
Title Consistency and constrained optimisation for conditional
preferences

Authors Wilson, Nic

Publication date 2004-08

Original Citation Wilson, N. (2004) 'Consistency and Constrained Optimisation
for Conditional Preferences', ECAI' 04: Proceedings of the 16th
European Conference on Artificial Intelligence, 22- 27 August,
Valencia, Spain: IOS Press, pp. 888-892.

Type of publication Conference item

Link to publisher's
version

https://dl.acm.org/doi/abs/10.5555/3000001.3000187, https://
www.iospress.nl/book/ecai-2004/

Rights © 2004 IOS Press

Download date 2024-04-26 20:49:42

Item downloaded
from

https://hdl.handle.net/10468/10762

https://hdl.handle.net/10468/10762

Consistency and Constrained Optimisation for
Conditional Preferences1

Nic Wilson2

Abstract. TCP-nets are an extension of CP-nets which allow the
expression of conditional relative importance of pairs of variables. In
this paper it is shown that a simple logic of conditional preferences
can be used to express TCP-net orders, as well as being able to rep-
resent much stronger statements of importance than TCP-nets allow.
The paper derives various sufficient conditions for a subset of the
logical language to be consistent, and develops methods for finding
a total order on outcomes which is consistent with the set of condi-
tional preferences. This leads also to an approach to the problem of
constrained optimisation.

1 INTRODUCTION

CP-nets [3, 1] is a formalism for compactly expressing conditional
preferences on outcomes in multivariate problems. TCP-nets [5],
augments CP-nets with a representation of importance relations be-
tween variables. They allow that under certain conditions, one vari-
ableX is more important than another variableY , but under other
conditions,Y is more important thanX. Allowing such acyclicity on
the variable ordering is desirable as it can occur in many natural sit-
uations, but it considerably complicates matters, as it is much harder
to find and test sufficient conditions for consistency.

It has been shown (Wilson, 04) [8] that a simple logic of con-
ditional preferences extends the representational power of CP-nets,
whilst retaining some of their good properties, in particular sufficient
conditions for consistency, based on a completely acyclic variable
ordering. It is shown in section 3 that TCP-nets orders can also be
expressed in a simple way in this logical language. Furthermore, the
logical language allows much more powerful (though still very natu-
ral) statements of importance between variables.

In section 4, we consider the problem of generating sufficient con-
ditions for a subset of the language to be consistent, which are still
general enough to allow acyclicities in the variable ordering. A set
of conditional preference statementsΓ is consistent if and only if
there exists a total order on outcomes which is compatible with (i.e.,
extends) the partial order>Γ on outcomes associated withΓ. We
approach consistency by focusing on a special kind of total order,
that associated with a data structure called asearch tree. Search tree
orders have nice properties: it is very easy to generate the firstk ele-
ments in the order, and checking which of two outcomes is preferred
can be done very easily, as the order is a kind of lexicographic order.
We define conditions which imply that there exists a search tree order
that extends>Γ and hence thatΓ is consistent. We also give methods

1 This work has received support from Science Foundation Ireland under
Grant 00/PI.1/C075

2 Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Cork, Ireland, n.wilson@4c.ucc.ie

for constructing such a search tree, and a compact representation of
search trees that can allow the consistency checking to be performed
much more efficiently. Therefore the approach gives also a method
of generating outcomes in a total order compatible with>Γ.

Under certain conditions, a partial ordering�Γ which extends>Γ

can be compactly defined (section 5). This leads to an incomplete,
but more generally feasible approach to the problem of constrained
optimisation, by generating all the�Γ-maximal solutions of a con-
straint satisfaction problem, which are therefore all also>Γ-maximal
solutions.

2 A LOGIC OF CONDITIONAL PREFERENCES

This section defines and gives some basic properties of the simple
logic of conditional preferences introduced in [8], and strongly re-
lated to a system defined in (Lang, 02) [7].

Let V be a set of variables. For eachX ∈ V let X be the set
of possible values ofX. For subset of variablesU ⊆ V let U =∏

X∈U
X be the set of possible assignments to set of variablesU .

The assignment to the empty set of variables is written>. A complete
tuple or outcomeis an element ofV , i.e., an assignment to all the
variables. For partial tuplesa ∈ A andu ∈ U , we may writea |=
u if A ⊇ U anda(U) = u, i.e., a projected toU givesu. More
generally we say thata is compatible withu if there exists outcome
α ∈ V with α |= a andα |= u, i.e.,α(A) = a andα(U) = u.

