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Abstract

Abstract

The use of machine-learning that leverages large amounts of data (big data)

is increasingly important in many areas of business and research. To help

cope with the demanding resources required by these applications, solutions

including hardware platforms (e.g. graphics cards), more efficient algorithms

(e.g. deep learning algorithms), and special software environments (e.g. ten-

sor flow) have been developed. In addition, for specific applications, special

optimisations are often developed based on the requirements of the particular

application. This thesis also addresses the challenge of efficiency of machine

learning over big data but does so in a way that is complementary to specialised

hardware and algorithms, and in a way that is also independent of application

and data type. The thesis has developed several types of general optimisations

and implemented these on top of an underlying generic machine learning archi-

tecture. The generic machine learning architecture includes stages for segmen-

tation, feature extraction, model building and classification. The optimisation

components enhance this architecture in a general way that works with any

datatype and any dataset, and where the optimisation responds to the needs

of the particular application, and is self-adjusting for the particular dataset be-

ing processed. The optimisations developed are: model optimisation; feature

optimisation; resources optimisation; cloud platform cost-benefit optimisation.

Model optimisation involves evaluating multiple models in parallel, and using

feedback on model performance to choose the best ones based on the dataset

being processed. Feature optimisation involves evaluating various features and

combinations of features, and then choosing those features that are most ef-

fective for classification. Resources optimisation involves dynamically adjusting

compute instances to respond to the demands of an application. Cloud plat-

form cost-benefit optimisation involves evaluating the cost of available public

cloud compute instances, and determining appropriate cost-efficient instances

depending on the needs of an application. General techniques of sampling,

evaluation and feedback are used in several optimisation components. The un-

derlying framework and optimisations have been implemented and deployed

in a private cloud environment. Evaluation on various datasets ( image and

text datasets) has shown these optimisation components to be effective, and

provide useful generic components that can work in conjunction with other op-

timisations to address the challenging demands of machine learning over big

data.
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Chapter 1

Introduction

The modern world is generating increasing amounts of digital data from many

different sources, including social media, sensors, and smart devices. This data

is commonly referred to as "big data" since it exceeds the capabilities of tradi-

tional computing due to its volume, its velocity (the speed at which it is gen-

erated) and its variety [Dau18, Yu14]. The variety of data includes structured

(e.g. relational data), semi-structured (e.g. XML data), and unstructured data

(e.g. text and image) [Mis18]. One of the main ways of exploiting big data, es-

pecially unstructured data, is through Machine Learning (ML), and that makes

this area, and its need for optimisation, a very important topic for research.

1.1 Background

With the rapid development of the Internet, the size of datasets has increased

from KB level to TB, even PB level [GEN13]. Daily generated data exceeds 2.5

quintillion bytes. Over 90% of this data was generated over the last two years.

Considering the acceleration in the growth of the Internet of Things (IoT), there

is going to be a massive amount of data generated in the future [BIG18].

Big data, especially unstructured data [SKIW17], is seen as a new valuable re-

source which can be exploited to benefit society and corporations. Scientists

and companies are using high-performance parallel architectures and frame-

works (e.g. Hadoop [Gho11, Wan10] and Spark [Gou18, Hak18]) to quickly,

securely, and cost-effectively process data. These frameworks support dis-

tributed data-intensive applications and allow users to use scalable hardware

1



1. INTRODUCTION 1.2 State of the art

resources to process their big data [VC15].

Machine learning algorithms examine large quantities of data to identify pat-

terns. They use the extracted features from data, learn the patterns in the

data, and create models for data recognition and classification. In supervised

learning, algorithms use a pre-labelled dataset to create a model that enables

forecasting. The objective in supervised learning is to predict the label of a

new unseen data item, and its success depends on the representation of fea-

tures within the data. Furthermore, the ultimate challenge is how a mixture

of software-based and hardware-based technologies can create a state-of-the-

art technical solution that can support data processing in terms of providing

accurate results along with the efficiency in cost and performance.

1.2 State of the art

Big data processing requires a system with ample computing resources to get

the results quickly and without exceeding the budget. Designing such a system

and providing its required computing power are challenging using traditional

computing paradigms. Cloud computing can solve this problem by using a net-

work of remote servers hosted on the Internet to manage, store, and process

data. Machine learning is a trending area of research, especially when used

with "Big Data". The dynamic provision of virtualized resources provided by

cloud computing infrastructures enables cloud-based applications to improve

and reduce the number of resources used automatically [CCD+12]. Processing

big data in a distributed manner has also been widely studied [PIP16]. Useful

applications of using big data include self-driving vehicles [FBG+17], health-

care [SRB19, GPP18, RAG14], social media [BRW+15], and many other areas

such as finance, marketing and sales. There is a wide range of applications

to which machine learning can be applied, such as document classification,

emotion analysis [LCT18], natural language processing (NPL) [ZH18], speech

recogniton [NSA+19], and face detection [FRMT18, AV17]. For instance, in

the area of social media, Facebook’s DeepFace is able to train its algorithms

using large datasets to identify faces with an accuracy of up to 97.35%. Sev-

eral distributed machine learning frameworks (e.g. Jubatus, Apache Mahout,

and H2O) have been developed [PIP16]. Most of them offer distributed and

in-memory computations to facilitate developers to run machine learning ap-

plications efficiently.
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1. INTRODUCTION 1.3 Challenges

1.3 Challenges

Existing distributed machine learning frameworks leverage large-scale paral-

lelism (e.g. Hadoop Map Reduce) for implementing distributed machine learn-

ing algorithms. However, their focus is to support ML expert developers and

practitioners who have sufficient knowledge of machine learning and data pro-

cessing. Ordinary users with not enough skills of machine learning, who want

to process their large datasets using ML, might not desire to get involved in the

processing details.

Using machine learning over big data introduces several challenges, including

choosing an appropriate paradigm suitable for a problem, identifying a useful

set of discriminatory features practical for the machine learning paradigm, writ-

ing a piece of code to solve that problem, deploying the solution, and executing

it.

Performing the feature extraction and machine learning operations require suf-

ficient computing resources and can be time-consuming and costly. Currently,

distributed machine learning platforms (e.g. Spark, TensorFlow) include differ-

ent machine learning stages. For example, a stage for training a model by pro-

cessing a pre-labelled dataset and a stage for classifying an unlabeled dataset.

However, they usually exclude the essential basic stage for data preprocessing,

such as data feature extraction.

The dynamic nature of the cloud environment creates a challenge for cloud ser-

vice providers in the efficient management of resources. Since users pay for

every resource they consume per hour, it is essential that users use them effi-

ciently. It is a challenge for cloud users to choose the best cloud resources to run

their application while keeping their overall costs low. There are many compet-

itive pricing models, and public cloud platforms (such as Amazon and Azure)

offer an array of price options to suit users. These cost models have many pa-

rameters, including CPUs, memory and disk size, and operating system. The

challenge here is that users need to understand pricing models and application

requirements to choose the most appropriate cost model.

A major issue is the lack of an efficient machine learning framework for big data

to work with various data types (e.g. text and image) [SS17] and application

domains (e.g. skin cancer and insurance policies). It is also unclear which

specific ML algorithm should be used to obtain good results for a particular
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1. INTRODUCTION 1.4 Our approach

dataset. This is because no learning paradigm can consistently perform better

than all other paradigms for all problem situations [RSG+14]. The challenge is

how to choose an algorithm which achieves excellent results in the classification

of data.

The extraction and representation of data features (attributes) are the basis

for machine learning paradigms, and is, therefore, a critical step, especially for

unstructured data. Various features can be extracted from data based on the

data type. When a dataset has too many features, it is not ideal to include

all of them in a machine learning model. Too many features raise significant

computational difficulties and may lead to poor prediction accuracy as well

as poor performance. Therefore, it is a complicated process to find the best

subset of features from a wide range of features to achieve optimal learning

performance and data accuracy.

1.4 Our approach

A comprehensive, generic cloud-based framework for supporting machine

learning over big data is proposed. The underlying framework provides generic

stages for segmentation, feature extraction, model building and classification.

The architecture is technology invariant in that various technologies (e.g. Cloud

software platforms) can be used to implement it in different ways. In each of

the stages of the framework, several different software solutions can be inte-

grated to enhance the framework’s functionality such as using advanced ma-

chine learning algorithms, employing various feature extraction techniques,

and leveraging distributed big data processing frameworks. In the proposed

architecture, several optimisation components are implemented on top of the

underlying framework to support optimising the performance, classification ac-

curacy, use of resources, and cost. These optimisations are independent of the

data type (e.g. text and image) and the application (e.g. skin disease diagnosis

and face detection).

This thesis will address the following research questions:

• Research Question 1: Can a generic machine learning framework be de-

veloped, covering all the stages of data pre-processing, model building

and classification, which can be used in various application domains, and

which can support different types of unstructured data, and different ma-
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chine learning algorithms?

– Our solution to Research Question 1 is to design a cloud-based

framework that incorporates standard stages of machine learning

(such as segmentation, feature extraction, and model building), that

supports training and testing modes, and that can be used for differ-

ent data types (e.g. text and image) and different machine learning

algorithms (e.g. Naive Bayes and K-nearest neighbour). The frame-

work is implemented using an asynchronous architecture incorporat-

ing queues, based on standard message formats for tasks and results.

The generic architecture supports different types of data (e.g. text

and images) and can accommodate parallel processing (segmenta-

tion, feature extraction, and machine learning) for a dataset of im-

ages and a dataset of text.

• Research Question 2: Can the proposed machine learning framework

incorporate generic optimisations that optimise feature selection and ML

algorithm selection, so that they adjust for the application (e.g. pathology

or phytology), and the specific dataset (e.g. a particular set of blood cell

images or leaf images)?

– Our solution to Research Question 2 is to develop various opti-

misation components built around techniques such as parallel eval-

uation, and a sample testing, evaluation, and feedback loop. The

components provide optimisations to select the most useful features

for classification and to select the best algorithm under user-specified

criteria (e.g. most accurate, best performance, some combination of

accuracy and performance). Training a model can be very demand-

ing on resources, especially when there are a large number of fea-

tures. The feature optimisation identifies the most useful features,

and then only these features need to be extracted and used in build-

ing the ML model. Different algorithms provide different levels of

accuracy and performance, and algorithm optimisation selects the al-

gorithm (for a particular application and dataset) which best satisfies

the user requirements with regard to accuracy and performance. The

generic mechanisms used in these components, based on the sam-

pling of the dataset, provide information without processing large

amounts of data and result in optimisations that are data-driven and

auto-adjust for the particular dataset being evaluated.
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• Research Question 3: Can the proposed cloud-based framework optimise

its use of resources in the cloud, and can it also incorporate a cost model,

allowing optimisation with regard to both efficiency and cost of cloud

resources?

– Our solution to Research Question 3 is to incorporate a resource

optimisation component that monitors the use of resources, and then

uses scaling to leverage cloud computing resources more efficiently.

We also incorporate, another component with a cost model of com-

mercial cloud offerings which optimises with regard to cost as well

as efficiency. We show that there can be big processing differences

between different datasets and between different algorithms on the

same dataset, and so these optimisations auto-adjust for the data

and the algorithms. The monitoring can indicate bottlenecks and al-

low a balanced, more efficient architecture to be achieved through

appropriate scaling of resources. The cost-model of cloud resource

offerings supports optimisation within an individual service provider

(e.g. Amazon) or across service providers.

1.5 Publications

Important aspects of the thesis have been presented at distinguished peer-

reviewed international conferences and published in the associated proceed-

ings.

The basic framework and proof of concept feature-category optimisation are

reported in:

• Rezvan Pakdel and John Herbert, A cloud-based data analysis framework
for object recognition, in Proceeding of the 5th International Conference

on Cloud Computing and Services Science (CLOSER 2015) [PH15].

Detailed feature optimisation and ML algorithm optimisation are reported in:

• Rezvan Pakdel and John Herbert, Efficient Cloud-Based Framework for Big
Data Classification, the 2nd IEEE International Conference on Big Data

Computing Service and Applications (BigDataService 2016) [PH16a].

Optimisation in the use of cloud computing resources, and demonstration of

the same framework supporting text and image are described in:
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• Rezvan Pakdel and John Herbert, Scalable Cloud-Based Analysis Frame-
work for Medical Big-Data, the IEEE 40th International Computer Software

and Applications Conference 2016 (Compsac 2016) [PH16b].

An optimisation component that incorporates a cost and resources model of

cloud computing instances, and allows a cost-efficient solution to be imple-

mented for a particular application and particular dataset is described in:

• Rezvan Pakdel and John Herbert, Adaptive Cost Efficient Framework for
Cloud-Based Machine Learning, the IEEE 41st International Computer Soft-

ware and Applications Conference 2017 (Compsac 2017) [PH17].

1.6 Thesis structure

In this chapter, we have discussed the importance of big data applications and

the challenges and current trends in big data analysis. We have big data fea-

tures, choice of appropriate features (the necessary information characterising

the problem), choice of the learning algorithm, and use of computation re-

sources. The remaining chapters are organised as follows.

In Chapter 2, we investigate several essential challenges of big data analysis.

We explore a variety of data analysis techniques for big data processing and the

taxonomy of the existing big data computing tools, frameworks, and platforms.

We also present an overview of existing cloud platforms, different types of data

learning and cloud services that data scientists can use for machine learning.

In Chapter 3, we propose a generic cloud-based machine learning framework

for data classification, which can work with large volumes of heterogeneous

data. The framework has an initial stage that extracts different features from

a dataset and then creates models using a machine learning algorithm. We

propose a feature-category optimisation component that evaluates models built

with different category combinations. It then finds the best model for a specific

dataset according to the model accuracy.

In Chapter 4, we update the framework and integrate two additional general

optimisation components to select the best features and select the best clas-

sifiers for a specific dataset. The updated framework supports multiple data

types (e.g. image and text). The optimisation components enhance the accu-

racy and performance of the classification task using a sampling, evaluation and
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feedback method.

In Chapter 5, we introduce an auto-scaling optimisation component into our

cloud-based framework. Auto-scaling enables the framework to scale cloud

computing resources automatically based on the dynamic processing load in

order to improve the efficiency of big data processing.

In Chapter 6, we introduce a new optimisation component that uses sampling

and feedback mechanisms to choose the appropriate instance type for a job in

the application. Performance metrics are collected for a sample of a dataset

and a matching algorithm maps these metrics for a job to the best choice of

instances from the public cloud (in this case, AWS). Finally, the framework

recommends appropriate instance types for a job in the application with respect

to cost efficiency.

In Chapter 7, we present a summary of the thesis with discussion and conclu-

sions.
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Chapter 2

Background

The world’s data is growing faster than ever before. Every human being on

the planet is expected to produce 1.7 megabytes of data every second by 2020

[BIG18]. This data is a valuable resource, and we need intelligent data analy-

sis techniques and scalable architectures to obtain useful information quickly.

Cloud computing offers a suitable infrastructure of unlimited elastic storage

on demand and cost-effective computation capacity. Data analysis involves the

collection, storage, and processing of data. Processing big data requires ample

and efficient storage facilities together with high-performance processors to get

results in acceptable times. In this chapter, the existing work in the area of big

data analysis and associated technologies (e.g. cloud computing) are reviewed.

2.1 Big Data

"Big Data is the data that is too big, too fast or too hard to process"

[Mad12].

The term ‘too big’ means that amount of data might be large scale (petabyte)

and come from various sources; ‘too fast’ means that the data requires to be

processed quickly; ‘too hard’ means that a processing tool processes the data

with difficulty [Mad12].

Big data is data that size (Volume) is beyond the ability of traditional database

software tools to capture, store, and manage; the rate of production (Veloc-

ity) exceeds the speed of current systems to process; complexity in mixed type

and format (Variety) challenges existing algorithms to perform efficiently and

9



2. BACKGROUND 2.1 Big Data

effectively. These three dimensions of Volume, Velocity, and Variety together

characterise big data. Figure 2.1 shows three characteristics of big data [JH15].

Figure 2.1: Big Data characteristics

• Data Volume: The volume describes the size of the data. According to

an IDC (International Data Corporation) [Ale17] report, the volume of

unstructured data will reach 40 zettabytes by 2020 (Figure 2.2).

Figure 2.2: Data volume growth by year in zettabytes

• Data Velocity: The velocity is the speed at which data comes from diverse
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sources such as sensors, business processes, and interaction between peo-

ple and things like social media, websites, and mobile devices.

• Data Variety: Data can be in different forms, such as text, image, video,

and audio. This data variety is claimed to be the key issue in big data

analytics [SS17].

• Data Veracity: Veracity relates to inconsistencies and information uncer-

tainty. Regulate quality and precision in these data, is hard.

• Data Value: Data in itself is of no use or significance, but in order to

extract the information„ it requires to be transformed into something pre-

cious.

Data can be either structured, semi-structured, or unstructured [SKIW17]. Pro-

cessing big data using traditional databases and traditional data processing ap-

plications is challenging. Scientists and companies need new techniques to

store and access a large amount of data in a fast, secure and cost-effective way.

Also, they need new efficient parallel techniques for fast processing and analy-

sis of data. For example, the search service provider (Google) has to cache

hundreds of millions of web pages and respond to search queries immediately,

requiring it to develop novel techniques [BP98].

2.1.1 Data types

There are two main types of data: structured and unstructured - Figure 2.3

elaborates them, along with examples.

• Structured data: Structured data can be stored in traditional database

systems such as Oracle and SQL server in the form of rows and columns.

Structured data have a relational key and can be easily mapped into pre-

designed fields.

• Unstructured data: Unstructured data may have some internal structure

but does not conform to a database schema. Unstructured data cannot

be stored in the form of rows and columns. Generally, unstructured data

varies in size and content and is difficult to analyse. The primary chal-

lenge of unstructured data is that they are difficult for non-technical busi-

ness users to understand and analytically use.
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Figure 2.3: Big Data type

• semi-structured data: There is also a derived data type, semi-structured,

that does not have the same organizational level and structured informa-

tion predictability. This datatype (such as JSON, XML, and.csv files) may

contain rational record-based information, but information may not be

structured in a recognizable structure [NLC15].

2.1.2 Big Data applications

Big data benefits many areas, such as business, science [Yu14], goverment sec-

tor [KTC14], and smart farming [WGVB17]. In this section, the importance of

big data and the challenges for data-intensive applications are reviewed.

2.1.2.1 Healthcare

Big data in healthcare involves health-related digital datasets. Processing and

managing this data is complicated [GPP18]. Big data in healthcare offers nu-

merous benefits such as disease detection and prediction [CHH+17, EDM19],

reduced medical errors, the right care at the right time, and better medical out-
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comes. Big data has great potential to improve medicine and guide clinicians

in delivering value-based care.

