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Appendix A Spin Operators - Multi-Mode Case

As well as spin operators for the simple case of two modes we can also de-
fine spin operators in multimode cases involving two sub-systems A and B.
For example, there may be two types of bosonic particle involved, each compo-
nent distinguished from the other by having different hyperfine internal states
|A〉 , |B〉. Each component may be associated with a complete orthonormal set
of spatial mode functions φai(r) and φbi(r), so there will be two sets of modes
|φai〉, |φbi〉, where in the |r〉 representation we have 〈r |φai〉 = φai(r) |A〉 and
〈r |φbi〉 = φbi(r) |B〉. Mode orthogonality between A and B modes arises from
〈A|B〉 = 0 rather from the spatial mode functions being orthogonal.

We can define spin operators for the combined multimode A and B sub-
systems [43] via

Ŝx =
1

2

∫
dr
(

Ψ̂†b(r)Ψ̂a(r) + Ψ̂†a(r)Ψ̂b(r)
)

Ŝy =
1

2i

∫
dr
(

Ψ̂†b(r)Ψ̂a(r)− Ψ̂†a(r)Ψ̂b(r)
)

Ŝz =
1

2

∫
dr
(

Ψ̂†b(r)Ψ̂b(r)− Ψ̂†a(r)Ψ̂a(r)
)

(193)

where the field operators satisfy the non-zero commutation rules

[Ψ̂c(r), Ψ̂†d(r
′)] = δcd δ(r− r′) c, d = a, b (194)

It is then easy to show that the standard spin angular momentum commutation
rules are satisfied. [Ŝξ , Ŝµ ] = iεξµλŜλ.

For convenience we can expand the field operators in terms of an orthonormal
set of spatial mode functions φi(r). We can choose the spatial mode functions to
be the same φai(r) = φbi(r) =φi(r) (these might be momentum eigenfunctions)
and then the field annihilation operators for each component are

Ψ̂a(r) =
∑
i

âi φi(r) Ψ̂b(r) =
∑
i

b̂i φi(r) (195)

These expansions are consistent with the field operator commutation rules (194)

based on the usual non-zero mode operator commutation rules [âi, â
†
j ] = [̂bi, b̂

†
j ] =

δij .
By substituting for the field operators we can then express the spin operators

in terms of mode operators as

Ŝx =
1

2

∑
i

(
b̂†i âi + â†i b̂i

)
Ŝy =

1

2i

∑
i

(
b̂†i âi − â

†
i b̂i

)
Ŝz =

1

2

∑
i

(
b̂†i b̂i − â

†
i âi

)
(196)

and it is then easy to confirm that the standard spin angular momentum commu-
tation rules are satisfied. [Ŝξ , Ŝµ ] = iεξµλŜλ. We now have both field and mode
expressions for spin operators in multimode cases involving two sub-systems A
and B.
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Finally, the total number of particles is given by

N̂ =
∫
dr
(

Ψ̂†b(r)Ψ̂b(r) + Ψ̂†a(r)Ψ̂a(r)
)

=
∑
i

(
b̂†i b̂i + â†i âi

)
= N̂b + N̂a (197)

in an obvious notation.

S 5



Appendix B Alternative Spin Squeezing Crite-
ria

B.1 Two Perpendicular Components

Other criteria for spin squeezing are also used, for example in the article by
Wineland et al [17]. To focus on spin squeezing for Ŝzcompared to any orthogo-
nal spin operators we can combine the second and third Heisenberg uncertainty
principle relationships to give〈

∆Ŝz
2
〉(〈

∆Ŝx
2
〉

+
〈

∆Ŝy
2
〉)
≥ 1

4

(
|
〈
Ŝx

〉
|2 + |

〈
Ŝy

〉
|2
)

(198)

Then we may define two new spin operators via

Ŝ⊥ 1 = cos θ Ŝx + sin θ Ŝy Ŝ⊥ 2 = − sin θ Ŝx + cos θ Ŝy (199)

where θ corresponds to a rotation angle in the xy plane, and which satisfy the
standard angular momentum commutation rules [Ŝ⊥ 1, Ŝ⊥ 2] = iŜz, [Ŝ⊥ 2, Ŝz] =

iŜ⊥ 1, [Ŝz, Ŝ⊥ 1] = iŜ⊥ 2. It is straightforward to show that
〈

∆Ŝx
2
〉

+
〈

∆Ŝy
2
〉

=〈
∆Ŝ⊥ 1

2
〉

+
〈

∆Ŝ⊥ 2
2
〉

and
∣∣∣〈Ŝ⊥ 1

〉∣∣∣2 +
∣∣∣〈Ŝ⊥ 2

〉∣∣∣2 =
∣∣∣〈Ŝx〉∣∣∣2 +

∣∣∣〈Ŝy〉∣∣∣2 so that

〈
∆Ŝz

2
〉(〈

∆Ŝ⊥ 1
2
〉

+
〈

∆Ŝ⊥ 2
2
〉)
≥ 1

4

(∣∣∣〈Ŝ⊥ 1

〉∣∣∣2 +
∣∣∣〈Ŝ⊥ 2

〉∣∣∣2) (200)

so that spin squeezing for Ŝzcompared to any two orthogonal spin operators
such as Ŝ⊥ 1 or Ŝ⊥ 2 would be defined as

〈
∆Ŝz

2
〉

<
1

2

√(∣∣∣〈Ŝ⊥ 1

〉∣∣∣2 +
∣∣∣〈Ŝ⊥ 2

〉∣∣∣2)
and〈

∆Ŝ⊥ 1
2
〉

+
〈

∆Ŝ⊥ 2
2
〉

>
1

2

√(∣∣∣〈Ŝ⊥ 1

〉∣∣∣2 +
∣∣∣〈Ŝ⊥ 2

〉∣∣∣2) (201)

For spin squeezing in
〈

∆Ŝz
2
〉

we require the spin squeezing parameter ξ to

satisfy an inequality

ξ2 =

〈
∆Ŝz

2
〉

(∣∣∣〈Ŝ⊥ 1

〉∣∣∣2 +
∣∣∣〈Ŝ⊥ 2

〉∣∣∣2) <
1

2

√(∣∣∣〈Ŝ⊥ 1

〉∣∣∣2 +
∣∣∣〈Ŝ⊥ 2

〉∣∣∣2) ∼
1

N
(202)

The last step is an approximation for an N particle state based on the assump-
tion that the Bloch vector lies in the xy plane and close to the Bloch sphere,

this situation being the most conducive to detecting the fluctuation
〈

∆Ŝz
2
〉

.
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In this situation

√(∣∣∣〈Ŝ⊥ 1

〉∣∣∣2 +
∣∣∣〈Ŝ⊥ 2

〉∣∣∣2) is approximately N/2. The con-

dition Nξ2 < 1 is sometimes taken as the condition for spin squeezing [28], but
it should be noted that this is approximate and Eq. (201) gives the correct
expression.

B.2 Planar Spin Squeezing

A special case of recent interest is that referred to as planar squeezing [18] in
which the Bloch vector for a suitable choice of spin operators lies in a plane
and along one of the axes. If this plane is chosen to be the xy plane and the

x axis is chosen then
〈
Ŝz

〉
= 0 and

〈
Ŝy

〉
= 0, resulting in only one Heisen-

berg uncertainty principle relationship where the right side is non-zero, namely〈
∆Ŝy

2
〉〈

∆Ŝz
2
〉
≥ 1

4

∣∣∣〈Ŝx〉∣∣∣2. Combining this with
〈

∆Ŝx
2
〉〈

∆Ŝy
2
〉
≥ 0

gives
(〈

∆Ŝy
2
〉

+
〈

∆Ŝx
2
〉)〈

∆Ŝz
2
〉
≥ 1

4

∣∣∣〈Ŝx〉∣∣∣2. So the total spin fluctu-

ation in the xy plane defined as
〈

∆Ŝpara
2
〉

=
〈

∆Ŝy
2
〉

+
〈

∆Ŝx
2
〉

will be

squeezed compared to the spin fluctuation perpendicular to the xy plane given

by
〈

∆Ĵperp
2
〉

=
〈

∆Ŝz
2
〉

if〈
∆Ŝpara

2
〉
<

1

2

∣∣∣〈Ŝx〉∣∣∣ and 〈∆Ŝperp
2
〉
>

1

2

∣∣∣〈Ŝx〉∣∣∣ (203)

By minimizing
〈

∆Ŝpara
2
〉

whilst satisfying the constraints
〈
Ŝz

〉
=
〈
Ŝy

〉
= 0

a spin squeezed state is found that satisfies (203) with
〈

∆Ŝpara
2
〉

˜ J2/3,〈
∆Ŝperp

2
〉
∼ J4/3,

∣∣∣〈Ŝx〉∣∣∣ ∼ J for large J = N/2 [18]. The Bloch vector is

on the Bloch sphere.

B.3 Spin Squeezing in Multi-Mode Cases

Since the multi-mode spin operators defined in Eq. (193) satisfy the standard
angular momentum operator commutation rules, the usual Heisenberg Uncer-
tainty rules analogous to (5) apply, so that spin squeezing can also exist in the
multi-mode case as well. Thus

〈
∆Ŝx

2
〉

<
1

2

∣∣∣〈Ŝz〉∣∣∣ and 〈∆Ŝy
2
〉
>

1

2

∣∣∣〈Ŝz〉∣∣∣〈
∆Ŝy

2
〉

<
1

2

∣∣∣〈Ŝx〉∣∣∣ and 〈∆Ŝz
2
〉
>

1

2

∣∣∣〈Ŝx〉∣∣∣〈
∆Ŝz

2
〉

<
1

2

∣∣∣〈Ŝy〉∣∣∣ and 〈∆Ŝx
2
〉
>

1

2

∣∣∣〈Ŝy〉∣∣∣ (204)

for Ŝxbeing squeezed compared to Ŝy, and so on.
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Similar alternative criteria to (201) can also be obtained, for example for Ŝz
being squeezed compared to any two orthogonal spin operators such as Ŝ⊥ 1 or
Ŝ⊥ 2 defined similarly to (199).
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Appendix C Significance of Spin Squeezing Test

The spin squeezing test for two mode systems was based on the general form
(15) for all separable states together with the requirement that the sub-system

density operators ρ̂AR and ρ̂BR were compliant with the local particle number SSR.
From the point of view of a supporter for applying the local particle number SSR
if the result of an experiment is that spin squeezing has occurred, the immediate
conclusion is that the state is entangled. On the other hand from the point of
view of a sceptic about being required to apply the local particle number SSR for
the sub-system states, such a sceptic would draw different conclusions from an
experiment that demonstrated spin squeezing. They would immediately point
out that in this case spin squeezing is not a test for entanglement. However, as
we will now see these conclusions are still of some interest.

To discuss this it is convenient to divide possible mathematical forms for the
density operator into categories. Considering all general two mode quantum
states that are compliant with the global particle number SSR, we may first
divide such quantum states into three categories, as set out in Table 1.

REGION OVERALL SUB-SYSTEM CATEGORY
QUANTUM STATE QUANTUM STATE

A ρ̂ =
∑
R

PR ρ̂
A
R ⊗ ρ̂

B
R Both ρ̂AR and ρ̂BR are local * Separable

particle number SSR compliant

B ρ̂ =
∑
R

PR ρ̂
A
R ⊗ ρ̂

B
R Neither ρ̂AR nor ρ̂BR is local * Separable but

particle number SSR compliant non-local [4];
* Entangled [2]

C ρ̂ 6=
∑
R

PR ρ̂
A
R ⊗ ρ̂

B
R N/A * Entangled

Table I. Categories of two mode quantum states.

The regions referred to are shown in Figure 2. All authors would regard
the quantum states in Region A as being separable and those in Region C as
being entangled - it is only those in Region B where the category is disputed.
Those such as [2] (local SSR supporters) who require local particle number
SSR compliance for each sub-system state would classify the overall state as
entangled, those who do not require this (local SSR sceptics) such as [4] would
classify the overall state as separable but non-local. Note that no further sub-
classification is needed.

In Appendix N of paper I we show that if states of the form (44) are globally

SSR compliant, then both the sub-system states ρ̂AR and ρ̂BR are local particle
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number SSR compliant in general. However, we point out that there are special
matched choices for both ρ̂AR and ρ̂BR along with the PR, where neither ρ̂AR nor

ρ̂BR is local particle number SSR compliant even though ρ̂ is global particle

number SSR compliant. But the case where just one of ρ̂AR or ρ̂BR is non SSR
compliant does not occur, so Region B does not need to be sub-divided along
these lines.
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Figure 2. Categories of two mode quantum states that are global particle
number SSR compliant. The regions A, B and C are described in Table I and
represent the sets of separable, separable but non-local and entangled states

respectively.
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Now let us consider quantum states for which
〈

∆Ŝx
2
〉
ρ
≥ 1

2 |
〈
Ŝz

〉
ρ
| and〈

∆Ŝy
2
〉
ρ
≥ 1

2 |
〈
Ŝz

〉
ρ
|. Such states are clearly not spin squeezed. Firstly, we

know that all states in Region A satisfy these inequalities. However, some states
in Region B and some states in Region C may also satisfy these inequalities.
In Figure 3 the quantum states in Region B that satisfy these inequalities are
depicted as lying in Region D, those in Region C that do so are depicted as
lying in Region F. Hence, if we find that the quantum state is such that spin
squeezing does occur (as in the test of (47)) we can definitely say that it does
not lie in Regions A, D or F. It must therefore be located in Regions E or L.
The question is - Does this determine whether the state is entangled or not
according to the supporters of applying the local SSR as in the definition of
entanglement used in the present paper? The answer is that it does. This is
because the quantum state must be located within either of Regions B or C,
since these regions include E and L respectively. In both cases it would be
entangled according to the definition used here [2] (see Table 1).
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Figure 3. Categories of two mode quantum states satisfying inequalities〈
∆Ŝx

2
〉
ρ
≥ 1

2 |
〈
Ŝz

〉
ρ
| and

〈
∆Ŝy

2
〉
ρ
≥ 1

2 |
〈
Ŝz

〉
ρ
| Such states are represented

as being in regions are A, D and F, where A includes all the separable states,
D includes some of the separable but non-local states and F includes some of
the entangled states (apart from those in D). The region A⊕D ⊕ F includes
all the unsqueezed states. Referring to Figure 2, B = D ⊕ E and C = F ⊕ L.
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However, the sceptics of applying the local SSR would draw a different con-
clusion from the experiment that demonstrated spin squeezing (as in the test
of (47)). They would agree that the mathematics shows that a state in Region
A could not demonstrate spin squeezing. Nor by assumption could states in
Regions D or F. This means that the state must lie in either Region L or Region
E. So from the point of view of the sceptic, either the state is entangled (if it
lies in Region L) or the sub-system states in all separable states (Region E)
do not comply with the local particle number SSR. The sceptic’s conclusion is
clearly interesting - in the first case the quantum state is entangled, and hence
may demonstrate other non-classical features, and in the second case the pos-
sibility exists of finding sub-systems in states that have the unexpected feature
in non-relativistic many body physics of having coherences between states with
differing particle number. If there was a second experimental test that could
show that the state was not entangled, then this would demonstrate the exis-
tence of quantum states (sub-systems are themselves possible quantum systems)
in which the particle number SSR breaks down.

