
Title The state of secure coding practice: Small organisations and
“lone, rogue coders”

Authors Ryan, Ita;Stol, Klaas-Jan;Roedig, Utz

Publication date 2023-05

Original Citation Ryan, I., Stol, K.-J. and Roedig, U. (2023) ‘The state of secure
coding practice: small organisations and “lone, rogue
coders”’, in 2023 IEEE/ACM 4th International Workshop on
Engineering and Cybersecurity of Critical Systems (EnCyCriS).
Melbourne, Australia: IEEE, pp. 37–44. https://doi.org/10.1109/
EnCyCriS59249.2023.00010

Type of publication Conference item

Link to publisher's
version

https://doi.org/10.1109/EnCyCriS59249.2023.00010 - 10.1109/
EnCyCriS59249.2023.00010

Rights © 2023, the Authors. For the purpose of Open Access, the
authors have applied a CC-BY public copyright licence to
any Author Accepted Manuscript version arising from this
submission. Copyright of Published VOR: © IEEE - https://
creativecommons.org/licenses/by/4.0/

Download date 2024-05-08 09:10:46

Item downloaded
from

https://hdl.handle.net/10468/14709

https://hdl.handle.net/10468/14709


The State of Secure Coding Practice: Small
Organisations and “Lone, Rogue Coders”

Ita Ryan
ADVANCE Centre for Research Training

School of Computer Science and IT
University College Cork

Cork, Ireland
ita.ryan@cs.ucc.ie

Klaas-Jan Stol
Lero, the SFI Research Centre for Software

School of Computer Science and IT
University College Cork

Cork, Ireland
k.stol@ucc.ie

Utz Roedig
Connect Research Centre

School of Computer Science and IT
University College Cork

Cork, Ireland
u.roedig@cs.ucc.ie

Abstract—Software security is a rapidly developing problem.
Malware, ransomware and spyware routinely leverage vulnerabil-
ities in software to gain access to systems, escalate privileges and
run adversarial code. One approach to solving this issue is to use
secure software methods, which attempt to guide organisations
in improving their software assurance. However, these methods
implicitly assume the presence of substantial resources deployed
in a compliance-mandated environment. The distinct and often
limited environment in which small organisations, independent
teams and lone coders operate is not considered. Advice for
software security in small teams is almost absent from the
literature, as is a way to measure the levels of secure coding in
such teams. In order to address this problem, we must begin
by understanding it. As part of the analysis of a large survey
on current software security practice, we examined the current
software security practices of small and open source organisations,
and of lone and non-company developers. We present our results
in this paper. We hope that they will facilitate the targeting of
security advice to these neglected developer categories.

Index Terms—Software security, secure development tools,
secure development processes, secure development, software
programmer, software developer, application security, security
issue, secure programming, secure application development, secure
development lifecycle, measuring security

I. INTRODUCTION

The world’s businesses, economies, governments and critical
systems are moving online at ever-increasing pace. This global
digital transformation comes at a cost, with nations, businesses
and individuals more vulnerable than ever before to cybercrime
threats such as ransomware, and to cyber-espionage [1].

An understanding of the issues that facilitate online interfer-
ence is essential. At the root of many cyber attacks are code
vulnerabilities. At the root of code vulnerabilities is software
code that, due to poor planning or faulty execution, contains
errors that allow malicious exploitation. The question arises,
why do developers not code securely? The field known as
Developer Centred Security (DCS) focuses on reasons why
software developers fail to secure their code. Well-explored
issues include the poor usability of security tools [2] and
APIs [3], inadequate documentation [4] and resources [5],
conflicting advice [6], and a lack of knowledge [7], awareness
[8], understanding [9] or motivation [10].

There are also well-known constraints in the coding environ-
ment such as lack of time [11], security not being a priority
[12], and over-speedy deployment [13]. Other issues outside
the developer’s sphere of influence include lack of clarity on
who is responsible for security [14], budget pressure [15],
and questionable management decisions, such as choosing to
release insecure code for business reasons [10].

Secure software methods in industry attempt to address
some of these issues, introducing practices and activities to
be undertaken throughout the development lifecycle [16], [17].
Cybersecurity guidelines for critical systems include such
practices, although the sections on secure software development
can be rather short [1]. Such methods and guidelines tend to
implicitly assume the presence of substantial resources de-
ployed in a compliance-mandated environment. But what about
software which is not developed in this type of environment?
Much of modern software has dependencies on third-party
components. These may be created by lone developers, or
by small organisations or open source software (OSS) teams
having few resources, few developers and no budget. Small,
under-resourced teams can have a disproportionate influence
on global software security. An obvious recent example is
Log4Shell (CVE-2021-44228), a vulnerability in popular open-
source Java logging tool Log4j. Disclosed in late 2021, this
popular defect was widely weaponised by threat actors. By late
2022 it was reportedly being used by North Korea to obtain
initial entry to US energy company networks [18].

