiphytes and endophytes. Results here indicate that the model isolates·

persist endophytically thereby escaping conventional chlorine washes and they may

also induce host defenses, which results in their suppression and in negative results

in conventional plate count screening. Finally a discussion of criteria that should be

considered for a HACCP plan for safe raw salad vegetable production is presented.
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Preface to thesis structure

This thesis is written in the form ofjournal publications. The instructions to

authors of the relevant journals have been followed, as appropriate. The chapters are

in the format of manuscripts for submission, submitted or published, the journal

format is indicated in the preface to each chapter.

Section A consists of three chapters, the first of which is an introduction to

the area of study and includes an outline of the aims and objectives. This is followed

by two chapters, which review related literature. The first review has been published

in Radiation Research.

Section B contains four chapters dealing with the investigations carried out

on the use of crushed crustacean shells as a growth substrate amendment. Of the

four chapters, three chapters report collaborative research, which is indicated in the

chapter prefaces. One chapter was published in Applied Soil Ecology.

Two chapters make up Section C and these deal with the persistence of

enteric bacteria in plants. The first chapter was written in conjunction with c0

workers in St James Hospital/frinity College, Dublin and has been published after

peer review, in Acta Horticulturae.

The final section includes a general discussion , followed by a chapter with

recommendations for HACCP criteria for production of raw or minimally processed

plant produce.

Each chapter includes a bibliography citing the relevant literature
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Introduction

Background to current concerns about pest and disease control

Over the last ISO years agriculture has been intensified greatly with

mechanisation and the introduction of sYnthetic fertilisers and pesticides. Plant

breeding and improved agronomic methods have allowed cultivation in formerly

non-productive areas. In parallel with these developments there has a scaling up of

production to satisfy the demands of supermarket distribution. Problems associated

with these developments include consumer concern about pesticide residues (Weger

et a1., 1993, Katan, 2000) and leaching of nutrients and pesticides into the

surrounding environment (Kirchmann and Thorvaldsson, 2000). Many common soil

pesticides such as methyl bromide are being phased out of use (GamlieI et al., 2000).

Pesticide resistance coupled with reports of mammalian toxicity has meant that the

arsenal of methods for pest and disease suppression is diminishing. Build up and

biomagnification of residues in birds and animals, extrapolated to humans, has

caused concern both in the public domain and the scientific world. Reports of the

degree of accumulation of pesticide residues through the food chain vary, depending

on the pesticide and species chains being studied (Bard 1999, Borga et al., 2001),

however, a very general consensus would be that biomagnification can and does

occur and a trend would seem to be that the tissues and organs most commonly

affected are those involved in reproduction (Jones et al., 1994, Varnagy 1996, Beard

et a1., 1997, Albanis et a1., 1997). Advocates from the general public and 'green'

movements are leading the demand for the reduction of pesticide usage and urging

investigation into alternative methods of pest and disease control.
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CurrentlYt fungicides are still a vital force in the control of phytopathogens

where they complement plant breeding for disease resistance (Gullino et al. , 2000).

Howevert resistance to pesticides is causing problems for farmers. Benzimidazole

resistance was first reported in Rhynchosporium secalis (causal agent of leaf spot on

winter barley) in the 1980s and despite anti-resistance strategies e.g. use in mixtures

with other fungicidest it was reported again in the 1990s (Taggart et al., 1999).

Another example of emerging resistance is that of Botrytis to benzimidazoles and

phenylcarbamates at a low frequencYt it was recorded in French vineyards. The

strategy currently recommended is to spray infrequentlYt subject to forecastingt in an

effort to limit resistance build up and to deploy fungicides in strategic combinations

(Gullino et al. t 2000).

Emerging strategies for disease control

Given the above concerns regarding pesticidest there has been renewed

interest in traditional methodS and into research for alternative methods of disease

control. Soil Solarisation has been used widely in Greece for a number of years

(Tjamos et al. , 2000). It was found that solarisation of soil was effective in

controlling Fusarium and Clavibacter. The widespread use of this method is

limitedt due to the requirement for cover of the land by polyethylene for up to 6

weeks and a dependence on a hot climate. Coupled to this there is the added expense

of purchasing extra equipment for covering and uncovering the land with

polyethylene plastic. Howevert recent research has reduced the time of land

coverage down to 2 weeks if impermeable plastic sheeting is used. When an

endophytic Bacillus biological control agent was also usedt significantly better
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disease control was achieved than with metham sodium (a chemical substitute for

methyl bromide) and also increased yields were reported.

Methods being evaluated include physical methods such as steaming or

microwaving of substrates. Though costly, these methods are being investigated due

to the imminent withdrawal of methyl bromide (Katan, 2000).

Cultural methods applied for control include rotation of crops, altered

cropping sequence, changing of irrigation patterns and water sources, altering the

dates for planting and planting density. Soil flooding for a period of a few weeks

can be effective in ridding areas of certain fungi, insects and nematodes (Katan, loc.

cit.).

As well as research into synthetic antimicrobial chemicals, other strategies of

chemical control such as elicitation of the systemic acquired resistance (SAR) in

plants and development of natural antimicrobial compounds are being evaluated.

Plant resistance mechanisms e.g. SAR can be specific for plant cultivars and

pathogen strains. The gene-for-gene resistance response can lead to a cascade of

reactions leading to localised host cell death - the Hypersensitive Response (HR).

This cascade can be induced or elicited by secondary messengers eliminating the

specificity of the recognition phenomenon necessary in nature for the activation of

host defenses. SAR has been the subject of extensive research. This gives a broad

range of protection against pests and diseases and provides an immune like state in

the plant. Salicylic acid (SA) is produced in the plant and plays an important role as

a secondary messenger in the SAR mechanism. Further classes of chemicals that

induce salicylic acid have been studied. Among these is acibenzolar-8-methyl

(commercialised as BION) which affords protection from bacterial, viral and fungal

attack (Guillino et al., 2000). Its mode of action is to stimulate pathogenesis-related
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(PR) protein synthesis and so it has no direct effect on the pathogen. Bion replaces

the SA signal and hence prior infection is not necessary. Three to seven days is

recommended for induction of 'immunity'. It has been shown to be effective on a

range of crops including cereals, vegetables, fruits and flowers (Romero et al., 2001,

Brisset et al., 2000, Terry & Joyce, 2000, Tosi & Zazzerini 2000, Ishii et al., 1999).

Resistance is not expected due to the indirect mode of action.

Biological Control- inoculation with biocontrol microorganisms

Other alternative methods of pest and disease control being investigated are

based on biological control. The use of fungi as biological control agents goes back

many years. An example of this was the work done by Risbeth (1951) who applied a

spore suspension of the saprophytic Peniophora gigantea to the stumps of recently

felled trees to prevent infection by the pathogen Hetrobasidion (Fomes) annosum.

The P. gigantea colonises the stump and spreads through the roots where it

successfully out-competes the pathogen H. annosum thus preventing the infection of

the roots of adjacent standing trees by the pathogen. Another example of a well

studied biocontrol agent is the fungus Trichoderma. Its varied proPerties (including

hyperparasitism and production of antimicrobial substances) and applications were

reviewed by Henis (1984).

Bacteria are also used as biological control agents and a widely used example

is the use ofAgrobacterium radiobacter as a dip for seedlings or cutting s that would

otherwise be susceptible to the gall-causing agent Agrobacterium tumefaciens

(Jones, 1989). The non-pathogenic strain K84 produces a bacteriocin called agrocin

84, which is active against A. tumefaciens. However, gene transfer occurs naturally

and A. tumefaciens acquired resistance to agrocin 84. The K84 strain was
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genetically modified to give the new strain K I026 which lacks the ability to transfer

the resistance gene to the pathogen (Agrios, 1997). Pseudomonas fluorescens has

also been shown to produce antibiotic substances that are effective against

Rhizoctonia solani damping off (Howell and Stipanovic, 1979). Many more fungi

and bacteria have been studied and found protective against specified diseases. Lists

of the agents and the diseases they protect against are available from the USDA

website (2001)

Many studies attribute, at least in part, the biocontrol ability of the microbes

to chitinase production. Selection of biocontrol agents has been carried out by

including chitin in the media (Kobayashi and EI Barrad, 1996). Chitinolytic

bacteria, Xanthomonas and Serratia were tested in growth chamber studies and

found to suppress summer patch disease in Kentucky blue grass cv. Baron by up to

70% (Kobayashi et al 1995). Chitinase was seen to be an important factor in the

biocontrol activity of Trichoderma species (Chet and Inbar, 1994). In addition to

this, plant chitinases are also important in the role of plant defense (see SAR above)

and are elicited by infection (Benhamou, 1995)

Biological control - use ofsoil amendment to promote soil antagonists

Studies on growth substrate amendments report the use of various manures

(cow, chicken and swine), bonemeal and soybean meal (Viteri and Schmidt, 1996,

Lazarovits, 2001) to improve soil fertility. While cow manure has been used for

centuries as a fertiliser, its properties as a selective amendment to enhance certain

antagonists such as Trichoderma and Bacillus cereus have been recently reported

(Tsror et al., 200 I). The latter found that cattle manure in drills along with a

Trichoderma or non-virulent Rhizoctonia inoculum prevented black scurf in potato

without significantly affecting yield. It has long been thought that chitin could
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enhance biological control activity if added as an amendment to soil (Sneh 1971, Tu

et al 1992). The mechanism of action is not clear and has been the subject of much

investigation. Mitchell and Alexander (1962) reported an increase in the soil

microflora of chitinase producers and other antagonistic populations such as

actinomycetes, following chitin amendment. Whether these actually attack the

pathogens and/or produce secondary metabolites or volatiles that act as anti-fungal

agents is as yet unclear (Papavizas and Davey 1961, Henis 1994, Sneh 1971).

Another hypothesis is that chitin, as well as its breakdown products such as chitosan,

act as elicitors of the plants defence mechanism (Ren and West, 1992, Evans, 1993;

Gagnon and Ibrahim, 1997; Pearce et al., 1998). Crushed crustacean shells (CCS) are

a source of chitin (up to 30%) (Noomhorm et aI., 1998). This resource was chosen

as an environmentally friendly and organic chitin source. The use of crustacean

shellfish waste, (Sugimoto et al., 1998), is based on observations of biological

control properties against soil fungi (Fusarium solani f. phaseollj described by

Mitchell and Alexander (1962).
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of environmental concerns (Ahvenjarvi and Hakkila, 1997). The recycling of

processing water; the discharge of contaminated processing water, land drilling of

meat factory waste, and use of manure are factors underlying the increase in

biological pollution of the environment with human pathogenic bacteria (Koenraad

et al., 1995, Guo and Sims, 2001). Fig. 2 illustrates the main concerns and possible

sources of contamination for produce that is eaten raw or with minimal processing.

A recent example of this was the state-wide outbreak of Salmonella poona from

melons in the United States (Guinn, 2001).

There is mounting evidence linked to produce and food borne pathogen

survival (Table 1), and reports also show that many food borne outbreaks are

associated with fresh produce (see Table 2, Figs. 3& 4). In addition, there is a risk

associated with the release of biocontrol agents (biopestides) that can be pathogenic

to humans. Among these are Bacillus thuringeinsis and Burkholderia cepacia.

Many B. thuringeinsis subspecies have been studied by Rivera et al., (2000) who

found that some are capable of production of toxins usually found in serious cases of

food-poisoning caused by its close relative B. cereus. B. cepacia has been released

by the US Environmental Protection Agency (EPA website, 2000) for control of,

among other pests, Alternaria on carrots (Chen and Wu., 1999). B. cepacia has been

reported by Fung et al., (1998) as being a multi-drug resistant bacterium capable of

causing opportunistic and detrimental infection in immunO-suppressed patients (i.e.

cystic fibrosis patients).
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Table 1. Bacterial pathogens isolated from raw vegetables in European countries.

Adapted from Beuchat (1996)

Vegetable Country Pathogen Prevalence

Artichoke Spain Salmonella 3/25 (12'()0/0)
Bean Sprouts Sweden Salmonella N/A
Beet leaves Spain Salmonella 4/52 (7.7%)
Cabbage Spain Salmonella 7/41 (17.10/0
Cauliflower Netherlands Salmonella 1/13 (7.70/0)
Cauliflower Spain Salmonella 1/23 (4.50/0)
Celery Spain Salmonella 2/26 (7.70/0}
Egg plant Netherlands Salmonella 2/13 (1.5%)
Endive Netherlands Salmonella 2/13 (1.50/0)
Fennel Italy Salmonella 2/26 (7.7%)
Leeks Spain L. monocylogenes 4/89 (71.90/0)
Lettuce Italy Salmonella 1/5 (200,,10)
Lettuce Netherlands Salmonella 82/120 (68%)
Lettuce Spain Salmonella 2/28 (7.10/0)
Mustad Cress UK Salmonella N/A
Parsley Spain Salmonella N/A
Pepper Sweden Salmonella 1/23 (4.3%)
Potatoes Spain L. monocylogenes 2/12 (16.7%)
Prepacked Salads N. Ireland L. monocylogenes 3/21 (14.30/0)
Prepacked Salads UK L. monocylogenes 4/60 (13.30/0)
Prepacked Salads UK L. monocylogenes N/A
Salad Greens UK S. aureus 13/256 (5.10/0)
Salad Vegetables Spain Aeromonas 2/33 (6.10/0)
Salad Vegetables Spain L. monocylogenes 21170 (300/0)
Salad Vegetables Germany L. monocylogenes 6/263 (2.30/0)
Salad Vegetables N. Ireland L. monocylogenes 4/16 (25%)
Salad Vegetables UK r enlerolilica N/A
Spinach Spain Salmonella 2/60 (3.30/0)
Vegetables France r enlerolitica 4/58 (70/0)
Vegetables France r enlerolilica 15/30 (500/0)
Vegetables Italy L. monocylol!eneS 7/102 (6.90/0)
Vegetables Italy r enlerolilica 8/103 (7.80/0)
Vegetables Spain L. monocylogenes 8/103 (7.80/0)
Vegetables Spain Salmonella 46/849 (5.4%)
Vegetables UK L. monocylogenes 4/64 (6.2%)
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Table 2. Examples of pathogens assoicated with fruit and vegetables involved in

outbreaks of foodbome disease. Adapted from WHO/FSF/FOS, 1998

A~ent Implicated Food
Bacillus cereus Sprouts
Campylobacter Cucumber

Campylobacter jejuni Lettuce
Clostridium botulinum Vegetable Salad

Cryptosporidium Apple Cider
Cyc/ospora Raspberries
E. coli 0157 Radish Sprouts
E. coli 0157 Apple Juice
E. coli 0157 Apple Cider
E. coli 0157 Iceberg Lettuce

Salmonella agona Coleslaw & Onions
Salmonella miami Watermelon

Salmonella oranienburg Watermelon
Salmonella poona Cantaloupes

Salmonella saint-paul Bean Sprouts
Salmonella stanley Alfalfa Sprouts

Salmonella thompson Root Vegetables & Dried Seaweed
Shigella jlexneri Mixed Salad
Shi~ella sonnei Iceberg Lettuce
Shigella sonnei Tossed Salad
Vibrio chlolerae Salad Crops & Vegetables
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Objectives of the project

The overall objective of this project was to evaluate the efficacy of a biological

control strategy and the relationship of alternative strategies to the safety of raw

salad vegetable production. These issues were investigated using experimental

models previously worked on in the department or concurrent with the study.

The objectives were:

• to evaluate the use of crushed crustacean shell fish waste as a field application

and formulated with peat (SuppressorTN ) to control soilborne plant disease

• to investigate the vertical transmission of model isolates of human pathogenic

bacteria in the production of raw salad vegetables with a view to developing

HACCP guidelines for the industry.

The thesis is divided into the following stages (see Fig. 5 for flow diagram of thesis)

• Reviews of the literature on bacterial contamination of plant produce (Chapter 2)

and on special plant colonisation methods by bacteria (Chapter 3).

This is followed by chapters, which report the results of the following investigation

on the biological control properties ofcrustacean shellfish waste:

• Preliminary field evaluation of crushed crustacean shells compared to other

organic wastes in the field for control of Sclerotinia sclerotiorum basal stem rot

in the field and of storage rots of Jerusalem artichoke (Helianthus tuberosus.)

(Chapter 4 & 5).
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• Stimulation of wild strawberry (Fragaria vesca) arbuscular mycorrhizas by

addition of shellfish waste to the growth substrate: interaction between

mycorrhization, substrate amendment and susceptibility to red core

(Phytophthora fragariae) (Chapter 6).

• The identification and use of chitin-amended compost to suppress wilt disease in

glasshouse-grown Dianthus 'mystere' plants (Chapter 7).

This next part of the work was aimed at investigating the risk to human health

posed by bacterial contamination. Little is known about the ability of the~ the

chosen model bacteria to persist in and on plants. To assess the risk to human health

of the transmission of human pathogens in/on plants the following experiments were

carried out:

• Brassica plants were inoculated in aseptic culture with model isolates of E. coli

and Se"atia marcescens (representative human food poisoning pathogens) and

the bacterial persistence in planta and epiphytically, was studied. The plants

were multiplied and inoculated with E. coli in vitro, established in hydroponic

culture and host colonisation and bacterial plant interactions were studied

(Chapters 8 & 9)

Chapter lOis the final discussion of the results of the experimental work for this

project. The last stage was to attempt to construct HACCP guidelines for the safe

use of biological waste in raw salad production (Chapter 11).

While there have been increased reports of food poisoning due to

consumption of raw salad vegetables, there is little information on the source of the
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contamination, or the interaction between human pathogenic bacteria and plants, e.g.

is colonisation endophytic thereby avoiding surface sterilization.

The disease problems selected for biocontrol investigation here have been the

subject of on-going research in the Department of Plant Science or arose in parallel

projects during the investigation (Cassells and Deadman, 1993, Cassells and Walsh,

1995, Dempsey, 1998). Endophytic bacterial contamination has been the subject of

much research over the years in the department (Barrett and Cassells, 1994, Cassells

and Tahmatsidou, 1996, Leifert and Cassells, 2000). Possible health risks associated

with the discovery of E. coli in plants supplied with farmyard manure as an organic

fertiliser (Cassells and Tahmatsidou, 1996), prompted the investigation into the

possible risk of acquisition of human pathogen bacteria from organic material

supplied to crops. The persistence of these bacteria endophytically in the plant

would by-pass conventional surface washes of raw salad vegetables which are

consumed uncooked or used as ingredients of prepared meals; they could possibly

incubate and multiply in product distribution.
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HUMAN PATHOGENS ASSOCIATED WITH PLANT PRODUCE

S.M. Rafferty, A. C. Cassells

Dept. of Plant Science,

National University of Ireland, Cork,

Ireland

Introduction:

In recent years there has been an increase in foodborne incidences associated .

with fresh produce (I). Contributing factors include an increased rate in

consumption of produce per capita, intensification of agricultural production,

modem processing techniques and globalisation of the market (2).

Sources of contamination:

Numerous sources of microorganisms are present in food production.

Contaminated soil, water, feed and manure are fundamental sources. Methods of

introduction throughout the processing industry involve contaminated raw

ingredients! raw materials (e.g. packaging), unhygienic employees/surfaces, dirty

process water, faulty air handling systems, and others (3).

Listeria monocytogenes, Clostridium botulinum, and Bacillus cereus can be

naturally present in soils. Campylobacter jejuni , Escherichia coli 0157:H7,

Salmonella and Vibrio cholerae are more likely to contaminate produce through

vehicles such as improperly composted manure or irrigation/wash water containing

untreated sewage. Wild or domestic animals are another source ofcontamination.

Unhygienic surfaces and handlers can represent a potential basis for

contamination from farm to fork (4). Investigators have long been concerned with
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the threat posed from faeces fertilised produce. A 1912 Public Health Report called

attention to the transmission of typhoid bacillus via fresh produce contaminated with

human sewage (Cited by 5).

Recently several foodbome outbreaks have been linked to vegetables (See 6).

Such reports have enhanced speculation that pathogens, present in agricultural

manure, would pose a threat if applied to growing produce (5).

Water Transmission:

Use of contaminated irrigation water or inadequately treated water has been

quoted as a vehicle of transmission for various food poisoning agents (20, 21). A

major American producer of fresh-cut carrots now includes testing of irrigation and

processing water for total coli-forms and E. coli (3). An interesting plant pathogenic

case shows that bacterial spread through water is not uncommon. Potato brown rot

disease is caused by Pseudomonas solanacearumlRalstonia solanacearum biovar

2A. The bacterium has been found in most infected countries in surface water, ditch

water (22), sterile surface water (23), and in the weed Solanum dulcamara growing

along waterways (24). The pathogen can overwinter successfully in the roots (25),

from which it can spread to potato crops when associated water is used for irrigation

(26).

Bacterial Association with Plants:

Bacteria survive in association with plants in a variety ofways. They are

commonly found as epiphYtes but they also have more specialised methods of

association.
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Endophytic Survival: A method of avoiding the exterior stresses on a plant is

to live within the tissue, which affords protection. Common endophytic isolates

from plants include Beijerinckia, Azotobacter, Erwinia, Klebsiella, Enterobacter,

Bacillus (l), and Clavibacter (8). Endophytes have been shown to survive in the

following plant tissues: vascular tissue (9), roots (10, 11), stems and

cotyledonslleaves (12, 13). Endophytic presence in aseptic tissue culture has also

been noted (14). Systemic colonisation can afford protection for the bacterial

endophyte from competition and environmental stresses such as washing and

sterilisation procedures (1 S).

Biofilms: Various investigators have reported biofilms in the marine

environs, implanted medical equipment and water distribution systems (16).

Costerton (17), defines biofilms as: "Matrix enclosed bacterial populations adherent

to each other and/or to surfaces or interfaces. The definition includes aggregates and

flocculates and also adherent population within the pore spaces of porous media." It

was noted that biofilm cells are at least SOO times more resistant to anti-bacterial

agents than their planktonic counterparts. The control of biofilm bacteria has been

the focus of vast amounts ofapplied and medical research. Why biofilm bacteria are

less susceptible to usual lethal treatments is still unclear (17). Morris et al (18),

observed biofilms directly on the leaf. The plant species chosen were all vegetables

that are eaten raw (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley and

broad-leafed endive). Recovered biofilms using leaf washings and agar impressions

revealed that they contained multiple species (19). Costerton (17) quotes studies on

depth of biofilms, one homogenous biofilm studied was made up of Vibrio

parahaemolyticus, a well-known food-poisoning agent. This would indicate that

food poisoning agents could survive in this form.

34



Emerging Pathogens:

Various factors contribute to emerging pathogens including the globalisation

of the food supply (3), as well as evolving microbial populations (27). Increasingly

since the late eighties Campylobacter infection has risen to and surpassed that of

Salmonella and campylobacteriosis is more common across the world (28). The

Super family VI includes the genera Campylobacter and Helicobacter. These

microorganisms are Gram negative, motile by means of flagella, spiral shaped and

microaerophilic (29).

Campylobacter: During the past decade Campylobacter has emerged as a

major cause of human enteritis (4,30,31,32,33). Patients, excreting the organism and

healthy carriers such as poultry and pigs provide a constant flow of the bacterium

into the environment. The application of natural or untreated water for irrigation of

farmlands is a route of direct contamination. Waterborne outbreaks of

Campylobacteriosis have been reported in Sweden, USA, Canada, England,

Yugoslavia and Norway as cited by (21). Koenraad draws attention to the possible

presence of Campylobacter species in water in a VBNC (viable but not cultivable)

fonn (30). Campylobacter have been isolated from fresh market produce. 3.8% of

the samples were positive for Campylobacter (21). Through analysis of diet histories

Harris et al (34) cite Doyle et al., (1986) as having isolated Campylobacter jejuni

from a small percentage of commercial mushrooms (1.5%). Despite many

investigations the sources of the majority of sporadic cases of human

campylobacteriosis remains unproven. However, the major sources for

Campylobacter in produce include, untreated waters and soil and manure. Poultry

may have an important role in human infection but other sources cannot be ignored

(31).
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Helicobacter: H. pylori is the most common chronic infection in human kind

and the major etiological agent for chronic active gastritis (29, 35). It is often

present in ulcer disease and atrophic gastritis (36), it is being actively explored as a

risk factor for gastric carcinoma. H. pylori is fastidious and requires three or more

days for isolation, microaerophilic conditions must be constantly maintained (29).

Little is known about environmental sources of H. pylori though the faecal oral route

has long been suspected (35). That produce may be a vehicle in H. pylori

transmission is based on serosurveys. A study in Chile showed a significantly higher

prevalence in lower socio-economic groups. Since a key factor in enteric pathogen

transmission in Chile is the use of sewage-contaminated irrigation water on produce,

then it was thought that this might also be a route of transmission for H. pylori

(Hopkins 1993 cited by 35). Helicobacter has been associated with waterborne

transmission (37), probably in a viable but non-cultivable state (38). It is possible

Helicobacter may not have been directly isolated from produce because of the

difficulty in culturability and/or detection.

Conclusion:

Considering that bacteria are known to survive on salad vegetables as

biofilms and as endophytes, this presents us with a risk that requires investigation.

Whether human pathogens can survive on fresh produce requires further

examination. Prevention of the transmission of human pathogens in the food industry

involves taking action at all stages in the chain from farm-to fork. Properly

composted manure and irrigation water from a clean source should be used on

growing crops. All processing should include sanitary designed processing facilities,

highly evolved HACCP plans, sanitation regimes, GMP, employee
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training/monitoring in basic hygiene and perhaps to include irradiation as a final

precautionary step (3), the latter should not be used on it's own or to process poorer

quality raw materials. Research is necessary to understand more fully the survival

mechanisms of pathogenic bacteria on fresh and minimally processed produce (3).
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biofilms
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Preface to Chapter 3

This chapter covers areas briefly introduced in Chapter 2 in greater depth. The style

follows that for reviews in the journal Plant Cell Tissue and Organ Culture.
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Colonisation of Plants by Bacteria as Endophytes and Biofilms

Abstract

Bacteria are well-characterised inhabitants of the rhizosphere and phylloplane

(Hallmann et al., 1997a). It is now accepted that bacteria may occur also as

endophytic colonisers of plants (Chanway, 1996). Bacteria may also survive both on

roots and on the haulm in biofilms. It is recognised that bacteria in biofilms may be

highly resistant to surface sterilizing agents while as endophytes they are immune

from the effects of standard antiseptic treatments. Here, the literature on the

colonisation of plants by bacteria is reviewed with emphasis on the implications of

endophytic colonisation and biofilm formation, for the microbial safety of raw salad

vegetables.

Endophytes

Host entry

Bacterial endophytes have been reported with cell counts up to 107 cfulg of

plant matter (Chanway 1998). Bacteria from very many genera have been found to

reside within plant tissues without causing disease. Plants species from trees to

grasses have been investigated and found to harbour endophytes. Table 1 lists many

examples of bacteria and the plants tissues in which they have been isolated. As an

endophyte, a bacterium is afforded protection from environmental factors such as

UV, temperature, competition from other microbes, etc (Mahaffee et al., 1994). The

bacteria detected as endophytes have been shown to be present in the rhizosphere,

phylloplane, planting material and seeds. The most likely primary route of entry is

via the rhizosphere, with bacteria colonizing the germinating seed or vegetative

propagule and spreading through the plant systemically. Studies to corroborate this
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hypothesis have taken aseptic potato microplants and planted them in soil. The

endophytes found subsequently in the tissues were similar to the saprophyte genera

found in the soil (Kloepper and Beauchamp, 1992). While the endophyte

communities originate from the rhizosphere bacteria, the root interface operates

some selective barrier and/or the interior tissues represent a selective niche, as fewer

genera have been reported as endophytes compared to the diversity of the bacterial

flora in the rhizosphere (Hallmann et al., 1997b). Endophytes may enter

predominantly through the wound caused by lateral root emergence.

Stomata, lenticels, hydratodes and wounds are natural ports of entry for

potential endophytes from the haulm/root epiflora. Most commonly, bacteria gain

entry at secondary growth emergence zones, which form natural wounds for the

bacteria to colonise, Fig. 1 illustrates some of the latter (Dane and Shaw 1996 ,

Hallmann et al., 1997b, Reddy et al., 1997, 0 Callaghan et al., 1997). Natural

husbandry of plants such as grafting, harvesting and pruning leaves create channels

of entry as well as wounds caused by insects, fungi and nematodes (Hallmann et al.,

1997b). Tropisms that attract bacteria such as chemotaxis, electrotaxis and

opportunistic colonisation. as secondary colonists after pathogen colonisation, may

also be significant factors. Weak forces adsorb the bacteria to the rhizoplane,

followed by stronger forces leading to entry into internal tissues and epiphytic

colonisation (Hallmann et al., 1997b). Hallmann et al., (loc. cit.) also report on

another mode of active entry, which involves bacterial enzymatic systems. Cellulase

and pectinase are produced by many endophytes and would support the hypothesis of

plant wall degradation in order to gain access to the interior of the plant. Post

colonisation the bacteria can down-regulate the enzymes. This area needs closer

examination order to elucidate the pathways used.
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Fig. 1 Diagram showing examples of various points where entry of bacteria can

occur: stomata, wounds, lateral root emergence, etc. Pathogenic bacteria can enter

by digestion of the epidermis and cells walls. Endophytes can survive in ground

tissue in intracellular spaces as well as travelling acropetally and basipetally in the

vascular system. Biofilms can form on any part of the epidermis of the plant
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Host colonisation

Nitrogen-fixing bacteria are commonly found in association with the roots of

plants as endophytes (Neidhart et al., 1990). Other than nitrogen fixers (eg

Bradyrhizobium japonicum) common endophytic isolates from plants include:

Erwinia, Klebsiella, Enterobacter, C/avibacter, Bacillus (Turner et al., 1991 and

Fuentes-Ramirez et a/., 1993). Bacterial endophytes have been shown to survive in

every almost every tissue and organ of the plant from seeds to leaves. (Dane and

Shaw 1996, Baldani et al., 1997, Quandt- Hallmann and Kloepper 1996, Schloter

and Hartmann, 1998). Generally endophytic bacteria ate found in the intercellular

spaces. There are some reports of intracellular endophytes but these are

predominantly fastidious pathogens (Chanway, 1996). Reports of population

numbers vary considerably, which might be explained by the as yet, crude methods

of enumeration used, but a contributing factor to this is also the varying degrees of

nutrient availability. Sugarcane intracellular spaces are reported as having sucrose in

the fluid present, whereas the concentration of inorganic ions in the other wet

intracellular spaces varies (Hallmann et a/., 1997b).

Reports of endophytes in the xylem do not always show w}lether the bacteria are

growing or just surviving. Multiplication of endophytic pathogens in the vessels can

cause blockages and constrictions but non-pathogenic endophytes generally remain

below this threshold (Hallmann et al., 1997b). Multiplication is difficult to

demonstrate for endophytic colonists but long tenn survival of nitrogen-fixing

endophytes suggests a dynamic association with the host tissues (Neidhart et al.,

1990, Fuentes-Raimerez et al., 1993). In some studies where the hosts were

deliberately inoculated, the bacteria reach a specific concentration, particular to the

plant, regardless of the initial inoculum concentration (Chanway, 1998; Hallmann et
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al., 1997b). These data would suggest that multiplication is regulated by host

factors, or possibly nutrient availability maintains the bacterial population below the

threshold for pathogenicity.

Bacterial movement within the plant

Endophytes may opportunistically colonise plants due to nutrient leakage

(caused by extension during growth or other wounds) it could be assumed that the

bacteria remain localised. However, studies by Quandt-Hallmann et al., (1996) on

Enterobacter asburiae JM22, using plating and immunochemical techniques to

corroborate the results, showed that the inoculant Enterobacter was located in the

internal tissues of roots, stems and cotyledons; the highest concentration was found

in the roots following seed inoculation. When cotyledons and leaves were

inoculated with JM22, bacteria were found internally in the cotyledons and the roots.

Leaf inoculations also resulted in root colonisation (Quandt-Hallmann et al., 1996).

These data would support movement in both acropetal and basipetal directions.

Similar conclusions were also drawn by McPherson and Preece (1978) previously,

when they investigated the movement of the Xanothmonas pelargoni in

Pelargonium.