The second experiment would seem to require a test for entanglement which
is necessary as well as being sufficient - the latter alone being usually the case
for entanglement tests. Such criteria and measurements are a challenge, but not
impossible even though we have not met this challenge in these two papers.
Thus, in principle there could be a pair of experiments that give evidence of
entanglement, or failure of the super-selection rule. For such investigations to be
possible, the use of entanglement criteria that do invoke the local super-selection
rules is also required. Such tests are the focus of these two papers, though here
our primary reason is because we consider applying the local particle number
SSR is required by the physics of non-relativistic quantum many body systems
involving massive particles.
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Appendix D Spin Squeezing and Entanglement
- Multi-Mode Case

In this Appendix we discuss three cases of separable states for multimode sys-
tems and then examine whether spin squeezing tests demonstrate entanglement
for each of these cases.

D.1 Multi-Mode Separable States - Three Cases

As we have seen the multi-mode case involves a set of n modes with annihilation
operators âi for bosons with hyperfine component A, and another set of n modes
with annihilation operators b̂i for bosons with hyperfine component B. Since
entanglement implies a clear choice of what sub-systems are to be entangled,
there are numerous choices possible here for the present multi-mode case. Case
1 involves two sub-systems, one consisting of all the âi modes as sub-system A
and the other consisting of all the b̂i modes as sub-system B. Case 2 involves
2n sub-systems, the Ai th containing the mode âi and the Bi th containing
the mode b̂i. Case 3 involves n sub-systems, the ith containing the two modes
âi and b̂i. These three cases relate to entanglement causing interactions in
differing circumstances. Case 1 might apply to cases where separable states can
be created with all the âi modes coupled together to produce states ρ̂AR and the b̂i
modes coupled together to produce states ρ̂BR . Case 2 might apply to cases where

separable states can be created with the âi and all the b̂i modes independent of

each together to produce states ρ̂
a(i)
R ⊗ ρ̂b(i)R . Case 3 might apply to cases where

separable states can be created with the âi and the matching b̂i modes coupled

together to produce states ρ̂
ab(i)
R . Cases 2 and 3 will be discussed further in

SubSection 4.4 dealing with the entanglement test introduced by Sørensen et al
[14].

The density operators for separable states in the three cases will be of the
form

ρ̂sep =
∑
R

PR ρ̂R ,

ρ̂R = ρ̂AR ⊗ ρ̂
B
R Case 1 (205)

ρ̂R = ρ̂
a(1)
R ⊗ ..⊗ ρ̂a(i)

R ..⊗ ρ̂a(n)
R ⊗ ρ̂b(1)

R ⊗ ..⊗ ρ̂b(n)
R Case 2 (206)

ρ̂R = ρ̂
ab(1)
R ⊗ ρ̂ab(2)

R ⊗ ..⊗ ρ̂ab(i)R ..⊗ ρ̂ab(n)
R Case 3 (207)

(208)

Discussion of whether there is a spin squeezing test for Case 1 in the multi-
mode case involves a generalization of the theory set out in SubSection 3.1.

There is a Bloch vector entanglement test, in that if either of
〈
Ŝ x

〉
or
〈
Ŝ y

〉
is

non-zero, then the state is entangled. We also find that spin squeezing in any
spin component requires the state to be entangled, thus generalizing the spin
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squeezing test to the multi-mode case, for two sub-systems consisting of all the
modes âi and all the modes b̂i The details are covered in SubSection D.2.

For Case 2 a spin squeezing test for entanglement also be obtained. The
test is again that spin squeezing in any spin component Ŝx, Ŝy or Ŝz confirms

entanglement of the 2n sub-systems consisting of single modes âi and b̂i. Fur-
thermore, there is also a Bloch vector entanglement test, in that if either of〈
Ŝ x

〉
or
〈
Ŝ y

〉
is non-zero, then the state is entangled. As these systems can

have quantum states with large numbers N of bosonic particles, it can be said
that entanglement in an N particle system has occurred if spin squeezing is
found. The proof of these tests is set out in SubSection D.3.

For Case 3 there is also a spin squeezing test for entanglement, but it is
restricted. Here the test is that spin squeezing in Ŝz confirms entanglement of
the n sub-systems consisting of pairs of modes âi and b̂i, but the test is restricted
to the situation where exactly one boson occupies each mode pair. No spin
squeezing test was found for the other spin operators, nor was a Bloch vector
entanglement test obtained. The proof of this result is set out in SubSection
D.4. That no general spin squeezing test for entanglement exists can be shown
by a counter-example. If all the N bosons occupied one mode pair âi and b̂i,

and the quantum state ρ̂
ab(i)
R for this pair corresponded to the relative phase

eigenstate with phase θp = 0 (see SubSection 3.7) then although the overall

state is separable, spin squeezing in Ŝy compared to Ŝz occurs (with
〈

∆Ŝ2
y

〉
=

1
4 + 1

8 lnN ,
〈

∆Ŝ2
z

〉
=
(

1
6 −

π2

64

)
N2 and

〈
Ŝ x

〉
= N π

8 . Thus there is a situation

where a non-entangled state for sub-systems consisting of mode pairs is spin
squeezed, so spin squeezing does not always confirm entanglement.

As in the previous two mode cases, having established in multi-mode cases
that spin squeezing requires entanglement a further question then is: Does
entanglement automatically lead to spin squeezing? The answer is no, since
cases where the quantum state is entangled but not spin squeezed can be found
- an example is given in the previous paragraph. Thus in general, spin squeezing
and entanglement are not equivalent - they do not occur together for all states.
Spin squeezing is a sufficient condition for entanglement, it is not a necessary
condition.

D.2 Spin Squeezing Test for Bipartite System (Case 1)

We now consider spin squeezing for the multi-mode spin operators given in Eqs.
(193) and (196) in Appendix A. We consider separable states for Case 1, the
density operator being given in Eq. (205). In this bipartite case the two sub-

systems consist of all modes âi and all modes b̂i. The development involves ex-

pressions such as
〈

Ψ̂c(r)
〉C
R

= TrC(Ψ̂c(r)ρ̂CR),
〈

Ψ̂†c(r)
〉C
R

= TrC(Ψ̂†c(r)ρ̂CR) and〈
Ψ̂†c(r)Ψ̂†c(r

′)
〉C
R

= TrC(Ψ̂†c(r)Ψ̂†c(r
′)ρ̂CR),

〈
Ψ̂c(r)Ψ̂c(r

′)
〉C
R

= TrC(Ψ̂c(r)Ψ̂c(r
′)ρ̂CR),〈

Ψ̂†c(r)Ψ̂c(r
′)
〉C
R

= TrC(Ψ̂†c(r)Ψ̂c(r
′)ρ̂CR), where C = A,B.
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Firstly, we have〈
Ŝ x

〉
R

=
1

2

∫
dr

(〈
Ψ̂†b(r)

〉B
R

〈
Ψ̂a(r)

〉A
R

+
〈

Ψ̂†a(r)
〉A
R

〈
Ψ̂b(r)

〉B
R

)
= 0 (209)

since from the local particle number SSR for sub-systems A and B we have〈
Ψ̂†b(r)

〉B
R

=
〈

Ψ̂a(r)
〉A
R

= 0. A similar result applies to
〈
Ŝ y

〉
R

so it then

follows that 〈
Ŝ x

〉
=
〈
Ŝ y

〉
= 0 (210)

This immediately yields the Bloch vector entanglement test. It also leads to the
spin squeezing in Ŝ z entanglement test, namely if Ŝ z is squeezed with respect
to Ŝ x or Ŝ y (or vice versa), then the state must be entangled. The question

then is: Does spin squeezing in Ŝ x with respect to Ŝ y (or vice versa) require
the state to be entangled for the two n mode sub-systems A and B?

To obtain an inequality for the variance in Ŝ x, we see that〈
Ŝ 2
x

〉
R

=
1

4

∫∫
dr dr′ × {

〈
Ψ̂†b(r)Ψ̂†b(r

′)
〉B
R

〈
Ψ̂a(r)Ψ̂a(r′)

〉A
R

+
〈

Ψ̂†b(r)Ψ̂b(r
′)
〉B
R

〈
Ψ̂a(r)Ψ̂†a(r′)

〉A
R

+
〈

Ψ̂b(r)Ψ̂†b(r
′)
〉B
R

〈
Ψ̂†a(r)Ψ̂a(r′)

〉A
R

+
〈

Ψ̂b(r)Ψ̂b(r
′)
〉B
R

〈
Ψ̂†a(r)Ψ̂†a(r′)

〉A
R
} (211)

From the local particle number SSR for sub-systemsA andB we have
〈

Ψ̂†b(r)Ψ̂†b(r
′)
〉B
R

=〈
Ψ̂a(r)Ψ̂a(r′)

〉A
R

= 0, so the first and fourth terms are zero. Using the field op-

erator commutation rules we then obtain〈
Ŝ 2
x

〉
R

=
1

2

∫∫
dr dr′

〈
Ψ̂†b(r)Ψ̂b(r

′)
〉B
R

〈
Ψ̂†a(r′)Ψ̂a(r)

〉A
R

+
1

4

∫
dr {

〈
Ψ̂†b(r)Ψ̂b(r)

〉B
R

+
〈

Ψ̂†a(r)Ψ̂a(r)
〉A
R
} (212)

so that 〈
∆Ŝ 2

x

〉
R

=
1

2

∫∫
dr dr′

〈
Ψ̂†b(r)Ψ̂b(r

′)
〉B
R

〈
Ψ̂†a(r′)Ψ̂a(r)

〉A
R

+
1

4

∫
dr {

〈
Ψ̂†b(r)Ψ̂b(r)

〉B
R

+
〈

Ψ̂†a(r)Ψ̂a(r)
〉A
R
} (213)

Hence from (20)〈
∆Ŝ 2

x

〉
≥

∑
R

PR{
1

2

∫∫
dr dr′

〈
Ψ̂†b(r)Ψ̂b(r

′)
〉B
R

〈
Ψ̂†a(r′)Ψ̂a(r)

〉A
R

+
1

4

∫
dr {

〈
Ψ̂†b(r)Ψ̂b(r)

〉B
R

+
〈

Ψ̂†a(r)Ψ̂a(r)
〉A
R
} (214)
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The same result applies to
〈

∆Ŝ 2
y

〉
.

Now we can easily show that〈
Ŝ z

〉
=
∑
R

PR
1

2

∫
dr {

〈
Ψ̂†b(r)Ψ̂b(r)

〉B
R
−
〈

Ψ̂†a(r)Ψ̂a(r)
〉A
R
} (215)

so that

1

2
|
〈
Ŝ z

〉
| ≤

∑
R

PR
1

4

∫
dr {

〈
Ψ̂†b(r)Ψ̂b(r)

〉B
R

+
〈

Ψ̂†a(r)Ψ̂a(r)
〉A
R
} (216)

as
〈

Ψ̂†b(r)Ψ̂b(r)
〉B
R

and
〈

Ψ̂†a(r)Ψ̂a(r)
〉A
R

are real and positive.

Hence we find that〈
∆Ŝ 2

x

〉
− 1

2
|
〈
Ŝ z

〉
|

≥
∑
R

PR
1

2

∫∫
dr dr′

〈
Ψ̂†b(r)Ψ̂b(r

′)
〉B
R

〈
Ψ̂†a(r′)Ψ̂a(r)

〉A
R

(217)

=
∑
R

PR
1

2

∫∫
dr dr′ TrB{Ψ̂b(r

′) ρ̂BR Ψ̂†b(r)}TrA{Ψ̂a(r) ρ̂AR Ψ̂†a(r′)}(218)

=
1

2

∫∫
dr dr′ Tr

{
Ψ̂a(r) Ψ̂b(r

′) ρ̂sep Ψ̂†a(r′) Ψ̂†b(r)
}

(219)

giving three forms that the inequality for
〈

∆Ŝ 2
x

〉
− 1

2 |
〈
Ŝ z

〉
| has to satisfy in

the case of a separable state. The last form involves a double space integral of a
quantum correlation function. Note the order of r and r′. It is straightforward to
show that the right side of the inequality is real, but to achieve an entanglement
test involving spin squeezing for Ŝ x we need to show that it is non-negative.

Identical inequalities can be found for
〈

∆Ŝ 2
y

〉
− 1

2 |
〈
Ŝ z

〉
|.

D.2.1 Mode Expansions

If we use Eq. (195) to expand the field operators then using Eq. (218) we have〈
∆Ŝ 2

x

〉
− 1

2
|
〈
Ŝ z

〉
|

≥
∑
R

PR
1

2

∑
ij

∑
kl

∫∫
dr dr′

×
{
φi(r)φ∗j (r

′)φk(r′)φ∗l (r)
}

×
{
TrA{âi ρ̂AR â

†
j} TrB{b̂k ρ̂

B
R b̂†l }

}
=

∑
R

PR
1

2

∑
ij

{
TrA{âi ρ̂AR â

†
j} TrB{b̂j ρ̂

B
R b̂†i}

}
=

∑
R

PR
1

4

∑
ij

(ARij B
R
ji +BRij A

R
ji) (220)

=
∑
R

PR
1

4
Tr{ARBR +BRAR} (221)

S 18



where mode orthogonality has been used and we have introduced matrices AR

and BR whose elements are

ARij = TrA{âi ρ̂AR â
†
j} BRji = TrB{b̂j ρ̂BR b̂†i} (222)

It is easy to show that ARij = (ARji)
∗ and BRij = (BRji)

∗ showing that the matrices

AR and BR are Hermitian, as is ARBR + BRAR. The quantity
∑
ij

(ARij B
R
ji +

BRij A
R
ji) is real. The question is: Is it also positive ?

For the simple case where there is only one spatial mode for each component

the right side of the inequality is just equal to
∑
R

PR
1
2

{
TrA{â ρ̂AR â†} TrB{b̂ ρ̂

B
R b̂†}

}
=∑

R

PR
1
2N

A
R N

B
R , where NA

R and NB
R give the mean numbers of bosons in sub-

systems A and B for the states ρ̂AR and ρ̂BR . The right side of the inequality is

positive, showing that the separable state is not spin squeezed for Ŝ x with re-
spect to Ŝ y (or vice versa), leading as before to the test that such spin squeezing
requires entanglement.

D.2.2 Positive Definiteness

For the multi-mode case we now take into account that the sub-system density
operators ρ̂AR and ρ̂BR are positive-definite. Their eigenvalues πARλ and πBRµ are
real and non-negative as well as summing to unity, and we can write the density
operators in terms of their orthonormal eigenvectors |AR, λ〉 and |BR,µ〉 as

ρ̂AR =
∑
λ

πARλ |AR, λ〉 〈AR, λ| ρ̂BR =
∑
µ
πBRµ |BR,µ〉 〈BR,µ| (223)

Then from (222)

ARij =
∑
λ

πARλ 〈AR, λ| â†j âi |AR, λ〉 BRji =
∑
µ

πBRµ 〈BR,µ| b̂†i b̂j |BR,µ〉

(224)
Consider a 1× n row matrix ξ† = {ξ∗1, ξ

∗
2, .., ξ

∗
n }

ξ†ARξ =
∑
ij

ξ∗i A
R
ij ξj

=
∑
λ

πARλ
∑
ij

ξ∗i 〈AR, λ| â
†
j âi |AR, λ〉 ξj

=
∑
λ

πARλ 〈AR, λ| Ω̂†A Ω̂A |AR, λ〉 (225)

where we have introduced the operator Ω̂A =
∑
i ξ
∗
i âi. Since ξ†ARξ is always

non-negative for all ξ, this shows that AR is a positive definite matrix. Similarly,
considering a 1×n row matrix η† = {η∗1, η∗2, .., η∗n } and introducing the operator

Ω̂B =
∑
i ηi b̂i we find that

η†BRη =
∑
µ

πBRµ 〈BR,µ| Ω̂†B Ω̂B |BR,µ〉 (226)
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which is also always non-negative, showing that BR is also a positive definite
matrix.