The distinct and often limited environment in which isolated
developers, open source developers, freelancers and small
organisations operate is not clearly understood. It has not
been much studied in secure software development literature,
and to date there has been little attempt made to separate
out secure software development guidance for such teams.
This contrasts with the overall area of cybersecurity, where
in the UK, for example, the ‘Cyber Essentials’ program [19]
attempts to provide small organisations with the information
and guidelines they need to achieve a base level of security.

The existence, importance and unique software development
needs of small coder groups have been acknowledged by
the creation of the ISO/IEC 29110 Series of ‘Systems and



TABLE I
QUESTIONS ON TWELVE COMMON ACTIVITIES (CAS)

No. Usable Question

CAQ1 Yes Static analysis tools are brought into the code review
process to make the review more efficient and
consistent.

CAQ2 No Compliance constraints are translated into software
requirements for individual projects and are commu-
nicated to the engineering teams.

CAQ3 Yes QA efforts go beyond functional testing to perform
basic adversarial tests and probe simple edge cases
and boundary conditions, with no particular attacker
skills required.

CAQ4 Yes QA targets declarative security mechanisms with tests
derived from requirements and security features. A
test could try to access administrative functionality
as an unprivileged user, for example, or verify that a
user account becomes locked after some number of
failed authentication attempts.

CAQ5 Yes Penetration test tools are used internally.

CAQ6 Yes Emergency codebase response can be done. The
organisation or team can make quick code and con-
figuration changes when software (e.g., application,
API, microservice, infrastructure) is under attack.

CAQ7 Yes Defects found in operations are entered into es-
tablished defect management systems and tracked
through the fix process.

CAQ8 Yes Bugs found in operations monitoring are fed back to
development, and may change developer behaviour.
For example, viewing production logs may reveal a
need for increased logging.

CAQ9 Yes Penetration testing results are fed back to engineering
through established defect management or mitigation
channels, with development and operations respond-
ing via a defect management and release process.

CAQ10 Yes Host and network security basics are in place across
any data centers and networks and remain in place
during new releases.

CAQ11 No Security-aware reviewers identify the security features
in an application and its deployment configuration
(authentication, access control, use of cryptography,
etc.), and then inspect the design and runtime param-
eters for problems that would cause these features to
fail at their purpose or otherwise prove insufficient.

CAQ12 No External penetration testers are used to identify
security problems.

Software Engineering Standards and Guides for Very Small
Entities’ [20]. However, these guides do not currently have a
secure development component, though the addition of security
improvements has been proposed [21]. Advice for software
security in small teams is largely absent from the literature. An
academic study in 2022 was unable to find any formal secure
development guidelines for OSS teams or small organisations
[22].

In addition, there is currently no established way to measure
the levels of secure coding in such environments. While
measurement of secure coding by individuals is well understood
[23], researchers have not yet converged on a metric to measure

secure coding for organisations and teams. In previous work
[24], we proposed a potential lightweight metric derived by
evaluating organisations’ use of the twelve security activities
most commonly used in industry, as determined in a study by
Weir et al. [25]. We called these the ‘common activities’ (CAs).
Questions to evaluate the CAs can be seen in Table I. Weir et
al.’s work was based on data accumulated by the BSIMM team
working with large or very large organisations. Implementing
the CAs ideally requires the deployment of large budgets and
the existence of multiple teams within an organisation. Thus,
it seems unlikely that the Ryan metric would be suitable for
small organisations, lone developers or OSS teams.

This intuition has not yet been verified using data. As
part of the analysis of a large survey on current software
security practice, we examined use of the CAs by small and
medium organisations, lone developers, and developers outside
organisations. In this paper we present a summary of use of the
CAs and other security measures by these developer categories.

Our contribution is that we provide information about the
current state of software security practice in small and medium-
sized organisations, amongst coders outside organisations
such as open source developers and freelancers, and amongst
developers who code alone within organisations.

This is a first attempt to assess the levels of secure
coding practice for these cohorts. It will provide much-needed
information to the software security community. The paper is
organised as follows: Section II discusses related work, section
III is on method, section IV provides the results, section V
discusses the results and section VI concludes the work.

II. RELATED WORK

A. State of Practice

An investigation of app developers’ rationale by van der
Linden et al. [26] looked at how app developers deal with
choices that are not overtly security-related, such as choice of
advertising library, finding that app developers need support to
make the right choices. Wermke et al. [27] examined security
and trust in OSS projects by interviewing 27 open source
contributors on their practices. They found that there were few
engagements with security challenges. Guidance and policies
were ad-hoc except for large projects. Most of the contributors
thought of improvements in terms of bug bounties, code-review
hours, code upgrades and in general more person hours. The
authors recommended that security help for OSS projects take
project size and resources into account.

B. Secure Coding Guidelines

It seems that the help and support that these researchers
advocate is currently lacking. Research has found that there is
a shortage of secure coding guidance online, with significant
gaps in coverage in several areas such as program analysis
tools and logging [28]. Where guidelines do exist, developers
are not always aware of them [29]. This may be somewhat
mitigated in large organisations by the availability of secure
coding standards such as BSIMM [16] or SAMM [17], but

2



there is a marked shortage of secure coding guidelines designed
explicitly for small organisations and teams.