The languageLV (abbreviated toL) consists of statements of the
form u : x > x′ [W] whereu is an assignment to set of variables
U ⊆ V (i.e., u ∈ U), x, x′ are different values of variableX, and
{X}, U andW are pairwise disjoint. LetT = V − ({X}∪U ∪W).
Such a conditional preference statement is intended to represent that
given u and any assignment toT , x is preferred tox′ irrespective
of the values ofW . CP-nets can be represented by a set of state-
ments of the formu : x > x′ [W] with W = ∅ (see [8]). In the
next section it is shown that TCP-nets can be represented in terms
of such statements withW = ∅ or |W | = 1. If ϕ is the statement
u : x > x′ [W], we may writeuϕ = u, Uϕ = U , xϕ = x, x′ϕ = x′,
Wϕ = W andTϕ = T . Let ϕ∗ be the set of pairs of outcomes
{(tuxw, tux′w′) : t ∈ T , w, w′ ∈ W}. Such pairs(α, β) ∈ ϕ∗ are
intended to represent a preference forα overβ, andϕ is intended as
a compact representation of the preference informationϕ∗.

SubsetsΓ of the languageL are calledconditional preference
theories (CP-theories). For conditional preference theoryΓ, define
Γ∗ =

⋃
ϕ∈Γ

ϕ∗, which represents a set of preferences. If(α, β) ∈
Γ∗ we say thatβ is a worsening swap fromα. We assume here that
preferences are transitive, so it is then natural to define the associated
order>Γ, induced onV by Γ, to be the transitive closure ofΓ∗. So
α is preferred toβ, i.e.,α >Γ β, if and only if there is a sequence

of worsening swaps fromα to β (see [8]). CP-theoryΓ is said to be
consistent if there exists a strict total order> satisfying it, i.e., such
thatα > β for all outcomesα andβ with α >Γ β. Γ is consistent if
and only if>Γ is irreflexive.3

We will associate withΓ ⊆ L a binary relationH(Γ) on the
set of variablesV . Let H(ϕ) = {(Y, Xϕ) : Y ∈ Uϕ}, and de-
fine H(Γ) =

⋃
ϕ∈Γ

H(ϕ). For a fixedΓ we will sometimes write
the parents ofX in H(Γ) as UX , so Y ∈ UX if and only if
(Y, X) ∈ H(Γ).

Example I’m planning a holiday. I can either go next week (n)
or later in the year (n). I’ve decided to go either to Oxford (o) or to
Manchester (o), and I can either take a plane (p), or drive and take a
car ferry (p). I also have to decide whether to take my good camera
g , or my cheaper oneg . This last choice is much less important than
the others. So there are four variables,X1, X2, X3 andX4 where
X1 = {n ,n }, X2 = {o ,o }, X3 = {p ,p } andX4 = {g ,g }.

Firstly, I’d prefer to go next week irrespective of the choices of the
other variables, as I could do with a break soon. This is represented
by the following preference statement:> : n > n [{X2, X3, X4}].
This implies that outcomeα is preferred toβ wheneverα(X1) = n
andβ(X1) = n , irrespective of what the other values ofα andβ
are. It represents a strong kind of preference, but one that is natural in
many contexts. As we shall see, this cannot be represented in a TCP-
net. Whenever I travel I’d prefer to go to Oxford than to Manchester.
If I go next week I definitely want to fly, as I can’t face the long
drive, which is represented byn : p > p [{X2, X4}]. Also n :
o > o [{X4}]. So if I go next week, the choice of how I travel (X3)
is more important than the choice of where I go (X2). On the other
hand, later in the year my preference for Oxford is irrespective of
how I travel:n : o > o [{X3, X4}]. If I go later, I’d prefer to drive
than fly, (whether I go to Oxford or Manchester)n : p > p [{X4}],
as it would then be useful having a car with me. If I fly I’d prefer to
take my cheap camera, whereas if I drive I’d rather take the better
one:p : g > g [∅] andp : g > g [∅].

Let Γ be this set of preference statements. Letα = nopg and
β = nopg , and letϕ be the first preference statement,(> :
n > n [{X2, X3, X4}]). Then (α, β) ∈ ϕ∗ sinceα(X1) = n
andβ(X1) = n . So there is a worsening swap fromα to β, and
thereforeα >Γ β. It can be seen thatα andβ are consecutive in the
order>Γ, so there does not exist outcomeγ with α >Γ γ >Γ β.4

Also, in this case,>Γ is a total order on the set of outcomes.

