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Abstract 

Irish brown seaweeds have been identified as a potential bio-resource with 

potentially high specific methane yields. Anaerobic digestion is deemed the most 

feasible technology due to its commercial viability for handling such wet feedstock. 

However, the biomethane potential of seaweed is highly dependent on its chemical 

composition which can vary by species type, cultivation method, and time of harvest. 

This study aims to investigate and optimize the process for the production of 

biomethane from Irish brown seaweeds focusing on the key technology bottlenecks 

including for seaweed characterization, biomethane potential assessment, 

optimization of long-term anaerobic digestion and suitable pre-treatment 

technologies to enhance potential gas yields.  

Laminaria digitata and Ascophyllum nodosum were tested for seasonal variation. 

From the characterization and batch digestion of L. digitata, August was found to be 

the optimal month for harvest due to high organic matter content, low level of ash 

and ultimately highest biomethane yield. The specific methane yield of 53 m3 CH4 t-1 

wwt in August was 4.5 times higher than the yield in December (12 m3 CH4 t-1 wwt), 

with ash content the key factor in seasonal variation. For A. nodosum, the optimal 

harvest month was October with polyphenol content found to be a more influential 

factor than ash. The gross energy yields from both species were evaluated in the 

range of 116-200 GJ ha-1 yr-1.  

Continuous digestion trials were subsequently designed for S. latissima and L. 

digitata to optimize the key digestion parameters. Results from mono-digestion and 

co-digestion with dairy slurry revealed that both seaweeds could be digested at 

maximum biomethane efficiency to a loading rate of 4 kg VS m-3 d-1. Accumulation 

of salt in the digesters was a concern for long term digestion and it was reasoned that 

suitable pretreatment may be required prior to digestion. Various pre-treatments 

were subsequently tested on L. digitata to enhance the gas yield. It was found that 

maceration after hot water washing yielded 25% more specific methane and up to 

54% salt removal as compared to untreated L. digitata.  

The experiments undertaken aim to assist in providing a basic guideline for feasible 

design and operation of seaweed digesters in Ireland. 
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Nomenclature  

AD   Anaerobic digestion 

A:V    Ash to volatile solid ratio 

B. Ef   biomethane efficiency 

BI    biodegradability index 

BMP    biomethane potential assay 

BNG   Bio-natural gas 

CH4    methane gas 

CNG   Compressed natural gas 

CO2    carbon dioxide gas 

CSTR   continuously stirred tank reactor 

TS    total solids (or dry solids) 

EU    European Union 

FOS:TAC  Flüchtige organische säuren /totales anorganisches carbonat 

H2    hydrogen gas 

ha   hectare  

HRT   hydraulic retention time 

M t   million tonnes 

NH3    free ammonia 

OLR    organic loading rate 

RES-T:   renewable energy supply in transport 

SMY:    specific methane yield 

TAN    total ammonical nitrogen  

TMP   Theoretical methane potential   

VFA    volatile fatty acids 

VS    volatile solids 

wwt    wet weight
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1.1 Introduction and background to thesis 

The impact of climate change and the depletion of fossil fuels are major concerns for 

future energy production systems; hence renewable energy alternatives are being sought. 

The European Commission directives propose a reduction in greenhouse gas emissions 

by using biofuels in transport at a level of 10% (Directive 2009/28/EC), with first 

generation biofuel substrates  now limited at 7% (European Parliament, 2015). It has 

been proposed that the share of advanced third generation biofuel substrates (such as 

seaweed) should represent at least 1.25% in renewable energy supply in transport (RES-

T). Biomethane production via anaerobic digestion can significantly contribute to the 

EU targets as the generated gas can be injected into the natural gas grid and supplied or 

stored off-site as a transport fuel. However, there is a very limited biogas industry in 

Ireland and no digestion of seaweed.  

Macroalgae (seaweed) has been described as a promising alternative feedstock for 

biomethane production due to its high growth rates, superior gross energy yields and 

higher rates of carbon dioxide fixation as compared to traditional energy crops. With an 

easily degradable structure due to lack of lignin and low cellulose content, lack of arable 

land and fresh water requirement for its cultivation, macroalgae are being investigated 

as a potential feedstock for gaseous fuel production. The biomethane potential of 

seaweed is significantly dependent on its seasonal variation in chemical composition 

due to habitat, species type, cultivation technique, and harvest time. Saccharina 

latissima and Laminaria digitata have been described as the potentially highest 

biomethane yielding Irish brown seaweeds with gross energy yields in the range 38-384 

GJ ha-1 yr-1, depending on the type of species, harvesting time and cultivation method.  
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Anaerobic digestion is deemed the most suitable technology for the high moisture 

content feedstock; seaweed comprises of 85-90% moisture content. Drying seaweed for 

ethanol production would be a very energy intensive process. The digestion process 

biologically converts the organic matter into biogas (50-60 % methane) in an anaerobic 

environment. The generated biogas can be upgraded to biomethane gas (>97 % 

methane) for electricity generation, renewable heat applications or a compressed 

renewable transport fuel. Gas grid operators in Denmark, Sweden, Belgium, 

Netherlands, France and Switzerland are already in an agreement to supply 100 % 

carbon neutral gas by 2050. As mentioned, Ireland has currently no biogas industry to 

supply renewable gas. However, Gas Networks Ireland (gas grid owner) has committed 

to the development of renewable green gas by targeting 20% of natural gas demand to 

be renewable by 2030. Seaweed digesters may be applicable to coastal regions where 

there would be an availability of feedstock with minimum transportation. Such digesters 

could also be run in co-digestion with other abundant substrates in the locality such as 

dairy slurry. To initiate such a strategy, digestion operational parameters (such as 

loading rates and retention times) must be optimised for maximum biomethane 

production efficiency. High salt concentrations in the seaweed with low C:N ratio may, 

however, affect the digester performance.  

This study is designed to analyse brown seaweed as a feedstock for biomethane 

production. The effect of seasonal variation on the chemical composition of the 

feedstock and its subsequent influence on potential gas yields will be investigated. Batch 

and continuous digestion trials will be carried out to calculate the biomethane 

production efficiency. Long term mono- and co-digestion trials will be undertaken to 
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optimize some key process parameters. Suitable pre-treatment technologies will also be 

tested to potentially maximize the gas yields by removing substantial amounts of salt 

from the feedstock.  

1.2 Thesis aims and objectives 

The aims and objectives of the thesis were as follows: 

• To calculate the specific methane yields (L CH4 kg-1 VS) of available Irish 

brown seaweeds based on seasonal variation in chemical composition.  

• To calculate the gross energy yield from brown seaweeds and estimate the 

coastal area required to satisfy the EU 2020 target (1.25% from advanced 

biofuels; 2.35 PJ) for renewable energy supply in transport (RES-T) in Ireland 

using specific methane yields from seasonal variation data. 

• To investigate the potential for mono- and co-digestion strategies for brown 

seaweeds to suggest offshore and onshore digesters.  

• To optimize the organic loading rate and hydraulic retention time in mono-

digestion of L. digitata and S. latissima and co-digestion of both seaweeds with 

the slurry in continuously stirred tank reactors (CSTRs).  

• To investigate the effect of increasing the percentage of L. digitata and S. latissima 

in co-digestion systems to suggest the optimum blend.  

• To find out the critical parameters which may inhibit the digestion process. 

• To investigate a suitable pre-treatment technology to enhance the gas yield.  
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1.3 Thesis outline and link between chapters 

The thesis consists of seven chapters. Chapter 2 is a review article that assesses the 

potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland. 

The article examines the scientific literature and reviews previous work undertaken for 

the digestion of macroalgae. The chapter identifies the bottlenecks and suggests an 

integrated model to overcome such bottlenecks in the technology. Chapters 3 to 6 

present the majority of the laboratory work undertaken over the research period. Each 

chapter describes a separate topic, however, a sequential theme combines the study into 

one unit. A summary of chapters 2 to 6 is given below:  

 

Chapter 2: Potential of seaweed as a feedstock for renewable gaseous fuel production 

in Ireland 

This chapter focuses on the potential of brown seaweed as a feedstock for biomethane 

production. Brown seaweed has been described as a promising feedstock due to its 

greater energy yields and a higher rate of carbon dioxide fixation than energy crops. 

Easily degradable structure, no freshwater and no arable land requirements for its 

cultivation make the seaweed a potential feedstock for gaseous fuel production. 

However, biomethane potential of seaweed is variable due to its chemical composition 

that changes round the year. Saccharina latissima and Laminaria digitata have been 

described as highest biomethane yielding Irish brown seaweeds. July was found the 

peak month to harvest the brown seaweed such as L. digitata and the gross energy yields 

were estimated in the range 38-384 GJ ha-1 yr-1 for five Irish brown seaweeds (S. 

latissima, A. esculenta, S. polyschides, L. digitata and L. hyperborea). Technology 
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bottlenecks were identified and an integrated model was suggested in which the seaweed 

may be mono- and co-digested with other suitable feedstock for the sustainable 

production of gaseous fuel. It was estimated that a range of 6,124 to 61,465 ha of the 

coastal area would be required to cultivate seaweed to meet Ireland’s 2020 target by 

selecting high yielding seaweed species, applying cost-effective cultivation method, 

choosing peak season for harvesting, optimizing the parameters for long term digestion 

and developing the gas yield enhancing pre-treatment methods. 

 

Chapter 3: The effect of seasonal variation on biomethane production from seaweed 

and on application as a gaseous transport biofuel  

This chapter presents the effect of seasonal variation of L. digitata on the potential gas 

yields attainable. The seaweed was examined for proximate analysis, ultimate analysis, 

and biochemical composition. It was found that the characteristics in August were 

optimal having the lowest content of ash (20% of volatile solids), a C:N ratio of 32 and 

the highest specific methane yield (327 L CH4 kg VS-1) which was 72% of theoretical 

yield. The highest biomethane yield (per ton wet weight) was obtained in August which 

was 4.5 times higher than in December. In the peak month, a cultivation area of 11,800 

ha would be required for seaweed to satisfy the 2020 target for advanced biofuels in 

Ireland (1.25% RES-T). 
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Chapter 4: Seasonal variation of chemical composition and biomethane production 

from the brown seaweed Ascophyllum nodosum 

The Irish brown seaweed Ascophyllum nodosum has also shown a significant seasonal 

variation in its chemical composition and biogas production. It was observed that the 

polyphenol content was the key factor in biogas production rather than the ash content. 

Summer months were reported as peak month for the gas production but due to high 

polyphenol content in summer months, the gas yield was adversely affected. March and 

October were suggested two peak seasons for the seaweed harvesting due to relatively 

low level of polyphenols (2% of TS). October yielded the highest methane (215 L CH4 

kg VS-1) due to lower ash (23% of volatile solids) and polyphenols (2% of TS). A gross 

energy yield of 116 GJ ha-1 yr-1 in October was calculated based on the optimal biogas 

production. Harvesting the seaweed at peak season, an area of 20,260 ha for cultivation 

could satisfy the renewable transport energy target in Ireland. Results from the seasonal 

variation of L. digitata (chapter 3) and A. nodosum (chapter 4) revealed that different 

peak harvesting months would be advantageous to run the reactors round the year to 

provide the continuous supply of the feedstock.  

 

Chapter 5: Third generation gaseous biofuel generated through mono- and co-

digestion of natural and cultivated seaweeds, with dairy slurry. 

Biomethane potential results based on seasonal variation described in chapters 3 and 4 

required further investigation in terms of the operational parameters in continuous 

digestion. This would present a more realistic interpretation of full-scale digestion 

processes. The emphasis was to examine digester performance whilst increasing the 

reactors organic loading rate (OLR). Long term mono-digestion of two Irish brown 
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seaweeds L. digitata (natural harvest) and S. latissima (farm cultivated young plants) 

and dairy slurry and co-digestion of both seaweeds with dairy slurry was investigated. It 

was observed that higher proportions of L. digitata in the co-digestion mix (66.6% L. 

digitata) allowed the digester to operate at a higher OLR of 5 kg VS m-3 d-1 achieving a 

higher specific methane yield (SMY) of 232 L CH4 kg-1 VS, as compared to lower 

proportions of L. digitata (33.3%). For 66.6 % farm cultivated S. latissima, a higher 

SMY of 252 L CH4 kg-1 VS was recorded but at a lower OLR of 4 kg VS m-3 d-1 as 

compared to the natural harvest of L. digitata. Optimum conditions for mono-digestion 

of both seaweeds were evaluated at 4 kg VS m-3 d-1. Chloride levels were shown to 

increase to high levels in the digestion of both seaweeds that indicated further 

investigation to apply suitable pretreatment prior to digestion.  

 

Chapter 6: Comparison of pre-treatments to enhance the biomethane yield from 

Laminaria digitata 

Long-term continuous anaerobic digestion trials (chapter 5) indicated that high salt 

accumulation in seaweed digesters may be an issue if operated for longer periods. Thus, 

suitable pre-treatment may be required that can reduce the salt accumulation. Salt 

removal may also enhance the biomethane potential of seaweeds. However, seasonal 

variation in the biochemical composition of seaweed (results from chapter 3 and 4) may 

significantly affect the choice of pre-treatment used. Brown seaweed L. digitata 

harvested in March (with high ash content and low C:N ratio) and in September (with 

low ash content and high C:N ratio) were selected to suggest the optimal pre-treatment. 

Two pre-treatments, washing (tap water and hot water) and size reduction (4cm and 

4mm) were investigated for the two different harvesting seasons (March and 
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September). Washing of L. digitata harvested in March with hot water at 40 ⁰C removed 

54% ash and improved VS content by 31%, thereby enhancing biomethane yield (282 L 

CH4 kg VS-1) by 16%. Size reduction after washing with tap water had little impact on 

the gas yield. Size reduction with scissors (4cm) after hot washing of the March harvest 

resulted in the removal of nitrogenous compounds from the seaweed which improved 

the C:N ratio. The gross energy yields were calculated as 60 GJ ha-1 yr-1 and 75 GJ ha-1 

yr-1 for untreated and pre-treated seaweed, respectively. 
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2. Potential of seaweed as a feedstock for renewable gaseous 

fuel production in Ireland 
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Abstract 

Resource depletion and mitigation of climate change are the main driving forces to find 

alternatives to fossil fuels. Seaweeds (macroalgae) have been considered as a promising 

alternative source of biofuels due to higher growth rates, greater production yields and a 

higher rate of carbon dioxide fixation, than land crops. A comparatively easily 

depolymerized structure, lack of need of arable land and no fresh water requirement for 

cultivation, make seaweed a potential valuable feedstock for gaseous biofuel production. 

Biomethane potential of seaweed is greatly dependent on its chemical composition 

which is highly variable due to its type, habitat, cultivation method and time of harvest. 

Saccharina latissima and Laminaria digitata are the highest reported biomethane 

yielding Irish brown seaweeds. Seaweed harvested in July (northern hemisphere) was 

estimated to give gross energy yields in the range 38-384 GJ ha-1 yr-1; the higher values 

are dependent on innovative cultivation systems. An integrated model is suggested 

where seaweed can be co-digested with other feedstock for the sustainable production of 

gaseous fuel to facilitate EU renewable energy targets in transport. 

Keywords: Anaerobic digestion; Biofuel; Biogas; Pre-treatment; Seasonal variation  
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2.1 Introduction 

World primary energy consumption is expected to double by 2050 with a 1.6% annual 

growth rate (Dudley, 2013). In 2001, energy consumption by 6.1 billion people was 

13.5TW; with 86% derived from fossil fuels. In 2050, the population is expected to 

reach 9.4 billion with an energy demand of 40.8 TW. It is likely that environmental 

pollution will grow with population and energy growth. This has led to a focus on 

alternative and renewable sources of energy (Lewis & Nocera, 2006). The European 

Commission’s Directive 2009/28/EC proposed a reduction in the greenhouse gas 

emissions through the use of transport biofuels at a level of 10% of primary energy in 

transport by 2020 (Murphy et al., 2013). In 2012, an EC proposal (Parliament, 2012) 

suggested limiting first generation biofuels (from food crops) to 5% RES-T (renewable 

energy supply in transport). In 2013, it was proposed to be raised to 6% (Parliament, 

2013) and that advanced biofuels (such as from seaweed) should represent at least 2.5% 

of RES-T; In 2015 this target was reviewed and set to 1.25% (Parliment, 2015). 

Life cycle analysis of biofuels benefits from utilization of carbon dioxide during growth 

of biomass (Davis et al., 2009). Biodegradability, low toxicity, and low pollutant 

emissions offer advantages of biofuels over petroleum-based fuels (John et al., 2011). 

Biofuels are classified on the basis of biomass feedstock. First generation biofuels are 

produced from food commodities (such as corn and sugar cane), second generation 

biofuels are from lingo-cellulosic biomass (including agricultural residues such as straw) 

and third generation biofuels (generated from algae) (Nigam & Singh, 2011). First 

generation biofuels suffer from the food-versus-fuel debate (Naik et al., 2010). Second 

generation biofuels do not use food crops, but may require land that could be used for 
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good. Technical barriers still exist in breaking down second generation substrates to 

fermentable sugars (Panagiotopoulos et al., 2013). Biological techniques may be 

(application of enzymes) used to overcome these barriers (Jones & Mayfieldt, 2012). 

Macroalgae (seaweed) can exhibit higher growth rates, greater production yields 

(Subhadra & Edwards, 2010) and higher rate of carbon dioxide fixation (Gao & 

Mckinley, 1994) than land-based energy crops. Seaweeds do not need arable land and 

fresh water for cultivation (Wei et al., 2013). Negligible quantities of hemicellulose and 

lignin (John et al., 2011) facilitate easy depolymerisation (Wargacki et al., 2012). 

Seaweeds are also amenable to co-digest with a variety of feedstock such as dairy slurry, 

agricultural waste, food waste and microalgae and are suitable for liquid and gaseous 

biofuel production (John et al., 2011). Seaweed biofuels can produce more gross energy 

yield per hectare than most land-based energy crops. For instance, rapeseed biodiesel 

(first generation) can generate 1350 L (44 GJ) of biodiesel per hectare per annum 

(Thamsiriroj & Murphy, 2009); willow biomethane (second generation biofuel) can 

generate a gross energy yield of ca. 130 GJ ha-1 yr-1 (Gallagher & Murphy, 2013). The 

yields of seaweeds (wet weight: wwt) per hectare are variable depending on species and 

growing conditions. Definitive yield data is not known or accepted yet but according to 

Christiansen (Christiansen, 2008), it can be up to 130 t wwt per hectare. The gross 

energy per hectare of seaweed biomethane can be estimated as 230 GJ-1ha-1yr-1 if a 

specific methane yield (SMY) of 330 L CH4kg-1 volatile solids (VS) is achieved 

(Vanegas & Bartlett, 2013b). 

Ireland is an island with a temperate oceanic climate of the west coast of Europe with a 

very significant coastline (7500 km) allowing access to a large source of seaweed (Allen 



14 

 

et al., 2015). Irish brown seaweeds (such as Laminaria digitata and Sacharina 

latissima) are rich in organic matter. Existing harvesting potential of various seaweed 

ranges from 35 t wwt ha-1 yr-1 to 300 t wwt ha-1 yr-1 (Allen et al., 2015). Energy demand 

in the transport sector in Ireland is expected to be of the order of 188 PJ in 2020. 

According to EU target, 1.25% (2.35 PJ) should be from advanced biofuels, such as 

seaweed, by 2020 (European Parliment, 2015). The target may be achievable by 

applying innovative technologies using seaweed as an alternative substrate for gaseous 

fuel production. 

The objective of this paper is to synthesise the literature on seaweed biomethane and 

assess the resource and applicability for a temperate island in the north Atlantic, Ireland. 

The review has an ambition of providing some clarity on classification, habitat, 

resource, and seasonal variation in selected seaweed species. This includes for analysis 

of the biomethane potential of selected seaweed species and assessment of viable biofuel 

technologies for these seaweeds. An integrated system coupling different substrates are 

proposed to overcome potential bottlenecks in the development of a bio-natural gas 

(BNG) market. The proposed model may facilitate coastal digesters for the BNG 

industry.   

2.2 Seaweed as feedstock for biofuel production 

2.2.1 Classification and worldwide availability 

Seaweeds are multicellular photosynthetic organisms; they are classified as brown, 

green and red on the basis of the type of chlorophyll present in their thallus (Jard et al., 

2013). Brown (such as S. latissima; L. digitata; Ascophyllum nodosum), green (such as 

Codium tomentosum and Ulva lactuca) and red seaweeds (such as Palmaria palmate 
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and Gracilaria verrucosa) are classified as Phaeophyceae, Chlorophyceae, and 

Rhodophyceae, respectively. The main photosynthetic pigments are chlorophyll a and c 

in brown seaweeds. They have plant-like structures, but they have frond, stalk, and 

holdfast instead of leaf, stem and root (such as Figure 1a). Green seaweeds have the 

same proportion of chlorophyll a to b as herbaceous land plants. They are closer to land 

plants as their biochemical compositions and chlorophyll type is very similar. The red 

colour in seaweed is due to chlorophyll a, phycoerythrin and phycocyanin (McHugh, 

2003).  

The marine environment, especially the absorption of light, determines the type of 

pigment, extent of growth and chemical composition of seaweed. Specific pigments 

present in various seaweeds absorb a specific wavelength of light. Temperature, salinity, 

nutrients and waves also affect seaweed composition (Adams et al., 2011a). Brown and 

green seaweeds (examples in Figure 1) are found in the littoral zone. Red seaweeds 

inhabit deep sea (up to 25 m below the surface) where availability of sunlight is limited 

(Santelices, 1991). Pigments in red seaweeds (such as phycoerythrin and phycocyanin) 

are capable of absorption of light in the deep sea (Shukun Yu et al., 2002).  

