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a b s t r a c t

The increasing levels of criminal media being shared in peer-to-peer (P2P) networks pose a
significant challenge to law enforcement agencies. One of the main priorities for P2P in-
vestigators is to identify cases where a user is actively engaged in the production of child
sexual abuse (CSA) media e they can be indicators of recent or on-going child abuse.
Although a number of P2P monitoring tools exist to detect paedophile activity in such
networks, they typically rely on hash value databases of known CSA media. As a result,
these tools are not able to adequately triage the thousands of results they retrieve, nor can
they identify new child abuse media that are being released on to a network. In this paper,
we present a new intelligent forensics approach that incorporates the advantages of
artificial intelligence and machine learning theory to automatically flag new/previously
unseen CSA media to investigators. Additionally, the research was extensively discussed
with law enforcement cybercrime specialists from different European countries and
Interpol. The approach has been implemented into the iCOP toolkit, a software package
that is designed to perform live forensic analysis on a P2P network environment. In
addition, the system offers secondary features, such as showing on-line sharers of known
CSA files and the ability to see other files shared by the same GUID or other IP addresses
used by the same P2P client. Finally, our evaluation on real CSA case data shows high
degrees of accuracy, while hands-on trials with law enforcement officers demonstrate the
toolkit's complementarity to extant investigative workflows.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

The proliferation of the Internet and peer-to-peer (P2P)
file sharing systems has transformed the distribution of
child sexual abuse media (CSA) into a crime without
geographical boundaries. While there is scientific debate
(Middleton, 2009) on whether the on-line child sex
offender is a new type of offender (Quayle et al., 2000) or if
(C. Peersman).

r Ltd. This is an open access
thosewith a pre-disposition to offend are responding to the
opportunities afforded by the new forms of social media
(Cooper, 1998), empirical evidence points to the problem of
Internet-based paedophilia as endemic. The scale of CSA
media trafficking in P2P networks has been investigated by
a number of studies involving a timespan of several days
(e.g. (Hughes et al., 2006, 2008)), weeks (e.g. (Latapy et al.,
2013)), months (e.g. (Prichard et al., 2011; Menasche et al.,
2009; Stutzbach and Rejaie, 2006; Gummadi et al., 2003))
or even an entire year ((Hurley et al., 2013)). They all
showed that, worldwide, hundreds of searches for child
abuse images occur each second, resulting in hundreds of
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thousands of CSA media being shared each year. Moreover
(Wolak et al., 2005), found that 16% of CSA media posses-
sors had committed one or more contact offences, i.e. they
had directly and physically abused children.

The severity of the problem has already resulted in a
number of solutions that can monitor such activity. The
Child Protection System (CPS) (Child Protection System)
and RoundUp ((Liberatore et al., 2010a, 2010b)) are able to
capture data about paedophile activity and identify child
abuse media across different P2P protocols. However, these
tools rely onmatching the files shared on a network against
a hash-value database of known CSA media.1 As a result,
they retrieve thousands of files that have been circulating
for several months or even years, but they are not able to
identify new child abuse media when they are being
released on to the network. Nor are they able to detect CSA
media that are not on record, that have been altered or
embedded into other regular image or video files. In the
first part of this paper, we discuss in-depth, semi-struc-
tured interviews with a key informant sample of cyber-
crime investigators from different European countries that
highlight the fundamental need for the development of
new approaches that support victim-centric investigative
practices. More specifically, we show that in P2P policing
contexts, the distributors of new/previously unknown CSA
media are considered high-risk targets, because they could
be linked to recent or even on-going child abuse.

To combat the current and future challenges of cyber-
crime, the authors of (Irons and Lallie, 2014) already argued
that there is a need to re-examine standard digital forensic
procedures and the use of investigative technology by
incorporating intelligent technologies, i.e. techniques from
artificial intelligence, computational modelling and/or so-
cial network analysis. In the second part of this paper, we
show that such intelligent techniques can be used to focus
P2P network investigations pertaining to child sexual abuse
and reduce the amount of time spent looking for digital
evidence. More specifically, we present a novel approach
that incorporates the advantages of artificial intelligence
(AI) and machine learning procedures to automatically
identify new/previously unseen CSAmedia to investigators.
The key contributions of our work are as follows:

� We argue that detecting new/previously unknown CSA
media requires (semi-)automatic analysis of image and
video content. This study presents a new image and
video classification module using multiple and e in case
of video e multi-modal (visual and audio) feature de-
scriptions, leading to a robust and highly accurate
identification of child abuse content.

� Downloading of all candidate files in support of the
image and video analysis component we mentioned
above is clearly infeasible in a P2P scenario. Hence, such
an approach also requires an intermediate step to
reduce the number of candidate files to be downloaded
for image analysis. In this paper, we present an intelli-
gent solution to this challenge, which adopts automatic
1 Such databases are built through post-hoc forensic analysis of seized
computers of offenders.
text categorisation techniques to determine the likeli-
hood that a candidate file contains CSA content based on
its filename. An evaluation on verified CSA media
demonstrates the efficiency of the approach when
automatically detecting potential candidates for new
CSA media out of thousands of non-CSA files that are
continuously being shared in P2P networks.

� We propose a triage approach to flag the most pertinent
candidates for new/previously unknown child abuse
media based on a synthesis of the above two modules.

� We describe the results of evaluating our approach on
real CSA filenames and features of CSA media, which
show high degrees of accuracy.

The approach has been implemented into the iCOP
toolkit, a software package that is designed to perform live
forensic analysis on a P2P network environment. Finally, a
user evaluation by law enforcement officers highlights the
iCOP toolkit's potential to complement and enhance extant
investigative workflows pertaining to CSA media.

The rest of this paper is structured as follows. In the next
section, we provide an overview of the in-depth interviews,
together with the survey of law enforcement user re-
quirements. Next, we discuss background material and
related work in Sections Background and Related work.
Section Approach describes the key components of our
approach, that is, the filename categorisation module and
the media classification module. Our approach is evaluated
on CSA data in Section Experiments and results. Section The
iCOP toolkit outlines the architecture of the iCOP toolkit
and discusses how the two analyses are synthesised to
perform live triage on P2P data and detect new/previously
unknown CSAmedia. In Section User evaluationwe provide
insights from our user trial. Finally, Section Conclusion
concludes the paper, discusses the limitations of our
approach and identifies directions for future research.
Challenges for live forensic analysis of P2P networks

Notwithstanding increased investment in the develop-
ment of interventions to combat the exchange of CSA
mediawithin P2P systems, significant challenges persist for
those charged with the policing of these crimes (e.g. (U.S.
Department of Justice (2010); Wolak et al., 2012)). In
order to understand these constraints, and to identify
where capacity for technical solutions to investigative
practitioners’ problems might exist, we commenced our
study with a review. More specifically, our primary objec-
tive was to extend the sparse and rather limited knowledge
base on the strategies employed by law enforcement in the
policing and interception of CSA media exchanges in P2P
networks, offence characteristics, investigative objectives,
and attendant challenges and requirements in investigative
settings. Given the dearth of empirical information in these
domains, as well as the inaccessibility of P2P policing and
offending processes to the general public, it became
evident that this analysis required extensive consultation
with specialist P2P investigators given their unique status
as “gatekeepers” to these hidden subcultures. Therefore,
we conducted both a series of in-depth, semi-structured
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interviews with a key informant sample of law enforce-
ment investigators expert in the investigation of CSAmedia
exchanges on P2P networks and a broader, web-based
survey of domain investigators.