• Biotechnology and drug discovery: Biotechnology companies and phar-

maceutical companies use gene sequencing to develop more effective

drugs for diseases. Gene sequencing involves an extensive collection of

data, and biologists have to clean the sequence data and then translate

the raw data into a suitable form [Lef15]. Biologists use sequence data

for millions of humans and perform data mining to look for genome pat-

terns that identify particular diseases. Processing this data with traditional

technologies is impossible. Hence, new computational technologies are

required to reduce processing time.

2.1.2.2 Government

A large variety of data can be created from different sources such as imagery,

sensors, social media, video, audio, and cell phones. The government can use

the data to improve national security and prevent crimes [KTC14]. Big data

analytics can improve efficiency and effectiveness across a broad range of gov-

ernment services, by improving existing processes and operations and enabling

entirely new ones.

2.1.2.3 Websites analytics

Millions of unique visitors add a broad range of content to websites per day.

This can quickly amount to tens of hundreds of gigabytes per day (tens of ter-

abytes per year) worldwide of accumulated user data. Companies are interested

to understand this data and analysis the data [KS18, RMV+18], improve their

website loading and response time, and also offer more targeted ads [XLL13].

2.1.3 Big Data processing

Nowadays, big data is everywhere, and it is important to know how to han-

dle the data to extract more useful information. Data analysis uses analytical

methods to extract value. In many fields, data is analysed using specific analyt-

ical methods. For processing big data, a system with large computing resources

is needed to get the results quickly and without exceeding the budget. This
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system should use subsystems such as decision making, data aggregation, stor-

age, analysis, provisioning, and scheduling to efficiently process the data. One

technique to reduce the computing cost of processing big data is to use a data

segmentation technique [HRY16].

2.1.3.1 Data segmentation

Data segmentation is an essential technique in data preprocessing for ML

[SM17]. Segmentation is beneficial for many applications (e.g. medical imag-

ing and locating objects in satellite images). Different techniques like Thresh-

old Method, Edge-Based Segmentation Method, Region-Based Segmentation

Method, Clustering Based Segmentation Method, Watershed Based Methods,

Partial Differential Equation Based Segmentation Method, Artificial Neural Net-

work Based Segmentation Method [DY14] can be used for segmentation the

data. For example, one of these techniques or a mixture of them can be used

in medical image analysis to detect cancer [MASL18] or to detect roads and

bridges in satellite images [Liz14].

Processing data can be mainly performed in two ways: Batch Processing and

Real-Time Processing.

2.1.3.2 Batch processing

In batch processing, the data is collected, stored, and later processed. In this

processing model, the aggregated data is processed at once [MGS12], and usu-

ally, during off-peak hours. The primary performance measure of batch pro-

cessing is the amount of work done per unit of time and fast response time is

not essential. Data processing in this model can take minutes, hours, or even

days to execute.

2.1.3.3 Real-time processing

In real-time processing, data must be processed as it arrives, and the results

should be provided quickly. The stream of input data produces an output stream

of results. Good examples of real-time data processing systems are bank ATMs,

traffic control systems, e-commerce order processing, online booking and reser-

vations, and credit card real-time fraud detection. In this processing model, it
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is crucial that the deadline is met, and therefore, the data has to be processed

within a specified time.

In general, the real-time processing model is suitable for applications that re-

quire the results quickly and batch processing is for general purpose applica-

tions. The differences between these two processing models are shown in Ta-

ble 2.1.

Table 2.1: Batch processing vs. Real-time processing

Real-time Processing Batch Processing
Input stream of new data or updates data chunks
Data Size infinite or unknown known and finite
Storage not store store
Hardware typical single limited amount of memory multiple CPUs, memories
Processing a single or few pass over data processed in multiple rounds
Time a few second much longer
Applications web mining, sensor network. traffic motoring widely adopted in almost every domain

2.1.4 Existing big data analysis frameworks

Big data can be analysed using several techniques that perform complicated

tasks in parallel to increase the processing speed and improve data analysis.

Several distributed computing frameworks [PIP16] capable of processing big

data in real-time or near-real-time are discussed.

2.1.4.1 Apache Hadoop

Apache Hadoop is a reliable, scalable, and distributed open source computing

platform. The Hadoop framework can be used to process big data in paral-

lel. Since its release in 2007, Hadoop has been adopted as a solution for scal-

able processing of large data in many applications including machine learning

related applications [Gho11], graph processing, and behavioural simulations

[Wan10]. Modern versions of Hadoop are composed of several components

or layers that work together to process batch data. Hadoop Distributed File

System (HDFS) is a distributed file system layer that coordinates storage and

replication across the cluster nodes. HDFS ensures that data remains available

despite inevitable host failures. It is used as the source of data, to store interme-

diate processing results, and to persist the final calculated results. Hadoop has

a native batch processing engine named MapReduce. MapReduce is a program-

ming model that is suitable for big data processing. MapReduce uses multiple

machines in parallel in the cluster to perform large-scale data analysis.
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2.1.4.2 Apache Spark

Apache Spark is a fast and general engine to process large scale data in paral-

lel. It can handle both batch and real-time data processing workloads [?]. It

includes Spark SQL, Spark Streaming, MLib (Machine Learning) and GraphX

(parallel graph calculation). Spark can run on the Hadoop YARN cluster man-

ager and can read any existing Hadoop data. Spark is used in various areas

such as big spatial data processing [SYWJ17], text stream data analysis (from

services such as twitter) [Hak18], and stream application logs [EVA18].

2.1.4.3 Apache Storm

Apache Storm is a stream processing system [Eva15]. The data can be processed

quickly by Storm in real-time. Apache Storm is highly scalable, easy to use, and

offers low latency with guaranteed data processing. It has a simple architecture

to build applications called Topologies. It enables the developer to develop their

logic virtually in any programming language and supports communication over

a JSON-based (JavaScript Object Notation-based) protocol [BV16].

2.1.4.4 Apache S4

Apache S4 (Simple Scalable Streaming System) is a platform for processing

continuous data streams. It is designed specifically for managing data streams.

S4 applications are designed to combine streams and processing elements in

real time.

2.1.5 Big data challenges

Several widely-used and useful technologies and data analysis techniques have

been studied. Many existing data analysis frameworks and their strengths,

weaknesses, and challenges have been reviewed. In this section, the most

appropriate techniques, technologies, and frameworks that contribute to this

study will be discussed.

Parallel processing is one of the cost-effective methods to solve computation-

ally significant and data-intensive problems quickly [Cza14]. Efficient parallel

processing frameworks are crucial for addressing large data performance and
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scalability requirements. As cloud computing offers multiple resources (e.g.

virtual machines) and allows on-demand resource allocations [ZYF+18], it is

suitable for big data applications. Cloud computing can be useful in hardware

cost reduction and processing cost reduction for big data processing implemen-

tation. Using cloud computing can provide fast reactive provisioning for big

data as provisioning servers in the cloud is secure. This fast provisioning is

essential for big data as the amount of data can change rapidly over time. Be-

sides, the resources can be scaled based on the processing requirements of the

big data [CCD+12]. Cloud computing makes the environment more robust, au-

tomated and provides multi-tenancy (that allows customers to share computing

resources). Data application resources can be better controlled, monitored and

reported in the cloud computing environment. All of these advantages indicate

that cloud computing can be considered as a suitable platform for deploying big

data applications.

2.2 Machine Learning

Machine learning algorithms examine large quantities of data to identify pat-

terns. In supervised learning, algorithms use a labelled dataset to create a

model that enables forecasting. The objective in supervised learning is to pre-

dict the label of a new unseen data item, and its success depends on the choice

of features for the data. The extraction and representation of features is, there-

fore, a crucial step for unstructured data processing. Machine learning requires

some classifiers to use some data features and attributes, which is extracted

from data to represent the data content, discover the patterns from data and

learn them to classify new unseen data. ML invloves data mining, learning, and

classification.

2.2.1 Data mining

Data mining is the process of finding related information from a collection of

data. Data mining focuses on unknown properties being discovered in the data.

Data mining methods can be used to improve learner accuracy. Big data mining

is currently one of the most critical emerging areas of research [Yu14]. Tradi-

tional data mining techniques may not work well for big data due to the size,

high dimensionality, heterogeneity and distribution of the data. The analysis of
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large data volumes requires efficient big data mining techniques and substantial

computing resources.

Mining of particular information related to a concept is done based on the fea-

ture of the data. The obtaining of representational features, for data can be

called feature extraction. Extracting a set of discriminatory features (attributes)

from data (more importantly from unstructured data) provides the basis for ma-

chine learning which is used to discover useful hidden patterns [AOO14].

The discovered patterns support decision making and prediction. Different type

of feature extraction methods introduced.

2.2.2 Unstructured data analysis

Unstructured data are those that have no predetermined form or structure. Un-

structured data often contain text and multimedia content [Ing12]. For exam-

ple, e-mail messages, videos, photos, word processing documents, audio files,

web pages, and several other kinds of documents are categorised as unstruc-

tured data. In many fields, the amount of unstructured data grows significantly

faster than structured data [SRMG18]. Analysing them are more complicated.

Hence, unstructured data analysis is required to reform it into structured data,

then proceed with the standard analysing frameworks for structured data. A

common method of analysing unstructured data is first, to find a set of dis-

tinctive features that can help to distinguish between data; second, to build a

machine learning model using a labelled training dataset; and finally, to use the

model to classify new data. For instance, finding and identifying objects in an

image is an essential task in computer vision. Humans can recognise objects

irrespective of the point of view, size/scale, rotation or translation. Extracting

some features from an image, then applying some machine learning classifier to

the extracted features, is a method that is used in image processing [AOO14].

• Image-based feature extraction: Various approaches have been used to

accurately detect objects in images, such as geometry-based, appearance-

based and feature-based approaches. Feature extraction is the main ele-

ment in most object recognition methods [NT16]. The image features can

be divided into two groups, global and local. Local features are features

extracted from the results of the subdivision of the image based on image

segmentation or edge detection. On the other hand, global features are

features extracted from the entire image or just a larger sub-area of an
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image [Gom15]. So, the global features describe the visual content of the

entire image. Global features, such as shape and texture, are very useful.

They create very compact representations of images where each image

corresponds to a point in a high-dimensional space.

Figure 2.4: Canny edge detector algorithm [RKS13]

Several algorithms and methods have been proposed for extracting fea-

tures from images. Harris corner detection is a method to detect and

match point features like corners or edges [Mal11]. Canny edge detec-

tion, developed by John F. Canny in 1986, uses a multi-stage algorithm

to detect a wide range of edges in images. The Canny edge detector

uses a multi-stage algorithm to detect a wide range of edges in images

(Figure 2.4). Region and contour detectors are also methods for object

recognition. Detectors use image contours and region boundaries that

should be less likely to be disrupted by clutter backgrounds near object

boundaries. Region detectors are used for category recognition [KZB04]

but are not practical for a large number of images representing different

categories. Recognising an object can be done by extracting these fea-

tures from an image. Using a combination of methods is claimed to be

more useful in recognising objects in images [ASNG10].

• Textual feature extraction: There are many methods for extracting fea-

tures from data in the form of text. The first step is to define what

the features are. For example, for sentiment (polarity) classification
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[Ans16, ZJ17], the features are mostly the terms or phrases that influ-

ence the sentiment of the text. Opinion adjectives, adverbs, nouns, verbs

are useful features. Sometimes, the terms are not enough and bi-grams,

tri-grams or, generally, n-grams should be considered. Some methods are

described below for extracting features from the textual data.

– Trimming vocabulary:

This method is used to remove “non-content” words, frequent “stop

words” such as “the”, “and”, or rare words that occur <10 times in

100,000 words.

– Stemming:

This method is used to reduce all variants of a word to a single term

(see, saw, seen to “see”)

– Define classes:

A user should specify how many classes he/she has. For example, the

user may have different classes like Spam and Not Spam for email,

or Sport, Science, and Politics for a newsfeed.

Much research has been conducted in the area of text mining in recent

years. In [Jo10], various text mining techniques are used to discover

textual patterns from online sources. Durga et al. [DG11], proposed a

new model for text categorisation to capture the relations between words

by using a WordNet ontology. This approach maps the words this rep-

resenting the same concept into one dimension and provides better ef-

ficiency for text classification. The authors also identified best practices

in the extracting for information based on semantic reasoning, and dif-

ferent advantages of intelligent information extraction were highlighted.

The authors explained the suggested methods, such as query expansion

and extraction of semantic-based document retrieval. Chakraborty et al.

[Cha14] proposed a method to organise and analyse textual data for ex-

tracting insightful customer intelligence from an extensive collection of

documents, and for using such information to improve business opera-

tions and performance. The authors describe the efficient classification

of product review documents as a multi-label classification scenario using

Structured Support Vector Machine [CJ15].

Chakraborty et al. [Cha14] proposed a method to organise and analyse
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textual data for extracting insightful customer intelligence from an exten-

sive collection of documents, and for using such information to improve

business operations and performance.

2.2.3 Learning

Machine Learning (ML) allows computers to learn without explicit program-

ming [R10]. With the growth rate of big data, the challenge faced by the ML

community is how to process and learn from big data efficiently. For efficient

processing of big data, not only data processing but also implementations of

ML algorithms should be considered. Learning from the extracted features can

be used to describe the content of data for one of the followings: Classification,

Ranking, Dimensionality reduction, and Clustering.

• Classification: The classification is used to assign a specific category

to each item from a dataset. For example, given a document, assign it

whichever domain (i.e. history, biology, and mathematics) it belongs.

• Regression and time series analysis: Regression is used to predict a real

value for each item, such as future stock market values.

• Ranking: The ranking is used to return an ordered set of features based

on some criteria defined by the user (e.g. web search).

• Dimensionality reduction: Dimensionality reduction (feature selection)

is used to transform initial large feature spaces into a lower-dimensional

representation to preserve the primary representation properties.

• Clustering: Clustering is used to group items based on a predefined dis-

tance measure. It is usually used on large datasets.

Machine learning algorithms differ in their approach, the type of data they

input and output, and the type of task or problem that they are intended to

solve. They can be categorised into three groups: supervised, unsupervised,

and semi-supervised learning.

• Supervised learning: The supervised learning method in ML tries to look

for the mapping between inputs and outputs using already known results.

A good instance is when trying to predict unknown answers based on

labelled data that contains readily available answers. As Figure 2.5 shows,

after the data has been pre-processed, the data is split into two random
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sets, training dataset and testing dataset. For example, 70% of the data is

used for training a robust model, while 30% of the data is used to evaluate

the model accuracy. The built model can be later used to recognise and

classify new data [FF17].

Figure 2.5: Supervised machine learning flowchart

• Unsupervised learning: In unsupervised learning, developing ML solu-

tions becomes much more difficult when compared to supervised learning

because the ML algorithm is not provided with known input data and

known outcomes. It has to analyse the data by itself and get common pat-

terns and structures to develop a predictive model. This technique could

be likened to density estimates in statistics, where there are attempts to

find patterns in the input data. The distinct difference between these two

learning approaches is that for supervised learning, marked up patterns

are made available while for unsupervised learning marked up patterns

are not made available [DZDW19].

• Semi-supervised learning: In this type, the input data is a mixture of

labelled and unlabeled examples. Semi-supervised learning falls between

unsupervised learning (without any labelled training data) and supervised

learning (with completely labelled training data). Many machine learning

researchers have found that unlabelled data can be used in conjunction

with a small amount of labelled data to produce a considerably improved

result with better accuracy [GFK+13].

2.2.4 Classification

ML uses past information and experience to improve the performance or to

make predictions [Moh12]. ML is applied in a wide range of applications such
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as text mining and document classification, keyword extraction, spam detec-

tion, emotion extraction, speech recognition, image segmentation, image recog-

nition, fraud detection, medical diagnosis, and recommendation systems. In

these applications, several types of learning problem can be identified. There is

a variety of machine learning classification algorithms known as classifiers.

• OneR: OneR is a simple rule-based classifier that serves to extract a set

of rules based on processing a single attribute. It is easy to produce con-

sistent performance on various classification problems by probing only a

single attribute.

• Random Forest: In Random Forest, there is a collection of decision trees

(known as a “Forest”). For classifying a new object based on attributes,

each tree gives a classification and the tree “votes” for that class. The

forest chooses the classification having the most votes (over all the trees

in the forest).

• C4.5 and J48: C4.5 is an algorithm used to generate a decision tree. It

constructs a massive tree by taking into account all attribute values and

narrows down the decision rule with the help of pruning. J48 is an open

source Java implementation of the C4.5 algorithm [KC14].

• Naive Bayesian (NB): Naive Bayesian (NB) classifier is a robust approach

to supervised classification and has a high degree of accuracy. A proba-

bilistic measure based on the probability of the class and the associated

distribution of probability for each attribute of the training data is used to

classify an unseen instance.

• Support Vector Machine (SVM): The support vector machine (SVM) is

a type of generalized linear classifier that is widely applied for classifica-

tion and regression problems. SVM is an algorithm that determines the

best decision boundary between vectors that belong to a given group (or

category) and vectors that do not belong to it.

2.2.5 Machine learning applications

Machine learning is useful in a diverse area of applications such as self-driving

vehicles [FBG+17], health [SRB19], social media [KGL+18], food [LLW18],

nature [MSR+18].
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• Healthcare: Processing very large amounts of information collected

about individual patients is not possible for a human. Hence, machine

learning (ML) provides a way to find patterns from data and process them

automatically. Machine learning can be applied to various types of health-

care data (structured and unstructured) to predict important diseases, in-

cluding cancer, neurology and cardiology diseases [JJZ+17]. If such dis-

eases are predicted well in advance, the information can provide essential

insight to doctors who can then adapt their diagnosis and treatment on

a per patient basis. For instance, in 2015, [AEAA15], an expert system

for skin disease diagnosis was proposed which allows a user to identify

diseases of the human skin and provides advice and medical treatments.

In this work, the authors used image processing, feature extraction, and

machine learning to recognise the disease. The authors, in [WGJ18], pro-

posed a system to diagnose skin-related disease by employing a machine

learning approach and using the skin colour feature and texture feature.

• Food: The aim of machine learning is to explore the search space to find

the best solution to any problem. Machine learning models are currently

being developed to address the complexity and variety of data in the food

industry. Many companies and organisations (i.e. Tastry, Vinify, Edamam,

Pingwell, Sure, and Instacart) already incorporate deep learning, machine

learning, and AI into food and beverage product development and ser-

vices. Gastrograph AI uses machine learning to understand consumer

sensory perception of flavour and predict consumer preference for food

and beverages. Food recognition is another interesting subject, mostly

among scientists. For instance, Lu et al. [LLW18] use an SVM classifier

to recognise the food category, resulting in a recognition rate of 94% for

food replicas and 58% for real food items. Kong et al. [KT12] proposed

the use of Scale Invariant Feature Transform (SIFT) features clustered in

visual words and fed to a simple probabilistic Bayesian classifier, which

matches food items in a food database containing images of junk food

and different types of fruit and vegetables.