3 REPRESENTING TCP-NETS WITHIN THE
LANGUAGE

A TCP-net on set of variablesV consists of a directed graphH on
V , a conditional preference table, a set of i-arcs, and a set of ci-
statements. ForX ∈ V , let UX be the set of parents ofX in H,
i.e., the set of variablesY such that(Y, X) ∈ H. A conditional
preference table assigns to eachX ∈ V and assignmentu ∈ UX

a total order�X
u on X, i.e., it totally orders the values ofX. An

i-arc is an ordered pair of different variablesX andY , which we

3 Relation> on setA is said to beirreflexiveif and only if for all a ∈ A, it
is not the case thata > a. It is acyclic if and only if its transitive closure
is irreflexive, so that there are no cyclesa > a′ > a′′ > · · · > a. Binary
relation> on setV is defined to be a subset ofV × V , and the notations
“(α, β) ∈ >” and “α > β” are used interchangeably.

4 Sinceα andβ differ on three variables, there exists no TCP-netN on V
with >N = >Γ. This follows from the definition of a flipping sequence and
lemma 5 in [5] (and also from proposition 1) since, being consecutive, they
would have to be a single flip apart, and so differ at most on two variables.

write asX → Y . It is intended to represent thatX is a much more
important variable thanY . A ci-statement consists of an ordered pair
of variablesX andY and an assignments to some set of variables
SX,Y ⊆ V − {X, Y }; such a statement is written here asX →s Y .
It is intended to represent that givens, X is much more important
thanY .

A total order> on outcomes is said to satisfy the conditional pref-
erence table if for eachX ∈ V andu ∈ UX it satisfies the associated
ordering�X

u ; total order> satisfies�X
u if [x �X

u x′ implies for all
t ∈ T tux > tux′], whereT = V − {X} − UX .

Given a TCP-netN , total order> is said to satisfy an i-arcX →
Y if rxy > rx′y′ for all x, x′ such thatx �X

r(UX) x′ andy, y′ such

thaty′ �Y
r(UY) y and all assignmentsr to V − {X, Y }.

Given a TCP-netN , total order> satisfies ci-statementX →s Y
if rsxy > rsx′y′ for all assignmentsr to V − SX,Y − {X, Y }, all
x, x′ such thatx �X

u x′ and ally, y′ such thaty′ �Y
v y whereu is

rs restricted toUX andv is rs restricted toUY .
Total order> on outcomes is said to satisfy a TCP-net if it satisfies

the conditional preference table, every i-arc and every ci-statement.
Define the TCP-net order on outcomes as follows: for TCP-netN ,

define>N onV by: for α, β ∈ V , α >N β if and only if α > β for
all total orders> satisfyingN .

Representing TCP-nets as CP-theories.Let N be a TCP-net as
defined above. We will define a CP-theoryΓN that generates the
same order on outcomes.

DefineΓcp ⊆ L to be the set of statementsu : x > x′[∅] over all
X ∈ V , u ∈ UX , andx, x′ ∈ V such thatx �X

u x′ (where�X
u is

part of the conditional preference table ofN).
For i-arcX → Y of N defineΓX→Y ⊆ L to be the set of state-

mentsu : x > x′ [Y] such thatu ∈ UX andx andx′ are such that
x �X

u x′. Let Γi be the union of theΓX→Y over all i-arcsX → Y
of N .

For ci-arcX →s Y defineΓX→sY to be the set of statements
qs : x > x′ [Y] for all assignmentsq to UX − SX,Y and allx, x′

such thatx �X
u x′, whereu is qs restricted toUX . Let Γci be the

union ofΓX→sY over all ci-arcsX →s Y of N .
Finally, define the CP-theoryΓN to beΓcp ∪ Γi ∪ Γci. These def-

initions easily lead to the following result, once one notices that the
conditionall y, y′ such thaty′ �Y

v y (in the definition of> satis-
fying ci-statementX →s Y) can be replaced by justall y, y′ ∈ Y
(and similarly for the corresponding condition for i-arcs). The point
is that since�Y

v is a total order, if we don’t havey′ �Y
v y then we

have either (i)y′ = y or (ii) y �Y
v y′. If (i) then rsxy > rsx′y′

follows for > satisfying N becausex �X
u x′; and if (ii) then

rsxy > rsx′y > rsx′y′ follows for > satisfying N because
x �X

u x′ andy �Y
v y′.

Proposition 1 TCP-netN is satisfiable if and only ifΓN is consis-
tent. IfN is satisfiable, then>N = >ΓN .

