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Consistency and Constrained Optimisation for
Conditional Preferences

Nic Wilson?

Abstract. TCP-nets are an extension of CP-nets which allow thefor constructing such a search tree, and a compact representation of
expression of conditional relative importance of pairs of variables. Insearch trees that can allow the consistency checking to be performed
this paper it is shown that a simple logic of conditional preferencesnuch more efficiently. Therefore the approach gives also a method
can be used to express TCP-net orders, as well as being able to regf-generating outcomes in a total order compatible with

resent much stronger statements of importance than TCP-nets allow. Under certain conditions, a partial orderigg- which extends>r

The paper derives various sufficient conditions for a subset of thean be compactly defined (section 5). This leads to an incomplete,
logical language to be consistent, and develops methods for findingut more generally feasible approach to the problem of constrained
a total order on outcomes which is consistent with the set of condieptimisation, by generating all the-r-maximal solutions of a con-
tional preferences. This leads also to an approach to the problem sfraint satisfaction problem, which are therefore all alsemaximal
constrained optimisation. solutions.

1 INTRODUCTION 2 ALOGIC OF CONDITIONAL PREFERENCES

CP-nets [3, 1] is a formalism for compactly expressing conditionalThijs section defines and gives some basic properties of the simple

preferences on outcomes in multivariate problems. TCP-nets [Sjogic of conditional preferences introduced in [8], and strongly re-
augments CP-nets with a representation of importance relations bested to a system defined in (Lang, 02) [7].

tween variables. They allow that under certain conditions, one vari- et V' be a set of variables. For each € V let X be the set
able X is more important than another varialife but under other  of possible values of{. For subset of variable C V letU =

COﬂditiOﬂS,Y is more important thaX. A”OWlng such acyclicity on HXEU K be the set of possib|e assignments to set of variabiles
the variable ordering is desirable as it can occur in many natural sitThe assignment to the empty set of variables is writteA complete
uations, but it considerably complicates matters, as it is much hardqup|e or outcomeis an element o¥/, i.e., an assignment to all the
to find and test sufficient conditions for consistency. variables. For partial tuples € A andu € U, we may writea =

It has been shown (Wilson, 04) [8] that a simple logic of con- 4 if A D U anda(U) = u, i.e., a projected toU givesu. More
ditional preferences extends the representational power of CP-netgenerally we say that is compatible withu if there exists outcome
whilst retaining some of their good properties, in particular sufficient,, ¢ v with o = a ando |= u, i.e.,a(A) = a anda(U) = u.
conditions for consistency, based on a completely acyclic variable The languagel, (abbreviated taC) consists of statements of the
ordering. It is shown in section 3 that TCP-nets orders can also bgyym ¢ : 2 > 2/ [W] wherew is an assignment to set of variables
expressed in a simple way in this logical language. Furthermore, thgr C v (i.e.,u € U), z, 2’ are different values of variabl®, and
logical language allows much more powerful (though still very natu-{x}, U andW are pairwise disjoint. Lef’ = V — ({X}UUUW).
ral) statements of importance between variables. Such a conditional preference statement is intended to represent that

In section 4, we consider the problem of generating sufficient congiven « and any assignment 6, z is preferred tox’ irrespective
ditions for a subset of the language to be consistent, which are stibf the values ofi¥’. CP-nets can be represented by a set of state-
general enough to allow acyclicities in the variable ordering. A setments of the formu : = > ' [W] with W = () (see [8]). In the

of conditional preference statemeritsis consistent if and only if  next section it is shown that TCP-nets can be represented in terms
there exists a total order on outcomes which is compatible with (i.e.of such statements witi” = 0§ or |[W| = 1. If pis the statement

extends) the partial ordesr on outcomes associated with We u:a > a' [W], we may writeu, = u, U, = U, 2, = 2,2, = @/,
approach consistency by focusing on a special kind of total ordeer = W andT, = T. Let »* be the set of pairs of outcomes
that associated with a data structure callegtarch tree Search tree {(tuzw, tuz’w") : t € T,w,w’ € W}.Suchpairda, 8) € ¢* are
orders have nice properties: it is very easy to generate thé&féist  intended to represent a preferencedoover 3, andy is intended as
ments in the order, and checking which of two outcomes is preferred, compact representation of the preference informagian
can be done very easily, as the order is a kind of lexicographic order. Supsetsl of the languageC are calledconditional preference
We define conditions which imply that there exists a search tree ordgheories (CP-theories)or conditional preference theoFy; define
that extends>r and hence thdt is consistent. We also give methods 1+ — U or ™, which represents a set of preferencegalf3) €