• Nature: Machine learning can be used for natural resources such as plants

[SK18, MSR+18], water [ASHL18, WZD17], and air [XFZ+19, KGC+18].

For instance, Meena et al. [MSR+18] studied the discovery of an un-

healthy region of plant leaves and the classification of plant leaf diseases.

Statistical Gray-Level Co-Occurrence Matrix (GLCM) features are used to

support the classification of leaves using a machine learning algorithm
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(support vector machine). Also, machine learning methods can be bene-

ficial for the accurate automated binary classification of surface water in

complex geographies. For example, Acharya et al. [ASHL18] used several

machine learning methods to classify surface water from satellite images

and, thus, to monitor and manage surface water in Nepal. In many indus-

trial and urban areas, monitoring and preserving air quality has become

one of the essential activities. The air quality is affected by various forms

of pollution (e.g. transport, electricity, and fuel uses). Hence, accurate air

quality monitoring models which process information about the concen-

tration of air pollutants is vital. These models can be used to evaluate and

predict the quality of air. For example, machine learning based techniques

were used for air quality forecasting [KGC+18]. This paper reviews the

published research results relating to air quality evaluation using methods

including decision trees, and deep learning.

2.2.6 Machine learning and data processing platforms

Several toolboxes and plugins have been implemented to utilise the current data

processing platforms (that uses R, Python, SQL and SASprogram languages

[KDn18]) with machine learning technologies. Since the introduction of the

distributed data processing frameworks such as Hadoop, machine learning en-

abled platforms have also been developed. Petuum, Jubatus, MLlib (MLBase),

Oryx, H2O, and Mahout are examples of them [PIP16]. Most of the frameworks

rely on Hadoop’s MapReduce paradigm. Their mechanisms are the same as the

traditional distributed data processing, which is to split the data and process it

in parallel. That requires the underlying computing platform to provide a clus-

ter of computing nodes to enable processing using limited computing power.

This, however, makes the system limited unless cloud computing technology is

employed. Azure ML, Amazon ML, Google Prediction API, and EigenDog are

examples of popular Machine Learning as a Service [PIP16].

2.3 Cloud computing

Cloud computing offers network access to a shared pool of on-demand con-

figurable computing resources (networks, servers, storages, applications, and
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Figure 2.6: Cloud Architecture

services). The resources can be rapidly provisioned and released with mini-

mal management effort or service provider interaction [Avr14]. The cloud is

more than just a set of hardware, software, and services; it uses the combina-

tion and integration of comprehensive information technologies like distributed

and parallel computing, network storage technologies, virtualisation, and load

balancing to run an application [KYM+18].

As shown in Figure 2.61, a cloud architecture can be viewed as five components

(cloud provider, cloud consumer, cloud carrier, cloud auditor, and cloud broker)

working together to provide on-demand services [HLS+11].

• Cloud provider: The cloud provider is an organisation that provides

cloud services, controls IT infrastructures, and manages technical failures.

• Cloud consumer: A cloud consumer (i.e. user) is a person or an organisa-

tion that uses cloud services through an agreement with a cloud provider

or broker.

• Cloud broker: Cloud brokers are third-party companies that work closely

with both cloud providers and cloud consumers. Generally, they provide

consultation and trade various cloud solutions with their existing or new

customers.

1https://www.vyomtech.com
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• Cloud carrier: Cloud carriers are network and telecommunication com-

panies that provide infrastructure so the cloud services are available to

the cloud consumers.

• Cloud auditor: Cloud auditors are third-party specialists in an indepen-

dent evaluation of cloud services provided by cloud providers. A cloud

auditor can examine various areas such as security, privacy, performance,

licensing, operation, and other areas in order to highlight differences be-

tween different operations and data privacy.

2.3.1 Cloud characteristics

Cloud computing has some essential characteristics which are identified by the

U.S. National Institute of Standards and Technology (NIST) [PBA+08], as fol-

lows:

• On-demand capabilities: On-demand capabilities mean that a user can

change the usage of the services (i.e. storage networks and software)

through an online control panel at any time. Typically, the user should pay

monthly for what they used. The payment plans vary for each provider.

• Elasticity: Elasticity is the dynamic scaling of IT resources. It refers to the

ability to react immediately to clients dropping or adding services in real

time. This scaling must be done based on runtime conditions.

• Broad network access: Broad network access is the ability to use a de-

vice (smartphone, tablet, office computer, and laptop) to access business

management solutions.

• Resource pooling: Resource pooling allows cloud providers to allocate

and deallocate different physical and virtual resources dynamically ac-

cording to consumer demand.

• Measured service: Measured service is that a user allows the cloud

provider to measure storage levels, processing, and bandwidth of the ser-

vices. The number of resources that may be used can be monitored and

controlled from both the user side and the cloud provider side.
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Figure 2.7: Three Types of Clouds

2.3.2 Cloud computing types

A key element of cloud computing is the deployment model. Deployment is the

process of making software available to consumers. Three Cloud computing

types (Public, Private, and Hybrid [Sim17]) shown in Figure 2.7 are reviewed

in this section.

2.3.2.1 Public cloud

In the public cloud model, cloud services are available to all users over the

Internet. A public cloud is usually free or is on a Pay-Per-Use model. It is

perfect for small size and medium size enterprises.

2.3.2.2 Private cloud

A private cloud is hosted in the private data centre of an organisation and pro-

vides its services only to a selected group of users. A private cloud is more

secure but expensive because the company is responsible for operating and

maintaining the technologies. A vital benefit of the private cloud is the ability

to customise the compute, storage, and networking components to better suit

the requirements.
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Figure 2.8: Three layers of cloud service models

2.3.2.3 Hybrid cloud

In the hybrid cloud model, an organisation manages some resources in-house

and some out-house. For instance, a company has its human resource (HR) and

customer relationship management (CRM) data in a public cloud (i.e. Sales-

force) but have more sensitive data processing in a private cloud.

2.3.3 Cloud service models

There are various cloud services offered by several cloud providers (Figure 2.8).

In general, they can be divided into three categories (Infrastructure as a service

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS)) [Mal18].

2.3.3.1 Infrastructure as a Service (IaaS)

IaaS is the basis of cloud computing. IaaS provides virtual infrastructure as

well as actual hardware for managing the storage, virtual machines, and virtual

network over the Internet. A provider can create virtual servers with different

configurations. Infrastructure resources can scale up/down based on demand

growth. In the IaaS model, a client pays on a Pay-Per-Use basis for the use
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of equipment to support computing operations. An advantage of IaaS is the

rapid increase or decrease of infrastructure on demand, lower risk in Return

of Investment (ROI), reduction of human resource and hardware costs, and

automated scaling of computing power. Examples of IaaS include Amazon EC2

[Ama18], RackSpace [Rac19], and Google Compute Engine [Goo19].

2.3.3.2 Platform as a Service (PaaS)

In PaaS, underlying cloud infrastructure such as operating systems, servers,

and the network are hidden from customers. The cloud provider manages and

delivers programming languages, frameworks, libraries, services, and tools for

customers to create and deploy applications.

2.3.3.3 Software as a Service (SaaS)

SaaS is the most familiar form of cloud service for consumers. It provides a

complete software solution on a pay-as-you-go basis. Salesforce, Google Apps,

and storage solutions (Box Cisco WebEx, Microsoft Office 365, and Dropbox)

are examples of SaaS.

2.3.4 Cloud providers

Amazon, Google, and Microsoft provide cloud platforms (e.g. Amazon’s Elastic

Compute Cloud, Google App Engine, and Microsoft’s Windows Azure) for busi-

ness applications [LKK+14]. They provide cost-effective, highly scalable, and

flexible solutions for large-scale and data-intensive applications.

2.3.4.1 Amazon Web Services (AWS)

Amazon Web Services (AWS) is one of the most popular cloud computing plat-

forms. It offers a wide range of storage and computing services. The key fea-

tures of AWS are Comprehensive security capabilities, Rich controls and audit-

ing, Hybrid IT architectures, Scalability, Web Applications, Big Data and High

Performance Computing supports, Backup and storage, and Disaster recovery.
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2.3.4.2 Microsoft Azure

Microsoft Azure (also known as Windows Azure) is a public cloud that provides

the resources and tools to users for building, deploying, and managing cloud

applications. It supports various programming languages and offers several

other features such as Ease of use, Administrative tool, and PaaS.

2.3.4.3 Google Cloud Platform

Google compute engine is a scalable and high-performance virtual machine

provider that supports large-scale workloads and offers several features such

as Google infrastructure backup, Scalability, High-performance, Low cost, Fast

and efficient networking, Environmental friendly global network, and Flexibil-

ity.

2.3.5 Cloud software platform

Various cloud platforms have been developed to manage cloud infrastructures.

Aside from the comercialised platforms, there are several open-source plat-

forms that have been widely used by researchers and scienticts. OpenStack,

Eucalyptus, CloudStack and OpenNebula are well-known examples [VDWF12]

described here.

2.3.5.1 OpenStack

OpenStack is a cloud computing software platform released in July 2010. Open-

Stack was initially designed by the National Aeronautics and Space Administra-

tion (NASA) and Rackspace [SAE12, Yad13]. A vast pool of computing, storage,

and networking resources are managed through a web-based dashboard (i.e.

Horizon) and via the OpenStack provided API. OpenStack is scalable and easy

to use. OpenStack offers several components (shown in Figure 2.9).
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Figure 2.9: Components of OpenStack

• Nova: Nova provides essential components (shown in Figure 2.10) that

support the management and delivery of computing resources. Nova con-

trols the life-cycle of OpenStack instances.

Figure 2.10: OpenStack Compute Architecture Overview

• Swift service: Swift is a storage system for objects and files. A file is given

a unique identifier, and using it, other OpenStack components can access

the file.

• Glance: Glance is a virtual machine image management service. It man-

ages (i.e. creates, stores, and retrieves) virtual machine images by com-

munication with Swift.
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• Neutron service: Neutron is a network management service that main-

tains network connectivity between OpenStack components. It provides

static and floating IP to support dynamic rerouting of the traffic during

maintenance or in case of failure. It also manages firewalls and virtual

private networks.

• Keystone: OpenStack has interactions among components and services

and therefore, security matters. Keystone (identity service) is provided to

manage the authentication and authorization of various services.

• Database service: The Database Service provides a reliable and scalable

cloud Database-as-a-Service functionality for relational as well as for non-

relational database engines.

• Orchestration (Heat): Orchestration is a template-based way to describe

cloud application instances, networking information, volumes, security

groups, and even users. Heat is an example of Orchestration that allows

users to describe deployments of complex cloud applications in a template

(text file). The template then is parsed and executed by the Heat engine.

• Telemetry (Ceilometer): Telemetry is the process of reliably collect-

ing data on the utilisation of the physical and virtual resources in the

OpenStack environment. It supports use cases such as metering, moni-

toring, and setting alarms. For instance, Ceilometer efficiently collects,

normalises, and transforms data (e.g. resource usage) produced by Open-

Stack services. For example, this data can be used for generating an alarm

when usage exceeds the threshold limit.

In summary, OpenStack provides an easy-to-use web-based dashboard where

cloud services can be monitored, robust role-based access controls, and multi-

ple forms of authentication (i.e. user name/password and token-based authen-

tication).

2.3.5.2 Eucalyptus

EUCALYPTUS stands for Elastic Utility Computing Architecture for Linking a

Program To Useful Systems. It is an open-source software framework that pro-

vides the platform for private cloud computing implementation on computer

clusters [DGG15]. Eucalyptus components are shown in Figure 2.11.
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Figure 2.11: Components of Eucalyptus

• Node Controller (NC): The function of NC is the execution of the query

to collect necessary information, controlling and providing the collected

information to the Cluster Controller (CC).

• Cluster Controller (CC): It is a front-end component that uses the infor-

mation which is provided by NC to manage execution.

• Cloud Controller (CLC): Cloud Controller is a significant component of

the Eucalyptus. It is an interface between user and cloud, and a user can

use it to access the cloud. Its main task is network resource management,

scheduling, and authentication.

• Storage Controller (SC): Storage Controller is used for storing data. It is

a data storage device that stores and accesses virtual machine images.

Eucalyptus mainly benefits the processes of service deployment and manage-

ment, also supports administrators to easily install, maintain, and administer

the cloud.
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2.3.5.3 CloudStack

CloudStack is an IaaS cloud platform which is used to deploy and manage large

networks of virtual machines [MS16]. It composes the management server and

cloud infrastructure. CloudStack delivers services quickly and helps to reduce

IT operations costs. A typical CloudStack infrastructure is organised, as shown

in Figure 2.12. It consists of several parts (zone, pod, cluster, hosts, primary

storage, and secondary storage).

Figure 2.12: CloudStack infrastructure

• Zone: The zone contains a single data centre consisting of pods and sec-

ondary storage.

• Pod: The pod contains one rack of hardware consisting of layer-2 switch

and cluster(s).

• Cluster: The cluster contains one or more hosts and primary storage.

• Hosts: The hosts consist of a single compute node, within which cloud

services run.

• Primary storage: The primary storage stores the disk volumes for all VMs

running on hosts in the cluster.

• Secondary storage: The secondary storage stores templates, ISO images,

and disk volume snapshots.
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2.3.5.4 OpenNebula

OpenNebula is an open source cloud computing tool. OpenNebula can man-

age the heterogeneity and complexity of distributed extensive infrastructure

[IMCD16]. OpenNebula can be used to build a cloud computing environment

that is highly scalable. Moreover, the public cloud is fully supported by the pro-

vision of interfaces and vital functions to VM, network, and storage manage-

ment. Users can access services via control interfaces provided by the platform.

The platform consists of three main components (core virtual infrastructure

manager, capacity manager, and drivers).

• Core virtual infrastructure manager: The core virtual infrastructure

manager manages the life-cycle of virtual machines by ensuring a smooth

running of basic operations, including migration, monitoring, and deploy-

ment.

• Capacity manager (scheduler): The scheduler module is responsible for

managing all functionality from the OpenNebula core, such as workload

balancing.

• Drivers: Drivers provide the necessary drivers to regulate data transfer-

ring and VM management irrespective of the hypervisors.

OpenNebula does not provide a Graphial User Interface (GUI), and this is the

main drawback to the platform. OpenNebula, however, offers server consolida-

tion, dynamic partitioning clustering, centralised management, load balancing,

heterogeneous workloads, and virtual machine supply on demand.

2.3.6 Auto-scaling optimisation

Auto-scaling is a cloud computing optimisation feature. Cloud users use this

feature to automatically scale up/down the processing resources (i.e. virtual

machines and server capacities). Figure 2.13 shows two auto-scaling scenar-

ios. Once needed, the auto-scaler can decide to allocate more resources to one

application (Figure 2.13-a) and deallocate the resources (Figure 2.13-b).

Figure 2.14 shows various phases of auto-scaling of an application in a cloud

environment. The phases are known as the MAPE (Monitoring, Analysis, Plan-

ning, and Execution) control loop[KC03].
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Figure 2.13: Auto-scaling resources

Figure 2.14: Different phases of the MAPE loop

• Monitoring: Monitoring is an essential phase in auto-scaling. It provides

measurements used in decision making of scaling an application.

– Performance metrics: There are many performance metrics regard-

ing cloud services. The performance metrics include CPU usage,

memory usage, execution time. Selection of the best performance

indicators is essential to the success of an auto-scaler.

– Monitoring interval: The monitoring interval determines the sen-

sitivity of an auto-scaler. Choosing appropriate monitoring intervals

cause to obtain balanced performance.

• Analysing: In the analysing phase, the system decides whether it needs
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to perform scaling actions based on the monitored information.

– Scaling timing: The system needs to decide when to perform the

scaling actions.

– Workload prediction: It is important accurately predict the future

workload when proactively scaling chosen by the system.

– Adaptivity to changes: The auto-scaler must be aware of any sub-

stantial changes in the application or workload and be ready for the

new situation.

• Planning: The planning phase estimates the number of resources in total

in the next scaling action that should be added/removed. The composi-

tion of resources should also be optimised to minimise financial costs.

– Resource estimation: In the planning phase, the number of re-

sources to handle the current or incoming workload is estimated.

• Execution: The execution phase is responsible for executing the scaling

plan to add/remove resources. It is straightforward and can be imple-

mented by calling the cloud provider’s APIs. A challenging task here is

supporting the APIs of different providers.

2.3.6.1 Taxonomy of auto-scaling

Figure 2.15 shows the taxonomy for auto-scaling applications. In this section,

the auto-scaling sub-activities will be discussed in detail.

Figure 2.15: Taxonomy for auto-scaling applications in the cloud

• Adaptivity: One of the challenges is whether and how the auto-scaler ad-

justs itself to adapt to workload and application changes. As mentioned,
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the auto-scaler is responsible for adding/removing resources to the appli-

cation to reach the target performance. In a dynamic cloud environment,

the application, or workload can change at any time. Hence adaptivity is

essential for the auto-scaler. For example, Amazon [Ama18] uses a rules-

based approach to define rules, and the decisions are made based on the

current input and these rules.

• Scaling Indicators: It is essential to know what metrics are monitored

and measured to make scaling decisions. The auto-scaler is responsi-

ble for doing the right action based on the collected performance indi-

cators of the application. These performance indicators can be collected

and monitored at different levels of the system (low-level metrics and

high-level metrics). The server information at the physical server/virtual

machine layers such as the utilisation of CPU, memory, and network re-

sources are considered low-level metrics. The information at the applica-

tion layer such as resource rate, average response time, session creation

rate, throughput, service time, and request mix is considered as high-level

metrics. The auto-scaler can decide to scale up and scale down the re-

sources, based on the metrics, to maintain the overall utilisation within a

predefined upper and lower bound. For example, in work [SSCS10, KC14]

, the information about the request service time and request mix is ob-

tained to estimate how much resources needed. These metrics are not

straightforward to measure. Service time is the time for processing the

request, which is widely used in the queuing models to approximate the

average response time. Kaur et al. [KC14] have used the past server logs

to infer the mean service time. In another work, [GDK+14], the authors

employed Kalman filters to estimate service time during runtime. In some

work, [PHS+09, YF13, FdRL+14], both high-level and low-level metrics

are monitored.

• Resource Estimation: Resource estimation identifies the minimum

amount of computing resources required to process the workload to deter-

mine whether and how to perform scaling operations. Various attempts

have been made to develop resource estimation models from basic ap-

proaches to methods with complex models. These can be categorised

into six groups, namely rule-based, fuzzy inference, application profiling,

analytical modelling, machine learning, and hybrid approaches. For ex-

ample, in the rule-based method, a set of predefined rules (actions and

conditions) can be defined [DTM12, HGGG12] such as: If CPU utilisation
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reaches 70%, add two instances or If CPU utilisation decreases below 40%

remove one instance. In another fuzzy-based method, the core is a set of

predefined "If-Else" rules, to make provision decisions [FLRC14]. In this

model, the auto-scalers are commonly linked with machine learning tech-

niques to automatically and dynamically learn the rule-set [LZ10, JPM16].