This means that the logic of conditional preferences described in
section 2 is more general than TCP-nets. The TCP-net order>N only
differs from the corresponding CP-theory order>ΓN whenN is not
satisfiable; but in that case, the TCP-net order becomes trivial:>N

is the complete relationV × V .
As shown above, TCP-nets represent conditional preference state-

mentsϕ with |Wϕ| = 0 or 1; they cannot directly represent state-
ments with largerWϕ (and in many situations, one variable will
be more important than each of a large set of variables, soWϕ

can be large). It is not immediately obvious how much difference

this makes: how much is lost by approximating a statementϕ =
(u : x > x′ [W]) by a setΓ of statementsu : x > x′ [{Y }] over all
variablesY in W? One can get a good idea of the answer to this by
comparing the sizes ofϕ∗ andΓ∗, which represent the direct conse-
quences of the conditional preference statements. For example, with
all binary variables,|Γ∗|/|ϕ∗| = (k + 1)2−k, wherek = |W |, so
the TCP-style approximation to a statementu : x > x′ [W] will tend
to be a very poor one unlessW is small.

4 ENSURING CONSISTENCY

In [8], it was shown that CP-theoryΓ is consistent as long as a local
consistency property holds (see below) and the ordering of variables
in Γ is completely acyclic, i.e., there exists some total order� on
variablesV such that for allϕ ∈ Γ, if Y ∈ Uϕ thenY � Xϕ and
if Z ∈ Wϕ thenXϕ � Z. Because the importance ordering of vari-
ables can depend, in some natural situations, on the values of other
variables, we want to weaken these conditions: deriving much less
stringent acyclicity conditions that are still sufficient for consistency.

A CP-theory is consistent if and only if there exists some total or-
der> satisfying it. We generate sufficient conditions for consistency
by focusing on a special type of total order, those generated by a
search tree.5 If we can find a search tree satisfyingΓ thenΓ is con-
sistent. Moreover, these search trees have nice computational proper-
ties: we can use the search tree order to efficiently generate outcomes
in an order compatible with>Γ, and we can easily determine which
of two outcomes is better according to a search tree order.

Local consistency. In certain cases, it’s clear thatΓ is not consis-
tent, by just looking at local conditions: if there’s a sequence of wors-
ening swaps starting and ending with the same outcomeα, which
just change the value of a single variableX. Fix Γ ⊆ L, and con-
sider variableX ∈ V and assignmenta ∈ A for someA ⊆ V . Say
that pair(x, x′) of values ofX is validated bya if there exists some
statement(u : x > x′ [W]) ∈ Γ with a |= u (i.e.,u is a projection
of a). Define relation�X

a onX to be the transitive closure of the set
of all pairs(x, x′) validated bya. We say thatΓ is locally consistent
if for all outcomesα ∈ V andX ∈ V ,�X

α is irreflexive. Local con-
sistency is a necessary condition for consistency. It is easily seen that
Γ is locally consistent if and only if for allX ∈ V andu ∈ UX ,�X

u

is irreflexive (recallUX is the parents ofX with respect toH(Γ)).
As discussed in [8] checking local consistency will often be easy;

in particular, when the setsUX are all small (as in intended applica-
tions of (T)CP-nets) one can efficiently construct each relation�X

u

explicitly.

4.1 Search trees and consistency

A search tree is a rooted directed tree with its|V | leaves correspond-
ing to outcomes. Associated with each nodee in the body of the tree
is a variableYe, which is instantiated with a different value in each
of the node’s|Ye| children, and also an ordering�e of the values of
Ye. So a directed arc in the tree corresponds to an instantiation of one
of the variables. Paths in the tree from the root down to a leaf node
correspond to sequential instantiations of all the variablesV . We also
associate withe a set of variablesAe which is the set of all variables
Ye′ associated to nodese′ abovee in the tree (i.e., on the path frome
to the root), and an assignmentae corresponding to the assignments
made to these variables in the arcs betweene and the root. The root

5 Search trees are also used, explicitly and implicitly, in previous work on
CP-nets, e.g., [2, 1].

nodee∗ hasAe∗ = ∅ andae∗ = >, the assignment to the empty
set of variables. More formally, define abody nodee to be a tuple
〈Ae, ae, Ye,�e〉, whereAe ⊆ V is a set of variables,ae ∈ Ae is an
assignment to those variables,Ye ∈ V −Ae is another variable, and
�e is a total order on the setYe of values ofYe. Define aleaf nodee
to be a pair〈Ae, αe〉, with Ae = V and outcomeαe ∈ V .