Seaweeds are distributed worldwide. Seaweed harvest is dominated by Asia (China, 

Philippines, Japan, Korea and Indonesia) while in Europe, Norway is the leading 

producer (Roesijadi et al., 2010). Seaweeds can be naturally harvested (wild harvest) or 

cultivated. China harvests 3.2 and 11.2 million tonnes (wet weight) of seaweed from 

natural harvest and cultivation respectively (Table 1). Ireland is one of the largest 

producers of seaweed in Europe, producing 29,500 t per annum, of which 29,000 t per 

annum is A. nodosum (figure 1C). The seaweed industry takes place in the North West 
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of the country in counties Donegal and Galway (Murphy et al., 2013). This harvest is 

equivalent to 13% of the total European total harvest. In Ireland, A. nodosum is not 

harvested for biofuel but for food and feed (Burton, 2009). Ireland and Scotland have 

natural large seaweed forests consisting of brown seaweeds; these are not used for 

biofuel production. From an environmental perspective, these are better left in-situ. 

Cultivation of new seaweed is recommended for a biofuel industry; this limits the 

species (Jung et al., 2013). 

 

 

 



17 

 

 

Figure 2.1 Seaweeds found on the Irish coastline (Photograph: M.R. Tabassum). 
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Table 2.1 World production of wild and farm cultivated seaweed (Roesijadi et al., 

2010). 

Wild harvest (t wwt) Farm cultivation (t wwt) 

Source Production Total (%) Source Production Total (%) 

World total 1,143,273 100.00 World total 15,075,612 100.00 

China 323,810 28.32 China 10,867,410 72.09 

Norway 145,429 12.72 Philippines 1,468,905 9.74 

Japan 113,665 9.94 Indonesia 910,636 6.04 

Ireland 29,500 2.58 Ireland Techniques are at infancy 

t wwt = ton wet weight 

2.2.2 Conversion technologies and fuel options 

Seaweeds were first used as a source of acetone for military purposes during the First 

World War (Neushul, 1989). Production of gaseous biofuel from seaweed as a research 

topic was first considered in 1978 in the US (Chynoweth, 2002). Currently, seaweeds 

are utilized for human food and chemicals for industrial applications; seaweed in the 

food industry accounts for $5 billion per annum worldwide (Roesijadi et al., 2010).  

Various fuel production options from the seaweed, the process technology, and 

bottlenecks are summarized in Table 2.2. The gaseous biofuel options such as 

biomethane (Hinks et al., 2013) and bio-hydrogen (Duman et al., 2014) can be produced 

from seaweed. Alternatively, thermochemical conversion of seaweed may be used to 

produce syngas or bio-oil through gasification (Duman et al., 2014) or pyrolysis (Choi et 

al., 2014); however the technology readiness level (TRL) is such that these processes are 

not yet economically feasible.
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Biomethane via anaerobic digestion (AD) would appear to be near commerciality, the 

main barrier is the high cost of seaweed cultivation (Burton, 2009). The technology is in 

infancy; biomethane production from seaweeds is proven predominately at laboratory 

scale. Biomethane yield is affected by species, seasonal variation and geographical 

location (Adams et al., 2011b). Yields can be increased by co-digestion with other 

substrates (Costa et al., 2012). Hydrogen can be produced through dark anaerobic 

fermentation and photofermentation (Panagiotopoulos et al., 2010). This is at a lower 

technology readiness level (TRL). 

The liquid fuel options such as ethanol are still at a low TRL and far away from 

commercialization due to the bottlenecks in the technology (Table 2.2). Seaweeds 

contain carbohydrates (cellulose, starch laminarin, and agar) can be hydrolyzed into 

simple sugars and can be fermented into ethanol. Conversion of algal carbohydrates into 

ethanol requires suitable microorganisms that can ferment different sugars (such as 

mannitol, alginate, laminarin) into ethanol (Yanagisawa et al., 2013). Currently, 

scientific knowledge is limited to ferment laminarin and mannitol into ethanol (Horn et 

al., 2000).  Molecular biology has proven a possibility to ferment all sugars present in 

brown seaweed into ethanol by a synthetic yeast (Enquist-Newman et al., 2014).   

Moreover, the drying process for the substrate is too expensive (Murphy & Thamsiriroj, 

2011) while in the case of methane production (from seaweed), the drying step can be 

eliminated.
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Table 2.2 A comparison of advanced biofuels from seaweed via 3G technology 

Biofuels Technology Advantages Disadvantages/Bottlenecks Reference 

Methane AD Mature environmental friendly technology 

suitable for wet feedstock. Drying of 

seaweed is not required for AD (low 

parasitic energy demand). The fuel can be 

blended with natural gas or hydrogen, 

feedstock cultivation does not require land 

and fresh water, abundant indigenous bio-

resource, good socio-economic benefits 

especially in rural and coastal areas 

Indigenous seaweed species are not 

fully characterized with respect to 

seasonal variation, cultivation costs 

of the substrate are high, high salt 

concentration in seaweed requires 

suitable pre-treatments, long-term 

digestion is still a question due to 

high ash content in the seaweeds, 

legislation and licencing for the 

substrate cultivation is still pending, 

government policy and legislation 

for the seaweed biogas industry in 

the country needs special attention. 

(Allen et al., 2015; Murphy 

& Thamsiriroj, 2011; 

Tabassum et al., 2016a) 

Hydrogen DF High energy value of H2. No carbon 

emission on combustion. The technology is 

suitable for wet 3G-feedstock and can be 

blended with methane (termed hythane) 

Salts in the seaweed adversely affect 

the gas yield. The yield is low and 

the process is energy intensive. H2 

requires high compression (700 bars) 

and cannot be used at low 

(Murphy & Thamsiriroj, 

2011; Xia et al., 2015b) 
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compression (220 bars such as for 

methane) as a transport fuel. 13% 

parasitic energy demand for 

compression and safety issues at high 

compression 

Ethanol EF Environmental friendly 3G technology, can 

be blended with petrol  

The substrate is partially fermentable 

into ethanol, hence, the yield is low, 

the process is considered energy 

intensive as a drying step is 

necessary. 

(Horn et al., 2000; Murphy 

& Thamsiriroj, 2011; 

Yanagisawa et al., 2013) 

Diesel AD + MF  The 3G fuel can be blended with diesel 

without engine modification  

The process is not fully understood 

and only tested in research 

laboratories 

(Xu et al., 2014) 

Butanol ABE-F Highly advanced fuel with better fuel 

properties than ethanol, can be blended with 

gasoline, infrastructure can be easily 

switched from gasoline to butanol.  

Very low yields due to butanol 

toxicity for microbes, butanol is not 

recognized as a biofuel hence no 

subsidized benefits announced yet   

(Huesemann et al., 2012; 

Potts et al., 2012) 

AD: anaerobic digestion; DF: dark fermentation; EF: ethanol fermentation; MF: microbial fermentation; ABE-F: acetone-butanol-ethanol fermentation, 3G: third 

generation. 
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Algal biomass can be converted chemically into biodiesel through transesterification. In 

the presence of a catalyst, triglycerides in algal biomass react with methanol to give 

glycerol and methyl esters (termed biodiesel) (Chisti, 2007). Biologically, biodiesel can 

be produced from seaweed via AD and fermentation. In the first stage, seaweed is 

digested anaerobically to produce volatile fatty acids (VFAs); these VFAs are converted 

to biodiesel through fermentation using a yeast Cryptococcus curvatus (Xu et al., 2014). 

Biobutanol can be produced from seaweeds (through acetone-butanol fermentation) 

using anaerobic bacteria Clostridium sp. These species are capable of producing 

acetone, butanol, ethanol and organic acids from various substrates but are unable to 

effectively consume mannitol from brown seaweed (Huesemann et al., 2012). An 

attempt was made to convert the green seaweed U. lactuca to butanol using Clostridium 

sp. through acetone butanol ethanol (ABE) fermentation; the efficiency was greater than 

was expected indicating that other sugars were also fermented (Potts et al., 2012). 

Nevertheless, butanol production from seaweed is not a mature technology. 

2.3 Anaerobic digestion: A viable technology for the seaweed biofuel 

2.3.1 The digestion process 

The digestion process is carried out by a complex microbial consortium that can be 

divided into four steps (Figure 2.2). The first step (hydrolysis) is the breakdown of 

complex organic macromolecules (carbohydrates, proteins, and lipids) into simple 

molecules (sugars, amino acids, and fatty acids) by hydrolytic microorganisms. In the 

second step (acidogenesis), the monomers are converted to gaseous metabolic products 

(such as H2 and CO2) and soluble metabolic products (VFAs and alcohols) through 

acidogenic microorganisms. Intermediate products from the previous step are converted 
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into acetic acid and hydrogen by the acetogenic microbial consortium. Finally, 

hydrogenotrophic methanogenic archaea convert hydrogen and carbon dioxide into 

methane while acetoclastic methanogenic archaea utilize acetate for methane production 

(Xia et al., 2015a). 

The optimized process performance depends on upon the balanced activity of the each 

set of microbial consortia. For instance, if one stage (such as acidogenesis) works too 

fast the other stage (such as methanogenesis) becomes the rate limiting and vice versa 

(Weiland, 2010). The disturbance in this cooperation results in a drop in pH due to the 

accumulation of VFAs and ultimately the process either slows down or totally stops 

producing methane through inhibition of the methanogens. Slowly degrading substrates 

(such as cellulose, fats, and proteins) can make hydrolysis rate limiting (Weiland, 2010). 

Pre-treatment technologies facilitate the conversion of complex substrates into simpler 

monomers reducing the tendency of hydrolysis to be the rate-limiting stage. Brown 

seaweeds have slowly degradable compounds (alginates and laminarin) (Adams et al., 

2011b) that may be responsible for making hydrolysis the rate-limiting step and should 

be the subject of suitable pre-treatment for conversion into monomers. 
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Figure 2.2 The anaerobic digestion process (adapted from (Xia et al., 2015a)) 

 

2.3.2 The key operational parameters 

Hydraulic retention time (HRT) and organic loading rate (OLR) are the key parameters 

that can affect the gas yield. Temperature, pH, and micronutrients (trace elements) also 

affect the gas production significantly. Before setting up an industrial digester for biogas 

production, these parameters must be optimized for maximum biogas efficiency 

(Dinopoulou et al., 1988; Kinnunen et al., 2014; Sialve et al., 2009). HRT is equivalent 

to the capacity of the digester (m3) divided by the volume of the fresh substrate added 
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per day (m3d-1). OLR can be started from a low value (such as 1 kg VS m-3 d-1) and 

stepped up incrementally to the maximum value for optimization. Higher OLRs and 

shorter HRTs ultimately led to a decrease in the biodegradability achieved due to wash 

out of the microbial community from the digester and decrease in SMY (Dareioti & 

Kornaros, 2015). Seaweed has slowly degradable organic compounds (Adams et al., 

2011a) that may require longer retention times and lower OLRs; however, due to 

seasonal variation (Tabassum et al., 2016a) this general principle may deviate. 

The temperature for biomethane production (natural environmental) ranges from 0⁰C to 

97⁰C (the lowest in ice fields and the highest in hot springs). Mesophilic (35-45⁰C) and 

thermophilic (45-60⁰C) temperatures have been studied for anaerobic digestion but the 

mesophilic range has been preferred due to low energy input (Kashyap et al., 2003; Wall 

et al., 2014b). However, thermophilic temperatures can result in faster hydrolysis and 

fermentation processes requiring shorter HRTs and smaller digester volumes than 

mesophilic conditions (Moset et al., 2015; Weiland, 2010).  

It has been reported that along with macronutrients (such as nitrogen, phosphorus, 

potassium, calcium, magnesium, sodium), trace elements (such as cobalt, iron, 

molybdenum, nickel, selenium) are also critical for the stable and optimum performance 

of the process especially in mono-digestion systems (Demirel & Scherer, 2011; Wall et 

al., 2014a). These nutrients can be directly added to the digester or in co-digestion with 

mixed substrates (such as slurries and various kinds of wastes) and it was found that 

significantly more biogas can be generated by adding cobalt and nickel to mono-

digestion of energy crops (Demirel & Scherer, 2011; Wall et al., 2014a). 
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2.3.3 Inhibition and control  

Microbial activity during AD is adversely affected by various inhibitors such as 

ammonia, sulphide, metals and polyphenols (Chen et al., 2014a). Proteins, nucleic acids, 

and urea are converted into ammonia and provide buffer capacity, which can stabilize 

the process (González-Fernández & García-Encina, 2009). Elevated levels of nitrogen 

inhibit methanogens and the associated accumulation of VFAs lead to failure of the 

process. Unionized ammonia causes proton imbalance (potassium deficiency) while 

ionized ammonia directly inhibits enzymes that produce methane (Chen et al., 2008). 

Total ammonical nitrogen (TAN) is an important indicator of ammonia inhibition level. 

Ammonia inhibition can be controlled by adjusting the C:N ratio (in the range 20-30) 

(Montingelli et al., 2015) by adding glycerol (Resch et al., 2011) or co-digesting with 

substrates with higher C:N values (Wang et al., 2012; Zhong et al., 2012). It has been 

reported that TAN values in excess of 5 g L-1 are deemed to be in an inhibitory range 

(Allen et al., 2014).  

Sodium and chloride may also be the major concern during anaerobic digestion of 

seaweed (Allen et al., 2014; Tabassum et al., 2016a). Sodium ions at low levels (350 mg 

L-1) are required for cellular operations but show inhibitory effects at high levels (5-8 g 

L-1) (Chen et al., 2008). Chloride levels have been reported inhibitory in the range 5-20 

g L-1 (Lefebvre et al., 2007; Riffat & Krongthamchat, 2005). Acclimatized inoculum or 

inoculum sourced from the marine environment can stabilize the process (Aspé et al., 

1997; Lefebvre et al., 2007; Riffat & Krongthamchat, 2005). Alternatively, application 

of suitable pre-treatment to remove the salts from the substrate can be a remedy for the 

accumulation of salts in the reactor (Tabassum et al., 2016a). 
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2.4 Bottlenecks in the technology 

2.4.1 Characterization and assessment of biomethane potential 

The first bottleneck for establishing a seaweed based biogas industry is the lack of 

knowledge of characterization and biomethane potential (based on seasonal variation) of 

the selected seaweeds. Studies on selected seaweeds indicated that due to seasonal 

variation in the chemical composition of the feedstock, the BMP greatly varies. In this 

section, the chemical composition of brown seaweed with reference to seasonal 

variation is discussed and biomethane potential of various seaweed species is gathered. 

Ultimate and proximate analysis may be assessed by well-known laboratory assessments 

(APHA, 2011). Such an analysis allows generation of a stoichiometric equation and 

hence theoretical methane potential (TMP). Allen et al. evaluated Ulva at 25% Carbon, 

3.7% Hydrogen, 27.5% Oxygen and 3.3% Nitrogen. These values generated a TMP of 

431 L CH4 kg-1 VS at 51.5% methane content in biogas (Allen et al., 2015). Values for 

Irish cast seaweeds collected in 2013 are outlined in Table 2.3. The C:N ratio of the 

seaweeds were above 15 for all samples except U. lactuca (green seaweed). Many were 

close to the optimum range for AD (20 to 30:1). Biomethane potential is correlated to 

the chemical composition of seaweed, which varies with season (Adams et al., 2011b). 

The greater VS (carbohydrates, proteins, and lipids) in the seaweed, the greater 

biomethane production potential is expected. The chemical composition of 

representative seaweeds is listed in Table 2.4. 
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Table 2.3 Characteristics of natural Irish seaweeds (adapted from (Allen et al., 2015)) 

Seaweed 

Proximate Analysis Ultimate Analysis 

TS                    VS                  Ash 

(% of wwt)   (% of wwt)    (% of TS) 

C               H                  N                O            C:N 

(% of TS)    (% of TS)      (% of TS)      (% of TS) 

A. nodosum 23.2 19.4 16.1 40.4 5.3 1.6 36.6 26.0 

S. latissima 15.49 10.09 34.9 29.1 3.8 1.2 31.0 24.0 

S. polyschides 15.25 13.11 14.0 36.1 5.0 1.6 44.3 23.2 

L. digitata 14.20 10.34 27.2 34.2 4.8 1.5 32.3 22.3 

H. elongate 12.65 8.10 36.0 30.8 4.1 1.4 27.7 21.4 

F. vesiculosus 21.18 16.11 24.0 26.8 3.2 1.5 44.5 17.6 

F. spiralis 19.72 13.92 29.4 36.1 4.7 2.1 27.7 17.3 

F. serratus 20.07 14.74 26.6 37.1 4.8 2.4 29.1 15.5 

A. esculenta 18.72 11.91 36.4 29.3 4.2 1.9 28.2 15.5 

U. lactuca 18.03 10.88 39.7 30.0 4.4 3.5 22.4 8.5 
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Table 2.4 Chemical composition of seaweeds 

Composition Gelidium amansii 
(Red)  

(Yoon, 2010) 

Ulva lactuca 
(Green)  

(Kim et al., 2011) 

Laminaria 
(Brown)  

(Kim et al., 2011) 

Carbohydrates (%) 75.2 54.3 51.9 
Protein (%) 18.5 20.6 14.8 
Lipids (%) 0.6 6.2 1.8 
Ash (%) 5.7 18.9 31.5 

 

Theoretical methane potential (TMP) can be calculated by data obtained from proximate 

and ultimate analysis and use of the Buswell equation (Eq. (1)) (Buswell & Mueller, 

1952).  

��	���� + 
� −	� − �
�����	 → 	 
�� +	�� − �

� �� 	+ 	
�� −	�� + �
� ��� Eq. (1) 

The Buswell yield is a theoretical calculation that does not take into account the 

maintenance and anabolism of the microbial community. Therefore, an overestimation 

of biomethane yields occur. Biomethane potential (BMP) of seaweed is the experimental 

methane yield from a batch process under ideal conditions expressed in litres of methane 

per kilogram of volatile solids (L CH4 kg VS-1). The biodegradability index (BI) 

indicates the efficiency of biomass degradation. It is calculated by dividing BMP by 

TMP; the greater the index, the higher the digestion efficiency. In a study by Allen et al., 

(Allen et al., 2015) S. latissima was the highest biomethane yielding seaweed with the 

highest biodegradability index while F. serratus was the lowest in an analysis of Irish 

cast seaweeds collected in summer 2013 (Table 2.5). 
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Brown seaweeds, such as L. digitata and S. latissima, have high biomethane yields 

(Table 2.5). In Wales, the harvest of L. digitata in July provided the highest yield of 

biomethane (Figure 2.3). In July the seaweed had the highest proportions of 

carbohydrate and the lowest alkali metal and ash content (Adams et al., 2011a). Similar 

results were confirmed by Schiener et al. (Schiener et al., 2015) but not for year round 

harvest as was reported by Adams et al (Adams et al., 2011a).  

Table 2.5 Biomethane potential of Irish seaweeds (adapted from (Allen et al., 2015)) 

Seaweed BMP  
(L CH4 kg VS-1) 

TMP  
(L CH4 kg VS-1) 

BI Methane potential  
(m3 CH4 t-1 wwt) 

S. latissima 342 422 0.81 34.5 

S. polyschides 263 386 0.68 34.5 

F. spiralis 235 540 0.44 32.7 

A. nodosum 166 488 0.34 32.3 

A. esculenta 226 474 0.48 26.9 

L. digitata 218 479 0.46 22.5 

H. elongate 260 334 0.78 21.1 

F. vesiclosus 126 249 0.51 19.4 

F. serratus 101 532 0.19 13.5 

U. lactuca 190 465 0.41 20.9 

BMP, Biomethane potential; TMP, Theoretical methane potential; BI, Biodegradability index;  
wwt, wet weight  
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Figure 2.3 Seasonal variation in biomethane potential (L CH4 kg VS-1) of L. digitata 
(data collected from (Adams et al., 2011b)) 

 

2.4.2 Cultivation and harvesting cost 

The cost of seaweed biomass is the key bottleneck in the technology. Seaweed can be 

harvested manually from beaches or cultivated at the farm scale. A. nodosum is reported 

as costing €330 dry t-1 in Ireland (Burton, 2009) when harvested off beaches. This 

expense may be associated with the small beaches, narrow roads between the beaches, 

and intensive use of manual labour, which is expensive in Ireland. The cost of A. 

nodosum may be compared with another AD substrate grass silage of €79 dry t-1 (Smyth 

et al., 2010). Cultivation is widely used in Asia (Table 2.1) but not in Ireland. This may 
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be associated with stricter planning legislation and requirement for environmental 

impact assessment. The cost per tonne of cultivated seaweed in Ireland is not known.  

The reported resource available for harvest in beaches in high concentrations of U. 

lactuca in Lannion Bay, Brittany, France is 100,000 t wwt yr-1 (Charlier et al., 2007) 

while, in West Cork, 10,000 t wwt yr-1 is cleared off one beach each year; this will be 

the cheapest source of seaweed for biogas production; but as noted is difficult to digest 

due to low C:N ratios and high levels of sulphur.  

Seaweed cultivation is dominated by growing on ropes (or lines) with separation to 

allow boat travel between lines for harvest. If for example, 20 kg wet weight is produced 

per meter and the lines are at 5 m intervals then the maximum production per hectare 

(100 m by 100 m) is 40 t wet weight. Assuming a total solids content of 15% this 

equates to 6 t TS ha-1 yr-1 (Murphy et al., 2015). Brown seaweed can be cultivated with 

existing aquaculture systems. Integrated multi-trophic aquaculture concepts allow co-

production of finfish, shellfish, and seaweed. The shellfish and seaweed can utilise the 

particulate and soluble nutrient discharge respectively, from the larger fish species 

reducing pollution load and associated eutrophication in the receiving waters. This may 

reduce the cost of production of seaweed. Jacob et al. suggested an EU industry of 2600 

anaerobic digesters treating 168 Mt of seaweed per year (associated with fish farms) if 

advanced biofuels from seaweed are to satisfy 1.25% of the EU 2020 transport energy 

demand (Jacob et al., 2016). For Ireland alone, 2.7 Mt of brown seaweed would need to 

be digested in 41 anaerobic digesters, each treating 64,500 t wwt of seaweed per annum 

(Jacob et al., 2016). However, huge financial costs will be required in the development 

and maintenance of a seaweed farm. Alvarado-Morales et al. (Alvarado-Morales, 2013) 
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found that in Nordic conditions, the production phase was the most energy intensive in 

the life cycle analysis of a seaweed biofuel project, demanding 57% of energy input. 