• Scaling timing: The critical question here is when auto-scalers should

scale the application. However, there is no specific solution to this is-

sue as different applications have various workload characteristics, and

preference of cost and quality of service (QoS). Auto-scalers can be di-

vided into two groups. In the first group, the application can be reactively

scaled by auto-scalers based on the current status of the application and

the workload. In the second group, the resources proactively add/remove

from the application by considering the future needs of the application

[KWQH17]. For applications with regular and smooth workload changes,

reactive auto-scalers are usually preferred because they can save more

resources without causing a large number of a service level agreement

(SLA) violations.

• Scaling methods: Auto-scaling in a cloud environment can be done ver-

tically, horizontally, or can be a hybrid.

– Vertical scaling: Vertical scaling means removing or adding re-

sources such as CPU, memory, I/O, and network to or from existing

VMs. Vertical scaling is not suitable for highly scalable applications

due to its limitations. However, some services or components that

are difficult to replicate during runtime, such as a database server

can benefit from by vertical scaling [YF12, SKZ+14].

– Horizontal scaling: The core of the elasticity feature of a cloud is

horizontal scaling. It means adding more individual units of a re-

source doing the same job [SAAB+18, CU16]. For example, in the

case of servers, it could increase the performance by adding more

servers as needed. Instead of one server, one can have two, ten, or

more servers sharing the same work. Most cloud providers offer dif-

ferent size of VMs for users to choose. Some of them allow users to

customise their VMs with a specific amount of cores, network band-

width, and memory. Also, various pricing models exist in the current

cloud market, which further increases the complexity of the provi-

sioning problem.
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– Hybrid: Mixing vertical scaling and horizontal scaling is called the

hybrid model. This model is used in some work such as [HGGG12,

YLS+14] to scale the application. Optimisation techniques can be

used to search for a scaling plan that results in the least cost using

a hybrid of vertical and horizontal scaling [DGVV12, GDK+14]. In

the hybrid scaling model, both horizontal scaling and vertical scaling

can be separately applied to different components of the application.

2.3.7 Cloud cost estimation

Cloud providers offer essential computational resources (such as storage and

compute power) to users with the benefits of "on-demand" and "pay-per-use"

features. Estimating the existing large variety of service offerings and choos-

ing the best provider is a difficult task for a user. Hence, there are two critical

challenges regarding choosing providers and understanding cost models for a

user. The first challenge is understanding the cloud resources and their diverse

pricing models. The second challenge is estimating the potential cost of ob-

taining the required services. The pricing model defines the associated cost of

providing services on a per-use-basis. There are two types of pricing plan: static

(fixed) pricing and dynamic pricing [SH17].

The static pricing model is pay-per-use. The cloud provider determines the

prices of a variety of resources in advance. Figure 2.16 shows, as the demand

increases, the static price does not change over time, and it causes profit loss

[SH17].

Figure 2.16: Static pricing limits service provider’s profit

In the dynamic pricing model, prices are changing dynamically based on the

market conditions or status [SP11]. The price of the cloud services can be

calculated automatically based on a real-time request.
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Figure 2.17 shows the most important market players in different IaaS domains

(i.e. Storage), and that the pricing models of each domain for each provider

are different.

Figure 2.17: Public cloud services taxonomy

For example, in the computing area, based on various CPU, random ac-

cess memory (RAM), and I/O resources, pricing models vary across different

providers. Usually, providers offer different types of instances (with different

configurations, for instance, small, medium, and large computing instance) to

meet customer requirements. The most popular pricing models are on-demand,

prepaid (reserved), and spot (auctioned).

• On-demand model: The on-demand model suits cases such as where

the user does not have good estimation of the required resources, or for

start-up companies who may require resources only for a short time.

• Prepaid model: The prepaid (reserved) model provides cost benefits

when producing a long-term demand estimation for computational re-

sources is feasible. This model works well for larger organisations and

those who have an initial investment.

• Spot model: The spot model is usually used in a non-production en-

vironment where, for a short period, customers can afford to lose their

virtual machine. Finding the cost of running an application that con-

sumes resources such as network, CPU, and memory is a challenging task.

For large-scale distributed applications, there is a need to use a third-
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party framework that supports estimating required resources for a task.

The third-party framework can tune the application so that eventually

resources are utilised and costs are minimised while performance is im-

proved and maintained.

Several studies propose different methods for metering and estimating the cost

of running an application in a cloud environment. For example, Siew et al.

[SHL12] used a queuing model for predicting the cloud computing resources for

an application. A user can choose a high-quality cloud configuration and esti-

mate the deployment cost. Huihong et al. [HH12] proposed an approach to es-

timate the cost of running an application on AWS during the design phase. They

modelled the application execution service with a UML activity diagram. Differ-

ent cost models using a cloud pricing schema are proposed [TD10, Dee08]. For

example, Ewa [Dee08] et al. offer an amortised cost model of a long-running

task where the cost is simply the price per virtual machine-hour multiplied by

the total running time of the task in hours.

Mehrotra et al. [MSBA14] introduced an autonomic performance management

approach that provides dynamic resource allocation for deploying a set of ser-

vices on a cloud computing infrastructure by considering both the availability

and the demand for the cloud computing resources. The authors [ALK15] pro-

vide a way to select appropriate cost-aware WorkFlow Scheduling (WFS) ap-

proaches from the available pool of alternatives; to achieve this objective, they

conducted an extensive review to investigate and analyse the underlying con-

cepts of the relevant approaches. A pricing model of cloud services based on

a useful operational cost model of running an instance for different providers

such as Amazon and Rackspace are proposed [NRRD12]. They used perfor-

mance counters from hypervisor vendors to obtain cloud instance resource util-

isation. In other work, cost-based scheduling is used to meet the performance

expectations of workflow-based applications [BKK+08]. A cost-aware provi-

sioning system is built that exploits the resource heterogeneity of cloud infras-

tructures before any resource selection [SSSS11]. By using an offline profiling

technique, this work was able to estimate the maximum performance capacity

of a resource by running an application on different resource types, and sub-

jecting them to a gradually increasing synthetic workload [DGVV12].
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2.4 Chapter summary

Big data analytics includes the processing of large and varied data sets. Learn-

ing from vast and unstructured data brings significant opportunities to various

areas. Traditional methods are not computationally efficient or scalable enough

to analyse the data. In this chapter, the existing work in the area of big data

analysis and associated technologies (e.g. cloud computing) are reviewed. Sev-

eral data analytics and machine learning techniques for big data processing

have been explored. The taxonomy of the existing tools, frameworks, and plat-

forms in the area of big data computing are also discussed. It has been pointed

out that the cloud computing environment is a suitable platform for big data

analysis. Cloud computing provides an environment of flexible distributed re-

sources that use highly efficient methods in the processing and management of

data while reducing costs.

Several widely-used and useful technologies and data analysis techniques have

been studied. Using machine learning over big data is challenging, especially

when combined with cloud computing. Machine learning enabled distributed

processing platforms are reviewed. Feature extraction underlies machine learn-

ing and involves techniques such as data segmentation. A need is identiied for

a cloud-based distributed big data processing framework which supports the

processes of data segmentation and feature extraction, machine learning model

building, and classification.

In this work, a cloud-based machine learning architecture for big data is pro-

posed that not only provides useful data pre-processing and machine learn-

ing techniques but also offers several optimisation components to enhance the

framework’s functionality and address the accuracy, performance, and cost effi-

ciency challenges.
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Chapter 3

Cloud-Based Classification
Framework with Feature-category
Model Optimisation

3.1 Introduction

In many areas of business and research, applying machine learning to large

amounts of data (big data) is becoming increasingly important. Several solu-

tions including hardware platforms, more efficient algorithms (e.g. machine

learning algorithms), modern technologies (e.g. cloud computing), and vari-

ous specific optimisation have been developed to help handle the demands of

these big data applications.

A cloud-based framework, CLoud-based Optimisation Architecture for Machine-

learning (CLOAM), is proposed to address the challenge of the efficiency of Ma-

chine Learning (ML) over big data. CLOAM offers a generic machine learning

architecture and several optimisation components. The optimisation compo-

nents improve the architecture performance and machine learning accuracy

in a general way for any data type and any dataset. It offers self-adjusting

and adaptive solutions and responds to the needs of a specific application (e.g.

medical or environmental images) and specific dataset for that application.

The generic machine learning architecture includes stages of segmentation,

feature extraction, model building, and classification. In this chapter, the

framework, its machine learning architecture, and a proof-of-concept feature-
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category model optimisation component are presented. A case study of identi-

fying the leaf types in an image dataset of different types of plant leaves is also

designed to demonstrate the framework functionalities.

3.2 CLOAM framework

CLOAM (CLoud-based Optimisation Architecture for Machine-learning) is a

cloud-based framework for big data classification. Figure 3.1 shows the con-

ceptual overview of CLOAM, which includes the underlying generic machine

learning architecture and an optimisation component (feature-category model

optimisation).

The CLOAM framework has two modes, Training Mode and Testing Mode. In

the Training Mode, different Machine Learning (ML) models are built in paral-

lel using a labelled training dataset. The ML models can be build using a single

dataset (e.g. text or image), or from a combination of various types of informa-

tion. For example, X-ray images and clinical notes associated with those images

for the same issue can be used to create a comprehensive machine learning

model. An optimisation component can evaluate the multiple models using a

labelled testing dataset, and determine the best model under some criterion

(e.g. accuracy). In the Testing Mode, a user can use the best selected ML model

to classify (identify labels) for their unlabelled dataset.

Figure 3.1: CLOAM framework
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3.2.1 Private Cloud Environment

Figure 3.2: The configuration and architecture of our self-developed Cloud environ-
ment
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Figure 3.2 provides a comprehensive view of our self-developed private cloud

configuration and architecture.

3.2.2 Generic machine learning architecture

The generic machine learning architecture includes stages of segmentation, fea-

ture extraction, model building, and data classification. These are described

here.

• Segmentation: Data segmentation is an essential technique in data pre-

processing for ML. Segmentation is beneficial for many applications (e.g.

medical imaging and locating objects in satellite images). In CLOAM,

the segmentation stage is responsible for dividing and partitioning the

data into smaller parts called segments. Based on the application, differ-

ent methods (e.g. threshold, edge-based, region-based, and watershed-

based) can be used for data segmentation [DY14]. Segmentation provides

the basic elements (e.g. in a blood cell analysis scenario, individual cells

are the basic elements) that are subject to subsequent analysis.

• Feature extraction: Feature extraction is another crucial step for data

preprocessing. Feature extraction is the process of collecting discrimi-

native information from data. As discussed in Chapter 2, Section 2.2.2,

different features (low-level and high-level) can be extracted from un-

structured data based on the type of data (e.g. image, text). The main

goal of feature extraction is to obtain the most relevant information from

the original data and to represent the information in a space of lower di-

mensionality, and create combinations of variables in order to obtain a

reduced number of features while still describing the data with sufficient

precision [SKN17]. CLOAM employs various extraction techniques to ob-

tain features that are useful for data classification and predictive mod-

elling. In this work, the features are categorised into different categories

such as Shape and Colour.

• Machine learning: The CLOAM framework incorporates machine learn-

ing techniques of model creation and data classification. CLOAM provides

two modes, Training Mode and Testing Mode. In the Training Mode, the

extracted features (from a labelled training dataset) are used by a ma-

chine learning classifier (e.g. Decision Tree) to build a model. Different

models can be created for the same dataset. For instance, the feature
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category optimisation uses different models that are built using the same

classifier but with different feature categories. The classifier ("ML-A") uses

the feature category "Shape" and builds a model "Model-Shape" while the

same classifier ("ML-A") uses another feature category "Colour" and builds

a different model "Model-Colour". Accuracy and performance of the dif-

ferent models depend on several factors such as the ML classifier used

to build the model, the size of the training dataset, the diversity of data

objects in the training dataset, and also the extracted features that can

represent the data differently. In the Testing Mode, the models can be

used to classify unlabelled datasets.

3.2.3 Optimisation component

The CLOAM framework offers several optimisation components. They are self-

adjusting and can respond to the needs of a particular application. In this work,

five areas of optimisation are explored: feature-category model optimisation,

classifier optimisation, auto-adjusting feature optimisation, computing resource

optimisation, and performance-aware cost efficiency optimisation component.

The generic machine learning framework works with these optimisation com-

ponents to address the challenging demands of using machine learning over

big data. In this chapter, the feature-category model optimisation component is

presented. This component involves evaluating multiple different feature mod-

els in parallel, using sampling and feedback to choose the best model (highest

accuracy) for a particular dataset.

3.3 CLOAM system-level architecture

The CLOAM system-level architecture and several services are presented

(shown in Figure 3.3). Note that the generic machine learning framework

in this figure (lower right hand section) is a simplified version of the generic

framework shown in Figure 3.1 This is because, in this initial proof-of-concept

case study, the segmentation and feature extraction stages are amalgamated

into the Model Builder components. This simplification was used due to the

fact that each model builder is using different subsets of category features. In

all the other case studies the more general framework design with separate

segmentation and feature extraction stages, as illustrated in Figure 3.1, is used.
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The CLOAM architecture is deployed in a self-developed private cloud environ-

ment (using OpenStack open source software framework). In this architecture,

each component has a dedicated queue that enables it to communicate with

other components. The messaging system and component functionality are de-

scribed here.

Figure 3.3: CLOAM system-level architecture

3.3.1 Messaging system

In the messaging system, queues are used between instances (nodes) to support

asynchronous messaging. A message is stored in a queue until it is retrieved

and deleted. Each message is processed. A processing component retrieves

a message from a queue and processes it according to its responsibility. As

Figure 3.3 shows, the CLOAM framework uses four different queues (Request

Queue, Task Queue, Model Queue, and Response Queue) for sending/receiving

messages between processing components. The message that is pushed to these

queues contains a timestamp, unique identifier, and a textual field. Since both

sides (sender and receiver) need to understand the structure of the message to

interpret it, a data structure is designed for each queue. A technique is needed

to serialise and deserialise an object to a text value (String). GSON is a library

developed by Google to convert a programming object to a JSON (JavaScript

Object Notation) value and vice versa, converting it back to a programming

object. This lets the component convert their object to a string value (JSON),
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Figure 3.4: Request Data Structure

put it in a message, and push it to a queue. The other side receives the string

value (JSON) and deserialises it to a programming object.

• Request Queue: Initially, a user sends a request to the CLOAM frame-

work by pushing a message into the publicly visible "Request Queue." The

framework has a controller instance that continuously monitors the "Re-

quest Queue", retrieves a request (sent by a user), and processes it. First,

the message is deserialised and, then, is passed through the processing

instances. The data structure of the "Request Queue" is described in Fig-

ure 3.4.

– User Id: A User Id is an identifier that shows who owns the request

so the result can be returned to the right requester.

– Task Id: Each user can send an indefinite number of requests. Each

task is given a unique identifier so that the result can be associated

with the correct task.

– Data URI: A request may contain a piece of data (an object or a full

dataset). Since the queueing service is not able to handle large ob-

jects, the framework provides an API for uploading the object(s) to

Blob storage (Swift). Swift is a service for storing large amounts

of unstructured object data, such as text or binary data, which can

be accessed through HTTP or HTTPS from anywhere in the world.

The uploaded object(s) has a unique URI (Uniform Resource Iden-

tifier) which is accessible globally for permitted components within

the framework.

– Original Class Name: It is used in the Testing Mode of the framework,

where the user has already classified the data and wants to test the

framework on identifying the object.

– Processing Time: As a request travels through the framework from

one component to another, this attribute lets us know the processing

time of each component and the waiting time of each request.
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– Job Mode: Job Mode attribute allows the controller to distinguish

the mode of a request. Currently, the framework provides Training

Mode and Testing Mode. In the Training Mode, there are two sub-

modes: initial training using the training labelled dataset, and model

evaluation using a testing labelled dataset in order to optimise the

models.

• Task Queue: Each processing node has a queue called "Task Queue." The

nodes keep monitoring their own queues and if there is a request they

retrieve and process it. The data structure used in the "Task Queue" is the

same as the "Request Queue."

• Model Queue: This queue is used in the Training Mode of the framework.

The result of classifying a dataset using the training model will be pre-

pared, and a message complying with the "ModelDS" will be generated.

The data structure of the Model Queue is described below (Figure 3.5).

Figure 3.5: Model Data Structure

– RequestDS: This contains all attributes in the RequestDS.

– Model Id: A unique identifier for each model that is trained for a spe-

cific dataset. This identifier is used in the Training Mode of the frame-

work, where different models are compared, and the best model is

selected.

– Features: There are a variety of features that can be extracted from a

dataset. A machine learning classifier uses the extracted features to

create a model. This attribute contains the name of the features used

in training a model.

– Model Accuracy: Machine learning model accuracy is the measure-

ment used to determine which model is the best at identifying rela-

tionships and patterns.

– Score: The summation of the correctly identified type of object in a

dataset is the score of the model for object recognition.

• Response Queue: Once the Responder component receives the result

from the Evaluator component, it sends a message complying with the
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Figure 3.6: Response Data Structure

"ResponseDS" to the Response Queue for the user. The data structure of

the Response Queue is described below (Figure 3.6).

– User Id: The result will go back to the user requester.

– Task Id: The result will go back to the requester based on the Task

Id.

– Best Model: The best model identified will be returned to the user.

– Model Accuracy: This contains the accuracy of the best-identified

model.

– Score: This attribute contains the score of the best model.

3.3.2 Processing components

The framework consists of five processing components (Controller, Model

Builder, Classifier, Evaluator, and Responder). They have different responsi-

bilities. In this instantiation of the framework (Figure 3.3), one instance is

assigned to the Controller, several instances are assigned to the Model Builders,

one instance is assigned to the Classifier, and one instance is assigned to each

Evaluator and Responder. The following are the descriptions of each processing

component.

• Controller: The Controller is responsible for the control and management

of incoming data and the addition of new messages to the Task Queue.

• Model Builder: This component is used in the Training Mode to create a

machine learning model. Once a request is sent to the framework with a

training dataset, this processing component reads a message from its Task

Queue, and extracts a set of high-level features (e.g. shape and colour)

from the dataset. Then a machine learning classifier (e.g. J48) uses the

extracted features to build a model. At this stage, as shown in Figure 3.3,

multiple Model Builder components can work in parallel to create differ-

ent models. In order to rank the models and find an appropriate model
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Table 3.1: Virtual machine instance configurations

Cloud Vendor Instance Type VCPU Core Memory
OpenStack tiny 1 Core 512 MB
OpenStack small 1 Core 2 GB
OpenStack medium 2 Core 4 GB
OpenStack large 4 Core 8 GB
OpenStack xlarge 8 Core 16 GB

(based on the best performance or the best accuracy), they should be

evaluated. So, each Model Builder component evaluates its model using

a labelled testing dataset. Each of them sends its evaluation result (the

accuracy) to the Evaluator component.