In a recent literature review, Bender et al. looked at
usability, security and privacy development processes for app
developers, small and medium companies, and the open source
community [22]. They found 15 papers across the range of
three development types, but all dealt with usability. They
found nothing related to security or privacy.

Although not tailored to small teams and isolated developers,
work on security interventions by Weir et al. is of interest
because they explicitly considered situations where budgetary
and resource support could be low [30]. Their interventions
approach should be of benefit in introducing security practices
to small organisations and teams. They set out to find the best
way to encourage developers to use secure coding practices.
From detailed consultation with industry experts, they identified
eight interventions of interest. Of these, they considered three
to be sufficiently lightweight to introduce in their relatively
brief intervention sessions; ‘incentivization session,’ ‘threat
assessment,’ and ‘on-the-job training.’ During these sessions
they hoped to promote the other five interventions at opportune
moments. It is interesting that they did not include automated
security analysis as one of their three primary interventions
[30]. However, they did identify automated static analysis as
an intervention to be encouraged when opportunity arose.

C. Secure Coding Assessment

Assessing individuals’ level of secure coding is well under-
stood, and a level of researcher convergence has emerged
around the Naiakshina criteria [6], [23], [31]. There have
been multiple attempts to define measurement tools for secure
coding at a group or organisational level. Since these are
frequently derived from industry guidelines such as BSIMM
and SAMM, they often include practices that are not available
to or practical for small teams [32]. Assal et al. developed a
useful approach; in an interview study, they assessed whether
participants used techniques to ensure security in each of six
software development lifecycle steps from ‘design’ to ‘post-
dev testing’ [15]. The qualitative analysis was work-intensive,
requiring the researchers to understand the development process
and security steps and to be able to correctly interpret developer
responses. The approach would not easily translate to analysis
of survey answers at scale, although it was a useful and flexible
way to compare teams’ approach to secure coding.

We did not find any studies dealing specifically with the
assessment of secure coding for small organisations or teams.

III. METHOD

We undertook a large-scale survey of current security practice
for software developers. We publicised the survey to our
personal contacts and via social media and developer groups,
receiving 1,100 responses over three months, of which 962 were
valid responses. Ryan et al. [24] describes the composition of
the survey questions, pilot tests, ethics approval and recruitment
processes in detail. It also gives demographic data for the survey
participants. The focus of Ryan et al. was to devise and use

a metric for software security for organisations, to attempt to
assess software security culture, and to compare the results of
the two measures to discover whether a high level of software
security practice necessarily entails a good security culture.

Ryan et al. describes in detail the rationale for using the
empirically-determined 12 CAs as a lightweight metric to
measure software security in coding environments. In this paper
we revisit the survey data, this time focusing on developers who
code in small and medium organisations, non-organisational
developers, freelancers and developers who code alone. We
evaluate the CAs in light of their relevance to small and
impoverished teams. We posit that nine of the CAs may be
accessible. We have indicated these with a ‘Yes’ in the ‘Usable’
column in Table I. We examine survey responses and use
the results to assess the truth of our conjecture on which of
the common security activities may be suitable for isolated
developers and resource-constrained developers.

This paper is a first exploration of the secure development
work environment of five developer cohorts that have not
previously been investigated. The questions asked were derived
from data sourced in much larger organisations. Therefore
we have presented the data simply. The reader can easily
compare the rates of adherence to the 12 most common
security activities between the five developer categories. The
corresponding adherence for all valid respondents is displayed
for information reasons.

In addition, we briefly examine use of security tools by
the developer categories of interest. We theorise that one
approach to accessing secure coding that is available to isolated
developers is leveraging automation of secure coding aids
developed elsewhere. Such automation can be applied, for
example, to tools for static analysis, code review, configuration,
dynamic scanning, monitoring, licensing and testing. There is
overhead to setting up such tools, but they provide an analytic
consistency not otherwise achievable on a small team.

A. Data

Where participants are quoted in the text, the quotes appear
exactly as entered into the survey. Data analysis was done in R.
Data was plotted using the viridis colourblind-friendly ‘plasma’
colour map 1.

IV. RESULTS

As discussed, the CAs are derived from data on large
organisations. They are likely to be less useful for secure coding
measurement in small teams or open source environments. The
resources available in such environments are more constrained.
Asked for feedback on the twelve CAs, one survey respondent
remarked:

‘(Some of these don’t fit that well for the open source
project that I work on)’.