Each search treeσ has an associated total order>σ on outcomes
which can be defined as follows. Letα, β ∈ V be outcomes, and let
e be the deepest node (i.e., furthest from the root) which is both on
the path between the root andα, and on the path between the root
andβ. Thenα >σ β if and only if α(Ye) �e β(Ye). In other words,
we compare two outcomes by considering the lowest nodee which
is above both of them, and use the ordering�e to compare them.

If we draw the search treeσ with the directed arcs pointing down-
wards from the root, and the arcs from a nodee in the order�e, with
the best being leftmost, thenα >σ β if and only if leaf node〈V, α〉
appears to the left of〈V, β〉. Similarly, if we instantiate at each node
e the best value according to�e first, and on backtracking, the values
in the order�e, (using a depth-first search) thenα is reached before
β if and only if α >σ β. This means that it is very easy to generate
the firstK elements in the search tree order.

Search trees satisfying CP-theoryΓ. We are interested in search
trees whose associated orders satisfy CP-theoryΓ. For this we need
to make sure that for any path and any relevantϕ ∈ Γ, Xϕ appears
beforeWϕ, asXϕ is a more important variable. Furthermore, we
want the conditioning variablesUϕ to all appear beforeXϕ, as we
may need to know the values of relevant parents ofXϕ before we
can decide which values ofXϕ are preferred. LetA be a subset of
V , and leta ∈ A be an assignment to the variablesA. We say that
Y ∈ V − A is a-undominated if for allϕ ∈ Γ such thatuϕ is
compatible witha, (i) if Xϕ = Y thenUϕ ⊆ A; (ii) if Wϕ 3 Y then
Uϕ ∪ {Xϕ} ⊆ A. A body node〈A, a, Y, >〉 is said to satisfyΓ if (i)
Y is a-undominated and (ii) the ordering� onY is a completion of
�Y

a (i.e., if y �Y
a y′ theny � y′). A search tree is said to satisfyΓ

if each body node in the search tree satisfiesΓ.

Proposition 2 If a search treeσ satisfies CP-theoryΓ, then its as-
sociated order>σ satisfiesΓ.

We define different sufficient conditions forΓ ⊆ L to be consis-
tent. We say thatΓ is

— weakly conditionally acyclicif there exists a search tree satisfying
Γ;

— conditionally acyclicif it is locally consistent and for allA ⊆ V
anda ∈ A, there exists ana-undominated variable;

SupposeΓ is a conditionally acyclic CP-theory, anda is any as-
signment to any proper subsetA of V . The definitions imply that
there existsY and total order� on Y such that〈A, a, Y,�〉 is a
body node satisfyingΓ. This means that it is very easy to construct
a search tree satisfying a conditionally acyclicΓ: we start by pick-
ing a root node satisfyingΓ, and we proceed inductively, choosing
children satisfyingΓ for each node already chosen.

We will also consider a stronger condition on the CP-theory, which
is useful for constrained optimisation (see section 5). The essential
difference from conditional acyclicity is that we insist that the order-
ings always respect the generalised parent relation, whereY is said
to be a generalised parent ofZ if there existsϕ ∈ Γ with Y ∈ Uϕ

andZ ∈ {Xϕ} ∪ Wϕ. Let α ∈ V be an outcome. Forϕ ∈ Γ de-
fineG(ϕ) to be{(Y, Z) : Y ∈ Uϕ, Z ∈ {Xϕ} ∪Wϕ}. If ϕ is such

that α |= uϕ defineGα(ϕ) to beG(ϕ) ∪ {(Xϕ, Z) : Z ∈ Wϕ}.
For otherϕ, let Gα(ϕ) = G(ϕ). ForΓ ⊆ L, define binary relation
Gα(Γ) (abbreviated toGα) on V to be

⋃
ϕ∈Γ

Gα(ϕ). Define order
�α onV to be the transitive closure ofGα. We say that CP-theoryΓ
is strongly conditionally acyclicif it is locally consistent and for each
outcomeα ∈ V , Gα(Γ) is acyclic, i.e.,�α is irreflexive. The fol-
lowing lemma implies, by Proposition 2, that any of the three forms
of conditional acyclicity is sufficient forΓ to be consistent.

Lemma 1 If CP-theoryΓ is strongly conditionally acyclic then it is
conditionally acyclic. IfΓ is conditionally acyclic then it is weakly
conditionally acyclic.