The consultations were carried out between October
2011 and January 2012. Survey and interview respondents
were sourced via two channels; (1) the iCOP research teams
contact network, as established in preceding P2P-related
research projects, and (2) the iCOP law enforcement advi-
sory group. In the first phase of the consultation, twenty-
four P2P investigators completed a confidential on-line
survey of law enforcement users. Invitations to partici-
pate in the survey were issued via email to P2P in-
vestigators from child abuse investigation and cybercrime
investigation units. The survey contained 21 questions
related to the focus of P2P investigations, characteristics of
CSA media file sharing behaviour and the data sources
employed in typical investigations. The majority of the
survey questions weremultiple-choice, with the possibility
to enter free-form replies in response to four items. Law
enforcement representatives from twelve countries
participated in the survey, including Germany, the
Netherlands, the United Kingdom, Slovenia, Sweden,
Ireland, Denmark, Romania, France, Spain, New Zealand
and Canada, as well as experts from Interpol.

Upon completion of the survey, ten in-depth key infor-
mant interviews were conducted with law enforcement
experts from four countries (Australia, Sweden, the
Netherlands and the United Kingdom). The interview and
survey samples were developed independently, albeit with
some overlap between participants (five investigators
participated in both consultation activities). The sample
frame for the interviews comprised leading law enforce-
ment investigators with expertise in the policing of CSA
media offences on P2P. From this sample frame, a number
of prospective interviewees were purposively sampled in
accordance Tremblays criteria for the selection of key in-
formants (Tremblay, 2003). Prospective interview candi-
dates were first identified as established authorities in P2P
network investigation with extensive supporting expertise
in the use of P2Pmonitoring softwaree in so far as possible
the research team sought validation of this status and a
personal recommendation from a member of the iCOP law
enforcement advisory group. Once identified as key in-
formants, candidates were invited to participate in an
interview. The sample was stratified to ensure that an in-
ternational cross-section of practitioners from countries
within and outside of the EUwere included in the research.
Given that the consultation process was limited to ten
candidates, quotas were applied (min. one, max. three
candidates per country) to ensure that a broad range of
countries was represented in the interview process. Twelve
email requests for participation in the research were issued
to expert candidates. In all cases, this invitation advised
prospective participants of the aims and objectives of the
study and key data handling and security provisions to be
made by the research team. Of this number, two candidates
declined due to competing operational commitments and
ten accepted the invitation to participate. The resulting
interview transcripts were analysed using combined The-
matic Analysis (Braun and Clarke, 2006) and
Correspondence Analysis (Benzecri and Bellier, 1973) stra-
tegies. The following findings synopsise the operational,
legal and technical challenges to live forensic analysis of
P2P networks identified in these consultations.

A primary operational challenge identified by our re-
spondents was the actualisation of reliable strategies for
identifying child sexual abuse cases (and its offenders)
during live forensic analyses of P2P networks. While
investigative strategies such as victim identification (e.g.
(Interpol, 2014)) maintain child protection and the primacy
of the child victim as a central operational concern, in many
cases the legal mandate to apprehend offenders has per-
sisted as a principal focus for law enforcement (Taylor and
Quayle, 2003). Our respondents’ descriptions of live in-
vestigations of P2P networks reflected these conflicting
imperatives e their accounts were characterised by a ten-
sion between the adoption of strategies that supported
offender apprehension and those that prioritised the
identification and welfare of child victims. However, each
P2P investigator in our interview sample clearly expressed
locating and safeguarding child victims as a fundamental
investigative objective. In this regard, the identification of
victims and perpetrators of contact sexual offences was
cited by all respondents as the predominant concern for
law enforcement investigators, even superordinate to the
policing of CSA media offences:

“If we were to identify, or we believed an on-line
identity was committing the abuse of a child, that
would be priority number one. It doesn't matter if we
think or we can show that they have child pornography,
that is all secondary, the reality is that child pornog-
raphy is secondary to an actual live victim.” (Australian
Police, Respondent 1). “We need to keep pushing [in-
vestigators] toward that person who is abusing children
and not just the collector e as bad as that is as well e
youwant to rescue children.” (UK Police, Respondent 1).

Although our respondents’ operational motivations and
objectives were profoundly and formatively influenced by
this victim-centric ethos, several practical challenges to the
identification of victims of child sexual abuse (and perpe-
trators) were reported. For example, the investigators
described a parallel legal mandate to enforce the law with
regard to broader offences of possession and distribution of
CSA media, in which it was often impossible to establish a
link between these offences and the actual sexual abuse of
a child. Consequently, in some cases investigators stated to
afford primacy to legal rather than victim-centric impera-
tives, selecting a target for investigation on the basis of the
duration of the sentence their CSA media-related offending
would incur (i.e. based on the number or type of files they
made available for distribution), rather than to attempt to
identify on-going sexual abuse. Evidently, such approaches
are inconsistent with de facto, victim-centric policing
strategies that prioritise the identification and welfare of
victims of child sexual abuse. However, while state-of-the-
art features of P2P monitors support the apprehension of
prolific downloaders and distributors of CSA media, our
respondents reported that these could not be usefully
adapted to victim-centric investigations, because they
typically provide little data that readily supports
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alternative investigative actions, such as the identification
of victims of child sexual abuse in live forensic analysis
contexts. The level of automation currently afforded by P2P
monitoring solutions has entrenched this prevailing
emphasis on offender apprehension in the sense that many
investigators, operating in resource-constrained investiga-
tive environments, have become reliant upon automated
approaches that support large-scale offence detection. In
these application scenarios, P2P investigators are required
to expend little cognitive effort in the identification of new
cases. Rather, they may simply select cases for follow-up
from a series of offending targets identified by the
monitor, a process a contributor variously described as
“shooting fish in a barrel” (UK Police, Respondent 2).

Clearly, in naturalistic decision making environments
such as those of P2P investigations, which are characterised
by time-constraints, high cognitive load and excessive case
load, a scalable tool that automates the detection of
offending targets is an essential solution for effective
investigation. P2P investigators' adaptation of non-invasive
monitoring tools to the identification of offending targets is
a beneficial and adaptive investigative strategy that serves
a particular value in these settings by decreasing detectives’
cognitive load and increasing their capacity to secure
charges and convictions against those culpable for signifi-
cant dissemination of CSA media on P2P networks. How-
ever, this adaptation is not without its flaws. While these
monitors promote the apprehension of great numbers of
P2P offenders with problematic distribution profiles, they
do not reliably aggregate offence data, prompt or otherwise
enable investigators to develop criminal intelligence in a
way that supports the identification of victims of recent or
on-going sexual abuse.

Aside from the capacity limitations of P2P monitoring
tools in respect of victim identification and other victim-
centric endeavours, our respondents' accounts also fore-
grounded a series of disparities in the availability of
broader infrastructural supports that could support victim-
centred investigations: (i) the limited availability of human
resources, or skilled investigators with requisite expertise
in victim identification; (ii) the absence of access to tech-
nical infrastructures, such as national and international
reference databases of CSA media that can serve (inter alia)
as a point for referencing seized imagery and identifying
new victimisation; and (iii) the rudimentary implementa-
tion of victim-centric, investigative policies and practices.
For example, in some countries investigators reported to
make systematic referrals of new images seized in P2P in-
vestigations to their national databases (and to Interpol's
International Child Sexual Exploitation Database), while in
other countries similar victim-focused strategies were not
apparent. The latter finding highlights a core challenge to
the identification of victims and perpetrators of child sex-
ual abuse in P2P investigations e the identification of new
or previously unknown CSA media is a fundamental pre-
requisite of victim identification investigations insofar as
these materials comprise the primary evidential artefact
upon which image analysis and other victim identification
strategies are enacted (Holland, 2005). Hence, a principal
concern for each of our respondents was the identification
of any type of traded CSA media that suggested the file was
new, i.e. depicting new victimisation or previously un-
known to law enforcement, domestic in origin, or that
otherwise suggested some proximate connection between
the producers of the material and distributors on a P2P
network.