Norway, France, and Denmark are the countries where seaweed cultivation is being 

studied at large scale; it is reported that a cost of seaweed of €20-21 t-1 wet weight is 

achievable (Jorunn et al., 2014; Karin et al., 2013). 

2.4.3 Pre-treatment technologies  

Salt accumulation in the digester over time (Tabassum et al., 2016a) may be another 

concern to establish long-term anaerobic digestion; the high ash content in the seaweed 

is associated with salt (Table 2.3). It requires suitable pre-treatment for salt removal 

with minimum material losses. Removal of salts may enhance biodegradability to give 

better biomethane yields. Biodegradability index of seaweeds (Table 2.5) are in the 

range of 0.19 (F. serratus) to 0.81 (S. lattissima) (Figure 2.1d and 2.1b respectively). 

Pre-treatments can increase digestibility. Intuitively, due to the absence of cellulose and 

lignin, harsh pre-treatment should not be required.  

The literature outlines biomass pre-treatments such as: physical (Oliveira et al., 2014); 

mechanical (size reduction by cutting, chopping, maceration (Nielsen, 2011) and milling 

(Zhang, 2014)); biological (hydrolysis by enzymes (Borines et al., 2013)); chemical 

(hydrolysis by acid or alkali ((Borines et al., 2013; Oliveira et al., 2014)); thermal 

(heating (Passos & Ferrer, 2014) and steam explosion (Schultz-Jensen et al., 2013)); and 

hydrolysis by chemo-thermal methods (Oliveira et al., 2014). Size reduction (from a 

particle size of 1mm to 4mm) of dried seaweed was reported as a significant enhancer of 

biogas production from brown seaweeds (Vanegas et al., 2015), however, drying is 

considered to be energy intensive process (Alvarado-Morales, 2013). Mechanical pre-
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treatments have proved most beneficial in pre-treatment of brown seaweed from Dublin, 

Ireland (Tedesco et al., 2013). In Denmark, maceration increased the BMP yield up to 

56% when compared to untreated green seaweed (Bruhn, 2011). Washing improves 

specific methane production yield due to the removal of impurities or potential 

inhibitory compounds (Oliveira et al., 2014).  

Thermochemical pretreatment was shown to have no positive effect on BMP, possibly 

due to the release of polyphenols and other toxic compounds on heating the substrate 

(Oliveira et al., 2014). Integrated storage of wheat straw at low temperature with bio-

preservative yeast increased the biodegradability of the substrate and finally gave a 

higher ethanol yield on fermentation (Passoth et al., 2013). Seaweed can be stored at 

low temperature with the natural microbial community present on the substrate by using 

the same concept (Passoth et al., 2013) to study the effect of marine microbial 

community on the degradability of seaweed and ultimately the gas yield. Washing the 

seaweed with hot water may remove salts and impurities but the organic matter may be 

lost. Therefore, optimization of pre-treatment time and temperature may facilitate the 

removal of salts with minimum organic matter losses. Pre-treatments of different 

seaweeds and associated biogas yield are listed in Table 2.6. 
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Table 2.6 Effect of pre-treatment on biomethane potential of seaweed 

Seaweed Pre-treatment 
BMP 

Before/after 
Increase 

(%) 
Country Reference 

U. lactuca Untreated/macerated 174/271 56 Denmark (Bruhn, 2011) 

L. digitata Untreated/Mechanical  103/156 51 Ireland (Tedesco et al., 2013) 

U. lactuca Fresh/dried 183/250 37 Ireland (Allen et al., 2013) 

U. lactuca Fresh/Macerated 190/250 33 Ireland (Allen et al., 2015) 

U. lactuca Fresh/ Wilted 183/226 23 Ireland (Allen et al., 2013) 

U. lactuca Untreated  128 - France (Peu et al., 2011) 

U. lactuca Washed/Milled 191 - Ireland (Vanegas & Bartlett, 2013b) 

U. lactuca Washed/Chopped 241 - France (Jard et al., 2013) 

Gracilaria sp. Washed/Macerated 481 - Portugal  (Oliveira et al., 2014) 

P. palmate Dried and chopped 312 - France (Jard et al., 2012) 

S. latissima Steam explosion 268 - Norway (Vivekanand et al., 2012) 

S. latissima Dried and chopped 266 - France (Jard et al., 2012) 

S. latissima Washed/Wilted 335 - Ireland (Vanegas & Bartlett, 2013b) 

L. digitata Washed/Wilted 246 - Ireland (Vanegas & Bartlett, 2013b) 
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2.4.4 Digestion strategies 

Application and feasibility of long-term anaerobic digestion technology have not been 

demonstrated for seaweeds to date and both mono- and co-digestion strategies may be 

investigated. There is limited literature available on mono-digestion of seaweeds in 

continuous processes. The one-stage CSTR system is probably the most simple and 

technical viability process for digestion of wet substrates (Nizami & Murphy, 2010). 

Allen et al. (Allen et al., 2014) compared mono and co-digestion of Ulva sp. in a CSTR; 

they did not recommend mono-digestion due to a low C:N ratio, high levels of VFA 

accumulation, high calcium and chloride concentrations and low levels of Selenium. Co-

digestion of the seaweed with dairy slurry (25% seaweed: 75% slurry on a VS basis) 

gave significantly better results than mono-digestion (Allen et al., 2014).  

The literature reports co-digestion of seaweed with a variety of substrates such as 

glycerol (Oliveira et al., 2014), bovine slurry (Vanegas & Bartlett, 2013b), wheat straw 

(Nkemka & Murto, 2013), cattle manure (Sarker et al., 2014), waste milk (Matsui & 

Koike, 2010), waste frying oil (Oliveira et al., 2015) and dairy slurry (Allen et al., 

2014). Co-digestion of G. vermiculophylla with 2% glycerol increased the BMP by 18% 

(Oliveira et al., 2014). Brown seaweeds, Saccorhiza polyschides, L. digitata, F. serratus 

and S. latissima, were co-digested individually with bovine slurry (Vanegas & Bartlett, 

2013b). S. latissima and S. polyschides were found to be the best seaweeds yielding 335 

L CH4 kg VS-1 and 255 L CH4 kg VS-1, respectively (Vanegas & Bartlett, 2013b).  

Co-digestion of seaweed and wheat straw was improved by 57% when straw was 

pretreated with enzymes and steam (Nkemka & Murto, 2013). Allen and co-workers 

(Allen et al., 2014) in co-digesting U. lactuca with dairy slurry found that mixes with 
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increased levels of dairy slurry and higher C:N ratios performed better. Reactor failure 

was observed when OLR was in excess of 2 kg VS m-3 d-1.  

Sarker and co-workers (Sarker et al., 2014) also found that high levels of VFA 

accumulation occurred when the reactor was loaded with increased level of L. digitata 

when co-digested with cattle manure; specific methane yields were lower than 

theoretical expectation. The same trend was reported by Hinks and co-workers (Hinks et 

al., 2013) in the continuous digestion of L. hyperborea at an OLR of 2 kg-1 VS m-3 d-1. 

Production of H2S can be another concern in the long-term digestion of seaweed species 

with high sulphur content such as U. lactuca. Peu and co-workers reported that if the 

C:S ratio is less than 40, H2S production will be significant in the biogas and may be at a 

level to cause a problem in digestion (Peu et al., 2012).  

Brown algae like S. latissima and L. digitata may also produce H2S; the C:S ratio for S. 

latissima was recorded as 24:1 (Jard et al., 2013) while for L. digitata, the values were 

recorded in the range 29 - 60.3 (Adams et al., 2011a). Matsui and Koike (Matsui & 

Koike, 2010) recommended co-digestion of a mixture of seaweeds (green and brown) 

with waste milk. Oliveira and co-workers (Oliveira et al., 2015) co-digested Sargassum 

sp. with glycerol and waste frying oil; an increase in gas production was obtained of 

56% and 46%, respectively as compared to mono-digestion 
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2.5 Irish seaweed biogas industry: From sea to fuel  

2.5.1 Potential seaweed species 

Assessment of the potential seaweed species is the first step to develop the biogas 

industry in the country. The literature provides a wide range of BMP results with 

significant differences between species in Ireland. The best yielding Irish seaweed in a 

study by Allen and co-workers was S. latissima (Allen et al., 2015) with a BMP value of 

341.7 + 36.4 L CH4 kg VS-1; this is comparable to a value from Denmark of 333 + 64.1 

L CH4 kg VS-1 (Nielsen, 2011) but a lower value was reported in Norway (223 + 61 L 

CH4 kg VS-1) for S. latissima, harvested in August (Vivekanand et al., 2012).  

Carbohydrate content (alginic acid) in the seaweed is an important parameter in the 

BMP; higher quantities yield higher BMPs. L. digitata has been extensively reported as 

a potential biofuel feedstock due to the presence of easily fermentable sugars (laminarin 

and mannitol content can achieve 30% and 25% of TS, respectively) (Adams et al., 

2011b). The C:N ratio of L. digitata harvested in Wales fluctuated from 10.9 (in 

January) to a peak of 31.9 (in August) (Adams et al., 2011a). L. digitata collected in 

August from West Cork (Allen et al., 2015) with a C:N ratio of 22.5 generated a BMP 

yield of 218.0 + 4.1 L CH4 kg VS-1 which was higher than L. digitata harvested in May 

(184 L CH4 kg VS-1) (Vanegas & Bartlett, 2013a) and in January (103.3 + 19.8 L CH4 

kg VS-1) (Tedesco et al., 2013). 

The most abundant seaweed on Irish and Nordic coastlines is Ascophyllum nodosum; A. 

nodosum contains up to 33% of TS as degradable carbohydrates (Moen et al., 1997). 

High concentrations of degradable carbohydrates would suggest a good candidate for 

AD. However, unfortunately, it contains high levels of polyphenols (up to 14% of TS), 
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which are natural inhibitors of the AD process (Ragan & Jensen, 1978). A BMP yield of 

166.3 + 20 L CH4 kg VS-1 and 110 L CH4 kg VS-1 was reported in Ireland (Allen et al., 

2015) and Norway (Hanssen et al., 1987), respectively. High polyphenol content leads 

to low biodegradability index (Table 4: BI = 0.34) and low kinetic decay values. This, 

however, would make A. nodosum a very good candidate for pre-treatment processes 

and assessment of seasonal variation. Some studies indicated that the polyphenol level 

in the seaweed changes during the year (Apostolidis et al., 2011; Tabassum et al., 

2016b). Research is required to assess best harvesting month for A. nodosum and a 

suitable pre-treatment to enhance biomethane potential. 

S. polyschides is another species that contains high alginate concentrations (up to 16% 

TS) (Jard et al., 2013). A BMP yield of 263.3 + 4.2 L CH4 kg VS-1 (Allen et al., 2015) 

and 255 L CH4 kg VS-1 (Vanegas & Bartlett, 2013b) were reported from Ireland while a 

lower yield (216 + 16 L CH4 kg VS-1 in July) was obtained in France (Jard et al., 2013). 

Laminaria hyperborea and Laminaria japonica have the potential to be harvested at 

large scales due to high biomethane potentials of 260 L CH4 kg VS-1 (Hinks et al., 2013) 

and 260-280 L CH4 kg VS-1 (Chynoweth et al., 1993) respectively. Moreover, 

Macrocystis pyrifera can also be considered for farm cultivation due to its maximum 

growth size (up to 43 meters in length) and high growth rate (Chynoweth, 2002). High 

concentrations of organic content (mannitol levels of 5-16% of TS; alginate levels of 13-

24% of TS) make it a good substrate for AD (Chynoweth, 2002). Low C:N values (11.7 

– 17.5) can be a problem at high loading rate in continuous digestion but this can be 

overcome through co-digestion with other substrates such as L. digitata. The optimum 

growing temperatures (13 – 15oC) of M. pyrifera (Wheeler & North, 1981) make it a 
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suitable seaweed to cultivate in Irish waters during the months of June to October. In 

terms of natural stocks, the cheapest resource may be from algae blooms of the green 

seaweed U. lactuca. These blooms accumulate over the summer period and spoil the 

amenity of beaches (Allen et al., 2013). In France, it has become problematic for both 

shellfish production and amenity of beaches. U. lactuca contains a negligible amount of 

lignin (< 0.03 g kg-1), high glucose concentrations (Ventura & Castañón, 1998) and high 

sulphur content (Hinks et al., 2013). BMP yield of the seaweed was 190.1 + 3.1 L CH4 

kg VS-1 and 200 L CH4 kg VS-1 as reported by Irish (Allen et al., 2015) and Danish 

researchers (Bruhn, 2011).  

2.5.2 Energy yields of methane and the 2020 EU target 

It was estimated that one beach in West Cork generating 10,000 t wwt yr-1 of U. lactuca 

has the potential to yield sufficient biomethane to fuel 264 cars each year (Allen et al., 

2013). Smyth et al. reported the gross energy per hectare for a range of terrestrial crops 

(Smyth et al., 2009). Palm oil biodiesel (120 GJ ha-1 yr-1) and sugarcane ethanol (135 GJ 

ha-1 yr-1) were the best energy crops for liquid biofuel system. Maize and perennial 

ryegrass have biomethane yields (1,660 - 12,250 and 2,682 - 6,400 m3 ha-1 yr-1 

respectively) (Murphy et al., 2012); this equates to a yield in the range 60 to 441 GJ ha-1 

yr-1. Seaweeds may offer gross energy yields in the range 38-384 GJ ha-1 yr-1 (Table 

2.7). The total coastal area required for brown seaweed species cultivation to satisfy the 

2020 RES-T target (1.25% of energy in transport or 2.35 PJ) for Ireland is outlined in 

Table 7. Two scenarios are chosen. Scenario (1): a realistic current based on 20 kg wet 

weight per meter line with lines at 5 m c/c (40 t wet weight ha-1 y-1) and scenario (2); 

optimistic future based on data from Allen et al., (Allen et al., 2015). The range outlines 
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the importance of developing techniques that allow high yields. The potential for 

sunlight to allow growth at such high intensities must be considered and the effect of the 

shadowing on the seabed below. A salmon farm (on 454 hectares) is planned in Galway 

by the Irish Sea Fisheries Board. There is potential for co-location of seaweed 

cultivation along with salmon and shellfish farms at a further 46 sites in Ireland (BIM, 

2012). 

Table 2.7 Energy yields of Irish brown seaweed based on BMP 

Seaweed BMP 
(L CH4 kg 

VS-1) 

Production  
(t wwt ha-1 

yr-1) 

Area Required for 
2020 RES-T Target 

(Ha) 

Gross 
Energy  

GJ ha-1 yr-1 
 

Scenario 1: Based on realistic current harvesting potential 
S. latissima 342 b 40 d 45,470 e 52 e 

S. polyschides 263 b 40 d 45,105 e 52 e 

A. esculenta 226 b 40 d 57,774 e 41 e 

L. digitata 254 a 40 d 61,225 e 38 e 

L. hyperborean 253 c 40 d 61,465 e 38 e 

Scenario 2: Based on optimistic current harvesting potential 

S. latissima 342 b 297 b 6,124 e 384 e 

S. polyschides 263 b 147 b 12,273 e 191 e 

A. esculenta 226 b 302 b 7,655 e 307 e 

L. digitata 254 a 100 b 24,490 e 96 e 

L. hyperborean 253 c 100 b 24,586 e 96 e 

a (Adams et al., 2011b); b (Allen et al., 2015); c (Sutherland & Varela, 2014); d (Murphy & Herrmann, 

2015);  e Authors calculated based on BMP; VS and t wwt ha-1 year-1. 
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2.5.3 Economics and biogas market development in Ireland 

After a detailed analysis of the bottlenecks in the technology, it is obvious that 

establishment of the bio-natural gas market is still some way from commercial reality. 

However, by addressing key issues (especially the cost of the seaweeds), there is a 

potential to establish a seaweed biogas industry in Ireland. A comparison of the second 

generation (2G) and third-generation (3G) technologies is given in Table 8. Grass and 

seaweed are taken as representative of each class. Price calculations for the seaweed 

biomethane listed in the table are only for future predictions as currently, there is no data 

available on the topic for Ireland.   

Grass and seaweeds are abundant in Ireland. Anaerobic digestion of grass silage at a 

yield of 55 t ha-1 yr-1 wwt in co-digestion with slurry at a mix of 50:50 on a VS basis 

would require 42,403 hectares (1.1% of grassland) to satisfy the EU 2020 target for 

RES-T (Wall et al., 2013). It was reported that this mix would yield 52m3 CH4 t-1,which 

is similar to seaweed yields at the optimum month for harvest (Table 2.8). Currently, the 

cost of cultivation for the seaweeds is very high but it is reported that the cost of 

seaweed may reduce to around 21 € t-1 wwt in the future (Jorunn et al., 2014; Karin et 

al., 2013). A yield of 40 - 100 t ha-1 yr-1 wet weight can be obtained by cultivating and 

harvesting at peak month (August). This could generate a maximum of 53 m3 CH4 t-1 

[39]; this would suggest a requirement of 11,800 hectares of the coastal area to satisfy 

1.25% RES-T (2020 EU target). For a simple comparison (if somewhat liberal) if the 

cost of seaweed cultivation and harvest is assumed to be the same as grass silage in the 

future (at 17 € t-1 wwt) and that seaweed yields an SMY of 53 m3 CH4 t-1 wwt (very 

similar to  grass and slurry mix at 50:50 VS of 52 m3 CH4 t-1 wwt) the price of 
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Table 2.8. Price comparison of future gaseous fuel (BNG) from 2G and 3G technologies 

Technology Feedstock Feedstock 
yield 
(t ha-1 yr-1 wwt) 

Area required 
to satisfy 2020 
RES-T (ha) 

Specific methane 
yields a 
(m3 CH4 t-1) 

Blend 
F:S 
ratio 
 

Specific  
methane yield b 

m3 CH4 t-1 

Fuel Price 
(CNG) 
(€ m-3) 

Fuel Price 
(BNG) 
(€ m-3) 

2G Grass 55 c 42,403 c 107 c 50:50 c 52 c 0.71 d 1.28 d 

3G Seaweed 100 e 11,800 e 53 e 100:0 e 53 e 0.71 d 1.26 f 

2G: second generation; 3G: third generation; wwt: wet weight; RES-T: renewable energy system in transport; F:S ratio: feedstock to slurry ratio; CNG: compressed 

natural gas; BNG: bio-natural gas. 

a Specific methane yield was obtained from digesting 100% grass or 100% seaweed (without blending with slurry); b specific methane yield was obtained from 

blending with slurry (only for grass) but digesting 100% seaweed; c (Wall et al., 2013); d (Browne et al., 2011); e (Tabassum et al., 2016a); f calculated by assuming 

that if cost of the feedstock and specific methane yield generated by the seaweed equals to grass, the predicted market price for BNG from the seaweed may be 

achievable in future. 
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biomethane (BNG) may be assessed as practically the same as from grass and slurry 

(Table 8).  If the price of seaweed cultivation and harvest exceeds € 17 t-1 then it will be 

more expensive that grass biomethane.  

According to Brown and co-workers [117], the price of CNG in the UK was of the order 

of € 0.71 m-3 in 2011. CNG is cheaper than petrol and diesel and as such blending of 

biomethane with natural gas can offer lower market price than petroleum and diesel 

(price range: 130-145 c L-1). The blend of 10% to 50% of BNG (from seaweed or from 

grass silage and slurry) with natural gas could be pricing at a range from 0.77 € m-3 to 

0.99 € m-3, respectively. Currently, CNG vehicles and service stations are not readily 

available in Ireland. Government policy to encourage BNG in the country could lead to 

3G biofuels based on seaweed. 

2.6 Integrated system of bio-natural gas production  

A four stage integrated system (including for cultivation, analysis, pre-treatment and the 

digestion) is proposed to address the key bottlenecks in the technology (Figure 2.4). The 

integrated system facilitates two routes of cultivation of the seaweed. First is mono-

cultivation (CUL), where only seaweed may be cultivated. The second route integrated 

multi-trophic aquaculture (IMTA) allows co-cultivation of the seaweed with fish. The 

analysis before and after cultivation allows decisions on the co-digestion strategy and 

process optimization. Co-digestion strategies may attract substrates with gate fees. 

Seaweed can be mono-digested or co-digested with other substrates depending on the 

composition of the feedstock and the system requirements. Pre-treatment options (as 

discussed in section 2.4.3) can enhance biomethane yield by removing inhibitory 

compounds including salts and increasing the digestibility in the reactor. The produced 
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biomethane can be injected into the gas grid or used for power generation (P), domestic 

heating (H) and/or advanced transport biofuel. 