• Evaluator: This component receives the evaluation results from all Model

Builder components and compares them to identify the most accurate

model. The best-identified model will be stored in a data storage and its

related information (e.g. identifier and its URI) is sent to the Responder.

• Classifier: If the CLOAM framework is in Testing Mode, this component

reads a message from its Task Queue and performs the extraction of fea-

tures used in building the model and the classification of the dataset (un-

labelled dataset) using the extracted features and the machine learning

model.

• Responder: This processing component is responsible for submitting the

identified model to the Response Queue, so the users can receive the result

of their requests.

3.4 Testbed

OpenStack is used to build and manage the private cloud environment. It has a

set of service for the creation and management of private cloud computing. The

Nova service allows the user to provision and manages virtual machines (VMs)

of various configurations. In OpenStack, when creating an instance, different

sizes of predefined flavour such as tiny, small, medium, large, xlarge (Table 3.1)

can be used.

A flavour defines the compute, memory, and storage capacity of a virtual server.

Each instance has an IP address for accessing the image remotely. Based on the
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configuration of CLOAM, the number of used instances will be different. Eight

physical machines are used in developing our private cloud environment. Four

of them are used for the compute nodes (Nova), one for the controller node

and dashboard node (Horizon), one for the block storage node (Cinder), one

for the object storage node(Swift), and one for the network node (neutron).

These nodes are described in detail in Chapter 2, Section 2.3.5.1. In this work,

the Nova nodes build a pool of computing resources and, using this, several

virtual machines (VMs)/instances can be instantiated. The number of VMs can

vary based on the configuration of the CLOAM framework.

In the framework, the instances require a messaging system for communica-

tion. For this purpose, a queueing service, RabbitMQ, will be used. RabbitMQ

is a messaging service that is implemented in OpenStack for internal commu-

nication between various OpenStack components and services. It has a general

purpose message broker, employing several variations of a point to point and

request/reply communication styles patterns. Communication in RabbitMQ can

be either synchronous or asynchronous as needed.

3.5 Case study

In order to demonstrate that the proposed framework and its components func-

tion properly, a proof-of-concept experiment is performed. The framework can

be evaluated using different kind of dataset. In this section, a case study is

designed to build a model by processing a leaf dataset, use the best-identified

model to classify a testing leaf dataset, and report the accuracy of the classifi-

cation.

In this plant classification case study, several different features are extracted

from the plant leaf. Each leaf contains significant information that can repre-

sent the type of the plant and support identifying and classifying the plant type.

The dataset used consists of three types of leaf images [CR11]. They are divided

into three classes based on the leaf type (Pittosporum Tobira, Betula Pendula,

and Cercis Siliquastrum) shown in Figure 3.7. In this section, from the labelled

training dataset, 120 images (40 images for each class) are used to build ML

models, and 99 images (33 images for each class) are used for evaluating the

built models. Finally, using a labelled testing dataset and by removing the la-

bels from it, the models are used to classify the dataset, and using the known
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labels and the newly identified labels, the actual accuracy of the models for that

dataset will be calculated and reported.

Figure 3.7: Leaves: Betula Pendula (Left), Cercis Siliquastrum (Middle), and Pittospo-
rum Tobira (Right)

3.5.1 Methodology

Different data features (e.g. colour and shape) are extracted from an image us-

ing various feature extraction methods. Supervised machine learning is used in

learning the patterns and creating different ML models to classify the objects in

a specific dataset (in this case study, a leaf dataset). The proposed optimisation

component evaluates the models and selects the best model with the highest

accuracy. In this experiment, in order to evaluate the result of the proposed op-

timisation component, all available models will be used to classify an unlabelled

testing dataset (given that its labelled version is known), the known labels and

identified labels are compared, and the actual accuracy of each model is calcu-

lated. If the best-identified model of the optimisation component is the same

as, or at least is one of the top three of, the testing best model(s), then the

optimisation component is evaluated as successful. In this section, the feature

extraction and machine learning methods will be described.

3.5.1.1 Feature extraction

In this experiment, several methods are used to extract the two high-level fea-

ture categories, Basic features category (e.g. edge and corner) and Colour

category. In addition to these, I have designed an innovative method that

produces two unique shape-based signatures (Ordered-Signature and Sorted-

Signature) of an object in an image using the outer boundary shape of the

object. In this section, the methods used in extracting the required features are

explained in detail.
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3.5.1.1.1 Edge detection: Edge detection is a fundamental technique used

in image processing for feature detection and extraction [SHA08]. Edge detec-

tion is used to find discontinuities and identify points in a digital image where

the brightness of the image changes sharply. The purpose of edge detection is to

significantly decrease the amount of data in an image and store the structural

properties that represent the object in the image for further image processing.

The Canny edge detector technique is chosen because of having superior accu-

racy to other algorithms [ZHA01]. An example of Canny edge detection for one

type of leaf (Cercis Siliquastrum) is shown in Figure 3.8. The white lines are

the edges identified from this image by the Canny edge detector algorithm.

Figure 3.8: Left side: original image; Right side: Canny edge operator applied.

3.5.1.1.2 Corner detection: Corner feature is an important feature used

in image processing [SZ13]. Corner detection is a low-level image processing

technique, widely used in various computer vision applications. Generally, a

corner in an image is a point on the contour at which two straight edges meet

at a certain angle or the location at which the contour direction changes signif-

icantly. The Harris corner detection algorithm is one of the most famous corner

extraction methods [HS88]. Harris corner detection is based on the autocorre-

lation of image intensity values or image gradient values. The corner features

extracted by using the Harris corner detector method are analysed for different

values of sigma, threshold and radius [SSa11]. Figure 3.9 shows the Harris

corner detection for one type of leaf (Cercis Siliquastrum). In this image, all

white spots are detected as corners.

Figure 3.9: Left side: original image; Right side: Harris corner detector applied.
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3.5.1.1.3 Colour detection: Colour space is a mathematical model with

three or four different colour components representing colour information. For

various applications, such as computer graphics, image processing, and com-

puter vision, different colour spaces (models) are used. There are various

colour spaces for detecting objects [PY11](shown in Figure 3.10).

Figure 3.10: Colour model

The colour spaces are RGB based colour space (RGB, normalized RGB), Hue

based colour space (HSI, HSV, and HSL), and Luminance based colour space

(YCbCr, YIQ, and YUV). One or more colour spaces can provide an optimal

threshold to detect object pixels in a given image. The choice of appropriate

colour space is often determined by the object detection method and the ap-

plication. The first step is to resize the picture to 256 * 256 pixels. Secondly,

the average of each space is calculated for all pixels, such as R, G and B. This

process will be done for all spaces, and finally, nine numbers are produced. The

next step is to obtain a histogram to calculate its statistical moments (mean,

standard deviation , and bias). After this process, we have 27 image features

(3*(RGB+YCbCr+HSV component))* 3 features(mean, standard deviation ,

skewness value)).

3.5.1.1.4 Shape detection: Shape representation and description tech-

niques can be generally performed in two ways: contour-based and region-

based approaches [SHA05]. Contour-based approaches are more popular than

the region-based approaches [ZHA04]. This is because human beings are

thought to discriminate shapes mainly by their contour features. Another rea-

son is that, in many of the shape applications, the shape contour is of interest

while the shape interior content is not important. The contour-based method

is used in this case study. The contour-based shape detection technique ex-

ploits shape boundary information. In this work, an innovative shape-based

feature is proposed that represents a signature of the outer boundary of an
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object. The proposed feature comes in two forms of Ordered-Signature and

Sorted-Signature.

As shown in Figure 3.11, (a) contour detection is used to detect the outer

boundary of an object; then, based on the contour, the centre of the object

and the radius is calculated. In the mask image that is shown in (b), the lines

are drawn based on a predefined angle step (e.g. 30 degrees). This is the angle

between successive radius lines drawn from the centre to the boundary. For

example, in Figure 3.11, an angle step of 45 degrees produces eight lines from

the centre of the circle to the boundary. The overlap of (a) and (b) will produce

(c). From (c), the intersection of the object outer boundary and lines can be

extracted.

Figure 3.11: (a : Contour of object, b : Clock-wise lines, c: Intersection of
lines and contour

The distance between the centre of the object and the intersections are absolute

distance. Absolute distance does not work well as it depends on the scale.

However, if the absolute distance is divided by the radius of the outer contour

circle, it gives us a scale-invariant number between zero to one. By using this

technique, it does not matter how small or big the object is, and the numbers

produced by this technique will be the same for any size of the same object.

Sorting this list from high to low produces another signature, the Sorted-

Signature. However if the same object is rotated, the signature will change,

so the solution to this issue is to use a signature called the Ordered-Signature.

Starting from the longest radius line and continuing clockwise, the list of ra-

dius lengths for an object produces the Ordered-Signature. These two object

signatures are size and rotation invariant.
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3.5.1.2 Modelling

Under supervised learning, the machine learning model is built using training

data which contains labelled input, indicating the expected output. With the

help of these, the model learns its function of providing an appropriate output

when presented with an unseen input [MOH17]. Supervised learning meth-

ods are commonly used to generate predictive models. Tasks like classification

are generally performed using supervised learning. In this section, the Weka

machine-learning package [Wek15] is used as the basis for developing the ma-

chine learning components for model creation and data classification. Different

classifier algorithms are available in Weka such as Naive-Bayes, Neural Net-

work, Decision Tree known as J48, etc. (described In Chapter 2, Section 2.2.4).

3.5.2 Evaluation

The proposed framework provides various functionalities, such as building dif-

ferent models for a dataset (using a labelled training dataset), finding the best

model (e.g. highest accuracy) and classifying a dataset (using an unlabelled

testing dataset). Eleven models are built in parallel in the Training Mode of the

CLOAM framework where each of them uses one or some combination of the

high-level feature categories.

1. M1: Basic features (edge and corner).

2. M2: Colour (Three colour schemes, RGB, YCbCr, and HSV, and also the

combination of all of them).

3. M3: Ordered-Signature.

4. M4: Sorted-Signature.

5. M5: Basic features and Colour.

6. M6: Ordered-Signature and Basic features.

7. M7: Sorted-Signature and Basic features.

8. M8: Ordered-Signature and Colour.

9. M9: Sorted-Signature and Colour.

10. M10: Colour, Ordered-Signature, and Basic features.
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11. M11: Colour, Sorted-Signature, and Basic features.

For example, "Model Builder 1" (shown in Figure 3.3) extracts the Basic fea-

tures (e.g. edge and corner) from an image dataset and uses an ML classi-

fier (J48 ) to create a model (M1) while "Model Builder 2" extracts Colour

features and uses the same ML classifier (J48) to create another model (M2).

The feature-category model optimisation component identifies the best model

with the highest accuracy. Figure 3.12 compares the accuracy of all the mod-

els and shows that three models, M1 (Basic), M7 (Sorted-Signature and Basic

features, and M9 (Sorted-Signature and Colour features), provide the highest

accuracy. The results show that even though a feature category, on its own,

supports an ML model to provide high accuracy (e.g. M1 model that uses Ba-

sic features), a combination with another feature category does not necessarily

provide higher accuracy. This issue can be seen by comparing the effect of the

Colour feature when combined with others. The model of Colour feature (M2)

provides 43% accuracy; the model of Basic and Colour feature (M5) provides

31% which is lower than that of their individual models (M1 and M2); how-

ever, the Colour feature positively affects the accuracy when combined with the

Ordered-Signature to provide accuracy of 78% which is higher than their in-

dividual models (M2 and M3). These results differ for different datasets. So

there is no permanent best combination of features that can be used in training

an ML model, which will always provide the highest accuracy. Based on the re-

sults, the proposed feature-category model optimisation component selects the

model that uses Sorted-Signature and Colour features (M9) as it provides the

highest accuracy of 93%. Furthermore, it nominates the M7 and M1 models

as the second-best and third-best models with high accuracy for this dataset

(shown with green colour in Figure 3.12).

Figure 3.12: The actual accuracy of the built models in the Training Mode
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Figure 3.13 reports the actual accuracy of the models in Testing Mode and the

accuracy of models in Training Mode. The results show that the best-selected

model of the optimisation component (M9) is among the top three models with

highest-accuracy in Testing Mode (M7, M9, and M1). The best-selected model

(M9), using the training dataset, provide accuracy of 93%. Figure 3.13 shows

that the models performs almost as expected in processing the training and

testing datasets; but sometimes it may not provide the expected result as the

data representation of the training dataset is different with testing dataset. For

instance, in the Training Mode, the accuracy of the model M9 (93%) is higher

than the model M7 (92%), but interestingly in the Testing Mode, the accuracy

of the model M9 (86%) is lower than the model M7 (89%).

Figure 3.13: Model accuracy in Training Mode vs Testing Mode

3.5.3 Discussion & Conclusion

In this experiment, various models were created using different sets of data

features extracted from a labelled training dataset. The models were evaluated,

and the model with the highest accuracy was selected. Using an unlabelled

testing dataset, in which the data labels are known to us, all built models were

evaluated. The accuracy of the models in Training Mode and Testing Mode were

compared, and the results show that the proposed optimisation component can

successfully identify the best ML models for a specific dataset that can later be

used to classify unlabelled datasets and perform well to their results in Training

Mode.

All features may not be useful to recognise an object. The models (built by a

specific ML classifier) with the most useful feature category provide the highest

accuracy for a specific dataset. In conclusion, the proposed feature-category

Cloud-based Machine Learning Architecture
for Big Data Analysis

62 Rezvan Pakdel



3. CLOUD-BASED CLASSIFICATION

FRAMEWORK WITH FEATURE-CATEGORY

MODEL OPTIMISATION 3.6 Chapter summary

model optimisation was evaluated, and the results showed its usefulness and

strength in identifying the best model (with the highest accuracy) by sampling

a labelled dataset and then classifying an unlabelled dataset.

3.6 Chapter summary

An efficient cloud-based framework (CLOAM) is proposed. The framework of-

fers a generic machine learning architecture and several optimisation compo-

nents. The generic machine learning architecture uses different data segmenta-

tion and feature extraction methods and machine learning algorithms to create

ML models and perform data classification.

In this chapter, in a plant recognition scenario, an image dataset of different

types of leaves is used in order to evaluate the functionality of the CLOAM

framework. A labelled training dataset and a labelled testing dataset were

used in evaluating the proposed feature-category model optimisation compo-

nent. The framework offers two modes, Training Mode and Testing Mode. In

the Training Mode, several models are built by using several virtual machines

(VMs) in parallel. Then, the models are evaluated by a new labelled dataset to

show the usefulness of the optimisation component. The best model selected

is the one with a distinct combination of features (i.e. a combination of Basic

and Colour features) that were most effective for one specific ML classifier (e.g.

Decision Tree) to train a model that provides the highest accuracy for that spe-

cific dataset. In the following chapters, more optimisations will be proposed to

support the CLOAM framework in delivering better services to the user.
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Chapter 4

Auto-adjusting: Feature
Optimisation and Classifier
Optimisation

4.1 Introduction

In the previous chapter, the CLOAM framework and its components such as the

segmentation, feature extraction, machine learning, and fundamental model

optimisation component were introduced. In this chapter, two additional com-

ponents, a classifier optimisation component and a feature optimisation com-

ponent, are proposed.

In Chapter 3, in the Training Mode, the proposed feature-category model op-

timisation component evaluates different ML models, built using the same ML

classifier (e.g. Decision Tree) with a different set of features, to identify the

best model for classifying the data. The best model selected is the one with

the specific combination of features (e.g. a combination of shape and colour

features) that were most effective for one specific ML classifier (e.g. Decision

Tree) training a model for that specific dataset.

In this chapter, two proposed optimisation components enhance the framework

by identifying the most useful subset of low-level features and best ML clas-

sifier based on the user preferences (i.e. desirable accuracy and/or desirable

performance) for a specific dataset.
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4.2 Feature optimisation

The feature optimisation component is designed to evaluate the features and

sub-features and identify the ones that are significantly effective on the trained

machine learning model. This process is called auto feature selection. It is

performed by an ML classifier that uses the Correlation-based Feature Selection

(CFS) method. Considering there are various categories of features (e.g. shape

and colour), and each of them includes several sub-features (e.g. colour-red,

colour-green, brightness, and shape-edge), the auto feature selection classifier

selects a combination subset of the sub-features from all extracted feature cat-

egories. The most useful features and sub-features identified are those that can

best support machine learning functionalities (e.g. classification) for a specific

dataset.

4.3 Classifier optimisation

The classifier optimisation component is proposed to identify the most useful

ML classifier in training the machine learning (ML) model for a specific dataset.

The best model is selected based on user preferences such as best-accuracy

and high-performance. Training a large size dataset is a time-consuming and

costly task. So, the optimisation component uses a sampling, evaluation, and

feedback mechanism. In the sampling section, a fraction (sample size) of the

dataset is randomly selected. Different ML classifiers (e.g. Decision Tree and

Naive-Bayes) and the extracted features from a fraction of a labelled training

dataset will be used to build different ML models in parallel. The models will

be evaluated using n-fold cross-validation method (in this study, 10-fold cross-

validation) and the results are used to identify the most useful ML classifier for

a specific dataset.

The challenge here is whether the accuracy for a fraction of a dataset corre-

sponds to the accuracy for the whole dataset. A study [Doh08] showed that

35% of their dataset provided an accuracy close to that of the whole dataset

with the accuracy error of 10%. In other words, training 35% of a dataset pro-

duces a model, which provides 90% accuracy of the original model (trained

from the whole dataset). While, in general, the accuracy of a sample will de-

pend on various factors such as the size of the dataset and its statistical distri-

bution, the basic assumption for this optimisation is that the sample is a good
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reflection of the whole dataset.

4.4 Updated CLOAM framework

This instantiation of the CLOAM framework (Figure 4.1) uses the full generic

architeture and offers three different modes, Training Mode, Auto-training

Mode, and Testing Mode. Two optimisation components, a classifier optimi-

sation component and a feature optimisation component, are integrated. These

auto-adjusting optimisation components can automatically adjust the feature

selection and ML classifier selection to improve the accuracy and performance

of training a model and classifying a dataset as well as enhancing the overall

performance of CLOAM.

Figure 4.1: The updated CLOAM framework

As Figure 4.1 shows, the CLOAM framework uses several components to per-

form various tasks. Each component is deployed to a virtual machine instance

created on the top of our self-developed OpenStack-based cloud environment.