Interactions. with the host plant

In the last decade, interest in the interaction of non-pathogenic micro

organisms and plants has increased (Han et al., 2000). Smith and Goodman (1999)

recently reviewed plant-associated bacteria and listed nitrogen flXation, growth

promotion, improvement of nutrient uptake and disease suppression among the

benefits. As many variations in interaction occur in different plants and bacteria

46



combinations, it is suggested that plant genes are involved in the selection and/or

support of such interactions. Research in the early nineties showed that

Pseudomonas and Serratia species could induce systemic resistance in cucumber to

various diseases when used as seed dressings. The selected strains remained

localised in the plant distant from the induced systemic effects (Wei et al., 1991,

cited by Han et al., 2000). Generally induction of resistance is termed Induced

Systemic Resistance (ISR) when initiated by non-pathogens and usually involves

ethylene or jasmonic signals. Systemic Acquired Resistance (SAR) more commonly

involves induction by necrotising plant pathogens and leads to the build up of

pathogenesis related (PR) proteins via the salicylic signalling pathway. (Han et al.,

2000). However, crossover between the two resistance pathways can occur and

further studies on the plant proteins induced is required (Park and Kloepper, 2000).

While much work has been done on bacterial inoculants and effects on plant disease

suppression, little or no research has been carried out specifically aimed at

elucidating endophyte-host interactions. Work usually is restricted to the disease

under study and genes associated with the host response (Davila-Huerta et al., 1995,

Yoshimura et al., 1998). There is a need for further study in this area in order to

improve understanding and contribute to enhanced agriculture as well as safety of

the plants for human consumption (Smith and Goodman, 1999; Han et al., 2000).

Agrobacterium - a deliberate endophyte

Plant transformation can be achieved by various methods, but Agrobacterium

tumefaciens mediated transformations are still the most popular (Fenning and

Gartland 1995). However, it has been found that the antibiotics most useful for

decontamination can quite often inhibit tissue regeneration (See Table 3)
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The mechanism of transformation and choices of binary Ti vectors are well

described elsewhere and is not the focus of this review (Bouzar et al., 1995, Gartland

and Davey 1995, Hellens et al., 2000). Briefly, the presence of the Ti plasmid

combined with marker genes that are easily selectable, enables systems that allow

successful plant transformations. Agrobacterium mediated transformation requires

co-culture, for a short time, of the bacteria and plants (or parts thereof). Successful

transformants are detected by the reporter gene and must be treated with antibiotics

for periods up to a few months to decontaminate progeny plants from the inoculant.

Leifert and Cassells (2000) have reviewed suppression of bacterial

contaminants in tissue culture including Agrobacterium in transformed plants and

found that very often despite media acidification and lor months of antibiotic

therapy, that complete elimination is extremely difficult. In fact, in an SCRI study

by Barrett et al. (1996), it is claimed that many laboratories do not check that

Agrobacterium has been totally eradicated. The study indicates that 50% of plant

material contained up to 107 cfulg of plant tissue of the Agrobacterium binary vector

system. This finding was made 6 months after the transformation (Barrett et al.,

1997). These studies show that once a plant is colonised with an endophyte, it can

be very difficult to eliminate.

Biofilms

Biofilm structure

In many environments it is common to find assemblages of micro-organisms

adhering to each other and/or to a surface and embedded in a matrix of exopolYmers.

These are referred to as biofilms (Morris, 1998). Costerton et a/., (1995) defmes

biofilms as:
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.A matrix enclosed bacterial population adherent to each other and/or to surfaces

or interfaces. The definition includes aggregates and flocculates and also

adherent population within the pore spaces ofporous media.

As studied in the aquatic habitat, the microenvironment and physiology of

biofilm bacteria are often markedly different from their planktonic counterparts

because of some basic properties

• Biofilms are composed of an exopolymeric matrix and multiple layers of

microbial cells leading to the creation of physical barriers and the establishment

ofchemical gradients

• They generally contain multiple species of micro-organisms fostering metabolic

and genetic exchange

• Many biofilms are attached to a surface (biotic or abiotic including the surface of

other micro-organisms or debris in the biofilm) which is requisite for the

expression ofcertain genes (Costerton et al., 1995).

Secondary levels ofco-operation build up in biofilms which facilitate

• Physiological co-operativity between different bacterial species (Costerton et al.,

1995)

• Concentration gradients of molecules and ions may occur in viscous

exopolysaccaharide matrix that supports the biofilm (Costerton and

Lewandowski, 1997)

Costerton et al., (1995) also state that direct observation has clearly shown that

biofilm bacteria predominate numerically and metabolically in virtually all nutrient

sufficient ecosystems.
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Biofilms and gene exchange

Sarand et al., (1998) using transmission electron microscopy of the soil

fungal interface showed ectomychorrhizae supporting morphologically diverse

biofilms. Plasmid exchange was proven in vitro and was extrapolated to be more

enhanced in vivo as the prevailing conditions would increase concentrations of

bacteria present in such an energy rich environment. Gene exchange was also

demonstrated to occur between marine bacteria in biofilms in reactor microcosms

(Angles et al., 1993).

Biofilms and resistance to anti-microbial agents

Bacteria respond to their environment by varying their enzyme production,

external structure and the composition of their cell walls. Biofilm bacteria differ

greatly in their response compared to their 'normal' counterparts. Nickel et al.,

(1985) carried out experiments on biofilms of Pseudomonas growing on catheter

material. They found after isolation and culturing on agar that the Pseudomonas

were killed after 8 hours treatment with 50J.1g mr l of tobramycin. However, the

same bacteria growing as a biofilm were not killed after 12 hours contact with

l000J.1g mr l
. It was their conclusion that biofilms are much more resistant to

antibiotics and biocides than bacteria growing in non-biofilm conditions. Biofilms

demonstrate an increased natural resistance to surfactants and antibiotic therapy. It

is hypothesised that the strategy behind the formation of biofilms may be to enhance

survival during nutrient shortages while retaining the capacity to return to the

vegetative state when nutrients become available or conditions become more

favourable. The distribution of biofilms is wide, Costerton et al., (1995, 1997)

report biofilms in medical, industrial and marine situations as well as in ecosystems.
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colonisers. They come from a mixed culture source capable of allowing gene

exchange which implies that as a group they can carry and exchange resistance

factors.

Conclusion

From the literature it is clear that internal tissues of plants can be colonised

by diverse species of bacteria. As interest grows in of endophytic bacterial

colonisers of plants, it is clear that further research on the elucidation of the

mechanisms ofentry and in planta regulation/suppression is required. This area is

important to contributing to safety of plant health from the point ofview ofcarrying

potential human pathogens.

The study ofbiofilms on plants has yet to be fully pursued. Their formation

and frequency on plants as well as the conditions that are conducive or inhibitory to

their build up are aspects that need clarification. In addition, gene transfer in

biofilms, which has been shown to occur cross-species, also requires study. This

research would have consequences for transfer of resistance to anitmicrobials

including antibiotics, as well as transfer ofvirulence factors between potential

pathogens for plants and humans.
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Table 1 Non-pathogenic bacterial genera found in plants

Bacterial genera Plant species Tissue

Erwinia-like, Pseudomonas Alfalfa (Meidcago sativa L) Root

Acetobacter Coffee (Coffea arabica L) Root and stem

Acetobacter Cameroon (Pennisetum

purpureum Schumach)

Bacillus, Bur/cholderia, Com (Zea mays L) Root and stem

CorynebacteriUm,

Enterobacter, Klebsiella,

Pseudomonas

Agrobacterium, Bacillus, Cotton (Gossypium hirsutum Root and stem

Bur/cholderia, Clavibacter, L)

Erwinia, Sen-atia,

Xanthomonas

Agrobacterium, Arthrobacter, Cucumber (Cucumis sativis L) Root

Bacillus, Bur/cholderia,

Chryseobacterium,

Enterobacter, Pseudomonas,

Stenotrophomonas

Bacillus, Clavibacter, Grapevine (Vitis spp)

Comamo7IQS, Curtobacterium,

Enterobacter, Klebsiella,

Moraxella, Pan/oea,

Pseudomonas, Rahnella,
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Rhodococcus. Staphlococus.

Xanthomonas

Bacillus Pseudomonas. Hybrid spruce ( Picea glauca x Root

Actnomyces. Staphlococcus Engelmannii)

Azoarcus Kallar grass (Leptochloa fusca Root

[L] Kunth)Root

Bacillus Lodgepole pine (Pinus Root

contorta Dougl Ex Loud)

Acidovorax. Acinetobacter, Potato (Solanum tuberosum L) Tuber

Actinomyces, Agrobacterium,

Alcaligenes, Arthrobacter,

Bacillus. Capnocytophaga,

Cellulomonas, Clavibacter,

Commamonas,

Corynebacterium,

Curtobacterium. Deleya,

Enterobacter, Erwinia,

Flavobacterium. Kingella,

Klebsiella. Leuconostoc,

Micrococcus, Pantoes,

Pasteurella. Photobacterium,

Pseudomonas. Psychrobacter,

Serratia. Shewanella,

Sphingomonas, Vibrio,

Xanthomonas
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Acidovorax, Agrobacterium Red clover (Trifolium pratense Leaves, root and

L) stem

Arthrobacter, Bacillus, Rice (Oryza sativa L) Root and stem

Bordetella, Cellulomonas,

Commamonas,

Curtobacterium, Deleya,

Enterobacter, Escherichia,

Klebsiella, Methylobacterium,

Micrococcus, Pantoea,

Pateurella, Phyllobacterium,

Pseudomonas, Pschrobacter,

Rhizobium, Serratia,

Sphingomonas, Variovorax,

Xanthomonas

Achromobacter, Alcaligenes, Rough Lemon (Citrus jambhiri Root

Moraxella, Acinebacter, Lush)

Actinomyces, Arthrobacter,

Bacillus, Citrobacter,

Corynebacter, Enterobacter,

Flavobacterium, Klebsiella,

Providencia, Pseudomonas,

Serratia, Vibrio, Yersinia,

Rickettsia-like

Herbaspirillum Sorghum bicolor L Moench Shoot

Bacillus, Corynebacterium, Sugar beet (Beta vulgaris L) Root
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Erwinia, Lactobacillus,

Pseudomonas, Xanthomonas

Acetobacter, Herbaspirillum Sugar cane (Saccharum Root and stem

officinarum L)

Klebsiella Teosinte (Zea luxurians Itins Stem

and Doebley)

(Adapted from Chanway, 1998)
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Table 2 Examples of identified Bacteria from heterogeneous and homogenous

biofilms

Identified Bioftlm Bacteria Reference

~ctinomycetes species Astier et aJ., 1995

lBacillus Quintero el aI., 1992

CampyJobacler jejuni Somers et aJ., 1994

Citrobacter diversus Stickler & Hewett, 1991

IE. faecalis Stickler & Hewett, 1991

IE. coli Evans el aI., 1991

E coli OJ57:H7 Somers et aJ., 1994

:Hyphomicrobium species Banks and Bryers, 1991

Klebsiella pneumoniae Siebel & Characklis, 1991

!Listeria monocylogenes Ronner & Wong, 1993, Somers el aI., 1994

lPseudomonas aeruginosa Siebel & Characklis, 1991, Evans et aI.,

1991,

Nickel et aI., 1985

lPseudomonas fragi Zanyk el aI., 1991

lPseudomonas putido Gunning et aJ., 1996, Shreve el aI., 1991

"Staphylococcus aureus Anwar et aI., 1992

iSaJmonella typhimurium Romer & Wong, 1993 Somers et aJ., 1994
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Table 3 Plants inhIbited by antibiotics

Plants inhibited by Cefotaxirne @ Plants inhibited by Carbenicillin @ 250-

500mgIL 500mgIL

Arabidopsis Anti"hinum

Daucus carota Beta vulgaris

Malus Nicotinia tabacum

Solanum tuberosum Picea glauca

Picea glauca Solanum tuberosum

Pyrus communis Datura

Triticum aestivum Arabidopsis

Delphinium

Vitis

(Adapted from Nauerby 1997)
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Chapter Four

Effects of calcium fertilisers on Sclerotinia disease in

Jerusalem artichoke

Section B: Investigation of/he biocontraJ properties afchitin-containing C11Islacean shellfish waste



Preface to Chapter 4

This section is concerned with the evaluation of the biocontrol potential of chitin

containing crustacean shellfish waste. Calcium is reported to be a host resistance

factor to Sclerotinia disease (see introduction to Chapter 4). As crustacean shellfish

waste (CCS) contains both calcium and chitin, a preliminary experiment was carried

out here to determine whether increase in calcium fertiliser affected Sclerotinia

disease susceptibility in Jerusalem artichoke. The fieldwork was carried out in

collaboration with R. Dempsey. Chapter S reports on the biological control potential

of shellfish waste. The style is that of the journal Applied Soil Ecology
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Effects of calcium fertilisers on Sclerotinia disease In Jerusalem artichoke

Abstract

In Ireland, basal stem and cottony tuber rot of Jerusalem artichoke

(Helianthus tuberosus) caused by Sclerotinia sclerotiorum is most the serious disease

threatening stable crop production. The longevity of sclerotia makes rotation

impractical. Chemical soil treatment costs are prohibitive; foliar application is

impractical due to the height of the canopy. Here, calcium fertilisers were evaluated

for their effects on incidence of Sclerotinia disease in Jerusalem artichoke

(Helianthus tuberosus L.). Calcium ammonium nitrate was used at the

recommended rate and at twice this rate. A negative control with no calcium was

also included (ammonium sulphate nitrate). &lerotinia disease was reduced

significantly when fertilised with the higher calcium application

Keywords; Sclerotinia, Helianthus tuberosus, calcium fertiliser, disease suppression.

1 Introduction

Sclerotinia species cause disease in a very broad range of crop species world

wide. A list of hosts by Purdy (1979) included 64 families and 225 genera. S.

sclerotiorum is ubiquitous and has the widest range of hosts. The disease can affect

all stages of growth from damping-off at seedling stage to rot of harvested produce.

In the case of Helianthus tuberosus the disease causes a stem rot in the field and
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tuber rot in storage (Deadman and Cassells, 1993). For Sclerotinia diseases there is

usually a direct relationship between inoculum density and disease incidence

(Twengstrom et aI., 1998). The sclerotia germinate in the top 2.5cm of the soil when

temperatures reach 6-10 0 C in Spring, resulting in ascospores borne on apothecia,

ejected into the atmosphere (carpogenic germination). Most spores invade by

colonising dead or dYing tissues (Purdy 1979). Forecasting methods are discussed by

TwengstrOm et aI., (1998) which guide when to spray against carpogenic

germination. This allows for only necessary use of expensive fungicide and

reduction of yield losses. Sclerotia can cause infection of the below ground parts via

production of mycelium which directly invades the tissues (myceliogenic

germination). Oxalic acid is a pathogenicity factor which lowers the pH of the

tissues to about 4, which is the optimum for the cell wall degrading enzymes

produced by the pathogen (Godoy et aI., 1990). Oxalic acid also chelates calcium

ions into a calcium oxalate complex which also can aid the invasion of the tissue by

Sclerotinia (Dempsey, 1998). Govrin and Levine (2000) report that necrotrophic

pathogens such as Sclerotinia sclerotiorum can invade healthy tissue and evoke the

hypersensitive response (HR). This triggers an oxidative burst that leads to plant cell

death. The mechanism usually cuts off food supply to biotrophic pathogens,

however necrogens can utilise dead tissue and hence exploit the plant's defences to

further colonise the host tissues.

Control of soilborne plant pathogens is difficult and soil fumigants e.g. 1;l

dibromochloropropane (DBCP) or ethylene dibromide (EDB) have been suspended

most countries. Methyl bromide, which is the most widely used fumigant, is now

being restricted and will eventually be, discontinued (Gamliel ~ aI., 2000). These

chemical treatments were very expensive not always successful (Akhtar & Malik
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2000, Gamliel et al., 2000). Steadman (1979) and Expert and Digat (1995) have

discussed the lack of progress in breeding for sclerotinia resistance and in the

development of effective chemical controls. Recent publications have elucidated

Sclerotinia resistance mechanisms in sunflower (Urdangarin et 16 2000, Giudici et

!6 2000). Kesarwani et al. (2000) reported that overexpression of a transgene for

oxalate decarboxylase in tomato and tobacco conferred resistance to S. sclerotiorum.

Oxalate decarboxylase catabolises oxalate and hence maintains the pH above the

optimum for pathogen-produced host cell wall degrading enzymes. This strategy has

potential for other susceptible hosts including H. tuberosus but consumer acceptance

ofGMO products has resulted in a moratorium on GMO trials in the EU.

Here, an alternative strategy for S. sclerotiorum disease control was

evaluated based on attempts to manipulate host leaf calcium by calcium fertilizer

application. Calcium is a host resistance factor inhibiting the activity of the

pathogen'5 cell wall degrading enzymes (Cassells and Barlass, 1976, 1978).

Previously, it was shown that high calcium-accumulating mutants showed enhanced

field resistance to S. sclerotiorum (Walsh 1994), however, the cost of mutation

breeding for individual varieties is a limitation on this strategy. The approach here

was to attempt to manipulate leaf calcium by exploiting the counter ion effect where

calcium uptake is inhibited by competition with ammonium (a cation), and promoted

by nitrate (an anion). To achieve this, fertiliser was applied as fonnulations of

ammonium sulphate nitrate and calcium ammonium nitrate.
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2. Materials and methods

2.1. Field trial

The trials site was sprayed with glyphosate (Roundup; Monsanto (Irl.) Ltd,

Dublin, Ireland) and 3 weeks later ploughed to a dept of 20 cm. The site was

rotavated and fertilized with calcium ammonium nitrate or with the soil

amendments.. Controls, were fertilised with calcium ammonium nitrate-CAN- (l0.4

gN/m2 and 1.6 gCa/m2
) 400 kg/ha, which is the standard fertiliser used in this

temperate region (Cassells and Deadman, 1993). Double the usual concentration of

calcium ammonium nitrate-Hi CAN- (20.8 gN/m2 and 3.2gCalm2
) was used,

800kglha. Negative control plots were treated with Ammonium sulphate nitrate 

ASN-(lOA gN/m2
, Og Ca/m2

), 400kg/ha, which contained no calcium. Trials were

planted at the end of March. Seed tubers of cv. Nahodka were produced from

micropropagated stock (Cassells mal., 1988). Blocks were planted for all treatments.

Each block consisted of approximately 600 plants with interplant spacing of 30 cm

and inter-row spacing of 70 cm, equivalent to approx. 46,200 plantslha. Blocks were

not replicated in this trial.

2.2. Disease monitoring

Disease surveys were carried out at the end of the growing season.

Sclerotinia-infected plants were recognised by necrotic basal stem lesions associated

with characteristic cottony mycelium and the presence of sclerotia. A sample harvest

was carried out of healthy and diseased plants, it was determined by random

sampling of the plots. 10 healthy plants and 10 infected plants from each block were
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lifted at random avoiding the margins. Tubers were washed, dried and the fresh

weight recorded.

2.3 Mineral analyses

Five samples of bulk soil (approximately lOOg) were taken from the top 3 cm of

soil in each plot. The soil was collected randomly across each block and 5 samples

from each block were pooled into a single plastic bag and tied. Samples were kept at

4°C until required. Leaves were collected at random from each of the blocks and

sent for analyses. A commercial laboratory (Teagasc Johnstown, Co. Wexford),

carried out soil and leaf analyses.

2.4 Data Analyses

A chi-squared analysis was carried out on the numbers of diseased plants

observed in the plots and the percentage data was graphed for presentational

purposes. All correlations were carried out using linear regression analyses in the

GraphPad Prism TN 2.0 software package. R2 values given were checked for

statistical significance by checking the R value at the 5% level on the Critical Values

for Correlation Coefficient Table (Z8r 1996). All correlation graphs presented are

significant at this level.

3. Results

3.1 Effect offertiliser on disease levels and yield

Yield comparisons for healthy plants are shown in Fig. 1. The Hi CAN and CAN

treatments show the highest Yields at 33,949kglha and 33,445kg/ha respectively.

While the lowest was given by the crop fertilised with ASN at 26,481 kglha.
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Included on this graph are yields corrected for the percentage disease loss observed.

This shows a small difference between healthy and corrected yields for Hi CAN,

differences in the other treatments are greater. Chi squared analyses showed that

significantly fewer plants were diseased when Hi CAN was used (p<O.OI) (Fig 2).

The CAN and ASN treatments did not differ significantly.

3.2 Leafand Soil analyses

The results received for leaf calcium and soil analyses results are shown in

Tables 1 and 2 respectively. The leaf analyses shows that the highest of the

treatments is Hi CAN leaves which had 2.86PPM, CAN had 2.76, while the lowest

result was from the negative control plots at 2.52. The soil analyses showed that for

the phosphorus analyses the Hi CAN had 19 mgll and ASN had 18 mgll. The lowest

phosphorus result came from the control plots at 13.8 mgll. Soil analyses showed

that the pH for all treatments was pH 6.1/6.2

3.3 Interaction analyses betweenfertiliser levels used and disease.

Calcium leaf and soil levels (Fig 3) showed a positive correlation, significant

at the 10% level (p< 0.10). Soil nitrogen and plant calcium showed a significant

interrelationship shown in Fig 4. Calcium fertiliser rates were aligned with the leaf

calcium concentrations and also the percentage loss observed at harvest. Both

relationships were found to be significant at the 5% and 10% levels respectively

(Figs 5 and 6). The last analysis shown (Fig 7) found that there was a correlation

between the fertiliser nitrogen and the percentage losses seen in the field due to S.

sclerotiorum (p< 0.05).
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4. Discussion

Linear analysis showed a significant correlation between the calcium present

in the fertiliser and the disease reduction observed in the artichoke crop (Fig 6). A

significant relationship was seen between the calcium rates applied and the calcium

present in the leaf (Fig 5). As calcium rates were increased so was the uptake, which

would contribute to resistance. Both calcium (cation) and nitrate (anion) were

doubled for the Hi CAN treatment and could have created a counter ion effect and

increased calcium (cation) assimilation. Such conditions usually promote optimal

growth and hence contribute to disease resistance (Marschner, 1988). In addition a

significant negative correlation was found to exist between the amount ofnitrogen in

the fertilisers and the disease incidence. Other authors would agree with this finding

as increased nitrogen addition to the soil usually increases plant vigour and yield and

also resistance (Gamliel et AI., 2000).

Both the CAN and ASN costs were in the region of Euro63/Ha, while the Hi

CAN treatment was twice this at Euro127/Ha. Costs of artichokes are currently

extremely high due to the lack of domestic suppliers. If production was started a

comparable market might be the potato one. Ware potatoes trade in extremely high

volume at a cost of Eurol27/tonne (Personal Communication, Dr. Leslie Dowley,

Potato Research, Teagasc, Ireland.). However trade is unlikely to reach such high

volume for the Jerusalem artichoke crop and so comparisons on market price were

made based on seed potato prices. The seed potato and artichoke markets may be

similar in terms of a more specialised niche market. The average price per tonne of

seed potato is Euro381 (personal Communication, Dr. Leslie Dowley, Potato

Research, Teagasc, Ireland.). Currently the artichoke market is much smaller and the

prices per tonne are extremely inflated due to short supply (-Euro1270/tonne-

72



Superquinn Supermarkets, personal communication, July 200 I). Prices of

treatments and market price of yields achieved is shown are Fig. 8. It can be

deduced from the graph that the price of the most expensive treatment, Hi CAN,

could be absorbed easily if the crop was sold at Euro38 lIt?.

The results indicate that increased calcium fertiliser application has potential

to control Sclerotinia disease in Helianthus tuberosus. This in agreement with the

finding of an earlier mutation breeding progamme for increased calcium uptake in H.

tuberosus. Lines with improved Sclerotinia disease resistance were shown to

accumulate high levels of calcium (Cassells and Walsh, 1995). While relatively

inexpensive compared to hybridization, mutation breeding is expensive for a minor

crop like H. tuberosus and it has to be repeated for each commercial variety. The

calcium fertiliser treatment appears to offer an economical treatment which should

be applicable to a wide range of varieties and crops susceptible to Sclerotinia

disease. This hypothesis needs further testing.
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Table 1. Calcium Leafanalyses.

Treatment ASN CAN Hi CAN

Calcium concentration / PPM 2.52 2.76 2.86

Table 2. Post harvest Soil Analyses

ASN CAN Hi CAN

Nitrogen (N03N) PPM 6 7.5 8

Calcium mg/L 1500 1510 1530

Phosphorus mg/L 18 13.8 19

Potassium mg/L 208 197 196

Magnesium mg/L 84.1 86.4 82.6

pH 6.1 6.2 6.2

n







Fig. 3: Correlation of Leaf and Soil Calcium levels, codes as for Fig. 1. Linear

analysis showed this to be significant at the 10% level.
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Fig. 4: Correlation of Soil Nitrogen and Plant Calcium levels, codes as for Fig. 1.

Linear analysis showed this to be significant at the 5% level.
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Fig. S: Correlation of the Calcium rates used per treatment and leaf Calcium, codes

as for Fig I. Linear analysis showed this to be significant at the 5% level.
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Fig. 6: Correlation of the Calcium rates used per treatment and Percentage loss

observed at harvest, codes as for Fig 1. Linear analysis showed this to be

significant at the 10% level.
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Fig. 7: Correlation of the Nitrogen rates used per treatment and Percentage loss

observed at harvest., codes as for Fig 1. Linear analysis showed this to be

significant at the 5% level.
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Chapter Five

Preliminary studies on the control of Sclerotinia

sclerotiorum (Lib) de Bary basal stem rot in the field

and of storage of Jerusalem artichoke (Helianthus

tuberosus L.) using chitin-continuing shellfish waste

Section B: Investigation ofthe biocontrol properties ofchitin-containing crustacean shellfish waste



Preface to Chapter 5

This chapter investigates the biological control potential of crushed crustacean shells

(CCS) as a soil amendment in the field. The preliminary trial reported was carried

out in parallel with the calcium trials in the previous chapter (4). The style is that of

the journal Applied Soil Ecology.
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Preliminary studies on the control of Sclerotinia sclerotiorum (Lib) de Bary

basal stem rot in the field and of storage rots of Jerusalem artichoke

(Helianthus tuberosus L.) using chitin-containing shellfish waste

s. M. Rafferty and A. C. Cassells

Department ofPlant Science, National University ofIreland Cork, Ireland

Abstract

Chitin-containing shellfish waste, calcified seaweed and organic fennentation waste,

the latter used in combination, were tested as soil amendments for their effects

against Sclerotinia disease of Jerusalem artichoke in the field. Furthermore, peats

amended with shellfish waste, cellulose and nitrogenous fermentation waste, were

evaluated for their effects against tuber storage rots. Soil amended with shellfish

waste and peat formulated with shellfish waste, suppressed Sclerotinia disease in the

field and storage rots, reducing the number of Sclerotinia-infected plants in the field

by 54% and the number of rotted tubers by 58% compared to the controls. The

biological control promoted by shellfish waste was correlated with stimulation of

antagonists in the reSPective substrates. The potential of shellfish waste in the

organic production of Jerusalem artichoke ware, processing and seed tubers is

discussed.

Keywords: Cellulase, chitin, chitinase, Helianthus tuberosus, pathogenesis-related

proteins, soil antagonists, suppressive soil
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1. Introduction

In the 1980s the potential of Jerusalem artichoke was evaluated in Europe as a

biomass crop for industrial uses such as ethanol production, based on its high yield,

hardiness and low production cost (Denoroy, 1996). Jerusalem artichoke stores

carbohydrate in its tubers in the form of inulin, a fructose polYmer. More recently,

Jerusalem artichoke has attracted attention as a source of functional food ingredients.

In human nutrition, inulin functions as a dietary fibre and fructose polymers of low

chain length are selective substrates (neutraceuticals or 'pre-biotics') for beneficial

bifidobacteria in the human colon (Modler et al., 1993).

Jerusalem artichoke, a native of North America and close relative of sunflower

(H. annus L.) (Kohler and Friedt, 1999), grows well in temperate regions. Yields of

50-70 tlha and higher, have been reported in southern Europe but to achieve this,

irrigation is required (Denoroy, 1996). The crop yields 55-65 tIha without irrigation

in the more maritime regions of Europe (Cassells and Deadman, 1993). The

growing Jerusalem artichoke crop is prone to the same spectrum of field diseases as

its relative, the widely cultivated sunflower (McCarter, 1984). The most important

of these in cool maritime regions is Sclerotinia stem rot (Cassells et al., 1988).

Sclerotia in the soil can cause infection of the stem base via production of mycelia

which directly invade the tissues (myceliogenic germination). Myceliogenic

infection was present at the trial site where disease was seen to occur in discreet

areas of the field as opposed to a more random distribution that would indicate

infection by ascospores (Quinlan, 1992).

Stored tubers of Jerusalem artichoke, because of their poorly developed periderm

are particularly wlnerable to cottony rot caused by Sclerotina sclerotiorum and other
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storage/wound rots caused by fungi and bacteria (Cassells et aI., 1988). Aside from

storage rot caused by S. sclerotiorum, contaminating sclerotia and mycelium may be

transmitted with seed tubers to infect the new crop (Masirevic and Gulya, 1992).

Consequently, control of Sclerotinia is critical for ware, processing and seed tuber

production.

Sclerotinia causes disease in 64 families and 225 genera (Purdy, 1979) and is

widespread in agricultural soils and in temperate crop rotations e.g. involving oil

seed rape (Bailey et al., 2000) and sunflower (Masirevic and Gulya, 1992) and so

there is a high probability that the soil will contain inoculum. Soil chemical

sterilisation to reduce or eliminate inoculum is not an economic option and is now

problematic due to the imminent withdrawal of methyl bromide from the market

(Akhtar and Malik, 2000; Gamliel et aI., 2000). Washing the tubers prior to storage

to remove sclerotia can result in high losses due to damage caused by

facultative/wound pathogens, a consequence of the thin periderm. This crop has the

potential to be grown organically/ ecologically (Anon., 1995), as its rapid growth

and dense, tall canopy effectively smothers weeds, eliminating the requirement for

herbicides. Other than Sclerotinia, there are no significant haulm or foliar diseases

or pest infestation requiring pesticides, at least in the cool maritime regions

(Denoroy, 1996; Cassells and Deadman, 1993). While successful chemical

treatments have been developed for the control of Sclerotinia in canola (Bailey et aI.,

2000), the canopy height of 2-3 m, depending on cultivar, makes chemical

application impractical for Jerusalem artichoke. Organic or ecological production,

may be impractical, where there are limitations on the availability of certified land

(Anon., 1995) free of Sclerotinia, because rotations of up to a 10 years are

recommended for the elimination of S. sclerotiorum (Masirevic and Gulya, 1992).
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Continuous cropping has been reported to result in Sclerotinia 'decline' in sunflower

after a peak in disease incidence after 5-6 years (Huang and Kozub, 1991). This

approach merits investigation for the control of S. sclerotiorum in the cool maritime

regions.

Here, the objective was to evaluate the potential of disease control based on the

use of a soil amendment, namely shellfish waste in the form of crushed shells of

shrimp and crab. It was chosen as it is in plentiful supply and is a source of chitin

which has been shown to exert biological control through its promotion of

antagonistic soil micra-organisms (Mitchell and Alexander, 1962). Chitin (Evans,

1993; Ren.and West, 1992) and its derivatives (Akiyama et aI., 1995; Gagnon and

Ibrahim, 1997; Pearce et al., 1998) are also reported to induce plant disease

resistance. In the first year's trial a decrease in percentage disease was observed

when the crushed crustacean shells (CCS) were incorporated in the soil. The trial

was repeated in a second year to confirm the result and to assess whether the affects

were attributable solely to nutritional factors associated with the shellfish waste or

whether biological control was promoted. Calcified seaweed (approved for organic

production by Anon. (1995) and NitroGro III (organic waste product from citric acid

fermentation, formulated as an organic nitrogen fertiliser) were used as sources of

calcium and organic nitrogen, respectively. Calcium has been implicated as a host

resistance factor to Sclerotinia disease (Cassells and Walsh, 1995) and calcified

seaweed has been used as a soil conditioner (Tye, 1996). Application of organic

nitrogen has also been reported to suppress soil borne diseases (Gamliel et al., 2000).

Their use in combination was designed to provide equivalent nitrogen and calcium to

the shellfish waste amendments and to check for possible interactive effects of

organic nitrogen and calcium. It is important to emphasise that the shellfish waste
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and calcified seaweed treatments used here were not supplemented with inorganic

nitrogenous fertiliser as this would have breached the rules for organic production

(Anon., 1995)

Based on experience from 14 years of field trials at different locations, a site with

a predicted inoculum potential to reduce crop yield by c. 20% was chosen for the

trials. This inoculum potential was arbitrarily chosen to represent the level predicted

for the third year of continuous culture. In the second trial in order to elucidate the

mechanism(s) of any suppressive effects on disease development in the field, effects

on soil chitinolytic and proteolytic microorganisms (Bonmati et ai., 1998) and soil

chitinase and cellulase activities were determined (EI-Tarabily et aI., 2000; Nielsen

and Sorensen, 1997). Tuber chitinase and cellulase levels were assayed as markers

of induced resistance in the host plant (Jung et ai., 1995) .