Figure 2.4. Integrated system of bio-natural gas (BNG) production  

Where, W is waste, IMTA is integrated multi-trophic aquaculture, S is slurry, CUL is cultivation, PT is pre-

treatment, PUB is proximate, ultimate and biochemical analysis, PMT is physical, mechanical and thermal 

PT, MD is mono-digestion, GF is gas flow, P is power, CHP is combined heat and power, E is electricity, 

BNG is bio-natural gas, T is transport, H is heating and C is for cooking. 
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2.7 Conclusion 

Seaweed is an abundant resource that has the potential to satisfy targets for advanced 

biofuels in Ireland. A viable seaweed biomethane industry will require: a high yield of 

seaweed per hectare; a high biomethane yielding seaweed species; a cost-effective 

cultivation method; harvesting when the seaweed is optimal for digestion; enhancing 

pre-treatment methods; and optimal long-term continuous digestion operation. A range 

of 6,124 to 61,465 ha of the coastal area would be required to grow seaweed to meet 

Ireland’s 2020 target in advanced biofuels. 
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Abstract 

Biomethane produced from seaweed may be used as a transport biofuel. Seasonal 

variation will have an effect on this industry. Laminaria digitata, a typical Irish brown 

seaweed species, shows significant seasonal variation both in proximate, ultimate and 

biochemical composition. The characteristics in August were optimal with the lowest 

level of ash (20% of volatile solids), a C:N ratio of 32 and the highest specific methane 

yield measured at 327 L CH4 kg VS-1, which was 72% of theoretical yield. The highest 

yield per mass collected of 53 m3 CH4 t-1 was achieved in August, which is 4.5 times 

higher than the lowest value, obtained in December. A seaweed cultivation area of 

11,800 ha would be required to satisfy the 2020 target for advanced biofuels in Ireland, 

of 1.25% renewable energy supply in transport (RES-T) based on the optimal gross 

energy yield obtained in August (200 GJ ha-1 yr-1). 

 

Keywords: Seaweed; Anaerobic digestion; Biogas; Seasonal variation; Gaseous 

transport biofuel  
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3.1 Introduction 

Biogas derived from anaerobic digestion (AD) of biomass, can be used as renewable 

energy sources for transport fuel or combined heat and power (Chynoweth et al., 2001). 

Feedstock choice is considered as a critical issue for sustainable bioenergy production. 

Energy crops are not in favour due to the fuel versus food debate (Tenenbaum, 2008). 

Utilisation of marine biomass as a feedstock for bioenergy production is an attractive 

option, as it accounts for over 50% of the primary production of global biomass 

(McQuatters-Gollop et al., 2011) and does not compete for arable land. However, the 

potential of marine bioenergy has not been fully explored. Seaweeds (macroalgae) are 

marine photosynthetic, multicellular organisms that have higher growth rates and 

productivities than terrestrial crops (Gao and McKinley, 1994). Kelps (such as 

Laminaria digitata) are the largest growing brown seaweed in the Atlantic waters 

surrounding Ireland and UK (Smale et al., 2013). L. digitata is the very prevalent along 

the coast of Ireland (Hughes et al., 2013) and may allow commercial viability in biofuel 

production (Milledge et al., 2014). 

Seasonal variation in the biochemistry of seaweed can alter the biogas yield 

dramatically. Changes in the composition of L. digitata were described by Black (1950) 

by assessment of dry solids, ash content, and measurement of carbohydrates. Laminarin 

and mannitol are the dominant carbohydrates and alginic acid is the structural polymer 

in Laminaria species. According to Black (1950), Laminarin and mannitol 

concentrations were highest in October and lowest in winter months, with the ash 

proportion showed a reverse trend. The highest alginate content in kelp species have 

been reported to occur in summer months (Rosell and Srivastava, 1984). Carbohydrates 
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have also been reported to accumulate during summer and autumn (Adams et al., 2011a; 

Rosell and Srivastava, 1984) and consumed during winter. In contrast, protein content 

was found to be highest in winter and lowest during summer (Adams et al., 2011a; 

Fleurence, 1999). It should be noted that brown seaweed contains relatively lower 

protein content (3–15 % of the dry weight) as compared with red and green seaweeds 

(Fleurence, 1999). Ash is a significant element of brown seaweed and can account for 

up to 35% of dry weight (Adams et al., 2011a; Schiener et al., 2015). In L. digitata the 

ash consists largely of sodium, potassium, calcium, magnesium and chloride. Seasonal 

variation in ash content can be of high impact on biomethane production; Adams et al. 

(2001b) reported the highest biomethane yield when the ash content was the lowest.  

Different geographical locations generate different growth conditions for seaweeds, 

depending on characteristics such as temperature, nutrients and sunlight. This results in 

significant differences in biochemical compositions of seaweeds and subsequent 

anaerobic digestion characteristics (Adams et al., 2011a; Black, 1950; Schiener et al., 

2015). Ireland is a small island with a long coastline abundant in natural seaweed 

resources with potential for significant seaweed cultivation (Allen et al., 2015); 

cultivation may be coupled with salmon farms in multi-trophic aquaculture. 

Development of seaweed-based biogas may allow for the production of much needed 

third generation biofuel to allow compliance with European Directives and 

decarbonisation of transport fuel. Biogas is usually continuous produced thus a seaweed 

biogas industry requires a continuous supply of high-quality seaweed substrates. The 

harvested seaweed may be ensiled for continuous substrate supply (Herrmann et al., 

2015). Determination of the optimal time for harvesting is crucial for a biogas industry. 
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The innovation in this paper is that it assesses the seasonal variation in composition and 

in biomethane production for L.digitata. It conducts a kinetic analysis of the cumulative 

biomethane production for twelve months of the year and evaluates the biomethane 

yields per unit mass wet weight. This level of assessment has not previously been 

reported for Irish seaweed. This paper assesses L. digitata (a representative Irish brown 

seaweed species) as a substrate in order to: 

• Investigate the seasonal variation in the composition of L. digitata. 

• Assess the seasonal variation in biomethane production from L. digitata. 

• Undertake a kinetic analysis to detail the biodegradability of the seaweed across 

the year. 

• Identify the peak season of Irish seaweed harvesting for biogas production. 

• Calculate the gross energy yield per hectare from L. digitata. 

3.2 Materials and Methods 

3.2.1 Seaweed collection, preparation, and compositional analysis 

Laminaria digitata samples were collected from their natural marine environment in 

Roaring Water Bay, Co. Cork, in the south of Ireland (51°N, -9°E) from January to 

December. Seaweed samples were washed with tap water to remove foreign objects. 

Washed samples were macerated in a Buffalo macerator to a particle size of less than 4 

mm and packed in sealed transparent plastic bags with a mass of 500g in each bag. 

Packed samples were stored at -20oC prior to analysis and biomethane potential (BMP) 

assessment. Moisture content (MC), total solid (TS), volatile solid (VS) and ash were 

calculated using the standard method of drying of seaweed for 24 hours at 105 °C and 

then burning for two-hour at 550 °C (APHA, 2011; Xia et al., 2016b). For ultimate 
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analysis, samples were dried at 105 °C for 24 hours and then were ground to pass 

through a 500 µm sieve. Samples were analysed for C, H, N, and O (O calculated by 

difference) on an ash-free basis using a CE 440 elemental analyser. The protein content 

was calculated based on the data from ultimate analysis. A protein factor of 5.38 

(multiplied by the nitrogen content) for brown seaweed (Lourenço et al., 2002) was used 

to calculate the total protein content in the seaweed sample. Polyphenol content was 

estimated by a modified version of the Folin Ciocalteu assay as described by Singleton 

and Rossi (Singleton and Rossi, 1965). Seasons were defined as winter (January), spring 

(March), summer (June) and autumn (October).   

3.2.2 Biomethane yields of L. digitata 

The data obtained from the ultimate analysis was used to calculate the theoretical 

biomethane yield using the Buswell equation (Eq. (1)). The output yields a maximum 

potential methane yield by conversion of VS to methane and carbon dioxide (Buswell 

AM, 1932). The molar volume of the gases was taken as 22.14 L at 0 °C and 1 atm. 

��	���� + 
� −	� − �
�����	 → 	 
�� +	�� − �

� �� 	+ 	
�� −	�� + �
� ��� Eq. (1) 

An automatic methane potential test system (Bioprocess AMPTS II® system) was used 

to assess the biomethane potential of seaweed. The inoculum was obtained from lab-

scale continuous stirred-tank reactors (operated at 37 °C), which processed dairy slurry, 

grass silage, and seaweed. The Bioprocess AMPTS II® system incorporates 15 bottles 

which serve as the batch digester. The system has the capacity to accommodate five 

specimens at a time in triplicate. In each trial, three samples of seaweed, one of 

inoculum and one of cellulose were assessed in triplicate. The substrate to inoculum 
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ratio (S:I) on a VS basis, of 1:2 was used (Angelidaki et al., 2009; Chynoweth et al., 

1993). Each bottle had a working volume of 400 ml with a head space of 250 ml. All 

bottles were filled with calculated amounts of inoculum and substrate and sealed with 

rubber stoppers. Nitrogen gas was flushed through each vessel to create anaerobic 

conditions. Each reactor was maintained at 37 °C  by a water bath and continuously 

mixed at a speed of 45 rpm with an alternating time between on and off after every 

minute. Removal of CO2, H2S and other impurities in the gas was achieved by passing 

the gas through 3 M NaOH solution. Finally, biomethane was passed through a gas 

tipping device which recorded the volume of gas produced for each of the 15 reactors. 

The data was recorded every 15 minutes. As each BMP assay was run in triplicate the 

samples were assessed for standard deviation. In order to determine the specific 

biomethane production, the total average biomethane produced from the inoculum was 

subtracted from the average biomethane produced by each sample (Allen et al., 2015). 

Salinity (g/L), conductivity (milliSiemens/cm) and pH of the batch digestion were also 

recorded before and after each BMP assay in order to investigate the effect of the 

chemical composition of seaweed on the reaction performance and the gas yield. The 

salinity of sea water at the location was also recorded every month and reported the 

mean value.  

3.2.3 Kinetic and statistical analysis 

A kinetic assessment of the batch biomethane process allows assessment of the 

biodegradability and the rate of biodegradability of the substrate. Kinetic studies give 

data such as decay constant, lag phase, and half-life. The method of assessment involved 

taking data from the cumulative production curves and input to a MATLAB code. The 
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bespoke MATLAB programme used a first order differential equation (Eq. (2)) to 

determine the decay constant values and the modified Gompertz formula (Eq. (3)) to 

grow a list of variables to describe the decay course of organic matter in the batch 

process (Nopharatana et al., 2007). Statistical analyses were conducted using the 

software SPSS (IBM NY, USA). Analysis of variance (ANOVA) was performed to 

examine the effect of the chemical composition of the substrate (during various seasons) 

on biomethane yield. The significance of differences in methane yield between seasons 

was determined by multiple comparisons (Post Hoc test). The significance level was set 

at 0.05. 

���� = ��	. �1 − exp��� �! Eq. (2) 

" = # ∙ exp{	− exp[	'()*∙+
, �∆ − ��] + 1} Eq. (3) 

Where, 

Y(t) is the cumulative biomethane yield (L CH4 kg VS-1) at a time, t (days).  

Ym is the maximum biomethane potential (L CH4 kg VS-1) of the feedstock.   

k (the decay constant in days -1) is a measure of the rate of degradability of the substrate.  

M is the cumulative biomethane yield (L CH4 kg VS-1) at a specified time t (days). 

P is the maximum biomethane potential (L CH4 kg VS-1) of the substrate.  

Rmax is the maximum biomethane production rate (L CH4 kg VS-1 day-1).  

∆ is the lag phase (a measure of how long (days) before the biomethane production starts 

to occur). 

t is the time (days). 

T50 is the half-life (a measure of how long (days) it takes to yield half of the maximum 

cumulative production of biomethane).  
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R2 is a measure (in %) of how the kinetic model fits in the curve of biomethane 

production. 

3.3 Results and Discussion 

3.3.1 Proximate and ultimate analysis 

Proximate and ultimate analysis (from January to December) of L. digitata are as shown 

in Table 3.1. The moisture content (MC) of L. digitata ranged from 80% to 92% with a 

peak in December and a through in August. Great variation was observed in the volatile 

solids; in August the value was three times higher (16%) than in December (5%). The 

Ash fraction was high in winter months and lowest in summer months. The carbon 

fraction peaked (37% of TS) in August due to the high concentration of storage 

carbohydrates (Adams et al., 2011a). Very low ammonia production in long term 

digestion is expected due to the high carbon to nitrogen ratio in the peak season. The ash 

to volatile solids (A:V) ratio along with the C:N ratio is crucial in suggesting harvest 

time. Low values of the A:V ratio will yield higher methane productions per unit of 

collected mass of seaweed. August is suggested as the peak month for harvest as the 

seaweed has the highest organic content (82% of TS), lowest ash content (18% of TS), 

lowest A:V ratio (0.2) and suitable C:N ratio (32). These results are comparable with the 

previous studies conducted in the UK on the same seaweed species (Adams et al., 

2011a; Schiener et al., 2015). However, Irish seaweed was found to fix slightly more 

carbon (37%) than British seaweed (36%) in the same peak harvesting month (Schiener 

et al., 2015). This may be attributed to the different climate and seawater conditions. 
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3.3.2 Biomethane yields of L. digitata 

Seasonal variation in chemical composition in the substrate significantly influenced the 

BMP yield. Multiple comparisons results from one-way ANOVA indicated that seaweed 

harvested in summer significantly produced more biomethane than in winter (F=12.91, 

P < 0.002). BMP yields of L. digitata were highest in August with values of 327 ± 26 L 

CH4 kg VS-1  and lowest in April 203 ± 14 L CH4 kg VS-1 (Figure 3.1). 

L. digitata has been previously reported as a potential biofuel feedstock due to easily 

biodegradable sugars laminarin (up to 30% TS) and mannitol (up to 25% TS) (Adams et 

al., 2011b). Adams et al. found the C:N ratio of L. digitata ranged from 10.9 in January 

to a peak of 31.9 in August harvested in the UK resulting in a BMP yield of  
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Table 3.1 Proximate and ultimate analysis of L. digitata round the year 

 Harvest Proximate Analysis Ultimate Analysis 

MC % 
TS 

(%wwt) 
VS 

(%wwt) 

VS 
(% of 

TS) 

Ash 
(% of TS) 

A:V  C % H % N % O % 

January 88.57 11.43 (0.44) 7.00 (0.41) 61.24 38.82 (1.25) 0.63  26.06 (0.38) 3.38 (0.06) 3.95 (0.02) 27.85 
February 88.53 11.47 (0.05) 7.34 (0.18) 63.99 36.05 (1.76) 0.56  26.47 (0.16) 3.62 (0.09) 3.95 (0.09) 29.96 
March 90.26 9.74 (0.02) 6.49 (0.14) 66.67 33.33 (1.37) 0.5  30.41 (0.90) 3.97 (0.11) 3.7 (0.06) 28.58 
April 85.58 14.42 (0.22) 9.31 (0.18) 64.56 35.44 (1.02) 0.55  30.02 (0.23) 3.83 (0.05) 2.28 (0.04) 28.43 

May 87.63 12.37 (0.09) 8.91 (0.07) 72.73 28.04 (0.43) 0.39  32.36 (0.18) 4.74 (0.08) 2.18 (0.05) 33.44 
June 85.83 14.17 (0.04) 10.37 (0.13) 73.15 26.85 (1.11) 0.37  34.5 (0.77) 5.02 (0.03) 1.82 (0.05) 31.81 
July 85.64 14.36 (0.03) 10.87 (0.04) 76.6 24.3 (0.44) 0.32  33.2 (0.05) 4.95 (0.09) 1.53 (0.10) 36.92 
August 80.28 19.72 (0.11) 16.12 (0.04) 81.72 18.28 (0.27) 0.22  36.76 0.10) 5.54 (0.02) 1.14 (0.04) 38.28 
September 80.54 19.46 (0.26) 15.67 (0.25) 80.51 19.49 (0.44) 0.24  36.62 (0.17) 5.3 (0.05) 0.93 (0.03) 39.37 
October 84.2 15.8 (0.24) 11.92 (0.24) 75.42 24.56 (0.37) 0.32  33.45 (0.22) 4.71 (0.01) 1.22 (0.05) 36.55 
November 84.81 15.19 (0.12) 11.44 (0.09) 75.29 24.71 (0.09) 0.33  37.18 (0.42) 4.98 (0.06) 1.53 (0.11) 31.6 
December 91.61 8.39 (0.95) 5.26 (0.92) 59.59 37.58 (4.05) 0.64  30.82 (0.50) 4.05 (0.01) 3.4 (0.09) 21.32 

wwt = wet weight, Standard deviation is in parentheses. 
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254.14 ± 6.21 L CH4 kg VS-1 (Adams et al., 2011a). Due to variation in location and 

season, different BMP yields were reported from various sites in Ireland. L. digitata 

collected in August (C:N ratio of 22.5) generated a BMP yield of 218.0 ± 4.1 L CH4 kg 

VS-1 and a lower yield was recorded when harvested in May (184 L CH4 kg VS-1) 

(Vanegas and Bartlett, 2013) and in January (103.3 ± 19.8 L CH4 kg VS-1) (Tedesco et 

al., 2013). In this study, the BMP is higher than in previous studies (Table 3.2). It can be 

possibly due to the high C:N ratio (32), the low A:V ratio (0.2) (Table 3.1), the higher 

biodegradability (Table 3.2) and higher amount of storage carbohydrates. However, the 

high C:N ratio in September (40) slightly affected the gas yield, as the accumulated 

carbohydrates and the lack of proteins can result in an imbalance and a drop in pH and 

slight inhibition of methanogenesis (Wang et al., 2014). 

Seaweed samples were washed with tap water and then kept in a vertical position for 15 

minutes to remove the surface water. The biodegradability index (BI) is defined as the 

ratio of the BMP yield to the theoretical yield (Table 3.2). This value describes the 

efficiency of biodegradability of the substrate in the batch digestion. The highest 

biodegradability index was observed in August (0.72) while the lowest was in December 

(0.44). Low biodegradability may be attributed to the low carbohydrate content and 

imbalances in the C/N ratio in winter. The average BMP of cellulose in these trials was 

335.3 ± 13.2 L CH4 kg VS-1, corresponding to a biodegradability index of 0.81 ± 0.03. 

This suggests a healthy inoculum condition and repeatable results between each BMP 

batch trials. 
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Table 3.2 Biomethane production over 12 months based on results of BMP analysis and theoretical analysis 

Harvest 
BMP yield 

(L CH4 kg VS-1) 
Harvest 

kg VS t-1
wwt 

Theoretical 
composition 

(CH4 %) 

Theoretical yield 
(L CH4 kg VS-1) 

Biodegradability 
index 

(BMP/theoretical) 

Specific yield 
(m3 CH4 t-1 wwt) 

January 237 ± 4 70 42 421 0.56 17 

February 259 ± 5 73 46 406 0.64 19 

March 265 ± 4 65 48 469 0.57 17 

April 203 ± 14 93 50 462 0.44 19 

May 263 ± 11 90 52 407 0.65 23 

June 294 ± 1 104 53 493 0.60 30 

July 303 ± 12 110 50 435 0.70 33 

August 327 ± 26 161 54 452 0.72 53 

September 303 ± 19 160 50 450 0.67 47 

October 267 ± 7 120 51 428 0.62 32 

November 256 ± 11 114 53 510 0.50 29 

December 235 ± 10 50 53 537 0.44 12 

wwt = wet weight 
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Figure 3.1 Biomethane potential cumulative yield curves for L. digitata collected throughout the year. 
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Figure 3.2 Salts accumulation in a batch reactor (summer to spring). 

  
The salinity of seaweed was subtracted from the salinity of inoculum (6.9 ± 0.47 g/L) in order to present actual salinity increase in the batch digestion due to 

seaweed only.
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Accumulation of salts can be a problem in the digestion of seaweed. It was observed that 

salinity was much higher in winter and spring as compared to summer and autumn (see 

Figure 3.2). A correlation between ash content and organic content (A:V) explains the 

tolerance level of salts during digestion. The salinity of inoculum and the seaweed was 

measured after completion of each batch (30 days). The salinity values were 11.0 ± 0.08 

g/L, 10.4 ± 0.10 g/L, 9.8 ± 0.10 g/L and 9.6 ± 0.10 g/L in winter (January), spring 

(March), summer (June) and autumn (October) months, respectively (compared with the 

seawater salinity of 31 ± 0.90 g/L from the collection site). The salinity of seaweed was 

subtracted from the salinity of inoculum (6.9 ± 0.47 g/L) in order to present actual 

salinity increase in the batch digestion due to seaweed only.  Salinity and A:V ratio had 

a significant effect on the gas yield during different seasons. Higher values of salinity 

and A:V led to lower values of gas production. It was observed that the optimum gas 

yield was obtained when salinity increased up to 30% (compared with inoculum salinity; 

in summer and autumn months). Lower yields were obtained when salinity increased by 

60% or more in winter and spring. Excess levels of salinity level can adversely affect 

digestion performance. A low biomethane yield is expected at a high salinity level 

(Chen et al., 2008; Fang et al., 2011; Xia et al., 2016a). 

Biomethane yields may be expressed based on per unit mass of volatile solid or per unit 

mass of wet weight (Figure 3.3). The yields per unit mass wet weight are more 

understandable to the biogas developer and also combine the effects of proximate 

analysis (change in VS content as indicated in Table 3.1) and BMP results (expressed in 

Table 3.2 as L CH4 kg VS-1). The December BMP value is 72% of the August value 
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Figure 3.3 Calculation of methane yield expressed per unit mass of VS (A) and per unit mass wet weight (B)
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(Figure 3.3A) but it is only 22.6% of the yield when expressed per unit mass wet weight 

(Figure 3.3B). More significant results were obtained when ANOVA was performed on 

the basis of wet weight (F=5.75, P < 0.021) as compared to dry weight basis (F=4.90, P 

< 0.032). 

3.3.3 Kinetic analysis 

The kinetic results of the BMP analysis are as shown in Table 3.3. The modified 

Gompertz equation presented very good correlation as values of R2 were within an 

acceptable tolerance (R2 greater than 0.95). All months indicated good kinetic decay (k 

value ranged from 0.13 to 0.21) except the winter months (around 0.08). This may be 

attributed to the high content of slowly degradable compounds (such as proteins) and 

low content of easily degradable carbohydrates (such as mannitol) in winter months (see 

Figure 3.4). Moreover, the high salinity level in winter can adversely affect methane 

production (see Figure2).  