While it is easy to assume that lone coders will take fewer
security measures, this assumption may not make sense to the
coders themselves. For example, one of the respondents said:

1https://ggplot2.tidyverse.org/reference/scale viridis.html

3



TABLE II
CATEGORIES OF DEVELOPERS CONSIDERED IN THIS STUDY

Name N Description

Lone Coders in
Organisations

64 Codes alone rather than on a team. Works
within an organisation with size greater
than one.

Coders in small
organisations

234 Codes on a team within a small organisa-
tion (less than 50 staff members).

Coders in
medium-sized
organisations

129 Codes on a team within a medium-sized
organisation (between 50 and 199 staff
members).

Coders not working
for organisations

67 Codes in a non-organisational environ-
ment, either alone or on a team.

Freelancers 23 Codes in a single-developer organisation,
states that they code alone.

All Developers 962 All valid survey participants. Includes
developers in large organisations.

‘I suspect, even as a lone, rogue coder, that I generally
write more secure code than a lot of companies.’

In Table I we made an initial assessment of which CAs we
thought it would be difficult for coders working alone or in
small teams to undertake. However, this assessment was based
on the theoretical accessibility of activities, rather than on data.
In our analysis we look at the data for several categories of
coder, briefly described in Table II. They are as follows:

Lone Coders in Organisations: When asked whether they
code alone or in a team, these respondents stated that they
code alone. There are 141 valid respondents who stated that
they code alone, but in this category we consider only the 64
of them who stated that they work in an organisation with
a size greater than one. See Fig. 1. We wanted to see what
secure coding practices these isolated coders, working inside
organisations, are using. There are certainly some in this cohort
who do not feel supported. One participant stated that he coded
alone in an organisation with between 10 and 50 developers
and a staff of more than 10,000. Asked for comments at the
end of the survey, he had this to say:

‘TLDR - we got pwn’t, we learned nothing, back
to old boy’s club and the mentality security doesn’t
contribute to bottom line of revenue so we get Foxtrot-
All for budgets/tools/time/attention/consideration. But
of course it’s our fault when inevitably kaboom
happens.’

Fig. 1. Organisation size for the 64 respondents who stated that they
code alone within organisations. This cohort is of interest because they may
lack the support available to those working on teams.

Coders in Small Organisations These respondents, when
asked whether they code alone or in a team, said that they coded
within a team. Asked to estimate the size of the organisation
they work in, they specified a value of up to 49 employees,
which we consider a small organisation [33].

Coders in Medium-Sized Organisations These respondents
stated that they worked on a team in an organisation with
between 50 and 199 employees.

Coders not Working for Organisations Some developers
chose ‘Not applicable’ for both organisation size and number
of developers in the organisation. These developers may be
open source developers, students or independent developers. Al-
though they do not have organisational support, and some code
alone, many may have support from teams and communities.

Freelancers These developers chose an organisation size
of 1 and stated that they worked alone. We deduce that they
work as freelancers. They may be the most isolated of all the
categories, with no organisational, institutional or open source
support.

All Developers Finally, in order to give a point of comparison
for the data, we included the CA percentages for the category
comprising all 962 valid survey participants.

A. Usage of CAs by Developer Category

In this section we examine the usage of the twelve CAs by
each of the five categories of coder. The CAs are collected
into five groups, each containing two or three related activities.
These are now discussed.

1) Penetration Testing: When considering the twelve CAs
and their accessibility to under-resourced coders, we thought
that internal penetration testing could be a practical option,
since it does not necessarily require additional staff or resources
and can theoretically be conducted by a coder on their own code.
We were interested to see that actually, there was more external
than internal penetration testing for the developer categories
we examined. None of the small number of freelance coders
in the study undertook any internal penetration testing at all.
See Fig. 2.

Fig. 2. Results for the three penetration testing CAs for all five developer
categories and the whole sample. None of the freelance coders who responded
to the survey did any internal penetration testing.

4



2) Review: Two of the CAs deal with review. The first
is incorporating static analysis into code review. This is the
most commonly used activity from the BSIMM data [25].
The second is having security aware reviewers inspect the
features of the software and determine if there are any possible
issues in the deployment configuration or design that would
cause security problems. While both would seem to be natural
undertakings for a security-aware environment, the first assumes
that code reviews are taking place. For isolated developers who
code alone within organisations, code reviews will necessarily
be problematic. The second activity, having security-aware
reviewers look over the code and deployment, could be difficult
to provide in any resource-constrained environment. The take-
up of these activities can be seen in Fig. 3.

Fig. 3. Results for the two review CAs for all five developer categories
and the whole sample. Freelancers are least likely to use review activities,
while developers in medium-sized organisations use them the most.

There are nuances to all of these activities, as illustrated by
one of our respondents who commented:

‘Security-aware reviewers will review code and/or
designs when there is an obvious security angle in
new work, but there is no formal review process for
the security content of changes that aren’t obviously
related to security.’

This speaks to the shortage of resources in most environments,
as all code changes should ideally be reviewed for security.
Defects can be chained by attackers to provide access in ways
that are not immediately obvious to the average developer.

Among the categories of developer we consider, freelancers
have least access to both review activities. Developers in
medium-sized organisations use both review activities the most.
Access to security reviewers is higher in ‘all developers’ than
in any of the five categories.