We can then express the positive definite Hermitian matrices AR and BR

in terms of their normalized column eigenvectors θAα and ζBβ respectively, where
the corresponding real, positive eigenvalues are να and σβ Thus we have (for
ease of notation R will be left understood)

AR θAα = ναθ
A
α (θAα )†θAγ = δαγ AR =

∑
α

ναθ
A
α (θAα )†

BR ζBβ = σβζ
B
β (ζBβ )†ζBε = δβε BR =

∑
β

σβζ
B
β (ζBβ )† (227)

Then

Tr{ARBR +BRAR}
= Tr{

∑
α

∑
β

νασβ θ
A
α (θAα )†ζBβ (ζBβ )†}

+Tr{
∑
α

∑
β

νασβ ζ
B
β (ζBβ )† θAα (θAα )†}

=
∑
α

∑
β

νασβ [(θAα )†ζBβ ] [(ζBβ )†θAα ]

+
∑
α

∑
β

νασβ [(ζBβ )†θAα ] [(θAα )†ζBβ ]

= 2
∑
α

∑
β

νασβ | [(θAα )†ζBβ ] |2 (228)

Hence we have using (221)〈
∆Ŝ 2

x

〉
− 1

2
|
〈
Ŝ z

〉
|

≥
∑
R

PR
1

2

∑
α

∑
β

νασβ | [(θAα )†ζBβ ] |2 (229)

where the right side of the inequality is non-negative. The same result applies

to
〈

∆Ŝ 2
y

〉
− 1

2

∣∣∣〈Ŝ z

〉∣∣∣. Thus separable states are not spin squeezed in Ŝ x or in

Ŝ y.
Thus we have established the spin squeezing test for the multi–mode Case

1 - states that are spin squeezed in Ŝ x compared to Ŝ y (or vice versa) must
be entangled states for the two subsystems consisting of all modes âi and all
modes b̂i.

For the other spin components, the Bloch vector result in (210) that
〈
Ŝ x

〉
=〈

Ŝ y

〉
= 0 for separable states enables us to show that if Ŝ z is squeezed com-

pared to Ŝ x (or vice versa) or if Ŝ z is squeezed compared to Ŝ y (or vice versa)
then the state must be entangled. Thus spin squeezing in any spin component
requires the state to be entangled, just as for the two mode case.
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D.3 Spin Squeezing Tests for Single Mode Sub-Systems
(Case 2)

We now consider spin squeezing for the multi-mode spin operators given in Eqs.
(193) and (196) in Appendix A. We consider separable states for Case 2, the
density operator being given in Eq. (206). In this single mode sub-system case

there are 2n subsystems consist of all modes âi and all modes b̂i.
This case is that involved in the modified approach to Sørensen et al and we

will see that it leads to a useful inequality for
〈

∆Ŝ 2
x

〉
or
〈

∆Ŝ 2
y

〉
that applies

when non-entangled states are those when all the separate modes âi and b̂i are
the sub-systems. We will follow the approach used for the simple two mode case
in Section 3.

Firstly, the variance for a Hermitian operator Ω̂ in a mixed state

ρ̂ =
∑
R

PR ρ̂R (230)

is always greater than or equal to the the average of the variances for the separate
components 〈

∆Ω̂ 2
〉
≥
∑
R

PR

〈
∆Ω̂2

〉
R

(231)

where
〈

∆Ω̂ 2
〉

= Tr(ρ̂∆Ω̂ 2) with ∆Ω̂ = Ω̂−
〈

Ω̂
〉

and
〈

∆Ω̂ 2
〉
R

= Tr(ρ̂R ∆Ω̂R
2)

with ∆Ω̂R = Ω̂−
〈

Ω̂
〉
R

. The proof is straight-forward and given in Ref. [19].

Next we calculate
〈

∆Ŝ 2
x

〉
R

,
〈

∆Ŝ 2
y

〉
R

and
〈
Ŝx

〉
R

,
〈
Ŝy

〉
R

,
〈
Ŝz

〉
R

for the

case where

ρ̂ =
∑
R

PR

(
ρ̂a 1
R ⊗ ρ̂

b 1
R

)
⊗
(
ρ̂a 2
R ⊗ ρ̂

b 2
R

)
⊗
(
ρ̂a 3
R ⊗ ρ̂

b 3
R

)
⊗ .... (232)

as is required for a general non-entangled state all 2n modes. This situation
is that of Case 2 for the sub-systems, as described in SubSection D.1. As
the density operators for the individual modes must represent possible physical
states for such modes, so the super-selection rule for atom number applies and
we have

〈(âi)p〉a i = Tr(ρ̂a iR (âi)
p) = 0

〈
(â†i )

p
〉
a i

= Tr(ρ̂a iR (â†i )
p) = 0〈

(̂bi)
m
〉
b i

= Tr(ρ̂b iR (̂bi)
m) = 0

〈
(̂b†i )

m
〉
b i

= Tr(ρ̂b iR (̂b†i )
m) = 0

(233)
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The Schwinger spin operators are

Ŝx =
∑
i

(̂b†i âi + â†i b̂i)/2 =
∑
i

Ŝix

Ŝy =
∑
i

(̂b†i âi − â
†
i b̂i)/2i =

∑
i

Ŝiy

Ŝz =
∑
i

(̂b†i b̂i − â
†
i âi)/2 =

∑
i

Ŝiz (234)

where âi, b̂i and â†i , b̂
†
i respectively are mode annihilation, creation operators.

Note that this expression for the spin operators is the same as (196) for the
multi-mode case treated in Appendix A. From Eqs. (234) we find that

Ŝ 2
x =

∑
i

(Ŝix)2 +
∑
i 6=j

ŜixŜ
j
x (235)

so that on taking the trace with ρ̂R and using Eqs. (232) we get after applying

the commutation rules [ê, ê†] = 1̂ (ê = â or b̂)〈
Ŝ 2
x

〉
R

=
∑
i

〈
(Ŝix)2

〉
R

+
∑
i 6=j

〈
Ŝix

〉
R

〈
Ŝjx

〉
R

(236)

As we also have〈
Ŝ x

〉
R

=
∑
i

〈
Ŝix

〉
R

〈
Ŝ x

〉2

R
=
∑
i

〈
Ŝix

〉2

R
+
∑
i 6=j

〈
Ŝix

〉
R

〈
Ŝjx

〉
R

(237)

using Eqs. (232) and we see finally that the variance
〈

∆Ŝ 2
x

〉
R

is

〈
∆Ŝ 2

x

〉
R

=
∑
i

〈
(Ŝix)2

〉
R
−
∑
i

〈
Ŝix

〉2

R
(238)

all the terms with i 6= j cancelling out. and therefore from Eq. (231)〈
∆Ŝ 2

x

〉
≥
∑
R

PR
∑
i

(〈
(Ŝix)2

〉
R
−
〈
Ŝix

〉2

R

)
(239)

An analogous result applies for
〈

∆Ŝ 2
y

〉
.

But using (233)

(Ŝix)2 =
1

4
(̂b†i âib̂

†
i âi + b̂†i âiâ

†
i b̂i + â†i b̂ib̂

†
i âi + â†i b̂iâ

†
i b̂i)〈

(Ŝix)2
〉
R

=
1

4
(
〈

(̂b†b̂)i

〉
R

+
〈
(â†â)i

〉
R

) +
1

2
(
〈
(â†â)i

〉
R

〈
(̂b†b̂)i

〉
R

) (240)

and 〈
Ŝix

〉
R

= 0 (241)
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It then follows that〈
Ŝ x

〉
=
∑
R

PR

〈
Ŝ x

〉
R

= 0
〈
Ŝ y

〉
=
∑
R

PR

〈
Ŝ y

〉
R

= 0 (242)

so that〈
∆Ŝ 2

x

〉
≥
∑
R

PR
∑
i

(
1

4
(
〈

(̂b†b̂)i

〉
R

+
〈
(â†â)i

〉
R

) +
1

2
(
〈
(â†â)i

〉
R

〈
(̂b†b̂)i

〉
R

)

)
(243)

The same result applies for
〈

∆Ŝ 2
y

〉
.

Now using (233) 〈
Ŝiz

〉
R

=
1

2
(
〈

(̂b†b̂)i

〉
R
−
〈
(â†â)i

〉
R

)) (244)

〈
Ŝ z

〉
=

∑
R

PR
∑
i

〈
Ŝiz

〉
R

1

2

∣∣∣〈Ŝ z

〉∣∣∣ =
1

2

∑
R

PR

∣∣∣∣∑
i

1

2
(
〈

(̂b†b̂)i

〉
R
−
〈
(â†â)i

〉
R

))

∣∣∣∣
≤

∑
R

PR
1

4

∑
i

∣∣∣(〈(̂b†b̂)i

〉
R
−
〈
(â†â)i

〉
R

))
∣∣∣

≤
∑
R

PR
1

4

∑
i

(
〈

(̂b†b̂)i

〉
R

+
〈
(â†â)i

〉
R

)) (245)

and thus 〈
∆Ŝ 2

x

〉
− 1

2

∣∣∣〈Ŝ z

〉∣∣∣
≥

∑
R

PR
∑
i

(
1

4
(
〈

(̂b†b̂)i

〉
R

+
〈
(â†â)i

〉
R

) +
1

2
(
〈
(â†â)i

〉
R

〈
(̂b†b̂)i

〉
R

)

)
−
∑
R

PR
1

4

∑
i

(
〈

(̂b†b̂)i

〉
R

+
〈
(â†â)i

〉
R

))

=
∑
R

PR
1

2

∑
i

(
〈
(â†â)i

〉
R

〈
(̂b†b̂)i

〉
R

)

≥ 0 (246)

A similar proof shows that
〈

∆Ŝ 2
y

〉
− 1

2

∣∣∣〈Ŝ z

〉∣∣∣ ≥ 0 for the non-entangled state

of all 2n modes.
This shows that for the general non-entangled state with all modes âi and b̂i

as the sub-systems, the variances for two of the spin fluctuations
〈

∆Ŝ 2
x

〉
and〈

∆Ŝ 2
y

〉
are both greater than 1

2

∣∣∣〈Ŝ z

〉∣∣∣, and hence there is no spin squeezing

S 23



for Ŝx or Ŝy. Note that as
∣∣∣〈Ŝ y

〉∣∣∣ = 0, the quantity

√(∣∣∣〈Ŝ⊥ 1

〉∣∣∣2 +
∣∣∣〈Ŝ⊥ 2

〉∣∣∣2)
is the same as

∣∣∣〈Ŝ z

〉∣∣∣, so the alternative criterion in Eq. (201) is the same as

that in Eq. (6) which is used here.
Hence we have shown that for a non-entangled physical state for all the 2n

modes âi and b̂i〈
∆Ŝ 2

x

〉
≥ 1

2
|
〈
Ŝ z

〉
| and

〈
∆Ŝ 2

y

〉
≥ 1

2
|
〈
Ŝ z

〉
| (247)

so that spin squeezing in either Ŝx or Ŝy requires entanglement.

From (242) we see that
〈
Ŝ x

〉
=
〈
Ŝ y

〉
= 0 for the general separable state,

showing there is a Bloch vector test for entanglement such that if either
〈
Ŝ x

〉
or
〈
Ŝ y

〉
is non-zero, then the state must be entangled.

Finally, if there is spin squeezing in Ŝz with respect to Ŝx or vice versa, or

spin squeezing in Ŝz with respect to Ŝy or vice versa, it follows that one of
〈
Ŝ x

〉
or
〈
Ŝ y

〉
is non-zero. But as both these quantities are zero for a non-entangled

state, if follows that spin squeezing in Ŝz also requires entanglement.
Thus, spin squeezing in any spin operator Ŝx, Ŝy or Ŝz is a sufficiency test

for entanglement of all the separate mode sub-systems.

D.4 Spin Squeezing Tests for Two Mode Sub-Systems (Case
3)

We now consider spin squeezing for the multi-mode spin operators given in Eqs.
(193) and (196) in Appendix A. We consider separable states for Case 3, the
density operator being given in Eq. (207). In this mode pair sub-system case

there are n subsystems consist of all pairs of modes âi and b̂i.
This case is also involved in a modified approach to Sørensen et al and we

show a useful inequality for
〈

∆Ŝ 2
z

〉
applies when non-entangled states are those

when the pairs of modes âi and b̂i are the separate sub-systems, but only in
restricted situations. The pairs of modes corresponding to localized modes on
different lattice sites or pairs of modes with the same momenta does represent
the closest way of simulating the approach used by Sørensen et al where identical
particles i were regarded as the sub-systems.

Now the general non-entangled state will be

ρ̂ =
∑
R

PR ρ̂
1
R ⊗ ρ̂

2
R ⊗ ρ̂

3
R ⊗ ... (248)

where the ρ̂iR are now the density operators for sub-system i consisting of the pair

of modes âi and b̂i (which are of the form given in Eq. (303)) and the conditions
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in Eq. (233) no longer apply. The Fock states are of the form |Nia〉⊗|Nib〉 for the

pair of modes âi and b̂i, and for this Fock state the total occupancy of the pair
of modes is Ni = Nia +Nib. From the super-selection rule the density operator
ρ̂iR for the ith pair of modes âi and b̂i is diagonal in the total occupancy. For
Ni = 0 there is one non zero matrix element (〈0|ia⊗〈0|ib) ρ̂

i
R (|0〉ia⊗ |0〉ib). For

Ni = 1 there are four non zero matrix elements, which may be written

(〈1|ia ⊗ 〈0|ib) ρ̂
i
R (|1〉ia ⊗ |0〉ib) = ρiaa

(〈1|ia ⊗ 〈0|ib) ρ̂
i
R (|0〉ia ⊗ |1〉ib) = ρiab

(〈0|ia ⊗ 〈1|ib) ρ̂
i
R (|1〉ia ⊗ |0〉ib) = ρiba

(〈0|ia ⊗ 〈1|ib) ρ̂
i
R (|0〉ia ⊗ |1〉ib) = ρibb (249)

For Ni = 2 there are nine non zero matrix element (〈2|ia⊗〈0|ib) ρ̂
i
R (|2〉ia⊗|0〉ib),

..., (〈0|ia ⊗ 〈2|ib) ρ̂
i
R (|0〉ia ⊗ |2〉ib) and the number increases with Ni.

If we restrict ourselves to general entangled states for one particle, where Ni
= 1 for all pairs of modes, then the density operator ρ̂iR is of then form

ρ̂iR = ρiaa(|1〉ia 〈1|ia ⊗ |0〉ib 〈0|ib) + ρiab(|1〉ia 〈0|ia ⊗ |0〉ib 〈1|ib)
+ρiba(|0〉ia 〈1|ia ⊗ |1〉ib 〈0|ib) + ρibb(|0〉ia 〈0|ia ⊗ |1〉ib 〈1|ib) (250)

In addition Hermitiancy, positivity, unit trace Tr(ρ̂iR) = 1 and Tr(ρ̂iR)2 ≤ 1 can
be used as in Eq (295) to parameterize the matrix elements in (249).

ρiaa = sin2 αi ρibb = cos2 αi

ρiab =

√
sin2 αi cos2 αi sin2 βi exp(+iφi) ρiba =

√
sin2 αi cos2 αi sin2 βi exp(−iφi)

(251)

The expectation values for the spin operators Ŝix, Ŝiy and Ŝiz associated with
the ith pair of modes are then〈

Ŝix

〉
R

= Tr(ρ̂iR
1

2
(̂b†i âi + â†i b̂i)

=
1

2

(
ρiab + ρiba

)
〈
Ŝiy

〉
R

=
1

2i

(
ρiab − ρiba

)
〈
Ŝiz

〉
R

=
1

2

(
ρibb − ρiaa

)
(252)

which are of exactly the same form as in Eq. (294) as in the Appendix G
derivation of the original Sørensen et al [14] results based on treating identical
particles as the sub-systems. The proof however is now different and rests on
restricting the states ρ̂iR to each containing exactly one boson.

