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ABSTRACT With advances in nanolithography and dry etching, top-down methods of nano-

structuring have become a widely used tool for improving the efficiency of optoelectronics. 

These nano dimensions can offer various benefits to the device performance in terms of light 

extraction and efficiency, but often at the expense of emission colour quality. Broadening of 

the target emission peak and unwanted yellow luminescence are characteristic defect related 
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effects due to the ion beam etching damage, particularly for III-N based materials. In this 

letter we focus on GaN based nanorods, showing that through thermal annealing the surface 

roughness and deformities of the crystal structure can be “self-healed”. Correlative electron 

and atomic force microscopy (EM and AFM) shows the change from spherical nanorods to 

faceted hexagonal structures, revealing the temperature dependent surface morphology 

faceting evolution. The faceted nanorods were shown to be strain- and defect-free by 

cathodoluminescence (CL) hyperspectral imaging, micro-raman, and transmission electron 

microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time 

observation of dislocation movements and surface restructuring observed in ex-situ 

annealing TEM sampling. This thermal annealing investigation gives new in-sight to the 

redistribution path of GaN material and dislocation movement post growth, allowing for 

improved understanding and in turn advances in optoelectronic device processing of 

compound semiconductors.  

In the past few years III-Ns have become the semiconductor material of choice for solid state 

lighting (SSL) at a global level.1-2  However III-N materials have two major drawbacks; firstly the 

high dislocation defect density due to the large lattice-mismatch at the heteroepitaxial interface of 

the non-native substrates.3-4 Secondly the polarization discontinuities in nitride-based 

heterostructures along the polar c-axis, inducing huge electric fields and in turn increasing the non-

radiative recombination through the quantum confined Stark effect (QCSE).5-6 Overcoming the 

issue of device performance in III-Ns has been the intense focus of research worldwide. Some 

approaches include strain relief methods such as epitaxial lateral overgrowth,7-10 and suppressing 

the polarization field by growth on semi- and non-polar planes.11-13 Although these routes can 

reduce either the number of dislocations, or QCSE, the combined reduction of these issues has not 
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been achieved.  Moving from the classical bulk to nanostructured LEDs has shown to answer these 

problems collectively,14-17 while also providing many new optical properties associated with the 

nanoscale.18-19  

To date the most common form of GaN nanorod growth is through molecular beam epitaxy 

where the nanorods are formed spontaneously in dense arrays.20-21 These densely packed arrays or 

nanorods have random orientations due to their spontaneously formed origins, leading to high 

levels of coalescence. At the point of coalescence inhomogeneous strain22-23 and nonradiative 

recombination centers21, 24 are formed. Hence the theoretical benefits of growing GaN nanorods 

over bulk thin films for the platform of optoelectronic devices are not achieved in practice. A new 

two-step top-down/bottom-up approach to GaN nanorod formation has started to be utilized in the 

past few years25-27 to overcome these issues. This is where the benefits of bulk GaN thin films such 

as negligible point defect (carbon or oxygen) incorporation25 and bottom up grown nanorods’ low 

strain and hence negligible dislocation density.28-29  

The benefits of using these top-down formed GaN nanorods for strain reduction has been a well-

established approach.30-31  However there has been no in-depth analysis on the effect of dislocation 

density. In our previous report for top-down formed AlN nanorods the TEM study suggest the 

annealing of the rods pre-growth reduces the dislocation density,32 but this dislocation 

movement/reduction has not been reported in GaN. In this article we report the first experimental 

in “real-time” proof of dislocation annihilation/movement post growth through simple annealing. 

The in-situ TEM investigation shows the movement of the dislocation with increasing thermal 

anneal temperature. We also demonstrate that the etch damage causing non-uniformity in near 

band emission (NBE) intensity distribution along the nanorod sidewall seen in hyperspectral CL 

mapping is suppressed after annealing. Surface roughening caused by the randomness of the 
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impinging etch ions and resulting incorporation of defects/vacancies, is known to generate 

reduction in emission at the target wavelength and/or yellow emission,33-34 thus causing the 

variation in NBE. This processing step issue can now be overcome for nanorods through a simple 

annealing step.  