Generating a total order satisfying CP-theory Γ. The proce-
dure above for generating a search tree from conditionally acyclicΓ,
could usually, depending on the choices made, generate many dif-
ferent search trees satisfyingΓ. It can be useful to have a way of
pinning down which choice is made, and thus a way of defining (im-
plicitly) a particular total order that satisfiesΓ. We assume a list-
ing X1, . . . , Xn of V , and for eachi, a total orderingx1

i , . . . , x
mi
i

(wheremi = |Xi|) of the values ofXi. We use these to define a par-
ticular search treeσ(Γ) which satisfiesΓ. This is constructed from
the root down. Whenever we have a set of choices ofa-undominated
variable at nodee we chooseYe to beXi with minimal i (among
the choices). Similarly we define�e by generating the values ofXi

from the best to the worst, at each point choosing a�Xi
a -maximal

value amongst the remaining values, where ties are broken by choos-
ing valuexj

i with largestj.
For some applications it is sufficient to be able to generate out-

comes in an order compatible with the preferencesΓ (i.e., compat-
ible with >Γ). If Γ is conditionally acyclic then>σ(Γ) is such an
order. This order was defined implicitly: we do not explicitly have to
construct search treeσ(Γ) to use it. In particular we can generate in
polynomial time the bestK outcomes according to>σ(Γ), by gen-
erating just the firstK leaf nodes of search treeσ. Also, given any
two different outcomesα andβ, we can efficiently determine which
is better according to this order>σ(Γ), by constructing just the nodes
which are above both leaf node〈V, α〉 and leaf node〈V, β〉.

However, there remains the difficulty of checking consistency.
The methods (in particular, lemmas 2, 3 and 4) of [5] can be eas-
ily adapted for checking thatΓ is strongly conditionally acyclic, and
hence consistent. An alternative approach is given in the next section.

4.2 Variable ordering networks

If Γ happens to be conditionally acyclic then search treeσ(Γ) will
satisfyΓ. However, confirming the consistency ofΓ by constructing
a search tree explicitly will usually not be feasible since the num-
ber of nodes is of the order of the number of outcomes|V |. Here
we describe an often much more compact representation of certain
search trees satisfyingΓ. The idea is to turn the search tree into a
directed acyclic graph (adecision diagram) by merging nodes where
we can take the same decisions regarding variables orderings from
that point.

The key to generating a search tree is choosing anae-undominated
variableYe for each body nodee, whereae is the tuple of assign-
ments to earlier variables; if there is such a variable for each body
node, then we have shown thatΓ is consistent, assuming local con-
sistency. (Given local consistency, choosing the local ordering�e is
never a problem.) Consider two nodesd ande with associated tuples

a anda′, which are equivalent in the following sense: for any assign-
mentb to any subsetB of the remaining variablesV −A, variableY
is ab-undominated if and only ifY is a′b-undominated. This implies
that any consistent subtree below noded corresponds to a consistent
subtree belowe and vice versa. Hence we can make the same choices
of a-undominated variables, in nodes belowd, as for nodes belowe,
or, more neatly, we canmerge nodesd ande. We will define a data
structure that enables us to assert such equivalences.

Define[Γ] to be the set of all triples〈u, Y, Z〉 such that there exists
ϕ ∈ Γ with uϕ = u and either (i)Y ∈ Uϕ andZ ∈ {Xϕ} ∪ Wϕ

or (ii) Y = Xϕ andZ ∈ Wϕ. This set encodes the information
necessary to determine which variable orderings are allowed. In par-
ticular if 〈u, Y, Z〉 ∈ [Γ] andu is satisfied thenY must come before
Z in the variable ordering. Given partial tuplea ∈ A, we construct
set[Γ]a by considering only triples in[Γ] with u compatible witha,
and we restrict such triples toV − A. Define[Γ]a to be the set of
all triples 〈u′, Y, Z〉 with Y, Z ∈ V − A andu′ ∈ U ′, such that
there exists triple〈u, Y, Z〉 in [Γ] with u ∈ U compatible witha and
u(U −A) = u′.

It can be shown thatY is a-undominated if and only if there does
not exist any triple of the form〈u′, Z, Y 〉 in [Γ]a. Furthermore, sup-
poseB ⊆ V − A andb ∈ B. It can also be shown that[Γ]ab can
be computed from[Γ]a and b. This implies that if[Γ]a = [Γ]a′

then [Γ]ab = [Γ]a′b. So Y is ab-undominated if and only ifY is
a′b-undominated. Hence[Γ]a encodes the information needed to de-
termine thec-undominated variables for anyc extendinga, and so
can be used to determine equivalence of two nodes: that they can be
merged.