The remainder of the proof is exactly the same as in Appendix G and we
find that 〈

∆Ŝ 2
z

〉
≥ 1

N

(〈
Ŝ x

〉2

+
〈
Ŝ y

〉2
)

(253)
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for non-entangled pairs of modes âi and b̂i. Thus when the interpretation is
changed so that are the separate sub-systems are these pairs of modes, it follows
that spin squeezing in Ŝ z with respect to Ŝ x or Ŝ y requires entanglement of
all the mode pairs, but only if there is one particle in each mode pair.

In general, spin squeezing in either Ŝ x or Ŝ y is not linked to entangle-
ment for Case 3 sub-systems, as has been pointed out in SubSection D.1 by
a counter-example involving the relative phase state. Also there is no Bloch
vector entanglement test. For we have in general〈

Ŝix

〉
R

= Tr(ρ̂iR
1

2
(̂b†i âi + â†i b̂i)〈

Ŝiy

〉
R

= Tr(ρ̂iR
1

2i
(̂b†i âi − â

†
i b̂i) (254)

and the local particle number SSR does not require these quantities to be zero

for sub-systems consisting of pairs of modes âi and b̂i. Thus in general
〈
Ŝx

〉
and〈

Ŝy

〉
can be non-zero for a separable state, so the Bloch vector entanglement

test does not apply.
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Appendix E Hillery Spin Variance - Multi-Mode

It turns out that the Hillery spin variance test can also be applied in multi-mode
situations, where the spin operators are defined as in Appendix A. As explained
in Appendix D three cases occur in regard to specifying the sub-systems. For
Case 1, where there are two sub-systems each consisting of all the modes âi or
all the modes b̂i. the Hillery spin variance test as in (84) applies. The proof set
out below again does not require the sub-system density operators to be local
SSR compliant. Also, for Case 2 where there are 2n subsystems consisting of all
modes âi and all modes b̂i the Hillery spin variance test as in (84) applies. The
proof is set out below again does not require the sub-system density operators
to be local SSR compliant. However, for Case 3 where there are n sub-systems
consisting of all mode pairs âi and b̂i the Hillery spin variance test does not

apply. Basically, this is because specific sub-system density operators ρ̂
ab(i)
R (see

(207)) could be entangled states of the modes âi and b̂i all of which do satisfy

the Hillery test involving
〈
N̂i

〉
R

for this ith sub-system. If we choose a special

separable state of the form (207) with just one term (no sum over R), it is easy
to see that the Hillery test will be satisfied for the full system. However, the
full system state involving these sub-systems is still a separable state, showing
that satisfying the Hillery spin variance test does not always require the state
to be entangled.

E.1 Hillery Spin Variance Test for Bipartite System (Case
1)

We first consider Case 1 where there are two sub-systems each consisting of all
the modes âi or all the modes b̂i. We use the results from (214) to find that for
a separable state 〈

∆Ŝ 2
x

〉
+
〈

∆Ŝ 2
y

〉
≥

∑
R

PR{
∫∫

dr dr′
〈

Ψ̂†b(r)Ψ̂b(r
′)
〉B
R

〈
Ψ̂†a(r′)Ψ̂a(r)

〉A
R

+
1

2

∫
dr {

〈
Ψ̂†b(r)Ψ̂b(r)

〉B
R

+
〈

Ψ̂†a(r)Ψ̂a(r)
〉A
R
} (255)

The same result would have occurred if the local sub-system SSR had been

disregarded, the terms such as 1
4

∫∫
dr dr′ × {

〈
Ψ̂†b(r)Ψ̂†b(r

′)
〉B
R

〈
Ψ̂a(r)Ψ̂a(r′)

〉A
R

cancelling out.
The mean number of bosons is obtained from (197) and hence

1

2

〈
N̂
〉

=
1

2

∑
R

PR
∫
dr

(〈
Ψ̂†b(r)Ψ̂b(r)

〉B
R

+
〈

Ψ̂†a(r)Ψ̂a(r)
〉A
R

)
(256)
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Thus we have 〈
∆Ŝ 2

x

〉
+
〈

∆Ŝ 2
y

〉
− 1

2

〈
N̂
〉

≥
∑
R

PR
∫∫

dr dr′
〈

Ψ̂†b(r)Ψ̂b(r
′)
〉B
R

〈
Ψ̂†a(r′)Ψ̂a(r)

〉A
R

(257)

Using the mode expansion (195) we then get〈
∆Ŝ 2

x

〉
+
〈

∆Ŝ 2
y

〉
− 1

2

〈
N̂
〉

≥
∑
R

PR
∑
ij

∑
kl

∫∫
dr dr′ φ∗i (r)φj(r

′)φ∗k(r′)φl(r)
〈
b̂†i b̂j

〉B
R

〈
â†kâl

〉A
R

=
∑
R

PR
∑
ij

TrA{âi ρ̂AR â
†
j}TrB{b̂j ρ̂

B
R b̂†i} (258)

=
∑
R

PR
1

2
Tr(ARBR +BRAR) (259)

after orthogonality is used and the matrix elements ARij and BRji are introduced
from (222).

Since we have shown in Appendix D.2 that the right side of the last inequality
is always non-negative, the Hillery spin variance entanglement test follows that
if 〈

∆Ŝ 2
x

〉
+
〈

∆Ŝ 2
y

〉
<

1

2

〈
N̂
〉

(260)

then the quantum state must be an entangled state for the case of two sub-
systems each consisting of all the modes âi or all the modes b̂i.

E.2 Hillery Spin Variance Test for Single Mode Sub-Systems
(Case 2)

We now consider separable states for Case 2, the density operator being given
in Eq. (206). In this single mode sub-system case there are 2n subsystems

consisting of all modes âi and all modes b̂i. We use the results from (243) to
find that for a separable state〈

∆Ŝ 2
x

〉
+
〈

∆Ŝ 2
y

〉
≥

∑
R

PR
∑
i

(
1

2
(
〈

(̂b†b̂)i

〉
R

+
〈
(â†â)i

〉
R

) + (
〈
(â†â)i

〉
R

〈
(̂b†b̂)i

〉
R

)

)
(261)

The same result would have occurred if the local sub-system SSR had been

disregarded, the terms such as 1
4

〈
b̂†i b̂
†
i

〉
Ri
〈âiâi〉R cancelling out.

The mean number of bosons is obtained from (197)

1

2

〈
N̂
〉

=
1

2

∑
R

PR
∑
i

(
〈

(̂b†b̂)i

〉
R

+
〈
(â†â)i

〉
R

) (262)
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Thus we have 〈
∆Ŝ 2

x

〉
+
〈

∆Ŝ 2
y

〉
− 1

2

〈
N̂
〉

≥
∑
R

PR
∑
i

(〈
(â†â)i

〉
R

〈
(̂b†b̂)i

〉
R

)
(263)

which is always non-negative.
The Hillery spin variance entanglement test follows that if the inequality in

(260) occurs then the quantum state must be an entangled state for the case of

2n sub-systems consisting of all the modes âi and all the modes b̂i.

E.3 Hillery Spin Variance Test for Two Mode Sub-Systems
(Case 3)

We now consider separable states for Case 3, the density operators being given in
Eq. (207). In this two mode sub-system case there are n subsystems consisting

of all mode pairs âi and b̂i. We consider a special separable state with just one
term where

ρ̂sep = ρ̂ab(1) ⊗ ρ̂ab(2) ⊗ ..⊗ ρ̂ab(i)..⊗ ρ̂ab(n) (264)

We use the results from (238) to find that

〈
∆Ŝ 2

x

〉
+
〈

∆Ŝ 2
y

〉
=

∑
i

(〈
(∆Ŝix)2

〉
+
〈

(∆Ŝiy)2
〉)

(265)

where ∆Ŝiα = Ŝiα−
〈
Ŝiα

〉
R

for α = x, y. This result did not depend on applying

the local SSR.
Now suppose each of the two mode states ρ̂ab(i) is an entangled state of the

modes âi and b̂i in which the Hillery spin variance test is satisfied. Then〈
(∆Ŝix)2

〉
+
〈

(∆Ŝiy)2
〉
<

1

2
〈n̂i〉

Hence 〈
∆Ŝ 2

x

〉
+
〈

∆Ŝ 2
y

〉
<

∑
i

1

2

〈
N̂i

〉
=

1

2

〈
N̂
〉

(266)

where N̂ =
∑
i N̂i is the total number operator and N̂i = b̂†i b̂i + â†i âi

Thus the Hillery spin variance test is satisfied even though the state (264)
is separable, shoeing that the test cannot be applied for multi-mode Case 3.
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Appendix F Raymer Entanglement Test

In this Appendix the proof of the Raymer entanglement test in SubSection 4.3
is presented.

With Hermitian operators Ω̂A, Λ̂A and Ω̂B , Λ̂B for the two sub-systems we
consider

Û = αΩ̂A + βΩ̂B V̂ = αΛ̂A − βΛ̂B (267)

where α, β are real. Then with ρ̂ =
∑
R PR ρ̂R and ρ̂R = ρ̂AR ⊗ ρ̂

B
R and using

(20) it can first be shown that〈
∆Û2

〉
≥
∑
R

PR

〈
∆Û2

R

〉 〈
∆V̂ 2

〉
≥
∑
R

PR

〈
∆V̂ 2

R

〉
(268)

where ∆ÛR = Û −
〈
Û
〉
R

, ∆V̂R = V̂ −
〈
V̂
〉
R

with
〈
Û
〉
R

= Tr(Û ρ̂R),
〈
V̂
〉
R

=

Tr(V̂ ρ̂R).

Substituting for Û and V̂ from (267) and using ρ̂R = ρ̂AR ⊗ ρ̂
B
R we can then

evaluate the various terms as follows.〈
Û2
〉
R

= α2
〈

Ω̂2
A

〉R
A

+ β2
〈

Ω̂2
B

〉R
B

+ 2αβ
〈

Ω̂A

〉R
A

〈
Ω̂B

〉R
B〈

Û
〉
R

= α
〈

Ω̂A

〉R
A

+ β
〈

Ω̂B

〉R
B(〈

Û
〉
R

)2

= α2

(〈
Ω̂A

〉R
A

)2

+ β2

(〈
Ω̂B

〉R
B

)2

+ 2αβ
〈

Ω̂A

〉R
A

〈
Ω̂B

〉R
B〈

∆Û2
R

〉
= α2

(〈
Ω̂2
A

〉R
A
−
(〈

Ω̂A

〉R
A

)2
)

+ β2

(〈
Ω̂2
B

〉R
B
−
(〈

Ω̂B

〉R
B

)2
)

(269)

with a similar result for
〈

∆V̂ 2
R

〉
. Here for sub-system A we define

〈
Ω̂2
A

〉R
A

=

Tr(Ω̂2
A ρ̂

A
R),
〈

Ω̂A

〉R
A

= Tr(Ω̂A ρ̂
A
R) and

〈
Λ̂2
A

〉R
A

= Tr(Λ̂2
A ρ̂

A
R),
〈

Λ̂A

〉R
A

= Tr(Λ̂A ρ̂
A
R)

with analogous expressions for sub-system B.
We thus have〈

∆Û2
〉
≥ α2

∑
R

PR

〈
∆Ω̂2

AR

〉R
A

+ β2
∑
R

PR

〈
∆Ω̂2

BR

〉R
B〈

∆V̂ 2
〉
≥ α2

∑
R

PR

〈
∆Λ̂2

AR

〉R
A

+ β2
∑
R

PR

〈
∆Λ̂2

BR

〉R
B

(270)

where ∆Ω̂AR = Ω̂A −
〈

Ω̂A

〉R
A

, ∆Ω̂BR = Ω̂B −
〈

Ω̂B

〉R
B

, ∆Λ̂AR = Λ̂A −
〈

Λ̂A

〉R
A

and ∆Λ̂BR = Λ̂B −
〈

Λ̂B

〉R
B

.
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Adding the two results gives〈
∆Û2

〉
+
〈

∆V̂ 2
〉

≥ α2
∑
R

PR

(〈
∆Ω̂2

AR

〉R
A

+
〈

∆Λ̂2
AR

〉R
A

)
+β2

∑
R

PR

(〈
∆Ω̂2

BR

〉R
B

+
〈

∆Λ̂2
BR

〉R
B

)
(271)

a general variance inequality for separable states.
This last result can be developed further based on the commutation rules

[Ω̂A, Λ̂A] = iΘ̂A [Ω̂B , Λ̂B ] = iΘ̂B (272)

The Schwarz inequalities - valid for all real λA and λB〈
(∆Ω̂AR − iλA∆Λ̂AR) ρ̂AR (∆Ω̂AR + iλA∆Λ̂AR)

〉R
A
≥ 0〈

(∆Ω̂BR − iλB∆Λ̂BR) ρ̂BR (∆Ω̂BR + iλB∆Λ̂BR)
〉R
B
≥ 0 (273)

lead to the following inequalities〈
∆Ω̂2

AR

〉R
A

+ λA

〈
Θ̂A

〉R
A

+ λ2
A

〈
∆Λ̂2

AR

〉R
A
≥ 0〈

∆Ω̂2
BR

〉R
B

+ λB

〈
Θ̂B

〉R
B

+ λ2
B

〈
∆Λ̂2

BR

〉R
B
≥ 0 (274)

so by taking λA,B = 1 or −1 we have〈
∆Ω̂2

AR

〉R
A

+
〈

∆Λ̂2
AR

〉R
A
≥ |

〈
Θ̂A

〉R
A
|〈

∆Ω̂2
BR

〉R
B

+
〈

∆Λ̂2
BR

〉R
B
≥ |

〈
Θ̂B

〉R
B
| (275)

The Heisenberg Uncertainty principle results
〈

∆Ω̂2
AR

〉R
A

〈
∆Λ̂2

AR

〉R
A
≥ |
〈

Θ̂A

〉R
A
|2/4

etc also follow from (274).

Noting that
∑
R

PR |
〈

Θ̂A

〉R
A
| ≥ |

∑
R

PR

〈
Θ̂A

〉R
A
| = |

〈
Θ̂A

〉
| and

∑
R

PR |
〈

Θ̂B

〉R
B
| ≥

|
∑
R

PR

〈
Θ̂B

〉R
A
| = |

〈
Θ̂B

〉
| since the modulus of a sum is never greater than

the sum of the moduli, we finally arrive at the final inequality for separable
states〈

∆(αΩ̂A + βΩ̂B)2
〉

+
〈

∆(αΛ̂A − βΛ̂B)2
〉
≥ α2|

〈
Θ̂A

〉
| + β2|

〈
Θ̂B

〉
| (276)

This leads to the following test for entanglement〈
∆(αΩ̂A + βΩ̂B)2

〉
+
〈

∆(αΛ̂A − βΛ̂B)2
〉
< α2|

〈
Θ̂A

〉
| + β2|

〈
Θ̂B

〉
| (277)

which is usually based on choices where α2 = β2 = 1.
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Appendix G Derivation of Sørensen et al Re-
sults

Sørensen et al [14] derive a number of inequalities from which they deduce a
further inequality for the spin squeezing parameter in the case of a non-entangled
state. From this result they conclude that spin squeezing implies entanglement.
The final inequality they obtain for a non-entangled state is〈

∆Ŝ 2
z

〉
≥ 1

N

(〈
Ŝ x

〉2

+
〈
Ŝ y

〉2
)

(278)

Their approach is based on writing the density operator for a non-entangled
state of N identical particles as in Eq. (105)

ρ̂ =
∑
R

PR ρ̂
1
R ⊗ ρ̂

2
R ⊗ ρ̂

3
R ⊗ ... =

∑
R

PR ρ̂R (279)

The spin operators are defined as

Ŝx =
∑
i

Ŝix =
∑
i

(|φb(i)〉 〈φa(i)|+ |φa(i)〉 〈φb(i)|)/2

Ŝy =
∑
i

Ŝiy =
∑
i

(|φb(i)〉 〈φa(i)| − |φa(i)〉 〈φb(i)|)/2i

Ŝz =
∑
i

Ŝiz =
∑
i

(|φb(i)〉 〈φb(i)| − |φa(i)〉 〈φa(i)|)/2 (280)

where the sum i is over the identical atoms and each atom is associated with
two states |φa〉 and |φb〉. Clearly, the spin operators satisfy the standard com-
mutation rules for angular momentum operators.