 

Figure 1. SEM surface analysis of R1 type nanorods (a) pre-anneal and (b) post 900 ⁰C anneal, 

and R2 type nanorods (c) pre-anneal and (d) post 900 ⁰C anneal. 

The re-structuring effect on the circular nanorods due to the 900 ⁰C 30 min thermal anneal is 

investigated by SEM, revealing the first report of self-facet recovery without growth as seen in 

Figure 1. As top-down formed III-N nanorods are often used as the “scaffold” for subsequent 

overgrowth,35-36 an initial thin growth layer is often used to recover the hexagonal shape for the 

active region growth.27 Through this simple annealing method the naturally occurring hexagonal 

non-polar facets can be recovered in a singular step without the need for GaN regrowth or 

passivation layers. The bulk GaN epi-layer grown by metal organic vapour phase epitaxy 

MOCVD37 on a sapphire 2” wafer was halved to produce two types of nanorod geometries on the 

same wafer for a fair materials characterization comparison of the nanorods later on; Figure 1a 

close packed nanorod pattern (R1) and Figure 1c spaced out nanorod pattern (R2). As described 
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in our previous report,38 the initial etched nanorod geometry can determine the subsequent 

overgrowth and possible dislocation movement, hence it was important to analyse both types of 

patterns. The silica sphere mask was self-assembled by a scooping method and pattern transferred 

into the GaN MOCVD grown bulk layer as detailed in ref 32 and in supporting information.  

 

Figure 2. SEM scans of nanorod top surface and cross-section after anneals at (a) 765 ⁰C, (b) 865 

⁰C, (c) 900 ⁰C, (d) and (e) higher magnification cross sectional SEM scans of (b) and (c) samples 

respectively, with new non-polar facets highlighted yellow.  
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Figure 1b and d show the once circular etched nanorods have become hexagonal in shape, 

starting to fill out any free space between the nanorods. While the initial etched nanorod pattern 

(i.e. R1 or R2) does not appear to have any effect on the geometry of the hexagonal top surface as 

seen in top surface SEM images of Figure 1b and d. However the cross sectional SEM reveals a 

very different morphology. Interestingly the six non-polar sidewall facets for the spaced out pattern 

of R2, are only fully formed at the top of the nanorod with the facet width decreasing linearly 

downwards along the sidewall (seen Figure 1d and highlighted yellow in Figure 2e). There is a 

very clear indication from this non-polar pattern and the decreasing nanrods height (1.95 µm → 

1.65 µm as seen in Figure 2c), that there is downwards movement of the material to form the 

faceted sidewalls. Due to the near perfectly vertical walls of R1 the formation of the non-polar 

facets appears to be a simple step resulting in evenly flat 1-100 hexagonal facets along the entire 

rod length, as in Figure 1c. However for R2 the slanted walls produce a barrier in achieving the 

correct angle (i.e. 90 ⁰ to the top surface) to form the non-polar 1-100 sidewalls. Even with this 

geometric barrier it is preferential for the non-polar sidewalls to form as seen in Figure 1d at the 

top of the nanorod. 

In this letter we use the principle of Ga species desorption reported for high temperature anneal 

steps in fluxed growth methods39-40 to engineer the movement of Ga species, forming 

thermodynamically favorable  smooth non-polar sidewalls. Initially the anneal temperature used 

was 900 ⁰C as this was the temperature we use for growth of GaN bulk layers and nanorods.37 To 

study the effect of temperature on Ga species restructuring a range of growth temperatures was 

tried for R2 type GaN nanorods as seen in the SEM images of Figure 2. The lowest temperature 

of 765 ⁰C had no effect on the overall height or top surface shape, Figure 2a. The higher 

temperature of 865 ⁰C showed a decrease in height and what appeared as a 12 sided top surface 
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faceting from initial plan-view SEM, Figure 2b. As seen by cross sectional SEM in Figure 2d, 

these observed 12 facets in top down SEM imaging in Figure 2b, were in fact 6 non-polar sidewall 

facets beginning to form from the top and down the rod length. They had not however fully 

expanded out to encompass the entire rod perimeter, as highlighted in yellow at a higher 

magnification SEM scan (Figure 2d) of the non-polar sidewalls in Figure 2b. Anneal temperatures 

> 900 ⁰C was tried as shown in supporting information showing the non-polar sidewalls stability 

increasing with increasing temperature41 however due to the roughening of the top surface the 900 

⁰C was determined to be the ideal anneal temperature. As discussed above at 900 ⁰C the 6 non 

polar sidewalls have fully formed along the entire rod length for R1 and at the top of the R2 

nanorods, along with leaving an atomically flat top surface as seen in AFM scans in Figure 3.  