For instance, in the feature extraction stage, several VMs are allocated to the

process of extracting various features from a dataset in parallel. Also, in the

machine learning stage, several VMs are used to build various models in paral-

lel. The VM instances work together to accomplish a task (e.g. training models

and classifying a dataset). When the VMs in a stage (e.g. feature extraction

stage) finish their tasks, they communicate to the other VMs instances using

the message queues (described in Chapter 3, Section 3.3). In this section, the
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updated Training Mode of the framework and the new mode of Auto-training

Mode are discussed.

4.4.1 Training Mode

In the Training Mode, the classifier optimisation component is used to build a

training model. In this mode, a request containing the framework mode (Train-

ing Mode) and a dataset of a data type (e.g. image or text) is sent to the

framework. As discussed in the previous chapter, first, the data segmentation

is performed, and data is segmented into primary elements that are useful for

subsequent analysis. Secondly, the Feature Controller sends a set of requests to

the feature extraction instances that extract a set of distinct features (described

in Chapter 2, Section 2.2.2) from the training dataset. For instance, "Extractor

1" (shown in Figure 4.1) uses the corner detection algorithm to extract corner

features from an image, and "Extractor 2" uses a colour detection algorithm to

extract colour features. Once the Model Controller receives all the extracted

features, it combines them and sends them to various machine learning Model

Builders. Each of these Model Builders uses a distinct ML classification algo-

rithm (classifier). For example, "Model Builder 1" uses the decision tree clas-

sifier (J48) and "Model Builder 2" uses the Naive-Bayes classifier. In order to

identify the best classifier for a specific dataset, the models will be evaluated.

At the final stage, based on the user preference of high accuracy, performance,

and any other preferences (i.e. balanced-accuracy-performance), the classifier

optimisation component provides the best classifier and that will then be used

to build a model for the whole dataset.

4.4.2 Auto-training Mode

In the Auto-training Mode, the goal is not only to identify the best classifier,

based on user preference, but also to evaluate the features and sub-features and

identify the ones that are more useful in building a predictive model. In this

mode, from a sampled fraction of the training dataset, the most useful subset of

features is selected by the feature optimisation component. Using the selected

features, several learning classifiers build models and the classifier optimisation

component identifies the most effective classifier for the training dataset.

For instance, in processing an image in this study, in the colour category, 27 low-
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level features are extracted (described in Chapter 3, Section 3.5.1.1). So, using

a sample training dataset, the extracted features in all categories are evaluated,

and the feature optimisation component selects the most useful features for that

particular dataset. The best selected features may contain a subset of features

in each category (for instance, in the colour feature category, 11 of the 27 sub-

features). Feedback, containing the selected features, is sent to the controller.

At this point, the classifier optimisation component then identifies the most

efficient machine learning classifier using the best selected features. Finally, the

whole dataset is trained by using the selected ML classifier and the best selected

features.

4.5 Case study

A case study is designed to demonstrate an example of processing an image

dataset from medicine (Scenario A) and botany (Scenario B). In both scenar-

ios, the introduced optimisation components are used, in order to create an

appropriate training model based on the most effective sub-features and the

most efficient classifier for that dataset based on the user preference (e.g. ac-

curacy or performance). These two distinct scenarios are used to demonstrate

the usefulness of the framework in different application areas.

4.5.1 Scenario A: leaf images

In the first scenario, a leaf image dataset is used [CR11] (the same dataset that

was used in Chapter 3, Section 3.5). The leaf image dataset consists of three

plant classes based on their leaf types (Pittosporum Tobira, Betula Pendula, and

Cercis Siliquastrum). Different sizes of training datasets (100, 200, 300, 400,

and 500) and testing datasets (100, 300, and 500) are used.

4.5.1.1 Methodology

This section discusses the methods used to extract features from an image and

machine learning techniques used to build a training model and classify new

objects (in this scenario, a leaf). As previously discussed, selecting a normally

distributed sample dataset is a challenging task. In this scenario, based on
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our control assumptions, a fraction (35% of the data, minimum of 20 data

items, maximum of 50 data items) of the training dataset is used by the feature

optimisation and classifier optimisation components.

4.5.1.1.1 Feature extraction:

Several methods are used to extract features such as Basic (e.g. edges, lines,

and corners), Shape and Colour feature categories (described in Chapter 3, Sec-

tion 3.5.1). In this section, in addition to the mentioned features, some other

textural features (e.g. energy and contrast) are extracted from images. The tex-

tural features reflect the statistical arrangement of the pixels in an image. The

method used to acquire textural characteristics from the images in this chapter

is described.

• Textural feature extraction: A Grey-level Co-occurrence Matrix (GLCM)

is a statistical method of examining the textures. It considers the spatial

relationship of the pixels [MSG13]. It functions to characterise the texture

of an image by calculating how often pairs of pixels with specific values

and in a specified spatial relationship occur in an image, creating a GLCM

and then extracting statistical measures from this matrix such as Energy,

Entropy, Contrast, Variance, and Homogeneity [ZP12].

– Energy: This statistic measures the textural uniformity of pixel pair

repetitions. It detects the disorder in textures. Energy has a maxi-

mum value equal to one. High energy values occur when the grey

level distribution has a constant or periodic form.

– Entropy: This statistic measures the disorder or complexity of an

image. The entropy is large when the image is not texturally uniform,

and many GLCM elements have minimum values. Complex textures

tend to have high entropy.

– Contrast: This is the difference between the highest and the lowest

values of a contiguous set of pixels. It measures the number of local

variations present in the image.

– Variance: This statistic is a measure of heterogeneity and is a stan-

dard statistical variable. Variance increases when the grey level val-

ues differ from their mean.

– Homogeneity: This statistic is also called the Inverse Difference Mo-
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ment. It measures image homogeneity as it assumes larger values

for smaller grey tone differences in pair elements. It is more sensi-

tive to the presence of near diagonal elements in the GLCM. It has

the maximum value when all elements in the image are the same.

4.5.1.1.2 Machine learning: Four common machine learning (ML) classi-

fiers, Naive Bayesian (Naive Bayes), IBK (Instance-Based learning with param-

eter K), Decision Tree (J48), and Attribute Selected Classifier (ASC) are used

to build different models. Each of the classifiers uses 10-fold cross-validation

to evaluate its model. The data is randomly split into ten parts with equal

size. One fold is designated as the validation set while the remaining nine

folds are all combined and used for training. When all the classifiers produce

their results (i.e. in terms of the accuracy and performance), the best classifiers

(in terms of best accuracy, best performance, and mixed preferences such as

accuracy-performance-balanced) can be chosen among all classifiers. Then the

best selected classifier is used to build a model using the whole dataset.

• Accuracy model: The Accuracy model is the model produced by a classi-

fier that provides the highest accuracy.

• Performance model: The Performance model is the model produced by

a classifier that provides the best performance (shortest execution time).

• Accuracy-Performance model: This model has a combination of prefer-

ences, for accuracy and performance, such as accuracy above 70% with

the best performance.

4.5.1.2 Evaluation & Discussion

In this section, the experimental results for model creation and data classifica-

tion using the leaf image dataset, in the three modes of the framework (Training

Mode, Auto-training mode, and Testing mode), are discussed.

4.5.1.2.1 Model building (using Training Mode and Auto-training Mode):

In this section, the classifier optimisation and feature optimisation components

are used to build the best model for the leaf image dataset.

Table 4.1 shows the number of extracted features from the leaf image dataset

in the Training Mode and Auto-training Mode. In the Training Mode, 400 sub-
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Table 4.1: Best features in leaf images dataset

Instances Extracted Features Best Sub-Features Selected
100 400 11
200 400 11
300 400 16
400 400 18
500 400 20

features (low-level and high-level features) are extracted from the datasets with

100, 200, 300, 400, and 500 instances. In the Auto-training Mode, the fea-

ture optimisation component uses a randomly chosen fraction of the training

datasets to identify the most useful and practical features for training a model

for each dataset. In this section, the ones that are more useful in training a

model are identified as the best features for each dataset. For example, for

the training dataset with 500 instances, only 20 sub-features are identified as

the useful features. Extracting a subset of features in constructing a model is

crucial as it can help to improve the accuracy and performance of the model.

The selected sub-features can vary from one dataset to another as the selection

process is dataset dependent. For instance, the eleven features (mentioned be-

low) selected for the dataset with 100 instances can be different to the eleven

features selected for the dataset of 200 instances. The selected subset of sub-

features from the whole set of features (400 features) for the dataset with 100

instances are the following:

colour-green, colour-brightness, shape-corner, shape-outer-boundary-3,

centre-of-gravity, sorted-signature-01, sorted-signature-02, basic-edge, edge-

03, colour-hsv-h-std, and exposure-level-mean.

The extracted features are used by four ML classifiers, NaiveBayes, IBK, J48,

and ASC, to build four different models in Training Mode and Auto-training

Mode. In the Training Mode, the classifiers use the combination of all extracted

features (400 features) while in the Auto-training Mode, the classifiers use only

the subset of most useful features (e.g. for the dataset with 500 instances, 20

features).

Table 4.2 shows the evaluation results (the accuracy and the performance of

the classifiers) of the machine learning models built by different ML classifiers

for 35% of the leaf image dataset (containing 500 instances). The accuracy

and the performance(execution time) of the classifiers vary and depend on the
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Table 4.2: Comparing the accuracy and the performance of the classifiers in Training
Mode and Auto-training Mode (sample of leaf image dataset)

Classifier T-Accuracy(%) AT-Accuracy(%) T-Performance(s) AT-Performance(s)
NaiveBayes 91 97 5.8 1.2
IBK 89 97 3 0.9
J48 97 98 1.6 0.2
ASC 99 99 6.3 1.3
AT: Auto-training

T: Training

features and ML classifier used. Both the accuracy and the performance of all

three classifiers (Naive Bayes, IBK, and J48) are improved in the Auto-training

Mode. While the accuracy of the ASC classifier stays the same but it performs

better (in terms of execution time) in the Auto-training mode. The accuracy of

the Naive Bayes classifier is improved from 91% to 97%; its performance is also

improved by decreasing the execution time from 5.8s to 1.2s. The reason for the

improvement is related to the number of important features (in this experiment,

20 features) that are chosen in Auto-training Mode, so the ML classifiers learn

from a smaller set of the features to classify the data items. Also, as the selected

subset of features are the most useful features in learning from the dataset, the

accuracy is also improved.

Finally, the ASC classifier provides the highest accuracy in both modes. It is

used to build the Accuracy model by training the whole training dataset. On

the other hand, the J48 classifier is selected as the best performance classifier

because of having the shortest execution time in both modes. The Performance

model is created by the J48 classifier training the whole dataset. J48 also has

high accuracy (above the accuracy threshold) and is the best under the com-

bined accuracy-performance criteria. Therefore, for this dataset, the Accuracy-

Performance model is the same as the Performance model.

• The performance of the CLOAM framework in different modes

Total duration for building a model in the CLOAM framework differs in its dif-

ferent modes. Figure 4.2 shows the total duration for building a model in the

Training Mode and Auto-training Mode for processing different versions of the

leaf image dataset (100, 200, 300, 400, and 500 instances). In this section, the

total duration is calculated from initial time of receiving a request to process

a dataset to the building and storing of an ML model. The processing involves

feature extraction, feature selection (for the Auto-training Mode), classifier se-

lection, and model creation.
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Figure 4.2: Total duration for building a model in Training and Auto-Training Mode
(leaf image datasets)

In this experiment, 400 image-based features were extracted from the images

using different image processing algorithms. The features not only include the

ones discussed in Chapter 3 but also include the alternative low-level features

such as edge, corner, etc., shape-based features such as lines, circles, etc., colour

features, and several other features such as textural-based features using several

different algorithms. Figure 4.2 shows that the Auto-training Mode may not

provide better performance for small size datasets (in this case study, below

150 images), but it will improve the performance for larger datasets. In the

Auto-training Mode, there will be additional processing in identifying the most

useful features for a fraction of the dataset, but there will be less processing

time in extracting the useful features, by the feature extraction components,

for the original dataset. So, in the Auto-training Mode, the CLOAM framework

performance is improved. For instance, for the dataset with 500 instances, the

classifiers use 400 features in the Training Mode, but they use 20 features in the

Auto-training Mode. The overall processing time for the dataset in the Training

Mode is ≈110 minutes, while in the Auto-training Mode, it is ≈58 minutes.

4.5.1.2.2 Leaf image classification (using Testing Mode): Different unla-

belled leaf image datasets (with a size of 100, 300, and 500 instances) are used

to evaluate the best models (Accuracy and Performance models) created in the

Auto-training Mode.

Because in this section, the Auto-training Mode gives the best performance (ex-
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Figure 4.3: Evaluating the Accuracy model and the Performance model using the unla-
belled leaf image dataset

ecution time for data classification) and accuracy of ML classifiers, so, only the

best models (the Performance and the Accuracy models) created in the Auto-

training Mode of the framework are evaluated using the unlabelled leaf image

datasets. The leaf image datasets are classified using those models in the Test-

ing Mode of the CLOAM framework. As shown in Figure 4.3, the more accu-

rate results are achieved using the Accuracy model, for the classification of the

datasets, while the results produced in the shortest possible execution time us-

ing the Performance model. The reported duration is the amount of time used

by a classifier to classify all the data items in a dataset. For instance, the dataset

with 300 instances can be classified with an accuracy of 87% in ≈5 seconds;

it also can be classified with higher accuracy of 92% but that takes more time

(≈7 seconds). This analysis shows that classifying a dataset with higher accu-

racy requires more processing time. So, based on the user criteria, one of the

models can be selected to apply on the testing dataset.

Figure 4.4 shows the total duration for classification of the leaf images dataset

in the Testing Mode of the framework. In this section, the duration is calcu-

lated from the start of feature extraction to the end of data classification. The

same features that are extracted for the model building (the Accuracy and Per-

formance model) in the Auto-training Mode, are extracted from these datasets.

Then, the models are used to classify the datasets. The results show that for

classifying the datasets, using the Performance model, the results are acquired

quicker than where the Accuracy model is used. For instance, as shown in Fig-

ure 4.4, the dataset with 300 instances is classified in ≈15.5 minutes using the

Performance model while it is classified in a longer time (≈16.7 minutes) using

the Accuracy model.
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Figure 4.4: Total duration for data classification using the Accuracy model and the
Performance model (unlabelled leaf image dataset)

4.5.2 Scenario B: medical images

Scenario A demonstrated that the Auto-training Mode (used for optimisation)

offers advantages of performance and accuracy over Training Mode. Therefore

scenario B uses Auto-training Mode. In this scenario, a medical image dataset

(Acute Lymphoblastic Leukemia (ALL) lymphoblasts) [LPS11] is used for build-

ing a model using Auto-training Mode. This is an image dataset but provides a

more challenging task as it contains blood cells that are important in diagnosing

different diseases.

4.5.2.1 Methodology

The ALL lymphoblasts image dataset contains white blood cells (WBCs) and red

blood cells (RBCs) microscope images. WBCs play a significant role in the diag-

nosis of different diseases and, therefore, extracting information about them is

valuable for haematologists. As the classification of the lymphocytes in micro-

scope images is onerous for pathologists, digital image processing techniques

can assist them in their analysis and diagnosis [SD15]. In this section, first, the

images are segmented, and individual WBCs extracted from the lymphoblasts

images to sub-images. At this stage, each sub-image only contains one WBC.

The WBC is then segmented into the cell, nucleus, and cytoplasm. In this sce-

nario, different sizes of training datasets (100, 200, 300, 400, and 500) are

used to demonstrate the usefulness of using the CLOAM framework.
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Figure 4.5: White blood cell segmentation

• White Blood Cell (leukocytes) detection:

In the preprocessing step, the colour space of the input image is RGB

space. A matrix represents a colour space, and typically, the matrix con-

sists of three or four dimensions (e.g., RGB, HSI, CMYK). The RGB colour

space is converted to the CYMK (C denotes cyan, Y denotes yellow, M de-

notes magenta, and K refers to a key plate (black)) space [SAB07]. It is

observed that leukocytes have more contrast in the Y component of the

CMYK colour model; this is because the yellow colour is represented in

all the elements of the image except in leukocytes, where it practically

is absent (Figure 4.6 shows an example). A redistribution of grey image

levels is necessary in order to make the subsequent segmentation process

easier. Then to obtain the WBC, Otsu thresholding [YOU15], which auto-

matically calculates a threshold value from the image histogram is used.

Figure 4.6: Left Side:Original RGB image and Right Side: Y component image

In order to achieve a better result, the background of the image must

be removed. Morphological operations such as opening and closing can

be used to remove the background [ZRL77]. Opening operations allow

deleting of all the objects with a size smaller than the structuring element

[Vin92]. The structuring element used has a circular shape (Figure 4.7).
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Figure 4.7: Background removal result and area Opening result

• Grouped leukocytes separation and extraction of the nucleus: Once

the image containing only the WBC is obtained, where adjacent cells oc-

cur, they should be separated. In this section, the roundness value is used.

All connected components that have a low roundness value are classified

as grouped leukocytes, and so they must be divided. The watershed al-

gorithm [Lin02] is used for dividing. Once the leukocytes are divided

and identified, the second segmentation level that performs the selection

of the nucleus and cytoplasm will be done. A threshold operation using

Otsu [?] is applied to obtain a mask. The mask allows the nucleus to be

extracted. In the end, to remove the cytoplasm, a subtraction operation

between the binary image containing the whole leukocyte and the image

containing only the nucleus is performed.

4.5.2.2 Evaluation & Discussion

In this section, the experimental results for model creation, using the WBC

image dataset is presented. In scenario A, the results showed that building a

model in Auto-training Mode is more efficient (in terms of accuracy and per-

formance) than Training Mode, so, in this scenario, models are built using the

Auto-training Mode only.

Table 4.3: Best features in White Blood Cell image dataset

Instances Extracted Features Best Sub-Features Selected
100 400 9
200 400 9
300 400 11
400 400 12
500 400 13

Table 4.3 shows the number of features extracted from the WBC image datasets

in the Training Mode and Auto-training Mode. In the Training Mode, 400 low-

level and high-level features (same as scenario A) are extracted from the image
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Table 4.4: Comparing the accuracy and performance of different classifier algorithms
for selecting the best classifier in the blood cell images dataset

Classifier Accuracy(%) Performance(s)
NaiveBayes 72 1.1
IBK 64 0.6
J48 67 0.3
ASC 71 1.2

datasets (100, 200, 300, 400, and 500 instances). In the Auto-training Mode,

the feature optimisation component uses a randomly selected fraction of the

training datasets to identify the most useful features for training a model for

each dataset. For each dataset, the most useful features are identified from 35%

of the training datasets. For example, for the dataset with 400 instances, only

12 sub-features are identified as the best features and used to train a model.

The extracted features are used by four different ML classifiers (Naive Bayes,

IBK, J48, and ASC) to build different models. In this experiment, the training

dataset with 400 labelled images (in two classes, 200 blast cell images and 200

normal cell images) is used.