Sørensen et al [14] state that the variance for Ŝz satisfies the result〈
∆Ŝ 2

z

〉
=
N

4
−
∑
R

PR
∑
i

〈
Ŝiz

〉2

R
+
∑
R

PR

〈
Ŝz

〉2

R
−
〈
Ŝz

〉2

(281)

To prove this we have〈
Ŝ 2
z

〉
=

∑
R

PR Tr(ρ̂R
∑
i

∑
j

ŜizŜ
j
z)

=
∑
R

PR

(∑
i

〈(
Ŝiz

)2
〉
R

+
∑
i 6=j

〈
Ŝiz

〉
R

〈
Ŝjz

〉
R

)

=
N

4
+
∑
R

PR

(∑
i 6=j

〈
Ŝiz

〉
R

〈
Ŝjz

〉
R

)
(282)
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where we have used(
Ŝiz

)2

=
1

4
(|φb(i)〉 〈φb(i)| − |φa(i)〉 〈φa(i)|)2

=
1

4
(|φb(i)〉 〈φb(i)|φb(i)〉 〈φb(i)| − (|φb(i)〉 〈φb(i)|φa(i)〉 〈φa(i)|)

+
1

4
(−(|φa(i)〉 〈φa(i)|φb(i)〉 〈φb(i)|+ (|φa(i)〉 〈φa(i)|φa(i)〉 〈φa(i)|)

=
1

4
((|φb(i)〉 〈φb(i)|+ (|φa(i)〉 〈φa(i)|)

=
1

4
1̂i (283)

a result based on the orthogonality, normalization and completeness of the states
|φa(i)〉 , |φb(i)〉. Also〈

Ŝ z

〉
R

= Tr(ρ̂R
∑
i

Ŝiz)

=
∑
i

〈
Ŝiz

〉
R∑

R

PR

〈
Ŝz

〉2

R
=

∑
R

PR

(∑
i

〈
Ŝiz

〉2

R
+
∑
i6=j

〈
Ŝiz

〉
R

〈
Ŝjz

〉
R

)
(284)

so eliminating the term
∑
R PR

(∑
i 6=j

〈
Ŝiz

〉
R

〈
Ŝjz

〉
R

)
gives the required expres-

sion for
〈

∆Ŝ 2
z

〉
=
〈
Ŝ 2
z

〉
−
〈
Ŝz

〉2

.

Next, Sørensen et al [14] state that〈
Ŝx

〉2

≤ N
∑
R

PR
∑
i

〈
Ŝix

〉2

R

〈
Ŝ y

〉2

≤ N
∑
R

PR
∑
i

|
〈
Ŝiy

〉
R
|2 (285)

To prove this we have 〈
Ŝ x

〉
=

∑
R

PR Tr(ρ̂R
∑
i

Ŝix)

=
∑
R

PR
∑
i

〈
Ŝix

〉
R

|
〈
Ŝ x

〉
| ≤

∑
R

PR
∑
i

|
〈
Ŝix

〉
R
| (286)

since the modulus of a sum is less than or equal to the sum of the moduli. Now

〈
Ŝ x

〉2

= |
〈
Ŝ x

〉
|2 ≤

(∑
R

PR
∑
i

|
〈
Ŝix

〉
R
|

)2

≤
∑
R

PR

(∑
i

|
〈
Ŝix

〉
R
|
)2

(287)
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using the general result that

(∑
R

PR
√
CR

)2

≤
∑
R

PR CR, where
∑
R

PR = 1 with

here
√
CR =

∑
i

|
〈
Ŝix

〉
R
|. Next consider

y = N
∑
i

|
〈
Ŝix

〉
R
|2

z =

(∑
i

|
〈
Ŝix

〉
R
|
)2

=

(∑
i

|
〈
Ŝix

〉
R
|
)2

y − z =
∑
i<j

(|
〈
Ŝix

〉
R
| − |

〈
Ŝjx

〉
R
|)2 ≥ 0 (288)

so that〈
Ŝ x

〉2

≤ N
∑
R

PR
∑
i

|
〈
Ŝix

〉
R
|2

〈
Ŝ y

〉2

≤ N
∑
R

PR
∑
i

|
〈
Ŝiy

〉
R
|2 (289)

which is the required result. The inequality for
〈
Ŝ y

〉2

is proved similarly.

Another inequality is stated [14] for
〈
Ŝ z

〉2

. This is

〈
Ŝ z

〉2

≤
∑
R

PR

〈
Ŝz

〉2

R
(290)

To show this we have 〈
Ŝ z

〉
=

∑
R

PR Tr(ρ̂R
∑
i

Ŝiz)

=
∑
R

PR
∑
i

〈
Ŝiz

〉
R

=
∑
R

PR

〈
Ŝz

〉
R

|
〈
Ŝ z

〉
| ≤

∑
R

PR |
〈
Ŝz

〉
R
| (291)

so that

〈
Ŝ z

〉2

= |
〈
Ŝ z

〉
|2 ≤

(∑
R

PR |
〈
Ŝz

〉
R
|

)2

≤
∑
R

PR |
〈
Ŝz

〉
R
|2

=
∑
R

PR

〈
Ŝz

〉2

R
(292)
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using the general result that

(∑
R

PR
√
CR

)2

≤
∑
R

PR CR, where
∑
R

PR = 1 with

here
√
CR = |

〈
Ŝz

〉
R
|.

Finally, we find that∑
R

PR
∑
i

(〈
Ŝix

〉2

R
+
〈
Ŝiy

〉2

R
+
〈
Ŝiz

〉2

R

)
≤ 1

4
N

−
∑
R

PR
∑
i

(〈
Ŝiz

〉2

R

)
≥ −1

4
N +

∑
R

PR
∑
i

(〈
Ŝix

〉2

R
+
〈
Ŝiy

〉2

R

)
(293)

To show this we use the properties of the density operator ρ̂iR for the ith particle
of Hermitiancy, positiveness, unit trace Tr(ρ̂iR) = 1 and Tr(ρ̂iR)2 ≤ 1. In terms
of matrix elements of the density operator ρ̂iR between the two states |φa(i)〉,
|φb(i)〉 the quantities

〈
Ŝix

〉
R

,
〈
Ŝiy

〉
R

and
〈
Ŝiz

〉
R

are

〈
Ŝix

〉
R

= Tr(ρ̂iR
1

2
(|φb(i)〉 〈φa(i)|+ |φa(i)〉 〈φb(i)|))

=
1

2

(
ρiab + ρiba

)
〈
Ŝiy

〉
R

=
1

2i

(
ρiab − ρiba

)
〈
Ŝiz

〉
R

=
1

2

(
ρibb − ρiaa

)
(294)

where ρicd = 〈φc(i)| ρ̂
i
R |φd(i)〉. The Hermitiancy and positiveness of ρ̂iR show

that ρibb and ρiaa are real and positive, ρiab = (ρiba)∗ and ρiaaρ
i
bb−|ρiab|2 ≥ 0. The

condition Tr(ρ̂iR) = 1 leads to ρiaa + ρibb = 1, from which Tr(ρ̂iR)2 ≤ 1 follows
using the previous positivity results. Taken together these conditions lead to
the following useful parametrization of the density matrix elements

ρiaa = sin2 αi ρibb = cos2 αi

ρiab =

√
sin2 αi cos2 αi sin2 βi exp(+iφi) ρiba =

√
sin2 αi cos2 αi sin2 βi exp(−iφi)

(295)

where αi, βi and φi are real. In terms of these quantities we then have〈
Ŝix

〉
R

=
1

2
sin 2αi sin2 βi cosφi〈

Ŝiy

〉
R

=
1

2
sin 2αi sin2 βi sinφi〈

Ŝiz

〉
R

=
1

2
cos 2αi (296)
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It is then easy to show that〈
Ŝix

〉2

R
+
〈
Ŝiy

〉2

R
+
〈
Ŝiz

〉2

R
=

1

4
− 1

4
sin2 2αi (1− sin4 βi )

≤ 1

4
(297)

and the final inequality (293) then follows by taking the sum over particles i
and then using

∑
R PR = 1. If only the Schwarz inequality is used instead of

the more detailed consequences of Hermtiancy, positiveness etc it can be shown

that
〈
Ŝix

〉2

R
+
〈
Ŝiy

〉2

R
+
〈
Ŝiz

〉2

R
≤ 3

4 , which though correct is not useful.

Combining the inequalities in Eqs. (285), (290) and (293) into Eq. (281)
shows that〈

∆Ŝ 2
z

〉
=

N

4
−
∑
R

PR
∑
i

〈
Ŝiz

〉2

R
+
∑
R

PR

〈
Ŝz

〉2

R
−
〈
Ŝz

〉2

≥ N

4
−
∑
R

PR
∑
i

〈
Ŝiz

〉2

R

≥ N

4
− 1

4
N +

∑
R

PR
∑
i

(〈
Ŝix

〉2

R
+
〈
Ŝiy

〉2

R

)
≥ 1

N

(〈
Ŝ x

〉2

+
〈
Ŝ y

〉2
)

(298)

for the case of a non-entangled state. This result is that in Sørensen et al.[14].

S 36



Appendix H Revising Sørensen Entanglement Test

In this Appendix we consider three ways that the proof of the Sørensen et al [14]
entanglement test could be revised to apply to systems of identical particles,
rather than the systems of distinguishable particles assumed in the original
proof.

H.1 Revision Based on Localized Modes in Position or
Momentum

The work of Sørensen et al really applies only when the individual spins are
distinguishable. It is possible however to modify the work of Sørensen et al [14]
to apply to a system of identical bosons in accordance with the symmetrization
and super-selection rules if the index i is re-interpreted as specifying different
modes, for example modes localized on optical lattice sites or in different mo-
mentum states i = 1, 2, .., n. Another example would be single two state ions
with each ion being trapped in a different spatial region. The revised approach
draws on the results established for multi-mode cases in Appendix D. With
two single particle states a, b available on each site (these could be two different
internal atomic states or two distinct spatial modes localized on the site) the
modes would then be labelled |φαi〉 with α = a, b. The mode orthogonality and
completeness relations would then be〈

φα i|φβ j
〉

= δαβδij∑
αi

|φα i〉 〈φα i| = 1̂ (299)

With the particles now labelled K = 1, 2, 3, ...one can define spin operators in
first quantization via

Ŝx =
∑
K

∑
i

(|φb i(K)〉 〈φa i(K)|+ |φa i(K)〉 〈φb i(K)|)/2

Ŝy =
∑
K

∑
i

(|φb i(K)〉 〈φa i(K)| − |φa i(K)〉 〈φb i(K)|)/2i

Ŝz =
∑
K

∑
i

(|φb i(K)〉 〈φb i(K)| − |φa i(K)〉 〈φa i(K)|)/2 (300)

In second quantization if the annihilation, creation operators for the modes
|φai〉, |φbi〉 are âi, b̂i and â†i , b̂

†
i respectively, then the Schwinger spin operators

are just

Ŝx =
∑
i

(̂b†i âi + â†i b̂i)/2 =
∑
i

Ŝix

Ŝy =
∑
i

(̂b†i âi − â
†
i b̂i)/2i =

∑
i

Ŝiy

Ŝz =
∑
i

(̂b†i b̂i − â
†
i âi)/2 =

∑
i

Ŝiz (301)
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It is easy to confirm that the overall spin operators Ŝα and the spin operators
Ŝiα for the separate pairs of modes |φai〉, |φbi〉 (or âi, b̂i for short) satisfy the
same commutation rules as Sørensen et al [14] have for the overall spin operators
and those for the separate particles. With this modification the non-entangled
state in Eq. (105) could be interpreted as being a non-entangled state where the
subsystems are actually pairs of modes |φai〉, |φbi〉 and the density operators
ρ̂iR would then refer to a subsystem consisting of these pairs of modes. This
corresponds to Case 3 discussed in SubSection D.4. It is to be noted that en-
tanglement of pairs of modes is different to entanglement of all separate modes
- Case 2 discussed in SubSection D.3. It is an example of a special kind of
multimode entanglement - since the modes |φai〉, |φbi〉 may themselves be en-
tangled we may have “entanglement of entanglement”. In terms of the present
paper the density operators ρ̂iR would be restricted by the super-selection rule
to statistical mixtures of states with specific total numbers Ni of bosons in the
pair of modes |φai〉, |φbi〉. In terms of Fock states |na i〉 , |nb i〉 for this pair of
modes the allowed quantum states for the sub-system will be

|ΦNi
〉 =

Ni∑
k=0

ANi

k |k〉a i |Ni − k〉b i (302)

so at this stage the general mixed physical state for the two mode system could
be

ρ̂iR =
∞∑

Ni=0

∑
Φ

PΦNi

Ni∑
k=0

Ni∑
l=0

ANi

k (ANl )∗ |k〉a i 〈l|a i ⊗ |Ni − k〉b i 〈Ni − l|b i (303)

This state has no coherences between states of the two mode subsystem with
differing total boson number Ni for the pair of modes. However this is still
an entangled states for the two modes |φai〉, |φbi〉, so the overall state in Eq.
(303) is not a separable state if the subsystems were to consist of all the distinct
modes.

H.2 Revision Based on Separable State of Single Modes

It is possible however to link spin squeezing and entanglement in the case where
the sub-systems consist of all the distinct modes (Case 2 in Appendix D). To
obtain a fully non-entangled state of all the modes |φai〉, |φbi〉 the density op-
erator ρ̂iR must then be a product of density operators for modes |φai〉 and
|φbi〉

ρ̂iR = ρ̂a iR ⊗ ρ̂
b i
R (304)

giving the full density operator as

ρ̂ =
∑
R

PR

(
ρ̂a 1
R ⊗ ρ̂

b 1
R

)
⊗
(
ρ̂a 2
R ⊗ ρ̂

b 2
R

)
⊗
(
ρ̂a 3
R ⊗ ρ̂

b 3
R

)
⊗ . . . (305)

as is required for a general non-entangled state all 2N modes. Furthermore,
as previously the density operators for the individual modes must represent
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possible physical states for such modes, so the super-selection rule for atom
number will apply and we have

〈(âi)n〉a i = Tr(ρ̂a iR (âi)
n) = 0

〈
(â†i )

n
〉
a i

= Tr(ρ̂a iR (â†i )
n) = 0〈

(̂bi)
m
〉
b i

= Tr(ρ̂b iR (̂bi)
m) = 0

〈
(̂b†i )

m
〉
b i

= Tr(ρ̂b iR (̂b†i )
m) = 0

(306)

The question is whether this reformulation will lead to a useful inequality

for the spin variances such as
〈

∆Ŝ 2
x

〉
. This issue is dealt with in Appendix

D and it is found that we can indeed show for the general fully non-entangled
state (305) that〈

∆Ŝ 2
x

〉
≥ 1

2
|
〈
Ŝ z

〉
| and

〈
∆Ŝ 2

y

〉
≥ 1

2
|
〈
Ŝ z

〉
| (307)

This shows that if there is spin squeezing in either Ŝ x or Ŝ y then the state must
be entangled. Note that this result depends on the general non-entangled state
being non-entangled for all modes and that the density operator for each mode
âi or b̂i being a physical state with no coherences between mode Fock states with
differing atom numbers. In terms of the revised interpretation of the density
operator to refer to a multi-mode system with modes |φai〉, |φbi〉 the statement
that spin squeezing for systems of identical massive bosons requires all the modes
to be entangled is correct. However superposition states of the form (302) that
are consistent with the super-selection rule applying to pure states of a two mode
system are precluded, and such states ought to be allowed if entanglement of
pairs of modes rather than of separate modes is to be considered.