Kinetic decay values for perennial ryegrass (Wall et al., 2013), food waste (Browne et 

al., 2014) and brown seaweed harvested in late summer (Allen et al., 2015) were 

reported to be 0.11, 0.17 and 0.19, respectively. The half-life of the methane production 

(T50) was less in summer (4-5 days) than winter months (6-9 days) probably due to the 

higher concentration of easily degradable laminarin and mannitol in summer (Adams et 

al., 2011a). These results were comparable with previous studies on L. digitata (Allen et 

al., 2015). The half-life for summer months was relatively low suggesting a short 

retention time of less than 20 days could be sufficient for long-term continuous 

digestion. 
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Table 3.3 Kinetic analysis of L. digitata based on seasonal variation 

Month of 
Harvest 

k  decay constant 
(days-1) 

R2 
∆ lag phase 

(days) 

T50 half-life of 
methane production 

(days) 

January 0.08 0.97 2.80 8.91 

February 0.08 0.97 3.09 9.02 

March 0.10 0.97 1.60 6.81 

April 0.13 0.98 1.60 5.19 

May 0.21 0.99 1.17 3.23 

June 0.15 0.98 1.91 4.48 

July 0.13 0.95 2.16 5.54 

August 0.13 0.95 2.46 5.21 

September 0.13 0.95 1.95 5.24 

October 0.14 0.95 2.00 5.12 

November 0.09 0.97 2.91 7.69 

December 0.13 0.99 1.94 5.52 

Cellulose  0.17 0.99 2.17 4.09 

 

The lag phase of 2 to 3 days for brown seaweed harvested at the same month was less 

than the 6 to 9 days reported by Gurung et al. (Gurung et al., 2012). This may be 

attributed to the higher I:S ratio of 2:1 in this study as compared to 0.8:1 in the study by 

Gurung et al. (Gurung et al., 2012). I:S of 2: 1 minimises potential inhibition during the 

digestion process (Allen et al., 2015). 
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3.3.4 Biochemical analysis 

A full twelve-month biochemical profile of L. digitata is shown in Figure 3.4. The total 

carbohydrate content peaked in August and September. This result is consistent with the 

high BMP yield obtained from the samples collected in August and September. In 

January, the protein and ash content was highest and the carbohydrate content was 

lowest. Protein and ash content decreased from January until August and then dropped, 

while carbohydrates increased from January until September and then decreased. The 

carbohydrate trend followed the trend in the C:N ratio which rose from 7 in January to 

40 in September. 

The polyphenol content (data not shown) peaked in April (1.3 mg/g) and was lowest in 

August (0.02mg/g). A previous study (O’Sullivan et al., 2011) confirms that the 

polyphenol content of brown seaweed achieved the highest value (1.5 mg/g) in spring. 

High levels of polyphenol can adversely affect the digestion process and produce a low 

BMP yield (Allen et al., 2015). 

3.3.5 Effect of seasonal variation on gross energy yields 

The data from seasonal variation in L. digitata highlights that the peak month to harvest 

the seaweed is August. Gross energy yield from the seaweed in each month was 

calculated (Table 3.4). The table highlights the total coastal area in each month required 

for the seaweed species cultivation to satisfy the 2020 RES-T target (1.25% of energy in 

transport or 2.35 PJ) for Ireland. Two scenarios are chosen. Scenario (1): a realistic 

current based on 20 kg wet weight per meter line with each line at 5 m distance (40 t wet 

weight ha-1 y-1) (Murphy et al., 2015) and scenario (2); optimistic analysis based on 
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Figure 3.4 Full year biochemical profile of L. digitata. 
Total carbohydrate content was calculated by difference by assuming TS equal to the sum of carbohydrates, proteins, ash and others (1% of TS). 
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Table 3.4 Calculation of gross energy of L. digitata based on various seasons and land area required to supply 1.25% RES-T of 2.35PJ 

Harvest Scenario 1 (40 t wet weight ha-1 y-1) 
Scenario 2 (100 t wet weight ha-1 y-1) 

Biomethane yield  
m3 ha-1 yr-1 

Gross energy  
GJ ha-1 yr-1 

Area required 
Ha 

Biomethane yield  
m3 ha-1 yr-1 

Gross energy  
GJ ha-1 yr-1 

Area required 
ha 

January 663 25 94000 1658 63 37422 

February 760 29 81655 1901 72 32662 

March 688 26 90195 1721 65 36078 

April 756 29 82155 1890 71 32862 

May 937 35 65777 2342 88 26310 

June 1219 46 51000 3048 115 20400 

July 1317 50 46600 3294 124 18640 

August 2108 80 29500 5270 200 11800 

September 1899 72 32100 4747 179 12840 

October 1274 48 48500 3184 120 19400 

November 1171 44 53000 2929 111 21200 

December 494 19 132200 1236 47 52880 

Sample calculation for January Scenario 1: Biomethane Yield, m3 ha-1 yr-1 = 237 m3 CH4/ tVS (Table 3.2)* 40 twwt * 7% VS (Table 3.1) = 663.6 m3 ha-1 yr-1;  

Gross energy (GJ ha-1 yr-1) = Biomethane yield * 37.8 MJ/m3*0.001 (MJ to GJ) = 25 GJ ha-1 yr-1 , Area required:  2.35 PJ * 1,000,000 (GJ/PJ) / 25 GJ ha-1 yr-1 = 94,000 ha 
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future systems such as cultivation on mats generating up to 100 t wet weight ha-1 y-1 as 

suggested by Allen et al. (2015).  

Selection of the optimum month for seaweed harvesting can give four times more 

energy than a least beneficial month (47 GJ ha-1 yr-1 in December and 200 GJ ha-1 yr-1 in 

August based on the optimistic scenario in Table 3.4). This value is higher than various 

land-based biofuels such as oil biodiesel (120 GJ ha-1 yr-1), sugarcane ethanol (135 GJ 

ha-1 yr-1) and grass (122-163 GJ ha-1 yr-1) (Allen et al., 2015). A barrier to the industry 

may be the cultivation cost of the seaweed. A salmon farm (on 454 hectares) is planned 

in Galway off the west coast of Ireland and more farms are proposed at 46 sites in 

Ireland in the near future) (Irish Sea Fisheries Board, 2012).  

There is potential for relatively low cost and high productivity cultivation of L. digitata 

when coupled with salmon farms allowing waste nutrients to provide fertiliser for 

enhanced seaweed growth and allowing seaweed to improve water quality levels.  

3.4 Conclusions 

In August the specific methane yield of L. digitata is 40% higher than that sampled in 

December. However, the volatile solids content per wet weight is a factor of 3.2 that of 

the December sample. Thus the biomethane potential yield is four times higher in 

August than in December. Gross energy yields from the seaweed in August can yield 80 

GJ ha-1 yr-1, based on long line cultivation with 20 kg harvested per meter length and 

lines at 5 m centres. At these cultivation levels, 29,500 ha of cultivation would satisfy 

1.25% of renewable energy in transport in Ireland. 
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Abstract 

Ascophyllum nodosum, an abundant Irish brown seaweed, shows significant seasonal 

variation in the chemical composition and biogas production. The polyphenol content is 

shown to be a more important factor in biogas production than ash content. High 

polyphenol content in summer months adversely affected biogas production; suggesting 

two potential harvest dates, March, and October. A. nodosum harvested in October 

showed a relatively low level of polyphenols (2% of TS) and ash (23% of volatile 

solids) and exhibited a specific methane yield of 215 L CH4 kg VS-1, which was 44% of 

theoretical yield. The highest yield per wet weight of 47 m3 CH4 t-1 was achieved in 

October, which is 2.9 times higher than the lowest value (16 m3 CH4 t-1), obtained in 

December. The gross energy yield of A. nodosum based on the optimal biogas 

production was 116 GJ ha-1 yr-1 in October. 

 

Keywords: Algae; Seaweed; Ascophyllum nodosum; Polyphenols; Biomethane  
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4.1 Introduction 

Marine biomass, such as seaweed (macroalgae), accounts for over half of the global 

primary biomass production (McQuatters-Gollop et al., 2011); it has been considered as 

a potential source for bioenergy production (Adams et al., 2011; Allen et al., 2015; Xia 

et al., 2016a). Fermentative biomethane production from seaweed via anaerobic 

digestion may be exploited as an attractive energy source in future fuel systems. 

Compared with land-based crops, biofuels from seaweed may be more beneficial as 

seaweed can have high gross energy yields per hectare (Allen et al., 2015) and do not 

use arable land which would be used for food (Tenenbaum, 2008). Brown seaweed is 

reported as a major marine bioresource in the north Atlantic waters around Ireland and 

the UK (Smale et al., 2013). Ireland is one of the largest producers of seaweed in Europe 

with 13% (ca. 29,500 t yr-1)) of the total European harvest. This harvest is dominated by 

A. nodosum (ca. 30,000 t yr-1) and mainly takes place in the north-west of the island in 

counties Donegal and Galway (Murphy et al., 2013). 

Seasonal variation in the biochemical composition of the seaweed could have a 

significant impact on biogas production as shown for L. digitata in Welsh (Adams et al., 

2011) and Irish waters (Tabassum et al., 2016). Carbohydrates, which are vital for the 

gas production, have also been reported to accumulate in brown seaweed during summer 

and autumn (Adams et al., 2011; Rosell and Srivastava, 1984; Tabassum et al., 2016) 

while consumption of storage carbohydrates may take place during winter. The lower 

concentration of carbohydrate in brown seaweeds in winter than in summer may be due 

to utilization of storage carbohydrates as an energy source for cellular activities (Adams 

et al., 2011; Tabassum et al., 2016). Ash is another significant component of brown 
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seaweed; changes of ash content around the year can account for up to 35% of dry 

weight in brown seaweed (Adams et al., 2011; Moen et al., 1997; Schiener et al., 2015). 

Brown seaweed such as A. nodosum contains polyphenols (such as phlorotannins) that 

are reported as inhibitory compounds for anaerobic digestion as they inhibit enzyme 

activities of various microbes including methanogens (Scalbert, 1991). For instance, 

polyphenols inhibit alginate lyase, an enzyme that breaks down alginic acid (Moen et 

al., 1997). Significant seasonal changes in polyphenol content of A. nodosum were 

described by Parys (Parys et al., 2009) and Apostolidis (Apostolidis et al., 2011). The 

polyphenol content in the seaweed is dependent on the location, harvesting time, light 

intensity, temperature, salinity and ambient nutrients (Parys et al., 2009). The biogas 

production from polyphenol-rich A. nodosum is rarely reported. A maximum yield of 

176 ± 37.62 L CH4 kg VS-1 was reported by MacArtain et al. (2015). The specific gas 

production from A. nodosum was reported as 50% less than brown seaweed Laminaria 

spp., due to the high polyphenol content (Hanssen et al., 1987). However, no study on 

the impact of seasonal variation on polyphenol content and the associated impact on 

biogas production from A. nodosum has yet been reported. 

In 2015 the EU Environment Committee stated in a communication that advanced 

biofuels from seaweed or certain types of waste should account for at least 1.25% of 

energy consumption in transport by 2020 (European Parliament, 2015). Development of 

a seaweed biogas industry using an existing harvested seaweed such as A. nodosum 

would be very beneficial for achieving the EU 2020 target in Ireland. Biogas production 

is a continuous process that requires high-quality substrate supply. Thus ensiling of the 

harvested A. nodosum is required to provide a continuous supply of substrate for year 
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round digestion. Work by Herrmann et al. (2015) indicated that ensiled A. nodosum 

(collected in Ireland at the end of August) improved the gas yields as compared to fresh 

A. nodosum by 30% (45.7 m3 t wwt-1 as compared to 35.1 m3 twwt-1). It is very 

important to identify the optimal season to harvest A. nodosum. This paper assesses A. 

nodosum as a feedstock for biogas production in order to: 

• Examine the seasonal variation in composition with particular emphasis on 

polyphenol content of A. nodosum. 

• Assess the effect of seasonal variation in biomethane production from A. 

nodosum. 

• Identify the optimal season for the harvest of A. nodosum to maximise biomethane 

production. 

4.2 Materials and Methods 

4.2.1 Collection and processing of seaweed  

A. nodosum was naturally grown and collected from Roaring Water Bay in Co. Cork 

(south of Ireland (51°N, -9°E)) from January until December. Approximately 30 plants 

were collected (sufficient to make the representative sample) at low spring tide each 

month from the same location. The samples were washed with tap water to remove 

foreign substances. The surface water was allowed to drain by keeping the samples in a 

vertical position for approximately 15 minutes. Subsequently, the samples were 

processed to reduce the particle size to less than 4 mm by using a “Buffalo” macerator; 

the processed seaweed was stored in plastic bags with a mass of approximately 500 g in 

each bag. Packed samples were sealed and frozen at -20oC for further analyses and 

biomethane potential (BMP) assessment.   
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4.2.2 Chemical and biological analysis 

The contents of total solid (TS), volatile solid (VS) and ash were obtained by  oven 

heating fresh seaweed at 105 °C for 24 hours and then burning at 550 °C for 2 hours 

(APHA, 2011; Xia et al., 2016b). The oven dried samples (moisture free) were ground 

and the powder was passed through a 500 µm sieve for ultimate analysis. The portions 

of dried substrate, which were C, H, N, and O (O calculated by difference) were 

obtained, using a CE 440 elemental analyser. The protein content was calculated based 

on the nitrogen content multiplied by a factor of 5.38 (for brown seaweed) (Lourenço et 

al., 2002). Polyphenol concentration was measured by a modified Folin Ciocalteu assay 

described previously (Singleton and Rossi, 1965).  

4.2.3 Biomethane potential assessment 

The theoretical biomethane potential (TMP) was calculated based on the elemental 

analyses using the Buswell equation (as shown in Eq. (1)) (Buswell AM, 1932).  

��	���� + 
� −	� − �
�����	 → 	 
�� +	�� − �

� �� 	+ 	
�� −	�� + �
� ��� Eq. (1) 

A Bioprocess Automatic Methane Potential Test System (AMPTS) II® system was used 

to assess the biomethane potential (BMP) of A. nodosum. The automatic methane 

potential test system facilitated the computer-aided measurement of the biomethane 

produced from the anaerobic batch digestion system. The mesophilic inoculum was 

sourced from a lab-scale continuous stirred-tank reactor, processing seaweed, dairy 

slurry and grass silage at 37 °C. The BMP system has 15 bottles which function as batch 

digesters. Each bottle has a total volume of 650 mL with a working volume of 400 ml. 

The inoculum to substrate ratio (I:S) was set as 2:1 based on VS (Angelidaki et al., 
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2009; Chynoweth et al., 1993).  All bottles were sealed with rubber stoppers and were 

purged with nitrogen gas for 5 min to ensure an anaerobic environment. The bottles 

employ a mixing system operating at 30 rpm and were kept at 37 °C using a water bath. 

Produced biogas was passed through 3 M sodium hydroxide solution to remove the 

impurities such as carbon dioxide and hydrogen sulphide. Gas flow was measured by a 

gas tipping. The biomethane volume was automatically normalised to standard 

temperature (0 °C) and pressure (1 atm) and zero moisture content by the Bioprocess 

AMPTS II® system. To determine the specific biomethane production of each seaweed 

sample, the biomethane produced from the inoculum was subtracted from the 

biomethane produced by each sample. Cellulose was used as a control to ensure a 

healthy inoculum condition (Allen et al., 2015). Batch BMP trials were conducted in 

triplicate, and the results were expressed as mean value ± standard deviation.  

Salinity (g/L) and pH were also recorded before and after each BMP assay. Seasons 

were defined as winter (December), spring (March), summer (June) and autumn 

(October) for salinity (% change).  

The gross energy yield of A. nodosum from each month was calculated by using the 

lower heating value of methane (37.8 MJ/m3). The biomethane yield of A. nodosum for 

future scenarios was assumed with a 30% increase after an ensiling process compared 

with the BMP yield obtained from fresh A. nodosum in this study, as suggested by 

Herrmann et al. (2015). 

4.2.4 Process dynamics and statistical analyses 

The process dynamics were assessed by a first order differential equation (Eq. (2)) via 

MATLAB programme to obtain decay constant (days-1) and maximum yield (Ymax). The 
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half-life time (T50) was defined as the time taken to achieve half of the maximum 

cumulative production of biomethane (Nopharatana et al., 2007). The biodegradability 

index (BI) was defined as the ratio of BMP yield to the TMP yield. 

Statistical analyses were carried out by using SPSS software (IBM NY, USA). Analysis 

of variance (ANOVA) was conducted to investigate the impact of seaweed chemical 

composition on the specific biomethane yield. The significance of differences in the 

specific biomethane yield between seasons was obtained by using multiple comparison 

(Post Hoc) test at a significance level of 0.05. 

���� = ��	. �1 − e��� �! Eq. (2) 

Where, 

t is the fermentation time (days); k is the decay constant (days -1), which indicates the 

rate of degradability of the substrate; Y(t) is the cumulative methane yield (L CH4 kg 

VS-1) at time t (days); Ym is the maximum methane potential (L CH4 kg VS-1). 

4.3 Results and Discussion 

4.3.1 Characterization of the seaweed 

A. nodosum collected from January to December was characterized by proximate and 

ultimate analyses (Table 4.1). The total solids (TS) of the seaweed ranged from 19% to 

34 % with a peak in September. Volatile solids were 71% higher in September than in 

May. The ash fraction was high in February (33%) and lowest in November (18%). 

Proximate analyses of A. nodosum in spring indicated higher VS content as compared to 

the same species harvested in March in the UK (23.1% versus 19.9%) (Obata et al., 

2015). A study from Norway (Moen et al., 1997) on A. nodosum harvested in October 

yielded TS values of 26.5% (compared to 28.5% in this study).  
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Generally, low values of the ratio of ash content to volatile solid content (A:V) suggests 

a high organic matter content with a low salt accumulation (ash content is a good 

indicator of salt content). A low A:V is advantageous for substrate degradation and 

suggests avoidance of sodium inhibition. 

The carbon to nitrogen (C/N) ratio was observed to vary from 16 to 46 which suggests 

the suitability of A. nodosum for mono-digestion or for co-digestion with other 

seaweeds, which would have a low C:N ratio such as U.lactuca (Allen et al., 2015). 

Increased C:N ratio in seaweed indicates carbohydrate accumulation, which may be 

easily degraded during digestion; the optimal C:N ratio for anaerobic digestion is 

usually suggested as being higher than 20 (Xia et al., 2016a). A. nodosum tends to 

accumulate carbohydrates and organic matter composition in summer, leading to higher 

C:N ratios and lower A:V ratios; this result is similar to the study by Adams et al. 

(2011). Based on the proximate and ultimate analyses of this study, November may be 

described as an optimal harvesting month, as the seaweed has the highest organic matter 

content of 82% of TS, lowest ash content of 18% of TS, lowest A:V ratio of 0.22 and 

suitable C:N ratio of 37. However, due to great seasonal variation in polyphenol content 

in A. nodosum, higher gas yields may not match typical indicators and highest biogas 

yields may not be observed in November (detailed discussion in section 4.3.2 and 4.3.3).
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Table 4.1 Characterization of A. nodosum round the year 

Month of 
Harvest 

Proximate Analysis  Ultimate Analysis 

 TS (%) VS (%) 
OMC 
(%) 

Ash (%) A:V  C % H % N % O % C:N  

January  24.87 (0.35) 17.46 (0.52) 70.19 29.82 (1.47) 0.42  37.57 (0.29) 4.59 (0.04) 2.09 (0.03) 25.94 17.98 

February  26.02 (0.24) 17.42 (0.23) 66.94 33.06 (0.43) 0.49  39.78 (0.05) 4.91 (0.08) 2.42 (0.03) 19.83 16.44 

March  33.22 (0.04) 23.14 (0.11) 69.64 30.36 (0.41) 0.44  40.70 (0.13) 5.07 (0.10) 1.74 (0.07) 22.14 23.39 

April  20.99 (0.50) 15.94 (0.65) 75.94 24.06 (4.79) 0.32  36.14 (0.60) 5.03 (0.10) 2.47 (0.17) 32.30 14.63 

May  19.18 (0.10) 14.76 (0.09) 76.93 23.07 (0.13) 0.30  33.66 (0.33) 4.58 (0.07) 1.20 (0.24) 37.50 28.05 

June  27.65 (0.15) 18.88 (0.11) 68.26 31.74 (0.56) 0.46  40.12 (0.16) 4.93 (0.00) 1.23 (0.10) 21.99 32.62 

July  28.37 (0.21) 21.81 (0.02) 76.88 23.12 (0.48) 0.30  37.02 (0.40) 5.44 (0.07) 1.32 (0.03) 33.10 28.05 

August  29.98 (0.13) 22.19 (0.15) 74.02 25.98 (0.81) 0.35  39.71 (0.20) 5.21 (0.02) 1.22 (0.03) 27.87 32.55 

September  34.46 (0.20) 25.19 (0.13) 73.12 26.88 (0.16) 0.37  40.90 (0.20) 5.14 (0.06) 1.16 (0.06) 25.92 35.26 

October  28.52 (0.08) 22.01 (0.06) 77.17 22.83 (0.05) 0.30  40.67 (0.09) 5.11 (0.07) 0.89 (0.04) 30.51 46.75 

November  23.80 (0.03) 19.46 (0.04) 81.74 18.26 (0.24) 0.22  40.83 (0.12) 5.05 (0.03) 1.11 (0.04) 34.74 36.78 

December  23.49 (0.24) 16.65 (0.17) 70.87 29.12 (0.76) 0.41  39.45 (0.06) 4.83 (0.04) 2.01 (0.11) 24.58 19.63 

TS, total solids; VS, volatile solids; OMC, organic matter content obtained dividing VS/TS; A:V, ash to volatile solid ratio. 
Standard deviation is in parentheses.
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4.3.2 Biochemical analyses 

The whole year biochemical profile of A. nodosum is shown in Figure 4.1. The total 

carbohydrate content peaked in November and was lowest in February. A high 

carbohydrate content (or C:N ratio) of seaweed usually suggests a better degradability. 