%]

- - - - I'" we say thaf3 is a worsening swap fromx. We assume here that
1 This work has received support from Science Foundation Ireland under, - g - .
Grant 00/P1.1/C075 preferences are transitive, so it is then natural to define the associated

2 Cork Constraint Computation Centre, Department of Computer ScienceQrder>r, induced onl by T', to be the transitive closure &f*. So
University College Cork, Cork, Ireland, n.wilson@4c.ucc.ie a is preferred tQ3, i.e.,a >r 3, if and only if there is a sequence




of worsening swaps from to 3 (see [8]). CP-theor¥' is said to be
consistent if there exists a strict total ordersatisfying it, i.e., such
thata > 3 for all outcomesy and3 with a >r 3. T is consistent if
and only if > is irreflexive®

We will associate withl' C £ a binary relationH (I") on the
set of variablesV. Let H(¢) = {(Y,X,) : Y € U,}, and de-
fine H(I") = U«pEF H(p). For a fixedI" we will sometimes write
the parents ofX in H(I') asUx, soY € Ux if and only if
(Y,X) € H({T).

Example I'm planning a holiday. | can either go next week )
or later in the yeariy). I've decided to go either to Oxforab() or to
Manchesterg ), and | can either take a plang), or drive and take a

write asX — Y. Itis intended to represent that is a much more
important variable thal’. A ci-statement consists of an ordered pair
of variablesX andY and an assignmentto some set of variables
Sx,y CV —{X,Y}; such a statement is written heres—, Y.

It is intended to represent that given X is much more important
thanY.

A total order> on outcomes is said to satisfy the conditional pref-
erence table if for eacK € V andu € Uy it satisfies the associated
ordering>; ; total order> satisfies-;\ if [z >. « implies for all
t € T tuz > tuz'], whereT =V — {X} — Ux.

Given a TCP-nefV, total order> is said to satisfy an i-ar& —

Y if rzy > ra’y’ for all z, 2’ such thate >ff<UX) 2’ andy, y’ such

thaty’ >fwy) y and all assignmentsto V' — {X,Y'}.

car ferry @). | also have to decide whether to take my good camera  Given a TC/P-/neN, total order> satisfies ci-statemertX —, Y’
g, or my cheaper ong. This last choice is much less important than if rszy > rsz'y’ for all assignments to V' — Sx y — {X, Y}, all

the others. So there are four variablés,, X2, X3 and X4 where
&: {n,ﬁ},&: {076}1&: {p7§} and&: {gvg}'

x,2’ such thatr =X 2’ and ally,y’ such thaty =Y y whereu is
rs restricted todUx andw is rs restricted taUy .

Firstly, I'd prefer to go next week irrespective of the choices of the ~ Total order> on outcomes is said to satisfy a TCP-net if it satisfies
other variables, as | could do with a break soon. This is representeiife conditional preference table, every i-arc and every ci-statement.

by the following preference statemefit:: n > n [{ X2, X3, X4}].
This implies that outcome is preferred tg3 whenever(X,) = n
andf§(X1) = n, irrespective of what the other values @fand 3

Define the TCP-net order on outcomes as follows: for TCPAhet
define>y onV by: fora, 8 € V, a >y Bifand only if a > 3 for
all total orders> satisfying/V.

are. It represents a strong kind of preference, but one that is natural in

many contexts. As we shall see, this cannot be represented in a TCHRepresenting TCP-nets as CP-theories. Let N be a TCP-net as
net. Whenever | travel I'd prefer to go to Oxford than to Manchester.defined above. We will define a CP-thedry, that generates the
If 1 go next week | definitely want to fly, as | can't face the long same order on outcomes.

drive, which is represented by : p > P [{X2, X4}]. Alson :
o > o [{X4}]. Soif 1 go next week, the choice of how | traveY'{)
is more important than the choice of where | g6,]. On the other

Definel'c, C £ to be the set of statements: = > z’[()] over all
X € V,u € Ux, andz,z’ € V such that =5 2’ (where> is
part of the conditional preference table/g).

hand, later in the year my preference for Oxford is irrespective of Fori-arcX — Y of N definel'x_y C £ to be the set of state-

how I traveln : o > o [{X3, X4}]. If | go later, I'd prefer to drive
than fly, (whether | go to Oxford or Manchest&): p > p [{X4}],

mentsu : « > z’ [Y] such thatw € Ux andz andz’ are such that
z =X z'. LetT; be the union of th& x_y over all i-arcsX — Y

as it would then be useful having a car with me. If | fly I'd prefer to of .
take my cheap camera, whereas if | drive I'd rather take the better For ci-arcX —. Y definel'x_,y to be the set of statements

one:p : g >g [0 andp : g > g [0].