High resolution plan-view SEM scans of the top surface of the nanorods a dark ring in the center 

of each nanorod was observed, as seen in Figure 2c. The diameter of these rings were found to be 

the same average diameter of the original circular nanorod before anneal. AFM topography scans 

of the top surface reveal a ~2.3 nm downwards step across this dark line from the center of the rod 

to the outside, Figure 3b. This dark line is most likely due to the surface etch damage induced by 

the ion beam,26 which would cause a change in the chemical structure and hence the conductivity 

of the material.42 This leads one to believe the Ga species is re-distributing from the top surface to 

the form non-polar side walls on the etch-damaged original circular walls, as schematically 

illustrated in Figure 3a. The increasing c-plane nanorod top diameter with nanorod base diameter 

remaining the same width, and finally the rod length shrinking with increasing anneal temperature 

reveals a very clear trend in redistribution of GaN species downwards to form the non-polar 

sidewalls supporting the AFM data of Figure 3. 
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To confirm the theory of downward distribution of Ga species to form the thermodynamically 

favourable non-polar side facets, the nanorod sidewalls were coated with SiO2 around the circular 

sidewalls as described by Le Boulbar et al27 and in the supporting information, pre-anneal. Only 

the top surface of the GaN nanorod was freed of SiO2 coating, to eliminate the possibility of 

contribution from the base of the nanorods upwards to the sidewalls. The SEM surface morphology 

investigation of these annealed SiO2 coated nanorods reveals the change to the six sided hexagonal 

shape at the top of the nanorod as seen in Figure 3c and d. However it is also easy to see from 

these SEM scans this hexagonal geometry is only at the top of the nanorod where the GaN was 

exposed. There is also clear indication of downwards movement of Ga species on the SiO2 walls 

of the rods, however as the species cannot grow epitaxially on this amorphous surface the layer is 

rough indicating possibly a polycrystalline layer.  

 

Figure 3. (a) schematic illustration of the change in morphology and decreasing height after 

annealing, (b) AFM scan revealing the downwards step at this boundary, (c) and (d) SEM scans 

of the GaN nanorods with a SiO2 sidewall coating after annealing at 900 ⁰C. 
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The TEM investigation of the ex-situ annealed silica coated R2 nanorod pattern in a cross section 

focused ion beam (FIB) lamella show that no dislocations reach the top surface but instead appear 

to bend out at the non-polar walls (Figure 4a and supporting information), as we reported for AlN 

nanorods.32 In-situ TEM thermal annealing investigation was conducted on a FIB cross-section of 

the pre-anneal R2 rods along the 11-20 zone axis for real time observation of dislocation movement 

(Figure 4b). During the temperature ramp to 900 ⁰C the nanorod height was decreased with 

increasing surface roughening (Figure 4b), as seen for some ex-situ annealed nanorods with SiO2 

coating under SEM (supporting information) and TEM (Figure 4a). After ~5mins of annealing 

time with the temperature held at 900 ⁰C the dislocation bent out of the film in the 10-10 plane, 

Figure 4b, leaving a dislocation core appearing brighter in the TEM micrograph (marked with *). 

The in-situ TEM investigation enables the study of dislocation movement in real time in III-N thin 

films post growth that has not be reported until now. After a suitable temperature and anneal time 

is reached the end point of the dislocation is more kinetically favorable at the non-polar facted 

sidewall of the nanorods than to terminate at the top surface of the nanorod, resulting in a 

dislocation free top surface. These GaN nanorods can be used as high crystal quality templates for 

overgrowth. 

 

Figure 4. TEM image of R2 GaN nanorods after (a) ex-situ 900 ⁰C and (b) in-situ 900⁰C anneal. 