However, in the case of polyphenol-rich A. nodosum, the general trend of high 

carbohydrates and low ash leading to a higher digestibility was not exactly followed as 

C:N ratios above 35 may be lacking in N and elevated polyphenols in the seaweed can 

inhibit digestion. Literature was not readily available to support this supposition as no 

detailed analysis is published on seasonal variation in biomethane production from A. 

nodosum. Obata et al. (2015) published biochemical analysis for a single month in 

spring (March) which was comparable to this data. 

The polyphenol content was observed as the key influencing factor on the performance 

of anaerobic digestion and variation across the year (Table 4.2). Polyphenols peaked in 

June (4.9% of dry weight or 72.4 mg g VS-1) and were lowest in April (0.2% of dry 

weight or 2.8 mg g VS-1). Apostolidis et al. (2011) reported a similar seasonal variation 

in phenol content, with June and July having the highest and May the lowest. The reason 

for the variation in polyphenol content may be location, light intensity, temperature, 

salinity and ambient nutrients (Parys et al., 2009). The reproductive stage of the seaweed 

also significantly affects the variations in phenol content. Comparatively, lower 

polyphenol concentrations during the fertile period (April to June) were recorded than 

the time of shedding fruit bodies at the end of June (Ragan and Jensen, 1978).
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Figure 4.1 Full year biochemical analyses of A. nodosum
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4.3.3 The gas yield  

4.3.3.1 General description 

Seasonal variation in chemical composition (especially phenol content) in the seaweed 

significantly influenced the biogas yield (F = 4.72, P < 0.035). BMP yields of A. 

nodosum were highest in April with values of 217 ± 14 L CH4 kg VS-1 and lowest in 

December 95 ± 19 L CH4 kg VS-1 (Figure 4.2). Moreover, it was observed that two 

peaks of the biogas were appeared per year (Figure 4.3). The two peak months per year 

raises the possibility to harvest A. nodosum twice in a year, in spring and again in 

autumn. A lower BMP yield of 176 ± 38 L CH4 kg VS-1 was reported by MacArtain et 

al. (MacArtain et al., 2015).  

According to Hanssen et al. (1987), the gas production from Laminaria species was 

almost double the figure obtained from A. nodosum. In the present study, the BMP is 

higher in April and October than reported in above studies (Table 4.2). This can be 

attributed to the lower polyphenol content, higher C:N ratio, lower A:V ratio (Table 4.1) 

in peak months obtained in this study. However, the months from June until September 

did not yield high biomethane as forecasted by the A:V ratio and the C:N ratio. The 

reason may be attributed to the polyphenol content (Figure 4.4). As phenolic compounds 

have been identified as strong inhibitors of the anaerobic digestion process, the high 

polyphenol contents in those months (30.2-49.4 mg g TS-1) lead to the low BMP yields 

(144-170 CH4 kg VS-1). Inhibitory level for the process is not same for all microbes 

(Scalbert, 1991). 
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Figure 4.2 Biomethane potential cumulative yield curves for A. nodosum collected throughout the year
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Figure 4.3 Gas yield expressed per unit mass of VS (A) and per unit mass wet weight (B).
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The minimum inhibitory level reported for filamentous fungi was higher than 0.5 g L-1. 

Yeast can resist a level of 10-20 g L-1 while for bacteria the inhibitory level was 

comparatively low (0.012-1.0 g L-1) (Scalbert, 1991). Polyphenol inhibitory values 

extracted from A. nodosum (collected from Norway) were reported in the range of 0.2-

1.3 g L-1 in the digester(Moen et al., 1997), but the study was based on harvest only in 

two months (April and October). In this study, the polyphenol concentration in the 

digester increased from 0.036 g L-1 (April) to 0.45 g L-1 (June) indicating elevated 

inhibitory levels for bacteria as reported by (Scalbert, 1991). Increased polyphenol 

levels can significantly inhibit the degradation of organic compounds (such as alginate) 

in A. nodosum, resulting in low BMP yields (Moen et al., 1997).  

The polyphenol structures of A. nodosum may vary throughout the year (Parys et al., 

2009); this may result in the different toxicity levels for the microorganisms during 

biogas production. Extraction of polyphenols prior to biogas production would be 

considered as an approach for seaweed harvested in summer months. Moreover, bio-

refinery of seaweed may be set up by extraction of polyphenols and other valuable 

chemicals from the seaweed prior to anaerobic digestion. The BI value (Table 4.2) 

indicates the efficiency of degradability of the seaweed in the batch digestion. A high BI 

value of 0.81 for the control group (cellulose) indicates a healthy inoculum condition 

used in this study. The highest BI value for A. nodosum was observed in May (0.46), 

whereas the lowest value was obtained in December (0.16). Low BI values in winter 

may be mainly attributed to the low carbohydrate content, whereas low BI value in 

summer can be attributed to the high polyphenol concentration.  
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The high salt content of seaweed may inhibit the anaerobic digestion process (Xia et al., 

2016a). Long-term continuous digestion of seaweed can lead to accumulation of salts in 

the reactor. In order to suggest salt tolerance level, % salinity increased during 30 days 

in the batch process was calculated. The values for increase in salinity were 17.0% ± 

0.2%, 24.0% ± 0.10%, 26.0% ± 0.6% and 30.0% ± 0.10% in autumn (October), winter 

(December), spring (March) and summer (June) months, respectively. The salinity of 

seaweed was subtracted from the salinity of inoculum (6.8 ± 0.45 g/L) in order to 

calculate actual salinity increase in the batch digestion due to the seaweed only (Figure 

4.4). 

 

 

Figure 4.4 Salt accumulation in a batch reactor (autumn to summer)
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Table 4.2 Biomethane yield over the period based on results of BMP analysis and theoretical analysis 

Month of harvest 
BMP yield 

(L CH4 kg VS-1) 
TMP 

(L CH4 kg VS-1) 
BI 

(BMP/TMP) 
VS content 

(kg VS wwt-1) 
Specific yield 

(m3 CH4 t wwt-1) 
Polyphenol 
(mg g TS-1) 

January 134 ± 12 570 0.23 175 23 8.7 

February 108 ± 2 681 0.16 174 19 6.5 

March 184 ± 11 655 0.28 231 43 3.4 

April 217 ± 14 497 0.44 159 35 2.1 

May 191 ± 17 411 0.46 148 28 3.87 

June 144 ± 4 650 0.22 189 27 49.4 

July 170 ± 8 506 0.34 218 37 31.0 

August 169 ± 9 576 0.29 222 37 30.2 

September 158 ± 3 605 0.26 252 40 37.2 

October 215 ± 9 543 0.40 220 47 12.0 

November 150 ± 4 498 0.30 195 29 18.0 

December 95 ± 19 606 0.16 166 16 10.0 

Cellulose 335 + 13 414 0.81 - - - 

BMP, biomethane potential; TMP, theoretical methane potential; BI, biodegradability index; wwt, wet weight. 
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As expected the salinity increased with increasing A:V ratio. This can be explained by 

the ash content from seaweed was mainly composed of salt such as sodium chloride. As 

a result, the increase of ash content in seaweed would increase the dissolved salt level in 

the anaerobic digester, resulting in an increase in salinity. 

Salinity, A:V ratio and polyphenol content had a significant effect on the gas yield. In 

autumn (October), the gas yield is high due to lower values of polyphenol content, 

salinity and A:V ratios. While, in summer (June), having higher values of all above 

parameters, the lowest BMP yield was recorded. Low biomethane yields were reported 

at high salinity levels, by others (Chen et al., 2008; Fang et al., 2011; Xia et al., 2016a). 

Biomethane yield can be described based on yield per unit VS or per unit wet weight 

(Figs. 4.3A and 4.3B). VS content (as indicated in Table 4.1) and BMP results 

(expressed in Table 4.2 as L CH4 kg VS-1) were used to develop the yield per unit mass 

(Figure 4.3B). The BMP value in April is highest when expressed per unit VS (Figure 

4.3A) but is only sixth highest when expressed per unit mass wet weight (Figure 4.3B). 

October is the highest yielding month when expressed per unit wet weight followed by 

March; this emphasises the two-month harvest approach. In essence, phenol content 

influenced the gas yield. However, there are some exceptions where higher ash content 

and lower organic matter content became the influential factors (not polyphenols). For 

instance, in December polyphenol content was lower than in October but the gas yield 

was lower due to higher A:V ratio (0.30 in October and 0.41 in December). This trend 

was confirmed by statistical analysis that if the influence of polyphenols was not 

considered, the ash and VS content would become the critical factor (not polyphenols) 

for the gas yield. 
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4.3.3.2 Statistical description 

The significance of the results was illuminated through the use of ANOVA. Multiple 

comparisons results from one-way ANOVA indicated that seaweed harvested in spring 

(April) and autumn (October) produced significantly more biomethane than in others (P 

< 0.05). Biomethane production was more related to dry weight (F = 7.12, P < 0.012) 

than wet weight (F = 4.74, P < 0.035).  Ash content (F = 2.2, P < 0.166) and VS content 

(F = 2.2, P < 0.158) have a less significant impact than polyphenol content in the 

seaweed (F = 4.72, P < 0.035) on biomethane production. Moreover, there was no 

significant interaction (Pearson’s correlation) of phenolic content with other factors as 

computed (P < 0.550 and P < 0.570 for Ash and VS, respectively). However, VS and 

ash content had a significant negative interaction with each other (P < 0.000), which 

means if one value increases the other will decrease (and vice versa) and with 

seasonality as well (P < 0.037) (if polyphenol is removed from the substrate). Therefore, 

in the light of statistical analysis, it can be concluded that variation in the polyphenol 

content was the critical factor for the biogas yield. 

4.3.4 Process dynamics  

The kinetic decay (k), half-life and maximum yield (Ymax) are the key parameters to 

understand the process dynamics. These parameters for the seaweed are listed in Table 

4.3. All months show a good kinetic decay (k value ranged from 0.10 to 0.25). These 

values are comparable with A. nodosum (0.12) assessed by (Allen et al., 2015) and food 

waste (0.17) assessed by (Browne et al., 2014).  

The half-life of the methane production (T50) ranged from 3 to 8 days. These results 

were comparable with the values of Irish brown seaweeds (3-7 days) reported by (Allen 
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et al., 2015). The shorter half-life suggests a short retention time of less than 20 days 

could be appropriate for long-term continuous digestion of A. nodosum.  

Table 4.3. The process dynamics of A. nodosum based on seasonal variation 

Month of Harvest 
K 

(days-1) 

Ymax 
(L CH4 kg 

VS-1) 

T50 
(days) 

R2 

January 0.19 133 3.74 0.99 

February 0.25 109 2.82 0.99 

March 0.14 181 4.90 0.99 

April 0.13 225 5.46 0.97 

May 0.16 194 4.25 0.98 

June 0.16 152 4.37 0.94 

July 0.11 205 6.12 0.94 

August 0.11 202 6.17 0.94 

September 0.11 187 6.20 0.96 

October 0.10 276 6.76 0.94 

November 0.09 160 7.74 0.99 

December 0.16 113 4.36 0.96 

Cellulose  0.17 376 4.09 0.99 
k, decay constant;  Ymax, the maximum methane potential; T50 is the half-life.  

4.3.5 Effect of seasonal variation on gross energy yields 

Scenario 1: Based on standing crop harvest in Ireland of 30,000 t per year 

A. nodosum has yet been reported as a cultivated marine crop in Ireland. This is a 

naturally occurring Irish seaweed and the current harvest from the standing crop is 

approximately 30,000 ton wet weight per year. After harvesting, the seaweed may be 



102 

 

ensiled for storage; ensiled A. nodosum can improve biomethane yield as compared to 

fresh A. nodosum by 30% (Herrmann et al., 2015).  

An average car in Ireland travels approximately 15,000 km yr-1 (fuel efficiency of 5 L 

diesel per 100 km). Biomethane yield from the seaweed harvested in October (1.8 

million m3 of CH4) has an energy equivalent of 1.8 million L of diesel and could fuel 

approximately 2,459 cars per year or 0.13% of the private car fleet in Ireland (Figure 

4.5). In essence, 12.2 tonnes of A. nodosum can fuel 12 cars.  

Scenario 2: Based on cultivation 

Seaweed may be mass cultivated for the biofuel industry. According to Murphy et al. 

(2015), a future seaweed system would generate a biomass yield up to 100 t wet weight 

ha-1 yr-1 depending on the species of seaweed. A. nodosum is a naturally occurring 

seaweed found in shallow waters and is predominately exposed when the tide recedes; it 

has not been considered for farm cultivation thus far. However, Ugarte and Sharp (2011) 

state that yields of up to 71 t wet weight ha-1 yr-1 can be grown as a standing crop in 

summer in Canada. Allowing a more conservative seaweed yield of 50 t wet weight ha-1 

yr-1, the maximum gross energy yield from the seaweed in each month was calculated as 

shown in Figure 4.6. Selection of the optimal month for the seaweed harvesting can give 

three times more energy than the least beneficial month (39 GJ ha-1 yr-1 in December 
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Figure 4.5 Number of vehicles fuelled from standing crop of A. nodosum based on annual harvest of 30,000 t in Ireland 

(Scenario 1) 
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Figure 4.6 Gross energy of cultivated A. nodosum based on various seasons and land area required to supply 1.25% RES-T of 2.35PJ 

(Scenario 2)
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compared to 116 GJ ha-1 yr-1 in October). These gross energy outputs may be 

compared with land-based biofuel systems such as wheat ethanol (66 GJ ha-1 yr-1) and 

rapeseed biodiesel (44 GJ ha-1 yr-1) (Allen et al., 2015). The cultivation area required to 

satisfy the 2020 target for renewable energy supply in transport (RES-T) for Ireland is 

20,260 ha based on the optimal value in October (Figure 4.6). 

4.4 Conclusions 

The changes in polyphenol content of A. nodosum shows significant impact on biogas 

production.  The summer months show low biomethane yield due to the accumulation of 

polyphenols in seaweed. The optimal biomethane yield of 217 L CH4 kg VS-1 is 

achieved in April. The specific yield per wet weight of seaweed harvested in October 

(highest value) is three times higher than December (lowest value). Gross energy yields 

from A. nodosum in October may achieve 116 GJ ha-1 yr-1. A total area of 20,260 ha for 

A. nodosum cultivation could satisfy 1.25% of renewable transport energy target in 

Ireland.  
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Abstract 

The technical feasibility of long-term anaerobic mono-digestion of two brown seaweeds 

and co-digestion of both seaweeds with dairy slurry was investigated whilst increasing 

the organic loading rate (OLR). One seaweed was natural (L. digitata); the second 

seaweed (S. Latissima) was cultivated. Higher proportions of L. digitata in co-digestion 

(66.6%) allowed the digester to operate more efficiently (OLR of 5 kg VS m-3 d-1 

achieving a specific methane yield (SMY) of 232 L CH4 kg-1 VS) as compared to lower 

proportions (33.3%). Co-digestion of 66.6% cultivated S. latissima, with dairy slurry 

allowed a higher SMY of 252 L CH4 kg-1 VS but at a lower OLR of 4 kg VS m-3 d-1. 

Optimum conditions for mono-digestion of both seaweeds were effected at 4 kg VS m-3 

d-1. Chloride concentrations increased to high levels in the digestion of both seaweeds 

but were not detrimental to operation.  

 

 

 

Keywords: L. digitata; S. latissima, Continuous digestion; Biomethane  
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5.1 Introduction 

The Renewable Energy Directive (European Parliment, 2015) has fixed a target of 10% 

of energy use in transport to be renewable by 2020 (Murphy et al., 2013). In 2015, it 

was proposed that advanced third-generation biofuels (such as seaweed) represent at 

least 1.25% of renewable energy supply in transport (RES-T) (European Parliment, 

2015). Ireland’s forecasted energy in transport for 2020 is 188 PJ (Murphy and 

Thamsiriroj, 2011), thus 2.35 PJ should originate from advanced biofuels.  

Biofuels from seaweed (macroalgae) are referred to as third-generation biofuels as they 

do not require arable land. Hence, they do not fall into the food v. fuel debate as 

compared to land based energy crops. Additionally, the gross energy yield of seaweed 

per hectare per annum has been shown to be high when compared amongst other 

feedstock. For instance, rapeseed biodiesel generates approximately 44 GJ ha-1 yr-1 

(Thamsiriroj and Murphy, 2009) while willow derived biomethane generates 

approximately 130 GJ ha-1 yr-1 (Gallagher and Murphy, 2013). The gross energy yield 

from seaweed has been reported to be as high as 199 to 365 GJ ha-1 yr-1 (Allen et al., 

2015; Tabassum et al., 2016a) depending upon the species, location and seasonal 

variation of the seaweed (Tabassum et al., 2016b; Tabassum et al., 2016c). 

The temperate climate and long coastline (7500 km) provide a large resource of seaweed 

in Ireland (Allen et al., 2015). Typical brown seaweeds in Ireland (such as L. digitata 

and S. latissima) are rich in organic matter. Ireland is one of the largest producers of 

seaweed in Europe, producing 29,500 t yr-1, equivalent to 13% of the total European 

harvest (Murphy et al., 2013). At present, seaweed is harvested from natural stocks (not 

cultivated) typically for food and not for biofuels (Burton, 2009).  
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Potential exists for brown seaweed to be cultivated. Cultivation can be coupled with 

salmon farms as part of an integrated multi-trophic aquaculture system. This is a system 

whereby seaweeds can be cultivated by sequestering nutrients from fish farm waste and 

subsequently used as a feedstock for biogas production (Jacob et al., 2016). Up to 46 

new sites for salmon farms have been identified in Ireland and a 454 ha salmon farm is 

already planned for the West of Ireland by the Irish Sea Fisheries Board (BIM, 2012). 

Cultivation of seaweed may be beneficial due to its multipurpose industrial applications 

and it has been reported that utilising existing infrastructure (salmon/mussel farms) is 

the most economic method for seaweed farming (Watson, 2013). A range of 40-150 tons 

wet weight ha-1 a-1 of brown seaweed is achievable in cultivation (Broch et al., 2013; 

Tabassum et al., 2016b; Watson, 2013) and such methods may potentially be more 

practical than the harvest of natural seaweed.   

Ireland also has an abundance of dairy slurry. It has been reported that ca. 7.07 M t wwt 

(assuming approximately 1 million dairy cows, producing 0.33 m3 of slurry per week 

with 20 weeks storage) of the dairy slurry is generated each year as a result of Ireland’s 

intensive agricultural industry (Wall et al., 2013). Such a resource offers a great 

potential as a co-substrate in anaerobic digestion (AD) facilities. Currently, there a very 

small commercialised biogas industry in Ireland. Thus, potential exists to combine 

abundant dairy and marine feedstocks to establish a biogas industry that could boost the 

rural coastal economy and provide a third generation renewable transport fuel or 

renewable heat source in the form of biomethane.   

Biomethane, bio-hydrogen, bioethanol and biodiesel may be derived from seaweed. 

However, apart from biomethane, the aforementioned technologies have proved difficult 
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in achieving economic feasibility (Tabassum et al., 2016b). Methane production via 

anaerobic digestion is a cost effective and commercially established technology (Hinks 

et al., 2013). According to IEA bioenergy task 37 reports, Germany had approximately 

10,000 biogas plants including 8,000 agricultural biogas plants (IEA, 2015).  

The scientific literature is relatively sparse for biomethane production from seaweeds, in 

particular, continuous anaerobic digestion of brown seaweeds (L. digitata and S. 

latissima). The majority of previous work investigated the biomethane potential at 

laboratory batch scale (Allen et al., 2015; Vanegas and Bartlett, 2013), which by their 

nature do not provide validation for the operating conditions in continuous digestion. 

Continuous co-digestion of seaweed with slurry has been reported in various studies 

(Allen et al., 2014; Peu et al., 2011; Sarker et al., 2012; Sarker et al., 2014), however, 

these studies did not establish the optimisation of key parameters such as the best co-

digestion mix, the maximum organic loading rate (OLR), and minimum hydraulic 

retention time (HRT) for brown seaweeds. Allen et al. (2014a) investigated U. lactuca, a 

green seaweed rich in sulphur with a low carbon to nitrogen ratio (C:N); this seaweed is 

very different to brown seaweed. Co-digestion of dairy slurry (59% on a VS basis) with 

L. digitata (41% on a VS basis) in a continuous system at a maximum OLR of 2.9 kg 

VS m-3 d-1 was reported achieving a specific methane yield (SMY) of 139 ± 14 L CH4 

kg-1 VS; this study was only run for one HRT and as such did not investigate long-term 

digestion whilst increasing the OLR, nor did it vary the co-digestion mix (Sarker et al., 

2014). A biogas production from S. latissima (wild harvest) was not found suitable due 

to the accumulation of sodium and potassium cations in digestion (Jard et al., 2012). The 

study recommended the use of farm cultivated S. latissima over wild harvest S. latissima 
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for biogas production as the possibility of accumulation of divalent ions may be reduced 

in younger plants. An essential parameter of the digestion process is the C:N ratio with 

optimum values reported in the range of 20-30 (Murphy et al., 2015). Such values can 

be obtained for seaweed if harvested at the correct time of year (Tabassum et al., 2016a). 