Let I be this set of preference statements. ket nopg and
B = nopg, and lety be the first preference statemeff, :
n > 0 [{X3, X3, X4}]). Then(a, ) € ¢* sincea(X1) = n
and3(X:) = mn. So there is a worsening swap framto 3, and
thereforea >r (. It can be seen that andj3 are consecutive in the
order>r, so there does not exist outcomewith o >r v >r 3.4
Also, in this case;>r is a total order on the set of outcomes.

3 REPRESENTING TCP-NETS WITHIN THE
LANGUAGE

A TCP-net on set of variableg consists of a directed grapt on

gs : z > ' [Y] for all assignmentg to Ux — Sx,y and allz, z’
such thatr = z’, whereu is ¢s restricted toUx. Let T'; be the
union ofT'x_, .y over all ci-arcsX —; Y of N.

Finally, define the CP-theofy to bel'c, UT'; U I'ei. These def-
initions easily lead to the following result, once one notices that the
conditionall y, 3’ such thaty’ =Y y (in the definition of> satis-
fying ci-statementX — Y') can be replaced by jusil y,3’ € Y
(and similarly for the corresponding condition for i-arcs). The point
is that since-_ is a total order, if we don't havg’ =Y y then we
have either (i’ = y or (i) y =2 3. If (i) then rszy > rsz’y’
follows for > satisfying N becauser =i z’; and if (i) then
rszy > rsr'y > rsx’y’ follows for > satisfying N because
z =X 2’ andy =Y ¢/

V', a conditional preference table, a set of i-arcs, and a set of ci-

statements. FOX € V, let Ux be the set of parents of in H,
i.e., the set of variable¥” such that(Y, X) € H. A conditional
preference table assigns to eakhe V and assignment € Ux
a total order=:X on X, i.e., it totally orders the values of. An
i-arc is an ordered pair of different variablés and Y, which we

3 Relation> on setA is said to berreflexiveif and only if for all a € A, it
is not the case that > a. It is acyclic if and only if its transitive closure
is irreflexive, so that there are no cycles> a’ > a’’ > --- > a. Binary
relation> on setV is defined to be a subset bf x V, and the notations
“(a, 8) € >"and “a > (" are used interchangeably.

4 Sincea and g differ on three variables, there exists no TCP-hebn V/

with > = >r. This follows from the definition of a flipping sequence and

Proposition 1 TCP-netN is satisfiable if and only if'n is consis-
tent. If V is satisfiable, then>y = >r.

This means that the logic of conditional preferences described in
section 2 is more general than TCP-nets. The TCP-net orgeonly
differs from the corresponding CP-theory order,, whenN is not
satisfiable; but in that case, the TCP-net order becomes trivial:
is the complete relatiol” x V.

As shown above, TCP-nets represent conditional preference state-
mentsy with |W.,,| = 0 or 1; they cannot directly represent state-
ments with largeriV,, (and in many situations, one variable will

lemma 5 in [5] (and also from proposition 1) since, being consecutive, theyP€ more important than each of a large set of variablesi}so
would have to be a single flip apart, and so differ at most on two variablescan be large). It is not immediately obvious how much difference



this makes: how much is lost by approximating a statement nodee® hasA.~ = @ anda.~ = T, the assignment to the empty
(u:x >z’ [W]) by asefl of statements, : x > ' [{Y}] overall  set of variables. More formally, definetmdy nodee to be a tuple
variablesY” in W? One can get a good idea of the answer to this by(A., a., Y., >.), whereA. C V is a set of variablesi. € A, is an
comparing the sizes @f* andI'*, which represent the direct conse- assignment to those variablés, € V — A. is another variable, and
quences of the conditional preference statements. For example, with, is a total order on the sé&f, of values ofY.. Define aleaf nodee

all binary variables|T*|/|¢*| = (k + 1)27%, wherek = |W|,s0  to be a paif{A., a.), with A. = V and outcomer, € V.