Table 4.4 shows the evaluation results of four different training models, each of

them using a specific ML classifier. Each model uses the selected sub-features

(12 features) to build a model for 35% of the dataset. For this dataset, the best

classifiers are chosen based on the highest accuracy, best execution time, and a

combination of accuracy and performance. For example, the NaiveBayes classi-

fier provides the highest accuracy (72%) for 35% of the dataset. It is selected as

the best classifier and is used to build the Accuracy model. J48 is selected as the

best classifier in terms of performance by having an execution time of 4 seconds

for the sample of the dataset and is used to build the Performance model. For

creating the Accuracy-Performance model, both ASC and NaiveBayes provide

accuracy above the 70% threshold. NaiveBayes is chosen from the shortlisted

classifiers because it provides better performance for the sample dataset.

In this experiment, we demonstrated that the CLOAM framework can support

a medical-based case study. The best performing machine learning models,

in terms of accuracy and shorter execution time, can be built using the best-

identified data features. The proposed framework can support scientists and re-

searchers to achieve a better analysis of their datasets. The CLOAM framework

can also facilitate the scenario of analysing mixed media dataset that includes

text, images, videos, etc. For instance, a medical application may have textual
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clinical notes and lung X-ray images for each patient. The CLOAM framework

can process both datasets, simultaneously in parallel, extracting features and

building machine learning models. These models (with an additional corre-

lation component) would support, for example, investigation of any links be-

tween lifestyle or occupation with certain lung diseases.

4.6 Chapter summary

In this chapter, two optimisation components, classifier optimisation and fea-

ture optimisation, are introduced. They use a general method of sampling,

evaluation, and feedback to improve the accuracy and performance of classifi-

cation (for any data type) and overall performance of the CLOAM framework.

The optimisation components help the framework to learn which features are

most useful and also to identify which algorithm(s) is best for the classification

of a particular dataset. The feature optimisation component is responsible for

selecting the sub-features (low-level features) that are most useful in data clas-

sification. The ML algorithms use these sub-features to build improved models.

The classifier optimisation component is used to evaluate the built models and

find the best classifier(s) based on user preferences (i.e. desirable accuracy and

desirable performance) for a specific dataset. Finally, the final model is built

by training the whole dataset using the selected features and classifier. Ex-

perimental results showed significant improvement achieved by the proposed

optimisation components.
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Chapter 5

Auto-scaling: Computing Resource
Optimisation

5.1 Introduction

Dynamic scalability is a crucial function of a cloud-based computing solution.

NIST [BGPCV12] defines scaling as the ability to request, receive, and release as

many resources as necessary. The resources include the number of virtual ma-

chines (VMs), network bandwidth, and storage capacity of the VM. The cloud

resources can be scaled up, down, in, and out automatically without human

intervention under a dynamic workload to minimise resource costs while meet-

ing the quality of service (QoS) requirements. Scaling up (down) resources

results in increasing (decreasing) computing power, memory size, and/or net-

work bandwidth. Scaling out (in), on the other hand, is a technique that instead

of changing the capacity of currently available resources, expands (contracts)

the architecture by adding (removing) resources. Auto-scaling functionality can

help users achieve cost savings and better resource utilisation.

In this chapter, in order to enhance the effectiveness and overall performance

of big data processing in the CLOAM framework, a computing resource optimi-

sation component is proposed. The optimisation component involves dynami-

cally adjusting (auto-scaling) computing power and also adding new comput-

ing instance in order to address the processing demand. Auto-scaling allows

the framework to scale up/down the capacity of the available resources and

scale out/in the resources as needed, and is essential for resource availability

and optimum use. Depending on the application, the virtual machine instances
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can be rescaled to make efficient use of the hardware resources. Cloud users

can specify a threshold value for a specific parameter (e.g. free memory and

idle CPU usage) to be observed, and if the threshold is met, based on the auto-

scaling rules, the framework can take action and improve the performance of

the processing. CLOAM is deployed on the OpenStack software environment,

and various OpenStack components are used in implementing the computing

resource optimisation component to provide the auto-scaling functionality of

the framework.

5.2 Computing resource optimisation

In this chapter, in addition to the previously introduced optimisation compo-

nents, another optimisation component (computing resources optimisation) is

introduced. Figure 5.1 shows the extended CLOAM framework.

Figure 5.1: Auto-scaling in the CLOAM framework

There are several virtual machines (VMs) at each stage (feature extraction and

machine learning) that work in parallel to perform various tasks. For example,

in the feature extraction stage, one VM can be assigned for the shape feature

extraction, and another VM can be assigned for the colour feature extraction.
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One or more VMs can be allocated (depending on the application requirement)

for processing a single task. For example, if the shape feature extraction algo-

rithm consumes a large amount of time that results in slowing down the overall

framework job, more VM instances can be allocated to accomplish that task

more quickly. This functionality is performed by the computing resources op-

timisation component in the CLOAM framework. It dynamically adjusts (auto-

scales) the VM nodes hardware specification and resources to achieve better

performance.

Cloud providers allow users to purchase as many VM nodes as they want. How-

ever, users need to specify how much resources are needed and for how long.

In this situation, the CLOAM framework can provide auto-scaling functionality

that allows a user to upload a big data application to the framework, and then

the number of VMs can be automatically scaled based on the application. Scal-

ing of resources are either horizontal (out/in) or vertical (up/down) (described

in Chapter 2, Section 2.3.6). VM nodes are added or released to/from the sys-

tem as needed in horizontal scaling. Resources (such as more CPU power or

memory) are allocated in vertical scaling.

Two OpenStack services, Heat and Ceilometer, are used by the computing re-

sources optimisation component to conduct auto-scaling of VMs (computing

resources). Heat is the OpenStack orchestration engine. Heat manages the life

cycle of cloud applications. Initially, resources required for cloud applications

such as servers, storage, floating IPs along with their relationships are speci-

fied by a user in a text file (template). These resources are created by Heat

using the OpenStack API, and the complete application is launched. Ceilometer

is the telemetry infrastructure of OpenStack that collects measurements from

the cloud. It gathers information about resource utilisation and performance.

Its primary functions are monitoring and metering of resources and providing

APIs for the retrieval of the collected data. Ceilometer contains storage and

three main service components, as illustrated in Figure 5.2.

• Compute Agent: This component is responsible for gathering statistics

(metrics) about resource usage.

• Alarm Evaluator: This component is responsible for triggering the alarm

if the metric crosses a certain threshold.

• API Service: This component is responsible for the statistics for the last

time window that determines the action to be taken when the alarm is
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triggered. The API Service asynchronously notifies the alarm to the Heat

engine.

Figure 5.2: Ceilometer service components

The computing resource optimisation component uses Heat together with

Ceilometer to produce an auto-scaling service. Heat is responsible for allocat-

ing resources dynamically by using a scaling group alongside using monitoring

alerts (such as CPU utilisation) provided by Ceilometer. Compute instances (VM

nodes) can be added on demand or removed when no longer required. When a

scaling group is specified as a resource in a template, Heat provides auto-scaling

based on alarms raised by Ceilometer.

In this section, the CLOAM framework starts with a minimum hardware con-

figuration for each VM node. Each node can be scaled out/in based on the

application needs in order to make efficient use of the resources. As Figure 5.3

shows:

1. A HOT (Heat Orchestration Template) file is sent to the Heat engine;

2. A new auto-scaling group is created by launching a group of VM nodes;

3. The Ceilometer alarms which, monitor all of the VM nodes in the auto-

scaling group, are defined;

4. The system checks the alarm metric at each Ceilometer interval time;

5. The alarm will be triggered when the alarm metric passes the defined

threshold values;

6. Scaling out/in will be performed based on the policy defined in the HOT

file to improve the performance of the framework.
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The framework may decide to resend a request to another node if a response to

a specific request does not appear before a threshold waiting time.

Figure 5.3: Autoscaling strategy

5.3 Case study

The proposed framework is evaluated with the introduced optimisation compo-

nent. In order to evaluate the auto-scaling functionality of the CLOAM frame-

work, a training labelled dataset containing movie reviews [kag16] is used.

The dataset contains positive and negative user reviews of movies. The goal

is to perform a sentiment analysis of the movie reviews. Opinion mining (also

known as sentiment analysis) processes the subjective information in a text.

The main goal of opinion mining is to classify feelings into positive or negative

classes [HEM17]. Opinion mining can help in applications such as search en-

gines, recommendation systems, and market research [Vu17]. Different sizes

of training datasets (1000, 2000, 3000, 4000 and 5000 images) are used.

5.3.1 Methodology

This section describes a mechanism for auto-scaling in the CLOAM framework

and techniques for extracting features from a text dataset to generate a model.
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5.3.1.1 Auto-scaling mechanism

The model used by the computing optimisation component for management

of the auto-scaling mechanism, is the MAPE (Monitoring, Analysis, Planning,

and Execution) loop, proposed by IBM [McB05] (described in Chapter 2, Sec-

tion 2.3.6).

• Monitor: A monitoring system is responsible for providing measured met-

rics about user demand and system status during the auto-scaling process.

A variety of metrics such as CPU utilisation per VM, disk access, network

interface access, and memory usage can be used as drivers for scaling

decisions. OpenStack provides such information through the Ceilometer

component.

• Analyse: The Analyse phase is for the analysis of the metrics collected

from the monitoring system to determine the current system status.

• Plan: In the Plan phase, an intelligent controller makes a plan and deci-

sion based on the data taken from the Analyse phase such as the decision

of adding or removing a node with a specific flavour to an application.

• Execute: The Execute phase consists of executing the scaling actions de-

cided in the previous phase.

In order to decide the auto-scaling action in the Plan phase, a threshold-based

rule is used [NCCA15]. Threshold-based auto-scaling policies are very popular

among cloud providers like Amazon EC2 and third-party tools like RightScale

[Rig18]. A threshold-based rule consists of some conditions that, when met,

trigger some actions in the underlying cloud infrastructure. The conditions

involve various performance metrics such as CPU usage, disk IO or memory

usage. Upper and lower thresholds can be assigned to each performance met-

ric. Whenever the observed performance metric is above or below a certain

threshold, a predefined number of VM nodes will be added or removed from

the system. This automation enhances the dynamic scalability benefits of the

cloud by adding, in a transparent way, more resources to manage increasing

workload and by shutting down unnecessary machines. In this way, the neces-

sary resources for running an application can be adjusted in real-time based on

its workload.
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5.3.1.2 Feature extraction

One approach to detecting sentiment from text is the use of lexical resources

such as a dictionary of opinion terms. One such resource is SentiWordNet

[ES06], which contains information about words/terms extracted from the

WordNet database. WordNet1 is a large English lexical database. Names, verbs,

adjectives, and adverbs are grouped into cognitive synonyms (synsets), each

of which expresses a separate concept. SentiWordNet provides an annotation

based on three numerical sentiment scores (positivity, negativity, and neutral-

ity) for each WordNet synset. A Part-Of-Speech Tagger (POS Tagger) is used to

tag the entire sentence [GSM+11]. POS Tagger is a piece of software that reads

the text in a particular language and assigns parts of speech, such as noun,

verb, adjective, to each word. Then the words are passed to the SentiWordNet

to check both the score and the polarity of the word. SentiWordNet returns the

sentiment-type of that word (positive, negative, neutral based on score). Over-

all scores are calculated for each part of the text, together with score ratios for

many terms/words. In this work, 28 features are generated from the dataset.

Examples of the extracted features are summarised below.

• Sum of positive and negative scores and term count for Adjectives.

• Sum of positive and negative scores and term count for Adverbs.

• Sum of positive and negative scores and term count for Verbs.

• Sum of positive and negative scores and term count for Nouns.

• Ratio of the number of positive terms to the total number of positive and

negative terms.

5.3.2 Evaluation & Discussion

This experiment is designed to demonstrate the analysis of textual data and

to evaluate the efficiency of the auto-scaling of cloud resources. In this ex-

periment, the training execution time of the Normal framework (without auto-

scaling) and Improved framework (with auto-scaling) are compared.

1https://wordnet.princeton.edu
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Figure 5.4: Scaling out/in of a feature extraction node based on the CPU utilisation

Figure 5.4 shows the scaling out/in of a single node ("Extractor 1" presented

in Figure 5.1) based on CPU utilisation. This node is responsible for extracting

a set of text features from a training dataset with 5000 reviews. CPU usage

rapidly increases. Ceilometer collects CPU-related measurements every 2 min-

utes from the VM nodes and sends the result to the Heat service. A new node

can be started and activated based on the Heat template. In the Heat template,

the upper and lower thresholds for CPU utilisation are 80% and 20%. If the

CPU usage of a node exceeds 80%, a new node will be added to the framework.

Also, if the CPU usage is less than 20% then the VM node is removed.

In this experiment, the CLOAM framework starts with a minimum hardware

configuration (1CPU, 4GB memory) for each VM node. As Figure 5.4 shows, the

node FE-1 (Extractor 1) starts at time zero. Ceilometer collects and monitors

the CPU utilisation of this node every 2 minutes and sends the result to the Heat

service. Since the CPU usage of the first node (FE-1) exceeds 80% at time 120

seconds, the Heat service sends a request to the system to create a second node.

The second node (FE-1-2) is started and activated after 192 seconds. The input

data is then evenly divided between these two VM nodes. Similarly, the CPU

usage of the FE-1 and FE-1-2 VM nodes are monitored at 240 seconds, and both

are above the upper threshold, 80%, and so a third node (FE-1-3) is activated

and started at 320 seconds. The input data is then divided between the three

VM nodes, each performing the same job. At 2 minutes (360 seconds), the VM

nodes are monitored again. Figure 5.4 shows that the CPU usage has decreased

for these three VM nodes. Once the CPU reaches the lower threshold (20%),

the Heat service sends the system a request to terminate the VM nodes.
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Figure 5.5: Job processing duration in Normal framework vs Improved framework

Figure 5.5 shows the processing time comparison for different jobs with the

training dataset (1000, 2000, 3000, 4000 and 5000) in the Normal framework

(without auto-scaling) versus the Improved framework (with auto-scaling). The

configuration is set to allocate more resources with the maximum number of

three VM nodes. The feature extraction is the most time-consuming stage. Since

the Improved framework increases the number of VM nodes, the framework

performance is improved. The Improved framework may not provide better

performance for small size datasets (below 2000 items in this experiment), but

improves the performance for larger datasets.

5.4 Chapter summary

In this chapter, the computing resource optimisation component is integrated

into the CLOAM framework. This dynamically adjusts computing capacity and

also adds/removes new computing instances (VMs) to address processing re-

quirements. The CLOAM framework uses this optimisation component to ad-

dress challenges such as where one task is slowing down the framework, or

where a user requires a better performance. Auto-scaling allows the framework

to dynamically improve efficiency based on the real-time performance of the

computing resources (VM).
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In this chapter, the OpenStack orchestration engine, Heat, is used to automat-

ically scale out (or scale in) the compute resources based on alarms raised by

Ceilometer, which collects measurements from the VM nodes and sends the

results to the Heat service. Scaling actions are then carried out according to

the scaling policy defined in the Heat template file. Experimental evaluation

showed that the time to create the model in the Improved framework is lower

than the Normal framework and that the overall performance of the framework

is improved for datasets larger than 2000 items.
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Chapter 6

Performance-aware Cost-efficiency
Optimisation

6.1 Introduction

Data analytics can consume a large amount of computing power. With the

increased computational power that cloud computing offers, data analytics is

becoming easier and quicker but can be expensive, especially for big datasets.

Cost-efficient use of cloud resources is, therefore, also important for big data

analytics.

Users can access on-demand cloud resources to run their applications. They

usually pay for what they use (pay-per-use model), but they may not always

make the most cost-efficient use of the cloud computing resources, more espe-

cially where there are many cloud service providers each of which offers many

different cost models. Users need to have sufficient knowledge about available

cloud service providers and their pricing models to choose the most suitable

cost-efficient provider, as well as predicting the computing demands of their

application. These can be complicated tasks and not easy for users to perform.

The cost model varies depending on various parameters such as the number of

CPUs, memory and disk size, operating system, and network.

The previous chapter presents a computing resource optimisation that supports

improving the overall performance of processing an application. Taking the

cost into account suggests the idea of a cost combined efficiency optimisation to

meet the user budget, and at the same time, improve the performance. In this
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6.2 Performance-aware cost-efficiency
optimisation component

chapter, a performance-aware cost-efficiency optimisation component is pro-

posed.

The proposed optimisation component uses a high-level cost model based on

the cost of available public cloud computing options and determines an appro-

priate cost model for a specific application based on user-defined criteria. The

user can choose to prioritise performance, cost-efficiency, or can specify better

performance but within a budget.

The optimisation component uses a sampling and feedback mechanism in which

a sample of the dataset is evaluated, and some performance metrics such as CPU

usage, memory usage, and execution time are extracted. The extracted infor-

mation helps to identify the CPU and memory requirements for the processing

instances (VMs). Using this information, a matching algorithm is used to find

the best cost model where the performance is improved, and the cost is within

the requested budget (if specified). Finally, the framework provides the user

with the recommended cloud provider and recommended VM type(s).

6.2 Performance-aware cost-efficiency optimisa-

tion component

The overview of the CLOAM framework and the proposed optimisation compo-

nent is shown in Figure 6.1.

Once a request of processing a dataset arrives in the CLOAM framework, a por-

tion of that dataset is selected as a sample dataset, and the usual workflow of

feature extracting and building a model will be performed. At this stage, several

virtual machines (VMs) are assigned to the different stages of processing an ap-

plication. As the framework is in sampling mode, the performance-aware cost-

efficiency optimisation component is responsible for requesting measurements

from the processing nodes, and for collecting the performance measurements

(i.e. CPU usage, memory usage, and execution time) from all VMs. Ceilometer

(an OpenStack service described in Chapter 5) collects measurements from VM

nodes. Using this measurements, a matching algorithm is used to find the best

cost model and the best type(s) of VM for a specific application. The optimisa-

tion component identifies the CPU and memory requirements of the VMs and,

using this, it allocates an improved instance configuration (VM type) to any
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Figure 6.1: Performance-aware cost-efficiency optimisation in the CLOAM framework

instances which require better performance.

6.3 Experiment

In order to demonstrate how CLOAM and the performance-aware cost-

efficiency optimisation component can cooperate to assist a user, two scenarios

having different data types (image and text) are proposed.

6.3.1 Testbed

We have upgraded our private cloud environment by adding more compute

nodes. In this new set-up, there are twelve physical machines in total, eight of

which are used for computing nodes. We have set this to allocate the maximum

number of 30 VM instances. The default instance configuration is 1CPU, 4GB

memory, and 20GB disk.

6.3.2 Pricing model

In the proposed case studies, our private OpenStack-based cloud environment is

used to experiment apart from the Amazon Web Services (AWS) pricing models
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that help to estimate the cost of running an application in the cloud.