In addition, we can show that if either
〈
Ŝ x

〉
or
〈
Ŝ y

〉
is non-zero, then

the state must be entangled - the Bloch vector test. Finally, if it is found that
if there is spin squeezing in Ŝ z then the state must be entangled. Thus spin
squeezing in any spin component confirms entanglement of the 2n individual
modes.

H.3 Revision Based on Separable State of Pairs of Modes
with One Boson Occupancy

It is also possible however to link spin squeezing and entanglement in the case
where the subsystems consist of pairs of modes (Case 3 in Appendix D), but
only if further restrictions are applied. The general non-entangled state of the
pairs of modes would actually be of the form (see (207), here the ab dropped
for simplicity)

ρ̂ =
∑
R

PR ρ̂
1
R ⊗ ρ̂

2
R ⊗ ρ̂

3
R ⊗ ... (308)

where the ρ̂iR are now of the form given in Eq. (303) and no longer are density
operators for the ith identical particle. Unlike in (306) we now have expectation
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values 〈(âi)n〉 i = Tr(ρ̂ iR(âi)
n) etc that are non-zero, so considerations of the

link between spin squeezing and entanglement - now entanglement of pairs of
modes, will be different.

If the density operators ρ̂iR associated with the pair of modes âi, b̂i are all
restricted to be associated with one boson states then this density operator is
of the form

ρ̂iR = ρiaa(|1〉ia 〈1|ia ⊗ |0〉ib 〈0|ib) + ρiab(|1〉ia 〈0|ia ⊗ |0〉ib 〈1|ib)
+ρiba(|0〉ia 〈1|ia ⊗ |1〉ib 〈0|ib) + ρibb(|0〉ia 〈0|ia ⊗ |1〉ib 〈1|ib)

(309)

where the ρief are density matrix elements. With this restriction the pair of

modes âi, b̂i behave like distinguishable two state particles, essentially the case
that Sørensen et al [14] implicitly considered. The expectation values for the

spin operators Ŝix, Ŝiy and Ŝiz associated with the ith pair of modes are then〈
Ŝix

〉
R

=
1

2

(
ρiab + ρiba

) 〈
Ŝiy

〉
R

=
1

2i

(
ρiab − ρiba

)
〈
Ŝiz

〉
R

=
1

2

(
ρibb − ρiaa

)
(310)

If in addition Hermitiancy, positivity, unit trace Tr(ρ̂iR) = 1 and Tr(ρ̂iR)2 ≤
1 are used (see Appendix G) then we can show that ρibb and ρiaa are real and

positive, ρiab = (ρiba)∗ and ρiaaρ
i
bb − |ρiab|2 ≥ 0. The condition Tr(ρ̂iR) = 1 leads

to ρiaa + ρibb = 1, from which Tr(ρ̂iR)2 ≤ 1 follows using the previous positivity
results. These results enable the matrix elements in (309) to be parameterized
in the form

ρiaa = sin2 αi , ρibb = cos2 αi

ρiab =

√
sin2 αi cos2 αi sin2 βi exp(+iφi)

ρiba =

√
sin2 αi cos2 αi sin2 βi exp(−iφi)

(311)

where αi, βi and φi are real. In terms of these quantities we then have〈
Ŝix

〉
R

=
1

2
sin 2αi sin2 βi cosφi ,

〈
Ŝiy

〉
R

=
1

2
sin 2αi sin2 βi sinφi〈

Ŝiz

〉
R

=
1

2
cos 2αi (312)

and then a key inequality〈
Ŝix

〉2

R
+
〈
Ŝiy

〉2

R
+
〈
Ŝiz

〉2

R
=

1

4
− 1

4
sin2 2αi (1− sin4 βi ) ≤ 1

4
(313)

follows. This result depends on the density operators ρ̂iR being for one boson
states, as in (309). The same steps as in Sørensen et al [14] (see Appendix G)

S 40



leads to the result 〈
∆Ŝ 2

z

〉
≥ 1

N

(〈
Ŝ x

〉2

+
〈
Ŝ y

〉2
)

(314)

for non-entangled pair of modes âi, b̂i. Thus when the interpretation is changed
so that are the separate sub-systems are these pairs of modes and the sub-
systems are in one boson states, it follows that spin squeezing requires entan-
glement of all the mode pairs.

A similar proof extending the test of Sørensen et al [14] to apply to systems
of identical bosons is given by Hyllus et al [27] based on a particle entanglement
approach. In their approach bosons in differing external modes (analogous to
differing i here) are treated as distinguishable, and the symmetrization principle
is ignored for such bosons.
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Appendix I Benatti Entanglement Tests

In this Appendix the entanglement tests introduced by Benatti et al [29] are
examined.

In the first case, for separable states they found (see Eq. (11)) that for three

orthogonal spin operators Ĵn1, Ĵn2 and Ĵn3〈
∆Ĵ2

n1

〉
+
〈

∆Ĵ2
n2

〉
+
〈

∆Ĵ2
n3

〉
≥ N

2
(315)

so that if 〈
∆Ĵ2

n1

〉
+
〈

∆Ĵ2
n2

〉
+
〈

∆Ĵ2
n3

〉
<
N

2
(316)

then the state must be entangled. This test is an extended form of the Hillery

spin variance test (84). To prove this result we note that
〈

∆Ĵ2
n1

〉
+
〈

∆Ĵ2
n2

〉
+〈

∆Ĵ2
n3

〉
=
〈

∆Ŝ2
x

〉
+
〈

∆Ŝ2
y

〉
+
〈

∆Ŝ2
z

〉
=
〈
Ŝ2
x

〉
+
〈
Ŝ2
y

〉
+
〈
Ŝ2
z

〉
−
〈
Ŝx

〉2

−
〈
Ŝy

〉2

−〈
Ŝz

〉2

= N(N + 2)/4 −
〈
Ŝx

〉2

−
〈
Ŝy

〉2

−
〈
Ŝz

〉2

for all states with N bosons.

For separable states we have
〈
Ŝx

〉
=
〈
Ŝy

〉
= 0 so that

〈
∆Ĵ2

n1

〉
+
〈

∆Ĵ2
n2

〉
+〈

∆Ĵ2
n3

〉
= N(N + 2)/4 −

〈
Ŝz

〉2

. As the eigenvalues for Ŝz lie between −N/2

and +N/2 we have
〈
Ŝz

〉2

≤ N2/4. Thus
〈

∆Ĵ2
n1

〉
+
〈

∆Ĵ2
n2

〉
+
〈

∆Ĵ2
n3

〉
≥ N

2

as required.
In the second case, for separable states they also found (see Eq. (13)) that

for three orthogonal spin operators Ĵn1, Ĵn2 and Ĵn3

(N − 1)
(〈

∆Ĵ2
n1

〉
+
〈

∆Ĵ2
n2

〉)
−
〈
Ĵ2
n3

〉
≥ N(N − 2)

4
(317)

so that if

(N − 1)
(〈

∆Ĵ2
n1

〉
+
〈

∆Ĵ2
n2

〉)
−
〈
Ĵ2
n3

〉
<
N(N − 2)

4
(318)

then the state must be entangled. To prove this result for n1 = −→x , n2 =
−→y and n3 = −→z , we use the result (29) for separable states that

〈
∆Ŝ2

x

〉
+〈

∆Ŝ2
y

〉
≥
∑
R PR

1
2 (
〈
b̂†b̂
〉
R

+
〈
â†â
〉
R

) +
∑
R PR (

〈
â†â
〉
R

〈
b̂†b̂
〉
R

) = N/2 +∑
R PR (

〈
â†â
〉
R

〈
b̂†b̂
〉
R

). It is straightforward to show that Ŝ2
z = (̂b†b̂+â†â)2/4−

b̂†b̂.â†â, so that
〈
Ŝ2
z

〉
= N2/4 −

∑
R PR (

〈
â†â
〉
R

〈
b̂†b̂
〉
R

). Hence for separable

states (N−1)(
〈

∆Ŝ2
x

〉
+
〈

∆Ŝ2
y

〉
)−
〈
Ŝ2
z

〉
≥ (N−1)N/2+(N−1)

∑
R PR (

〈
â†â
〉
R

〈
b̂†b̂
〉
R

)−

N2/4 +
∑
R PR (

〈
â†â
〉
R

〈
b̂†b̂
〉
R

). Thus (N − 1)(
〈

∆Ŝ2
x

〉
+
〈

∆Ŝ2
y

〉
) −

〈
Ŝ2
z

〉
≥

N(N−2)
4 + N

∑
R PR (

〈
â†â
〉
R

〈
b̂†b̂
〉
R

). As the second term on the right side is

always positive the required inequality follows.
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Finally, they considered another inequality (see Eq. (12)) found to apply for
separable states involving distinguishable particles in Ref. [28].(〈

Ĵ2
n1

〉
+
〈
Ĵ2
n2

〉)
− N

2
− (N − 1)

〈
∆Ĵ2

n3

〉
≤ 0 (319)

so the question is whether an entanglement test
(〈
Ĵ2
n1

〉
+
〈
Ĵ2
n2

〉)
− N/2 −

(N − 1)
〈

∆Ĵ2
n3

〉
> 0 applies for the case of indistinguishable particles. For the

case where n1 = −→x , n2 = −→y and n3 = −→z ,
(〈
Ŝ2
x

〉
+
〈
Ŝ2
y

〉)
− N/2 − (N −

1)
〈

∆Ŝ2
z

〉
=
(〈
Ŝ2
x

〉
+
〈
Ŝ2
y

〉
+
〈
Ŝ2
z

〉)
− N/2 − (N)

〈
Ŝ2
z

〉
+ (N − 1)

〈
Ŝz

〉2

=

N(N + 2)/4 − N/2 − N
(
N2/4−

∑
R PR (

〈
â†â
〉
R

〈
b̂†b̂
〉
R

)
)

+ (N − 1)
〈
Ŝz

〉2

.

As
〈
Ŝz

〉2

≤ N2/4 we see that
(〈
Ŝ2
x

〉
+
〈
Ŝ2
y

〉)
− N/2 − (N − 1)

〈
∆Ŝ2

z

〉
≤

N
∑
R PR (

〈
â†â
〉
R

〈
b̂†b̂
〉
R

), which is certainly ≥ 0 and not ≤ 0 as required.

However, perhaps an entanglement test such that if is could be shown that(〈
Ŝ2
x

〉
+
〈
Ŝ2
y

〉)
−N/2− (N − 1)

〈
∆Ŝ2

z

〉
> N

∑
R

PR (
〈
â†â
〉
R

〈
b̂†b̂
〉
R

) (320)

always applies then it could be included that the state is entangled. Unfortu-
nately the right side could be too large for the left side to always exceed the

right side for some separable states. Noting that
〈
â†â
〉
R

+
〈
b̂†b̂
〉
R

= N for the

N bosons states being considered we find that the right side is maximized when〈
â†â
〉
R

=
〈
b̂†b̂
〉
R

= N/2 for all PR, giving a maximum for the right side of

N3/2 - and this can occur for some separable states. To show that the state is
entangled the left side must exceed this value, otherwise the state might be one
of the separable states. However, the left side is at most of order N2 from the
first two terms and the negative terms only make the left side smaller. Hence
there is no entanglement test of the form (320).
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Appendix J Heisenberg Uncertainty Principle Re-
sults

J.1 Derivation of Inequalities

Here we derive the results in SubSection 4.6 leading to inequalities for the vari-

ance
〈

∆Ĵ 2
x

〉
considered as a function of |

〈
Ĵ z

〉
| for states where the spin op-

erators are chosen such that
〈
Ĵ x

〉
=
〈
Ĵ y

〉
= 0.

From the Schwarz inequality
〈
Ĵ z

〉2

≤
〈
Ĵ 2
z

〉
so that

〈
Ĵ 2
x

〉
+
〈
Ĵ 2
y

〉
+
〈
Ĵ z

〉2

≤
〈
Ĵ 2
x

〉
+
〈
Ĵ 2
y

〉
+
〈
Ĵ 2
z

〉
= J(J + 1) (321)

giving Eq. (113). Subtracting
〈
Ĵ x

〉2

=
〈
Ĵ y

〉2

= 0 from each side gives〈
∆Ĵ 2

x

〉
+
〈

∆Ĵ 2
y

〉
+
〈
Ĵ z

〉2

≤ J(J + 1) (322)

Substituting for
〈

∆Ĵ 2
y

〉
from the Heisenberg uncertainty principle result in

Eq. (114) gives〈
∆Ĵ 2

x

〉2

−
(
J(J + 1)−

〈
Ĵ z

〉2
)〈

∆Ĵ 2
x

〉
+

1

4
ξ
〈
Ĵ z

〉2

≤ 0 (323)

The left side is a parabolic function of
〈

∆Ĵ 2
x

〉
and for this to be negative

requires
〈

∆Ĵ 2
x

〉
to lie between the two roots of this function, giving

〈
∆Ĵ 2

x

〉
≥ 1

2


(
J(J + 1)−

〈
Ĵ z

〉2
)
−

√(
J(J + 1)−

〈
Ĵ z

〉2
)2

− ξ
〈
Ĵ z

〉2


(324)〈

∆Ĵ 2
x

〉
≤ 1

2


(
J(J + 1)−

〈
Ĵ z

〉2
)

+

√(
J(J + 1)−

〈
Ĵ z

〉2
)2

− ξ
〈
Ĵ z

〉2


(325)

which are the required inequalities in Eq. (115) and (116).

J.2 Numerical Study of Inequalities

Here we consider the question: Is it possible to find values for
〈

∆Ŝ 2
x

〉
and

|
〈
Ŝ z

〉
| in which all three inequalities (115), (116) and (117) are satisfied?
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Results showing the regions in the
〈

∆Ŝ 2
x

〉
versus |

〈
Ŝ z

〉
| plane corresponding

to the three inequalities are shown in Figures 4 and 5 for the cases where J =
1000 and with ξ = 1.0 and ξ = 10.0 respectively. The quantities for which the

regions are shown are the scaled variance and mean
〈

∆Ŝ 2
x

〉
/J and |

〈
Ŝ z

〉
|/J ,

with
〈

∆Ŝ 2
x

〉
given as a function of |

〈
Ŝ z

〉
| via (115), (116) and (117). That

regions exist where the quantity

(
J(J + 1)−

〈
Ŝ z

〉2
)2

−ξ
〈
Ŝ z

〉2

then becomes

negative is seen in Figure 4. The spin squeezing region is always consistent with
the second Heisenberg inequality (116) and for large J = 1000 there is a large
region of overlap with the first inequality (115). For small J and large ξ the
region of overlap becomes much smaller, as the result in Figure 6 for J = 1 and
with ξ = 10.0 shows.
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Figure 4. Regions in the < ∆Ŝ2
x > versus | < Ŝz > | plane (shown shaded) for

states that satisfy (a) the spin squeezing inequality Eq. (117) (b) the smaller
Heisenberg uncertainty principle inequality Eq. (115) and (c) the larger HUP
inequality Eq. (116). The case shown is for J = 1000 and HUP factor ξ = 1.