the TCP-style approximation to a statementz > z’ [W] will tend Each search tree has an associated total ordes, on outcomes
to be a very poor one unle$g is small. which can be defined as follows. Let 3 € V be outcomes, and let

e be the deepest node (i.e., furthest from the root) which is both on
4 ENSURING CONSISTENCY the path between the root and and on the path between the root

andB. Thena >, Bifand only if «(Yz) = 3(Ye). In other words,
In [8], it was shown that CP-theoty is consistent as long as a local we compare two outcomes by considering the lowest rogich
consistency property holds (see below) and the ordering of variableig above both of them, and use the orderingto compare them.
in I" is completely acyclic, i.e., there exists some total ondeon If we draw the search treewith the directed arcs pointing down-
variablesV such that for allp € ', if Y € U, thenY > X, and  wards from the root, and the arcs from a nede the order-., with
if Z € W, thenX,, > Z. Because the importance ordering of vari- the best being leftmost, then>, (3 if and only if leaf node(V, a)
ables can depend, in some natural situations, on the values of othgppears to the left ofV/, 3). Similarly, if we instantiate at each node
variables, we want to weaken these conditions: deriving much lesg the best value according e, first, and on backtracking, the values
stringent acyclicity conditions that are still sufficient for consistency.in the order-., (using a depth-first search) theris reached before

A CP-theory is consistent if and only if there exists some total or-3 if and only if & >, 3. This means that it is very easy to generate

der> satisfying it. We generate sufficient conditions for consistencythe first X elements in the search tree order.
by focusing on a special type of total order, those generated by a

search tre€. If we can find a search tree satisfyifighenI" is con-  gearch trees satisfying CP-theory’. We are interested in search
sistent. Moreover, these search trees have nice computational propgfaes whose associated orders satisfy CP-thBoRor this we need
ties: we can use the search tree order to efficiently generate outcomgs make sure that for any path and any relevarg T, X, appears
in an order compatible witt-r-, and we can easily determine which before W, as X,, is a more important variable. Furthermore, we
of two outcomes is better according to a search tree order. want the conditioning variable,, to all appear beforél,,, as we
may need to know the values of relevant parentsXof before we
Local consistency. In certain cases, it's clear thhtis not consis-  can decide which values of,, are preferred. Letl be a subset of
tent, by just looking at local conditions: if there’s a sequence of wors/, and leta € A be an assignment to the variablésWe say that
ening swaps starting and ending with the same outcomehich v ¢ V — A is a-undominated if for allp € T such thatu,, is
just change the value of a single variaife Fix I' C £, and con-  compatible witha, (i) if X, = Y thenU, C A; (i) if W, > Y then
sider variableX € V' and assignment € A forsomeA CV.Say U, U{X,} C A. Abody node(4,a,Y,>) is said to satisfif" if (i)
that pair(z, ') of values ofX is validated bya if there exists some Y is g-undominated and (ji) the ordering onY is a completion of
statemenfu : > 2’ [W]) € Twitha |= u (i.e.,uis a projection Y (ie. ify =Y 4 theny > ). A search tree is said to satisfy
of a). Define relation-2 on X to be the transitive closure of the set if each body node in the search tree satisfies
of all pairs(z, z') validated bya. We say that is locally consistent
if for all outcomese € V andX € V, =X is irreflexive. Local con-  Proposition 2 If a search trees satisfies CP-theory, then its as-
sistency is a necessary condition for consistency. It is easily seen thaociated order>,, satisfied".

[ is locally consistent if and only if for alk € V andu € Ux, =5

is irreflexive (recalllx is the parents ok with respect tad (I)). We define different sufficient conditions for C £ to be consis-
As discussed in [8] checking local consistency will often be easytent. We say thalf' is

in particular, when the setéx are all small (as in intended applica-

tions of (T)CP-nets) one can efficiently construct each relatign

explicitly.