In the storage.trial sphagnum peat with shellfish waste, cellulose and NitroGro

III amendments were also investigated as a dressing applied to the tubers going into

store to suppress storage diseases. Shellfish waste was used to stimulate chitinolytic .

peat micro-organisms (Mitchell and Alexander 1962), cellulose (as an organic

carbon source) and NitroGro III (as a source of organic nitrogen) amendments were

added as substrates to evaluate their potential to stimulate native peat-based

antagonists.

2. Materials and methods

2.1. Field trials

The trials site was sprayed with glyphosate (Roundup; Monsanto (Ir!.) Ltd,

Dublin, Ireland) and 3 weeks later ploughed to a depth of 20 cm. The site was
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rotavated and fertilised with calcium ammonium nitrate or with the soil amendments.

All amendments used were applied 4-6 weeks before planting to allow these to

mature in the soil as recotnmended by manufacturers ofcommercial chitin biocontrol

formulations e.g. Clandosan (Igene Biotechnology Inc., Columbia, MD, USA).

Control plots, for both the first and second trials, were fertilised with calcium

ammonium nitrate (27.5% nitrogen; 4 % calcium) 400 kg/ha, which is the standard

fertiliser used in this temperate region (Cassells and Deadman, 1993). Experimental

plots were treated with shellfish waste (3.5% nitrogen; 21 % calcium; Landtech Soils

Ltd., Nenagh, Co. Tipperary, Ireland) at 600 kg/ha in the first and second year or in

the second year only, with calcified seaweed «()OJ'o nitrogen; 21% calcium; Celtic Sea

Minerals, Strand Farm, Currabinny, Co. Cork, Ireland) at 600 kg/ha or NitroGro III

(18% nitrogen, ()OJ'o calcium: ADM, Ringaskiddy, Co. Cork) at 117 kg/ha; with a

combination of calcified seaweed and NitroGro III at the rates given above. The

calcified seaweed amounts were chosen to mirror the calcium levels found in

crushed crustacean shells and the rate of NitroGro III was chosen to reflect the

nitrogen levels in the shell treatment. Trials were planted at the end of March. Seed

tubers of cv. Nahodka were produced from micropropagated stock (Cassells et aI.,

1988) and were from the second field multiplication cycle. In the first year large

blocks of both the control and the CCS treated artichokes were planted. Each block

consisted of approximately 600 plants with interplant spacing of 30 cm and inter-row

spacing of 70 cm, equivalent to approx. 46,200 plantslha. Blocks were not replicated

in this preliminary trial. However, in the second year the trial was set up in a

randomised block design, consisting of S replicate blocks of 25m2 each per

treatment. Each block consisted of 100 plants with the same spacing as the first trial.

The site was sprayed with Paraquat (Gramoxone 100; Zeneca (Irl.) Ltd, Dublin,
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Ireland) and terbutylazine (Opogard; Ciba Geigy, Dublin, Ireland) at 20% emergence

at the manufacturers' recommended rates.

2.2. Disease monitoring

Disease assessments were made during the growing season (May and

September). Sclerotinia-infected plants were recognised by necrotic basal stem

lesions associated with characteristic cottony mycelium and the presence ofsclerotia.

In November, a final assessment was made and the fresh weight of tubers from

healthy and diseased plants was determined at harvest by random sampling of the

replicate plots. Three healthy plants and three infected plants from each replicate

block were lifted at random avoiding the margins, that is, a total of 15 healthy and 15

diseased plants per treatment were sampled. Tubers were washed, dried and then

weighed.

2.3. Soil microbiology

During the second trial, in May, when the plants were one month-old, and again

in September (mid growing season) soil samples were taken and the chitinase- and

protease-producing microbial population in the soil were determined.

Five samples of bulk soil (approximately lOOg) were taken from the top 3 cm of

soil in each plot. The soil was collected at 5 points from a W pattern across each

plot and the 5 samples from each plot were pooled into a single plastic bag and tied.

Samples were kept at 4°C until required. These samples were also used for enzyme

analyses.
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Selective media for chitinolytic bacteria was prepared according to the method of

Friesman and Chet (personal communication): 3 gil K2HP04, 1.0gll MgS04.7H20,

0.5 gil (NH..)2S04, 0.8 gil colloidal chitin, 2.0 gil yeast extract, 20 gil purified agar

(Oxoid, Basingstoke, UK). Colloidal chitin was made up as follows: 0.18 I of conc.

HCl was added with stirring to 20 g of chitin (Sigma Chemical Co. St Louis, MO

63178, USA, Cat no. C-7170). This was allowed to stand for 2 h with intermittent

stirring. The solution was poured into a 51 container half filled with tap water, a

suspension in water forms and the volume was brought up to 51 with tap water. The

suspension was allowed to stand overnight and then washed in tap water. This was

repeated 4 times followed by 3 washes in distilled water. The suspension was then

passed through a sieve (0.1 mm mesh) to remove large particles. The resulting

suspension had a pH of 5.5-6 and was stored in the dark at 4°C. Prior to autoclaving,

the chitin concentration was determined gravimetrically after drying in an infra-red

dryer. Soil samples were serially diluted in quarter strength Ringer's solution

(Oxoid, Basingstoke, UK) and plated onto 3 replicate petri-dishes of medium. Petri

dishes were incubated at 25°C for 5-7 days and chitinase producers were

characterised by clear zones around the colonies.

The following medium was used to enumerate protease producers: 30g of

skimmed milk powder was autoclaved in 300 ml of distilled water for 10 min at 68.9

kPa. 12 g of agar in 700 ml of distilled water was autoclaved for IS min at 103.4

kPa. These were mixed at 4O-50°C after autoclaving. Soil samples were serially

diluted in quarter strength Ringer's solution and plated onto 3 replicate petri-dishes

of medium. Petri-dishes were incubated at 25°C for 5-7 days and protease producers

were characterised by clear zones around the colonies.

94



2.4. Soil enzymology

The soil samples as described above were also used for enzyme analyses. The

procedure for extraction of enzymes from soil was based on Wirth and Wolf (1992).

5 ml 0.5 M sodium acetate-acetic acid buffert pH 5t per I g dry weight of soilt were

mixed using a magnetic stirrer for I h. The suspension was then centrifuged at

28t950 g for 10 min at 4°C and the supernatant filtered through glass fibre filter

paper. The supernatant was then stored at -20°C prior to analysis.

A colorimetric assay was used to determine endo-chitinase activity in the soil

samples (Wirth and Wolft 1992). The substrate was carboxymethyl-substituted

soluble chitin (CM-chitin) covalently linked with Remazol Brilliant Violet 5R

(RBY). The colorimetric assay is based on the precipitation of unreacted CM-chitin

RBV from buffered extract solutions with HCI (Wirth and Wolft 1992). Based on

the same principlet the substrate carboxymethyl-cellulose-Remazol Brilliant Blue 5R

(CM-cellulose-RBB) was used for endo-cellulase assay (Wirth and Wolft 1992;

1990). The substrates were obtained from Blue Substrates (Grisebachstrasse 6t D

3400t GOttingent Germany). Assays were performed in 96-well microtitre plates

(Costar Europet High Wycombet UK; cat no. 3590). Each well contained the

following: 50 III of substratet 100 III ofextractt 50 III of buffer (0.2 M sodium

acetate - acetic acid buffert pH5). Extract was added to the control wells after the

acid addition; 4 control and 8 test replicates were assayed. Incubation was carried

out at 40°C for 3 hours. The reaction was stopped by the addition of 50 III of HCI

(IN for CM-Chitin-RBV and 2N for CM-cellulose-RBB). Plates were cooled on ice

and centrifuged (IA50 g for 10 min). 175 III of supernatants were transferred to a

96-well half-size EIA plate (Costart cat no 3690). Activity was read at 550 om for

Chitin-RBV and at 600 om for Cellulose-RBB. Extracts with a reading> 0.1 were
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diluted and assayed again as they were substrate limited. Calculation of relative

enzyme activity was carried out using the following fonnula: Absorbance x 1000 x

min-I

2.5. Tuber storage trial

The trial was carried out in a ventilated shed at a mean temperature of +8°C

(Max: +11.5 OCt Min: +4.6 °C). Tubers of cv Nadhodka were collected from control

plotst excess soil was removed by hand and the tubers were arranged next to each

other horizontally and vertically in layerst in Curver TM nestable plastic containers

each with a capacity of 0.037 m3
• Blank and control treatments were set up using

tubers stored with no treatment and stored in unamended peatt respectively. Tubers

were placed in a single layer and then the appropriate peat fonnulations were shaken

.over themt the next layer of tubers were placed on top and covered with peat again.

The tubers were stored in a commercial peat amended with shellfish waste

(Suppressor™; Landtech Soils Ltd.t Nenaght Co. Tipperary Ireland); in peat

amended with 15 gil cellulose or 3 gil NitroGro III. These were allowed to mature

for 4-6 weeks before use. There were five replicates of each treatmentt each

replicate contained 30-50 tubers (numbers differed reflecting variation in tuber

sizes). The containers were covered with black polythene bags and loosely tied with

twine. Containers were stacked in a non-insulated metal shed and stored at ambient

temperature (mean +8oC) and examined every 2 weeks for signs of infections. Final

results were taken after 10 weeks.
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2.6. Tuber enzyme extraction and analyses

Tuber enzyme was extracted after washing and peeling tubers, macerating them

in a juice extractor and sieving through cheesecloth. Bisulphite solution (I°JlVml)

was added to the sap as an antioxidant (Appel et al., 1995). Centrifugation was

carried out at 13,000 g for 10 min and supernatants stored at -20°C until analysed.

Enzyme analyses was carried out as described for the soil extracts.

2.7. Microbiology ofcrushed crustacean shells

The crushed shells used in this trial were sent for independent testing for

pathogens associated with shellfish and food poisoning, to the Department of

Clinical Microbiology, Central Research Laboratory, St James Hospital, University

of Dublin, Dublin 8.

2.8. Statistical analyses

The initial field trial was not replicated and so count data were subjected to

chi-squared analyses. For the purposes ofgraphical representation the percentage

disease is presented and values sharing the same letter are not significantly different

(P<0.05). For the second trial, all data were found to be non parametric and most

could not be normalised (except storage data) and so was subjected to the Kruskal

Wallis analysis (non-parametric ANOVA). Median quantities are presented in the

case of non-parametric data. Statistical letters are indicated on the graphs and tables

and those medians sharing the same letter are not significantly different (P<0.05). In

the case of the storage trial, the data were normalised using the square root function

and were subjected to a one way Anova analysis using Data Desk™ software. Data
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presented show the mean values and those sharing the same letter are not

significantly different (P<0.05).

3. Results

3.1. The effects oftreatment on Sclerotinia disease development

The preliminary trial set up in 1996 was to investigate the effects of crustacean

shellfish waste on suppression of the Sclerotinia disease. The results showed that

there was a suppression ofdisease (Fig 1). It decided to repeat the trial in the second

year in a randomised replicate block design and also to use other forms of organic

amendments to determine whether the effects were nutritional or involved biological

control. The development ofS. sclerotiorum disease in the field for the second trial

is shown in Fig. 2. It can be seen that 20% of the plants in the control plots were

affected by S. sclerotiorum based on visual examination for the presence of sclerotia.

Disease was suppressed by all the treatments, with the highest suppression, approx.

11% of the plants diseased, in the shellfish waste soil amendment. This a 54%

reduction in diseased plants compared to the control. The effects of the treatments on

tuber yield are shown in Table 1. The data show no significant difference in yield

between healthy plants in the treatments and those in the control and there were no

significant differences between tuber yields from infected plants and those in the

control. Yields from infected plants were reduced on average by approximately

85%.
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3.2 Effects oftreatments on soil chitinase and protease-producing micro-organisms

Soil chitinase- and protease-producing micro-organisms were assayed in May

and September. Chitinase producers in the control were at the threshold of detection

in the May samples (Table 2). A higher level of activity was detected in September.

In the shellfish waste amended treatment, chitinase producers were raised to c. 23 x

106 cfulml in the May assay and declined to 0.45 x 106 in the September soil

extracts. Calcified seaweed amendment significantly increased soil chitinase activity

in May but the levels in September were less than the control. NitroGro III did not

affect chitinase levels, however, the combination of calcified seaweed and NitroGro

III significantly increased chitinase activity in May but much less than that induced

by shellfish waste; in September the value had declined to that of the control.

The numbers of protease-producing micro-organisms were lower in the

control soil extracts in May compared with all treatments except for the NitroGro III

treatment; they were higher in September than the NitroGro III and combined

NitroGro III and calcified combined treatments. Addition of CCS increased protease

producers in May and the number was still higher than others in September though

lower than those in May. (Table 3).

3.3. The effects oftreatments on soil enzymes

The effects of the soil amendments on soil chitinase and cellulase are shown

in Tables 4 and 5. The data show that all treatments except calcified seaweed

increased soil chitinase in May and the shellfish waste and NitroGro III treatments

also in September, compared to the control with the highest increases in the shellfish

waste treatment (Table 4; see Table 2 for comparative data for soil microorganisms).

Cellulase levels were not significantly altered in the treatments (Table 5).

99



3.4. Effects ofamendments on host plant chitinase and cellulase activity

Tuber chitinase and cellulase activities did not differ between healthy plants

from the controls and treatments (data not shown). However, chitinase and cellulase

were in significantly greater amounts in diseased tubers from the shellfish waste

treatment, as was chitinase in the calcified seaweed treatment, compared with the

control (Figs 3 and 4, respectively). There were significant decreases in chitinase in

the diseased tubers from the NitroGro III treatment and the combined NitroGro III

and calcified seaweed. There was a significant increase in cellulase in the latter

treatment in the diseased tubers compared to the diseased control tubers.

3.5. Effects oftreatments on disease development in store

Tubers were stored alone, in peat and in peat amended with shellfish waste

(SuppressorTM), cellulose, and NitroGro III, respectively. The mean storage

temperature was +8°C. Infected tubers were recorded as having cottony, brown and

soft rot and were examined for bacterial or fungal rots. The results show that 95% of

the tubers stored without treatment developed disease (Fig. 5). Disease incidence

was significantly reduced to 37% in the shellfish waste amended peat compared to

the blank untreated and peat dressed controls but not significantly reduced in the

other amended peats. When sampling the stored tubers it was noted that infection in

the shellfish waste amended peat containers remained localised. Infection was seen

to spread in the other treatments. Sprouting had occurred in all the treatments by the

end of the trial. It was observed that the sprouts were killed, corresponding to the

level of infection, in all the treatments except in the shellfish waste amended peat. A

comparison of tubers from the shellfish waste and the blank (control, no peat)
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treatment, showing the healthy sprouts in the former and the necrotic sprouts in the

latter is presented in Fig. 6.

3.6. Microbiology ofthe crustacea'.' shellfish waste

Tests were carried out for total viable bacterial counts and for shellfish

associated human pathogens: Staphyloccus aureus, Salmonella spp., Listeria spp.,

Campylobacter spp., Helicobacter pylori, Eschrichia coli and Vibrio spp. The total

viable count was 20,000 cfulg. None of the specified pathogenic genera/species

were detected.

4. Discussion

In fourteen years of field trials in Ireland, Sclerotinia sclerotiorum has been

identified as the only major biotic threat to stable crop production. Due to the

ubiquity of S. sclerotiorurn in agricultural soils and the increased acreages of

susceptible crops, e.g. oil seed rape in rotations, disease outbreaks are highly likely.

Given the longevity of sclerotia of up to 10 years in soil, crop rotation is not a

practical strategy for disease elimination. Furthermore, the poor storage

characteristics of the tubers, exacerbated by tuber washing (Rafferty, unpublished)

increases the likelihood of significant losses in store and inoculum transmission with

the seed tubers. Here, an organic soil amendment has been evaluated to reduce

Sclerotinia disease losses in the field and Sclerotinia and other disease development

in store. It has been shown that amendment of the soil with abundant, organic

production compatible, shellfish waste may have the potential to reduce both field
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incidence of Sclerotinia field infection (Fig. 2) and to effect a more general reduction

ofstorage losses (Figs 5 & 6).

Shellfish waste appears to exert biological control over inoculum in the field by

promoting the growth of antagonistic chitinase- and protease-producing soil micro

organisms (Tables 2 & 3) and by increasing the levels of anti-fungal chitinolytic

activity in the soil (Figs 3 & 4). There are strong correlations between the levels of

these microorganisms and biological control of soil fungi (Cook and Baker, 1983).

Another mechanism whereby disease development may be restricted is by the

action of chitin and chitin-breakdown product as elicitors of host anti-pathogen

defence mechanisms. Enzyme assays of the infected tubers from plants grown in

shellfish waste amended soil, but not in the control or other treatments, show

statistically significant increases in the activity of chitinases and cellulases in the

tubers (Figs. 3 & 4). Elevated chitinase but not cellulase was also detected in

infected tubers from the calcified seaweed amended soils but not in the control or

other treatments (Figs. 3 & 4). These results indicate that plants in the shellfish

amended soil may have been sensitised to pathogen attack (Lusso and Kuc, 1995)

and rapidly up-regulate the synthesis of pathogenesis-related proteins on infection,

where chitinase and cellulase activities are markers of the latter. However, there was

no correlation between the elevated chitinaselcellulase activity and tuber yield loss in

infected tubers (Table 1). The mechanism of increase in chitinase without

concomitant increase in cellulase activity in the calcified seaweed treatment requires

further elucidation.

Storage of harvested tubers in shellfish waste-amended peat reduced storage rots,

including Sclerotinia cottony rot, from almost total tuber loss in the controls and

other treatments to 37% in the shellfish treatment (Figs. 5 & 6). These very high
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losses emphasise a considerable problem particularly in the production of high

quality propagation material where the tubers are lifted and stored over the intercrop

period in mild temperate climates. The mean temperature during storage was +8°C

(Max: + 11.5 °c, Min: +4.6 °C) which is just over 2°C higher than the average

November-February mean, +5.9°C (Max: +8.4°C, Min: +3.3°C) for the region (south

west Ireland) which may have influenced disease severity. While the white cottony

mycelium of Sclerotinia was ubiquitous on the diseased tubers in control and all the

treatments, other fungi and bacteria also contributed to tuber decay. Due to the rapid

onset of the tuber rots it was not possible to distinguish the primary and secondary

causal agents and consequently, no attempt was made to isolate the putative

pathogens previously reported (Cassells et ai., 1988).

An important consideration when applying biological waste to crops is the

possibility of contamination with potential human pathogenic bacteria (Beuchat,

1996). This risk is now becoming more widely recognised where the plant material

is consumed raw (Rafferty and Cassells, 2000). The risk in the case of Jerusalem

artichoke is relatively low as the tubers are usually cooked before consumption but

the vegetable may be eaten raw, for example, shredded on salad. Health risks

associated with shellfish are widely recognised (Huss et ai., 2000) and so here, the

commercial material was examined for human pathogenic bacteria to an accredited

hospital laboratory. Total viable counts were low and the tests for food poisoning

pathogens were negative.

Partial biological control of Sclerotinia has been reported in sunflower by

treating the seed with bacterial inoculants (Hebbar et ai., 1991) or by application of

Talaromyces flavus and Coniothyrium minitans to the soil at seeding time (Mclaren

et al., 1994). The latter strategies are based on the introduction of antagonists
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directly into the soil or on the planting material, and their success may be dependent

on the resident soil microorganisms at the site of application. The strategy advocated

here depends on semi-selective stimulation of native soil residents, which arguably,

is less inoculant-soil dependent (Nelson and Craft, 2000).

While soil amendment with shellfish waste has some potential to reduce

Sclerotinia disease development in the field by reduction of pathogen inoculum, this

may not be cost effective. It will depend on the volume-dependent cost of the

shellfish waste and the market price for the crop when it is traded in high volume. It

is also recognised that biological control strategies are difficult to reproduce due to

variability in the soil microbiological environment (Cook and Baker, 1983), that is,

in the resident soil microflora in different soil types and the efficacy of the treatment

would have to be confirmed in multi-site trials. The shellfish treatment could

possibly be improved e.g. by supplementing with nitrogen to evaluate effects on

Yield. Here, the control nitrogen fertiliser application was optimised for the crop

based on previous trials (Cassells and Deadman, 1993). The nitrogen content of the

shellfish waste was approximately 20010 of the control but was not supplemented as

this would have compromised the organic production strategy. However, yield data

for the different treatments did not indicate any mineral deficiencies.

The results show that long term-storage of Jerusalem artichoke tubers for

processing or for seed presents major problems in mild regions. Jerusalem ware

tubers are usually lifted and sold fresh before the land becomes unworkable. In

previous years trials here, tubers were stored over winter in the soil for seed and

processing but lifting in spring may be problematic due to unworkability of the land

and seed losses may be high where sprouting has begun. Chemical treatment at

lifting (Denoroy, 1996) not investigated here and storage in ventilated, temperature-
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controlled potato stores may help prevent disease development but the fonner is not

an option for organic growers and seed producers. Storage in peat amended with

shellfish waste or other biocontrol treatments may be economic where organic

certification is required.
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Fig. 1. Preliminary trial results showing the percentage disease in the Control and

CCS (Crushed Crustacean Shells) plots. Chi-squared analyses was used on the count

data and no significant difference was found (P> 0.5)
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Fig. 2. The percentage diseased plants in the control and treatment plots. CCS-

Crushed Crustacean Shells; CaS - calcified seaweed; NIII - NitroGro III, CaS and

NIII combined calcified seaweed and NitroGro III amendments, respectively.
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Fig. 3. Chitinase activity in tubers from infected plants. Treatment codes as Fig. 2.

Data was subjected to the Kruskal-Wallis analysis. Columns sharing the same letter

are not significantly different (P< 0.05).
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Fig. 4. Cellulase activity in tubers from infected plants. Treatment codes as Fig. 2.

Data was subjected to the Kruskal-Wallis analysis. Columns sharing the same letter

are not significantly different (P< 0.05).
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Fig. 5. Percentage of infected tuber in the control and treatments in the storage trial.

Data was normalised using the square root function and subjected to a one way

Anova analysis using Data DeskTN software. Columns sharing the same letter are

not significantly different (P< 0.05).

100
b b

90

80

70

III
600;::

~
I:: 50-~
IN)• 40~•

30

20

10

0

Control Blank Cellulose NIII CCS

liS



ith

mp



Table 1 Comparison ofYields for Second Trial

Control CCS caS NIll caS&. NIll

HT 62.888 50.96a 52.028 52.768 51.18

IT 10.038 10.498 5.418 12.348 4.48a

HT: Tubers from healthy plants IT: Tubers from infected plants

Data was non-parametric so values presented are median tomeslha

Data from healthy and infected plants were statistically analysed separately.

KruskaI-Wallis analysis was carried out and values sharing the same letter are not

significantly different (P< 0.05)
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Table 2 Quantification ofchitinase producers in soil

Control CCS caS NIH CaS" NIII

May Chitinase Producers 0.000 a 22.522 c 0.333 be 0.000 a 1.454 be

Sept Chitinase Producers 0.047 be 0.467 be 0.000 a 0.007 a 0.107 b

Data was non-parametric so values presented are median cfu x 106

KruskaI-Wallis analysis was carried out and values sharing the same letter are not

significantly different (P< 0.05). The high number ofzero readings on selective

media created a tied value for most data during ranking, hence there is no difference

statistically between the SFW (May) reading of22.522 million cfulg and other

readings greater than 0 (e.g. the Control (Sept) reading of0.0467 million cfulg).

Table 3 Quantification ofprotease producers in soil

Control CCS caS NIll caS Ie. NIII

May Protease Producers 29.260 ab 45.867 d 14.280 c 22.720 be 20.3420 cd

Sept Protease Producers 4.399 be 8.13 cd 3.333 be 0.853 a 0.740 a

Data was non-parametric so values presented are median cfu x 1cf'

Kruskal-Wallis analysis was carried out and values sharing the same letter are not

significantly different (P< 0.05)
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Table 4. Soil Chitinase Activity

Control CCS caS NIH CaS&' NIII

May Chitinase (units) 0.380a 1.1lOcd 0.579abc 0.754bcd 0.733bcd

Sept Chitinase (units) 0.451ab 1.518d 1.324cd 0.665bcd 0.423a

Data was non-parametric so values presented are medians

KruskaI-Wallis analysis was carried out and values sharing the same letter are not

significantly different (P< 0.05)

Table 5 Soil Cellulase Activity

Control CCS caS NIII caS&. NIl1

May Cellulase (units) 0.378ab 0.335ab 0.336ab 0.395ab O.496b

Sept Cellulase (units) 0.388ab 0.283a 0.307a 0.395ab 0.516b

Data was non-parametric so values presented are medians

KruskaI-Wallis analysis was carried out and values sharing the same letter are not

significantly different (P< 0.05)

119



Chapter Six

Stimulation of wild strawberry (Fragaria vesca)

arbuscular mycorrhizas by addition of shellfish waste to

the growth substrate: interaction between

mycorrhization, substrate amendment, and

susceptibility to redcore (Phytophthora fra2ariae)

Section B: lnvesligolion ofthe bioconJrol properties ofchitin-containing crustacean shellfISh waste



Preface to Chapter 6

This work for this chapter was carried out in collaboration with John Murphy.

The chapter is based on a lecture given by S. Rafferty at an Inter-COST (COST

actions 8.21, 8.22, 8.30 and 8.31 with. the ISHS Group on Quality Management in

Micropropagation) conference in Edinburgh, September1998. The lecture was then

published after peer review in Applied Soil Ecology 2000, 15; 153-158.
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Stimulation of wild strawberry (Fragaria vesca) arbuscular mycorrhizas by

addition of shellfish waste to the growth substrate: interaction between

mycorrhization, substrate amendment and susceptibility to red core

(Phytophthora fragariae)
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·Corresponding author. Telephone: +353 21 902726; Fax: +353 21 274420; Email:

a.cassells@ucc.ie

Abstract

Wild strawberry (Fragaria vesca) microplants were inoculated at establishment in the

glasshouse with the commercial inoculants Endorize IV, Vaminoc and Glomus

mosseae. After two weeks, plants were transferred to control peat-based growth

substrate and Suppressor®, a commercial peat substrate amended with chitin

containing shellfish waste. Percentage root length colonisation (%RLC) by Vaminoc

and G. mosseae, but not Endorize IV, was stimulated significantly after 4 weeks

growth in the amended substrate but there were no significant differences for any of

the inoculants at 8 weeks. Runner production in Vaminoc-inoculated plants was

unaffected by either growth substrate. Runner production was significantly reduced

in Endorize IV and ~ mosseae treatments in the control growth substrate, other

growth parameters were not significantly affected. Disease resistance to red core

was increased by growth of the Vaminoc-inoculated plants for 4 weeks in

Suppressor® before challenge in control compost. Neither Vaminoc inoculation nor

growth in Suppressor® resulted in increased disease resistance.

Key words; Chitin, commercial mycorrhizal inoculants, Suppressor®, red stele.
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1. Introduction

Inoculation of micropropagated plantlets with arbuscular mycorrhizal fungi

(AMF) has been shown to increase establishment and to stimulate plant growth

(Wang et al., 1993; Puthur et al., 1998). In general, when inoculating plants,

consideration should be given to the interaction between host genotype, AMF isolate

and growth substrate composition in order to optimise plant performance (Gianinazzi

~ al., 1990). Perrin et al. (1988) discussed the importance of characterising efficient

AMF strains and the substrate receptiveness to mycorrhizal inoculum; this is

described as the ability of a substrate to allow mycorrhizal association development

on host plants from introduced inoculum. Azc6n-Aguilar and Barea (1997) discussed

the selection of growth substrates which favour the formation and functioning of

mycorrhizae and the interaction between AMF and other components of the

microbiota of the growth substrate, in relation to the biological control of root

diseases. The complexity and variability of responses following the addition of

organic amendments to the growth substrate is another factor which must be taken

into consideration when examining plant-substrate-AMF interactions (Gryndler and

Vosatka, 1996).

Here, the interactions are investigated between wild strawberry (Fragaria

vesca L.), three commercial AMF inoculants and two peat-based substrates, one of

which had been amended with shellfish waste, namely Suppressor«>. The use of

shellfish waste, an inexpensive source of chitin (Sugimoto ~ 11., 1998), is based on

well established observations of biological control properties against soil fungi

(Fusarium solani f. phaseoli) described by Mitchell and Alexander (1962) and due to

the stimulatory effect reported towards AMF colonisation (Gryndler and Vosatka,

1996).
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2. Materials and methods

2. J Plant material and growth conditions

Aseptic seedlings of the outbreeding wild strawberry (Fragaria vesca L.)

were produced by aseptically genninating seeds (Chiltem Seeds, Ulverston,

Cumbria, UK.) for 12 days on water agar before transferring them for four weeks to

half-strength Murashige and Skoog (1962) medium in vitro as described in Mark and

Cassells (1996). The aseptic seedlings were acclimatised for 2 weeks (in plastic

covered vented weaning trays) in a glasshouse into a Peat Venniculite Sand (PVS);

[8: I:1 (v/v/v)] substrate which had been steam sterilised for 1 hour at 121°C over

three consecutive days and allowed to rest for a further week before use. The PVS

was fertilised (NPK, 16:8:12) with 9 month Osmocote Plus® 19/1 (Grace Sierra B.

V. Herleen, The Netherlands) and limed (CaO, 5g/l) to a pH of 6.2. For sterilised

PVS the lime and osmocote were added after final autoclaving and cooling (Mark

and Cassells loco cit.) On acclimatisation, plants were inoculated with three

commercial mycorrhizal inoculants; Vaminoc, Glomus mosseae (both from

MicroBio Division, Herts. UK.) and Endorize IV (Biorize, Dijon, France). The

mycorrhizal inoculum was placed in the planting hole in direct contact with the plant

root system, the amount of inoculum used was as recommended by the suppliers, i.e.

Ig ofVaminoc and G. mosseae inoculum per plant and 5% by volume (equivalent to

2.5 ml per 50 ml plug tray) for Endorize IV. The PVS substrate used for the

acclimatisation stage was not amended with a chitin source as previous experimental

work (unpublished) showed incompatibility with the chitin amended compost and

microplants off. vesca at acclimatisation.

Following acclimatisation mycorrhizal and control microplants were potted

up in PVS substrate as described above (87 nun pots, Ornnipot 9F, Congleton Plastic

Co. Ltd., Cheshire, UK.) and in a PVS substrate which had been amended with a

source of chitin (Suppressor®, Landtech Soils Ltd., Tipperary, Ireland) with a

minimum of 16 plants per treatment. The treatments were randomly arranged in
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separated blocks on potting benches (which had been covered with plastic to prevent

cross-contamination of the treatments) in a glasshouse at an ambient temperature of

IS-2SoC. Plants were grown with a 16 hour photoperiod under high-pressure sodium

lamps 4OOW, 290/240 volts, Thermoforce Ltd., Essex, UK.).

2.2 Plant Monitoring
Plants were assessed 4 weeks after potting up for early vegetative growth

responses to AMF inoculation by counting the numbers of leaves per plant.

Chlorophyll meter readings were taken weekly in order to assess the nutritional and

health status of the plants using a Minolta Chlorophyll SPAD-S02 meter (Minolta

Camera Ltd. Osaka, Japan). The percentage root length colonisation was assessed at

4 weeks and at 8 weeks after potting up following clearing in 100,10 (w/v) KOH and

staining with 0.05% wlv aq. trypan blue, (Phillips and Hayman, 1970) and

quantifying AMF presence using the magnified hairline intersect method of

McGonigle et al. (1990) using a compound microscope at xl 00 magnification.

Vegetative growth responses were assessed by taking runner counts four

weeks after potting up, these were mechanically removed and runner re-growth was

quantified after a further 4 weeks. The number ofcrowns per plant and the % shoot

dry matter content were recorded at week 26. Flowering onset was monitored

weekly in order to assess the effects of mycorrhizal application and of the substrate

amendment.

2.3 Infection with Phytophthora fragariae

A challenge with oospore inoculum of Phytophthora fragariae Hickman

[from the Culture Collection, Department of Plant Pathology, National University of

Ireland Dublin, Ireland] was carried out on control plants and on plants which had

been inoculated with Vaminoc on control and Suppressor® substrates. Plants which
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had been inoculated with Vaminoc and grown in Suppressor® for 4 weeks were

divided into two batches, one of which was grown on in Suppressor®; the other

batch was re-potted in non-amended substrate after 4 weeks. The plants were

challenge inoculated with oospores at the end of this 8 week period.