Both < ∆Ŝ2
x > and | < Ŝz > | are in units of J . The spin operators are chosen

so that < Ŝx >=< Ŝy >= 0.
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Figure 5. As in Figure 4, but with J = 1000 and HUP factor ξ = 10.0.
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Figure 6. As in Figure 4, but with J = 1 and HUP factor ξ = 10.0.

Inspection of the three figures shows that there are regions where all three
inequalities are satisfied.
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Appendix K “Separable but Non-Local” States

It is instructive to apply the various entanglement tests to the so-called separa-
ble but non-local states considered in Refs. [4], [44], for which the sub-system
states are definitely not SSR compliant. These states should not pass the Hillery
tests [22], [32] for SSR neglected entanglement, but they may pass the entangle-
ment tests in this paper and in Ref. [2] since these states would be regarded as
SSR compliant entangled. Note that these states are consistent with the global
particle number SSR, so there is no dispute about whether they are possible
two mode quantum states. The issue is rather whether they should be catego-
rized as separable or entangled, and that depends on how separable (and hence
entangled) states are first defined. As discussed previously, the interferometric
measurements discussed here do not enable us to choose one definition over the
other - that is an issue involved what types of quantum states would be allowed
in the separate sub-systems.

The first example of such states is the mixture of two mode coherent states
is represented by the two mode density operator

ρ̂ =
∫ dθ

2π
|α, α〉 〈α, α|

=
∫ dθ

2π
(|α〉 〈α|)a ⊗ (|α〉 〈α|)b (326)

where |α〉C is a one mode coherent state for mode c = a, b with α = |α| exp(−iθ),
and modes a, b are associated with bosonic annihilation operators â, b̂. The
magnitude |α| is fixed. This state globally but not locally SSR compliant.

Now 〈
â†b̂
〉

= Tr
∫ dθ

2π
â†b̂ (|α〉 〈α|)a ⊗ (|α〉 〈α|)b

= Tr
∫ dθ

2π

(
|α〉 〈α| â†

)
a
⊗
(
b̂ |α〉 〈α|

)
b

= |α|2 (327)

But 〈
â†â b̂†b̂

〉
= Tr

∫ dθ
2π

(
â†â |α〉 〈α|

)
a
⊗
(
b̂†b̂ |α〉 〈α|

)
b

=
∫ dθ

2π

(
〈α| â†â |α〉

)
a
⊗
(
〈α| b̂†b̂ |α〉

)
b

= |α|4 (328)

Hence we have |
〈
â†b̂
〉
|2 > 0 and |

〈
â†b̂
〉
|2 =

〈
â†â b̂†b̂

〉
. This shows the state

is SSR compliant entangled. However, it fails the Hillery test for SSR neglected
entanglement which is consistent with being a separable state if the local particle
SSR is neglected [4, 44].
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The second example of such states has an overall density operator which is
a statistical mixture given by

ρ̂ =
1

4
(|ψ1〉 〈ψ1|)a ⊗ |ψ1〉 〈ψ1|)b +

1

4
(|ψi〉 〈ψi|)a ⊗ |ψi〉 〈ψi|)b

+
1

4
(
∣∣ψ−1

〉 〈
ψ−1

∣∣)a ⊗ ∣∣ψ−1

〉 〈
ψ−1

∣∣)b +
1

4
(
∣∣ψ−i〉 〈ψ−i∣∣)a ⊗ ∣∣ψ−i〉 〈ψ−i∣∣)b

(329)

where |ψω〉 = (|0〉 + ω |1〉)/
√

2, with ω = 1, i,−,−i. The |ψω〉 are superposi-
tions of zero and one boson states and consequently the local particle number
SSR is violated by each of the sub-system density operators |ψω〉 〈ψω|)a and
|ψω〉 〈ψω|)b.

Now using b̂ |ψω〉 = (ω |0〉)/
√

2, 〈ψω| â† = (〈0|ω∗)/
√

2 and |ω|2 = 1〈
â†b̂
〉

= Tr
1

4

∑
ω

(â† |ψω〉 〈ψω|a)⊗ (̂b |ψω〉 〈ψω|b)

=
1

4

∑
ω

〈ψω| â† |ψω〉a 〈ψω| b̂ |ψω〉b

=
1

4

∑
ω

1

2
ω∗

1

2
ω

=
1

4
(330)

But 〈
â†â b̂†b̂

〉
= Tr

1

4

∑
ω

(â†â |ψω〉 〈ψω|a)⊗ (̂b†b̂ |ψω〉 〈ψω|b)

=
1

4

∑
ω

〈ψω| â†â |ψω〉a 〈ψω| b̂
†b̂ |ψω〉b

=
1

4

∑
ω

1

2
|ω|2 1

2
|ω|2

=
1

4
(331)

Hence we have |
〈
â†b̂
〉
|2 > 0 and |

〈
â†b̂
〉
|2 <

〈
â†â b̂†b̂

〉
. This shows the state

is SSR compliant entangled. However, it again fails the Hillery test for SSR
neglected entanglement which is consistent with being a separable state if the
local particle SSR is neglected [4, 44]. It should be noted, however, that the
density operator can also be written as

ρ̂ =
1

4
(|0〉 〈0|)A ⊗ |0〉 〈0|)B +

1

4
(|1〉 〈1|)A ⊗ |1〉 〈1|)B

+
1

2
(|Ψ+〉 〈Ψ+|)AB (332)
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where |Ψ+〉AB = (|0〉A |1〉B + |1〉A |0〉B)/
√

2. In this form the terms correspond
to a statistical mixture of states with 0, 1, 2 bosons. The first two terms corre-
spond to separable states, in which the sub-system density operators are SSR
compliant. The final term however is a one boson Bell state which is generally
regarded as the paradigm of a two mode entangled state. Hence regarding the
overall state as separable is highly questionable.
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Appendix L Quadrature Squeezing Entanglement
Tests

We can show that for separable states both
〈

∆X̂2
θ (+)

〉
≥ 1/2 and

〈
∆P̂ 2

θ (+)
〉
≥

1/2, so two mode quadrature squeezing in either X̂θ(+) or P̂θ(+) is a test for
two mode entanglement. Firstly, for SSR compliant sub-system states〈

X̂θ(+)
〉

=
1√
2

∑
R

PR(
〈
X̂θ
a

〉
R

+
〈
X̂θ
b

〉
R

) = 0 (333)

since〈â〉R =
〈
b̂
〉
R

= 0. Secondly,〈
X̂2
θ (+)

〉
=

1

4

∑
R

PR(
〈
ââ†
〉
R

+
〈
â†â
〉
R

+
〈
b̂b̂†
〉
R

+
〈
b̂†b̂
〉
R

)

=
∑
R

PR(
1

2
+

1

2
(〈n̂a〉R + 〈n̂b〉R)

=
1

2
+

1

2

〈
N̂
〉

≥ 1

2
(334)

where for local SSR compliant states other terms involving
〈
â2
〉
R
,
〈
b̂2
〉
R
,
〈
âb̂
〉
R

=

〈â〉R
〈
b̂
〉
R
,
〈
âb̂†
〉
R

= 〈â〉R
〈
b̂†
〉
R

etc. are all zero. Hence

〈
∆X̂2

θ (+)
〉

=
〈
X̂2
θ (+)

〉
−
〈
X̂θ(+)

〉2

≥ 1

2
(335)

which establishes the result. Since P̂θ(+) = X̂θ+π/2(+) we also have
〈

∆P̂ 2
θ (+)

〉
=

1
2 + 1

2

〈
N̂
〉
≥ 1

2 for a separable state. Hence the two mode quadrature squeezing

test. If 〈
∆X̂2

θ (+)
〉
<

1

2
or

〈
∆P̂ 2

θ (+)
〉
<

1

2
(336)

then the state is entangled. Obviously X̂θ(+) and P̂θ(+) cannot both be
squeezed for the same state.

A similar proof shows that for separable states both
〈

∆X̂2
θ (−)

〉
= 1

2 +

1
2

〈
N̂
〉
≥ 1/2 and

〈
∆P̂ 2

θ (−)
〉

= 1
2 + 1

2

〈
N̂
〉
≥ 1/2, so if

〈
∆X̂2

θ (−)
〉
<

1

2
or

〈
∆P̂ 2

θ (−)
〉
<

1

2
(337)
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then the state is entangled. Hence any one of X̂θ(+), P̂θ(+), X̂θ(−), P̂θ(−) being
squeezed will demonstrate two mode entanglement.

The question then arises - Can two of the four two mode quadrature op-
erators be squeezed? For simplicity we only discuss θ = 0 cases in detail.
Obviously pairs such as X̂0(+), P̂0(+) or X̂0(−), P̂0(−) cannot. Next, we con-

sider X̂0(+) and P̂0(−). We note that for all global SSR compliant states〈
∆X̂2

0 (+)
〉

+
〈

∆P̂ 2
0 (−)

〉
= 1

2

(〈
∆(x̂A + x̂B)2

〉
+
〈
∆(p̂A − p̂B)2

〉)
= 1 +

〈
N̂
〉

using (140), so that if X̂0(+) is squeezed
〈

∆X̂2
0 (+)

〉
< 1

2 then
〈

∆P̂ 2
0 (−)

〉
>

1
2 +

〈
N̂
〉

, showing that both X̂0(+) and P̂0(−) cannot both be squeezed - in

spite of the operators commuting. A similar conclusion applies to X̂0(−) and

P̂0(+). For the pair X̂0(+) and X̂0(−) we have
〈

∆X̂2
0 (+)

〉
+
〈

∆X̂2
0 (−)

〉
=

1
2

(〈
∆(x̂A + x̂B)2

〉
+
〈
∆(x̂A − x̂B)2

〉)
= 1 +

〈
N̂
〉

using (138) and (142), so the

same situation as for X̂0(+) and P̂0(−) applies, and thus X̂0(+) and X̂0(−)

cannot both be squeezed. A similar conclusion applies to P̂0(−) and P̂0(+). In

general, only one of X̂θ(+), P̂θ(+), X̂θ(−), P̂θ(−) can be squeezed.
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Appendix M Derivation of Interferometer Re-
sults

M.1 General Theory - Two Mode Interferometer

Introducing the free and interaction evolution operators via

Û = Û0 Ûint

Û0 = exp(−iĤ0t/~) (338)

it is straightforward to show that for

M̂ =
1

2
(̂b†b̂− â†â) (339)

we have 〈
M̂
〉

= Tr(M̂ H ρ̂)〈
∆M̂2

〉
= Tr(

{
M̂H −

〈
M̂H

〉}2

ρ̂) (340)

giving the mean and variance in terms of the input density operator and inter-
action picture Heisenberg operators

M̂H =
1

2
(̂b†H b̂H − â

†
H âH)

b̂H = Û−1
int b̂ Ûint âH = Û−1

int â Ûint (341)

where we have used the results Û−1
0 b̂ Û0 = exp(−iωbt) b̂ and Û−1

0 â Û0 = exp(−iωat) â.
The interaction picture Heisenberg operators satisfy

i~
∂

∂t
b̂H = [̂bH , V̂H ] i~

∂

∂t
âH = [âH , V̂H ] (342)

where

V̂H = A(t) exp(−iω0t) exp(iφ) b̂†H âH exp(+iωbat)

+A(t) exp(+iω0t) exp(−iφ) â†H b̂H exp(−iωbat)
= A(t) exp(iφ) b̂†H âH +A(t) exp(−iφ) â†H b̂H (343)

for resonance.
We then find that the Heisenberg picture operators satisfy coupled linear

equations

i~
∂

∂t
b̂H = A(t) exp(+iφ) âH i~

∂

∂t
âH = A(t) exp(−iφ) b̂H (344)

which after replacing the time t by the area variable s then involve time inde-
pendent coefficients

i
∂

∂s
b̂H(s) = exp(+iφ) âH(s) i

∂

∂s
âH(s) = exp(−iφ) b̂H(s) (345)
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The equations can then be solved via Laplace transforms giving

b̂H(s, φ) = cos s b̂− i exp(iφ) sin s â âH(s, φ) = −i exp(−iφ) sin s b̂+ cos s â
(346)

where now 2s is the area for the classical pulse.
Hence we have in general

M̂H(2s, φ) =
1

2
(̂b†H(s, φ)̂bH(s, φ)− â†H(s, φ)âH(s, φ))

= sin 2s (sinφ Ŝx + cosφ Ŝy) + cos 2s Ŝz (347)

The versatility of the measurement follows from the range of possible choices of
the pulse area 2s and the phase φ.

Writing 2s = θ we can then substitute into Eq. (340) to obtain results for〈
M̂
〉

and
〈

∆M̂2
〉

. These are set out in SubSection 7.3 in Eqs. (170) and

(171) in terms of the mean values of the spin operators and the elements of the
covariance matrix for the spin operators, evaluated for the input quantum state
ρ̂.

M.2 Beam Splitter and Phase Changer

For the beam splitter we have 2s = π/2 and φ (variable) so that

M̂H(
π

2
, φ) = sinφ Ŝx + cosφ Ŝy (348)

whilst for the phase changer we have 2s = π and φ (arbitrary) so that

M̂H(π, φ) = −Ŝz (349)

M.3 Other Measurables

We can also consider other choices for the measurable, which then enable us to
determine other moments of the spin operators. A case of particular interest is
the square of the population difference

M̂2 =

(
1

2
(̂b†b̂− â†â)

)2

(350)

It is then straightforward to show for the beam splitter case with 2s = π/2 and
φ (variable)

M̂2H(
π

2
, φ) =

(
sinφ Ŝx + cosφ Ŝy

)2

= sin2 φ (Ŝx)2 + cos2 φ (Ŝy)2 + sinφ cosφ (ŜxŜy + ŜyŜx)

(351)
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Hence〈
M̂2

〉
= sin2 φ

〈
(Ŝx)2

〉
+cos2 φ

〈
(Ŝy)2

〉
+sinφ cosφ

〈
(ŜxŜy + ŜyŜx)

〉
(352)

showing that the mean for the new observable M̂2 is a sinusoidal function of the
BS interferometer variable φ with coefficients that depend on the means of Ŝ2

x,

Ŝ2
y and ŜxŜy + ŜyŜx.

M.4 Squeezing in the xy Plane

The question is does squeezing in either Ŝ#
x ( 3π

2 +φ) or Ŝ#
y ( 3π

2 +φ) demonstrate

entanglement of the modes â and b̂?
For a separable state we have〈

Ŝ#
x (

3π

2
+ φ)

〉
ρ

=

〈
Ŝ#
y (

3π

2
+ φ)

〉
ρ

= 0 (353)

as before, since
〈
Ŝ#
x,y( 3π

2 + φ)
〉
ρ

are just linear combinations of the zero
〈
Ŝx,y

〉
ρ
.