“Whilst it may not be at the bad end of the scale, I would
say that any material, if we identify any material that was
being traded that was first-generation material e anything
that's been, you know, home movies e if we believe it's
been taken by the sender thatwould be prioritised. Because
a first generation image is a clear indicator of abuse.”
(Australian Police, Respondent 1). “If you run your database
across a computer, you are going to know that there is x
amount of hundred or thousand known images. The ones
that aren't known are the ones that the officers have to
concentrate and look for.” (UK Police, Respondent 1).

The identification of new CSAmedia was identified over
a decade ago as a central operational objective for police
and law enforcement concerned with the identification of
victims of CSA media; one that was much more difficult,
more resource-intensive and much more challenging to
operationalise than more traditional investigative activities
such as the disruption of CSA media distribution networks
(Taylor and Quayle, 2003). However, our respondents re-
ported that significant challenges persist in the identifica-
tion of new CSA media in P2P investigations. Some 91% of
our survey contributors indicated that they maintained no
(or very limited) capacity for the identification of new CSA
media and its originators in P2P environments and
expressed strong support for the development of such a
functionality within live forensic analysis contexts.
Furthermore, they reported that the significant require-
ment for manual analysis in the identification of new CSA
media, coupled with the sheer volume of CSA media ex-
changes on P2P, compounds the challenge of enacting
victim-centric investigations in this policing domain. Also,
law enforcement agencies maintain little capacity to sup-
port large-scale downloading of candidate CSA media files
in support of content analysis and verification tools.

The review we presented in this section highlights the
fundamental need for the development of approaches that
enable P2P investigators to identify and prioritise cases
where the target is engaged in the sexual abuse of children
and/or the production of CSA media. While some pre-
liminary attempts have been made to utilise materials
accessed by suspects to assist in prioritising which in-
vestigations take place first (e.g. (McManus et al., 2011)), to
this day no framework exists that can reliably discriminate
high-risk targets in P2P policing contexts e such as those
distributing new/previously unknown CSA media that may
indicate recent or on-going child abuse. It should be noted,
however, that law enforcement requirements for the
development of victim-centric approaches in P2P investi-
gation are in some cases not simply met by extending the
functionalities of extant P2P monitoring systems to the
identification of new CSA media. Law enforcement con-
tributors in several jurisdictions reported that they were
unable to deploy non-invasive P2Pmonitoring tools such as
CPS in their P2P investigations due to statutory pro-
scriptions on the enactment of pro-active surveillance
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strategies where, for example, suspectsmay be subjected to
continuous monitoring in order to intercept a criminal
offence. Yet, they were similarly challenged by the problem
of P2P offending and by their inability to consistently
identify new CSA media in these investigations.

Background

Digital forensics

After seizing a suspect's computer, police investigators
typically create a forensic “image” by copying either the
entire disk or a subset from the data (e.g. a disk partition)
from the target device to a second hard drive. In some cases,
running computers are even unplugged to avoid changes
made to the hard disk during the shut-down process. This
way, investigators are able to analyse the computer's con-
tent without tampering the original evidence. This type of
criminal investigation is usually referred to as traditional
digital forensics (United States Secret Service, 2002; Jones
et al., 2006; Vidas et al., 2014). In live digital forensics,
however, investigators interact with a running computer or
system in order to gather intelligence and, based on that
intelligence, they determine the following steps in the
investigation (Vidas et al., 2014). Furthermore, digital fo-
rensics can be applied both reactively e as an investigative
act in an on-going investigation, and pro-actively e before
an incident is officially reported to police investigators.2 For
the purpose of this study, identifying new/previously
unknown CSA media on P2P networks is considered
pro-active police work using live digital forensics.
Analysing big forensic data

Big Data is defined by (Gartner IT Glossary, 2016) as
“high-volume, high-velocity and high-variety information
assets that demand cost-effective, innovative forms of in-
formation processing for enhanced insight and decision
making”. With regard to digital forensics, the increasing
volume of digital forensic evidence significantly contrib-
utes to lengthy backlogs of cases within computer crime
units and forensic laboratories (Casey et al., 2009; Ferraro
and Russell, 2004). For a wide range of investigations,
including P2P network investigations pertaining to CSA
media, there is a need to focus the process of digital
forensic data collection and analysis (cf. Section Challenges
for live forensic analysis of P2P networks). Recently, a
number of methods have been suggested to address these
big digital forensic data, including data reduction (Quick
and Choo, 2016), data mining (Kantardzic, 2011), artificial
intelligence (Marturana and Tacconi, 2013) and triage
(Shiaeles et al., 2013; Parsonage, 2016). With respect to
digital forensics, triage3 involves a fast analysis of digital
2 More specifically, this could mean that the offence has not occurred
yet or the offence is still unknown to the police.

3 This term was adopted from the medical field were it refers to a
process for sorting injured people into groups based on their need for
immediate medical treatment when only limited medical resources are
available.
intelligence in order to provide investigative leads that are
ranked based on importance or urgency to be acted upon,
while maintaining its integrity and preserving it for an
extended analysis using a forensic model in the next phase
of the investigation (Rogers et al., 2006; Casey et al., 2009;
Vidas et al., 2014).

Our approach accumulates insights and techniques
from the fields of text categorisation and image classi-
fication (both AI) into a forensic triage model, allowing
P2P investigators to (1) detect victims at acute risk, (2)
assign degrees of importance and urgency to items
of evidence in order to assess offenders’ potential
danger to society and (3) find useful evidence in a timely
manner.

Text and image classification

In text/image classification studies, the task consists of
automatically sorting documents (e.g. newspaper arti-
cles, books, e-mails, etc.) or images and videos into pre-
defined classes or categories (e.g. different genres,
topics, etc.) based on their textual/visual content. In
current research, the dominant approach to these prob-
lems is based on machine learning techniques, in which
an inductive process automatically builds a classifier by
learning the characteristics of the individual categories
from a set of training documents/images. The trained
classifier can, then, distinguish between these categories
when it is confronted with new texts/images showing
similar characteristics.

Automatic text categorisation techniques are currently
being used in many different contexts, ranging from spam
detection, indexing scientific publications and the popula-
tion of hierarchical catalogues of Internet resources to
finding relationships among biomedical entities.4 Image
classification is mainly used for image retrieval, i.e.
detecting (or retrieving) images with a particular visual
content in an image dataset.

Related work

Detecting CSA media in P2P networks

As detecting known CSA media is relatively straight-
forward when a hash-value database is available, initial
work in this area mainly focused on the ability to disrupt
on-line child exploitation (e.g. (Joffres et al., 2011)), reli-
ability issues regarding mutable identifiers, such as IP ad-
dresses and GUIDs (e.g. (Liberatore et al., 2010b; Dai, 2010;
Yang et al., 2013)) and the identification of key sharers (e.g.
(Westlake et al., 2011)). This has already resulted in a
number of forensic tools, such as CPS and RoundUp, that
can not only monitor such paedophile activities in P2P
networks, but also provide additional features such as
geolocation capabilities and centralised databases to assist
law enforcement in their international struggle against on-
line child exploitation. Moreover, Internet companies such
4 An overview of text categorisation techniques and applications can be
found in, e.g. (Weiss et al., 2010) and (Sebastiani, 2002).
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as Google and Microsoft have created software, such as
PhotoDNA, that enables law enforcement to detect modi-
fied versions of known CSA media5 (see also (Baluja, 2008;
Microsoft, 2009)). However, none of these tools offers
support for identifying new/previously unknown child
abuse media.