The oospore inoculum was produced by inoculating acclimatised aseptically

germinated seedlings of F. vesca with P. fragariae (from a culture which had been

maintained on lima bean agar) in steam sterilised vermiculite and allowing the

infection to develop as described in Mark and Cassells (1996). The oospore

inoculum used was standardised by comminuting infected root material in an electric

blender (Kenwood Ltd., Hants, UK.), and had an estimated oospore concentration of

2.5xlQ3 oospores per ml of inoculum,S ml of P. fragariae inoculum were used to

inoculate each test plant in the disease challenge. After adding the f: fragariae

inoculum to an inoculation hole made near the stem base of each plant being

inoculated the plants were transferred to a controlled environment growth chamber

and incubated for 2 weeks at 13-150 C, 12h photoperiod with PAR 9 flmol m-2 5.1,

after this period the temperature was reduced to 60 C and the vermiculite was

allowed to dry out in order to induce oospore production (Mark and Cassells, 1996).

Test samples were cleared and stained as for AMF detection (see above) and the

response to the pathogen was assessed using Disease Severity indexes (DSI) as

described by Milholland et al. (1989). This index is calculated by multiplying the

number of oospores present per 1.0 cm root segment sampled by the % root length

infected and dividing by 100, any sample found to have a OSI of less than 1.0 is said

to be resistant to P. fragariae where as any value greater than 1.0 is considered

susceptible. This method is an alternative to visual assessment which is viewed as

being too subjective, Milholland and Daykin (1993).

2.4 Statistical Analysis.

The Mann-Whitney (Comparison of 2 treatments) and the multiple

comparison Kruskal Wallis tests were used for non-parametric data which were
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analysed with the aid of Data Desk® 5.0 (Data Description, Inc., N.Y., USA).

Median values were used to represent the central tendency in non-normal data.

3. Results

3.1 The effects ofshell-jish waste amendment on myco"hizal colonisation

Growth of microplants in Suppressor®-amended-PVS resulted in increased

percentage root length colonisation of f. vesca by all three AMF isolates, this

increase was significant for Vaminoc and Q. mosseae (Table 1) four weeks after

potting up. There were no differences detected in Suppressor® at week 8, this

indicates that the acceleration of colonisation induced by substrate amendment

occurred within four weeks of transfer to this medium. Vaminoc-associated

colonisation reached a plateau by week four without further increase at week 8. The

same result was obtained for f. ananassa cv. Tenira (data not shown).

3.2 The interaction between substrate amendment and myco"hization on plant

growth

Table 2 shows that significant plant growth effects occurred in Suppressor®

amended-PVS. The number of runner plants was significantly lower in uninoculated

plants, plants inoculated with Endorize IV and with y. mosseae. The depressive

effect of the substrate amendment on runner production was not observed with

Vaminoc inoculated plants. The runner counts recorded at week 8 show a similar

pattern. This indicates that a depression rather than a delay in runner production

occurs as a result of the substrate amendment. Other growth parameters monitored,

namely, leaf number, chlorophyll content, % shoot dry matter and crown count
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showed no significant differences, except for Endorize IV inoculated plants which

produced significantly more runners independently of growth substrate composition.

A slight reduction occurs in the % flowering in the non-mycorrhizal plant

population, but not significantly so, the differences are also not significant between

any of the AMF treatments (Fig. I). Q. mosseae plants grown in Suppressor® had a

higher % flowering, this is not significantly higher.

3.3 The effect ofsubstrate amendment and myco"hization on the severity ofredcore

The Vaminoc inoculant was used here as it had shown the highest positive

response in the mycorrhizal inoculum - substrate amendment trial above. The

disease severity indexes for all six treatments studied, namely, Vaminoc, plus and

minus substrate amendment, at 4 and 8 weeks, are shown in Table 3. The treatments

are ranked in increasing disease severity, mean values are included for clarity. The

lowest DSI is observed for Vaminoc inoculated plants which were grown in

Suppressor®for four weeks before transfer to non-amended substrate (Plants were

transferred as the stimulatory effect of amended substrate on %RLC reached a

plateau at 4 weeks; see 3.1). This is the only treatment which results in a DSI of less

than 1.0 which is under the resistance threshold, this value differs significantly from

the median DSI value for similar plants which were grown on in Suppresso~.

Vaminoc and Suppressor® separately are seen to reduce disease severity but not

significantly from their respective control treatments. Interaction analysis of

variance (ANOVA) confirms that a significant interaction occurs between growth

substrate type and AMF inoculation.
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4. Discussion

Vestberg (1992) found that of six AMF strains used to inoculate commercial

strawberry, three were found to be highly efficient and the three others were less

efficient. Here, the vegetative response of f. vesca, to AMF inoculants containing

different isolates was shown to vary confirming previous results with this species

(Mark and Cassells, 1996). Suppressor® , the shell-fish waste amended growth

substrate used here was found to increase the % root length colonisation confirming

the findings of Gryndler and Vosatka (1996). Stimulation of mycorrhizal

colonisation, however, was not associated with significant growth increases or earlier

flowering (Fig. 1), as reported by Wang ~ aI., (1993). A depression of runner plant

production was seen to be associated with the inoculant - Suppressor® interaction,

except for Vaminoc. This may be due to a genotype-dependent interaction of the

AMF inoculant with the substrate. The lack of variation in the other growth

parameters monitored such as early leaf count and crown numbers (Table 2) and in

% dry matter content, indicate that the quality of the mycorrhized plant material in

control and shell-fish waste amended growth substrate is not generally adversely

affected. The shell-fish waste amendment did not alter the nitrogen content of the

host plant to a level detectable with the chlorophyll meter. This also agrees with the

findings of Gryndler and Vosatka (1996). This parameter is important as nitrogen

affects root colonisation by AMF and nitrogen stress, like phosphorus stress,

promotes root colonisation by AMF (Sylvia and Neal, 1990).

Caron (1989) recommended environmental manipulation in order to trigger

and enhance the activities of biocontrol agents. The interaction of the host genotype

AMF-growth substrate composition with the root disease f. fragariae (Table 3)

indicates that manipulation of the growth substrate composition may result in a

significant reduction in disease severity. Azc6n-Aguilar and Barea (1997) reported

that enhancement of root resistance or tolerance to pathogen attack is not expressed

in all substrates. The variation in disease severity indexes (Table 3) seen here

128



confinns the latter. An important factor is seen to be the timing of inoculum

interaction with the amended growth substrate, which interact significantly.

The shell-fish waste amendment is also seen to accelerate as well as stimulate

AMF colonisation by Vaminoc, exploitation of the shell-fish waste amendment is

only possible 2 weeks after acclimatisation (due to toxicity to the young microplant)

by which time early AMF infection has taken place «10% data not presented). The

most effective protection against ~. fragariae occurs when Vaminoc inoculated

plants were grown in Suppressor® for 4 weeks and then transferred to a non

amended substrate. In conclusion, positive interactions between the host plant,

mycorrhizal inoculant and shell-fish waste amended growth substrate and resistance

to ~. fragariae have been demonstrated. However, the complexity of this interaction

is such that commercial exploitation of this tripartite relationship would appear

difficult, especially when confronted with the biological diversity of soils.
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Table 1. Effect of shell-fish amendment of the growth substrate on median percent

root length colonisation (+ % RLC) at 4 and 8 weeks for. f.~ Ch-, control

PVS growth substrate; Ch+ Suppresso~-amended substrate.

Four Weeks

Treatment +% 9S%C. I. Treatment +% 9S%C. Effect

RLC RLC I.

Endorize iv Ch- 8.5 [5-17] Endorize iv 12.5 [5-17] N.S.

Ch+

Vaminoc Ch- 17.5 [11.7- Vaminoc Ch+ 37.0 [II-50] S. (p<0.05)

25.61

G. mosseae Ch- 5.0 [3-15] G. mosseae 18.7 [3-86] S. (p<0.05)

Ch+

Eight Weeks

Treatment +% 9S %C. I. Treatment +% 9S%C. Effect

RLC RLC I.

Endorize iv Ch- 25.0 [14-43] Endorize iv 30.0 [16-47] N.S.

Ch+

Vaminoc Ch- 24.5 [13-48] Vaminoc Ch+ 37.0 rt 1-50] N.S.

G. mosseae Ch- 24.5 [9-46] G. mosseae 30.5 [12-50] N.S.

Ch+

N.S =not significant, S. =significant (P < 0.05, Mam-Whitney U test).

Ch- = Wrthout chitin amendment, Ch+ = with chitin amendment (8 plants per

treatment).
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Table 1. Effect of shellfish amended growth substrate on the vegetative growth

response in Fraaaria vesca, median (+) runner count data 4 and 8 weeks after

potting up. (codes as Table 1).

Week 4 Week 8
Treatment Median 95 % C.1. Treatment Median 95 % C.1.

Control Ch- 7.5 b [3-10] Control Ch- 6.0b [3-9]

Control Ch+ 2.0a [1-4] Control Ch+ 1.5 a [0-4]

Endo. iv Ch- 1.0 a [0-2] Endo. iv Ch- 1.0 a [0-2]

Endo. iv Ch+ 3.0a [0-5] Endo. ivCh+ 2.08 [0-8]

Vaminoc Ch- 7.0 b [5-10] Vaminoc Ch- 7.0b [5-9]

Vaminoc Ch+ 6.5 b [4-10] Vaminoc Ch+ 6.5 b [4-9]

G. moss. Ch- 2.0 8 [0-4] G. moss. Ch- 1.5 a [1-3]

G. moss. Ch+ 0.0 a [0-2] G. moss. Ch+ 0.0 a [0-3]

Median runner count values followed by the same letter (horizontally) are not

significantly different (P< 0.05, 15 plants per treatment). C.I. =Confidence intervals

133



Table 3. Disease Severity indexes (DSI) following challenge with Pbytophthora

fra&arlae inoculum at week 8 of Vaminoc-inoculated plants grown in control

substrate, and shell-fish amended substrate and in amended substrate for 4

weeks followed by return to control compost for 4 weeks before challenge.

Rank Treatment (Mean DSI) Median DSI 95 % Confidence limits

1. Vam+ Ch+(4 week) (0.91) 0.47 a [0.08-3.85]

2. Vam+ Ch- (3.62) 3.48 ab [0.21-9.49]

3. Vam- Ch+(4 week) (3.68) 3.49 ab [0.48-9.2]

4. Vam- Ch+(8 week) (4.45) 3.46 ab [0.21-12.6]

5. Vam- Ch- (4.79) 3.47b [0.66-13.42]

6. Vam+ Ch+(8 week) (12.48) 9.33 b [1.12-29.55]

Median values followed by a different letter (horizontally) were found to differ

significantly following the KruskaI-WaDis test. ANOVA Significant interaction

between Chitin and Vaminoc (H =7.43>12 =5.99; P< 0.05).
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Fig. 1. Percentage of plants in each treatment, which had flowered by week

26. Ch-, control PVS growth substrate; Ch+, PVS substrate plus

Suppressor®; Endo- in PVS; Endo +, in PVS containing

Suppressor®; similarly for Yam - and +, G. mossae - and +.
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Chapter Seven

The identification and use of chitin-amended compost to

suppress wilt disease in glasshouse-grown Dianthus

'Mystere' plants

Section B: Investigation ofthe biocomrol properties ofchitin-containing cnlStacean shellfISh waste



1
;!~

'~ Preface to Chapter 7
.~
! This chapter is based on work done in collaboration with Ultan Cronin. The style is
.. ?

~~. that of the journal Applied Soil Ecology.
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THE IDENTIFICATION AND USE OF CHITIN-AMENDED COMPOST TO

SUPPRESS WILT DISEASE IN GLASSHOUSE-GROWN DIANTHUS

'MYSTERE' PLANTS

Susan M. Rafferty, Ultan P. Cronin and Alan C. Cassells·

Department ofPlant Science, National University ofIreland, Cork, Ireland

·Corresponding author. Telephone: +353 21 4904554; Fax: +353 21 4251256;

Email: a.cassells@ucc.ie

Abstract

The causal agent ofa virulent wilt disease of mutant microplants and selected mutant

lines of Dianthus 'Mystere' in the glasshouse was identified, and independently

confirmed, as Fusarium oxysporum f. sp. dianthi. The disease was not controlled by

fungicide application. Cultivation in compost amended by the addition of crustacean

shellfish waste was effective in reducing disease incidence in heavily contaminated

glasshouse conditions. In addition to positively influencing antagonists in the peat

compost, chitin-amendment was shown to stimulate in planta chitinase levels and

alter protein banding patterns.

Keywords; Biological control, cellulase, chitinase, Fusarium oxysporum,

pathogenesis-related proteins, tissue culture
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1. Introduction

A wilt disease developed in a mutation breeding programme on Dianthus

'Mystere', a hybrid between D. caryophyllus and D. barbatus (Cassells et aI., (993).

The disease caused losses in the glasshouse-grown both affecting established mutant

microplants before selection and the maintenance of selected lines. Benolate and

carbendazim fungicides are recommended fOf use against Fusarium Qxysporum

(Hanks, (996). However the disease was not responsive to either of these systemic

fungicides. Other authors have also found POOf response to these chemicals and

utilised different control strategies (Minuto et aI., 1995, Lenteren, 2000) and so here

an alternative method ofstock block maintenance was investigated.

The initial sYmptom of the disease was a yellowing of the basal leaves of the

plant's rosette of leaves. The rosette then became chlorotic, with patches of red-

purple anthocyanin pigmentation evident on many of the leaves followed by wilting

of the foliage (Fig. I). Two to three weeks after the initial expression of symptoms

the infected plants died.

A number of organisms, both bacterial and fungal, are reported to cause wilt

diseases of Dianthus species (Fletcher, 1984; Smith et aI., 1988; Whealy, 1992). The

bacterial species, Pseudomonas carvophylli and Erwinia chrvsanthemi pv. dianthicoli

and the fungal species, Fusarium oxysporum f. sp. dianthi, Rhizoctonia solani,

Phialophora cinerescens and Calonectria kyotensis are the causal agents of most of

the common forms of Dianthus wilt disease. Fusarium wilt is the most important

disease of species within Dianthus, and worldwide, causes severe economic losses

for commercial growers. It is prevalent in the south of England which has similar

climatic conditions to Cork (Chiocchetti et aI., 1999; Carver et aI., 1996; Whealy,

1992). Outbreaks of Fusarium wilt in a glasshouse or field bed are attributed to
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gennination of a donnant or recently introduced chlamydospore within the growth

substrate (Nelson, 1981; Smith et aI., 1988).

Several approaches to the control of f. oxysporumf. sp. dianthi have been

reported elsewhere (Table 1), and these include biological control off. oxysporum f.

sp. dianthi. For example Vanpeer et al. (1991, 1992) had some success using a strain

of Pseudomonas that induces systemic resistance in both carnation and radish.

Carver et at (1996) also reported suppression by Trichodenna, however this is

limited as plant-pathogen biocontrol-agent specificity, as well as temperature

specificity, were observed. Other fungal inoculants also showed some degree of

success in carnation and chickpea, for example, non-pathogenic races of Fusarium

have been used as agents against f. oxysporum (Postma and Luttikholt, 1996;

Hervas et aI., 1995), however, timing and dosage of the biocontrol agent were

critical and in most cases effects did not persist.

Previously, the use of chitin-amendment compost for the control of substrate-

borne disease showed promising results (Murphy ~ al., 1999). Crustacean shellfish

waste was the chosen amendment as it is 8 rich source of chitin which has been

shown to exert biological control through its promotion of antagonistic soil micro-

organisms (Mitchell and Alexander, 1962). Chitin and its derivative chitosan

(Evans, 1993; Ren and West, 1992; Akiyama ~ AI., 1995; Gagnon and Ibrahim,

1996; Pearce et aI., 1998) are also reported to elicit pathogenesis-related proteins,

which playa role in disease resistance.

The objectives of this investigation were two fold; in the first instance to identify

the causal agent of the disease. In the second instance to evaluate the potential of

crustacean shellfish waste-amended peat to control the disease so that stocks of
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Dianthus could be maintained in the long tenn in the glasshouse and avoid the

catastrophic losses seen previously.

2. Materials and methods

2.1. Isolation ofpathogen

Stem sections were taken at least 2 cm above soil level from Dianthus 'Mystere'

glasshouse-grown plants showing advanced symptoms of wilt disease. In the

laboratory, leaf material was trimmed from the stems using a scalpel and stem

sections were thoroughly rinsed under tap water. In a laminar air-flow hood the stem

sections were placed in 70% (v/v) aq. ethanol for 2 minutes, 10% (v/v) aq. Domestos

(Diversey Levers, Northampton, NN3 8PD) for 15 minutes and rinsed three times in

sterile distilled water. The stem sections were held in the final rinse of sterile

distilled water for 5 minutes. Following surface sterilisation, the stem sections were

cut into 1cm lengths. Each of these was placed in a petri dish containing IOml of

sterile distilled water. The sections were macerated aseptically. Serial dilutions of

the macerate supernatant were made, using sterile distilled water as the dilutant. 1ml

aliquots of each dilution were pipetted into petri dishes containing 50 ml of UI

medium (30 g r1 sucrose, 2.15 g r1 Murashige and Skoog (1962) basal salts, 1 mg r1

of GA3, 6 g r1 agar, pH 5.8), VA medium (200 ml r1 V8 vegetable juice (Campbell

Ltd., King's Lynn, Norfolk, PE30 4HS, UK), 3.0 g r1 calcium carbonate, 6.0 g r1

agar-agar) or NA (1.0 g r 1 Lab Lemco Powder, 2.0 g r1 Yeast extract, 5.0 g r1

Peptone, 5.0 g r1 sodium chloride, 6.0 g r l agar-agar) and spread evenly over the

plate's surface using a sterile spreader. Petri dishes were sealed with parafilm
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(American National, Chicago, USA) and placed in an incubator maintained at 24°C.

Growth was examined after four days.

Control spore and hyphal cultures of the fungus, f. oxysporum f. sp. dianthi,

were initiated on petri dishes of two media and grown at a range of temperatures (4,

18 or 37°C), in order to determine optimal conditions for growth. The media were

VA (see above) or SA (D-glucose 5.0 g r l
, L-asparagine, 1.0 g r l

, magnesium

sulphate, 5.0 g r l
, sodium carbonate 1.04 g r l

, di-potassium hydrogen

orthophosphate 1.36 g r l
, agar-agar 15.0 g r l ~ Cultures were examined after two

weeks incubation in the dark at 24°C. On a bi-weekly basis, the maintenance of pure

cultures of f. Qxysporum f. sp. dianthi was carried out by inoculating single spores

or small mycelial segments onto the media, U I and VA, cultures were incubated in

the dark at 24°C. Cultures of the fungus were also stored at a temperature of -SoC.

2.2. Identification ofE. oxysporumf. sp. dianthi

Using a needle, mycelia were scraped from the surface of petri dishes in which pure

cultures of the isolate were growing. The mycelial scrapings were transferred to

microscopic slides. The samples were carefully covered with a drop ofsterile

distilled water and air-dried. Samples were stained with lactophenol cotton blue.

Excess stain was irrigated using sterile distilled water and the samples were again

air-dried. A drop of immersion oil was placed over the slides, which were then

examined using light microscopy under magnifications of40x, lOOx and IOOOx.

Morphological characteristics of the isolates were keyed out using Ellis (1985) and

Barnett and Hunter (1972). Cultures of the pure isolate were sent for independent

identification (CABI Bioscience, Egham, Surrey, TW20 9TY, UK).
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2.3. Inoculation ofin vivo Dianthus "Mystere" plants with pure cultures ofFusarium

oxvsporumf sp. dianthi isolates

Fifteen symptomless, established three-month-old Dianthus 'Mystere' plants

from aseptic in vitro cultures were established and grown on in a glasshouse in

which D. 'Mystere' plants had never previously been cultivated after establishment.

.The plants were established in peat-based potting compost (Westland Horticulture,

Dungannon, BT70 INJ, N. Ireland, UK) and were potted up in 11.5 cm pots in a

medium consisting ofa 40:40:20 mix by weight of fine gravel, horticultural sand and

potting compost. Icm2 plugs of VA medium on which pure cultures of f.

oxysporum f. sp. dianthi isolates were growing were inverted and placed on the soil

surface of pots in which the plants were growing. One plug was placed in each pol

Plants were watered regularly, fertilised every two weeks using Miracle GroWN

(Miracle Garden Care Ltd., Godalming, Surrey, GU7 lXE, UK). Plants were

sprayed regularly with a rotation of the insecticides Decisquick (AgrEvo Crop

Protection) and Malthion (Hygeia Chemicals Ltd.) to maintain an aphid-free

environment and observed on a daily basis for symptoms ofwilt disease.

2.4. Inoculation ofin vitro Dianthus 'Mystere' plants with pure cultures ofFusarium

oxysporumf sp. dianthi isolates

Twenty microplants, growing in vitro aseptic tissue culture, of each of five lines

of D. 'Mystere' were inoculated with hyphal cultures of pure isolates of f·

oxysporum f. sp. dianthi. Plantlets were grown in 120 ml plastic food tubs

containing SO ml of Dianthus medium (IS g r l sucrose, 2.15 g r l Murashige and

Skoog (1962) basal salts, I mg r l GA3, 6 g r1 agar agar, pH 5.8), with four explants

per tub. At the time of inoculation, microplants were four months old. Cultures
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were placed in a growthroom under a regime of 23±2°C and 25-45 f.1mol m-2 S-I light

provided by white 65/80 W "Litegard" fluorescent tubes (Osram Ltd., Manchester,

UK). Plantlets were observed on a daily basis for symptoms of disease occurrence

and progression.

2.5. Investigation of the effectiveness of a chitin-amended compost in suppressing

Fusarium wilt disease ofDianthus "Mystere" plants

Trials were set up in a Fusarium contaminated-glasshouse to ascertain whether

Dianthus 'Mystere' microplants derived from tissue culture could be weaned and

grown successfully in a peat-based compost formulated with crustacean shellfish

waste (Suppressor™, Landtech Soils, Ltd., Co. Tipperary, Ireland). Four trials were

designed to evaluate the efficacy of "Suppressor™" compost in controlling Fusarium

wilt disease of D. 'Mystere' in glasshouse pot trials; (i) the control medium was that

normally used for 12. 'Mystere' cultivation, namely, a 40:40:20 mix by weight of

fine gravel, horticultural sand and peat-based potting compost (Westland

Horticulture, Dungannon, N. Ireland, BT70 INJ, UK); (ii) a 3:1 mix of control

compost and compost removed from infected D. 'Mystere' plants to provide a source

of inoculum of Fusarium oxysporum f. sp. dianthi; (iii) a 3: I mix ofcontrol compost

substrate and "Suppressor™" compost; and (iv) a 2: I: I mix of control compost,

"Suppressor™" compost and contaminated compost from infected plants.

The D. "Mystere" in vitro-derived microplants used were two months-old in all

cases. Each treatment consisted of four replicates of fifteen microplants (each

weaning tray contained 15 modular sections). These microplants were weaned in

modular trays covered with transparent plastic lids. Initially, high moisture levels

within the covered modules were maintained by regular misting. Gradually, as the
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microplants established, the moisture levels were reduced and eventually the lids

were removed from the modules. Weaning took place in a glasshouse with a high

background level of f. oxysporum f. sp. dianthi inoculum present. Data were

recorded after six weeks.

2.6. SDS PAGE ofpathogenesis related proteins

Dianthus tissue (lg tissue Iml buffer) was ground in Tris-HCI Buffer (I00mM

Tris-HCI buffer, pH7 containing 10mM 2-mercaptoethanol) using Agdia extraction

bags and a ball-bearing grinder. The extract was passed through cheesecloth and

filtered through Whatman No1 paper, centrifuged at 17,6OOg for 20 min at 4°C and

stored at -20°C. A standard curve of a 1mg/ml solution of bovine serum albumin

was constructed by making up the following volumes to 5ml with Bradford Reagent

(Alpha Technologies, Dublin 6, Ireland), 0, 0.125, 0.25, 0.5, 0.75, l.Omg/ml. This

was repeated for each sample and incubated for at least 2 min at room temperature.

Optical density was read at (0.0.) 595nm. The BSA standard curve was used to

calculate the protein content of the samples and was used to standardise the samples

for gel electrophoresis.

Extracts were boiled for IOmin with I vol. of sample denaturing buffer (12SmM

Tris base, pH adjusted to 6.8 with 3M HCI containing 0.4% (w/v) SOS, looA. (w/v)

glycerol,4% (v/v) 2 mercaptoethanol and 0.02% (w/v) bromophenol blue). Samples

were loaded into precast 8-16% resolving gels (BIO-RAn, Alpha technologies,

Dublin 6, Ireland). Gels were run in Running buffer (5x concentration, Tris base,

15g/l, glycine 72g/l, SDS 5g/l. Make up with distilled water and dilute to Ix

concentration) for up to 4S min at 200v.
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The gel was removed from the rig and fixed in 10010 aq. acetic acid for 3Omin.

The acid was poured off and kept for later. The gel was then washed in distilled

water for 2 min x 3. Staining was carried out for 30min with gentle agitation using

2g silver nitrate, 3ml 37% formaldehyde made up in 21 with distilled water. The gel

was washed very briefly in distilled water for 30s. It was then placed in developer

(sodium carbonate 60g, 37% formaldehyde 3 ml, 4OOJ,l1 of sodium thiosulphate

solution (IOmg/ml), make up with 21 of distilled water) and rocked until the bands

became visible. To prevent overstaining, 10% aq. acetic acid from previously was

added. The gel was then washed in distilled water.

2.7. Enzyme extraction and assay

The procedure for extraction ofenzymes from peat was based on Wirth and Wolf

(1992). 5ml 0.5 M sodium acetate-acetic acid buffer pH 5 per Ig dry weight of soil,

were mixed using a magnetic stirrer for 1h. The suspension was then centrifuged at

28,950g for 10min at 4°C and supernatant filtered through glass fibre filter paper.

The supernatant was then stored at -20°C prior to analysis. Plant material was

ground in liquid nitrogen and extracted as per Wirth &. Wolf (1992) with 0.5 M

sodium acetate - acetic acid buffer, pH5 (4mVg tissue) centrifuged at 20,OOOg for

20mins (Mauch et aI., 1988). Carboxymethyl-Chitin-Remazol Brilliant Violet (CM

chitin -RBV) and Carboxymethyl-Cellulose-Remazol Brilliant Blue (CM-cellulose

RBB) (Blue Substrates, GrisebachstraBe 6, 0-3400, GOttingen, Germany) were used

as substrates to assay for endo-acting chitinase and endo-acting cellulase activity.

Assays were performed in 96 well microtitre plates (Costar Europe, High Wycombe,

UK; cat DO. 3590). Each well contained the following, 50~1 of substrate, 100 ~I of

extract, 50~1 of buffer (0.2 M sodium acetate - acetic acid buffer, pH5). Control
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wells contained no extract until after the acid addition. (4 control reps and 8 test reps

were used). Incubation was carried out at 40°C for 3 hours. The reaction was

stopped using 50).11 of HCI (IN for CM-Chitin-RBV and 2N for CM-cellulose-RBB).

Plates were cooled on ice for 10 min and centrifuged (l450g x IOmins). 175).11 of

supernatants were transferred to a 96 well half size EIA plate (Costar, cat no 3690).

Activity was read at 550nm for Chitin-RBV and at 600nm for Cellulose-RBB.

Extracts with a reading > 0.1 were diluted down and assayed again as they were

substrate limited. Calculation ofenzyme activity was carried out using the following

formula:

Absorbance x 1000 x min-·

3. Results

3.1. Iso/ation and identification ofFusarium oxysporum f. sp. dianthi

Attempts to isolate the agent responsible for causing wilt disease of Dianthus

'Mystere' plants resulted in the growth of pure fungal colonies on the three growth

media used in the procedure, VI, VA and NA. The surface fungal mycelium was

white and had a cotton-like texture, while the mycelial mass in contact with the

growth medium was purple-mauve in colour. When examined using light

microscopy, the fungus displayed the characteristic morphological characteristics of

Fusarium oxysporum as described by Ellis (1985) and Barnett and Hunter (1972).

These traits included distinctive sickle-shaPed macroconidia, simple

characteristically shaped phiallides and the presence of chlamydospores. An

independent identification by Dr. D. Brayford of CABI Bioscience confinned the
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isolate's identity as E. oxysoorum. Since the fungus was isolated from a plant within

the genus, Dianthus, the fonna speciales of the organisms can be designated dianthi.

The number of colony fonning units (CFVs) isolated per cubic cm of infected

stem tissue was 5.5 x 10" for VI, 6.75 x 10" for VA and 7.5 x 104 for NA. Both

spore and hyphal cultures of the fungus grew more successfully on VA that on SA,

with cultures growing on SA appearing thinner and sparser than on VA. No

pigmentation developed on cultures grown on SA medium. Cultures incubated at

4°C and 37°C failed to grow.

3.2. Inoculation ofi!! vivo Dianthus 'Mystere' plants with pure cultures ofFusarium

oxysporumf. sp. dianthi isolates

Four weeks after inoculating glasshouse-grown Dianthus "Mystere" plants with

Fusarium oxysporum f. sp. dianthi, three of the fifteen treated plants displayed the

symptoms of incipient Fusarium wilt, with a portion of their shoot tissue appearing

chlorotic and flaccid and with purple-red anthocyanin blotches evident on their

leaves. After a week, two of these three plants were dead. The lower stems of these

plants were soft, with a slight brown discolouration of the vascular tissue visible.

Two months after inoculation, only three of the 15 treated plants were still alive.

However, all three of the surviving plants were in the latter stages of Fusarium wilt.

3.3. Inoculation ofin vitro Dianthus Mystere' plants with pure cultures ofFusarium

oxysporumf. sp. dianthi isolates

In vitro D. 'Mystere' microplants inoculated with E. oxysporum f. sp. dianthi

displayed the same symptoms of infection as in vivo plants. Appearance of

symptoms and disease progression was much more rapid, however. Within one
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week of inoculation, microplants became chlorotic. One to two weeks after this,

microplants were shrivelled. One week, post inoculation, f. oxysporum f. sp. dianthi

was seen as cotton-like wisps enveloping the roots of plantlets. A week later, the

fungus had become pigmented with its characteristic purple-mauve colour. At this

stage, the medium began to discolour.

3.4. Investigation of the effectiveness of a chitin-amended compost in suppressing

Fusarium wilt disease ofDianthus 'Mystere' plants

The results of the experiment carried out to investigate the effectiveness of

shellfish waste "Suppressor™'' substrate in controlling Fusarium wilt disease of D.

'Mystere' are given in Fig. 2. Fusarium was successfully isolated from the control

infected peat treatment as well as the Suppressor™-infected peat treatment. It was

not isolated from either of the other treatments. In the absence of Fusarium

inoculum, plant survival in Suppressor™ was 63%, which was over one, and a half

times the survival of the controls (38%). In the presence of Fusarium inoculum 20%

of the controls survived whereas 48% survived if weaned in Suppressor™. A chi

squared analysis showed a significant difference between these values at p<O.OO1.

3.5. PR Protein analyses

The banding pattern of the proteins separated by SDS PAGE is shown in Fig 3.

When Fusarium is present there was an up-regulation of the protein between 37 and

50kD (-43kD) and a new band -20kD (between 15 and 25kD) was present. When

Suppressor™ was present a new band was present, just below the 25kD (-24kd)

marker. It was still faintly present when both Suppressor™ and Fusarium were
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present. Interestingly, there was a 50kD band present in the control that was not

present in any of the other treatments.

3.6. Enzyme assays

The results of previous enzyme assays carried out on the peat and Suppressor™

are shown in Fig 4. These results show that the Suppressor™ has significantly

elevated chitinase and cellulase compared to those present in ordinary Peat.

Chitinase levels are increased from 23 chitinase units to 411, while the cellulase

units significantly changed from 49 to 2274.