— weakly conditionally acyclief there exists a search tree satisfying
T

— conditionally acyclidf it is locally consistent and for alA C V'
anda € A, there exists an-undominated variable;

4.1 Search trees and consistency _ - _ )
Supposd” is a conditionally acyclic CP-theory, andis any as-

A search tree is a rooted directed tree with it$ leaves correspond- signment to any proper subsétof V. The definitions imply that

ing to outcomes. Associated with each nede the body of the tree  there existsy” and total order- on Y such that(A,a,Y, ) is a

is a variableY,, which is instantiated with a different value in each body node satisfyin@. This means that it is very easy to construct
of the node’sY, | children, and also an ordering. of the values of 5 search tree satisfying a conditionally acydlicwe start by pick-

Y.. So adirected arc in the tree corresponds to an instantiation ofongg a root node satisfying, and we proceed inductively, choosing
of the variables. Paths in the tree from the root down to a leaf nod@nj|dren satisfying™ for each node already chosen.

correspond to sequential instantiations of all the variabiled/e also We will also consider a stronger condition on the CP-theory, which
associate witlz a set of variablesi. which is the set of all variables i yseful for constrained optimisation (see section 5). The essential
Y., associated to node$ abovee in the tree (i.e., on the path from  gjfference from conditional acyclicity is that we insist that the order-

to the root), and an assignment corresponding to the assignments ings always respect the generalised parent relation, widsesaid
made to these variables in the arcs betweand the root. The root o pe a generalised parent Bfif there existsy € I' with Y € U,

5 Search trees are also used, explicitly and implicitly, in previous work on@NdZ € {X,} U W,. Leta € V be an outcome. Faop € T' de-
CP-nets, e.g., [2, 1]. fineG(p)tobe{(Y,Z) : Y € Uy, Z € {X,} UW,}. If pissuch




thata | u, defineGa(p) to beG(p) U {(Xy,Z) : Z € W, }.

For othery, let Go(¢) = G(p). ForI’ C L, define binary relation
G«(T") (abbreviated td@7,) on V' to berEF G« (p). Define order
>, onV to be the transitive closure 6f,. We say that CP-theoily

is strongly conditionally acyclid it is locally consistent and for each
outcomea € V, Go(T') is acyclic, i.e.,>4 is irreflexive. The fol-
lowing lemma implies, by Proposition 2, that any of the three forms
of conditional acyclicity is sufficient foF' to be consistent.

Lemma 1 If CP-theoryI is strongly conditionally acyclic then it is
conditionally acyclic. IfT" is conditionally acyclic then it is weakly
conditionally acyclic.

Generating a total order satisfying CP-theoryI". The proce-
dure above for generating a search tree from conditionally acl¢lic
could usually, depending on the choices made, generate many di
ferent search trees satisfyiig It can be useful to have a way of
pinning down which choice is made, and thus a way of defining (im-
plicitly) a particular total order that satisfids We assume a list-
ing X1,..., X, of V, and for each, a total orderinge;, ..., z}"
(wherem; = |X;|) of the values ofX;. We use these to define a par-
ticular search tree (I") which satisfied". This is constructed from
the root down. Whenever we have a set of choices-ofidominated
variable at node: we chooseY. to be X; with minimal : (among
the choices). Similarly we define. by generating the values of;
from the best to the worst, at each point choosing % -maximal

value amongst the remaining values, where ties are broken by choo&1

ing valuex? with largest;.

For some applications it is sufficient to be able to generate out
comes in an order compatible with the preferencdse., compat-
ible with >r). If I is conditionally acyclic then>, - is such an
order. This order was defined implicitly: we do not explicitly have to
construct search treg(T") to use it. In particular we can generate in
polynomial time the besk outcomes according to, ), by gen-
erating just the first< leaf nodes of search tree Also, given any
two different outcomes and 3, we can efficiently determine which
is better according to this order, ), by constructing just the nodes
which are above both leaf nod¥®, «) and leaf nod€V, 5).

However, there remains the difficulty of checking consistency.

The methods (in particular, lemmas 2, 3 and 4) of [5] can be easy

ily adapted for checking that is strongly conditionally acyclic, and
hence consistent. An alternative approach is given in the next sectio
4.2 Variable ordering networks

If T happens to be conditionally acyclic then search tré&g) will
satisfyI". However, confirming the consistency By constructing

a search tree explicitly will usually not be feasible since the num-

ber of nodes is of the order of the number of outcorjiés Here
we describe an often much more compact representation of certa
search trees satisfyin. The idea is to turn the search tree into a
directed acyclic graph (decision diagramby merging nodes where
we can take the same decisions regarding variables orderings fro
that point.

The key to generating a search tree is choosing.aitmdominated
variableY, for each body node, wherea. is the tuple of assign-

a anda’, which are equivalent in the following sense: for any assign-
mentb to any subseB of the remaining variable® — A, variableY

is ab-undominated if and only it is a’b-undominated. This implies
that any consistent subtree below nebeorresponds to a consistent
subtree below and vice versa. Hence we can make the same choices
of a-undominated variables, in nodes beldyas for nodes below,

or, more neatly, we camerge noded ande. We will define a data
structure that enables us to assert such equivalences.