So far, only few attempt have been made to address this
issue. The authors of (Edwards and Rashid, 2012) demon-
strated that collaborative filtering techniques that are
typically used in recommender systems, can be successfully
applied to identify new media in P2P networks of a certain
category (e.g. pornography, piracy software, popular
music). Their method is based on the assumption that file-
sharing traffic tends to cluster around interest, especially
when it involves illegal content, such as CSA media. Hence,
they were able to detect previously unknown examples
from these categories without analysing their contents or
filenames. Secondly, the MAPAP project (Latapy et al., 2013)
specifically targets peer-to-peer file-sharing networks.
There, modelling of user activity and identification of CSA-
related keywords is utilised to identify child abuse media.
However, the first system was not tested on verified CSA
data and the latter was not evaluated for the scenario of
identifying new/previously unseen CSA media.
Filename categorisation

Although recent work has tackled the problem of
detecting deception (Afroz et al., 2012), masquerading
behaviour (Rashid et al., 2013) and identifying paedophile
grooming activities (Inches and Crestani, 2012) on-line by
combining natural language analysis with machine
learning, these studies all operated on larger bodies of text
(e.g. chat room conversations). Contrary to these studies,
our work involved much shorter text fragments, which also
included a range of non-standard and/or multi-language
forms that are designed by offenders to mask their shared
files’ illegal content (cf. Section Approach). While a number
of studies have focused on textual features that are related
to web-accessible images (e.g. (Wang and Kan, 2006;
Huang et al., 2003; Munson and Tsymbalenko, 2001)),
they do not address any of these additional challenges.

So far, there are only two studies e to our knowledge e

that used language analysis techniques to identify CSA
media. As we mentioned before, the authors of (Latapy
et al., 2013) investigated the feasibility to automatically
construct lists of CSA-related keywords. Therefore, in Sec-
tion Filename categorisation we start by evaluating their
keyword-based approach on a new dataset containing
verified CSA-related filenames. The second study
(Panchenko et al., 2012) examined whether techniques
used for SMS normalisation (cf. (Beaufort et al., 2010))
could also be used to circumvent the issue of language
variation or noise in CSA filenames. Because their work on
pornographic versus non-pornographic filename classifi-
cation showed very promising results, in Section Filename
5 A comparative analysis of currently used methods for detecting child
abuse media on-line can be found in (Westlake et al., 2012).
categorisation we also evaluate our approach on this
experimental set-up.
Image and video classification

In recent years, quite some work on detecting pornog-
raphy in images and videos has been published. Most of
these studies focus on the utilisation of skin based features
(e.g. (Rowley et al., 2006) (Jones and Rehg, 2002), and (Fleck
et al., 1996)) or bag-of-visual-word features (e.g. (Deselaers
et al., 2008)). These techniques can also be applied to video
data by drawing key-frames from the video stream and
extracting image features like colour histograms and skin
features (e.g. (Lee et al., 2006)) or skin area shapes (e.g.
(Kim et al., 2008)). For video data, prior research also
incorporated acoustic features, such as MFCCs (Zuo et al.,
2008) or so-called audio words (Liu et al., 2011), which
entails an analogue approach to the visual words tech-
nique, based on vector quantised audio features. Further-
more, motion features, such as motion histograms (Jansohn
et al., 2009) and the autocorrelation of motion signals
(Xiaofeng et al., 2005), have been considered for pornog-
raphy detection as well.

However, only few studies have investigated the
feasibility to identify CSA data based on visual features
(e.g. (Ulges and Stahl, 2011)). The authors of (da Silva
Eleuterio and de Castro Polastro, 2012) utilise skin
detection in combination with filename analysis and a
hash-based detection method. Another quite common
approach, especially in forensics, is searching for visually
similar image media in an index of already known images
as presented in (LTU Engine, 2010) and (Netclean Analyze,
2010). By applying a query-by-example technique, visually
similar or identical images with respect to the given query
can be retrieved. Such functionality has shown to be
suitable for finding images that originate from known
series or locations. However, similarity retrieval and
hash-based approaches appear not directly suitable for
detecting new or previously unknown media files,
because both techniques require the availability of
(similar) media files to be indexed or hashed. This in turn
renders these files as already known. Instead, hash tech-
niques can be utilized to filter known CSA media prior to
running the detection module, while similarity retrieval
allows determining known instances after performing
CSA detection.

Approach

In this section, we present the key components of the
iCOP toolkit, that is, the filename categorisation module
and the media classification module. The architecture of
the toolkit itself and its triage model is discussed in Section
The iCOP toolkit. For both modules, we designed the
following scenarios that were triggered by practical aspects
of law enforcement investigations: (1) detection of CSA
versus regular media (WORLD) and (2) distinguishing CSA
from legal pornographic media (ADULT). As CSA media
content can be considered a subclass of pornography, the
second scenario was expected to be much more
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challenging. We evaluate both classification modules in
Section Experiments and results.
Table 1
Example of a CSA filename after feature engineering.

Original filename ptl0lita12yo.jpeg
Filename categorisation

Building a filename categorisation module that is suffi-
ciently robust so it can be employed by an automatic
environment such as the iCOP toolkit is a difficult task for a
variety of reasons. First, for a machine learning algorithm to
be effective in identifying candidate CSA media based on
textual features in their filename, it needs to be trained
with both CSA and non-CSA filenames. However, there are
no CSA datasets publicly available and crawling for CSA files
directly from a P2P network to acquire training data is
illegal. Hence, we could only use CSA-related filenames that
were provided to us by law enforcement.6 Secondly, the
task typically involves a great number of very short text
samples, which inevitably leads to highly sparse data (i.e.
with both a huge number of instances and features, but
only few features per instance). A third challenge lies
within the class imbalance inherent to the task: in a P2P
environment, the number of non-CSA media that are being
shared highly predominates the number of CSA files. As
mostmachine learning algorithms are designed to optimise
the overall accuracy rate, they have been shown to have
difficulty identifying documents of the minority class (see
e.g. (Seiffert et al., 2014)). Finally, sharers of CSAmedia tend
to create a specialised vocabulary, containing a whole va-
riety of multilingual keywords, abbreviations and acro-
nyms (e.g. “kinderficker”, “kdquality”, “ptsc”) to circumvent
detection by law enforcement, while maintaining their
availability to other offenders. This poses great difficulties
for automated detection techniques e especially because
this vocabulary also proved to be dynamic, i.e. it evolves as
existing keywords come to the attention of P2P in-
vestigators (cf. (Latapy et al., 2013; Panchenko et al., 2012)).
Moreover, supporting multiple languages typically requires
sophisticated language identification/translation tech-
niques. In this section, we discuss our approach to address
these challenges.