 10 

It is well accepted that the reduction in dimensions from bulk the GaN layer to the nanorods 

after etching results in a lowering of the strain within the nanostructured material.30-31 

Hyperspectral CL mapping and micro Raman was used to investigate the change in strain within 

the GaN nanorods after annealing. The CL intensity maps of the GaN nanorods reveal the striking 

change in variable intensity along the length of these rods before and after annealing. The CL 

intensity maps of the GaN nanorods before and after the annealing process (Figure 5a and b 

respectively) exhibit a strong change in the GaN NBE intensity distribution along the nanorods. 

The CL map of the non-annealed nanorods in Figure 5a show a non-uniform intensity distribution 

along the nanorod sidewalls with a clear intensity maximum on the c-plane facet on top of the 

nanorod. The annealed nanorods (Figure 5b) on the other hand show a much more homogenous 

intensity distribution along the nanorod sidewalls. The degradation of the NBE emission intensity 

along the non-annealed nanorod is most likely caused by effects of the etching process. One effect 

is that due to the randomness of impinging etch ions the nanorod sidewalls will be left with an 

increased surface roughness compared to the c-plane facet33 reducing the emission intensity. The 

second effect is that during the etching process the removal of N atoms is enhanced compared to 

Ga atoms.43 This leaves Ga-rich nanorod sidewalls to which either impurities can bound34, 44 or on 

which vacancies be incorporated. Incorporated defects and vacancies can either act as non-

radiative recombination centers or emit yellow luminescence. Especially O bound to Ga atoms 

have been reported to degrade the luminescence intensity.43 The high temperature annealing 

appears to heal the etch damage and in turn approving the luminescent properties of the GaN. 

Micro Raman scattering spectroscopy analysis of the bulk GaN before(black line) and after the 

R2 type etch(red line) seen in Figure 5c clearly shows the blue shift of the E1(TO)/E2
high mode 

peak and separation of peaks from 571.56 cm-1 to 567.48 cm-1. It should be noted that polar thin 
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films of wurzite bulk GaN layers grown in the 0001 direction on AlN of the same crystallographic 

orientation will result in a compressively strained GaN layer.45 Hence the blue shift in the tensile 

strain direction seen in Figure 5c of the red peak, is in fact an indication of the decreased strain. 

The separation of the E1(TO) and E2
high mode peaks for the R2 type etched nanorods can be 

explained by the significant variation of strain from the top of the nanrod to the base and the change 

in surface morphology unlike the more uniformly strained bulk GaN with a smooth surface (black 

line Figure 5c).46 This strong correlation between the surface morphology (and their crystal 

orientations) and the phonon spectra of III-Ns is well known feature used in Raman spectroscopy 

analysis of III-N nanostructures.47-49 The same R2 nanorods after anneal at 900 ⁰C reunifies E1(TO) 

and E2
high mode peaks with the peak location blue shifted from the bulk to 569.11 cm-1, blue line 

in Figure 5c indicating a decrease strain with a more homogenous surface morphology (i.e. non-

polar smooth facets formed covering the rough circular etch sidewall as seen in Figure 1 and 2).  

 

Picture 5. Hyperspectral CL of (a) GaN nanorods after etching, (b) GaN nanorods in (a) after 

annealing at 900 ⁰C, with insets of intensity line spectra, (c) micro Raman spectra of (a) and (b). 
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In conclusion this article reports for the first time dislocation annihilation in GaN post-growth 

by a simply annealing the nanostructured bulk layer, and in turn increasing the crystal quality of 

the thin film. The surface morphology faceting evolution during the annealing step that results in 

a decrease in rod length with increasing temperature is described by the downwards redistribution 

of Ga species to form the kinetically stable m-planes. This theory is supported by the downwards 

step seen by AFM from the center rod diameter to the newly formed non-polar sidewalls that is 

visualized as a dark circle in the SEM. Finally through correlative Raman and 

cathodoluminescence (CL) studies of the etched nanorods before and after annealing shows the 

reduction in strain and etching damage through the applied thermal energy. It is clear from the 

results that during annealing it is thermodynamically favorable for Ga species to redistribute to 

form the lowest energy geometry hence 6 sided non-polar faceted nanorods are observed instead 

of staying circular.  
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