Define[I'] to be the set of all tripleéu, Y, Z) such that there exists
¢ € I'"with u, = uwand either ()Y € U, andZ € {X,} UW,,
or (i) Y = X, andZ € W,. This set encodes the information
necessary to determine which variable orderings are allowed. In par-
ticular if (w,Y, Z) € [I'] andu is satisfied thery” must come before
Z in the variable ordering. Given partial tuplec A, we construct
set[I'], by considering only triples ifi’] with « compatible witha,

nd we restrict such triples g — A. Define[I'], to be the set of
il triples (v, Y, Z) with Y, Z € V — A andu’ € U’, such that
there exists tripléu, Y, Z) in [I'] with w € U compatible witha and
w(U —A) =,

It can be shown that™ is a-undominated if and only if there does
not exist any triple of the forngu’, Z, Y') in ['],. Furthermore, sup-
poseB C V — A andb € B. It can also be shown thdF],, can
be computed fromI'], andb. This implies that if[['], = [[].
then[[ay = [[Jars. SOY is ab-undominated if and only it is
a’b-undominated. Hencl], encodes the information needed to de-
termine thec-undominated variables for anyextendinga, and so
can be used to determine equivalence of two nodes: that they can be
lerged.

The variable ordering network(I") for a conditionally acyclic
CP-theonyT" consists of body nodeswhich are tripleg A, ac, Y2)
with, as for search trees. € A., andY. ¢ A.; there is a single
leaf nodee, which equals(A., , o), wherea is some outcome and

e, = V.

To constructr(I") we first construct the (single) root node; then
we iteratively construct the children of a node already constructed.
As for search trees, for each nodeve generateY.| directed arcs
from e, each associated with some value of varidtileLet a be a.
extended with assignmenptto Y., and letA = A. U {Y.}. We con-
struct[I'],, and then we look for any other nodalready constructed
with A; = A and[I']., = [I'], (this is the condition for equivalence
iscussed above). If there is such a nadéaen we add a directed
ﬁlrc frome to d with associated valug of Y.. If there is no such
node then we create a new nogdé, a, X;) (or the leaf nodd A4, a)
if A = V)with X; chosen with minimal among the:-undominated
variables inV — A (conditional acyclicity ensures that there is such
a variable).

Assume now that CP-theolyis locally consistent but not neces-
sarily conditionally acyclic. We can apply the same construction but
it is not guaranteed to succeed; the constructior (@f) succeeds
if and only if the construction of(I") succeeds, becaus¢l') is a
gpmpact representation ofI") where we merge some nodes, and we
throw away the local orderings.. We can therefore usg(T') as a
representation of the search tree ordetingr, by defining the local
prderings (on values of a variablé, given a particular partial tuple
a) when we need them. So a test for consistendy izfbeing able to
construct variable ordering networKT"): if this succeeds theR is
consistent. Moreover, I happens to be conditionally acyclic, then

ments to earlier variables; if there is such a variable for each bodhis test for consistency is bound to succeed.

node, then we have shown tHatis consistent, assuming local con-
sistency. (Given local consistency, choosing the local ordefings
never a problem.) Consider two nodéande with associated tuples

The variable ordering network(I") for the example has only
seven nodes, with at most two nodes at each level, as opposed to
the 31 nodes in the corresponding search w€€). More generally,



one would expect when there are only a few variations in importanc®ut all these will also be>r-maximal solutions, since i >r «
orderings, that the variable ordering network would be compact. Alsdhen3 >r «. Note thatQ* only ever contains>r-maximal, and
the number of variable orderings associated with a variable orderingence>r-maximal, solutions.

network can be exponential in the number of nodes, as the network This amended algorithm is an anytime algorithm for finding some
‘factorises’ the variable orderings, so even if we need many differ-of the >r-maximal solutions, which will generally be much faster
ent orderings in different paths in a search tree, the variable orderinthan the complete algorithm.

network may still be small, and thus consistency efficiently checked.