The variable ordering networkτ(Γ) for a conditionally acyclic
CP-theoryΓ consists of body nodese which are triples〈Ae, ae, Ye〉
with, as for search trees,ae ∈ Ae, andYe /∈ Ae; there is a single
leaf nodee∗ which equals〈Ae∗ , α〉, whereα is some outcome and
Ae∗ = V .

To constructτ(Γ) we first construct the (single) root node; then
we iteratively construct the children of a node already constructed.
As for search trees, for each nodee we generate|Ye| directed arcs
from e, each associated with some value of variableYe. Let a beae

extended with assignmenty to Ye, and letA = Ae ∪ {Ye}. We con-
struct[Γ]a, and then we look for any other noded already constructed
with Ad = A and[Γ]ad = [Γ]a (this is the condition for equivalence
discussed above). If there is such a noded then we add a directed
arc from e to d with associated valuey of Ye. If there is no such
node then we create a new node〈A, a, Xi〉 (or the leaf node〈A, a〉
if A = V) with Xi chosen with minimali among thea-undominated
variables inV − A (conditional acyclicity ensures that there is such
a variable).

Assume now that CP-theoryΓ is locally consistent but not neces-
sarily conditionally acyclic. We can apply the same construction but
it is not guaranteed to succeed; the construction ofτ(Γ) succeeds
if and only if the construction ofσ(Γ) succeeds, becauseτ(Γ) is a
compact representation ofσ(Γ) where we merge some nodes, and we
throw away the local orderings�e. We can therefore useτ(Γ) as a
representation of the search tree ordering>σ(Γ), by defining the local
orderings (on values of a variableYe, given a particular partial tuple
a) when we need them. So a test for consistency ofΓ is being able to
construct variable ordering networkτ(Γ): if this succeeds thenΓ is
consistent. Moreover, ifΓ happens to be conditionally acyclic, then
this test for consistency is bound to succeed.

The variable ordering networkτ(Γ) for the example has only
seven nodes, with at most two nodes at each level, as opposed to
the31 nodes in the corresponding search treeσ(Γ). More generally,

one would expect when there are only a few variations in importance
orderings, that the variable ordering network would be compact. Also
the number of variable orderings associated with a variable ordering
network can be exponential in the number of nodes, as the network
‘factorises’ the variable orderings, so even if we need many differ-
ent orderings in different paths in a search tree, the variable ordering
network may still be small, and thus consistency efficiently checked.

5 CONSTRAINED OPTIMISATION

The maximally preferred outcomes of a CP-theoryΓ are precisely the
solutions of a particular constraint satisfaction problem (CSP)CΓ on
V (cf. [4]): defineCΓ to be the set of constraints{cϕ : ϕ ∈ Γ},
where constraintcϕ on variablesUϕ ∪ {Xϕ} is (Uϕ = u) ⇒
(Xϕ 6= x′). Furthermore, as observed in [8], ifH(Γ) is acyclic and
(e.g.,) if Γ is locally consistent it’s very easy to find>Γ-maximal
outcomes; by instantiating the variables in an order compatible with
H(Γ), one can reach a (any) solution without having to backtrack.

The situation is much harder (see [7]) when we have a set of con-
straintsC on V , and we wish to find maximally preferred solutions
to C. Let Ω ⊆ V be the set of solutions ofC. We say thatα is
>Γ-maximal givenC if it is >Γ-maximal inΩ, i.e., there does not
existβ ∈ Ω with β >Γ α. If one is only interested in findingsome
outcomes which are maximally preferred, then one can try to solve
the CSP with constraintsCΓ ∪ C. Any solution of this CSP will be
>Γ-maximal givenC since it is>Γ-maximal inV . Of courseCΓ∪C
may well have no solutions.

Suppose one can find a search treeσ satisfyingΓ (for example,
σ(Γ), or using the associated variable ordering networkτ(Γ)). This
can be used to generate the solutions ofC in the order>σ, by us-
ing the natural backtracking algorithm associated withσ (as in the
approach in [2]). The first solution,α, that it generates will be>Γ-
maximal sinceβ >Γ α impliesβ >σ α by Proposition 2. At each
point in the search we have a setΩ∗ of >Γ-maximal solutions al-
ready found. When we find the next solutionα we need to determine
if there exists anyβ ∈ Ω∗ with β >Γ α. If not, thenα is a >Γ-
maximal solution and we add it toΩ∗. This is a complete algorithm,
with the finalΩ∗ being the set of all>Γ-maximal solutions, and at
each point the setΩ∗ contains only>Γ-maximal solutions. The prob-
lem with this algorithm (and the similar algorithms in [2, 5]) is that
determining ifβ >Γ α (or not) will often be infeasible [1, 6] un-
less the problem is small, since it involves searching for swapping
sequences, which generalise flipping sequences.