Since [ Ŝ#
x ( 3π

2 + φ), Ŝ#
y ( 3π

2 + φ)] = iŜz the Heisenberg uncertainty principle

shows that
〈

∆Ŝ#
x ( 3π

2 + φ)2
〉
ρ

〈
∆Ŝ#

y ( 3π
2 + φ)2

〉
ρ
≥ 1

4 |
〈
Ŝz

〉
ρ
|2 so spin squeez-

ing in Ŝ#
x ( 3π

2 + φ) with respect to Ŝ#
y ( 3π

2 + φ) or vice versa requires us to show
that〈

∆Ŝ#
x (

3π

2
+ φ)2

〉
ρ

<
1

2
|
〈
Ŝz

〉
ρ
| or

〈
∆Ŝ#

y (
3π

2
+ φ)2

〉
ρ

<
1

2
|
〈
Ŝz

〉
ρ
|

(354)

Since we measure
〈

∆Ŝ#
x ( 3π

2 + φ)2
〉
ρ

the spin squeezing test is
〈

∆Ŝ#
x ( 3π

2 + φ)2
〉
ρ
<

1
2 |
〈
Ŝz

〉
ρ
|.

Now for Ŝ#
x ( 3π

2 + φ) we have〈
∆Ŝ#

x (
3π

2
+ φ)2

〉
ρ

=

〈
Ŝ#
x (

3π

2
+ φ)2

〉
ρ

(355)

= sin2 φ
〈
Ŝ2
x

〉
ρ

+ cos2 φ
〈
Ŝ2
y

〉
ρ

+ sinφ cosφ
〈
ŜxŜy + ŜyŜx

〉
ρ

and for a separable state we have from SubSection 2.3〈
Ŝ2
x

〉
=

〈
∆Ŝ2

x

〉
≥ 1

2
|
〈
Ŝz

〉
ρ
|〈

Ŝ2
y

〉
=

〈
∆Ŝ2

y

〉
≥ 1

2
|
〈
Ŝz

〉
ρ
| (356)
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whilst for the remaining term〈
ŜxŜy + ŜyŜx

〉
ρ

=
1

2i

〈
{(̂b†)2(â)2 − (â†)2(̂b)2}

〉
=

1

2i

∑
R

PR{
〈

(̂b†)2
〉
ρBR

〈
(â)2

〉
ρAR
−
〈
(â†)2

〉
ρAR

〈
(̂b)2

〉
ρBR

}

= 0 (357)

using the local particle number SSR.

Thus as sin2 φ+cos2 φ = 1 and applying similar considerations to
〈

∆Ŝ#
y ( 3π

2 + φ)2
〉
ρ〈

∆Ŝ#
x (

3π

2
+ φ)2

〉
ρ

≥ 1

2
|
〈
Ŝz

〉
ρ
|〈

∆Ŝ#
y (

3π

2
+ φ)2

〉
ρ

≥ 1

2
|
〈
Ŝz

〉
ρ
| (358)

showing that for a separable state there is no squeezing for Ŝ#
x ( 3π

2 +φ) compared

to Ŝ#
y ( 3π

2 +φ) or vice versa. Hence squeezing in either Ŝ#
x ( 3π

2 +φ) or Ŝ#
y ( 3π

2 +φ)

demonstrates entanglement of the modes â and b̂.

M.5 General Theory - Multi-Mode Interferometer

For the multi-mode case we consider two sets of modes âi and b̂i as described
in Appendix A. These may be different modes associated with two different
hyperfine states or they may be modes associated with two separated potential
wells. The Hamiltonian analogous to that in (162) for the two mode case is

Ĥ0 =
∑
i

~(ωa + ωi) â
†
i âi +

∑
i

~(ωb + ωi) b̂
†
i b̂i

V̂ = A(t) exp(−iω0t) exp(iφ)
∑
i

b̂†i âi +A(t) exp(+iω0t) exp(−iφ)
∑
i

â†i b̂i

(359)

where the collision terms are ignored since we are only considering the effect of
the short interferometer coupling pulse. Here we have assumed that the energy
for the mode âi is ~(ωa + ωi), which is the sum of a basic energy for all a
modes - ~ωa, and an energy term ~ωi that distinguishes differing modes âi (and

similarly for the mode b̂i). In addition, we assume selection rules lead to pair-

wise coupling âi ↔ b̂i. In the case where coupling is due to pulsed external fields
(microwave and RF) we can assume that the momenta (∼

√
m~ωtrap) associated

with trapped modes âi and b̂i are the same, since the momenta associated with
the low frequency photons (∼ ~ωRF /c) involved can be ignored. The spin
operators for the multi-mode system are set out in (196) in terms of the mode
operators.
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As in SubSection 7.1 the interferometer frequency ω0 is assumed for simplic-
ity to be in resonance with the transition frequency ωba = ωb − ωa. Following
the treatment in SubSection 7.3, the choice of measurable is the half the total
population difference between the two sets of modes

M̂ =
1

2

∑
i

(̂b†i b̂i − âi
†âi) = Ŝz (360)

and we will determine its mean and variance for the state ρ̂# given by

ρ̂# = Û ρ̂ Û−1 (361)

where the output state ρ̂# has evolved from the initial input state ρ̂ due to
the effect of the multi- mode interferometer. Û is the unitary evolution operator
describing evolution during the time the short classical pulse is applied. Collision
terms and interactions with other systems will be ignored during the short time
interval involved.

As in the two mode interferometer case, the results for the mean and vari-
ance of M̂ depend on the pulse area 2s = θ and the phase φof the interferometer
coupling pulse. They have the same dependence on the mean values and co-
variance matrix for the multi-mode spin operators Ŝx, Ŝy and Ŝz for the input
state ρ̂ as in the two mode interferometer. Thus we then find that the general
result for the mean value is〈

M̂
〉

= sin θ sinφ
〈
Ŝx

〉
ρ

+ sin θ cosφ
〈
Ŝy

〉
ρ

+ cos θ
〈
Ŝz

〉
ρ

(362)

and for the variance is〈
∆M̂2

〉
=

(1− cos 2θ)

2

(1− cos 2φ)

2
C(Ŝx, Ŝx) +

(1− cos 2θ)

2

(1 + cos 2φ)

2
C(Ŝy, Ŝy)

+
(1 + cos 2θ)

2
C(Ŝz, Ŝz)

+
(1− cos 2θ)

2
sin 2φC(Ŝx, Ŝy) + sin 2θ cosφC(Ŝy, Ŝz) + sin 2θ sinφC(Ŝz, Ŝx)

(363)

The derivation follows the same steps as in SubSection M.1. However here we
have the results Û−1

0 b̂i Û0 = exp(−i(ωb +ωi)t) b̂i and Û−1
0 âi Û0 = exp(−i(ωa +

ωi)t) âi. The factors involving exp(−iωi)t cancel out in the derivation of the
Heisenberg equations, which here are

i~
∂

∂t
b̂iH = A(t) exp(+iφ) âiH i~

∂

∂t
âiH = A(t) exp(−iφ) b̂iH (364)

and the solutions are

b̂iH(s, φ) = cos s b̂i−i exp(iφ) sin s âi âiH(s, φ) = −i exp(−iφ) sin s b̂i+ cos s âi
(365)
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where now 2s is the area for the classical pulse.
Hence we have in general

M̂H(2s, φ) =
1

2

∑
i

(̂b†iH(s, φ)̂biH(s, φ)− â†iH(s, φ)âiH(s, φ))

= sin 2s (sinφ Ŝx + cosφ Ŝy) + cos 2s Ŝz (366)

This leads to the same formal results (362) and (363) for the mean and variance.
The versatility of the measurement again follows from the range of possible
choices of the pulse area 2s and the phase φ.
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Appendix N Limits on Interferometry Tests

The tests for entanglement in a particular quantum state are given in terms of
the mean value and variance for certain physical quantities. Interferometers are
used to enable these means and variances to be determined from measurements
on another physical quantity when either the state being tested is acted upon
by the interferometer or it is being unaffected. Quantum theory enables us to
predict two things. Firstly, for any physical quantity M̂ we can predict the
possible values that measurements could result in. Results from a succession of
measurements would confirm what these values are. Secondly, for any quantum
state, we can predict the probability that measurement leads to a specific value.
A single measurement only yields one of the possible values, so independent
repetitions of such measurements is needed to confirm what the probabilities
for measuring particular values are - ideally an infinite number of repeated

measurements would be required. If this was possible, the computed mean
〈
M̂
〉

and variance
〈

∆M̂2
〉

of the measurements for the physical quantity M̂ would

confirm the quantum theory predictions for any quantum state. A finite but
large number of independent measurements - each based on the same probability
distribution for the possible results, would enable us to estimate the actual mean
and variance of the measured values from the sample measurements. These
estimates would not be precisely accurate. The question is - how big would
the sample of repeated measurements need to be for the purpose of using the
estimated mean and variance in the tests for entanglement ?

Statistical theory in the form of the central limit theorem [45] can be applied
here. This tells us if the number R of repeated measurements is large, then the
mean of the sample measurements approaches the true mean and the variance
in the sample estimation of the mean is given by the true variance divided by
R 〈

M̂
〉
sample

→
〈
M̂
〉

〈
∆
〈
M̂
〉2
〉
sample

→

〈
∆M̂2

〉
R

(367)

We can use our theoretical estimate of the variance
〈

∆M̂2
〉

to get an idea

of how large the sample of measurements must be in order that the standard
deviation of the sample estimate for the mean is small enough that the mean
can confidently be stated to exceed or be less than the quantity on the other
side of the inequality in the entanglement test.
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Appendix O Relative Phase State

The relative phase eigenstate (see [7], [46]) for an N boson two mode system
has provided an important example of different outcomes for the simple spin
squeezing and Hillery spin squeezing tests, so here its properties are set out in
more detail. The results for interferometric measurements on the relative phase
state are also presented.

The relative phase state is a globally compliant entangled state of the sub-
systems a and b and is defined by

|N, θp〉 =
1√
N + 1

N/2∑
k=−N/2

exp(ikθNp ) |N/2− k〉a |N/2 + k〉b (368)

where θNp = p(2π/(N + 1)), p = −N/2,−N/2 + 1, ..,+N/2 is a quasi-continuum
of N + 1 equi-spaced phase eigenvalues, and |N/2− k〉a, |N/2 + k〉b are Fock

states for sub-systems a and b. The Hermitian relative phase operator Θ̂N for
N boson states is then defined as

Θ̂N =
∑
p

θNp |N, θp〉 〈N, θp| (369)

and |N, θp〉 is an eigenvector with eigenvalue θNp .
Since these states are entangled with maximum mode entropy, are spin

squeezed and are fragmented BEC (two modes have macroscopic occupancy)
it is of some interest to examine their interferometric properties for the simple
beam splitter interferometer. As shown in [7] the relative phase state has the
following mean values for the spin operators when ρ̂ = |N, θp〉 〈N, θp|〈

Ŝx

〉
ρ

=
Nπ

8
cos θp

〈
Ŝy

〉
ρ

= −Nπ
8

sin θp

〈
Ŝz

〉
ρ

= 0 (370)

so that for the measurable 〈
M̂
〉

=
Nπ

8
sin(φ− θp) (371)

We thus have a large amplitude - proportional to N - sinusoidal dependence
for the mean value of the measurable on the interferometer phase detuning

(φ− θp), and which goes to zero when φ = θp. Since we never have both
〈
Ŝx

〉
ρ

and
〈
Ŝy

〉
ρ

equal to zero the simple correlation test confirms that the relative

phase eigenstate is entangled.
As mentioned above, the relative phase state is highly spin squeezed. To

describe this it is convenient to introduce rotated spin operators Ĵx, Ĵy and Ĵz
given by (see Ref [7], Eqn. 179)

Ĵx = Ŝz

Ĵy = sin θp Ŝx + cos θp Ŝy

Ĵz = − cos θp Ŝx + sin θp Ŝy (372)
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The new spin operators are Schwinger spin operators for new modes c, d where

â = − exp(
1

2
iθp)

(
ĉ− d̂

)
/
√

2 b̂ = − exp(−1

2
iθp)

(
ĉ+ d̂

)
/
√

2 (373)

and the relative phase state also an entangled state for new modes. This can
be shown by substituting for the |N/2− k〉a and |N/2 + k〉b in terms of Fock
states for the new modes c, d.

These new angular momentum operators are principal spin operators for
which the covariance matrix is diagonal. For the mean values〈

Ĵx

〉
ρ

= 0
〈
Ĵy

〉
ρ

= 0
〈
Ĵz

〉
ρ

= −Nπ
8

(374)

In terms of spin operators discussed above (see Eqs. (185) and (186)) we have

Ĵx = Ŝz, Ĵy = Ŝ#
x ( 3π

2 + θp) and Ĵz = Ŝ#
y ( 3π

2 + θp) so the variances for Ĵy and

Ĵz can be measured using the simple BS interferometer, and the mean for Ĵx is
also measurable by simply measuring the mean population difference without
subjecting the relative phase eigenstate to the BS interaction.

Inverting these expressions and substituting gives the measurable in terms
of the new spin operators

M̂H = cos(φ− θp) Ĵy − sin(φ− θp) Ĵz (375)

Hence we find for the variance of the measurable〈
∆M̂2

〉
= cos2(φ− θp)C(Ĵy, Ĵy) + sin2(φ− θp)C(Ĵz, Ĵz)

−2 sin(φ− θp) cos(φ− θp)C(Ĵy, Ĵz) (376)

As Ĵx,Ĵy and Ĵz are principal spin operators C(Ĵy, Ĵz) = 0 and substituting

for the variances C(Ĵy, Ĵy) = 1/4 + 1/8 lnN and C(Ĵz, Ĵz) = (1/6− π2/64)N2

(see [7]) we get for the variance of the measurable for an input relative phase
eigenstate〈

∆M̂2
〉

= cos2(φ− θp) (
1

4
+

1

8
lnN) + sin2(φ− θp) (

1

6
− π2

64
)N2

≈ 1

4
+ (φ− θp)2 (

1

6
− π2

64
)N2 (377)

for φ ≈. θp. The other variance is C(Ĵx, Ĵx) = (1/12)N2. The variance for
the measurable depends sinusoidally on 2(φ − θp). Thus the quantum noise in
the measurable also goes to essentially zero at φ = θp, when the mean value〈
M̂
〉

also goes to zero. The width ∆φ for this low noise window scales as

1/N - which corresponds to the Heisenberg limit. At the zero of the mean
value, the relative fluctuation varies as 1/N as in the Heisenberg limit. Since

for φ = θp we have M̂H = Ĵy = Ŝ#
x ( 3π

2 + θp) and
〈

∆M̂2
〉

= ( 1
4 + 1

8 lnN)
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whilst
〈
Ŝz

〉
ρ

=
〈
Ĵz

〉
ρ

= −Nπ8 . Thus the spin squeezing test in Eq. (354)

is satisfied, confirming again that the relative phase eigenstate is an entangled
state of modes a and b.

In regard to particle entanglement [47], [48] with ρ̂ = |N, θp〉 〈N, θp| and
with na = (N/2 − k), nb = (N/2 + k), the quantities in Eqs. (79) and (80) of
paper 1 are given by

ρ̂(nanb) =
1

N + 1
|N/2− k〉a 〈N/2− k|a ⊗ |N/2 + k〉b 〈N/2 + k|b (378)

Pnanb
=

1

N + 1
(379)

and since ρ̂(nanb) is a separable state, it follows that EP ( ρ̂) = 0. Thus the
measure of particle entanglement is zero for what is clearly an entangled state.
Hence the particle entanglement measure has not detected entanglement in this
example.

The relative phase state is therefore a promising candidate for use as an
input state in two mode interferometry. More elaborate interferometers where
the interferometric variable is associated with other systems whose parameters
are to be measured might be developed. The main issue would be whether
such a relative phase state could be prepared. This is an issue being dealt with
elsewhere [46].
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