6 DISCUSSION

The simple conditional preference logicis rich enough to express
TCP-nets, as well as being able to express that one variable dom-
inates (i.e., is much more important than) a set of variables, given
a partial assignment to other variables. The pairwise importance re-
lations of TCP-nets do not usually closely approximate this kind of

(X, # 2'). Furthermore, as observed in [8]fif () is acyclic and dominance. The logic can also express locally partially ordered pref-
(e.g.,) if [ is locally consistent it's very easy to findr-maximal erences: we do not need to assume that we can elicit a total order on

outcomes; by instantiating the variables in an order compatible wit{1€ values of a variable given each assignment to its parents. Indeed
H(), one can reach a (any) solution without having to backtrack. the logical language representation is very flexible as regards elicita-

The situation is much harder (see [7]) when we have a set of condOn: We can reason with an arbitrary subBeif the language, sowe
straintsC on V, and we wish to find maximally preferred solutions €&n accept any conditional preference statements (of the appropri-

5 CONSTRAINED OPTIMISATION

The maximally preferred outcomes of a CP-theDBigre precisely the
solutions of a particular constraint satisfaction problem (GQSPpn
V' (cf. [4]): define Cr to be the set of constraints:, : ¢ € '},
where constraint,, on variablesU, U {X,} is (U, = u) =

to C. Let Q) C V be the set of solutions af’. We say thaix is
>p-maximal givenC if it is >r-maximal in(2, i.e., there does not
exist3 € Q with 5 >r «. If one is only interested in findingome

ate form) that the agent is happy to give us. More statements can be
added later, and, because the logic is monotonic, all of our previous
deductions fronT" will still hold, in particular whether one outcome

outcomes which are maximally preferred, then one can try to solvds preferred to another (however, the set of optimal solutions to a CSP

the CSP with constraintST U C. Any solution of this CSP will be
>r-maximal givenC' since it is>r-maximal inV. Of courseCrUC
may well have no solutions.

Suppose one can find a search teesatisfyingI" (for example,
o(I"), or using the associated variable ordering netwdik)). This
can be used to generate the solutiong”oiih the order>,, by us-
ing the natural backtracking algorithm associated witfas in the
approach in [2]). The first solutiony, that it generates will be>r--
maximal since3 >r « implies3 >, « by Proposition 2. At each
point in the search we have a $@t of >r-maximal solutions al-
ready found. When we find the next solutiarwe need to determine
if there exists any3 € Q* with 5 >r «. If not, thena is a>r-
maximal solution and we add it @*. This is a complete algorithm,
with the final2* being the set of alt>r-maximal solutions, and at
each point the s€2* contains only>r-maximal solutions. The prob-

lem with this algorithm (and the similar algorithms in [2, 5]) is that

determining if 3 >r « (or not) will often be infeasible [1, 6] un-

less the problem is small, since it involves searching for swapping

sequences, which generalise flipping sequences.

A different approach (generalising the approach for the fully

acyclic case in [8]) is to find a partial ordes which contains>r,
and to use dominance testing with respecttdcf. the discussion of

‘ordering queries’, and the proof of Theorem 6 in [1]). Consider fixed

strongly conditionally acycli€. Fora, 8 € V, letA(«, 3) be the set
of variables wherex and g differ, i.e.,{X € V : o(X) # B(X)}.
LetO(a, B) be the maximal elements ih(«, 3) with respect ta>,.
The binary relationsr on outcomes is defined by >r g if and
only ifforall X € O(a, 8), a(X) =2 B(X).

Proposition 3 Suppose CP-theorly C L is strongly conditionally
acyclic. Then>r D >r, i.e., ifa >r §thena >r .

Dominance testing with>r, i.e., determining ifx >r (3 or not,

can be done in polynomial time, and is often very easy. We can thel§]

adapt the algorithm described above for generating-thenaximal
solutions by replacing each test>r o by the generally much sim-
plertest3 > «. The finalQ* will be all the >r-maximal solutions.

may be reduced).

The sufficient conditions derived for consistencylofllow the
importance between variables to be conditional and even, (except in
the case of strong conditional acyclicity) a variaBlemay be a par-
ent of another variabl® under some circumstances, Butmay be
a parent ofX under other circumstances. Checking these sufficient
conditions, as for TCP-nets, looks to be hard in general. However, we
imagine that in many real situations, even in complex problems, there
will tend to be limited numbers of these conditional changes of im-
portance. Confirming consistencyBfshould often then be feasible,
either using the techniques derived for TCP-nets for checking strong
conditional acyclicity ofl", or using a variable ordering network to
compactly represent a search tree satisfying
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