Dataset
Prior research on the Gnutella network (Hurley et al.,

2013) reported that 1.6 out of every 1000 files matched
with known CSA media. Hence, to create a good reflection
of reality, for the filename categorisation module, we also
adopted a highly skewed data distribution during the
learning experiments. More specifically, we matched
10,000 CSA filenames with 1,000,000 regular filenames
from the Gnutella network for the WORLD class and
1,000,000 filenames that were linked to legal pornography
media that were taken from PicHunter, PornoHub, RedTube
and Xvideos7 for the ADULT class. As mentioned earlier,
most filenames are very short, containing only 41.6 char-
acters on average (SD ¼ 23.4).
6 These filenames were mainly collected by researchers from evidence
in closed court cases.

7 www.pichunter.com, www.porno-hub.com, www.redtube.com,
www.xvideos.com.
Feature types
As wementioned before, distributors of CSAmedia tend

to use multilingual, specialised vocabulary and include
spelling variations together with other noise in their fil-
enames to avoid (automatic) detection of their shared files,
while making them widely searchable for other offenders.
Because the presence of such “secret keywords” (e.g.
“lolita”, “childlover”, “kdquality”, “ptsc”) in a filename is
highly informative, we first created a dictionary-based fil-
ter containing a manually extended version of the CSA-
related keyword lists from the MAPAP project (Latapy
et al., 2013). We refer to these as our CSA Keyword fea-
tures. We further extended this filter with forms of explicit
language use (e.g. “handjob”), expressions relating to chil-
dren (e.g. “kiddie”) and family relations (e.g. “daughter”) in
English, German, Dutch, French, Italian and Japanese.
Together, these three categories, i.e. the explicit language,
the child references and the family references, form our Se-
mantic features. Hence, a filename without any CSA-
related keywords can still become a high-value target
with regard to CSA media when it contains, for example,
both explicit language use and references to children (e.g.
“handjob11yo”). We show an example of the feature con-
struction in Table 1. The presence of the keyword “pt”
(preteen) results in a hit for the CSA keyword features,
while “12yo” (12 years old) is identified as a reference to a
child.

While prior work (Latapy et al., 2013; Panchenko et al.,
2012) mainly focused on automatically identifying and/or
normalising typical keywords that are used by Internet
child sex offenders to camouflage their files’ illegal content,
in this study we apply a more comprehensive approach by
combining our dictionary-based filter we described above
with other linguistic information. More specifically, we first
extracted all patterns of two, three and four consecutive
characters from the filenames (also called character n-
gram features). As can be seen from the example in Table 1,
this approach allowed us to circumvent the issue of alter-
native keyword spellings: although the actual keyword
“lolita” is not present in the example filename, the presence
of the “lita” feature could be equally discriminative when
training the classifier, because that feature is also present in
filenames that do contain the original keyword. Addition-
ally, other potential cues could be picked up by the model,
even when they are related to a new/unknown keyword or
produced in a language that is not included in our filter.

Media classification

Automatic assessment whether new or previously un-
known candidate media files actually contain represen
CSA-rel. keywords pt CSA_keyword
Semantic feats. 12yo child_ref
2-g feats. pt tl l0 0l li it ta a1 12 2y yo
3-g feats. ptl tl0 l0l 0li lit ita ta1 a12 12y 2yo
4-g feats. ptl0 tl0l l0li 0lit lita ita1 ta12 a12y 12yo

http://www.pichunter.com
http://www.porno-hub.com
http://www.redtube.com
http://www.xvideos.com
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tations of child sexual abuse requires a content-based
analysis of images and videos. This aspect arises from the
fact that traditional hash-based assessment of media files
relies on lists of known media files and, hence, is not
suitable for detecting unknown media. Furthermore, file
hashes like MD5 or SHA1 can easily be circumvented by
small alterations to themedia file, such as cropping, scaling,
colour adoptions or format transcoding. A further tech-
nique to hide CSA content is to embed them into other
regular images or videos. For all these cases, methods uti-
lising hashes can be expected to fail.

Considering the advances in automatic concept detec-
tion that have been achieved in recent years, techniques
from the field of computer vision can provide the required
capability to detect unknown CSA media content. For this,
feature representations of media files are presented to a
classifier which generates a model of the concept. The
classifier model hereby represents an abstraction of the
content appearance representing the concept, as described
via feature information. Depending on the complexity of
concepts learnt, classifiers can detect appearances of the
trained concept in previously unseen media files with good
accuracies. However, detecting CSA scenes in digital media
remains a challenging problem due to its complex
appearance and strong variability. Some work on detecting
adult pornography has been published in the past, utilising
mostly features that describe the visible presence of human
skin (see Section Image and video classification). Though it
appears reasonable to apply the techniques for adult
pornography detection to CSA media as well, the few at-
tempts being made (e.g. (Ulges and Stahl, 2011)) suggest
that these known methods do not achieve comparable
detection accuracies. This might arise from an insufficient
description of CSA content appearance, which possibly can
be overcome by usingmulti-modal feature representations.
Additionally, for detecting CSA media in a real world sce-
nario, as imposed by a P2P network, the frequent occur-
rence of legal pornography increases the challenge even
further for the following reason: adult pornography and
CSA depict subclasses of a pornography base class that have
a very similar appearance. Moreover, borders between
these subclasses are often fluent and even experienced
human investigators sometimes are unable to decide
correctly. As a result, feature descriptions that are
discriminative for the pornography base class typically lack
discrimination ability when used for differentiating the
subclasses. In the following, our approach to the chal-
lenging task of CSA detection in real world scenarios is
presented.

Dataset
Processing both images and videos, our content classi-

fication module contains two input streams: (a) images,
being fed into the feature extraction pipeline directly, and
(b) video files, that are pre-processed by extracting video
frames and a continuous audio stream. All three classes, i.e.
the CSA, WORLD and ADULT class, were represented by
20,000 images and 1,000 short videos each. The non-CSA
data were collected from various web sources like flickr.
com, youtube.com, pichunter.com, redtube.com, and
pornhub.com. Numerical feature representations for
instances of CSA media were provided by European law
enforcement. For frame extraction, the input videos are
split into shots of 100 frames. The centre frame of each of
these video segments is taken as a representative keyframe
for extraction of visual features. Additionally, audio fea-
tures are computed for all 4 s segments, respectively.

Feature types
So far, the few studies that have investigated the feasi-

bility to identify CSA data were based on visual features
(Ulges and Stahl, 2011), RGB based skin detection in
conjunction with filename analysis and a hash-based
detection method (da Silva Eleuterio and de Castro
Polastro, 2012) or searched for visually similar image
media in an index of already known images (LTU Engine,
2010; Netclean Analyze, 2010). Contrary to these previous
works, our approach combines content describing visual
and acoustic features, instead of using them in isolation.
This has already shown promising results for pornography
detection in e.g. (Ulges et al., 2012). Moreover, instead of
using only a single visual modality, we combine a range of
various visual and non-visual features for detecting CSA
content. More specifically, for describing the visual content
of images and video frames we extract: (i) colour-
correlograms, (ii) skin features, (iii) visual words and vi-
sual pyramids. The audio information of video files, if
available, is described by computing (iv) vector quantised
MFCC features or Audio Words. A brief description of the
utilised feature extractions is presented next:

i Colour-correlograms describe the occurrence prob-
ability of a colour in a pixel's neighbourhood (see e.g.
(Huang et al., 1997; Ojala et al., 2001; Rautiainen and
Ojala, 2002; Zha et al., 2008)). Hence, they represent
the local spatial correlation of colours in images.
Here, we apply a special variant of the colour-
correlogram, namely the auto-colour-correlogram,
which describes the probability of the identical
colour c reoccurring within a distance d of the current
pixel in image I.

ad
c ðIÞ ¼ gd

c;cðIÞ
For an improved performance, this feature is computed

in HSV colour space ((Ojala et al., 2001)).

ii The Skin-feature is based on a RGB skin colour
model, which was generated using manually
segmented images from the COMPAQ database. The
presence of skin is indicated via a skin-probability-
map (SPM) (see also (Jones and Rehg, 2002)).