The results of Dianthus extract chitinase assays are presented in Fig. 5 and the

results of the cellulase assays are shown in Table 2. The chitinase levels are

significantly higher than the control when Suppressor™ is present, 16.6 chitinase

units and 132.6 chitinase units, reSPeCtively. Cellulase activity though much higher

than chitinase were not significantly changed by the presence of Suppressor"', the

Control and Suppressor™ being 17396, 20208 cellulase units, reSPeCtively. On

introduction of infected peat into the compost no significant difference was seen in

the cellulase activity though there were significant differences between the control

and the control and infected treatments, 17395 cellulase units and 23020 cellulase

units, respectively. Nevertheless, when infection was present in the controls

chitinase activity did not change, however, the Suppressor™ chitinase activity

remained significantly different from the control but no significant change occurred

whether infection was present or not in the Suppressor'" treatments.
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4. Discussion

Light microscopy examination of pure isolates from internal tissues of

sYmPtomatic plants showed that aetiological agent was Fusarium oxysporum f. sp.

dianthi, an identification that was independently confirmed by Dr. D. Brayford of

CABI Bioscience Identification Services. Both in vivo plants and in Yi!r2

microplants of D. 'Mystere' displayed the characteristic sYmptoms of Fusarium wilt

when inoculated with pure cultures of the isolate, providing further confirmation that

the causal agent was f. oxysoorum f. sp. dianthi. Eleven discreet races of f.

oxysporum f. sp. dianthi, are recognised, each with its own geographical distribution,

host preference and morphological and genetic markers (Chiocchetti, et aI, 1999). In

order to assign a race to the agent isolated in this case, compatibility testing and

molecular analysis would need to be carried out (Chiocchetti et aI., 1999; Kalc

Wright et aI., 1996; Manulis, 1994).

Chitin, which is a major component of the exoskeletons of crustaceans and of

fungal cell walls (Campbell, 1996), and its derivatives, such as chitosan, are elicitors

of plant defence responses (Hadwiger and Beckman, 1980; Walker-Simmons and

Ryan, 1984). Such responses can confer protection on plants from attacks by

pathogenic organisms (Bell et aI, 1986; Dammann, et aI., 1997; Titarenko et II.,

1997). The presence of chitin in the plant's growth medium can serve to boost

steady-state levels of the chemicals involved in the plant's defence response so that

when it is challenged by the attack of a pathogenic organism, the plant is

"immunised" (Bell ~ aI., 1986; Berenbaum, 1995). The increased chitinase and

cellulase levels seen in Suppressor TN compared to the control peat corroborates this.

Previous research has rePOrted the benefits of including chitin in the growth

substrate for plants (Murphy et aI., 1999). For example, the addition of shellfish
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waste to the medium in which strawberry plants were grown was found to result in

an increase in plant dry weight and in root length colonisation by mycorrhizal

inoculants. With careful attention to timing the chitin-amended compost also

reduced susceptibility to strawberry redcore (Murphy et aI., 1999).

Here, enzyme analyses of the plants grown in Suppressor™ didn't show

significant differences in cellulase units. However significantly higher levels of

chitinase compared to plants gown in control compost were present in the

Suppressor™ plants. These levels remained high whether infection was present or

not and correlate to the disease survival (Fig. 2). The PR protein gel analysis (Fig. 3)

showed differences in banding patterns when Suppressor™ was present, including an

extra band of c. 24 kD. However, when infection was present the banding patterns

were similar in the control and the Suppressorn:- composts.

In summary, when chitin-amended compost was included in the substrate used in

the cultivation of tissue culture-derived plantlets of D. 'Mystere', the survival rates

were increased from 20.0% to 48.3% in the case of microplants inoculated with f.

oxysporum f. sp. dianthi and from 38.3% to 63.3% in the case of microplants

growing in a glasshouse where high levels of infection were recorded. In the

absence of effective fungicides to control Fusarium wilt of Dianthus in the

glasshouse, glasshouse sterilization followed by cultivation in chitin-amended

compost may be an effective strategy to control disease development in long-term

stock plant maintenance. Chitin-containing compost may function both by promoting

soil-inhabiting fungal-antagonists and by eliciting host plant anti-fungal defences.
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Fig. 2. The percentage survival of Dianthus "Mystere" in vitro-derived plantlets

weaned in one of four separate media. The control condition involved the

weaning of plantlets in an ordinary peat substrate. Suppresser™ medium

contained shellfish waste, a source ofchitin. Infected peat, derived from pots

in which plants had succumbed to Fusarium wilt, served as an inoculum off.

oxysporum f. sp. dianthi.
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Fig. 4. Mean enzyme activities found in matured peats (approximately I year old)

Those values sharing a common letter are not significantly different (P<O.OO1)
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Fig. 5. Mean Chitinase Activity measured in Dianthus plant extracts. Those values

sharing a conunon letter are not significantly different (P<O.OOI)

Suppressor + Infection
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Table 1. The Approaches used in the control ofFusarium wih disease.

Classification of Brief Approach Description Reference

Approaches

Reduction of Fo The use ofhygiene/good sanitation in plant See Whealy, 1992

inoculum levels propagation

Fumigation ofthe growth substrate Ramirez ~ M., 1994

Using raised beds for the cultivation ofplants See Whealy, 1992

Application of fungicidal drenches to See Fletcher, 1984

plants/cuttings

Soil pasteurisation ofthe growth substrate Elena ~M., 1997; Ramirez

~II. 1994

Soil solarisation Elena &: Tjamos., 1997;

Elena ~ II., 1997

Use ofcertified cuttings See Whealy, 1992

Cultivation ofplants Maintenance of low substrate p~ Caz
+ and N Duijff~ ~., 1995; see

under conditions levels Whealy, 1992

unfavourable to Fo Cultivation ofplants at reduced temperatures Ben-Yephet ~ M.; 1996,

see Nelson, 1981

Cultivation ofplants under low relative humidity See Whealy, 1992

and low substrate water content

Cultivation ofplants under high light intensities Ben-Yephet ~ M., 1996

Biological Control 'Immunisation' ofplants using incompatible Fo Castillo ~ ~.,. 1995;

ofFo races Migheli ~ @I., 1996;

Postma cl Luttikh~ 1996;

Rattink &: Postm, 1996

Inoculation of substrate with miaobes suppressive Elena cl Tjamos 1997;

ofFo Duijff~ @I., 1995; Vanpeer

~ ~., 1991,1995; Carva'~

aI., 1996

Cultivation ofplants undefined F()-suppressive Alabouvette, 1999

soils

Fo = Fusarium Cultivation ofplants in defined F()-suppI'essive Orlikowlki &: Skrzypczak,

oxyoorum soils 1997
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Table 2. Cellulase analysis results ofDianthus plant extracts.

Cellulase Activity Letters of significant
(mean units) difference

Control 17395.833 a
Control + Infection 23020.833 b

Suppressor 20208.330 a,b
Suppressor + Infection 21805.556 a,b

Data subjected to one way anova analysis using PrismTM software. Those values

sharing a conunon letter are not significantly different (P<O.05).

162



Chapter Eight

Persistence and effects of human pathogens on aseptic

plants in vitro

Section C: Investigation ifpersistence olenteric bacteria in/on plams



'...;.~
.~

i,: Preface to Chapter 8

This chapter was carried in collaboration with St. James' Hospitalffrinity College,

Dublin. The work was presented as a poster at the International Society for

Horticultural Science, International Symposium, August 1999, Cork, Ireland. After

peer review it was published as a paper in the in Acta Horticulturae 2000, 530, 145-

154.

163



PERSISTENCE OF HUMAN FOOD POISONING PATHOGENS IN A

MICROPROAGATED VEGETABLE

Susan M. Rafferty, *Siobhan Williams, *Frederick Falkiner and Alan C Cassells

Dept. Plant Science, National University of Ireland, Cork, Ireland.

*St. James Hospital, Trinity College, Dublin, Ireland.

Abstract:

An increase in reports of disease outbreaks associated with fresh and ready-to-eat

vegetables has prompted this study to review the risk of transmission of human food

poisoning organisms in micropropagated vegetables. Surface sterilised seeds from

lettuce, cabbage and carrot plants were germinated on an agar base inoculated with

E. coli and S. marcescens respectively. Seedlings were then used for aseptic

autotrophic tissue culture. The micropropagated plants were examined

microbiologically by surface decontamination, and subsequently homogenisation of

the plant material. The model strains were recovered both from direct culture and

homogenate. Biochemical identification was carried out using the API system, and

molecular typing was performed using pulsed field gel electrophoresis (PFGE). E.

coli and S. marcescens were found to persist in autotrophic culture, indicating that

the carbon sources required were acquired from plant exudates. After serial

subcultures, inoculated bacteria were repeatedly re-isolated from the progeny plants

though some plants were asymptomatic. In some cases the bacteria became

pathogens in vitro in the latter subcultures.

Keywords: Clinical Isolate, Plant Tissue Culture, PFGE
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1.0 Introduction

Micropropagation and hydroponic systems have become increasingly popular

(Holdgate and zandvoort 1997). Plant tissue culture and micropropagation is prone

to contamination with human pathogens due to the 'hands-on' nature of the work

(Leifert el 01., 1994). Weller (1997) stated that "the frequency of infections with

common skin organisms of Staphylococcus and Micrococcus and the increasing

percentage of infection with serial subculture implies contamination from human

skin". It has also been reported that T. interdigitale was acquired from

micropropagated plants by two horticulturists on separate occasions (Weller and

Leifert 1996). The risk of human food pathogens being introduced into the food

chain via the vegetable link has increased recently due promotion of the 'healthy'

diet based on increased consumption of vegetables and the rapid expansion in sale of

mixed root and haulm vegetables in prepacks. Consumption is projected to increase

in the next few years with increased production of minimally processed convenience

foods, development of value-added products e.g.: pre-washed prepared vegetable

mixes, addition of sauces and meats etc. (Beuchat 1996, Rafferty and Cassells,

2000). There has been an increase in reports of disease outbreaks associated with

fresh and ready-to-eat vegetables (WHO 1998, Beuchat 1996). These facts raise

concern regarding transmission of food pathogens via infected micropropagated

produce. A report in 1997 found that E.coli 0157:H7 could contaminate the edible

parts of radishes after the seeds had been soaked in an E. coli 0157:H7 solution

(Hara-Kudo et 01., 1997). There is a need to assess the potential health risks of the

transmission of harmful bacteria via vegetables, which are eaten either raw or after

minimal processing. This study has been undertaken to review the risk of

transmission in micropropagated vegetables. The aim of this study is to inoculate at
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low levels with selected human clinical strains and to then monitor whether these

strains can survive in aseptic plant tissue culture conditions. If they can survive

could they persist through serial subcultures?

2.0 Materials and Methods:

2.1 Strain Selection:

The following two strains were chosen for study: Escherichia coli (Clinical strain

ref. no. 945.1 St James Hospital Dublin 8, Ireland) and Serratia marcescens (Clinical

strain ref. no. 492.4 St James Hospital Dublin 8, Ireland)

The former was chosen as a non-pathogenic representative of food-poisoning E.coli,

which was safe to use in the contained environment of in vitro work. Serratia is a

well-known environmental organism (Holt 1985) and has been previously reported

as a non-phytopathogenic endophyte of xylem in Citrus (Goto 1990). An outbreak

of Serratia marcescens infections occurred in a university tertiary-care hospital

(Vigeant et a/., 1998) and it was also noted as an opportunistic pathogen in St James

Hospital Dublin (Fred Falkiner, St James hospital personal communication). All

strains were provided by the Diagnostic Microbiology Laboratory, St. James's

Hospital, Dublin 8, Ireland.

2.2 Plant Inoculation:

Strains were grown up to an OD of 0.4 at 600nm and diluted appropriately. The

following series of dilutions were chosen. For in vitro work 10-', 10-8 and 10-9.

These dilutions were chosen as they represented, respectively, levels of bacteria that

were detectable using conventional culture methods, levels below acceptable

conventional plate count numbers and levels that could not be detected at all. lOOJ.11
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aliquots were plated onto water agar. These plates were used for gennination of

surface sterilised seeds for 8-10 days.

Seedlings were then used for aseptic nodal tissue culture. Control plants were

indexed throughout by culturing on MacConkey plates overnight at 37'C

2.3 Autotrophic Tissue Culturing:

Brassica seed was surface sterilized in 80% aq. ethanol and immersed in 20% vlv aq.

Domestos for 15-2Omin and washed in sterile distilled water (x3) in a laminar-flow

cabinet prior to placing the seeds on plates of sterile water agar (6g Agar (Sigma

Aldrich Ireland Ltd) per L distilled water). There were 20 seeds per plate.

Following gennination the shoots were excised 8-10 days after inoculation and

placed into Magenta GA-7 vessels (Sigma- Aldrich Ireland Ltd) each containing

polyurethane foam (Plant Biotechnology (VCC) Cork) for support imbibed with half

strength M+S mineral solution (Sigma) (Cassells and Walsh 1996). These were

grown on in the growth room under the following standard conditions: 23±I 0 C, 16

hour photoperiod (white 65180 w litegaurd tubes, Osram Ltd., UK..) with PAR of 30

flmol m-2 51 at shelf height. These plants were bacterially indexed as previously

described above to ensure asepsis of the plants.

In parallel, surface-sterilised seedlings were placed onto water agar plates that had

been inoculated with Ix 10-7
, Ix 10" and Ix 10-9 dilutions of Escherichia coli and

Serratia marcescens. This inoculum was prepared by growing cultures to an

absorbency of 0.4 at 47Onm. A standard plate count was carried out on MacConkey

agar, the dilutions used contained the concentrations of bacteria as laid out in Graph

1.0. These seeds were genninated and transferred to magentas as above. When
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plants were subcultured only the terminal node was used, which was the farthest

from the point of inoculation.

Samples of spent media were taken at the end of the culture cycle and a dilution

series was constructed to determine the number of bacteria present in the media

during the 4-6 week growth period.

2.4 Plant Sampling:

Plants were harvested using a fresh pair of latex gloves per treatment to avoid cross

contamination. Each plant was packaged in a plastic bag (Glad Freezer Bags)

shipped within 12hours from Plant Science Department in Cork to St. James

Hospital in Dublin and microbiologically analysed within 12hours of receipt of

delivery.

2.5 Preparation of the Plant Material:

All plant material was rinsed in sterile distilled water to remove excess surface dirt.

Surface Sterilisation of the plant material proceeded by immersing the plants in 80%

Ethanol (Ethanol absolute, Merck KgaA, Darmstadt, Germany) for 45 sec, then 2%

Stericol (Stericol Hospital Disinfectant, Lever Industrial Ltd., Runcom, Cheshire,

UK) for 30 min, followed by washing in sterile distilled water (x3). Following

sterilisation the plants were placed in 9ml Ringers (Oxoid Ltd., Basingstoke,

Hampshire, UK) and Iml Buffered Peptone Water solution (Oxoid Ltd.,

Basingstoke, Hampshire, UK), and homogenised using an Ultra Turrex T25 device

(Janke & Kunkel Gmbh & Co KG, Staufen, Germany.). For the isolation of the

Gram Negative Bacteria, E.coli and S.marcescens, the homogenate was plated on to
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MaConkey agar (Oxoid Ltd., Basingstoke, Hampshire, UK) and incubated at 37°C

for 24h.

2.6 Identification of Indicator Organisms:

Following incubation, all plates were examined morphologically for the presence of

the indicator organisms. Additional identification tests such as the oxidase test were

used, and Gram stains were also performed. All suspect colonies were cultured for

purity on to the appropriate agar base and identified using the API 20E identification

kit (Bio-Merieux SA, Montaleu, Vercieu, France). Confinned isolates were cultured

on to Columbia agar (Lab M, Bury, UK) supplemented with 7% horse blood, and

frozen at -70°C on Protect beads (Technical Service Consultants Ltd., Lancashire,

UK), until required.

2.7 Epidemiological Typing:

Bacteria were grown on Columbia agar, supplemented with 7% borse blood,

incubated in air at 37°C for 48b. Cultures were harvested and suspended in 3ml SE

buffer (5M NaCI, 0.5M EDTA). Cells were washed twice in fresh SE buffer and re

suspended to achieve a density equivalent to a Macfarland Standard No.4 (Bio

Merieux SA, Marcy-l 'Etoile, France). A 20/0 (w/v) low-gelling agarose (Sigma

Chemical Co., St. Louis, MO, USA) was prepared in SE buffer, and dispensed into

pre-wanned 1.5ml Eppendorf tubes (Sarstedt, Aktiengesellschaft & Co., Numbrecht,

Gennany). 220J.d aliquots of the bacterial suspension were added to the tubes, mixed

gently and transferred to the Block Mould (Bio-Rad Laboratories, Alfred Nobel

Drive, Hercules, USA). Following refrigeration for at least 30 mins, the moulds

were carefully transferred into labelled universals (Bibby Sterilin Ltd.,Tilling Drive,
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Stone, Staffs, OSA, USA), containing Imllysis buffer (1M tris pH 8.0, O.SM EOTA

pH 8.0, lysozyme). The universals were incubated in a 37°C water bath (Grant

Instruments (Cambridge) Ltd., Barrington, Cambridge, UK), for 2-3h and then

transferred to newly labeled universals containing a 1% SOS and Proteinase K

solution (SOS, TE Buffer, Proteinase K). These universals containing the blocks

were then incubated at SO°C overnight. Blocks were washed in pre-wanned TE

buffer, and the universals placed in a SO°C shaking water bath (Grant Instruments,

(Cambridge) Ltd., Barrington, Cambridge, UK). After 4 successive washes, the

blocks were placed in fresh TE buffer and stored at 4°C overnight. A 2.SxSmm

portion from each block was cut the next day, and placed into separate l.Sml

Eppendorf tubes containing Iml of fresh TE buffer. The tubes were refrigerated f<;>r

at minimum of 30 min. The slivers were then transferred to tubes containing IS0JlI

ofReaction buffer (Promega Corporation, Woods Hollow Road, Madison, WI, USA)

and refrigerated for at least 30 min. The enzyme Xba I mix (Promega Corporation,

Woods Hollow Road, Madison, WI, USA) was prepared on ice and SOJlI added to

each tube. The tubes were incubated at 37°C for 3h by transferring the blocks in

Modified TE buffer (1M Tris pH 7.6, O.SM EDTA pH 8.0) at 4°C for 30 min.

2.8 Preparation of an agarose gel for PFGE:

As a general rule a gel concentration of 1.2% will give clear bands over a range of 1

2S00kb. The gel size can be varied depending on the number of samples being

processed. The slivers to be loaded were picked up using a sterile scalpel and placed

against the leading edge of the well. The order of each block was recorded and a

Molecular Weight Marker (Boehringer Mannheim Biochemica, GmbH, Germany)

was also included. Once loaded, the wells were sealed with a sealing agarose and
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allowed to set for 30 min at 4°C. 3L of cooled TBE (Tris base, Boric Acid, 0.5M

EDTA pH 8.0) was poured into the Tank and allowed to equilibrate for 30 min.

Once the gel was placed in the Tank, all equipment was switched on and parameters

set as follows.

Pulsewave: Initial time: 5 sec Final time: 50 sec Run time: 22h.

Power Supply: Volts: 200 Run time: 22h.

When the run was complete the gel was stained with Ethidium Bromide

(Sigma Chemical Co., S1. Louis, MO, USA) to allow visualisation under UV light.

The gel was placed in a suitably sized tray and covered with Ethidium Bromide and

left at room temperature for 30 min. De-staining for 1S min followed staining.

Waste Ethidium Bromide was placed in a waste container prior to decontamination.

The gel was next photographed under UV light using a Polaroid MP+ Instant

Camera System.

3.0 Results:

3.1 In Vitro Work

Experiments were carried out with E.coli and S. marcesce1tS. Plants were grown for

4-6 week cycles in autotrophic systems. Serial subcultures were then carried out.

Strains were recovered both endophytically and epiphytically (See Table 1 and 2).

Physiological effects observed in detail during the frrst subculture were as follows:

Control plants were seen to grow up to 70 nun. The inoculated plants were stunted

to about half that height and had fewer nodes. In all treated cases symptoms evident

on the plant were blackening of the lower stern. The one exception to this was the

treatment with E.coli 10 -9 that didn't show evidence of basal stem rot and seemed
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less stunted to about % of the height of the Control plants. Similar results were

recorded for the next subculture. Symptoms were observed about 2.5 weeks into

culture as blacklbrown lesions at stem bases. After the third subculture the enteric

strains became pathogenic to the plants in vitro.

3.2 Growth in inorganic M&S media

Samples of spent media were taken and a dilution series was constructed to

determine the number of bacteria present in the media after 4 weeks the results are

shown in Table 3. This shows that the inoculants multiplied in the autotrophic

systems. Inorganic M&S is essentially a mineral salt solution which contains no

carbon sources. For the bacteria to multiply they depended on plant leakage for

nutrient supply

3.3 PFGE Results:

E. coli and S. marcescens were found to persist both epiphytically, and

endophytically on all micropropagated plant material. PFGE banding patterns of the

bacterial strains isolated, showed similar banding patterns to the original strains used

in the study. Of all 39 E. coli strains typed, the resulting restriction patterns were

indistinguishable from the original strains typed. The 58 S.marcescens isolates

typed, showed the same banding patterns as the original strain.

4.0 Discussion:

Two bacterial strains of medical importance were chosen for this study. E. coli is a

Gram-negative, lactose fermenting bacterium which is a normal part of the gut flora

of mammals especially cattle and man. This bacteria has been associated in
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causing infections in man and animals, many of the diarrhoeal type. The most

noteworthy pathogenic sub-group is enterohemorrhagic E. coli (EHEC), of which the

serotype 0157 is well known, is the causative agent of bloody diarrhoea. Outbreaks

of E. coli 0157 have been reported world wide with several fatalities resulting

(Bolton and Airel 1998). S. marcescens is a Gram-negative, lactose fermenting

organism implicated in causing a variety of nosocomial infections (Miranda et al.,

1996, Herra et al., 1998). Its ability to survive in many different environments has

highlighted it's ability to persist as a highly successful pathogen in clinical settings.

S. marcescens has been isolated from medical equipment such as intravenous

catheters and needles (Ashkenazi et al., 1986), and blood transfusion bags (Parment

et al., 1993). The introduction of these pathogenic bacteria into the domain of

growing vegetable plants, is indeed alien. These bacterial strains of clinical

significance are typically not associated with plants and are not known plant

pathogens. The subsequent re-isolation of E. coli, and S. marcescens from the

chosen plant types, has proved to us that these human and food poisoning pathogens

have the ability to survive on and within healthy micropropagated plants.

It was demonstrated that human pathogenic species, particularly E. coli, could

survive on and in plants at very low concentrations. Strains were found to persist in

autotrophic culture. This indicates that plant leakage supports growth of enteric

bacteria. In the case of Serratia more growth was seen than that of E. coli. After

serial subcultures inoculated bacteria were repeatedly re-isolated from the progeny

plants though some plants were asymptomatic, but in some cases the bacteria

became vitro pathogens in the latter subcultures. It is evident then that even

dilutions as low as used here will still colonise those plants and persist via
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serial subculture even in harsh bacterial environments (Le. Inorganic Murashige &

Skoog media)

Given this evidence, it would seem apparent then, that the potential risk factor

associated with the consumption of plant food contaminated with human food

poisoning bacteria should be more fully investigated.
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Graph I Inoculation Levels Used For In Vitro Work
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Table I Presence OfE. coli In Vitro. At the 3n1 subculture the inocuJants

became vitro pathogens

Controls E. coli 10-7 E. coli 10-1 E. coli 10-9

4 weeks epiphytic

- + + +
4 weeks endophytic

- + + +
8 weeks epiphytic

- + + +
8 Weeks endophytic

- + + +
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Table 2 Presence OfS. morcescens In Vitro. At the 3rd subculture the

inocuJants became vitro pathogens

Controls S. marcescens S. marcescens S. marcescens
10-7 10-8 10-9

4 weeks
epiphytic - + + +
4 weeks

endophytic - + + +
8 weeks
epiphytic - + + +
8 weeks

endophytic - + + +
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Table 3 Counts taken from autotrophic spent media

Treatment Counts taken from spent media

Controls 0

E.coli 10-9 8.67 x 10 4 cfu/ml

E.coli 10" 4.6 x lOs cfu/ml

E.coli 10-7 4.77x lOs cfu/ml

S.marc 10-9 5.81 X 10 7 cfulml

S.marc 10" 1.54 X 10 7 cfulml

S.marc 10-7 1.08 X 10 7 cfulml
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Chapter Nine

Escherichia coli persists endophytically in cabbage and

is associated with alteration in host protein and

increased chitinase activity

Section C: Investigation ofpersistence ofenleril;,; bacteria in/on plants



Preface to Chapter 9

This work is a continuation ofthe work discussed in the last chapter (8). Sequencing of

protein bands is as yet still underway in the Protein Facility in the University of

Aberdeen and results were not ready for presentation at the time ofsubmission. The

style is that of the journal Acta Horticulturae.
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ESCHERICHIA. COLI PERSISTS ENDOPHYTICALLY IN CABBAGE AND

IS ASSOCIATED WITH ALTERATION IN HOST PROTEINS AND

INCREASED CHITINASE ACTIVITY

Abstract: .

Aseptic cabbage microplants were inoculated in vitro with E. coli. Established plants

were grown in soilless culture and sampled using clinical pre-enrichment and selection

techniques. An imunohistochemical in situ method detected E. coli endophytically in

the microplants, however, only epiphytic E. coli could be recovered by the

enrichment/selection method. At harvest, after 14 weeks in hydroponic culture,

sampling was carried out again but the inoculant was detected infrequently and only

epiphytically by the enrichment/selection method. Host proteins were extracted and

separated by SDS-gel electrophoresis. There was a difference in protein banding in the

region for putative pathogenesis-related proteins in E. coli-inoculated microplants.

Chitinase levels were significantly higher in the latter. The results are discussed in

relation to the microbial safety and potential allergenicity ofraw salad vegetables.

Keywords: bacterial contamination, food poisoning, salad vegetables,

immunohistochemistry, PAGE, pathogenesis-related (PR) proteins, plant tissue culture
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1.0 Introduction:

It is widely recognized by scientists, legislators, producers and consumers that

there are increasing health risks associated with modem agricultural practices where

the pressure to produce cheap food has led to intensification of production. (Beuchat,

1996; Little et al., 1997; Tauxe et al., 1997, Mahon et al., 1997). Globalisation of

trade and intensification of agricultural production and practices such as organic

(syn. biological, biodynamic, ecological) farming; land application of slurry and

poultry waste; land drilling of abattoir waste; recycling of processing water and

discharge of contaminated processing water are factors underlying the increase in

biological pollution of the environment with human pathogenic bacteria (e.g.

Koenraad et al., 1995). Supermarkets with their requirements for prolonged shelf

life and the rapidly expanding market for raw salad vegetable pre-packs and

microwaveable vegetable pre-packs, are also increasing risk factors (Rafferty and

Cassells, 2000). There is a need to assess the potential health risks of the

transmission of harmful bacteria, applied as organic soil amendments to vegetables,

which are eaten raw, or with minimal cooking e.g. microwave cooking. These risks

are potentially two-fold; firstly from contamination with human-pathogenic bacteria;

and secondly, from the effects of bacterial elicitation of pathogenesis-related proteins

which are potential allergens (Neuhaus, 1999).

Here, aseptic cabbage plants were inoculated ill vitro with a model strain of E. coli

to establish gnotobiotic cultures. Microplants from these cultures were grown in soilless

culture (grown hydroponically), were sampled using pre-enrichrnent and selective

media for the epiphytic and endophytic persistence of E. coli. Interactions between E.

coli and the host plant were investigated by analysing host tissues for pathogenesis

related proteins and chitinase activity. Pathogenesis-related proteins are induced in

185



pathogen-host interactions (van Loon, 1999). To distinguish between non-specific and

pathogenesis-related protein changes, chitinases which are characteristic of

pathogenesis-related protein induction, were assayed.

2.0 Materials and Methods:

2.1 Inoculation ofaseptic seedlings:

Escherichia coli (clinical strain ref. no. 945.1; St James Hospital Dublin 8,

Ireland) a non-pathogenic representative of food-poisoning E. coli, was selected as

the model isolate. This isolate was grown in tryptone soya broth (Oxoid,Ltd.,

Basingstoke, Hampshire, England) to an 00 of 0.4 at 470nm and diluted

appropriately for use. The following series of dilutions were chosen: 10.12, 10.9,10-6

and 10-4. These dilutions were chosen as they represented levels of bacteria that

were detectable using conventional culture methods (10-4), levels below acceptable

conventional plate count numbers (10-6) and levels that could not be detected by

conventional plating (10-9
, 10.12

) (Rafferty el al., 2000). 100 J.lI aliquots were plated

onto sterile water agar. These plates were used for germination of surface sterilised

cabbage seeds (Brassica oleracea Vir. capitala L., Fl hybrid, 'Derby Day',

suppliers: Tozer, Cobham, UK) for 8-10 days. Cabbage seed was surface sterilized

in 80% (v/v) aq. ethanol and immersed in 20% (v/v) aq. Domestos (Lever Bros,

Liverpool, UK) for 15-2Omin and washed in sterile distilled water (x3) in a laminar

flow cabinet prior to placing the seeds on plates of sterile water agar (6g r l agar,

Sigma-Aldrich Ireland Ltd.). There were 20 seeds per plate. Nodes from the

inoculated seedlings and non-inoculated controls were transferred to plant tissue

culture medium and grown on for 5 weeks (see below).
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2.2 Autotrophic tissue culture:

Following gennination the nodes were excised 8-10 days after inoculation and

placed in Magenta GA-7 vessels (Sigma- Aldrich Ireland Ltd) containing

polyurethane foam (Plant Biotechnology (VCC) Cork) for tissue support, imbibed

with half strength M+S mineral solution (cat. No M-5524, Sigma Chemical Co.,

Dublin, Ireland) (Cassells and Walsh 1996). These were grown on in a growth room

under the following standard conditions: 23±1 0 C, 16 hour photoperiod (white 65/80

w Liteguard tubes, Osram Ltd., UK.) with PPF of 30 J.1Illol m-2
S-I at shelf-height.

2.3 Soilless culture:

For soilless production of cabbages, small-scale hydroponic systems were set up

(Fig. I). Perlite and sand were sterilised by autoelaving on three consecutive days for

lh. The pots were filled with perlite and planted with 3-4 five week-old in vitro

microplants per pot. There were ten pots per container. A top dressing of sand was

used to prevent algal growth. Separate containers were used for the control plants and

for each dilution to avoid cross-contamination. Half strength hydroponic culture

medium (Hoaglands Solution; Sigma Chemical Co., Dublin, Ireland) was trickled

though the pots for I5min every alternate IS min throughout a sixteen-hour period. The

pots were not fed during the dark period.

2.4 Monitoring E. coli in cabbage microplants in vitro and in and plants in soilless

culture:

Microplants were monitored every 5 weeks after inoculation in gnotobiotic in vitro

cultures. Plants were grown hydroponically for IS weeks. The plants were sampled

every 2-4 weeks (see 2.5 below) and the tissues analYSed for surface and endophytic

187



bacterial contamination. After 8 weeks the medium was sampled for E. coli. Plant

growth parameters were measured at week 9. Five plants were chosen at random

and stem height and leaf widths were taken, plants were also monitored for any

physical lesions or browning.

2.5 Bacterial indexing:

Microplants and established hydroponic plants were harvested using a fresh pair of

latex gloves per treatment to avoid cross-contamination. Non-sterile plants were

sampled by direct plating to MacConkey agar (Oxoid Ltd., Basingstoke, Hampshire,

UK) and incubated at 37°C for 24h. MacConkey is a Gram-negative rod selective

agar (York et al., 2000). Presumptive colonies appear flat, dry and non-mucoid with

a red to pink colour (York et al., 2000, Oxoid manual, 2001). Isolates from this

procedure were considered to be epiphytes. Whole plants were used when still small

enough (up to 6 weeks in hydroponic culture), thereafter stem and leaf sections were

used. In parallel, the plant material was surface sterilized by immersing the plants in

80% (v/v) aq. Absolute ethanol (Merck, Darmstadt, Germany) for 45 sec, then in 2%

(v/v) aq. Stericol (Stericol Hospital Disinfectant, Lever Industrial Ltd., Runcom,

Cheshire, UK) for 30 min, followed by washing in sterile distilled water (x3). The

Stericol surface sterilisation technique develoPed was devised to be stringent in order

to ensure that results indicated true endophytic contamination (Rafferty et al., 2000).

These samples were incubated on MacConkey agar at 37°C for 24h. If no growth

occurred the plants/tissues were placed in 9ml Ringers (Oxoid Ltd., Basingstoke,

Hampshire, UK) and Iml buffered peptone water solution (Oxoid Ltd., Basingstoke,

Hampshire, UK), and homogenised by hand in a stomacher bag (Rafferty et aI.,

2000.). The pre-enrichment step was used here to improve detection rates
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(Blackburn and McCarthy, 2000). To select for E. coli the homogenate was plated

on to MacConkey agar and incubated at 37°C for 24h. Isolates from this method

were considered to be epiphytes.