Farm cultivated seaweed has been reported to have a lower C:N ratio (ca. 15:1) as 

compared to wild species of brown seaweed (24:1 and 27:1 for S. latissima and L. 

digitata, respectively) (Allen et al., 2015; Tabassum et al., 2016a). Co-digestion with 

slurry can potentially optimise the C:N ratio and also enhance digestibility by providing 

important nutrients present in the slurry (Yangin-Gomec and Ozturk, 2013). 

The innovation in this paper is that it is the first to investigate long-term continuous 

digestion of two carbohydrate-rich brown seaweeds L. digitata and S. latissima whilst 

increasing the OLR. The L. digitata was sourced from natural stock while the S. 

latissima was farm cultivated and is a younger plant. Profiles for various key digestion 

parameters such as volatile fatty acids, chloride concentration, FOS:TAC and TAN were 

developed. A co-substrate of the dairy slurry was used to assess for co-digestion. The 

objectives of the study were to compare and examine the: 

(1) the potential for mono-digestion of both L. digitata (naturally occurring) and S. 

latissima (cultivated); 

(2) effect of increasing the percentage of seaweed in co-digestion with the dairy slurry; 

(3) optimal organic loading rate (OLR) for mono-digestion and co-digestion of both 

seaweeds; 

(4) critical parameters which can inhibit the digestion process. 
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5.2 Materials and Methods 

5.2.1 Substrates and inoculum  

Approximately 250 kg of beach-cast L. digitata and 80 kg of farm cultivated S. latissima 

(harvested after four months) was sourced from a marine research facility in Bantry, 

West Cork, Ireland. Both seaweeds were washed with tap water, macerated to a particle 

size of less than 4mm, packed in sealed plastic bags (1.5kg in each bag) and stored at -

20 ⁰C until experimental use. Approximately 150 kg of the fresh dairy slurry was 

collected from a dairy farm, in Cork, Ireland. The slurry was stored in 25 L drums at -20 

⁰C until required. The characteristics of both seaweeds and dairy slurry are listed in 

Table 5.1. 

The inoculum used originated from an existing digester in Ireland that treated a 

combination of grease trap waste and slurry. In preparation, the inoculum was sieved 

through a 2 mm sieve to remove any larger particles and subsequently the reactors were 

filled. The sieved inoculum remained in all reactors for one week at 37⁰C to remove any 

residual gas. 

5.2.2 Analytical and chemical methods  

Proximate analysis (total solids (TS), volatile solids (VS) and ash content) was analysed 

and calculated using standard methods (APHA, 2011). The pH was measured using a 

Jenway 3510 pH probe. The ratio of organic acid concentration to total inorganic carbon 

(FOS:TAC) was measured by a titration method (Nordmann titration method) using 0.1 

N sulphuric acid with pH 5.0 and pH 4.4 as endpoints. TAN in each reactor was 

measured using Hach Lange cuvettes (LCK 303) coupled with a Hach Lange DR3900 

spectrophotometer. Free ammonia (NH3) was calculated by a standardised equation that 
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utilised the calculated TAN content with reference to pH and temperature (Banks and 

Heaven, 2013). Accumulation of total volatile fatty acid (tVFA) in each digester was 

measured using gas chromatography (Agilent HP 6890 Series) with a Nukol™ fused 

silica capillary column (30 m x 0.25 mm x 0.25 µm), argon as a carrier gas and flame 

ionisation detector (FID). Each digester was tested for acetic, propionic, isobutyric, 

butyric, isovaleric, valeric, isocaproic, caproic and enanthic acid, twice a month. 

Samples for ultimate analysis (C, H N, O) were prepared by drying at 105⁰C for 24 h 

and were ground to less than 0.5 mm particle size. Ultimate analysis of each substrate 

was carried out using an EAC CE 4500 elemental analyser. Hach Lange cuvettes (LCK 

311) were used to determine chloride levels to evaluate the salt accumulation in each 

reactor. Biogas was analysed for methane, carbon dioxide, oxygen and nitrogen via an 

Agilent 6890 GC equipped with a Hayesep R packed GC column (3m x 2mm, mesh 

range of 80-100) and a thermal conductivity detector with Argon as the carrier gas. 

5.2.3 Biomethane potential (BMP) assays  

Bioprocess Control’s AMPTS II system was used to assess the biomethane potential. 

Glass bottles (total volume 650 mL, working volume 400 mL) were used as batch 

digestion vessels having a semi-continuous stirring system operating at 45 rpm. The 

BMP assays were carried out in triplicate operated at 37⁰C and included a cellulose 

standard and inoculum control. The inoculum to substrate ratio was set at 2:1 on VS 

basis (Angelidaki et al., 2009). Nitrogen gas was introduced to flush the headspace of 

each vessel to create anaerobic conditions prior to start up. Biogas produced in the 

bottles was passed through a 3M NaOH solution to remove carbon dioxide and any 

other trace gases. The resultant methane passed through to a flow measurement device, 
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which operates by water displacement. The gas was recorded continuously and 

automatically adjusted for standard temperature and pressure. The BMP was calculated 

as the sum of the biomethane volume after 30 days, minus the biomethane generated 

from the inoculum, with reference to the initial VS added. All assays were conducted in 

triplicate. The ultimate analysis provided the theoretical methane potential (TMP) of 

each substrate by applying the Buswell equation (Symons and Buswell, 1933). From 

this, the biodegradability index could be determined. The biodegradability index is 

defined as the ratio of the BMP to the Buswell TMP. Higher biodegradability indices 

corresponded to higher digestion efficiencies. 

5.2.4 Continuous digestion system 

Seven continuously stirred tank reactors (CSTRs) were used in the study. Each reactor 

was manufactured from PVC with a total volume of 5 L and a working volume of 4 L. 

Each reactor had a 25 mm diameter circular inlet feeding port, which was sealed by a 

rubber bung. A gas outlet was positioned at the top of the reactor and connected to a wet 

tip gas meter, which measured the gas production. Mixing was provided by a vertically 

mounted stirrer operating at 40 rpm, powered by a 12 V dc motor. The temperature was 

maintained at 37 ± 1⁰C by heated water circulating continuously through brass coils 

around the reactors. A Labjack data recorder was used to count the number of tips from 

the gas-tipping device (each having a known volume). Gas volumes for each reactor 

were corrected for standard temperature and pressure at 0⁰C and 101.325 kPa. A 5 L 

Tedlar gasbag was used to collect biogas from the gas outlet of the tipping device for 

subsequent biogas analysis. 
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5.2.5 Operation of continuous system 

The 7 CSTRs used to assess the feasibility of mono-digestion of dairy slurry, mono-

digestion both of the seaweeds and co-digestion of the seaweeds with dairy slurry were 

named as follows; DS (100% dairy slurry), LD33 (33.3% L. digitata, 66.6% dairy 

slurry), LD66 (66.6% L. digitata, 33.3% dairy slurry), LD100 (100% L. digitata), SL33 

(33.3% S. latissima, 66.6% dairy slurry), SL66 (66.6% S. latissima, 33.3% dairy slurry) 

and SL100 (100% S. latissima).  

The BMP yields evaluated from the batch BMP assays were set as target yields in the 

continuous digestion process. A parameter for biomethane efficiency (B.EF) was 

determined by dividing the SMY of each CSTR obtained in the continuous digestion 

trials by its respective BMP yield. Each reactor had an initial commissioning period of 4 

weeks prior to start-up. The CSTRs started at an OLR of 2 kg VS m-3 d-1 and were run 

for at least two HRTs at each OLR to ensure that data could be collected at times when 

the reactors were considered stable. The initial HRT of each OLR was considered an 

acclimatisation period for the microbial consortia in each reactor, that is, facilitating the 

systems to reach steady state conditions to attain stable gas yields at the new imposed 

OLR. A wet weight quantity was calculated based on VS for the substrates and fed to 

each reactor to provide the required OLR. The wet weight quantity was also used to 

calculate an initial HRT. A calculated amount of sieved digestate liquor was recirculated 

only to reactors LD66 and LD100 as the TS content of the feed was higher than 10%. This 

was in order to ensure efficient mixing within the reactor. With respect to data obtained 

from the FOS:TAC ratio and biomethane efficiency, the OLR was increased gradually 

in a stepwise fashion on achieving process stability. 



119 

 

5.3 Results and Discussion 

5.3.1 Batch and continuous digestion trials  

A summary of each mix for L. digitata and S. latissima (including cellulose positive 

control) and the BMP yield attained in the batch digestion trials are shown in Table 5.2. 

Two BMP values are reported, allowing for both an initial inoculum (from an initial 

BMP) and an ‘acclimatised’ inoculum (from a second BMP named “BMP*”). The 

acclimatised inoculum represented digestate taken from the continuous trials used in a 

BMP undertaken when steady state conditions were in place after 14 weeks of operation 

(at OLR 3-4). With the acclimatised inoculum it can be seen that the yields from the 

BMP increased. This highlights the importance of using an acclimatised inoculum in 

conducting BMP assays. The acclimatised inoculum had little impact on BMP values 

obtained from the reactors with no or low seaweed (DS, LD33, and SL33).   

Table 5.2 also documents the C:N ratio, TMP, and biodegradability index for each mix 

along with pro-rata yields (from mono-digestion) to seek for any potential synergy in 

co-digestion. However, pro-rata yields indicated no synergistic effects in co-digestion as 

evident by small negative % differences when compared to the BMP yields (Table 5.2). 

The biodegradability index increased with increasing proportions of seaweed for both L. 

digitata and S. latissima. The lowest biodegradability index was recorded for mono-

digestion of the dairy slurry at 0.27. Figures 5.1 and 5.2 show the SMY and FOS:TAC 

for co-digestion and mono-digestion, respectively, of both seaweeds from the 

continuous digestion trials over the various OLRs tested. The key process parameters in 

continuous digestion (HRT, biomethane efficiency, TAN, methane composition, 

FOS:TAC and tVFA) for L. digitata (reactors LD33-LD100) are listed in Table 5.3. 
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Table 5.1 Characteristics of substrates for batch and continuous digestion  

Standard deviation is in parentheses 

Characteristics Dairy Slurry S. latissima L. digitata 

Total solids  (%wwt) 7.00 (0.15) 9.21 (0.27) 17.66 (0.34) 

Volatile solids  (%wwt) 5.60 (0.10) 5.27 (0.16) 14.42 (0.21) 

Ash (% of TS)  20.23 (0.62) 42.80 (0.81) 18.31 (0.66) 

C % (% of TS) 40.60 (0.18) 27.85 (0.16) 33.45 (0.22) 

H % (% of TS) 5.32 (0.14) 3.58 (0.02) 4.71 (0.01) 

N % (% of TS) 2.53 (0.10) 1.80 (0.28) 1.22 (0.05) 

O % (% of TS) 31.32 (0.33) 24.02 (0.51) 42.31 (0.77) 

C:N   16 (0.56) 15.84 (1.37) 27.42 (1.25) 
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Table 5.2 Batch digestion results  

Reactors  
C:N 

(Ratio) 

TMP 

(L CH4 kg VS-1) 

BMP 

(L CH4 kg VS-1) 

BMP* 

(L CH4 kg VS-1) 

Pro-rata 

(L CH4 kg VS-1) 

Difference 

(%)  

BI 

DS (100% Dairy slurry) 16.01 542 142 (2) 145 (2) --- --- 0.27 

LD33 (33.3% L. digitata) 19.61 479 163 (7) 166 (7) 191 -13 0.35 

LD66 (66.3% L. digitata) 23.40 422 197 (7) 231 (18) 238 -3.0 0.55 

LD100 (100% L. digitata) 27.45 368 267 (7) 288 (13) --- --- 0.78 

SL33 (33.3% S. latissima) 15.80 523 174 (7) 179 (10) 193 -7.0 0.34 

SL66 (66.6% S. latissima) 15.70 509 218 (7) 246 (08) 243 1.2 0.48 

SL100 (100% S. latissima) 15.80 500 258 (20) 296 (09) --- --- 0.60 

Cellulose (control) --- --- 323 (04) 336 (16 --- --- --- 

BMP and BMP * are the yields using un-acclimatised and acclimatised inoculum, respectively. Biodegradability index (BI) was calculated by BMP*/TMP. 

Standard deviation is in parentheses
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The same parameters for S. latissima (reactors SL33-SL100) are shown in Table 5.4. All 

data represents average values taken from the final HRT at each particular OLR. Figure 

5.3 shows the accumulation of chloride over the lifetime of the continuous trials for all 

CSTRs; the green, grey, yellow and red colours signify the increase in OLR from 2 to 5 

kg VS m-3 d-1 for each reactor. For LD66, the OLR of 6 kg VS m-3 d-1 was signified by 

black, this was the only digester to operate at this OLR.    

5.3.2 Mono-digestion of dairy slurry  

The OLR for the reactor fed with 100% dairy slurry (DS) was increased from 2 to 4 kg 

VS m-3 d-1 over the lifetime of the reactor. Biomethane efficiency (SMY/BMP) was 

found to be 0.87, 0.95 and 0.38 for OLR 2, OLR 3 and OLR 4, respectively (Table 5.3). 

The same trend in biomethane efficiency was reported by (Wall et al., 2014). A greater 

biomethane efficiency (0.95) was obtained at OLR 3 by keeping the HRT for more than 

20 days as suggested in previous studies (Wall et al., 2014). Biomethane efficiency 

dropped to 0.38 at OLR 4 due to the high loading rate and corresponding shorter 

retention time.  

Methane composition in the biogas and SMY were both highest at OLR 3 at 57% and 

138 L CH4 kg VS-1, respectively. These values dropped significantly when the OLR was 

increased to 4 kg VS m-3 d-1 (38% and 55 L CH4 kg VS-1). The average pH was 

observed in the range 7.3-7.4 at all OLRs. The TAN and FOS:TAC values were found 

within an acceptable range at all OLRs (Table 5.3). The TAN range peaked at 1.52 g L-1 

and maximum values of FOS:TAC increased to 0.30 at OLR 3. However, these values 

indicated stable operation of the reactors at the various OLRs. The SMY was similar to 
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the BMP value obtained at an optimum OLR of 3 kg VS m-3 d-1 thereby illustrating the 

highest biomethane efficiency. 

Due to high moisture content and short retention time (14 days) at a high loading rate of 

4 kg VS m-3 d-1, it was assumed that microbial washout was responsible for the drop off 

in SMY. Higher SMYs are conceivable in stable operation with longer retention times 

(in excess of 20 days) at the optimum OLR of 3 kg VS m-3 d-1. Thus, mono-digestion of 

the dairy slurry was not deemed feasible above OLR 3. Chloride levels ranged from 1.5-

3.0 g L-1 throughout the operation of the reactor. 

5.3.3 Co-digestion at 33.3% seaweed and 66.6% dairy slurry   

L. digitata (LD33) 

LD33 started at an OLR of 2 kg VS m-3 d-1 and was increased to an OLR of 5 kg VS m-3 

d-1. Co-digestion of L. digitata and dairy slurry operated efficiently up to an OLR of 4 

kg VS m-3 d-1 over 30 weeks. This illustrated increased digester performance as 

compared to the 100% dairy slurry reactor, which failed at an OLR of 3 kg VS m-3 d-1. 

The reactor’s biomethane efficiency values were 1.02, 1.01 and 0.95 for OLR 2, OLR 3 

and OLR 4, respectively (Table 5.3). At this range of OLR, the average pH was 

adequate at 7.4-7.5. The biomethane efficiency dropped significantly to 0.30 when the 

reactor increased to an OLR 5 due to the very high loading rate; this was followed by a 

drop in pH to 6.7. Biomethane composition was highest at 59% at OLR 3. The SMY 

was stable from OLR 2 to OLR 3 (168-170 L CH4 kg VS-1) but decreased marginally at 

OLR 4 (158 L CH4 kg VS-1).  Both TAN and FOS:TAC values were adequate and did 

not increase above inhibitive threshold values for OLR 2-4 (Table 5.3).
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Table 5.3 Key parameter results from continuous digestion of L. digitata 

 OLR 

kg VS m-3 d-1 

SMY 

(L CH4 kg VS-1) 

Biomethane efficiency 
(SMY/BMP) 

CH4 

(%) 

HRT 

(days) 
FOS:TAC 

TAN 

(g L-1) 
pH 

DS (100% Dairy slurry) 
2 127 0.87 54 28 0.24 1.02 7.4 
3 138 0.95 57 18 0.30 1.52 7.4 
4 55 0.38 38 14 0.20 0.85 7.3 

LD33  (co-digesting 33.3% L. digitata, 66.6% dairy slurry) 
2 170 1.02 53 35 0.28 1.34 7.5 
3 168 1.01 59 23 0.17 0.73 7.4 
4 158 0.95 58 18 0.28 0.86 7.4 
5 49 0.30 44 17 0.84 0.49 6.7 

LD66 (co-digesting 66.6% L. digitata, 33.3% dairy slurry) 
2 253 1.10 53 37 0.21 1.44 7.5 
3 246 1.06 56 24 0.22 0.50 7.4 
4 261 1.13 55 18 0.19 0.50 7.5 
5 232 1.00 57 14 0.14 0.54 7.4 
6 24 0.10 12 12 1.25 0.50 6.4 

LD100 (100% L. digitata) 
2 338 1.17 50 30 0.23 1.50 7.5 
3 302 1.05 57 17 0.12 1.01 7.6 
4 281 0.98 56 12 0.16 0.38 7.5 
5 26 0.09 18 11 0.81 0.50 4.5 

        
SMY: specific methane yield; BMP: biomethane potential; HRT: hydraulic retention time; FOS:TAC: the ratio of organic acid concentration to total inorganic 
carbon (max value); TAN: total ammonia nitrogen content; tVOA: total volatile organic acid content (max value). 
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However, at OLR 5, the reactor was severely inhibited and failed as the FOS:TAC value 

(0.84) increased above stability range (0.2-0.4) (Allen et al., 2014). This signified an 

accumulation of tVFAs in the reactor (Figure 5.4.A). LD33 proceeded to fail as indicated 

by low SMY, increased FOS:TAC value and a large accumulation of VFAs. Chloride 

concentration ranged from 1.5-7.0 g L-1 throughout the lifetime of the reactor. 

S. latissima (SL33) 

SL33 operated from an OLR 2 to an OLR of 5 kg VS m-3 d-1. Biomethane efficiency was 

0.92 at the initial OLR and started to drop gradually until failure of the reactor at an 

OLR of 5 kg VS m-3 d-1 (Table 5.4). A similar trend was observed for pH as to that of 

LD33 as values of 7.4-7.5 were evident up to OLR 4 but subsequently dropped at OLR 5 

kg VS m-3 d-1 (Table 5.4).   

Methane composition in the biogas was highest at 57% at OLR 3. A general trend of 

decreasing SMY was observed from OLR 2 to OLR 5 (165 to 53 L CH4 kg VS-1), with a 

significant reduction occurring at OLR 4. TAN and FOS:TAC values did not increase 

above inhibitory threshold values up to OLR 4 (Table 5.4). At OLR 5, TAN levels were 

higher for SL33 than that evident in LD33 (at the same OLR) potentially due to the lower 

C:N ratio  associated with farm cultivated S. latissima, although values still remained 

low (<1 g-1). The TAN ranged from 0.68 g L-1 to 1.24 g L-1 from OLR 2-4 and the 

average FOS:TAC value was 0.25 at OLR 4. The reactor became inhibited at OLR 5 as 

the FOS:TAC value increased, again signifying a build-up of tVFAs in the reactor 

(Figure 5.4.B). Hence, the reactor failed and the SMY diminished significantly. Chloride 

levels were within acceptable range (6.57 gL-1) up to OLR 4 but increased sharply (12 

gL-1) at OLR 5 (Figure 5.3.B). 
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5.3.4 Co-digestion at 66.6% seaweed and 33.3% dairy slurry   

L. digitata (LD66) 

LD66 started at an OLR of 2 kg VS m-3 d-1 but the TS content of the feed was in excess 

of 10%. This required a calculated amount of digestate liquor to be recirculated to keep 

the solids content below 10% in the CSTR to allow effective mixing to take place. It has 

previously been reported that recirculation of digestate liquor can facilitate lower 

FOS:TAC values and allow for shorter HRT (Wall et al., 2014). Biomethane efficiencies 

of 1.0, 1.06, 1.13 and 1.0 were observed as the OLR increased from 2 - 5 kg VS m-3 d-1 

(Table 5.3). Biomethane efficiency was reported at a maximum even at a very short 

HRT (14 days) which can potentially be attributed to recirculation of the digestate liquor 

and higher C:N ratio of LD66 (23.40) as compared to LD33 (C:N=19.61). Biomethane 

efficiency dropped substantially to 0.10 at OLR 6 due to the accumulation of VFAs. The 

average pH was observed in the range 7.4-7.5 up to OLR 5 and dropped to 6.4 at OLR 6.  

Methane composition in the biogas of 53% at OLR 2 had improved to 57% by OLR 5 

(Table 5.3). Average TAN and FOS:TAC values were observed to be low in comparison 

to the CSTRs that contained a lower concentration of seaweed; this was noteworthy 

particularly as the reactor was operating at a very high OLR of 5 kg VS m-3 d-1. At OLR 

6, the reactor failed as the FOS:TAC values (1.25) were far in advance of critical levels. 

Chloride levels were again found to have gradually increased as the OLR increased and 

concentrations were higher than reported for LD33 due to higher seaweed content 

(Figure 5.3.A).  

In essence, LD66 can be considered a more suitable co-digestion mix than LD33 as it 

exhibited a very low level of VFA accumulation throughout digestion to a high OLR of 
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5 kg VS m-3 d-1 (Figure 5.4.A) and achieved higher SMYs (Table 5.3). Only at an OLR 

of 6 kg VS m-3 d-1 did the concentration of VFAs become critical (Figure 5.4.A). 

Reactor failure occurred at OLR 6 as indicated by very low SMYs.  