3) Quality Assurance: The presence of a Quality Assurance
(QA) team does not always ensure that security testing will take
place. Two of the CAs specifically focus on this. Number three
advocates that the QA team should conduct adversarial testing,
checking edge and boundary cases. Number four suggests that
the QA team attempt to attack the security procedures that are

in place. For example, they could attempt to access systems
when not logged in, or access admin systems when not logged
in as an administrator. No hacking skills are required to conduct
either set of tests. The incidence of these quality assurance
activities within the five developer categories we consider, and
the whole sample, can be found in Fig. 4.

Non-organisational developers are least likely to engage in
these activities. It can be argued that they rarely have access
to QA teams. Developers usually do some basic probing on
their own account, however, and could conduct these quality
assurance activities themselves.

Fig. 4. Results for the two quality assurance CAs for all five developer
categories and the whole sample. Non-organisational developers are least
likely to engage in these activities. Developers in medium-sized organisations
are most likely to engage in them, beating the ‘all developers’ sample in both
cases.

4) Operations Feedback: Two of the CAs deal with feedback
from the operations team. CAQ7 mandates that the operations
team should add defects found to the standard defect-tracking
system, while CAQ8 concerns giving operations feedback to
developers. Since we are dealing with lone developers and
those who work in small organisations we would expect that
there would be a lot of informal as well as formal feedback.
In some cases the coders and the operations team could be
one and the same person. See Fig. 5 for the results for these
questions. As expected, there is a high occurrence of both of
these activities in the developer categories we consider. It is
interesting that the incidence is low in the non-organisational
cohort. This may indicate that there is no formal defect tracking
process, or no operations environment, or it may be that these
developers simply do not undertake these activities. Predictably,
the incidence is highest in medium-sized organisations.

5) Security Processes: Finally, we look at three questions
that are concerned with security process. CAQ2 suggests
that compliance constraints should be conveyed to software
engineering teams as requirements. CAQ10 states that network
security basics should be kept in place while new code is being
deployed. A team must be able to respond to an attack with
swift code and configuration changes to satisfy CAQ6.

We can observe from Fig. 6 that there is little conversion of
compliance constraints to requirements outside the organisa-

5



Fig. 5. Results for the two operations CAs for all five developer categories
and the whole sample. Non-organisational coders are least likely to engage
in these activities. Developers in medium-sized organisations are most likely
to engage in them, outdoing the ‘all developers’ sample.

Fig. 6. Results for the three security processes CAs for all five
developer categories and the whole sample. Freelance and non-organisational
developers engage least with compliance. All categories fare well for network
basics, particularly lone developers within organisations. Developers in small
organisations are most likely to express confidence in their emergency codebase
response.

tional environment. The non-organisational cohort lags behind
the other cohorts on almost every measure, but it is particularly
far back on this one. Freelance compliance is also low. This
suggests that the type of work that is done outside organisations
is not typically subject to compliance. With the likelihood of an
increased compliance and legislative overhead for all developers
in the short to medium-term future [34], [35], this may spell
trouble ahead for open source and other non-organisational
coders.

Lone developers working within organisations, who lag
behind on other questions, shine when it comes to ensuring
host and network security basics are in place. This may indicate
a degree of self-reliance around their deployment environment

which would be a natural consequence of working without a
team of peers. Lone developers are likely to work on smaller
projects where they are involved in deployment, support and
all other aspects of the system.

The ability to be able to respond quickly to attack is the
only area in which the non-organisational cohort does not lag
behind the others. It is slightly ahead of the lone developers
on this metric, which may indicate that lone developers inside
organisations lack the autonomy to respond quickly to external
attack, requiring authorisation to change production code.
Coders such as open source teams or app developers are
likely to be able to ship without such constraints, though the
difference is small. This question gave developers from small
organisations their only chance to shine, topping the numbers
at 70.9% adherence. Developers within small organisations
may be nimble, with short command chains, and able to get
needed authorisations quickly. Small organisations have fewer
than 50 employees. Their software may be fundamental to the
organisation’s well-being and could even be its only product.

Fig. 7. Are there security tools available in your environment? Answers
from all six developer categories. We can see that the percentage ‘Yes’ answers
for the ‘all developers’ sample is higher than for any of the developer categories
we examine. Tool use in the individual categories we consider is relatively
low, particularly amongst freelance and lone developers.

6) Security Tools: In an extensive literature review of
software security aids, in which we considered accessibility
for under-resourced or isolated developers, we concluded that
automation and security tools hold high promise for developers
who do not have much security support. Therefore, we explored
the usage of security tools in the five developer categories. The
results can be seen in Fig. 7.

We were disappointed to observe that developer categories
who are most likely to need the support of automation and
security tools used them least, with freelancers at 29%, lone
developers at 31% and developers in small organisations at 32%.
Developers outside organisations had access to security tools
at a rate of 38%. There was a noticeable difference between
developers in small organisations at 32% and those in medium-
sized organisations at 45%. The number for respondents as a
whole was 48%, suggesting that large organisations get the
most benefit from security tools.