2.6 Bacterial identification:

Following incubation, all plates were examined and colonies were complex

streaked for purity on MacConkey agar overnight. Identification was carried out

using the API 20E miniaturized biochemical identification kit (bioMerieux SA,

Montaleu, Vercieu, France). This kit is specific to clinical enteric isolates and

frequently used for isolate confirmation (Rhodes et al., 1998, Brion et al., 2000,

Huys et al., 2000, Turner et al., 2000). Isolates confirmed by API characterisation

were cultured onto Columbia agar (Lab M, Bury, UK) supplemented with 7% horse

blood, and frozen at -70°C on Protect beads (Technical Service Consultants Ltd.,

Lancashire, UK).(Rafferty et al., 2000).

2.7 Tissue preparation and sectioning:

Control and samples from gnotobiotic cultures were fixing with 4% (v/v) aq.

paraformaldehyde (PFA) at pH 7.3. Tissues were fixed for Ih. Prior to dehydration

in alcohol the tissue was washed 3 times in 1000DIT (Dithiothreitol) made up in

phosphate buffer (NaCI, 8g/1, KCI, 0.2g/1, Na2HPO...2H20, 1.1Sg/I, pH7.3). Tissue

was dehydrated in the following series of v/v aq. alcohol: 100,/0, 2S%, SOO,/o, 7S%,

9So/oand I000,/0. Each step was carried out for 30 min at 4°C. The tissue was then

placed into a small plastic cassette, positioned (to allow transverse sections to be

made) and submerged in paraffin wax to a depth of approximately Icm. The wax

was then quickly cooled and allowed to harden overnight. These were then sectioned

189



on a microtome set to S-7 J.UI1. As the sections came off they were floated on water (set

to SO°C) and the picked up on clean slides. These were allowed to set in an incubator

for an hour. The sections were dewaxed and rehydrated by passing then through a

histolene step and an alcohol series, each step took about 3min each. The slides

were then ready for staining.

2.8 Immunohistochemical staining:

Initially a commercially available peroxidase-conjugated Rabbit Anti-E. coli

antibody (Code P0361 by OAKO, Laboratory Instruments and Supplies Ltd., Co

Meath, Ireland) was used with OAB (diaminobenzidine) as substrate. Subsequently,

a double antibody sandwich method (DAS) was developed. For this, cultures of the

model E. coli isolate were sent to the Biological Services Unit (National University

of Ireland, Cork, Ireland) for development of polyclonal antibodies in rabbit. A

commercial secondary anti -rabbit antibody (Code F020S by OAKO) with an mc tag

was used to bind to this primary antibody. The dilution series for the direct antibody

were 1110, 11100, lIS00, 111000. For the primary antibody in the OAS method the

dilutions were, 11100. I12S0 and I/S00 and the dilutions of the secondary antibody

were 1120 and 1/40. Incubation was carried out at 3-S °c for 60 min and overnight with

the direct antibody method, 30/60 min incubations were carried out for all dilutions of

the primary and secondary antibodies in the DAS method as well as overnight

incubations with the primary antibody. 30 and 6O-min incubations were carried out

at room temperature and overnight incubations were carried out in a moist chamber

at 3-S 0 C.
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2.9 SOS PAGE ofcabbage proteins:

The extraction procedure was carried out as per Rahimi et al., (1996). Cabbage

tissue (Ig tissue Iml buffer) was ground in Tris-HCl Buffer (loomM Tris-HCl

buffer, pH7 containing IOmM 2-mercaptoethanol) using Agdia extraction bags

(BioRad, Mames-la-Coquette, France) and a ball-bearing grinder. The extract was

passed through cheesecloth and filtered through Whatman No1 paper, centrifuged at

17,6oog for 20 min at 4°C and stored at -20°C. A standard curve of bovine serum

albumin (BSA) was constructed by making up the following volumes to 5ml with

Bradford Reagent (Alpha Technologies, Dublin 6, Ireland), 0, 0.125, 0.25, 0.5, 0.75,

1.0 mg mr l BSA. This was repeated for each sample and the dilutions were

incubated for at least 2 min at room temperature. Optical density (00) was read at

595nm. The BSA standard curve was used to calculate the protein content of the

samples and was used to standardise the samples for gel electrophoresis.

Extracts were boiled for lOmin with 2 vol. of sample denaturing buffer (125mM

Tris base, pH adjusted to 6.8 with 3M HCI containing 0.4% (w/v) SOS, 10% (w/v)

glycerol, 4% (v/v) 2 mercaptoethanol and 0.02% (w/v) bromophenol blue). Samples

were loaded into precast 15% resolving gels (BIO-RAD, Alpha technologies, Oublin

6, Ireland). Gels were run in buffer (Tris base, 3g r l
, glycine 14.4g r l

, SOS Ig r l
)

for up to 45 min at 200v.

The gel was removed from the rig and fixed in 1001'0 (v/v) aq. acetic acid for

30min. The acid was poured off and retained. The gel was then washed in distilled

water for 2 min x 3. Staining was carried out overnight with gentle agitation using

Coomassie Blue solution (500ml 100% ethanol, 160ml glacial acetic acid, 2 g

Coomassie Blue diluted to 21 with distilled water). The staining solution was poured
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off and several washes of destain (as staining solution but without the Coomassie

Blue) were used over a 2-4hr period. The gel was then washed in distilled water.

2.10 Chitinase assay:

Plant extracts as used in PR protein analyses (see section 2.9) were assayed using

the chitinase assay of Wirth and Wolf (1992). Carboxymethyl-Chitin-Remazol

Brilliant Violet (CM-chitin -RBV) (Blue Substrates, Grisebachstra8e 6, D-3400,

GOttingen, Germany) was used as the substrate to assay for endO-acting chitinase.

Assays were performed in 96 well microtitre plates (Costar Europe, High Wycombe,

UK; cat no. 3590). Each well contained the following, SOJ.lI of CM-chitin -RBV,

100 ,.d of extract, 50J.11 of buffer (0.2 M sodium acetate - acetic acid buffer, pHS).

Control wells contained no extract until after the acid addition. (4 control replicates

and 8 test replicates were used). Incubation was carried out at 40°C for 3 hours. The

reaction was stopped using 50J.l1 of 1N HCI. Plates were cooled on ice for 10 min

and centrifuged (1450g x 1Omins). 175 J.l1 of supernatants were transferred to a 96

well half size EIA plate (Costar, cat no 3690). Activity was read at 550nm for

Chitin-RBV. Extracts with a reading> 0.1 were diluted and assayed again to avoid

errors due to substrate limitation. Calculation of 1 unit of enzyme activity was

carried out using the following formula: Absorbance x 1000 x min-)

3.0 Results:

3.1 Re-isolation ofE. coli from inoculated cabbages:

No bacterial contaminants were detected in the in vitro non-inoculated

microplants. Only E. coli was detected in in vitro inoculated microplants (Table 2).

In the latter cultures, after 5 weeks in vitro epiphytic E. coli were isolated from the
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lower inoculum dilutions 10'" and 10-6. No endophytic growth was detected (Table

2) by culture indexing (but see below).

When the plants from inoculated cultures were grown in soilless culture, after 6

weeks epiphytic E. coli was detected from the more concentrated inocula; it was also

detected endophytically (10'" and 10-6). E. coli was not detected as an epiphyte in

the lower dilutions but did appear endophytically (10.9 and 10. (2
). At 8 weeks media

from all hydroponic containers was analysed for bacterial contamination including E.

coli. A positive ID for E. coli was only found in the 10-6 dilution treatment. The

other isolates were not identifiable in the API Kit. After 10 weeks in hydroponic

culture, no E. coli were isolated from any of the sampled tissues. Of the 13 epiphytic

isolates none was found to be E. coli. At the end of the trial (IS weeks), none of the

isolates detected internally or externally in the tissues gave a positive API

identification for E. coli except for the plants in the 10 -6 dilution treatment.

Epiphytic E. coli were found on both stems and leaves.

3.2 Plant growth parameters:

Mid-way through the growth Period, a series of measurements of the leaves

and the stem heights were taken. Leaves and stems were chosen at random and 5

measurements of each were taken. The graphed results (Fig. 2) show that the E. coli

had no adverse affect on the growth of inoculated cabbages. No lesions or wilting

was observed on the plants that had been inoculated at germination with E. coli.

3.3 Immunohistochemical staining:

The initial immunohistochemical procedure used was based on a commercial

peroxidase-conjugated rabbit anti-E. coli antibody. On microscopic examination of
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sections stained using this antibody with DAB as substrate, it was seen that the

antibody bound non-specifically to xylem vessel in non-inoculated controls. The

technique was modified using specific polyclonal antibodies in a double antibody

sandwich assay. In an effort to optimise the procedure, a variety of polyclonal

antibody and secondary antibody dilutions were used as well as several incubation

regimes. Best results were found if the following combination was used: primary

antibody 11100 dilution, secondary antibody 1/20 dilution with sequential 60 minute

incubations at room temperature. No improvement was seen if the primary antibody

was incubated overnight.

The results showed that while there was some background fluorescence of the

xylem vessels, only in inoculated tissues did the tissue surrounding these fluoresce.

Fig. 3 demonstrates the localization of E. coli within the tissues surrounding the

vascular bundles of the stems of inoculated in vitro cabbages. The sections were

from the control plants and the plants which had been inoculated with a 10" dilution

of E. coli. No endophytes could be detected in these plants using clinical culturing

methods (Table 2).

3.4 SOS-PAGE protein analyses:

An inverted image of the PR protein gel containing the protein extracted from

control and inoculated cabbage plants is shown in Fig. 4. The cabbages were

sampled after 15 weeks in the hydroponic system; E. coli was recovered culturally,

as epiphytes, only from the stem and leafofcabbages initially inoculated with

dilution 10~. The gel used was specific for the resolution of proteins with molecular

weights in the 20-50 leD range. A 37kD band is apparent in all samples but as the

concentration ofbacteria inoculum used increased, a new band appears just below
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the 37Kd band at dilution 10.9 and is also visible in 10-6 and 10-4 inoculum dilutions.

A new band appeared at the highest inoculum used at the 25kD. A band occurring in

all treatments (between the 15kD and 25kD markers) appears more concentrated as

the bacterial inoculum concentrations increase, Le. from lanes I to 5.

3.5 Chitinase assays:

The results of the chitinase assays are shown in Fig 5. It can be seen that the

extracts from control and those cabbages from 10.12 and 10-9 inoculum dilutions are

not significantly different. However, those extracts from cabbages initially

inoculated with 10-6 and 10-4 dilution of E. coli show significantly higher levels of

chitinase activity. This may correlate with the increased expression of the -20kD

band seen on the PAGE gel (Fig 4).

4. Discussion

Bacterial endophytic colonisation of plants has been widely reported (Chanway,

1998) and previously it has been shown that E. coli may colonise plants

endophytically (Cassells and Tahmatsidou, 1997) indicating that the internal tissues

of plants may be relatively nutrient rich. The results from soilless culture

substantiate concerns that routine cultural techniques for the detection of bacterial

contamination of vegetables are not dependable in relation to endophytic bacteria.

The latter pose human health risk, as endophytic bacteria are resistant to standard

surface sterilization procedures. Similar concerns have been expressed regarding the

escape of bacteria from surface sterilants by bacteria in biofilms (Costerton et al.,

1995). Here, in gnotobiotic cultures of cabbage and E. coli, E. coli was only detected

in the culture medium and epiphytically but not endophytically in the plant tissues
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when sampled with pre-enrichment and selective plating techniques. However,

when examined by the DAS immunohistochemical technique it was found that E.

coli was present endophytically in the tissues surrounding the vascular bundles (Fig.

3). Due to low titre, endophytic bacteria may not be expressed on selective agars

within the traditional time limits used in testing, normally 24-48 h (Sata et al., 2000,

Yusof et al., 2000).

Protein changes were detected by PAGE in the E. coli-colonised plants which

were related to the inoculum concentration used (Fig.4). At the sampling period (1 S

weeks), the cabbages did not show symptoms of infection, had normal growth and E.

coli was detected in only one dilution treatment and then as an epiphyte. The

chitinase results (Fig. S) corroborate what was observed by PAGE, as enzyme

activity detected was significantly higher than in control, non-inoculated

microplants. These results indicated a possible induction of host resistance

following inoculation ofaseptic cultures with E. coli.

The putative suppression of the E. coli within the plant may be due to host

resistance induced by bacterial ethylene. Ethylene is a phytohormone, which is

considered to be involved in the induction of pathogenesis-related proteins (Ohtsubo

fi al., 1999). Some bacteria are known to produce ethylene e.g. Pseudomonas,

Ralstonia, Bacillus (Weingart et al., 1999, Bae and Kim 1998) and Pseudomonas

syringae pathovars have also been shown to produce ethylene in planta (Weingart

and Volksch, 1997). Though there are no reports in literature of ethylene production

in planta by E. coli, however, in batch cultures E. coli has been shown to produce

ethylene (Lloyd and Bunch, 1996). It -is hyPOthesized that in the case of the

cabbages inoculated with low levels of E. coli one of two responses may have

occurred. Inoculation with E. coli may have elicited the plant ethylene-PR protein
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pathway, or alternatively, ethylene production by E. coli may have induced PR

proteins including chitinases.

Chitinases have been previously reported in Brassica (Zhao and Chye, 1999) and

are widely reported as components of induced resistance to plant pathogens

(Hammond and Jones, 1996, van Loon 1999). They are also reported as having

homology with proven human plant allergens (Yagami el a/., 1998, Neuhaus, 1999).

Assuming that the chitinase molecular weight corresponds to that of the approx. 20K

protein detected by PAGE (Fig. 4) then it may belong to the PR4 proteins, a class of

pathogenesis-related proteins. These are usually endO-chitinases, which are made up

of polyPeptides of between 13-19kD. Hanninen et a/.. (1999) previously showed

that a PR4 protein from turnip (under stressed conditions) showed 700!c» homology to

prohevin domains. This domain has found to be a major part of the protein that

causes allergenicity to latex (Chen el a/., 1998). Pathogenesis-related proteins and

phytoalexins are reported to affect consumer health as food allergens and teratogens

(Moneret-Vautrin 1998, Gaffield & Keeler 1996). It is a cause of concern that E.

coli taken up from the environment (Cassells and Tahmatsidou, 1997) from manures

and contaminated water, may induce possible toxic substances in plants and also

may pose a microbial threat to the so-called YOPI group (young, old, Pregnant and

the immunocompromised) as well as to the wider general public.
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Table 1. API confirmed re-isolations ofE. coli. IV: Time in vitro; IH: Time in

hydroponics; Sample numbers refer to the initial dilution ofE. coli used to inoculated

seeds.

Sample Location Result

IV 5wks -6 Epiphytic E. coli

IV 5wks -4 Epiphytic E. coli

IH 6 wks -12 Endophytic E. coli

IH 6 wks -9 Endophytic E. coli

IH 6 wks -6 Endophytic E. coli

IH 6 wks -6 Epiphytic E. coli

IH 6 wks -4 Endophytic E. coli

IH 6 wks -4 Epiphytic E. coli

IH 8 wks -6 Medium E. coli

IH 15 wks -6 Leaf: Epiphytic E. coli

IH 15 wks -6 Stem, Epiphytic E. coli
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Table 2. Expanded table ofresuhs for the in vitro sampling. IV: Time in vitro; IH:

Time in hydroponics. Sample numbers refer to the initial dilution ofE. coli used to

inoculated seeds. NO: no growth; E. coli: isolated identity confirmed by API kit.

Sample label Location Result

Control Endophytic NO

Control Epiphytic NO

-12 Epiphytic NO

-12 Endophytic NO

-9 Epiphyte NO

-9 Endophyte NO

-6 Epiphyte E. coli

-6 Endophyte NO

-4 Endophyte NO

-4 Epiphyte E. coli
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Table 3. Percentages. IV: Time in vitro; IH: Time in hydroponics.

NO Nil E.coli

IV 5 weeks 80 0 20

IH 6 weeks 0 53 46

IH 10 weeks 54 46 0

IH 15 weeks 42 50 8

Total recovery % 44 31.25 18.5
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Fig. 1. Plan and Front view of the hydroponic system used. A: Hydroponic plants"

B:, Pipe System for trickle feeding, C: Pots filled with Perlite, D: Nutrient Solution

Pump. Arrows indicate the flow of the solution.
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Fig. 5. Chitinase activity of hydroponic cabbage extracts.
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Chapter Ten

General Discussion

Section D: Conclusions



General Discussion

Objectives ofthe work

The aims of this work were, firstly, to assess substrate amendment with

crushed crustacean shellfish (CCS) waste as a method of biological control for

soilborne disease; and secondly, to investigate the transmission of human pathogenic

bacteria in raw salad vegetables. The overall object was to contribute to an

understanding of the possible risks of sustainable crop production involving

alternative disease control strategies where potential hazardous materials as here, are

applied to crops, in the present model crushed crustacean shells (CCS). Crustacean

shellfish is well documented to be a common source of human food poisoning

pathogens. The material used, however, was not found to be contaminated with

human pathogenic bacteria, a possible consequence of storage conditions and partial

processing.

Model isolates of the human pathogenic bacteria, E. coli and S. marcescens,

were deliberately inoculated into aseptic plants to follow their persistence in the

salad vegetables in micropropagation and in hydroponic culture. Both in the case of

the CCS and the model inoculants, efforts were made to elucidate the mechanisms

involved in the interactions between the CCS, soil microorganisms (pathogens and

antagonists) and the host plant, and between the model isolate and the host plant,

respectively. The conclusions of the research are discussed below. Finally, HACCP

guidelines for raw salad vegetable production are proposed based on results of both

parts of the project (Chapter 11).
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Section B: Investigation of the Biocontrol Properties of Chitin-Containing

Crustacean Shellfish Waste

Biological Control using CCS as an amendment in thefield

A problem with microbial inoculants is that they show strong host genotype

inoculum genotype-environment interaction. This necessitates expensive trials to

optimise the inoculant for each host genotype/environment. Here an alternative

approach to biological control was evaluated, namely, the use of an amendment with

specificity for chinitolytic microorganisms. This strategy is potentially more durable

as it can affect, with some selectivity, soil antagonists and its breakdown products

may elicit host disease resistance (Chapter 5).

An objective of this work was to investigate the efficacy and mode of action

ofCCS in controlling Sc/erotinia in Jerusalem Artichoke. CCS contains calcium and

calcium is implicated in host resistance to Sclerotinia (Walsh, 1994), so •

preliminary experiment was carried out to investigate the effects of calcium on

Sclerotinia development in the field (Chapter 3). This was followed by a trial of

CCS on disease development in the field and in store (Chapter 4). In the trials at

Fota Island, Cork it was confirmed that increased calcium application reduced

disease incidence without affecting yield. The costs of the high calcium treatment,

found to cause the most disease reduction, were found to be easily absorbed if the

market price was similar to that of seed potato prices. Currently the artichoke

market is much smaller and the prices per tonne are extremely inflated due to short

supply (€1270/tonne- Superquinn Supermarkets, personal communication, July

200 I). However even assuming a drop to seed potato prices the crop would be able

to absorb treatment costs.
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Using CCS as an organic source of chitin and calcium the following was observed:

• CCS gave the greatest suppression of disease without significant effects

on yield

• Stimulation of protease and chitinase producers in the soil was highest in

the CCS treated plots

• Infected tubers were sensitised by CCS and showed significantly

increased enzyme levels

• CCS formulated with peat (Suppressor™) was found to decrease spread

ofdisease in store significantly

In conclusion, CCS soil amendment has some potential to reduce Sclerotinia

disease development in the field by reduction of pathogen inoculum however, the

stability of biological control strategies may be variable due to the strong interaction

between the biocontrol agent, host genotype and soil environment (Boland, 1997).

The treatment may not be cost effective (€381Ihectare) for all crops. Retail

prices for Jerusalem artichokes are currently high in Ireland but demand for

artichokes is low and so producers might not risk the additional cost of CCS soil

amendment. The price of Artichokes traded in high volume could be similar to seed

potato (€381per tonne) and if this was the case the price could be absorbed.

Storage of the crop is a problem as disease spreads throughout the crop store if

present, particularly in our mild climate. Storage in Suppressor™ treatments may be

economic where organic certification is required.

Evaluation in the glasshouse ofSuppressor 1J! a shellfISh waste-containing compost

Trials with Suppressor™ in the glasshouse showed positive control effects,

particularly in controlling wilt in the Dianthus microplants at weaning where almost
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total loss of stock blocks occurred without treatment (chapter 7). However, it was

found that strawberry microplants were not compatible with Suppressor™ at

weaning (Chapter 6). Microplants inoculated with Vaminoc™ at weaning and then

transferred to SuppressorTN compost 2 weeks post acclimatization, showed increased

resistance to Redcore disease compared with plants maintained in non-amended

potting compost. However, this additional repotting of plants would be labour

intensive and combined with the inoculum and SuppressorTN costs, uneconomic

except possibly in niche applications.

Chitinase producers and chitinase were found to be enhanced in the substrate

by CCS amendment. Increases in chitinase produced in p/anta were also recorded

(Chapters 5& 7). As discussed previously (Chapter I), chitinase is an important

factor implicated in biocontrol strategies. Promotion ofextra-cellular enzymes in the

substrate is a positive pathogen control factor as they can have long lasting effects

surviving their microbial producers (Wirth and Wolf, 1992). Chitinase was also

investigated in p/anta in the Dianthus trial. The Dianthus plants which survived

infection by Fusarium wilt showed increased activity of this pathogenesis-induced

enzyme. Electrophoresis of the Dianthus extracts also showed differential banding

patterns when chitin and disease were present. Currently, the bands have been sent

for sequencing to the Protein Facility, Dept. of Molecular and Cell Biology,

University of Aberdeen, Scotland.

CCS substrate amendment protected micropropagated Dianthus plants where

there was complete loss of the controls. When used in strawberry, in conjunction

with mychorrizhae, some positive results were observed but there is a need to

confirm that there are no negative host-substrate interactions and this would mean

costly preliminary trials before applying the strategy to individual crop systems.
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,
In summary, it has been demonstrated that there are strong correlations between

incorporation of chitin in the substrate and suppression of Sclerotinia, Phytophotora

fragarie and Fusarium wilt in Jerusalem artichoke, strawberry and Dianthus plants,

respectively. However, there is evidence than that this control strategy may suffer

from the host-pathogen specificity and environmental dependence that all biological

control mechanisms are subject to. In addition, the cost of the treatment may, in

general, be too high for ware crops but high value niche markets may be able to

absorb the financial outlay.

Suggestions for future research on CCS as an amendment

Multi-loeational and multi-annual trials are necessary to confinn the biological

control potential of field amendment with CCS, as indigenous microbes will differ

from area to area. It would be worth investigating if CCS supplemented with a

nitrogen fertiliser improved disease suppression and yield. In addition, the effects

should be investigated in long term trials (continuous trialling over S-IO years) of

CCS amendment in the field on antagonist populations to determine if the soil

becomes pathogen suppressive.

Crop production systems for the future must be sustainable. While chemicals

will play a role in the future, their adverse effects could be reduced if utilised in

integrated pest management (IPM) strategies (Gullino et a/., 2000). As IPM is now

accepted as the way forward, then further work with antagonist-promoting substrates

and low doses of pesticides, combined with solarisation, would seem justified albeit

having regard to cost effectiveness. For instance, combinations of alternative and

conventional methods, with low levels of pesticide, may lead to the synergy seen in

the control of peanut pathogens where soil solarisation used in combination with a

215



low dose of metham sodium resulted in the control of pod disease (Kalan, 2000).

This approach is less radical and looks at more cost effective ways of reducing

chemical input and increasing more environmentally friendly input.

Here, the CCS was tested microbiologically for human pathogens. None were

found in the sample tested but as this substrate comes from variable natural sources

monitoring would need to be carried out on each batch before incorporation into soil

or peat.

Section C: Investigation of Persistence of Enteric Bacteria inion Plants

Persistence ofenteric pathogens in planta

This section of the research dealt with the health risks associated with

microbial contamination of raw salad vegetables and was based on inoculation with

model strains ofE. coli and Se"atia marcescens.

As was demonstrated previously, ornamental plants can assimilate E. coli

from manured soil (Cassells and Tahmatsidou, 1997). The work in Chapter 8 looked

at the persistence of two model enteric bacteria in planta. Using clinical pre

enrichment and selective plating techniques, it was seen that in vitro plants, in a

growth medium containing no carbon source, supported the growth and

multiplication of the inoculants, which were found to be present on the plant surface

and also in planta. During the sub-culturing process the inoculants were re-isolated

despite many plants being asymptomatic. Three serial subcultures were carried out

before the clinical isolates became vitro pathogens in this contained system. Further

investigations with E. coli were carried out in mini-hydroponic systems (chapter 9)
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The techniques used in this study involved clinical pre-enrichment and plating

techniques, electrophoresis of pathogenesis related proteins, determination of

chitinase activity as well as the development of a method for observing E. coli in

plantae

• E. coli were observed in symptom-less in vitro cabbage plants in p/anta using

the immunohistochemical technique develoPed

• Various inoculation rates did not adversely affect the growth of the cabbages

• At the end of the growth period, gel electrophoresis showed there was

increased expression of proteins in a region that is associated with chitinase

pathogenesis-related proteins

• Chitinase activity was increased with increased pathogen inoculum that

corresponded to the altered PR protein-banding pattern.

• It was hypothesized that E. coli induced host resistance at a low level of

inoculum as none of the plants showed any signs of necrosis

These results show parallels with inoculation of plants with biocontrol agents

that induce the plant defense system (Hammond-Kosack and Jones, 1996) and raises

food safety concerns in so far as PR proteins may be allergenic (Breiteneder and

Ebner, 2000).

Suggestions for future research

The preliminary study confirms that E. coli and S. marcescens can be acquired

by plants from the environment and that they can persist on/in the plant. These

findings need to be confirmed for agriculturallhorticultural production systems. The

interaction between model isolates and the hosts also needs to be elucidated further.

Of particular concern is the possibility that that the interaction may result in bacterial

217



suppression, leading to a greater risk of failure to detect contaminants. One aspect of

the interaction and of the use of biocontrol strategies is the elicitation of PR proteins

and possible increased allergenicity of plant produce.

Finally the persistence and transmission of potentially harmful bacteria as

biofilms on raw or minimally processed salad vegetables should be further

investigated.

218



References

Boland, GJ., 1997. Stability analysis of evaluating the influence of environment on

chemical and biological control of white mould (Sclerotinia sclerotiorum) of

bean. Biological Control 9, 7-14

Breiteneder, H., Ebner, C., 2000. Molecular and biochemical classification of plant

derived food allergens. Journal of Allergy and Clinical Immunology 106,27

36

Cassells, A.C., Tahmatsidou-V, 1997. The influence of local plant growth conditions

on non-fastidious bacterial contamination of meristem-tips of Hydrangea

cultured in vitro. Plant Cell Tissue and Organ Culture 47, 15-26.

Gullino ML, Leroux P and Smith CM, 2000. Uses and challenges of novel

compounds for plant disease control. Crop Protection 19, 1-11.

Hammond-Kosack, K.E., Jones, J.D.G., 1996. Resistance Gene-DePendent Plant

Defense Responses. The Plant Cell 8, 1773-1791

Katan J, 2000. Physical and Cultural Methods for the management of soil-borne

pathogens. Crop Protection 19, 725-731.

Walsh, M., 1994. An Evaluation Of Genetic Manipulation As A Source Of

Sclerotinia Resistance In Jerusalem Artichoke. PhD thesis t University

College Cork, Ireland.

Wirth, S.1., Wolf, G.A., 1992. Micro-plate colourimetric assay for endo-acting

cellulase, xylanase, chitinase, It3-~ glucanase and amylase extracted from

forest soil horizons. Soil Biology and Biochemistry 24, 511-519

219



Chapter Eleven

Criteria for inclusion into HACCP plans for the safety

t of raw and minimally processed plant produce

~.

Section D: ConcillSions



Criteria for inclusion into HACCP plans for the safety of Raw and Minimally

Processed Produce

Introduction to HA CCP Concepts and Principles

HACCP stands for hazard analyses for critical control points. It was

developed in the 1960s to ensure that food for NASA space missions was safe

(Anon.,2ooo). It then became popular in the canned food industry and soon spread

to most other food production systems (Kvenberg et al., 2000).

HACCP is based on the following principles

• Analyses ofpotential food hazards in the system

• Identification of the points where these can occur

• Deciding on which points are critical to food safety

• Implementation of controls and monitoring of the CCP (Critical control points

decided on in the previous step)

• Establishment ofdocumentation and record protocols

Kvenberg et al., (loc. cit.) reported that HACCP is regarded as the system of

choice for food safety, as agencies such as the FDA and USDA describe it as a

method that focused resources that can prevent hazards and errors. After initial

development auditing and validation as well as regular reviews of the system

implemented are extremely important and help to allow the system to be utilised

safely for years or even decades after the original plan was implemented (Sperber,

1998)

For produce that is sold raw, the control lies with the producer and the packer. In

the salad or sandwich industry the objective is to minimally process produce so

consumer demand for raw-like or 'fresh' products would be met.
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In each situation the risk must be known in order for it to be controlled. Snyder

(2001) lists what is required for this:

1. Evidence of the hazard

2. Concentration at which normally healthy people get sick

3. Probability ofa given concentration making people sick

4. Probability that a person will be immunocompromised and become sickened.

In addition to microbiological hazards, which are the main focus of this

discussion, there are also two other classes of hazards that HACCP systems must

take into consideration

1. Microbiological-due to pathogenic microorganisms and their toxins, includes

marine animals as sources of toxic compounds, as with fish and shellfish.

2. Chemical-poisonous substances and foods that cause adverse food reactions.

3. Physical-hard foreign objects in the food and functional hazards. (Snyder,

loco cit.)

Critical limits are then set for each Critical Control Point (CCP). The critical limits

are defined margins (maximum and/or minimum valuels) within which a parameter

(any of the three listed above) must fall, so that the risk of a food safety hazard is

eliminated, prevented or reduced to an acceptable level. Plans for corrective action

must be drawn up in advance should a deviation occur. Collecting and reviewing all

data (scientific and technical) generated to ensure that the system is operating in

accordance with the HACCP plan is carried out continually as a method of

validation (Anon., 2000b).

If all possible precautions have been taken by a producer/industry then records

produced can show what is known as 'due diligence', which can be used in defence

should a food borne outbreak occur (Synder, 200 I). This means that management
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must ensure that the HACCP system is applied and complied with during production

and that all records are kept correctly.

Risks in the Fresh Produce System.

For almost a century produce contaminated in the field has been recognised

as a source of human infection. Early in this century a 1912 Public Health Report

called attention to the transmission of typhoid bacillus via fresh produce

contaminated with human sewage (Creel, 1912). Many of the bacteria on

vegetables, which have caused food poisoning, are derived from human faeces and

can also be from animal faeces. The microbial load on fresh produce corresponds to

those that are present in the environment during the growing season and at harvest

time. In addition, microbes can contaminate postharvest, during storage or transport

and temperature abuse during display could allow multiplication (Anon., 2000)

The United States Centre for Disease Control (CDC) reports that 77% of

contamination in any food poisoning cases occur through cross contamination and

the same is true of foodbome outbreaks associated with fresh cut produce (CDFA,

200 I). While foodbome outbreaks associated with produce are low, they have

doubled in the last ten years. Since 1987, the number of produce-associated

outbreaks has doubled, raising concern among the produce industry, government

agencies, and consumers. (Rangarajan et al., 2000 a,b)

The CDC at present recommends that produce that will be consumed raw be

washed thoroughly. They further recommend that the YOPI (young, Old, Pregnant

and Immunocompromised) group avoid eating alfalfa sprouts entirely as their safety

cannot be assured, though methods to decontaminate alfalfa seeds and sprouts are

under investigation (CDC, 2(01).
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HACCP plans are widely available and can be constructed for individual

situations following the available guidelines, for example, the Fresh Produce

Consortium in the UK have published guidelines (Anon 1999), as have the US based

International Fresh Cut produce Association (Anon, 2000b). These guidelines are

usually voluntary but due consideration of them is generally a legal requirement.

Prerequisites to establishing this system are that suppliers to processors

utilise Good Agricultural Practice (GAP). This system is follows guideline set out

by the appropriate authority for example in Canada, the Canadian Food Inspection

Agency and in Ireland, An Bord Glas. These guidelines deal with land history and

usage, types of fertilisers (organic and inorganic), quality of irrigation water,

pesticide usage, hygiene regarding workers and fann animals, harvest and

transportation. (Rangarajan et al b., 2000)

Sources ofcontamination

Contamination from animal and human faeces can occur directly or indirectly, at

many points in the fresh-produce sequence (see Fig 1). Initially contamination can

come from improperly composted manure spread as fertiliser, poor quality irrigation

water, and faecal contamination from animals (wild or domestic) and from workers.