PðskinjcÞ ¼ PskinðcÞ=ðPskinðcÞ þ Pnon�skinðcÞÞ
For computing the skin feature, first the SPM is trans-

ferred into a skin-segmentation-mask (SSM) via morpho-
logical operations and adaptive thresholding. Next, the

http://flickr.com
http://flickr.com
http://youtube.com
http://pichunter.com
http://redtube.com
http://pornhub.com
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mean intensities of SPM and SSM are calculated, as well as
their centre and variance of skin mass. This yields a 14
dimensional descriptor representing appearance proper-
ties of skin.

iii Because colour features e especially skin features e

are not very robust towards illumination changes, we
also computed Visual Words and Pyramids to pro-
vide a texture based content representation. Visual
words features are computed by scaling the given
image to 250 � 250 and extracting patches of 8 � 8
using a regular sampling with a step size of 5 pixels.
Next, the DCT coefficients of the YUV transformed
patches are computed for each channel. The final
feature is represented by 36 low frequency co-
efficients from the Y-channel and 21 taken from U
and V, respectively. Our visual pyramid features are
based on the same representation and are structured
according to (Lazebnik et al., 2006). Applying 2,000
entry codebooks for vector quantisation yields the
final representation of both features.

iv The audio stream of video files is described by
extracting Audio Words, using the widely used Mel
Frequency Cepstral Coefficients (MFCC) (Logan,
2000). We extract MFCCs in steps of 8 ms, using a
16 ms sliding window. Next, a frequency histogram is
computed from the Fourier transform of the signal.
For reflecting human acoustic perception, the fre-
quency histogram is weighted by the logarithmic Mel
scale. Finally, the weighted histograms are DCT
encoded, leading to a 13 dimensional descriptor,
which are vector quantised using a 1,000 entry
codebook.
Table 2
Results of the filename classification experiments using different machine
learning algorithms.

Scores (%) CSA NON-CSA

Prec. Rec. F-sc. Prec. Rec. F-sc.

Naive Bayes 62.3 5.7 10.4 99.2 99.9 99.6
Support vector machines 79.7 43.1 55.8 99.5 99.9 99.7
Logistic regression 83.0 37.6 51.7 99.4 99.2 99.3

The best results are printed in bold.
Experiments and results

Filename categorisation

To obtain a reliable estimation of the classifier's per-
formance, we applied ten-fold cross validation (cf. (Weiss
and Kulikowski, 1991)). In this experimental regime, the
available data is randomised and divided into ten equally
sized folds or partitions. Subsequently, each partition is
used nine times in training and once in test. To enable a
comparative analysis between the different scenarios we
described in Section Approach, we first compiled a com-
plete dataset containing all 2,010,000 filenames and sub-
sequently created ten training and test partitions. This way,
we could vary our training data according to each scenario,
but evaluate on the same test data, which still contained all
three classes (i.e. CSA, ADULT and WORLD). Next, for each
training partition we set up four different learning experi-
ments: (1) CSA VS. WORLD, in which the ADULT filenames
were removed; (2) CSAVS. ADULT, where we discarded the
world data; (3) CSA VS. MIXED, in which 50% of both non-
CSA classes were omitted, and (4) CSA VS. ADULT VS.
WORLD, wherewe reused the data of the third experiment,
but set up a three-way classification experiment. Hence,
the CSA/non-CSA ratio (i.e. 10,000:1,000,000) in each
experiment was maintained. Additionally, we performed
these experiments a second time, balancing our dataset in
each training partition but maintaining the original skewed
datasets in the test partitions. Finally, to enable a valid
comparison to previous work in this area (Panchenko et al.,
2012), we also set up a balanced learning experiment in
which we included only the ADULT and WORLD classes.

For classification, we compared the performance of
Support Vector Machines (SVM) to Naive Bayes (NB) and
Logistic Regression (LR). During the SVM learning experi-
ments, the C parameter was experimentally determined on
a development set of each training partition. Because our
preliminary experiments showed that a linear kernel was
most suitable for dealing with the large, sparse filename
dataset, which is in line with (Fan et al., 2008; Hsieh et al.,
2008; Yu et al., 2013), we used a linear kernel during the
experiments. Additionally, we applied l2-normalisation on
the feature values for faster linear SVM training (cf. (Yu
et al., 2012)). Finally, the scores we report are average
precision, recall and F-score. These are standard evaluation
metrics that can be computed based on the number of true
positives (tp), true negatives (tn), false positives (fp) and
false negatives (fn) in a confusion matrix. The recall score
for each class provides information on the number of fil-
enames that were successfully retrieved, while the preci-
sion score takes into account all retrieved filenames for
each class and evaluates how many of them were actually
relevant. The F-score is then the harmonic mean of preci-
sion and recall. These measures are defined as follows.

Precision ¼ tp
tpþ fp

(1)

Recall ¼ tp
tpþ fn

(2)

Fscore ¼ 2
Precision$Recall
Precisionþ Recall

(3)

The results in Table 2 show that the Support Vector
Machines and the Logistic Regression algorithm both
significantly outperform the Naive Bayes classifier. Because
the SVM model achieved the best F-score for identifying
CSA-related filenames, SVM's were used for the remaining
learning experiments. To compare our approach of
including additional (noisy) linguistic information to the
work of (Panchenko et al., 2012) who attempted to
normalise the non-standard language varieties in each fil-
ename, we set up a balanced learning experiment in which
the classifier was trained to automatically distinguish be-
tween the WORLD and the ADULT class. Combining



Table 3
Results of the filename classification experiments using different feature
types.

Scores (%) CSA NON-CSA

Prec. Rec. F-sc. Prec. Rec. F-sc.

CSA-rel. keywords 93.6 6.9 12.9 99.2 99.9 99.6
Semantic feats. 25.6 2.4 4.4 99.2 99.8 99.6
Char. n-grams 79.2 41.9 54.9 99.5 99.9 99.7
Combined 79.7 43.1 55.8 99.5 99.9 99.7

The best results are printed in bold.

Table 4
Results of the filename classification experiments using different training
set-ups. The set-ups marked with (*) were balanced in training.

Scores (%) CSA NON-CSA

Prec. Rec. F-sc. Prec. Rec. F-sc.

CSA VS. WORLD 2.0 60.1 3.9 99.5 74.8 85.4
CSA VS. ADULT 18.2 76.6 29.4 99.8 97.0 98.4
CSA VS. MIXED 56.9 57.5 57.2 99.6 99.6 99.6
CSA VS. ADULT VS. WORLD 79.7 43.1 55.8 99.5 99.9 99.7
*CSA VS. WORLD 2.6 86.5 5.12 99.8 72.5 84.0
*CSA VS. ADULT 5.5 87.5 10.4 99.9 87.0 93.0
*CSA VS. MIXED 10.0 85.7 17.9 99.9 93.3 96.5
*CSA VS. ADULT VS.WORLD 15.0 80.5 25.3 99.1 94.4 96.7

The best results are printed in bold.
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character n-gram features with the Semantic features we
described in Section Feature types resulted in a slightly
higher accuracy score of 99.3%8 and a 99.4% precision, a
99.1% recall and a 99.3% F-score for the ADULT class.