We would like to see much higher numbers here. Only 29%
of freelancers use security tools. There is a long way to go.

V. DISCUSSION

A. Threats to Validity

As with most surveys, our respondents are self-selecting
and the results may therefore suffer from self-selection bias or

6



nonresponse bias. We attempted to mitigate this by recruiting
organically, by keeping the survey open for three months to
collect a large sample, and by publicising the survey through
multiple different venues. Nevertheless, our respondents may
not accurately reflect the general developer population. How-
ever, we believe that the relative CA compliance between the
different developer categories we examine is likely to reflect
the broader population.

Survey responses sometimes suffer from social desirability
bias, as respondents try to anticipate expected answers. To
counter this effect, we emphasised that no security expertise
was needed to participate.

Our sample size for freelancers is low at 23 participants. We
do not claim that these results are generalisable, but we find
them thought-provoking and believe that they may stimulate
discussion and further research.

B. Discussion

Fig. 8. Heat map of CA answers. This heat map allows us to easily see the
most-used common activities in the five developer categories.

When investigating use of the twelve CAs in our target
developer categories, we were prepared to see little to no
adherence to the activities. It was encouraging to see that these
security practices are present in at least some instances. We
can use Fig. 8, which shows a heat map of common activities
use, to evaluate our initial intuition as to the three CAs that
would be least used. The levels of compliance constraints
translated to requirements (CAQ2) reached 47.3% in medium-
sized enterprises, but were low at 8.96% for non-organisational
developers. The highest level of security review (CAQ11) was
31.8% for medium-sized organisations. The lowest, 19.4% for
non-organisational environments, was higher than we expected
given the likely budgetary constraints. External penetration
testing (CAQ12), used by 39.5% of medium organisations
but only 4.35% of freelancers, performed badly but not as
badly as internal penetration testing (CAQ5), used by 24.8%
of medium organisations but not used at all by our small
sample of freelance developers. We speculate that internal
penetration testing is too time-consuming and may take too
much knowledge for developers to undertake it themselves.
Although it is notoriously difficult to persuade management to
invest in external penetration testing, several of our participants
mentioned bug bounty firms in their responses. For example,
one of our respondents from a medium-sized enterprise said:

‘HackerOne is a service our company subscribes to
for bug bounties/external penetration testing and it
provides a lot of value for us.’

As to the other activities, CAQ3 and CAQ4 are relatively little
used, which is disappointing since these concern QA work
which could be done by developers themselves. Our developers
are strongest on CAQs 6, 7, 8 and 10 which concern deployment
speed and resilience, developer and operations coordination,
and network security basics. These activities can be undertaken
for quality assurance and general cybersecurity reasons, without
a software security focus. Therefore their presence does not
imply a software security mindset in the working environment.
In general, the level of practice of the CAs is higher than
expected. We were disappointed by the level of security tool
use, and would like to see this rise for developers who may
not receive much other support.

VI. CONCLUSION

Security vulnerabilities in software may expose its users to
multiple types of cyberattack, including ransomware, cyber
terrorism and cyber espionage. This is a particularly acute
concern for critical systems. Yet many contemporary software
systems depend on components developed externally, often
by small organisations or open source teams. We wished
to examine aspects of software security practice in five
developer categories that are under-represented in the literature.
These are lone coders within organisations, coders within
small organisations, coders within medium organisations, non-
organisational coders, and freelancers (see Table II).

To do this, we analysed a dataset of 962 valid respondents to
a survey on the state of software security practice. The survey
asked about use of the 12 most common software security
activities (CAs) (see Table I). Many of these CAs can be
undertaken even by lone developers — for example, ensuring
that host and network security basics are in place. However,
we posited that some of them would be too expensive or time
consuming for under-resourced developers to undertake.

We extracted the data on adherence to the twelve CAs
for the five developer categories of interest. The results were
encouraging, with some level of adherence to all of the activities
within each developer category. However, there is a large
degree of variation between developer categories for many
of the activities. We found that most of the activities are
undertaken most frequently by medium-sized organisations, the
largest developer category we studied. This ties in with our
understanding that the activities can be resource-intensive.

We also explored security tool use. Intuitively, automated tool
use should provide most benefit to under-resourced developers.
Surprisingly, we found that security tool use is quite low in
our developer cohorts. This may be because developer sources
of advice have gaps when it comes to discussing the benefits
of security tools [28].

Based on our results, we advocate greater targeting of
small and under-resourced software development communities
with software security advice. Secure software development
standards tailored to these categories of developer are needed.
We also suggest that the benefits of security tool use should
be promoted to under-resourced developers whenever possible.
The accessibility, usability and price of security tools and other

7



security aids should be considered by the industry in a holistic
way. Isolated and under-resourced developers must be able to
find and deploy them.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful com-
ments and input. This publication was financially supported by
Science Foundation Ireland under Grant numbers 18/CRT/6222,
13/RC/2077 P2, 13/RC/2094 P2, and 15/SIRG/3293.