During the harvest process, contamination may be caused by incorrectly cleaned

harvesting machinery. Post harvest, contamination sources include dirty pallets,

wash water and cross-contamination from other vegetables (Anon 2oooa, Synder,

2001).

At the next stage, processing, storage, temperature regulation are important in

controlling contamination, as are sanitation procedures throughout the factory. A

primary concern is the wash water used on the vegetables as this can contaminate or
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spread contamination to other produce. Infected workers as well as unsanitary

cutting and shredding devices can be a core cause of in-plant contamination. Build

up ofL. monocytogenes on equipment can be a problem. (Anon., 2oooa)

On the farm there are reasonable steps that a grower can take to reduce the risk

that pathogens will contaminate the food produced. Good Agricultural Practices are

advised (see earlier) and particular attention should be paid if manure or manure

composts are being used.

Criteria for further investigation / Future Critical Limits?

Treatments for produce that is to be eaten raw are not reliable with respect to

substantial reduction of the microbial load (Beuchat & Ryu, 1997). Risk elimination

is not easy but careful management of these risks, usually based on identification and

control of aspects of the chain between planting to plate, are relevant to

contamination prevention and also to inhibition of microbial growth (Anon., 2oooa).

The EU commission recognises that consumer confidence across Europe is

generally low due to several food-related crises that have had an undermining effect

These include usage of illegal animal growth hormones, extensive use of nitrate and

pesticides, use of artificial chemicals in food processing and the outbreaks of BSE

and E. coli 0157:H7 (Tent, 1999). Furthermore, the number of produce-associated

outbreaks has doubled over the last 25 years, which has made the produce industry,

government agencies, and consumers uneasy (Rangarajan et a/., 2001 b).

In response to this they aim to set up an infrastructure that will promote greater

food safety and greater consumer confidence. This will be done by achievement of 5

objectives:

i. An adequate legislative structure
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ii. Effective surveillance and inspection system

iii. Modem risk methodologies

iv. Responsible producers and industrialists

v. Education for the consumer

In an effort to fulfil these, the Program for Research and Technical

Development would hope to fund among other priorities, improved understanding

and control of contamination conditions, as well as new methodologies for assessing

microbial chemical and allergenic risks (Tent, 1999). A full guarantee cannot be

given that produce eaten is totally contamination free, however, risk reduction is

feasible if due care on the fann is taken (Rangarajan et al a, 2000).

Regarding Fig. 1 HACCP on the fann should include risk analysis of the

fertilisation methods used. Manure and recycled irrigation water can harbour enteric

pathogens. It is best to reflect thoroughly on the system of fertilisation and irrigation

for produce which is eaten raw (Brackett, 1994).

One of the potential risks associated with manure is E. coli 0157: H7. Cattle

are the primary reservoir of this pathogen along with sheep and pigs to a lesser

degree (Jones, 1999). If using manure from cattle, it should be composted for an

adequate amount of time before using for produce that would be eaten raw. Jones

(Ioc .cit) reports that times of survival vary depending on the substrate and the

temperature for E. coli 0157:H7. It persists in soil for 60 days at 25°C but for a

further 40 days if temperatures are down to 4°C and in aerated manure piles the

pathogen can last for 2 months. Regular checking for pathogens, where samples

would be sent for analyses to national testing centres, could monitor this point.

Methods of controlling pathogen load in the manure include the composting

procedures and making sure the length of time is over 3 months. In addition animal
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husbandry methods, which reduce stress and hence faecal-shedding from cattle, can

also be employed (Jones, 1999, Duffy et al., 2000). Other methods of control of E.

coli 0157 on the fann include recommendations from the review by Teagasc (Duffy

et ai, 2000), alternative strategies include immunisation to reduce colonisation and

thus prevalence ofE. coli 0157 in cattle and fann environs. Duffy et a/ (2000) also

quote new departures into the use of E. coli OI57:H7-specific bacteriophages and

into the use of probiotic bacteria to out compete the pathogen. A control measure

also advised by Jones (1999) is a ban on abattoir waste disposal on land. The author

states that 26,000 tonnes of abattoir waste are spread on land in Scotland every year~

Abattoirs generally do not have the capacity to store the waste for long periods and

so it is usually spread untreated onto the land. As previously discussed E. coli

0157:H7 can survive long periods of time and the recommended 2 month cattle 

clear period may not be long enough to ensure the decline of the pathogen. If this

point is adequately controlled and monitored then the danger of pathogens entering

as endophytes is also being controlled.
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Fig. 1. Scheme highlighting areas that should be given careful consideration

when conducting hazard analyses.. Red boxes indicate steps that require careful

monitoring and are sources of contamination or are areas that can be used to check

for contamination. The lighter red box 'Biofilms' can be checked for, but control

can only be carried out at previous steps. Dashed boxes are steps that are covered by

conventional HACCP plans.
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Irrigation water used for raw produce is r~ommend to be potable drinking water

(Rangarajan et al.b, 2001). Any other water types should be regularly checked and

again suitable control here regulates the endophyte population.

Further along the chain the problem for processors is the amount of material

that would have to be checked and any protocols used to ensure contaminating

microbes (be they epiphytes/endophytes) were not present would not be cost

effective (Anon., 2000 b). The International Commission on Microbiological

SPecifications for Foods - ICMSF, (1996) does not recommend sampling and places

the responsibility of control with the chain of hygiene and safety checks observed

from producer to retailer.

However material at this point could be checked for allergenic substances,

which would indicate that a harmful endophytic population was present. It must be

said though that studies in the area of plant defence related proteins and allergen

homology are only in their infancy and a lot more data would be required to

implement any such step.

While biofilms can be checked for microscopically (Morris et al., 1998) they are

difficult to culture and are reported as 500 times more resistant than non biofilm

bacteria to antibiotics and sanitisers (Nickel et al., 1985). At this stage then control

again goes back to ensuring that produce was grown stored and transported correctly

which are part ofany regular HACCP Program if implemented correctly.

Studies undertaken on most minimally processed produce would take place on

individual components (e.g. carrot shreds), but the more complex products now on

the market, such as mixed salads, salads with cooked-meat/fish etc., have not been

studied as an entity. It is now necessary to study these complex products which are

new or in development for the market (Wiley, 1994). For example, a characteristic
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of fresh vegetables that are consumed raw is that they have a high water content,

generally with a neutral pH and are nutrient rich. This makes them capable of

supporting the growth and/survival of almost any type of microorganism, any of the

other components may harbour pathogens and these are then provided with a

'friendly' substrate for multiplication (Brackett, 1994).

Finally, studies by Beuchat and Ryu (1997) have shown that washes with chorine

at the current permitt~d levels are not reliable enough to eliminate pathogens. They

recommend that produce that is to be further processed and/or juiced would be better

served if sanitised with a solvent that could remove the waxy cuticle and any

microbes therein. However such sanitisers could not be used for fruits or vegetable

required for immediate consumption as such solvents can have an unappealing effect

on the appearance of the produce. This again underpins the need for prevention of

the presence of high numbers of harmful bacteria on produce.

In summary, as food safety in this area runs from 'farm to fork', it determines

that a team policy should be adapted in order to effectively employ any regulations

or guidelines. Ideally for any the HACCP or hazard analyses system to run

successfully key experts from all the pertinent areas such as agronomy/agriculture,

plant physiology, microbiology, food sciences, packaging, engineering, distribution,

marketing, and retail would need to be involved in a coherent manner. This is a

varied and complex area of study. However, the concept of tracebility is not

uncommon and applying it to the fresh produce industry would go a long way to

ensuring safer food and boosting consumer confidence. There is no reason why such

measures should not be taken with organic growing systems as these systems need

control and validation also. The control of fresh-cut vegetables begins at the farm
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level and as such a 'fann to fork' HACCP approach should be the foundation of

control plans.
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Stimulation of wild strawberry (Fragaria vesca) arbuscular
mycorrhizas by addition of shellfish waste to the growth
substrate: interaction between mycorrhization, substrate

amendment and susceptibility to red core
(Phytophthora fragariae)
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Wild strawberry (Fragaria vt'Sca) microplants were inoculated at establishment in the glasshouse with the commercial
inoculants Endorize IV. Vaminoc and Glomus mosst>ae. After 2 weeks. plants were transferred to control peat-based growth

substrate and Suppressor@. a commercial peat substrate amended with chitin-containing shellfish waste. Percentage root length
colonisation (%RLC) by Vaminoc and G. mosuat>. but not Endorize IV. wa.... stimulated significantly after 4 weeks growth in
the amended substrate but there were no significant differences for any of the inoculants at 8 weeks. Runner production in
Vaminoc-inoculated plants was unaffected by either growth substrate. Runner production was significantly reduced in Endorize
IV and G. mosseae treatments in the control growth substrate. other growth parameters were not significantly affected.

Disease resistance to red core was increased by growth of the Vaminoc-inoculated plants for 4 weeks in Suppressor~

before challenge in control compost. Neither Vaminoc inoculation nor growth in Suppressor@ resulted in increased disease
resistance. ~ 2000 Elsevier Science B.V. All rights reserved.

Keywords: OUtin; Commercial mycorrbizal iDocu1ants; Suppressor-; Red stele

1. IatrocluctioD

Inoculation of micropropagated plantlets with 81'

buscular mycorrhizal fungi (AMF) has been shown to
increase establishment and to stimulate plant growth
(Wang et aI.. 1993; Puthur et aI.. 1998). In gen
eral, when inoculating plants, consideration should

• Corresponding author. Tel.: +353-21 ....902726;
fax: +353-21 ....274420.
E-IfUJil tMldIYu: a.cassella.ace.ie (A.C. c..eIIa)

be given to the interaction between host genotype,
AMF isolate and growth substrate composition in or
der to optimise plant performance (Gianinazzi et aI.,
1990). Perrin et aI. (988) discussed the importance
of characterising efficient AMF strains and the sub
strate receptiveness to mycorrhizal inoculum; this is
described as the ability of a substrate to allow mycor
rhizal association development on host plants from in
troduced inoculum. Azc6n-Aguilar and Barea (1997)
discussed the selection of growth substrates which
favour the formation and functioning of mycorrhizae

0929-1393~ - see front matter 02000 EI8evier ScieBce B.V. All riPls reserved.
PII: S0929-1393(00 )00091-3
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and the interaction between AMF and other compo
nents of the microbiota of the growth substrate. in
relation to the biological control of root diseases. The
complexity and variability of responses following
the addition of organic amendments to the growth
substrate is another factor which must be taken into
consideration when examining plant-substrate-AMF
interactions (Gryndler and Yosatka. 1996).

Here. the interactions are investigated between wild
strawberry (Fragaria vesca L.). three commercial
AMF inoculants and two peat-based substrates, one of
which had been amended with shellfish waste, namely

Suppressor®. The use of shellfish waste, an inexpen
sive source of chitin (Sugimoto et al., 1998), is based
on well-established observations of biological con
trol properties against soil fungi (Fu.mrium solani f.
phaseoli) described by Mitchell and Alexander (1962)
and due to the stimulatory effect reported towards
AMF colonisation (Gryndler and Yosatka, 19(6).

1. Materials aDd methods

2.1. Plant material and growth conditions

Aseptic seedlings of the outbreeding wild straw
berry (F. vesca L.) were produced by aseptically ger
minating seeds (Chiltem Seeds. Ulverston. Cumbria,
UK) for 12 days on water agar before transferring them
for 4 weeks to half-strength Murashige and Skoog
( 1962) medium in vitro as described in Mark and
Cassells (1996). The aseptic seedlings were acclima
tised for 2 weeks (in plastic covered vented wean
ing trays) in a glasshouse in a peat vermiculite sand
(PYS); [8: 1: I (v/v/v)] substrate which had been steam
sterilised for I h at 121' C over three consecutive days
and allowed to rest for a further week before use. The
PYS was fertilised (NPK, 16:8: 12) with 9 month Os
mocote Plus® I gil (Grace Sierra B.V. Herleen, 1be
Netherlands) and limed (CaO, 5 gil) to a pH of 6.2.
For sterilised PYS the lime and osmocote were added
after final autoclaving and cooling (Mark and Cas
sells, 19(6). On acclimatisation. plants were inocu
lated with three commercial mycorrhizal inoculants;
Yaminoc, Glomus mosseae (both from MicroBio Di
vision, Herts, UK) and Endorize IV (Biorize. Dijon,
France). TIle mycorrhizal inoculum was placed in the

planting hole in direct contact with the plant root sys
tem, the amount of inoculum used was as recom
mended by the suppliers, i.e. 1g of Yaminoc and G.
mosseae inoculum per plant and 5% by volume (equiv
alent to 2.5 ml per 50 ml plug tray) for Endorize IV.
The PVS substrate used for the acclimatisation stage
was not amended with a chitin source as previous ex
perimental work (unpublished) showed incompatibil
ity with the chitin amended compost and microplants
of F. vesca at acclimatisation.

Following acclimatisation mycorrhizal and con
trol microplants were potted up in PYS substrate as
described above (87 mm pots, Omnipot 9F. Congi
eton Plastic, Cheshire, UK) and in a PYS substrate
which had been amended with a source of chitin
(Suppressor®, Landtech Soils, Tipperary, Ireland)
with a minimum of 16 plants per treatment. The treat
ments were randomly arranged in separated blocks
on potting benches (which had been covered with
plastic to prevent cross-contamination of the treat
ments) in a glasshouse at an ambient temperature of
15-25 C. Plants were grown with a 16 h photoperiod
under high-pressure sodium lamps 400 W, 2901240 V
(Thermoforce, Essex, UK).

2.2. Plant monitoring

Plants were assessed 4 weeks after potting up for
early vegetative growth responses to AMF inoculation
by counting the numbers of leaves per plant. Chloro
phyll meter readings were taken weekly in order to
assess the nutritional and health status of the plants us
ing a Minolta Chlorophyll SPAD-502 meter (Minolta
Camerak, Osaka, Japan). The percentage root length
colonisation (%RLC) was assessed at 4 weeks and at
8 weeks after potting up following clearing in 10%
(w/v) KOH and staining with 0.05% (w/v) aque~s

trypan blue (Phillips and Hayman. 1970) and quanti
fying AMF presence using the magnified hairline in
tersect method of McGonigle et al. (1990) using a
compound microscope at 100 x magnification.

Vegetative growth responses were assessed by tak
ing runner counts 4 weeks after potting up: these
were mechanically removed and runner re-growth
was quantified after a further 4 weeks. The number
of crowns per plant and the percentage of shoot dry
matter content were recorded at week 26. Aowering
onset was monitored wee~y in order to assess the
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effects of mycorrhizal application and of the substrate
amendment.

2.3. Infection with Phytophthora fragariae

A challenge with oospore inoculum of Phytoph
thorafragariae Hickman (from the Culture Collection.
Department of Plant Pathology. National University
of Ireland. Dublin. Ireland) was carried out on con
trol plants and on plants which had been inoculated

with Vaminoc on control and Suppressor® substrates.
Plants which had been inoculated with Vaminoc and
grown in Suppressor® for 4 weeks were divided into

two batches. one of which was grown in Suppressor®;
the other batch was repotted in non-amended substrate
after 4 weeks. The plants were challenge inoculated
with oospores at the end of this 8-week period.

The oospore inoculum was produced by inoculat
ing acclimatised aseptically germinated seedlings of
F. vesca with P fragariae (from a culture which had
been maintained on lima bean agar) in steam sterilised
vermiculite and allowing the inf~ction to develop as
descrihed in Mark and Cassells (19%). The oospore
inoculum used was standardised by comminuting in
fected root material in an electric blender (Kenwood.
Hants. UK). and had an estimated oospore concen
tration of 2.5 x 103 oospores per ml of inoculum. 5 ml
of P fragariae inoculum were used to inoculate each
test plant in the disease challenge. After adding the P
fragariae inoculum to an inoculation hole made near
the stem base of each plant being inoculated the plants
were transferred to a controlled environment growth
chamber and incubated for 2 weeks at 13-15C.
12 h photoperiod with PAR 9 J.Lmol m2 s-I. after this
period the temperature was reduced to 6c C and the
vermiculite was allowed to dry out in order to induce
oospore production (Mark and Cassells. 19(6). Test
samples were cleared and stained a~ for AMF detec
tion (see above) and the response to the pathogen was
assessed using disease severity indexes (DSI) as de
scribed by Milholland et al. (1989). This index is cal
culated by multiplying the number of oospores present
per 1.0 cm root segment sampled by the percentage
of root length infected and dividing by 100. any sam
ple found to have a DSI of less than 1.0 is said to
be resistant to P .fragariae wherea~ any value greater
than 1.0 is considered susceptible. This method is an

alternative to visual assessment which is viewed as
being too subjective (Milholland and Daykin. 1993).

2.4. Statistical analysis

The Mann-Whitney (comparison of two treatments)
and the multiple comparison Kruskal Wallis tests were
used for non-parametric data which were analysed

with the aid of Data Desk® 5.0 (Data Description.
NY. USA). Median values were used to represent the
central tendency in non-normal data.

3. Results

3.1. 1M effects of shellfish waste amendment on
mycorrhizal colonisation

Growth of microplants in Suppressor®-amended
PVS resulted in increased %RLC of F. vesca by all
three AMF isolates; this increase was significant for
Vaminoc and G. mosseae (Table 1) 4 weeks after
potting up. There were no differences detected in
Suppressor® at week 8; this indicates that the acceler
ation of colonisation induced by substrate amendment
occurred within 4 week.s of transfer to this medium.
Vaminoc-associated colonisation reached a plateau by
week 4 without further increase at week 8. The same
result was obtained for F. ananassa cv. Tenira (data
not shown).

3.2. The intt'raction bt'twun substralt' amendment
and mycorrhizalion on plant growth

Table 2 shows that significant plant growth effects

occurred in Suppressor®-amended-PVS. The number
of runner plants was significantly lower in uninocu
lated plants. plants inoculated with Endorize IV and
with G. mosseae. The depressive effect of the substrate
amendment on runner production was not observed
with Vaminoc-inoculated plants. The runner counts
recorded at week 8 show a similar pattern. This indi
cates that a depression rather than a delay in runner
production occurs as a result of the substrate amend
ment. Other growth parameters monitored. namely.
leaf number. chlorophyll content. percentage of shoot
dry matter and crown count showed no significant
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Table I
Effect of shellfish amendment of the growth substrate on median percent root length colonisation (. %RLC) at 4 and 8 weeks for F. vesco

Treatment" (. %RLC) 9~% CF Treatmenr: (. %RLC) 9S% CF Effect

Endorize IV Cb- 8.S (S-17] Endorize IV Cb+ 12.S (S-17] NSd

Vaminoc Cb- 17.S [I1.7-2S.6] Vaminoc Ch+ 37.0 (II-SO] Se

G. mosseM Cb- S.O (3-15] G. mosseM Cb+ 18.7 (3-86] se

Endorize IV Cb- 2S.0 (14-43] Endorize IV Cb+ 30.0 [16-41] NSd

Vaminoc Cb- 24.S (1J..48] Vaminoc Cb+ 37.0 (II-50] NSd

G. mosseiN Cb- 24.5 (9-46) G. mosseiN Cb+ 3O.S (12-50) NSd

• Ch : control PVS growth substrate. without chitin amendment (8 plants per treatment).
"Confidence inten·als.
C Ch+: Suppressorlll-amended substrate. with cbitin amendment (8 plaDts per treatment).

d No« significant.
e Significant (p<O.OS. Mann-WhitDey V-test).

differences. except for Endorize IV inoculated plants
which produced significantly more runners indepen
dently of growth substrate composition.

A slight reduction occurs in the percentage of flow
ering in the non-mycorrhizal plant population. but not
significantly so. the differences are also not signifi
cant between any of the AMF treatments (Fig. 1). G.
rrtOsseae plants grown in Suppressor@ had a higher
percentage of flowering. this is not significantly higher.

3.3. 11te effect of substrate amerulment and
",yco"hizarion Oft tM severity of redcore

~ Vaminoc inoculant wa..~ used here as it had
shown the highest positive response in the mycorrhizal

Table 2
Effect of shellfish amended growth substnle on the vegetative
JTOwth response ID F. ~·esca. median (~) runner COUDl data 4 aod
8 weelr.s after potting up (codes as Table I)a

1'reaImeat Week 4 Week 8

Median 9S,*, at' Median 9SfI at'

Control Cb- 7.S b [3-10] 6.0 b [3-9]
Control Cb+ 2.0 a [1-4] l.Sa [0-4)
Endorize IV Ch- 1.0 a [~2] 1.0 a (~2]

Endonze IV Cb+ 3.0 a (~5] 2.0 a (0-8]
Vanunl..x Cb 7.0 b IS-tO] 7.0 b [S-9)
Vaminoc Cb+ 6.5 b (4-10] 6.S b [4-9]
G. mosseiN Cb- 2.0 a (0-4] 1.5 a (1-3]
G. JfIOSSeDf' 0+ 0.0 a [~2] 0.0 a [~31

a Median runner count values followed by the same letter
(horizontally) are not significantly different (p<O.OS. IS plants per
treatment).

b COIdicInce .......

inoculum - substrate amendment trial above. DSI
for all six treatments studied. namely. Vaminoc. plus
and minus substrate amendment. at 4 and 8 weeks.
are shown in Table 3. The treatments are ranked in
increasing disease severity. mean values are included
for clarity. The lowest OSI is observed for Vaminoc
inoculated plants which were grown in Suppressor~
for 4 weeks before transfer to non-amended substrate
(plants were transferred as the stimulatory effect of
amended substrate on %RLC reached a plateau at
4 weeks; see Section 3.1). This is the only treat
ment which results in a OSI of less than 1.0 which
is under the resistance threshold. this value differs
significantly from the median OSI value for sim
ilar plants which were grown on in Suppressor~.
Vaminoc and Suppressor@ separately are seen to re
duce disease severity but not significantly from their
respective control treatments. Interaction analysis of
variance (ANOVA) confirms that a significant interac
tion occurs between growth substrate type and AMF
inoculation.

Vestberg (1992) found that of six AMF strains used
to inoculate commercial strawberry. three were found
to be highly efficient and the three others were less
efficient. Here. the vegetative response of F. vesco
to AMF inoculants containing different isolates was
shown to vary confirming previous results with this

species (Mark and Cassells. 1996). Suppressor®. the
shellfish waste amended growth substrate used here
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was found to increase the percentage of root length
colonisation confirming the findings of Gryndler and
Vosatka (996). Stimulation of mycorrhizal coloni
sation. however, was not associated with significant
growth increases or earlier flowering (Fig. I), as
reponed by Wang et aI. (1993). A depression of run
ner plant production was seen to be associated with

the inoculant-Suppressor@ interaction, except for
Vaminoc. This may be due to a genotype-dependent
interaction of the AMF inoculant with the substrate.
The lack of variation in the other growth parameters
monitored such as early leaf count and crown num
bers (Table 2) and in the percentage of dry matter

content, indicate that the quality of the mycorrhized
plant material in control and shellfish waste amended
growth substrate is not generally adversely affected.
The shellfish waste amendment did not alter the ni
trogen content of the host plant to a level detectable
with the chlorophyll meter. This also agrees with the
findings of Gryndler and Vosatka ( 1996). This param
eter is imponant as nitrogen affects root colonisation
by AMF and nitrogen stress, like phosphorus stress,
promotes root colonisation by AMF (Sylvia and Neal,
1990).

Caron (1989) recommended environmental manip
ulation in order to trigger and enhance the activities

Table 3

OSI following challenge with P fragariae inoculum at week 8 of Vaminoc-inoculated plants grown in control substrate. and sheUfish
amended substrate and in amended substrate for 4 weeks followed by return to control compost for 4 weeks before challengea

Rank Treatment (Mean OSf) Median OS) 95% Confidence limits

I Vam+ 01+ (4 week.) (0.91) 0.47 a [0.08-3.85]
2 Vam+ Cb (3.62) 3.48 ab [0.21-9.49]
3 Vain ... 01" (4 week) (3.68) 3.49 ab [0.48-9.2]
4 Yam - 01 + (8 week) (4.45) 3.46 ab [0.21-12.6]
5 Yam 01- (4.79) 3.47 b (0.66-13.42]
6 Vam+ Ch+ (8 week) (12.48) 9.33 b (1.12-29.55]

• Median values followed by a different letter (horizontally) were found to differ sipiticandy following the KrusbI-WaIlis test. ANOVA
sipificant interaction between Chitin and Vamiooc (H=7.43>x 2=5.99; p<O.(5).
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of biocontrol agents. The interaction of the host
genotype-AMF-growth substrate composition with
the root disease P. fragariae <Table 3) indicates that
manipulation of the growth substrate composition
may result in a significant reduction in disease sever
ity. Azc6n-Aguilar and Barea ( 19(7) reported that en
hancement of root resistance or tolerance to pathogen
attack is not expressed in all substrates. The variation
in OSI (Table 3) seen here confinns the latter. An
important factor is seen to be the timing of inoculum
interaction with the amended growth substrate, which
interact significantly.

The shellfish waste amendment is also seen to ac
celerate as well as stimulate AMF colonisation by
Vaminoc, exploitation of the shellfish waste amend
ment is only possible 2 weeks after acclimatisation
(due to toxicity to the young microplant) by which
time early AMF infection has taken place « 10%
data not presented). The most effective protection
against P. fragariae occurs when Vaminoc-inoculated

plants were grown in Suppressor® for 4 weeks and
then transferred to a non-amended substrate. In con
clusion, positive interactions between the host plant,
mycorrhizal inoculant and shellfish waste amended
growth substrate and resistance to P. fragariae have
been demonstrated. However, the complexity of this
interaction is such that commercial exploitation of
this tripartite relationship would appear difficult, es
pecially when confronted with the biological diversity
of soils.
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Abstract

An increase in reports of disease outbreaks associated with fresh and ready-to-eat
vegetables prompted this study to evaluate the risk of transmission of human food
poisoning organisms in micropropagated vegetables. Here, cabbage is used as a model
plant and Escherichia coli and Serratia marcescells as model human pathogens. Surface
sterilised cabbage seeds were germinated on water agar and co- inoculated with E. coli or
S. marcescens. Nodal explants were then used to establish autotrophic tissue cultures. The
culture medium and micropropagated plants were examined microbiologically at each
subculture. The latter were surface sterilised and the tissues homogenised prior to
bacterial screening. Both model strains were recovered from the culture medium and
tissue homogenate. Biochemical identification was carried out using the API system, and
epidemiological typing was performed using pulsed field gel electrophoresis (PFGE). E.
coli and S. martescens were found to persist in autotrophic (aseptic microhydroponic)
culture, indicating that the carbon sources required for growth were acquired from
microplant exudates. E. coli and S. marcescells were repeatedly re-isolated from the
progeny microplants after serial subcultures. Some microplants were asymptomatic in the
first subculture~ both isolates became pathogenic ill vitro in the third subcultures.

I. Introduction

Plant tissue culture is prone to contamination with human pathogens due to the
manual nature of the work (Leifert et al., 1994). Weller (1997) stated "the frequency of
infections with common skin organisms of Staphylococcus and Micrococcus and the
increasing percentage of infection with serial subculture implies contamination from
human skin". It has also been reported that Trichophytoll illterdigitale was acquired from
micropropagated plants by two horticulturists on separate occasions (Weller and Leifert,
1996). The risk of human food pathogens being introduced into the food chain via
vegetable materials has increased recently due to promotion of the 'healthy' diet based on
increased consumption of vegetables and the rapid expansion of sales of mixed root and
haulm vegetables in prepacks. Consumption is projected to increase in the next few years
with increased production of minimally processed convenience foods, development of
value-added products e.g. pre- washed prepared vegetable mixes, addition of sauces and
meats etc. (Beuchat, 1996: Rafferty et al., 1999). There has been an increase in reports of
disease outbreaks associated with fresh and ready-to-eat vegetables (WHO, 1998;
Beuchat, 1996). These data raise concern regarding transmission of food pathogens via
infected micropropagated produce. A study in 1997 found that E. coli 0157:H7 could
contaminate the edible tissues of radish after the seeds had been soaked in an E. coli
o157:H7 solution (Hara- Kudo et al., 1997). There is a need to assess the potential health
risks of the transmission of harmful bacteria via vegetables, which are eaten either raw or
after minimal processing. This study has been undertaken to review the risk of
transmission in micropropagated vegetables. The aim of this investigation is to monitor
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whether human pathogenic bacteria can persist in aseptic plant tissue culture through
serial subcultures and thus pose a risk to the health of the production workers and
upstream, to consumers. This is a general ~tudy involving a number of clinical b.acterial
strains and vegetable host. Here, cabbage IS used as the model plant and E. coil and S.
marcescellS as the model pathogenic strains.

2. Materials and methods

2.1. Bacterial strain selection

The Escherichia coli strain used was a clinical i'solate (Clinical strain ref. no.
945.1 St James's Hospital Dublin 8, Ireland). The former was chosen as a representative
of food- poisoning E. coli which was safe to use in the contained environment of ill vitro
culture. Serratia l71arCeSCellS (Clinical strain ref. no. 492.4 St James's Hospital Dublin 8,
Ireland) is a common environmental organism (Holt 1985). An outbreak of Serratia
marcescellS infection occurred in a university tertiary- care hospital (Vigeant et al., 1998)
and it has been also recorded as an opportunistic pathogen in St James's Hospital Dublin
(Falkiner, unpublished) All strains were provided by the Diagnostic Microbiology
Laboratory, St.James's Hospital, Dublin 8, Ireland.

2.2. Plant inoculation

Both model strains were grown up to an optical density of 0.4 at 470 nm and
diluted a~propriately. The following series of dilutions were chosen for ill vitro work:
10. 7

, 10' and 10- 9. These dilutions were chosen as they represented, respectively, levels
of bacteria that were detectable using conventional culture methods, levels below
acceptable conventional plate count numbers and levels that could not be detected (Fig.
I). Aliquots (100 IJI) were plated on to water agar (6 g r I) when the seeds were being

. plated. Inoculated and non- inoculated (control) plates were used for germination of
surface sterilised seeds for 8- 10 days. These seedlings were used as a source of nodal
explants for tissue culture. Bacterial screening of control plants was carried out as
described previously (Barrett and Cassells, 1994). Microplants were screened throughout
the study by culturing tissue homogenates on MacConkey plates (Oxoid Ltd.,
Basingstoke, Hampshire, UK) overnight at 37°C.

2.3. Autotrophic tissue culture

Cabbage seed was surface sterilized in 80 % (v:v) aq. ethanol and immersed in 20
% (v:v) aq. commercial hypochlorite solution (Domestos: Lever Bros, Liverpool, UK) for
15- 20 min and washed in sterile distilled water (x 3) in a laminar-flow cabinet prior to
placing the seeds on plates of sterile water agar (6 g r I agar) which had been inoculated
as above with diluted bacterial suspension (inoculated) or non-inoculated (controls).
There were 20 seeds per plate. After 8- 10 days, seedlings were transferred to Magenta
GA-7 vessels (Sigma-Aldrich Ireland Ltd, Dublin) each containing polyurethane foam
(Plant Biotechnology (UCC) Cork) imbibed with half strength Murashige and Skoog
(1962) mineral salts solution (Sigma) (Cassells and Walsh, 1996). These were placed in a
growth room under the following conditions: 23 ± 1°C. 16 hour photoperiod (white 65/80
w Liteguard tubes. Osram Ltd.. UK.) with PAR of 30 IJmol 01- 2 s' J at shelf height. These
plants were screened for bacteria as below. Nodes were excised from the microplants at 4
- 6 week intervals for subculture on to the same medium. Three subcultures were carried
out.
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2.4. Bacterial screening of cultures and plant tissues

Samples of spent media were taken at the end of each culture cycle and a dilution
series was constructed to determine the amount of bacteria present in the media during the
4- 6 week growth period.

Sampling of plant material involved surface sterilisation by immersing the
microplants in 80 % ethanol (ethanol absolute, Merck. Darmstadt. Germany) for 45 sec,
then in 2 % Stericol (Stericol Hospital Disinfectant, Lever Industrial Ltd., Runcorn,
Cheshire, UK) for 30 min, followed by washing in sterile distilled water (x 3). Following
sterilisation the microplants were placed in 9 ml Ringers solution (Oxoid Ltd.,
Basingstoke, Hampshire, UK) and I ml buffered peptone water solution (Oxoid Ltd.,
Basingstoke, Hampshire, UK), and homogenised using an Ultra Turrex T25 (Janke &
Kunkel Gmblt & Co KG, Staufen, Germany.). For the isolation of the Gram- negative
bacteria, E. coli and S. marcescellS, the homogenate was plated on to MaConkey agar
(Oxoid Ltd.. Basingstoke, Hampshire, UK) and incubated at 37° C for 24 h.