However, as expected, identifying CSA-related fil-
enames proved to be much more challenging. Although
when training on the CSA-related keyword features (cf.
Section Feature types) the classifier achieved a very high
precision score of 93.6%, it also yielded a very low recall and
F-score of 6.9% and 12.9%, respectively. In practice, this
would mean that out of 10,000 of our verified CSA-related
filenames, 9310 would remain undetected when using the
keyword-based approach that was suggested by (Latapy
et al., 2013). Therefore, in a next series of experiments we
included our Semantic features and character n-grams.
Combining all features resulted in a significantly higher
recall score of 43.1% and a 55.8% F-score, but also led to a
decrease of the precision to 79.9%. As a result, out of 5175
predicted CSA-related filenames 932 would be labelled as
false positives by law enforcement in the framework of a
real-life investigation. The results of these experiments are
shown in Table 3.

With regard to the different training set-ups, the best
precision score was achieved when including all three
categories in training. Reducing the ADULT and WORLD
categories to NON-CSA increased the recall to 57.6%, but
decreased the precision to 56.9%, which resulted in a
slightly higher F-score of 57.2%. This decrease in precision
could be explained by the fact that two disparate classes
(ADULT andWORLD) were combined into a single category.
As can be seen in Table 4, the two other learning experi-
ments both produced high recall scores, but low precision
and F-scores. Balancing our dataset in each training parti-
tion, while maintaining a skewed dataset in the test par-
titions, led to a significantly higher recall score of 80,8%, but
the precision and F-score both decreased to 13.7% and
23.7%, respectively.
Media classification

During the experiments, we first extracted all feature
types we described in Section Feature types from the data,
followed by a selection of 1,500 training and 3,000 test
samples. Because the filename classifier already filters
relevant content, during these experiments, we
8 The authors of (Panchenko et al., 2012) reported a best accuracy score
of 97.7% for detecting adult pornography filenames.
represented positive and negative classes in equal amounts
(see also (He and Ma, 2013)). Next, all extracted features f
were presented to separate statistical classifiers. For clas-
sification, we also used SVM's, as they have shown superior
performance compared to other options (e.g. (Ulges et al.,
2012)). For estimating the C parameter, we performed a
5-fold cross validation. Once again, our preliminary ex-
periments showed that a linear kernel was most suitable
for the task. Finally, the scores of the individual classifiers
were combined using a weighted sum late fusion scheme,
yielding a multi-modal classification score for a 4s video
segment or image X.

PðCS AjXÞ ¼
X

f

wf $Pf ðCSAjXÞ

The weights wf for late fusing the trained classifiers
were found by grid searching possible classifier combina-
tions. Averaging the performance of all 5 folds provided the
numerical results of the experiments, presented in terms of
average precision (AP) and equal error rates (EER). As can be
seen in Tables 5 and 6, our classifiers reach average preci-
sion in excess of 92% (image) and 95% (video) when
compared with adult pornography.

Results for CSA media detection

The predominant method that investigators use to
discover CSA content in P2P networks is a matching of
candidate files with known material based on file hashes.9

Additionally, 70% of our law enforcement experts claimed
to use lists of CSA-related keywords and abbreviations in
their investigations.10 Other information sources, like the
image content, were less common.

In this section, we showed that it is feasible to design an
intelligent filtering module that can automatically distin-
guish between CSA-related filenames and other P2P ma-
terial (including adult pornography) while maintaining the
complex conditions of a P2P scenario e a large, highly
skewed, sparse dataset. Although this approach signifi-
cantly outperforms the standard keyword-based approach,
9 96% of our survey participants claimed to use this method.
10 In 53% of cases, these were official lists distributed by organisations
like InHope, Interpol, IWF, FBI, ICE, CPS and in the other cases self-created
lists.



Table 6
Late fusion weights wf and classification results (single and fused) for CSA
detection in videos.

Feature CSA VS WORLD CSA VS ADULT

wf AVP EER wf AVP EER

Audio words 0.4 88.3 16.2 0.5 90.2 15.3
Correlogram 0.3 90.2 14.0 0.4 86.1 16.1
Vispyramids 0.2 89.9 14.1 0.2 82.0 19.4
Viswords 0.1 90.4 13.8 0.0 79.4 20.5
Fused 97.3 7.5 95.7 8.2

The best results are printed in bold.

Table 5
Late fusion weights wf and classification results (single and fused) for CSA
detection in images.

Feature CSA VS WORLD CSA VS ADULT

wf AVP EER wf AVP EER

Correlogram 0.6 92.9 14.0 0.7 91.1 16.8
Vispyramids 0.4 91.4 16.1 0.4 87.4 20.6
Skin segment 0.1 81.3 26.4 0.0 74.2 33.6
Fused 94.7 11.7 92.1 15.5

The best results are printed in bold.
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a false positive rate of 20.3% indicates that a decision from
the filename classification module is still insufficient to
label a candidate file as CSA-related media. Hence, a highly
precise image classification module is required as a second
step in the analysis. When combined, our system was able
to further reduce this false positive rate to 7.9% for images
and 4.3% for videos.

In the next two sections, we discuss the iCOP toolkit's
architecture and we present the results of a user trial.

The iCOP toolkit

The filename and image classification approaches are
synthesised in the iCOP toolkit to identify and prioritise
Fig. 1. Overview of th
new/previously unknown CSA media. As shown in Fig. 1,
the toolkit has two major components: the P2P Engine and
the iCOP Analysis Engine.

The P2P engine provides functionality to monitor public
traffic on Gnutella, but other monitors can be plugged into
the engine as well. The monitor extracts information such
as IP addresses, filenames and hash values of files, together
with meta data, such as when a particular peer was last
seen sharing a file. The latter is essential to identify the
originator of a file after it has been labelled by the toolkit as
containing new/previously unknown CSA content. This
information is passed on to the iCOP analysis engine, which
undertakes the following steps:

1. It compares the hash values of files to a list of known
hashes. As we mentioned above, such hash value lists
are established by law enforcement when CSA media
are seized. This filtering mechanism ensures that the
system disregards known CSA media. Although the user
interface does indicate when a peer is sharing known
CSA media, the toolkit does not download or process
the files given the focus on identifying new/previously
unknown CSA media. This significantly reduces both
storage and computation requirements. We currently
use a file of SHA1 hashes in base-32 (one hash per line),
because this is the most common format in which law
enforcement store hash values for CSA media. As a
result, the design enables law enforcement officers
using the toolkit to plug in their own hash value lists
without substantial effort to import them into a specific
format or database.

2. The names of files that do not occur in the known hash
list are then passed on to the filename classifier for
identifying their likelihood of containing CSA media.
This is the first step of the automatic CSAmedia analysis.
Filenames that are deemed to be non-CSA media are
discarded.
e iCOP toolkit.



Table 7
Survey results.

Part. Q1 Q2 Q3 Q4 Q5 Q6

1 6.0 6.0 6.0 5.0 5.0 6.0
2 6.0 6.0 6.0 5.0 5.0 6.0
3 4.5 6.0 6.0 4.0 7.0 7.0
4 4.0 4.0 3.0 6.0 5.0 4.0
5 6.0 7.0 7.0 5.0 6.0 7.0
6 5.0 5.0 5.0 4.0 5.0 7.0
7 6.0 7.0 6.0 7.0 5.0 7.0
8 1.0 1.0 2.0 2.0 1.0 1.0
9 3.0 5.0 3.0 4.0 3.0 5.0

11 This participant chose to give low scores because s/he did not find any
files that prompted him/her to launch an investigation during the short
workshop.
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3. Files that are flagged by the filename classifier as
potentially containing CSA media are passed back to the
P2P engine for downloading. The downloaded files are
then piped back to the iCOP analysis engine and are
analysed by the media classifier e the second step of the
automatic CSA media analysise to determine if the
content indeed contains child abuse images.