Table 6.1: On-Demand virtual machine pricing model

Category VM Type Memory Cores AWS Price($)
General-Purpose m3.Medium 3.75 1 0.07

m3.Large 7.5 2 0.14
m3.XLarge 15 4 0.28
m3.2XLarge 30 8 0.56

Compute-Optimised c3.Large 3.75 2 0.11
c3.XLarge 7.5 4 0.21
c3.2XLarge 15 8 0.42
c3.4XLarge 30 16 0.84

Memory-Optimised m2.Xlarge 17 2 0.25
m2.2Xlarge 34.2 4 0.49
m2.4Xlarge 68.4 8 0.98

There are different categories of on-demand VM models and, based on what the

application is (e.g. compute intensive application or memory intensive applica-

tion), one of them can be selected. The VM families are collections of VM types

designed to meet a common goal. In this research, Amazon EC2 VM types are

grouped into families based on target application profiles. For example, Ama-

zon EC2 has ten different VM types, distributed across six VM families. The

Amazon CPU and Memory configurations are used as the basis for performance

testing. Disk I/O is not relevant to this work as diskless in-memory processing

is used based on an object storage service (Swift). The on-demand VM pricing

model for the three VM families is shown in Table 6.1.

• General-Purpose: This family provides a balance of CPU, memory, and

network resources making it an excellent choice for many applications.

• Compute-Optimised: This family is useful for applications that need high

computing power. Compute-Optimised VMs have a higher ratio of CPUs

to memory than other families and the lowest cost per CPU of all the

Amazon EC2 VM types.

• Memory-Optimised: This family is designed for memory-intensive appli-

cations. VMs in this family have the lowest cost per GB of RAM of all

Amazon EC2 VM types.
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Figure 6.2: CPU usage for feature extraction (sample image dataset)

6.3.3 Case study

A case study is designed to demonstrate the processing requirements of an im-

age dataset (Scenario A) and a text dataset (Scenario B). This case study in-

volves evaluating a sample-size dataset, performing the CLOAM feature extrac-

tion and model building functionalities, identifying the CPU consumption and

memory requirements for the framework, and finding the best cost model while

the performance can be improved or maintained. These two different scenar-

ios are used to show the differences between processing an image dataset and

a text dataset. They show differences in the feature extraction stage. In sce-

nario A, three feature extraction components named Shape, Basic, and Colour

are employed to extract sub-features from the image dataset. In scenario B,

three different feature extraction components named Feature 1, Feature 2, and

Feature 3 are used to extract several sub-features to support high-level features

such as sentiment, opinion, mood, and emotion.

In scenario A, a sample (10%) of the image dataset is selected. Figure 6.2

shows the CPU usage, and Figure 6.3 shows the memory usage in three VMs for

the Basic, Colour, and Shape feature extraction algorithms. In this part of the

experiment, the configuration of 1 vCPU, 4GB memory, and 20GB of disk space

is designated to each of the VM instances.
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6.3.4 Evaluation and discussion

Figure 6.3: Memory usage for feature extraction (sample image dataset)

Figure 6.2 shows that the CPU is heavily loaded, reaching 87% at its highest

usage. The figure shows that, for this specific dataset, the Shape feature extrac-

tion node finishes its task quicker than the others in ≈109 seconds, the Colour

feature extraction task is finished in ≈140 seconds, and the longest processing

time belongs to the Basic feature extraction task that takes ≈300 seconds. The

Basic feature extraction node is identified as a high CPU-consuming node. Fig-

ure 6.3 presents the memory usage of the feature extraction components. The

figure shows no pressure on memory since each node consumes less than 100

megabytes of memory while four gigabyte of memory is allocated to each node.

These results imply that, for this specific dataset, the memory size is sufficient.

In scenario B, a textual dataset is processed. Figure 6.4 shows the CPU usage

and Figure 6.5 shows the memory usage for the three feature extraction nodes

in processing this dataset. The results show that the CPUs and memories are

not heavily loaded. The CPU is not fully loaded (CPU usage is less than 60%).
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Figure 6.4: CPU usage for feature extraction (sample text dataset)

Figure 6.5: Memory usage for feature extraction (sample text dataset)

In this section, the model building stage (for machine learning), for the image

dataset and its related performance measurements are discussed. Figure 6.6

and Figure 6.7 show the CPU and memory usage for four machine learning

algorithms (M1-J48, M2-NaiveBayes, M3-ASC, and M4-IBK) for the sample im-

age dataset. There is a high CPU load for the machine learning nodes. No

memory pressure is detected, and the memory usage reaches 120 megabyte at

its highest usage.
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Figure 6.6: CPU usage for model building (sample image dataset)

Figure 6.7: Memory usage for model building (sample image dataset)

Table 6.2: The required memory, CPU, and execution time for feature extraction for
both sample datasets

Dataset Feature Average CPU

Usage(%)

Averag Memory

Usage

Execution

Time(s)

Scenario A Basic 87% <1GB 309

Image Colour 84% <1GB 140

Shape 83% <1GB 110

Scenario B Feature1 34% <1GB 150

Text Feature2 57% <1GB 109

Feature3 39% <1GB 200

Table 6.2 shows the CPU usage, memory usage, and execution times of feature
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extraction algorithms in both scenarios. The results show the differences be-

tween processing an image dataset and a text dataset at the feature extraction

stage. The feature extraction algorithms loaded the CPU over 80% in processing

the image datasets while the CPU is not loaded (below 50%) in processing text

dataset. These findings indicate that the performance of the feature extraction

stage differ for different applications.

Table 6.3: The required memory, CPU, and execution time for model building for the
sample dataset.

Classifier Average CPU
Usage(%)

Average Memory
Usage

Execution
Time(s)

M1 87% <1GB 84
M2 82% <1GB 169
M3 84% <1GB 213
M4 84% <1GB 102

M1:J48, M2:NaiveBayes, M3:ASC, M4:IBK

A more detailed analysis is performed (shown in Table 6.3) to calculate the

execution time of each machine learning processing node. It reports that some

processing nodes finish their task quicker than others. In this scenario, the M1

node performs its task in ≈84 seconds (which is the quickest), the M4 node is

finished in ≈102 seconds, the M2 node is done in ≈169 seconds, and the M3

node finishes in ≈213 seconds.

On the one hand, knowing the performance measurements can help the op-

timisation component to determine an appropriate cost model for a specific

application. On the other hand, knowing the performance measurements and

identifying what part of framework slows down the job assists the optimisation

component to consider allocating better computing options (e.g. High CPU)

to the slower parts of the framework while still meeting the cost budget (if

specified). For example, in scenario A, as different feature extraction nodes

use different algorithms that performed differently, they finished their tasks at

different time. However, as in the machine learning stage, all the extracted

features are required to train a model, the machine learning nodes must wait

for the feature extraction nodes which has not finished their tasks yet. In this

stage, the optimisation component uses the performance measurements to iden-

tify the nodes that cause the delay (CPU-consuming), and reallocates a higher

hardware configuration to them from an appropriate cost model.

Figure 6.8(a) shows the CPU usage of three processing nodes for the feature

extraction components (Basic, Colour, and Shape) using a standard hardware
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Figure 6.8: Compare CPU utilisation of the feature extraction from the image dataset
with two configuration

configuration (1 vCPU, 4GB memory, and 20GB storage). Figure 6.8(b) presents

the CPU performance of the same task but with the identified best-matched

hardware configuration for that specific dataset. In this configuration, a node

with 4 vCPU, 8GB memory and the 80GB disk is used for the Basic feature ex-

traction node (which was identified as a node causing a delay). For the Colour

and Shape feature extraction algorithms, two upgraded nodes, each of which

has 2 vCPU, 4GB memory and 40GB disk, are used. Figure 6.8(b) shows the

performance improvement of the feature extraction stage in comparison to Fig-

ure 6.8(a).

Table 6.4 presents a detailed comparison of two experiments including the costs

for the one uses the standard configuration and the other ones use the best-

matched configuration. Firstly, the feature extraction nodes were identified as

CPU-intensive nodes, so the new configuration is selected from the Compute-

Optimised category (refer to Table 6.1). Among the processing nodes, the Basic
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Table 6.4: Comparing Standard configuration and Compute-Optimised configuration
for image feature extraction nodes

Feature Cost($)/per Hour VM Type Execution
Time(s)

Cost($)

Basic m3.medium(0.07) Standard 309 0.0060
c3.Xlarge(0.21) High CPU 57 0.0033

Colour m3.medium(0.07) Standard 140 0.0023
c3.Large(0.11) High CPU 58.8 0.0017

Shape m3.medium(0.07) Standard 110 0.0019
c3.Large(0.11) High CPU 42 0.0012

feature extraction node required the most upgrading, so it is assigned c3.Xlarge

VM type. The other two feature extractors are assigned c3.Large VM type. As

presented in Table 6.4, based on the reduced execution time (i.e. Basic feature

extraction is reduced from 309.6s to 57s), the cost is also reduced from 0.0060$

to 0.0033$. This result implies that the new configuration is able not only to

improve the performance but also to reduce the cost.

Table 6.5: Comparing Standard configuration and Compute-Optimised configuration
for model creation nodes

Models Cost($)/per Hour VM Type Execution
Time(s)

Cost($)

M1 m3.medium(0.07) Standard 84.6 0.0016
c3.Large(0.11) High CPU 40.2 0.0012

M2 m3.medium(0.07) Standard 169.8 0.0033
c3.XLarge(0.21) High CPU 33.6 0.0019

M3 m3.medium(0.07) Standard 213 0.0041
c3.XLarge(0.21) High CPU 28.8 0.0016

M4 m3.medium(0.07) Standard 102 0.0019
c3.Large(0.11) High CPU 46.8 0.0014

Table 6.5 presents a detailed comparison model creation of the execution time

and the cost for nodes with the standard hardware configuration and the up-

graded configuration. In this experiment, first, the model creation nodes are

assigns from Compute-Optimised category. Then, among the processing nodes,

the M2 and M3 model creation nodes require the most upgrading, so they are

assigned the c3.Xlarge VM type (4 vCPU and 8GB memory). The other two

model creation nodes (M1 and M4) are assigned c3.Large VM type (2 vCPU

and 4GB memory). The results in Table 6.5 show that, based on the reduced

execution time (i.e. for M2, it reduced from 169.8s to 33.6s), the cost is also

reduced from 0.0033$ to 0.0019$. This outcome demonstrates that the new
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configuration for the model creation stage can both enhance efficiency and re-

sult in cost reductions.

6.4 Conclusion

In this chapter, a performance-aware cost-efficiency optimisation component is

proposed. A case study was designed to show the usefulness of the proposed

performance-aware cost-efficiency optimisation component in two different sce-

narios. The CLOAM framework was used in its Auto-training mode to process

an image dataset (Scenario A) and a text dataset (Scenario B). Analysing the

resource consumption (CPU and memory) identified bottleneck and provided

the basis for deciding where the VM configuration requires an upgrade. We

demonstrated that in these two scenarios, components needed to be upgraded

differently. For instance, in processing the image dataset, the feature extraction

stage required a new configuration with more powerful virtual machines, as

proposed by the optimisation component. The results showed that using the

suggested configuration could both reduce the cost and also improve the over-

all performance. On the other hand, in processing the text dataset, the feature

extraction stage did not require a new configuration; however, in the machine

learning stage, a new configuration was suggested. For this stage, it is shown

that using the new configuration, not only is the performance of the machine

learning stage improved, but also the cost is reduced. In conclusion, the pro-

posed optimisation component is evaluated, and the results show that the cost

can be significantly reduced along with an improvement in performance.
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Chapter 7

Conclusion

Big data analytics especially for making predictions and providing suggestions

based on data with minimal human intervention, is challenging due to the need

to process large amounts of data using machine learning algorithms [KNV+18].

Using machine learning over big data and learning from vast and unstructured

data brings significant opportunities to various areas (e.g. pathology and phy-

tology).

Current intelligent machine-learning systems are performance driven, and their

focus is on the predictive/classification accuracy, based on known properties

learned from the training samples. The existing data analysis frameworks often

depend on specialised hardware and algorithms and work for a specific appli-

cation or data type. Hence, designing a more general and performance-driven

machine learning framework, which provides auto-adjusting and adaptivity, is

needed to help big data classification. This research set out with the goal of

investigating and leveraging the state-of-the-art software and hardware tech-

nologies to mitigate big data analysis problems.

In seeking solutions, we conducted a literature review (Chapter 2) on current

and emerging techniques and technologies in order to identify their suitability

and potential for effective big data classification. We summarised our findings

for classifying big data in a distributed environment (cloud environment) in

parallel. Firstly, a generic cloud-based machine learning framework is required

that provides multiple stages of segmentation, feature extraction, model build-

ing and classification. In each of these stages, several different software solu-

tions can be integrated to improve and enhance the functionalities of the frame-

work such as using advanced machine learning algorithms, employing various
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feature extraction techniques, and leveraging distributed big data processing

frameworks. Optimisation components are also required to support optimising

the performance, classification accuracy, use of resources, and cost.

In this chapter, we begin by summarising our contributions, followed by possi-

ble future work, and finally discussing the implications of the research.

7.1 Contributions

A generic machine learning architecture was designed and implemented, sev-

eral optimisation components were designed to improve the efficiency of pro-

cessing big data and the accuracy of machine learning models. The effective-

ness of the framework was evaluated by real-world datasets. Figure 7.1 shows

a comprehensive overview of the CLOAM framework that includes all the opti-

misation components.

Figure 7.1: CLOAM framework
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In this thesis, we presented several generic optimisation schemes having differ-

ent properties suitable for a variety of big data analysis scenarios. This section

is organised in such a way that we map the research questions set up in Chapter

1 to our contributions.

• Research Question: whether we can create a generic machine learning

framework covering all stages of data pre-processing, model building and

classification that can be used in distinct application domains and can

support different types of unstructured data and different algorithms for

machine learning.

– Our first contribution is the design of the cloud-based framework

that combines standard stages of data pre-processing, data segmen-

tation, feature extraction, and machine learning that support training

a model and classifying data (Chapter 3). It can be used for various

application areas (e.g. medical and botany) and various machine

learning algorithms (e.g. Naive Bayes and K-nearest neighbour). The

generic architecture can support different data types (e.g. text and

images) and datasets. It provides parallel processing in data seg-

mentation, feature extraction, and machine learning stages. It is im-

plemented using an asynchronous architecture incorporating queues,

based on standard message formats for tasks and results. The archi-

tecture is technology invariant and can be implemented using any

cloud software platform.

• Research Question: whether the proposed machine learning frame-

work can incorporate generic optimisations that optimise feature selection

(high-level and low-level) and ML algorithm selection so that they adjust

for the application (e.g. pathology or phytology), and the specific dataset

(e.g. a particular set of blood cell images or leaf images).

– Our second contribution is the design of the feature-category op-

timisation component on top of the underlying architecture (Chap-

ter 3). The optimisation component assists in selecting the most use-

ful features for a specific ML algorithm and specific dataset. The best

model selected is the one with a distinct combination of features

(e.g. a combination of high-level features such as basic and colour

features) that were most effective for one specific ML classifier (e.g.

Decision Tree) to train a model that provides the highest accuracy

for that specific dataset.
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– Our third contribution is the development of two optimisation com-

ponents that support identifying the most useful features for classifi-

cation and selecting the best algorithm under user-specified criteria

(Chapter 4). The generic data-driven mechanisms used in developing

these components provide sufficient information without processing

large amounts of data and can auto-adjust for the particular dataset.

• Research Question: whether the proposed cloud-based framework can

optimise its use of resources in the cloud, and can it also incorporate a

cost model, allowing optimisation with regard to both efficiency and cost

of cloud resources.

– Our fourth contribution is the resource optimisation component in-

corporating monitoring the use of resources and then using scaling

to leverage cloud computing resources in an efficient way (Chap-

ter 5), and computing cost (Chapter 6). These optimisations auto-

adjust for the data and the algorithms. The monitoring can indicate

bottlenecks and allow a balanced, more efficient architecture to be

achieved through appropriate scaling of resources. The cost-model of

cloud resource offerings supports optimisation within an individual

service provider (e.g. Amazon) or across service providers.

7.2 Future Work

The CLOAM framework is a generic framework with generic optimisation com-

ponents, and this makes it ideal for extension and building future applications.

• Supporting other unstructured data

The current framework uses some standard segmentation, and feature ex-

traction services and the framework should be extended with services to

deal with other media. Audio and video are important data sources for

machine learning and new services for segmentation and feature extrac-

tion should be developed. Data pre-processing services for dealing with

other useful sources, such as webpages and emails, could also be added

to the framework.

• Unsupervised machine learning

The focus of the current framework is supervised learning, but much of
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the functionality (e.g. for segmentation and feature extraction) is needed

also for unsupervised learning, and the framework could be extended with

new functionality supporting unsupervised data analysis methods, such as

cluster analysis and linear regression. A number of problems can benefit

from a hybrid of supervised and unsupervised learning, and the extended

framework would also support this.

• Security

The current framework does not deal directly with security, and this is an

important issue to be addressed in the future. One aspect is the anonymi-

sation of datasets involved in training and testing, and another is the

encryption of sensitive information. In applications with multiple data

sources (e.g. personal medical text and image datasets), some parts of

the data may require security while others may not, and this can be easily

accommodated by the task-oriented organisation of the framework.

• Optimisation-as-a-service

The asynchronous message-passing architecture is mostly service-

oriented, and the framework should be generalised as fully service-

oriented architecture, offering standard services such as for data pre-

processing, segmentation, feature extraction, and machine learning ser-

vices. The generic optimisation components should also be offered as

services with standard APIs to the other services so that they can then be

used in generating samples, evaluating results, and providing optimisa-

tion feedback, i.e. offering a type of optimisation-as-a-service.

7.3 Summary

The CLOAM framework has been designed as a generic framework with

generic optimisation components to support supervised learning over multiple

datatypes. The general asynchronous message-passing architecture supports

parallel processing of multiple datasets, and even datatypes, and provides a

good basis for future extension. It provides a generic framework which can be

quickly adapted to different problems. The optimisation components address,

in a general manner, optimisation issues related to features, classifiers, compu-

tation resources and computation cost. The optimisations are independent of

application and datatype, but are data-driven and auto-adjust for the particular

Cloud-based Machine Learning Architecture
for Big Data Analysis

106 Rezvan Pakdel



7. CONCLUSION 7.3 Summary

dataset being processed. Evaluation has shown the benefits of these optimisa-

tions.

Many different solutions are needed to address the challenges of machine learn-

ing over big data, including innovative learning algorithms and more efficient

and cost-effective computation resources. The CLOAM optimisations are com-

plementary to these other advances and offer opportunities for additional im-

provement of solutions.
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