2.5. Biochemical identification of bacterial isolates

Following incubation, all plates were examined morphologically for the presence
of bacteria. Where present, the oxidase and Gram stains were also performed. All suspect
colonies were cultured for purity on the appropriate agar medium and identified using the
API 20E identification kit (bioMerieux SA, Montaleu, Vercieu, France). Confirmed
isolates were cultured on Columbia agar (Lab M, Bury, UK) supplemented with 7 %
horse blood, and frozen at - 70° C on Protect beads (Technical Service Consultants Ud.,
Lancashire, UK), until required.

2.6. Epidemiological typing:

Bacteria were grown on Columbia agar, supplemented with 7 % horse blood,
incubated in air at 37°C for 48 h. Cuhures were harvested and suspended in 3 ml SE
buffer (5 M NaCI, 0.5 M EDTA). Cells were washed twice in fresh SE buffer and re
suspended to achieve a density equivalent to a MacFarland Standard No.4 (Bio Merieux
SA, Marcy- I'Etoile, France). A 2 % (w/v) low-gelling agarose (Sigma Chemical Co., St.
Louis, MO, USA) was prepared in SE buffer, and dispensed into pre-warmed 1.5 ml
Eppendorf tubes (Sarstedt, Aktiengesellschafl & Co., Numbrecht, Germany). 220 J.11
aliquots of the bacterial suspension were added to the tubes, mixed gently and transferred
to the block mould (Bio-Rad Laboratories, Alfred Nobel Drive, Hercules, USA).
Following refrigeration for at least 30 min, the moulds were carefully transferred into
labelled universals (Bibby Sterilin Ltd.,Tilling Drive, Stone, Staffs, OSA, USA),
containing Iml lysis buffer (I M tris pH 8.0, 0.5 M EDTA pH 8.0, lysozyme). The
universals were incubated in a 37°C water bath (Grant Instruments (Cambridge) Ltd.,
Barrington, Cambridge. UK), for 2 - 3 h and then transferred to newly labeled universals
containing a 1 % SDS and Proteinase K solution (SDS, TE Buffer, Proteinase K). These
universals containing the blocks were then incubated at 50°C overnight. Blocks were
washed in pre- warmed TE buffer (I M Tris pH 7.6, 0.5 M EDTA pH 8.0), and the
universals placed in a 50°C shaking water bath (Grant Instruments (Cambridge) Ltd.,
Barrington, Cambridge. UK). After 4 successive washes, the blocks were placed in fresh
TE buffer and stored at 4 °C overnight. A 2.5 x 5 mm portion from each block was cut the
next day, and placed in separate 1.5 ml Eppendorf tubes containing 1 ml of fresh TE
buffer. The tubes were refrigerated for a minimum of 30 min. The slivers were then
transferred to tubes containing 150 J.lI of reaction buffer (Promega Corporation, Woods
Hollow Road, Madison, WI, USA) and refrigerated for at least 30 min. The enzyme Xba I
mix (Promega Corporation, Woods Hollow Road, Madison. WI, USA) was prepared on
ice and 50 J.11 added to each tube. The tubes were incubated at 37°C for 3h by transferring
the blocks to TE buffer at 4 °C for 30 min.
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2.7. Pulse field gel electrophoresis (PFGE):

As a general rule a gel concentration of 1.2 % will give clear bands over a range of
1- 2500 kb. The slivers to be loaded were picked up using a sterile scalpel and placed
against the leading edge of the well. The order of each block was recorded and a
molecular weight marker (Boehringer Mannheim Biochemica, GmbH, Germany) was
also included. Once loaded, the wells were sealed with a sealing agarose and allowed to
set for 30 min at 4° C. Cooled TBE (3 I) (Tris base, Boric Acid, 0.5 M EDTA pH 8.0) was
poured into the tank and allowed to equilibrate for 30 min. The run parameters were:
pulsewave: initial time: 5 sec; final time: 50 sec; run time: 22 h; power supply: 200 Volts.

When the run was complete the gel was stained with ethidium bromide (Sigma
Chemical Co., St. Louis, MO, USA) at room temperature for 30 min. Following staining,
the gels were de- stained for 15 min. The gel was photographed under UV light using a
Polaroid MP+ Instant Camera System.

3. Results

1.1. Growth of E. coli and S. marcescells in autotrophic microplant culture

Samples of spent media were taken and a di Jution series was constructed to
determine the amount of bacteria present in the media after 4 weeks; the results are shown
in Table I. This shows that both model strains multiplied in the autotrophic systems.
Murashige and Skoog (1962) mineral salt solution, used as the medium in autotrophic
culture contains no carbon sources and does not support the growth of E. coli or S.
marcescells. However, both grew on basal salt medium, the only carbon supplementation
coming from microplant exudate.

3.2. Symptom expression in the inoculated microplants

E. coli. strain 945 and S. marcescens strain 492.2 were recovered from the spent
medium and surface sterilised plant tissues at each subculture (Tables 2 and 3). No
bacterial contamination was detected in the non-inoculated control microplants and no
bacterial isolates, other than the model strains, were isolated from the inoculated control
microplants. At the end of the first subculture the control microplants were on average 70
mm in height. The inoculated microplants were stunted to approx. half that height and had
fewer nodes. In all microplants from inoculated cultures, symptoms were evident on the
plant as blackening of the lower stem (Fig. 2). An exception to this was the treatment with
E.coli at 10· 9 that did not show evidence of basal stem rot and was less stunted to approx.
70 % of the height of the control microplants. Similar results were recorded for the
second subculture. Symptoms were observed after 16 days in culture and were expressed
as blacklbrown lesions at stem bases. After the third subculture both model strains
became pathogenic to the plants ill vitro.

3.3. PFGE results

Both E. coli strain 945 and S. marcescells strain 492.4 were found to persist in the
culture medium in the presence of plant tissues and in homogenates of surface sterilised
microplant tissues. PFGE banding patterns of the bacterial strains isolated, showed
identical banding patterns to the original strain used as inoculum (Fig. 3). Of 39 E. coli
isolates typed, the resulting restriction patterns were indistinguishable from the original
strain typed (data not presented).
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4. Discussion

Bacterial strains of medical significance were chosen for this study. E. coli is a
Gram-negative. lactose fermenting bacillus which is a member of the gut flora of
mammals especially cattle and man. This organism has long been recognised as a cause of
a wide range of human infections many of the diarrhoeal type. The most noteworthy
pathogenic sub- group enterohaemorrhagic E. coli (EHEC). of which the serotype 0157 is
well known, is the causative agent of bloody diarrhoea. Outbreaks of E. coli 0157 have
been reported worldwide (mostly from the developed nations) with several fatalities
resulting (Bolton et a/.. 1998). S. marcescells is a Gram-negative, lactose fermenting
organism implicated in causing a variety of nosocomial infections (Miranda et a/.. 1996;
Herra et a/.. 1998). Its ability to survive in many different environments accounts for its
potential to act as an opportunistic pathogen in clinical settings. S. marcescells has been
isolated from medical equipment such as intravenous catheters and needles (Ashkenazi et
a/.. 1986), and blood transfusion bags (Parment et a/.. 1993). Typically these bacterial.
strains of clinical significance are not associated with plants and are not known plant
pathogens though both may be widely encountered in the environment. The subsequent
re- isolation of E. coli. and S. marcescells from the model plant types, demonstrates that
these human and food poisoning pathogens have the ability to survive on and possibly
within healthy micropropagated plants.

It was shown that human pathogenic species, particularly E. coli. could survive Oil
and in plants at very low concentrations. Strains were found to persist in autotrophic
culture. This indicates that plant leakage supports growth of enteric bacteria. It was
observed that Serratia grew to a higher cell count in the cultures than E. coli. After serial
subcultures inoculated bacteria were re-isolated from the progeny microplants though
some microplants were asymptomatic; in other cases the bacteria became vitro- pathogens
in the later subcultures. It is evident then that these bacteria, even at dilutions as low as
used here, can still colonise microplants and persist in serial subculture even in harsh
bacterial environments, namely, Murashige & Skoog (1962) mineral salts medium. Given
these results, the potential risk factors associated with micropropagation and with
microplants for human consumption should be more fully investigated.
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Tables

I. Bacterial cell counts in spent media from autotrophic cultures
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Treatment
Controls

E.coli 10. 9

E.coli 10- 8

E.coli 10"
S.rnarc 10. 9

S.marc 10. 8

S.marc 10. 7

Counts from spent media
o

8.67 x 10 4 cfu/m)
4.6 x 10 5 cfu/ml
4.77 x 10 5 cfu/ml
5.81 X 10 7 cfu/ml
1.54 X 10 7 cfu/ml
1.08 X 10 7 cfu/ml



2. Persistence of E. coli in vitro.

Location Controls E. coli 10. 7 E. coli 10' 8 E. coli 10. 9

4 weeks epiphytic + + +

4 weeks endophytic + + +

8 weeks epiphytic + + +

8 weeks endophytic + + +

3. Persistence of S. marcescens in vitro

Controls S. marcescens 10' 7 S. marcescens 10' 8 S. marcescens 10' 9

4 weeks
epiphytic + + +
4 weeks

endophytic + + +
8 weeks

epiphytic + + +
8 weeks

endophytic + + +
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Introduction
In recent years there has been an increase in food poisoning associated with fresh

produce (1). Contributing factors include an increased rate in consumption of produce
per capita, intensification of agricultural production, modern processing techniques,
and globalisation of the market (2).

Sources of Contamination
Primary sources of bacterial contamination in food production are contaminated

soil, water, feed and manure resulting in contaminated raw ingredients/raw materials
(e.g. packaging) (3). Listeria monocytogenes, Clostridium botulinum, and Bacillus
cereus can be naturally present in soils. Campylobacter jejuni, Escherichia coli
OI57:H7, Salmonella and Vibrio cholerae are more likely to contaminate produce
through vehicles such as improperly composted manure or irrigation/wash water
containing untreated sewage. Secondary contamination in the processing industry may
occur from unhygienic employees/surfaces, dirty process water, faulty air handling
systems, and others (3). Wild or domestic animals are another source of
contamination. Taken together, primary and secondary contamination provide a
potential basis for contamination from farm to fork (4). Investigators have long been
concerned with the threat posed from faeces-fertilised produce. A 1912 Public Health
Report called attention to the transmission of typhoid bacillus via fresh produce
contaminated with human sewage. (cited in ref. 5). Recently several foodborne
disease outbreaks have been linked to vegetables (see ref. 6). Such reports have
enhanced speculation that pathogens present in agricultural manure would pose a
threat if applied to crops (5).

Plant Transmission
Bacteria survive in association with plants in a variety of ways. They are

commonly found as epiphytes, but they also have more specialised methods of
association.

1. Endophytic Survival
A method of avoiding the exterior stresses on a plant is to live within the tissue,

which affords protection. Common endophytic isolates from plants include
Beijerinckia, Azotobacter, Erwinia, Klebsiella, Enterobacter, Bacillus (7) and
Clavibacter (8). Endophytes have been shown to survive in the following plant tissues:
vascular tissue, (9) roots (10, 11), stems and cotyledons/leaves (12, 13). Endophytic
presence in aseptic tissue culture has also been noted (14), and this may have
implications for vegetable crops raised from microplants and transplants. Systemic
colonisation can afford protection for the bacterial endophyte from competition and
environmental stresses such as washing and surface sterilisation procedures (15).

2. Biofilms
Various investigators have reported biofilms in the marine environs, implanted

medical equipment, and water distribution systems (16). Costerton (17) defines
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biofilms as "Matrix enclosed bacterial populations adherent to each other and/or to
surfaces or interfaces. The definition includes aggregates and flocculates and also
adherent population within the pore spaces of porous media." It was noted that biofilm
cells are at least 500 tirnes more resistant to antibacterial agents than their planktonic
counterparts. The control of biofilm bacteria has been the focus of vast amounts of
applied and medical research. Why biofilm bacteria are less susceptible to usual lethal
treatments is still unclear (17). Morris et al. (18) observed biofilms directly on the
leaf. The plant species chosen were all vegetables that are eaten raw (spinach, lettuce,
Chinese cabbage, celery, leeks, basil, parsley and broad-leafed endive). Recovered
biofilms using leaf washings and agar impressions revealed that they contained
multiple species (19). Costerton (17) quotes studies on depth of biofilms, one
homogeneous biofilm studied was made up of Vibrio parahaemolyticus, a well-known
food poisoning agent. This would indicate that food poisoning agents could survive in
this fonn.

Water Transnlission
Use of contaminated irrigation water or inadequately treated water has been quoted

as a vehicle of transmission for various food poisoning agents (20, 21). A major
American producer of fresh-cut carrots now includes testing of irrigation and
processing water for total coliforms and E. coli (3). Many plant pathogens are spread
in irrigation water, for example potato brown rot disease. The causal agent is
Pseudomonas solanacearum/Ralstonia solanacearum biovar 2A. The bacterium has
been found in most infected countries in surface water (22), ditch water (23), and the
weed Solanum dulcamara growing along waterways (24). The pathogen can
overwinter successfully in the roots (25), from which it can spread to potato crops
when associated water is used for irrigation (26). It may be possible for human
pathogens to follow this transmission route.

Emerging Pathogens
Various factors contribute to emerging pathogens including the globalisation of the

food supply (3) as well as changing microbial populations (27). Increasingly since the
late 1980s, Campylobacter infection has risen to and surpassed that of Salmonella and
campylobacteriosis is more common across the world (28). The Super family VI
includes the genera Campylobacter and Helicobacter. These microorganisms are gram
negative, motile by means of flagella, spiral shaped, and microaerophilic (29).

1. Campylobacter
During the past decade Campylobacter has emerged as a major cause of human

enteritis (4, 30-33). Patients excreting the organism and healthy carriers such as
poultry and pigs provide a constant flow of the bacterium into the environment. The
application of natural or untreated water for irrigation of farmlands is a route of direct
contamination. Waterborne outbreaks of Campylobacteriosis have been reported in
Sweden, the U.S., Canada, England, Yugoslavia and Norway as cited in ref. (21).
Koenraad draws attention to the possible presence of Campylobacter species in water
in a viable but noncultivable (VBNC) form (30). Campylobacter have been isolated
from fresh market produce; 3.8% of the samples were positive for Campylobacter
(21). Harris et al. cite Doyle et al. (1986) as having isolated Campylobacter jejuni
from a small percentage of commercial mushrooms (1.5%). Despite many
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investigations, the sources of the majority of sporadic cases of human
campylobacteriosis remains unconfirmed. However, the major sources for
Campylobacter in produce include untreated waters and soil and manure. Poultry may
have an important role in human infection, but other sources cannot be ignored (31).

2. Helicobacter
H. pylori is the most common chronic infection in humans and is the major

etiological agent for chronic active gastritis (29, 35). It is often present in ulcer disease
and atrophic gastritis (36); it is being actively explored as a risk factor for gastric
carcinoma. H. pylori is fastidious and requires 3 or more days for isolation;
microaerophilic conditions must be constantly maintained (29). Little is known about
environmental sources of H. pylori, though the faecal oral route has long been
suspected (35). That produce may be a vehicle in H. pylori transmission is based on
serosurveys. A study in Chile showed a significantly higher prevalence in lower socio
economic groups. Since a key factor in enteric pathogen transmission in Chile is the
use of sewage-contaminated irrigation water on produce, it was suggested that this
might also be a route of transmission for H. pylori (Hopkins, 1993, cited in ref. 35).
Helicobacter has been associated with waterborne transmission (37) probably in a
VBNC (38). It is possible Helicobacter may not have been directly isolated from
produce because of the difficulty in culturability and/or detection.

Conclusions
Considering that bacteria are known to survive on salad vegetables as biofilms and

as endophytes, this presents us with a risk. Whether human pathogens can survive on
fresh produce requires further examination. Prevention of the transmission of human
pathogens in the food industry involves taking action at all stages in the chain from
farm to fork. Properly composted manure and irrigation water from a clean source
should be used on growing crops. All processing should include sanitary-designed
processing facilities, highly evolved hazard analysis carried out for critical control
points plans, sanitation regimens, good management practice, employee training and
monitoring in basic hygiene, and perhaps inclusion of irradiation as a final
precautionary step (3). The latter should not be used on its own or to process poorer
quality raw materials. Research is necessary to understand more fully the survival
mechanisms of pathogenic bacteria on fresh and minimally processed produce (3).

References
1. R. Tauxe, H. Kruse, C. Hedberg, M. Potter, J. Madden, K Wachsmuth, J. Food Prot. 60, 1400-1408 (1997).
2. L. R. Beuchat, 1. Food Prot. 59, 204-206 (1996).
3. S. Berne, Food Eng., March, 65-74 (1998).
... L. R. Beuchat, J-H. Ryu, Emerg. Infect. Dis., Oct.-Dec, 1997. Available at http://

www.cdc.gov/ncidodleidlvoI3n04lbeuchat.htm.
5. R. V. Tauxe, JAMA Lellers, June (1997). Available at http://www.ama-assn.org/sci-pubsl

journals/archiveljamalvol_277/no_21l1ener_4.htm.
6. WHOIFSFIFOS, Surface Decontamination of Fruits and Vegetables Eaten Raw: A Review. 1998. Available at

http://www.who.intlfsf/fos982-I.pdf.
7. L. E. Fuentes-Ramirez, T. Jimenez-Salgado, I. R. Abarca-Ocampo, J. Caballero-Mellado, Plant Soil 154,

145-150 (1993).
I. J. T. Turner, J. S. Lampel, R. S. Stearmen, G. W. Sundin, P. Gunyuzulu, J. 1. Anderson, Appl. Environ.

Microbiol. 57, 3522-3528 (1991).
9. F. Dane, J. J. Shaw, J. Appl. Bacteriol. SO, 73-80 (1996).

10. J. I. Baldani, L Caruso, V. L. D. BaJdani, S. R. Goi, J. Dobereiner, Soil BioI. Biochem. 29, 911-922 (1997).



PLANTS AND ECOSYSTEMS 273

II. G. L. Riveria Del Dibi, C. H. Bellone, Lilloa 38, 85-92 (1995).
12. A. Quadt-Hallmann, J. Hallman. J. W. Kloepper. Can. 1. Microbiol. 43, 254-259 (1997).
13. K. Mukhopadhyay. N. K. Garrison. D. M. Hinton. C. W. Bacon, G. S. Khush, N. Datta, Mycopathologia 134,

151-159 (1996).
14. D. L. Cooke. W. M. Waites. D. C. Sigee, H. A. S. Epton, C. Leifen, In Plant Pathogenic Bacteria Versailles,

1992. Les Colloques no 6. INRA. Paris. 1994.
IS. W. F. Mahaffee, 1. W. Kloepper. 1. W. L van Vurde. 1. M. Van der Wolf. M. Nan den Brink, In Improving Plant

Productivity with Rhizosphere Bacteria (M. H. Ryder. P. M. Stephens, G. D. Bowen, Eds.), p. 180. 1994.
16. E. A. Zottola, K. C. Sasahara, Int. J. Food Microbial. 23, 125-148 (1994).
17. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. Lappin-Scou, Annu. Rev. Miorobiol. 49,

711-745 (I 995}.
18. C. E. Morris, J·M. Monier, M-A. Jaques, Appl. Environ. Microbial. 63, 1570-1576 (1997).
19. C. E. Morris, J-M. Monier, M-A. Jaques, Appl. Environ. Microbial. 64, 4789~795 (I 998}.
20. FDA. USDA, CFSAN Guidance for Industry, 1998. Available at http://vm.cfsanJda.gov/-dmslprodguid.html.
21. C. E. Park, G. W. Sanders, Can. J. Microbial. 38,313-316 (1992).
22. P. Kaltelein. J. M. van der Wolf, J. W. L. van Vurdde, R. A. Griep, A. Schots, J. D. Van Eisas,

Gewasbeschenning 29, 39~ I (1998).
23. M. Wenneker, A. R. van Beuningen, A. E. M. van Nieuwenhuijze, J. D. Janse, A. R. Van Beuningen, A. E. M.

Van Nieuwenhuijze, Gewasbeschenning 29, 7-11 (I998}.
24. J. D. Janse, Bull. OEPP 26,679-695 (I 996}.
25. J. G. Elphinstone, Pot. Res. 39, 40~1O (1996).
26. D. E. Stead, J. G. Elphinstone, A. W. Pembenon, Brighton Crop Protection Conference Vol. 3, I 14S-1lS2

(1996).
27. WHO Fact Sheet No. 124, 1996. Available at http://www.who.intlinf-fslenlfactI24.html.
28. PHLS Bulletin, June 1999. Available at hup:/Iwww.phls.co.uklnewslbulletins/990604id.htm.
29. V. Wesley, 1. Food Prot. 10, 1127-1132 (1996).
30. P. M. F. J. Koenraad, W. C. Hazeleger, T. van der Laan, R. R. Beumer, F. M. Rombouts, Food Microbial. II,

65-73 (l994).
31. P. M. F. J. Koenraad, R. Ayling, W. C. Hazeleger, F. M. Rombouts, G. D. Newell, Epidemiol. Infect. 115,

485~94 (I 995}.
32. M. Steele, B. McNab, L Fruhner, S. DeGrandis, D. Woodward, J. A. Odumeru, Appl. Environ. Microbiol. 64,

2346-2349 (1998).
33. E. De Boer, M. Hahne, 1. Food Prot. 53, 1067-1068 (1990).
34. N. V. Harris, T. Kimball, N. S. Weiss, C. Nolan, J. Food Prot. 49, 347-351 (l986).
35. V. Wesley, Trends Food Sci. Technol. 8, 293-299 (1997).
36. H. Haesun, J. Dwyer, R. M. Russell, Nutr. Rev. 52. 75-83 (1994).
37. P. D. Klein, D. Y. Graham. A. Gaillour. A. R. Opekunand E. O'B. Smith, Lancet 337. 1503-1506 (l99I).
38. M. Shahamat, U. Mai, C. PaszJco-Kolva, M. Kessel, R. R. Colwell, Appl. Environ. Microbiol. 59, 1231-1235

(I 993}.


	RaffertySM_PhD2001_001
	RaffertySM_PhD2001_002
	RaffertySM_PhD2001_003
	RaffertySM_PhD2001_004
	RaffertySM_PhD2001_005
	RaffertySM_PhD2001_006
	RaffertySM_PhD2001_007
	RaffertySM_PhD2001_008
	RaffertySM_PhD2001_009
	RaffertySM_PhD2001_010
	RaffertySM_PhD2001_011
	RaffertySM_PhD2001_012
	RaffertySM_PhD2001_013
	RaffertySM_PhD2001_014
	RaffertySM_PhD2001_015
	RaffertySM_PhD2001_016
	RaffertySM_PhD2001_017
	RaffertySM_PhD2001_018
	RaffertySM_PhD2001_019
	RaffertySM_PhD2001_020
	RaffertySM_PhD2001_021
	RaffertySM_PhD2001_022
	RaffertySM_PhD2001_023
	RaffertySM_PhD2001_024
	RaffertySM_PhD2001_025
	RaffertySM_PhD2001_026
	RaffertySM_PhD2001_027
	RaffertySM_PhD2001_028
	RaffertySM_PhD2001_029
	RaffertySM_PhD2001_030
	RaffertySM_PhD2001_031
	RaffertySM_PhD2001_032
	RaffertySM_PhD2001_033
	RaffertySM_PhD2001_034
	RaffertySM_PhD2001_035
	RaffertySM_PhD2001_036
	RaffertySM_PhD2001_037
	RaffertySM_PhD2001_038
	RaffertySM_PhD2001_039
	RaffertySM_PhD2001_040
	RaffertySM_PhD2001_041
	RaffertySM_PhD2001_042
	RaffertySM_PhD2001_043
	RaffertySM_PhD2001_044
	RaffertySM_PhD2001_045
	RaffertySM_PhD2001_046
	RaffertySM_PhD2001_047
	RaffertySM_PhD2001_048
	RaffertySM_PhD2001_049
	RaffertySM_PhD2001_050
	RaffertySM_PhD2001_051
	RaffertySM_PhD2001_052
	RaffertySM_PhD2001_053
	RaffertySM_PhD2001_054
	RaffertySM_PhD2001_055
	RaffertySM_PhD2001_056
	RaffertySM_PhD2001_057
	RaffertySM_PhD2001_058
	RaffertySM_PhD2001_059
	RaffertySM_PhD2001_060
	RaffertySM_PhD2001_061
	RaffertySM_PhD2001_062
	RaffertySM_PhD2001_063
	RaffertySM_PhD2001_064
	RaffertySM_PhD2001_065
	RaffertySM_PhD2001_066
	RaffertySM_PhD2001_067
	RaffertySM_PhD2001_068
	RaffertySM_PhD2001_069
	RaffertySM_PhD2001_070
	RaffertySM_PhD2001_071
	RaffertySM_PhD2001_072
	RaffertySM_PhD2001_073
	RaffertySM_PhD2001_074
	RaffertySM_PhD2001_075
	RaffertySM_PhD2001_076
	RaffertySM_PhD2001_077
	RaffertySM_PhD2001_078
	RaffertySM_PhD2001_079
	RaffertySM_PhD2001_080
	RaffertySM_PhD2001_081
	RaffertySM_PhD2001_082
	RaffertySM_PhD2001_083
	RaffertySM_PhD2001_084
	RaffertySM_PhD2001_085
	RaffertySM_PhD2001_086
	RaffertySM_PhD2001_087
	RaffertySM_PhD2001_088
	RaffertySM_PhD2001_089
	RaffertySM_PhD2001_090
	RaffertySM_PhD2001_091
	RaffertySM_PhD2001_092
	RaffertySM_PhD2001_093
	RaffertySM_PhD2001_094
	RaffertySM_PhD2001_095
	RaffertySM_PhD2001_096
	RaffertySM_PhD2001_097
	RaffertySM_PhD2001_098
	RaffertySM_PhD2001_099
	RaffertySM_PhD2001_100
	RaffertySM_PhD2001_101
	RaffertySM_PhD2001_102
	RaffertySM_PhD2001_103
	RaffertySM_PhD2001_104
	RaffertySM_PhD2001_105
	RaffertySM_PhD2001_106
	RaffertySM_PhD2001_107
	RaffertySM_PhD2001_108
	RaffertySM_PhD2001_109
	RaffertySM_PhD2001_110
	RaffertySM_PhD2001_111
	RaffertySM_PhD2001_112
	RaffertySM_PhD2001_113
	RaffertySM_PhD2001_114
	RaffertySM_PhD2001_115
	RaffertySM_PhD2001_116
	RaffertySM_PhD2001_117
	RaffertySM_PhD2001_118
	RaffertySM_PhD2001_119
	RaffertySM_PhD2001_120
	RaffertySM_PhD2001_121
	RaffertySM_PhD2001_122
	RaffertySM_PhD2001_123
	RaffertySM_PhD2001_124
	RaffertySM_PhD2001_125
	RaffertySM_PhD2001_126
	RaffertySM_PhD2001_127
	RaffertySM_PhD2001_128
	RaffertySM_PhD2001_129
	RaffertySM_PhD2001_130
	RaffertySM_PhD2001_131
	RaffertySM_PhD2001_132
	RaffertySM_PhD2001_133
	RaffertySM_PhD2001_134
	RaffertySM_PhD2001_135
	RaffertySM_PhD2001_136
	RaffertySM_PhD2001_137
	RaffertySM_PhD2001_138
	RaffertySM_PhD2001_139
	RaffertySM_PhD2001_140
	RaffertySM_PhD2001_141
	RaffertySM_PhD2001_142
	RaffertySM_PhD2001_143
	RaffertySM_PhD2001_144
	RaffertySM_PhD2001_145
	RaffertySM_PhD2001_146
	RaffertySM_PhD2001_147
	RaffertySM_PhD2001_148
	RaffertySM_PhD2001_149
	RaffertySM_PhD2001_150
	RaffertySM_PhD2001_151
	RaffertySM_PhD2001_152
	RaffertySM_PhD2001_153
	RaffertySM_PhD2001_154
	RaffertySM_PhD2001_155
	RaffertySM_PhD2001_156
	RaffertySM_PhD2001_157
	RaffertySM_PhD2001_158
	RaffertySM_PhD2001_159
	RaffertySM_PhD2001_160
	RaffertySM_PhD2001_161
	RaffertySM_PhD2001_162
	RaffertySM_PhD2001_163
	RaffertySM_PhD2001_164
	RaffertySM_PhD2001_165
	RaffertySM_PhD2001_166
	RaffertySM_PhD2001_167
	RaffertySM_PhD2001_168
	RaffertySM_PhD2001_169
	RaffertySM_PhD2001_170
	RaffertySM_PhD2001_171
	RaffertySM_PhD2001_172
	RaffertySM_PhD2001_173
	RaffertySM_PhD2001_174
	RaffertySM_PhD2001_175
	RaffertySM_PhD2001_176
	RaffertySM_PhD2001_177
	RaffertySM_PhD2001_178
	RaffertySM_PhD2001_179
	RaffertySM_PhD2001_180
	RaffertySM_PhD2001_181
	RaffertySM_PhD2001_182
	RaffertySM_PhD2001_183
	RaffertySM_PhD2001_184
	RaffertySM_PhD2001_185
	RaffertySM_PhD2001_186
	RaffertySM_PhD2001_187
	RaffertySM_PhD2001_188
	RaffertySM_PhD2001_189
	RaffertySM_PhD2001_190
	RaffertySM_PhD2001_191
	RaffertySM_PhD2001_192
	RaffertySM_PhD2001_193
	RaffertySM_PhD2001_194
	RaffertySM_PhD2001_195
	RaffertySM_PhD2001_196
	RaffertySM_PhD2001_197
	RaffertySM_PhD2001_198
	RaffertySM_PhD2001_199
	RaffertySM_PhD2001_200
	RaffertySM_PhD2001_201
	RaffertySM_PhD2001_202
	RaffertySM_PhD2001_203
	RaffertySM_PhD2001_204
	RaffertySM_PhD2001_205
	RaffertySM_PhD2001_206
	RaffertySM_PhD2001_207
	RaffertySM_PhD2001_208
	RaffertySM_PhD2001_209
	RaffertySM_PhD2001_210
	RaffertySM_PhD2001_211
	RaffertySM_PhD2001_212
	RaffertySM_PhD2001_213
	RaffertySM_PhD2001_214
	RaffertySM_PhD2001_215
	RaffertySM_PhD2001_216
	RaffertySM_PhD2001_217
	RaffertySM_PhD2001_218
	RaffertySM_PhD2001_219
	RaffertySM_PhD2001_220
	RaffertySM_PhD2001_221
	RaffertySM_PhD2001_222
	RaffertySM_PhD2001_223
	RaffertySM_PhD2001_224
	RaffertySM_PhD2001_225
	RaffertySM_PhD2001_226
	RaffertySM_PhD2001_227
	RaffertySM_PhD2001_228
	RaffertySM_PhD2001_229
	RaffertySM_PhD2001_230
	RaffertySM_PhD2001_231
	RaffertySM_PhD2001_232
	RaffertySM_PhD2001_233
	RaffertySM_PhD2001_234
	RaffertySM_PhD2001_235
	RaffertySM_PhD2001_236
	RaffertySM_PhD2001_237
	RaffertySM_PhD2001_238
	RaffertySM_PhD2001_239
	RaffertySM_PhD2001_240
	RaffertySM_PhD2001_241
	RaffertySM_PhD2001_242
	RaffertySM_PhD2001_243
	RaffertySM_PhD2001_244
	RaffertySM_PhD2001_245
	RaffertySM_PhD2001_246
	RaffertySM_PhD2001_247
	RaffertySM_PhD2001_248
	RaffertySM_PhD2001_249
	RaffertySM_PhD2001_250
	RaffertySM_PhD2001_251
	RaffertySM_PhD2001_252
	RaffertySM_PhD2001_253
	RaffertySM_PhD2001_254
	RaffertySM_PhD2001_255
	RaffertySM_PhD2001_256
	RaffertySM_PhD2001_257
	RaffertySM_PhD2001_258
	RaffertySM_PhD2001_259
	RaffertySM_PhD2001_260
	RaffertySM_PhD2001_261
	RaffertySM_PhD2001_262
	RaffertySM_PhD2001_263