The results of the analysis are stored in real-time in the
database. An investigator can login to the GUI to access the
iCOP “dashboard”, which automatically triages the results to
flag the most pertinent candidates for CSA media as the
highest priority. More specifically, the main table displays
details of the connections sharing the greatest number of
suspected files based on the results of the image analysis
module. The table can also be sorted according to total
number of shared files, number of suspicious filenames, or
number of shared files known to be CSAmedia. Additionally,
theuser canview thumbnails aswell as the fullmediafiles to
verifywhether theflagged items are indeed CSAmedia. If so,
these items can be marked “confirmed” by the user and are
fed back into the hash database so that they are considered
to be known child abuse media in future searches.

Furthermore, the toolkit GUI is designed around a list of
connections, which maps closely to the way P2P software
works. A connection is defined as:

connection ¼ IP addressþ Port þ GUID

Each connection is assumed to be a single user sharing a
given set of files from a specific location. This is in contrast
with an IP address alone, which could potentially be shared
by multiple users (e.g. several machines in a home) or a
GUID alone, which could potentially be used from different
locations (e.g. work, home, travel). The toolkit can display
files shared by a particular IP or a particular GUID. Hence, an
investigator can easily view which connections are related
via a common IP address or GUID. As mentioned above, the
most pertinent candidates are flagged to the user as high
priority via the dashboard. Given legal constraints govern-
ing law enforcement, the toolkit's modules can also be in-
tegrated separately intoextant investigativeworkflowsand/
or configured to focus on particular geolocations (e.g. a
particular country or region). Additionally, the system pro-
vides a demo mode to allow for testing and debugging it
using dummyP2Pnetwork data and legal pornography. This
is because any monitoring and downloading of CSA media
can only take place at suitable law enforcement premises.

Finally, in order to accommodate the requirements for
the development of victim-centric approaches in jurisdic-
tions that are restricted by statutory proscriptions on the
enactment of pro-active surveillance strategies (cf. Section
Challenges for live forensic analysis of P2P networks), the
toolkit was developed in accordance with a modular design
that permitted flexibility in any operational application of
the iCOP toolkit. This configuration enabled domain law
enforcement to deploy iCOP as an integrated solution
alongside existing P2P tools in proactive monitoring con-
texts, or to adapt its media or filename classifiers to the
identification of new CSA media during reactive investi-
gative activities (e.g. incorporating iCOP's component
classifiers into triage investigation procedures during post
hoc forensic examinations of seized hardware).

User evaluation

To acquire more insight into the toolkit's usability, we
conducted a live testing workshop with 9 law enforcement
officers engaged in CSA investigations on P2P networks
from 7 different law enforcement agencies across Europe.
Given the legal (as well as ethical) issues pertaining to such
a live exercise, the two day workshop was conducted on
law enforcement premises. The participants were provided
background information on the toolkit as well as details of
how the analysis is performed by the backend. They were
provided training in the use of the user interface followed
by actual use of the toolkit on live data. A lot of usability
feedback was gathered in focus-group style discussions and
used to improve the functionality and the user interface
subsequently. At the end of the workshop, a questionnaire
was completed by the participants. Each question was
answered according to a 7-point Likert scale (1 e strongly
disagree … 7 e strongly agree) and had room for com-
ments. The questions were as follows:

1. The toolkit has all the capabilities I need to prioritise
investigations.

2. I believe the toolkit can facilitate my investigations.
3. I believe the toolkit will allow me to more efficiently

carry out investigations.
4. I believe the toolkit will assist me in efficiently analysing

the large number of files shared on P2P networks.
5. I would frequently use this toolkit as part of my

investigations.
6. Overall, I believe the toolkit to be a valuable aid to law

enforcement.

The results are summarised in Table 7 where Q is the
question and P the participant. Participant 8 was a consis-
tent outlier in terms of low scores.11 Participant 9
emphasised that he found problems in the user interface
rather than the available features. Particularly noteworthy
is the positive feedback for facilitation of investigations
(Q2), and value for law enforcement (Q6).
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Conclusion

The increasing amount of CSA media being shared
across borders and with apparent impunity leads to new
children being found on-line every day. Each of these
children, often fromwithin the family circle of the offender,
is a victim of child sexual abuse. Whether charged with
enforcing the law in respect of broader offences of
possession and distribution, or with the apprehension of
producers of child abuse media, the identification of con-
tact sexual abuse and abuse victims were cited as para-
mount concerns for P2P investigators. This finding
resonates with earlier observations that a primary goal of
P2P investigations is to catch child abusers and help chil-
dren that are being sexually victimised, rather than simply
detecting and confiscating images in the context of
possession offences (Liberatore et al., 2010a, 2010b). How-
ever noble, these objectives are difficult, nigh impossible to
realise using state-of-the-art tools such as CPS and
RoundUp. Such tools, which identify suspects involved in
the exchange of known CSA files, yield many potential
targets for law enforcement but offer little support for the
identification and prioritisation of high-risk targets e such
as those distributing new/previously unknown CSA media
that may indicate recent or on-going child abuse. In this
paper, we presented the iCOP toolkit: a forensic software
package that is designed to highlight sharers of new/pre-
viously unknown child sexual abuse media in P2P net-
works. Additionally, it offers secondary features, such as
showing sharers of known CSA files and allowing police
investigators to see other files shared by the same com-
puter or other IP addresses used by the same P2P client.
Hence, the software allows P2P investigators to more
rapidly locate the producers of such content and the vic-
tims therein. Moreover, its modular design enables law
enforcement agencies to integrate (parts of) the toolkit into
their extant investigative workflows or to add new exten-
sions for other types of P2P clients and networks. The
software is currently being made available to law enforce-
ment. Interested parties should contact the authors for
more information.

Although the current realisation of both the filename
and the image classification modules already provide very
high results, they could be further optimised. First, the
classification of images is still limited by operating only on
low-level visual features. Future research can potentially
address this in multiple ways. While CSA video classifica-
tion can be significantly improved by additionally using
other modalities, i.e. audio or motion information, image
classification could be extended by utilising high-level vi-
sual features. For example, the novel SentiBank feature
(Borth et al., 2013), which consists 1, 200 classifier scores
indicating the presence of pre-trained concepts, could
achieve some orthogonality towards low-level descriptions
in feature space, because they build up on different infor-
mation sources. Another challenge for future research is the
age verification of individuals appearing in questioned
images and videos. Though evaluations have been con-
ducted during the development of the media classification
module, current approaches to determine the age of per-
sons for supporting the classification decision cannot
provide the robustness that is needed in an automated
environment such as the iCOP toolkit. Also, the filename
classification module could be further enhanced by ana-
lysing and retraining on previously unknown filenames
that were identified by the toolkit and labelled as true
positives by police investigators.

Furthermore, the same techniques for monitoring and
analysing filenames and file content we propose for the
Gnutella network could also be applied to other file sharing
systems, such as eDonkey and Bittorrent. Monitoring these
networks, however, will require different software libraries
for each protocol and may yield different types of infor-
mation that require slightly different database structures.
In addition, some protocols rely on central servers and will
need to be manually configured to monitor the servers of
interest. Finally, quite a few networks are designed to
provide anonymity and prevent freeloading. These issues
will provide a further venue for our future work.
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