For the purpose of Open Access, the authors have applied
a CC-BY public copyright licence to any Author Accepted
Manuscript version arising from this submission.

REFERENCES

[1] I. Ryan, U. Roedig, and K.-J. Stol, “Insecure software on a fragmenting
Internet,” in 2022 Cyber Research Conference - Ireland (Cyber-RCI).

[2] J. Jancar, M. Fourné, D. D. A. Braga, M. Sabt, P. Schwabe, G. Barthe,
P.-A. Fouque, and Y. Acar, ““They’re not that hard to mitigate”: What
cryptographic library developers think about timing attacks,” in 2022
IEEE Symposium on Security and Privacy (SP), 2022, p. 632–649.

[3] C. Wijayarathna and N. A. G. Arachchilage, “Why Johnny can’t develop a
secure application? A usability analysis of Java Secure Socket Extension
API,” Computers and Security, vol. 80, p. 54–73, 2019.

[4] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
why do Java developers struggle with cryptography APIs?” in Proceedings
of the 38th International Conference on Software Engineering - ICSE

’16. ACM Press, 2016, p. 935–946.
[5] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,

“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 2016, p. 289–305.

[6] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand, and
M. Smith, “Why do developers get password storage wrong? A qualitative
usability study,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, p. 311–328.

[7] L. Braz, E. Fregnan, G. Çalikli, and A. Bacchelli, “Why don’t developers
detect improper input validation?’: DROP TABLE Papers,” in Proceedings
of the 43rd International Conference on Software Engineering. Madrid,
Spain: IEEE Press, 2021, p. 499–511.

[8] M. Rahman, N. Imtiaz, M.-A. Storey, and L. Williams, “Why secret
detection tools are not enough: It’s not just about false positives - an
industrial case study,” Empirical Software Engineering, vol. 27, 2022.

[9] M. Tahaei, K. Vaniea, K. K. Beznosov, and M. K. Wolters, “Security
notifications in static analysis tools: Developers’ attitudes, comprehension,
and ability to act on them,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. ACM, May 2021, p. 1–17.

[10] M. Tahaei and K. Vaniea, “A survey on developer-centred security,” in
2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2019, pp. 129–138.

[11] I. A. Tondel, M. G. Jaatun, and D. S. Cruzes, “IT security is from Mars,
software security is from Venus,” IEEE Security Privacy, vol. 18, 2020.

[12] H. Palombo, A. Z. Tabari, D. Lende, J. Ligatti, and X. Ou, “An
ethnographic understanding of software (in)security and a co-creation
model to improve secure software development,” in Sixteenth Symposium
on Usable Privacy and Security. USENIX Association, 2020.

[13] A. A. Ur Rahman and L. Williams, “Software security in DevOps:
Synthesizing practitioners’ perceptions and practices,” in Proceedings
of the International Workshop on Continuous Software Evolution and
Delivery. ACM, 2016, p. 70–76.

[14] I. Tøndel, D. Cruzes, M. Jaatun, and G. Sindre, “Influencing the security
prioritisation of an Agile software development project,” Computers and
Security, vol. 118, 2022.

[15] H. Assal and S. Chiasson, “Security in the software development lifecycle,”
in Proceedings of the Fourteenth USENIX Conference on Usable Privacy
and Security. USA: USENIX Association, 2018, p. 281–296.

[16] M. W. Sammy Migues, John Steven, “BSIMM,” https://www.bsimm.com/,
2020, [Online; accessed 17 December 2020].

[17] OWASP, “SAMM,” https://www.opensamm.org/, 2021, [Online; accessed
13-April-2021].

[18] W. McCurdy, “Lazarus hackers are using Log4j to hack US energy
companies,” https://www.techradar.com/news/lazarus-hackers-are-using-l
og4j-to-hack-us-energy-companies, 2023, [Online; accessed 16 March
2023].

[19] N. C. S. Centre, “Cyber Essentials,” https://www.ncsc.gov.uk/cyberessen
tials/overview, 2023, [Online; accessed 27 January 2023].

[20] ISO, “ISO/IEC 29110 Series,” https://committee.iso.org/sites/jtc1sc7/ho
me/projects/flagship-standards/isoiec-29110-series.html, 2023, [Online;
accessed 16 March 2023].

[21] J. Mejı́a, M. Muñoz, P. Maciel-Gallegos, and Y. Quiñonez, “Proposal to
integrate security practices into the ISO/IEC 29110 standard to develop
mobile apps,” in New Perspectives in Software Engineering. Springer
International Publishing, 2022, p. 29–40.

[22] T. Bender, R. Huesmann, and A. Heinemann, “Software development
processes for ADs, SMCs and OSCs supporting usability, security, and
privacy goals - an overview,” in The 16th International Conference on
Availability, Reliability and Security. ACM, 2021, p. 1–6.

[23] A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith, “Deception
task design in developer password studies: Exploring a student sample,”
in Fourteenth Symposium on Usable Privacy and Security. USENIX
Association, 2018, pp. 297–313.