A different approach (generalising the approach for the fully
acyclic case in [8]) is to find a partial order� which contains>Γ,
and to use dominance testing with respect to� (cf. the discussion of
‘ordering queries’, and the proof of Theorem 6 in [1]). Consider fixed
strongly conditionally acyclicΓ. Forα, β ∈ V , let∆(α, β) be the set
of variables whereα andβ differ, i.e.,{X ∈ V : α(X) 6= β(X)}.
LetΘ(α, β) be the maximal elements in∆(α, β) with respect to�α.
The binary relation�Γ on outcomes is defined by:α �Γ β if and
only if for all X ∈ Θ(α, β), α(X) �X

α β(X).

Proposition 3 Suppose CP-theoryΓ ⊆ L is strongly conditionally
acyclic. Then�Γ ⊇ >Γ, i.e., ifα >Γ β thenα �Γ β.

Dominance testing with�Γ, i.e., determining ifα �Γ β or not,
can be done in polynomial time, and is often very easy. We can then
adapt the algorithm described above for generating the>Γ-maximal
solutions by replacing each testβ >Γ α by the generally much sim-
pler testβ �Γ α. The finalΩ∗ will be all the�Γ-maximal solutions.

But all these will also be>Γ-maximal solutions, since ifβ >Γ α
thenβ �Γ α. Note thatΩ∗ only ever contains�Γ-maximal, and
hence>Γ-maximal, solutions.

This amended algorithm is an anytime algorithm for finding some
of the >Γ-maximal solutions, which will generally be much faster
than the complete algorithm.

6 DISCUSSION

The simple conditional preference logicL is rich enough to express
TCP-nets, as well as being able to express that one variable dom-
inates (i.e., is much more important than) a set of variables, given
a partial assignment to other variables. The pairwise importance re-
lations of TCP-nets do not usually closely approximate this kind of
dominance. The logic can also express locally partially ordered pref-
erences: we do not need to assume that we can elicit a total order on
the values of a variable given each assignment to its parents. Indeed
the logical language representation is very flexible as regards elicita-
tion: we can reason with an arbitrary subsetΓ of the language, so we
can accept any conditional preference statements (of the appropri-
ate form) that the agent is happy to give us. More statements can be
added later, and, because the logic is monotonic, all of our previous
deductions fromΓ will still hold, in particular whether one outcome
is preferred to another (however, the set of optimal solutions to a CSP
may be reduced).

The sufficient conditions derived for consistency ofΓ allow the
importance between variables to be conditional and even, (except in
the case of strong conditional acyclicity) a variableX may be a par-
ent of another variableY under some circumstances, butY may be
a parent ofX under other circumstances. Checking these sufficient
conditions, as for TCP-nets, looks to be hard in general. However, we
imagine that in many real situations, even in complex problems, there
will tend to be limited numbers of these conditional changes of im-
portance. Confirming consistency ofΓ should often then be feasible,
either using the techniques derived for TCP-nets for checking strong
conditional acyclicity ofΓ, or using a variable ordering network to
compactly represent a search tree satisfyingΓ.

REFERENCES
[1] C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos, and D. Poole, ‘CP-

nets: A tool for reasoning with conditionalceteris paribuspreference
statements’,Journal of Artificial Intelligence Research, 21, (2004).

[2] C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos, and D. Poole,
‘Preference-based constrained optimization with CP-nets’,Computa-
tional Intelligence, 20(2), 137–157, (2004).

[3] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole, ‘Reasoning with
conditional ceteris paribus preference statements’, inProc. UAI99, pp.
71–80, (1999).

[4] R. I. Brafman and Y. Dimopoulos, ‘Extended semantics and optimization
algorithms for CP-networks’,Computational Intelligence, 20(2), 218–
245, (2004).

[5] R. I. Brafman and C. Domshlak, ‘Introducing variable importance trade-
offs into CP-nets’, inProceedings of the 18th Annual Conference on Un-
certainty in Artificial Intelligence (UAI-02). Morgan Kaufmann Publish-
ers.

[6] R. I. Brafman and C. Domshlak, ‘CP-nets—reasoning and consistency
testing’, inProc. KR02, (2002).

[7] J. Lang, ‘From preference representation to combinatorial vote’, inPro-
ceedings of the Eighth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR2002), pp. 277–288, (2002).

[8] N. Wilson, ‘Extending CP-nets with stronger conditional preference
statements’, inProc. AAAI 2004, (2004).