[24] I. Ryan, U. Roedig, and K.-J. Stol, “Measuring secure coding practice
and culture: A finger pointing at the moon is not the moon,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, May 2023.

[25] C. Weir, S. Migues, M. Ware, and L. Williams, “Infiltrating security
into development: exploring the world’s largest software security study,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2021, p. 1326–1336.

[26] D. van der Linden, P. Anthonysamy, B. Nuseibeh, T. T. Tun, M. Petre,
M. Levine, J. Towse, and A. Rashid, “Schrödinger’s security: Opening
the box on app developers’ security rationale,” in Proceedings of the
42nd International Conference on Software Engineering (ICSE), 2020.

[27] D. Wermke, N. Wöhler, J. H. Klemmer, M. Fourné, Y. Acar, and S. Fahl,
“Committed to trust: A qualitative study on security & trust in open
source software projects,” in 2022 IEEE Symposium on Security and
Privacy (SP), 2022, p. 1880–1896.

[28] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl,
“Developers need support, too: A survey of security advice for software
developers,” in 2017 IEEE Cybersecurity Development (SecDev). IEEE,
Sep 2017, p. 22–26.

[29] T. Espinha Gasiba, I. Andrei-Cristian, U. Lechner, and M. Pinto-
Albuquerque, “Raising security awareness of cloud deployments using
infrastructure as code through cybersecurity challenges,” in The 16th
International Conference on Availability, Reliability and Security. ACM,
2021, p. 1–8.

[30] C. Weir, I. Becker, J. Noble, L. Blair, M. A. Sasse, and A. Rashid,
“Interventions for long-term software security: Creating a lightweight
program of assurance techniques for developers,” Software - Practice
and Experience, vol. 50, no. 3, p. 275–298, 2020.

[31] J. Hallett, N. Patnaik, B. Shreeve, and A. Rashid, ““Do this! Do that!,
And nothing will happen”: Do specifications lead to securely stored
passwords?” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, p. 486–498.

[32] P. Morrison, “A security practices evaluation framework,” in Proceedings
of the 37th International Conference on Software Engineering - Volume
2. IEEE Press, 2015, p. 935–938.

[33] Enterprise Ireland, “SME Definition,” https://www.enterprise-ireland
.com/en/About-Us/Our-Clients/SME-Definition.html, 2023, [Online;
accessed 30 January 2023].

[34] European Commission, “New EU cybersecurity rules ensure more secure
hardware and software,” https://digital-strategy.ec.europa.eu/en/news/new
-eu-cybersecurity-rules-ensure-more-secure-hardware-and-software-p
roducts, 2023, [Online; accessed 30 January 2023].

[35] N. L. Review, “Federal government outlines new security and attestation
requirements for software,” https://www.natlawreview.com/article/federal
-government-outlines-new-security-and-attestation-requirements-softw
are, 2023, [Online; accessed 30 January 2023].

8

https://www.bsimm.com/
https://www.opensamm.org/
https://www.techradar.com/news/lazarus-hackers-are-using-log4j-to-hack-us-energy-companies
https://www.techradar.com/news/lazarus-hackers-are-using-log4j-to-hack-us-energy-companies
https://www.ncsc.gov.uk/cyberessentials/overview
https://www.ncsc.gov.uk/cyberessentials/overview
https://committee.iso.org/sites/jtc1sc7/home/projects/flagship-standards/isoiec-29110-series.html
https://committee.iso.org/sites/jtc1sc7/home/projects/flagship-standards/isoiec-29110-series.html
https://www.enterprise-ireland.com/en/About-Us/Our-Clients/SME-Definition.html
https://www.enterprise-ireland.com/en/About-Us/Our-Clients/SME-Definition.html
https://digital-strategy.ec.europa.eu/en/news/new-eu-cybersecurity-rules-ensure-more-secure-hardware-and-software-products
https://digital-strategy.ec.europa.eu/en/news/new-eu-cybersecurity-rules-ensure-more-secure-hardware-and-software-products
https://digital-strategy.ec.europa.eu/en/news/new-eu-cybersecurity-rules-ensure-more-secure-hardware-and-software-products
https://www.natlawreview.com/article/federal-government-outlines-new-security-and-attestation-requirements-software
https://www.natlawreview.com/article/federal-government-outlines-new-security-and-attestation-requirements-software
https://www.natlawreview.com/article/federal-government-outlines-new-security-and-attestation-requirements-software

	I Introduction
	II Related Work
	II-A State of Practice
	II-B Secure Coding Guidelines
	II-C Secure Coding Assessment

	III Method
	III-A Data

	IV Results
	IV-A Usage of CAs by Developer Category
	IV-A1 Penetration Testing
	IV-A2 Review
	IV-A3 Quality Assurance
	IV-A4 Operations Feedback
	IV-A5 Security Processes
	IV-A6 Security Tools


	V Discussion
	V-A Threats to Validity
	V-B Discussion

	VI Conclusion
	References