S. latissima (SL66) 

SL66 operated from an OLR of 2 kg VS m-3 d-1 to an OLR of 5 kg VS m-3 d-1. 

Biomethane efficiencies remained at near maximum at OLRs of 2, 3, and 4 kg VS m-3 d-

1 (Table 5.4). However, the efficiency dropped very sharply as the OLR increased from 

4 to 5 kg VS m-3 d-1 (Table 5.4). The average pH was recorded at 7.4 up to OLR 4 but 

subsequently dropped to 5.9 at OLR 5. Methane composition in the biogas was 55% at 

OLR 2 and increased to 57% at higher OLRs of 3 and 4 (Table 5.4).  

TAN values were marginally lower as compared to SL33 with the higher proportion of 

seaweed (Table 5.4). The FOS:TAC values were below the critical levels up to OLR 4 

but the reactor failed at OLR 5 as the FOS:TAC values (2.01) were much higher than 

critical levels.  Comparatively, chloride levels (9.71 gL-1) were higher than SL33 (6.57 

gL-1) due to higher seaweed proportion in the mixture (Figure 5.3.B).  

SL66 maintained maximum biomethane efficiency at OLR 4 (Table 5.4) and thus was 

deemed potentially more suitable as a co-digestion mixture than SL33 as the SMY was 

much higher for SL66 than SL33.
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Figure 5.1.A Co-digestion of 66.6% L. digitata with 33.3% dairy slurry: Specific methane yields and FOS:TAC with increasing 
organic loading rate 
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Figure 5.1.B Co-digestion of 66.6% S. latissima with 33.3% dairy slurry: Specific methane yields and FOS:TAC with increasing 
organic loading rate 

 
Specific methane yield (SMY), biomethane potential before acclimatization (BMP), after acclimatization (BMP*), and the fermentation stability (FOS:TAC). 
Vertical darker lines indicate changes in organic loading rate (OLR), vertical small dashed lines indicate retention times (HRTs).
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5.3.5 Mono-digestion of seaweeds 

L. digitata (LD100) 

The general trend in biomethane efficiency for LD100 was to decrease as the OLR 

increased from 2 to 4 kg VS m-3 d-1 (Table 5.3). Biomethane efficiency dropped to 0.09 

at OLR 5 due to the high loading rate that resulted in an accumulation of tVFAs and a 

corresponding increase in FOS:TAC. Even at a very short HRT (12 days) at OLR 4, 

biomethane efficiency was close to maximum, likely due to better acclimatization in the 

reactor as a result of digestate liquor recirculation. The average pH observed was 7.5 at 

an OLR of 4 kg VS m-3 d-1 but this dropped to 4.5 at OLR 5, which inhibited 

methanogenesis. 

Methane composition in the biogas improved from 50% to 56% as the OLR increased 

from 2 to 4 kg VS m-3 d-1 (Table 5.3). Maximum TAN and FOS:TAC values were again 

not above the critical thresholds for inhibition at this OLR (Table 5.3). However, 

FOS:TAC values rapidly increased to 0.81 as the OLR increased to 5 kg VS m-3 d-1 and 

led to reactor failure (Figure 5.2.A). Chloride levels in LD100 were highest among all L. 

digitata reactors (Figure 5.3.A). Concentrations in excess of 10 g L-1 were recorded, 

significantly higher than that of LD66 at ca. 6 g L-1.  Although difficult to define, such 

high concentrations have been shown to inhibit methane production (Herrmann et al., 

2016).  

S. latissima (SL100) 

Mono-digestion of S. latissima was operated from an OLR of 2 kg VS m-3 d-1 to 5 kg VS 

m-3 d-1. Biomethane efficiency remained above maximum up to the optimum OLR of 4  
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Table 5.4 Key parameter results from continuous digestion of S. latissima 

OLR  

(kg VS m-3 d-1) 

SMY 

(L CH4 kg VS-1) 

Biomethane efficiency 

(SMY/BMP) 

CH4 

(%) 

HRT 

(days) 
FOS:TAC 

TAN 

(g L-1) 
pH 

SL33  (co-digesting 33.3% S. latissima, 66.6% dairy slurry) 
2 165 0.92 56 27 0.20 0.68 7.5 
3 156 0.87 57 18 0.22 0.93 7.4 
4 103 0.58 55 14 0.25 1.24 7.4 
5 53 0.30 22 11 2.86 1.08 6.8 

SL66 (co-digesting 66.6% S. latissima, 33.3% dairy slurry) 
2 232 0.94 55 27 0.22 0.70 7.4 
3 248 1.01 57 18 0.20 0.81 7.4 
4 252 1.03 57 13 0.18 0.89 7.4 
5 60 0.25 23 11 2.01 0.88 5.9 

SL100 (100% S. latissima) 
2 298 1.01 52 26 0.17 0.72 7.5 
3 343 1.16 52 18 0.24 0.72 7.4 
4 330 1.12 53 13 0.26 0.65 7.4 
5 61 0.21 16 11 1.20 0.61 5.6 

        
SMY: specific methane yield; BMP: biomethane potential; HRT: hydraulic retention time; FOS:TAC: ratio of organic acid concentration to total inorganic 
carbon (max value); TAN: total ammonia nitrogen content 
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kg VS m-3 d-1 (Table 5.4) and only dropped to 0.21 at OLR 5 due to a build-up of 

tVFAs. The pH profile ranged from 7.4 to 7.5 up to an OLR of 4 kg VS m-3 d-1 and 

dropped to 5.6 at OLR 5, too low for effective digestion. Methane composition in the 

biogas was consistent up to OLR 4 at 52 to 53% (Table 5.4). TAN levels and FOS:TAC 

values did not exceed the critical thresholds for inhibition in the OLR range up to 4 kg 

VS m-3 d-1 (Table 5.4). However, FOS:TAC values increased to 1.20 as the OLR was 

increased to 5 kg VS m-3 d-1 and ultimately resulted in reactor failure (Figure 5.2.B). 

Chloride levels in SL100 were highest among all reactors (including for L. digitata and S. 

latissima) at 17 g L-1 (Figure 5.3.B). Failure of the reactor occurred through the 

accumulation of VFAs at the high loading rate of 5 kg VS m-3 d-1 (Figure 5.4.B).  

5.4 Discussion   

5.4.1 Natural L. digitata as feedstock for AD 

This paper proposes rural coastal digesters co-digesting seaweeds with the dairy slurry 

to produce third generation gaseous biofuel. The present study suggests an optimal mix 

for harvested natural L. digitata of 66.6% seaweed and 33.3% dairy slurry (on a VS 

basis), which can be employed at a high OLR of 5 kg VS m-3 d-1 whilst maintaining 

maximum biomethane efficiency.  The methane yield generated was 232 L CH4 kg-1 VS 

and matched closely that of the BMP utilising acclimatised inoculum. Although this 

yield was lower than that achieved at an OLR of 4 kg VS m-3 d-1 (261 L CH4 kg-1 VS), 

the higher OLR allows for a reduction in the digester size and capital cost of such a 

facility.  

Mono-digestion of L. digitata was proven to be stable at an OLR range of 2–4 kg VS m-

3 d-1 with maximum biomethane efficiencies throughout this period.
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Figure 5.2.A Mono-digestion of L. digitata: SMY and FOS:TAC with increasing organic loading rate 
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Figure 5.2.B Mono-digestion of S. latissima: SMY and FOS:TAC with increasing organic loading rate 
 

Specific methane yield (SMY), biomethane potential before acclimatization (BMP), after acclimatization (BMP*), and the fermentation stability (FOS:TAC). 
Vertical darker lines indicate changes in organic loading rate (OLR), vertical small dashed lines indicate retention times (HRTs).
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The ability to increase the OLR was achievable owing in part to recirculation of 

digestate liquor which the authors believe kept the FOS:TAC value at a low level. This 

is a similar concept in theory to the acclimatised inoculum in the second BMP allowing 

for higher SMYs. The steep drop in SMY, evident at OLR 5, was a result of the HRT 

becoming too short at the corresponding high loading rate. Thus, it was found practical 

to operate a 100% seaweed-fed digester at an OLR of 4 kg VS m-3 d-1 and an HRT of 12 

days, provided recirculation of digestate liquor, generating an SMY of 281 L CH4 kg-1 

VS. Higher SMYs were achievable operating at a reduced OLR. 

5.4.2 Comparison of cultivated with natural seaweed harvest 

An optimal co-digestion mixture for S. latissima of 66.6% seaweed and 33.3% dairy 

slurry (on a VS basis) is proposed at a high OLR of 4 kg VS m-3 d-1 maintaining 

maximum biomethane efficiency. Digestion of wild harvest L. digitata with dairy slurry 

at the same percentage mix was found to be feasible to a higher OLR of 5 kg VS m-3 d-1. 

Reaching the higher OLR for L. digitata may potentially have been due to a more 

optimal C:N ratio (23.40) than S. latissima (15.70).  A combination of a short HRT (11 

days) and sustained high chloride content (in excess of 15 g L-1) is proposed as the 

reason for failure at OLR 5, ultimately leading to tVFA accumulation.  

Mono-digestion of S. latissima was observed to be stable maintaining maximum 

biomethane efficiency up to an OLR 4 kg VS m-3 d-1. A sudden drop in SMY recorded 

at OLR 5 that may be due to very short HRT (11 days). Failure of the reactor was due to 

high OLR of 5 kg VS m-3 d-1, short HRT of 11 days and elevated levels of chloride (17 g 

L-1). In essence, it was observed that a stable operation of a reactor fed with 100% 

seaweed was possible at a high OLR of 4 kg VS m-3 d-1 at a short retention time of 13 
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days. Ultimately, the continuous digestion trials indicated the potential application for 

both brown seaweeds at industrial scale. Although mono- and co-digestion strategies 

were found efficient in operation, the selection or preference of one seaweed over 

another will depend on upon various factors such as location, feedstock availability with 

respect to seasonal variation, cultivation or harvesting methods, government policy, and 

licencing issues. Mono-digestion of farm-cultivated seaweeds can be recommended for 

coastal areas. Farm cultivation may be preferred over harvest of natural seaweed due to 

reduction in environmental impact in removing natural stocks of seaweed from disperse 

coastlines; and the advantages of integrated multi-trophic aquaculture where cultivated 

farmed seaweed removes waste nutrients from fish farms and can achieve higher harvest 

yields due to this natural fertilisation.  

5.4.3 Chloride risks in seaweed digesters 

The issue of chloride is a concern for the development of mono-seaweed digesters. This 

study confirmed that chloride content in digesters containing seaweed increase over time 

(Figure 5.3.A), yet no correlation could be explicitly established between the level of 

chloride and the SMY. Sodium chloride has been recognised as a possible inhibitor in 

anaerobic digestion but is still essential in small concentrations for microbial activity 

(Suwannoppadol et al., 2012). A wide range of chloride toxicity levels has been 

prescribed for anaerobic digestion (5-20 g L-1) (Lefebvre et al., 2007; Riffat and 

Krongthamchat, 2005). This disparity in chloride toxicity levels may be dependent on 

various factors. One possibility is the substrate type, that is, more complex substrates 

may have potentially lower salt tolerances (Lefebvre et al., 2007).  In this study, mono-

digestion of beach cast L. digitata reached a  
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Figure 5.3.A Chloride accumulation over the period digesting L. digitata. 

 

 

Figure 5.3.B Chloride accumulation over the period digesting S. latissima. 

Green, grey, yellow, red and black coloured dots represent OLR ranged from 2-6, last black coloured 

triangle (Figure 5.3.A) is only for LD66 at OLR 6. Chloride level increases as the quantity of seaweed in 

digestion mix increases.
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chloride concentration of 11 g L-1 when the reactor suffered inhibition. However, greater 

levels (>14 g L-1) were experienced in stable mono-digestion of farm cultivated S. 

latissima at an OLR of 4 kg VS m-3 d-1 (Figure 5.3.B). Thus, the increase in OLR (and a 

corresponding reduction in HRT) had potentially more impact than the concentration of 

chloride for the digestion of L. digitata.  

It should be noted that recirculation of digestate took place in the reactors treating L. 

digitata due to the higher solids content of this seaweed (17.7% versus 9.2% for S. 

latissima). Operating digesters at lower OLRs has previously been shown to result in 

higher salt tolerance (Lefebvre et al., 2007).  It is evident from this study that increasing 

the OLR accelerates chloride accumulation within a digester. For mono-digestion of S. 

latissima at an OLR of 5 kg VS m-3 d-1, chloride levels rose to 17 g L-1. Thus, it is again 

difficult to interpret whether the increase in OLR, the very high concentration of 

chloride or a combination of both ultimately lead to the reactors demise. 

It is proposed that for the safe operation of a mono-seaweed reactor that the chloride 

must be consistently monitored. However the acclimatisation process should not be 

underestimated as evidenced in this study by the stable operation at high OLRs (up to 4 

kg VS m-3d-1) with high chloride levels (up to 14 g L-1 ) whilst providing biomethane 

efficiencies at or close to maximum. There may be a need to run such digesters for 

longer than the 30 weeks assessed here to assess longer term effects of increasing 

chloride concentrations. 
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Figure 5.4.A Volatile fatty acid (VFA) profile for the reactors for LD33-LD100 at 

increasing OLR  

  

 

Figure 5.4.B Volatile fatty acid (VFA) profile for the reactors for SL33-SL100 at 

increasing OLR 

(Butyric acid: sum of iso-butyric acid and n-butyric acid; Valeric acid: sum of isovaleric acid and n-
valeric acid; Caproic acid: sum of iso-caproic acid and n-caproic acid). Each bar represents average VFAs 
at a final hydraulic retention time (HRT).  
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5.5 Conclusion 

A mix of 66.6% seaweed and 33.3% dairy slurry was found optimal for co-digestion for 

S. latissima and L. digitata achieving maximum biomethane efficiency in long-term 

continuous digestion up to an OLR of 4 and 5 kg VS m-3 d-1, respectively. Mono-

digestion of cultivated S. latissima and natural L. digitata generated similar methane 

yields (330-338 L CH4 kg-1 VS) but digestion of S. latissima could achieve such yields 

at a higher OLR of 4 kg VS m-3 d-1. Accumulation of salts was evident and was 

accelerated at higher loading rates. Acclimatisation of the digestion process to marine 

algae was significant.  

 

 

 

Acknowledgements 

This work was supported by Science Foundation Ireland (SFI) under Grant No. 

12/RC/2302. Researchers are employed by the SFI centre, MaREI. Gas Networks 

Ireland (GNI) co-founded the work through funding of the Gas Innovation Group. Ervia 

also co-funded the work.  



141 

 

References 

Allen, E., Browne, J.D., Murphy, J.D. 2013. Evaluation of the biomethane yield from 
anaerobic co-digestion of nitrogenous substrates. Environ. Technol., 34(13-14), 
2059-2068. 

Allen, E., Wall, D.M., Herrmann, C., Murphy, J.D. 2014. Investigation of the optimal 
percentage of green seaweed that may be co-digested with dairy slurry to 
produce gaseous biofuel. Bioresour. Technol., 170, 436-444. 

Allen, E., Wall, D.M., Herrmann, C., Xia, A., Murphy, J.D. 2015. What is the gross 
energy yield of third generation gaseous biofuel sourced from seaweed? Energy, 
81(0), 352-360. 

Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J., Guwy, A., 
Kalyuzhnyi, S., Jenicek, P., Van Lier, J. 2009. Defining the biomethane potential 
(BMP) of solid organic wastes and energy crops: a proposed protocol for batch 
assays. Water Sci Technol., 59(5), 927-34. 

APHA. 2011. Standard methods for the examination of water and wastewaters 
American Public Health Association/American Water Works Association/Water 
Environment Federation, Washington DC, USA. 2540 B, E. Solids (Editorial 
revisions, 2011). 

Banks, C.J., Heaven, S. 2013. 6 - Optimisation of biogas yields from anaerobic 
digestion by feedstock type A2 - Baxter, Arthur WellingerJerry MurphyDavid. 
in: The Biogas Handbook, Woodhead Publishing, pp. 131-165. 

BIM. 2012. Renewable Energy Directive the combined output of methane would 
facilitate close to 38% RES-T in Ireland. Available at 
http://www.bim.ie/media/bim/content/BIM%20Environment%20Impact%20Stat
ement%20(EIS)%20Deep%20Sea%20Fish%20Farm%20Development%20Galw
ay%20Bay.pdf. 

Broch, O.J., Ellingsen, I.H., Forbord, S., Wang, X., Volent, Z., Alver, M.O., Hand, A., 
Andresen, K., Slagstad, D., Reitan, K.I., Olsen, Y., Skjermo, J. 2013. Modelling 
the cultivation and bioremediation potential of the kelp Saccharina latissima in 
close proximity to an exposed salmon farm in Norway. Aquac. Environ. 
Interact., 4(2), 187-206. 

Burton, T., Lyons, H., Lerat, Y., Stanley, M., Rasmussen, M., 2009. A review of the 
potential of marine algae as a source of biofuel in Ireland. Technical report, 
Dublin: Sustainable Energy Ireland-SEI. Available at 
http://www.seai.ie/Publications/Renewables_Publications_/Bioenergy/Algaerep
ort.pdf. 

Parliament, E. 2015. Environment Committee backs switchover to advanced biofuels 
Press release - Environment. Available at 
http://www.europarl.europa.eu/news/en/news-
room/content/20150223IPR24714/html/Environment-Committee-backs-
switchover-to-advanced-biofuels. 

Gallagher, C., Murphy, J.D. 2013. Is it better to produce biomethane via 
thermochemical or biological routes? An energy balance perspective. Biofuels 
Bioprod. Biorefining, 7(3), 273-281. 



142 

 

Herrmann, C., Kalita, N., Wall, D., Xia, A., Murphy, J.D. 2016. Optimised biogas 
production from microalgae through co-digestion with carbon-rich co-substrates. 
Bioresour. Technol., 214, 328-337. 

Hinks, J., Edwards, S., Sallis, P.J., Caldwell, G.S. 2013. The steady state anaerobic 
digestion of Laminaria hyperborea – Effect of hydraulic residence on biogas 
production and bacterial community composition. Bioresour. Technol., 143(0), 
221-230. 

IEA. 2015. IEA Bioenergy Task 37, Country report, Germanay. Available at 
http://www.iea-biogas.net/country-reports.html. 

Jacob, A., Xia, A., Gunning, D., Burnell, G., Murphy, J.D. 2016. Seaweed Biofuel 
Derived from Integrated Multi-trophic Aquaculture. IJESD, 11, 805-809. 

Jard, G., Jackowiak, D., Carrère, H., Delgenes, J.P., Torrijos, M., Steyer, J.P., Dumas, 
C. 2012. Batch and semi-continuous anaerobic digestion of Palmaria palmata: 
Comparison with Saccharina latissima and inhibition studies. Chem. Eng. J., 
209, 513-519. 

Lefebvre, O., Quentin, S., Torrijos, M., Godon, J.J., Delgenès, J.P., Moletta, R. 2007. 
Impact of increasing NaCl concentrations on the performance and community 
composition of two anaerobic reactors. Appl. Microbiol. Biotechnol., 75(1), 61-
69. 

Murphy, F., Devlin, G., Deverell, R., McDonnell, K. 2013. Biofuel Production in 
Ireland-An Approach to 2020 Targets with a Focus on Algal Biomass. Energies, 
6(12), 6391-6412. 

Murphy, J.D., Drosg, B., Allen, E., Jerney, J., Xia, A., Herrmann, C. 2015. A 
perspective on algal biogas. Available at http://www.iea-biogas.net/files/daten-
redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf. 

Murphy, J.D., Thamsiriroj, T. 2011. What will fuel transport systems of the future? 
Mater. Today, 14(11), 518-524. 

Peu, P., Sassi, J.F., Girault, R., Picard, S., Saint-Cast, P., Beline, F., Dabert, P. 2011. 
Sulphur fate and anaerobic biodegradation potential during co-digestion of 
seaweed biomass (Ulva sp.) with pig slurry. Bioresour. Technol., 102(23), 
10794-802. 

Riffat, R., Krongthamchat, K. 2005. Specific methanogenic activity of halophilic and 
mixed cultures in saline wastewater. Int. J. Environ. Sci. Technol., 2(4), 291-299. 

Sarker, S., Bruhn, A., Ward, A.J., Møller, H.B. 2012. Bio-Fuel from Anaerobic Co-
Digestion of the Macro-Algae Ulva Lactuca and Laminaria Digitata. Renewable 
energy and energy efficiency. Proceedings of the International Scientific 
Conference, Jelgava, Latvia, 28-30 May 2012 2012 pp. 86-90. 

Sarker, S., Møller, H.B., Bruhn, A. 2014. Influence of variable feeding on mesophilic 
and thermophilic co-digestion of Laminaria digitata and cattle manure. Energy 
Conv. Manag., 87, 513-520. 

Suwannoppadol, S., Ho, G., Cord-Ruwisch, R. 2012. Overcoming sodium toxicity by 
utilizing grass leaves as co-substrate during the start-up of batch thermophilic 
anaerobic digestion. Bioresour. Technol., 125, 188-192. 

Symons, G.E., Buswell, A.M. 1933. The Methane Fermentation of Carbohydrates1,2. J 
Am. Chem. Soc., 55(5), 2028-2036. 



143 

 

Tabassum, M.R., Xia, A., Murphy, J.D. 2016a. The effect of seasonal variation on 
biomethane production from seaweed and on application as a gaseous transport 
biofuel. Bioresour. Technol., 209, 213-219. 

Tabassum, M.R., Xia, A., Murphy, J.D. 2016b. Potential of seaweed as a feedstock for 
renewable gaseous fuel production in Ireland. Renew. Sust. Energ. Rev. (under 
review). 

Tabassum, M.R., Xia, A., Murphy, J.D. 2016c. Seasonal variation of chemical 
composition and biomethane production from the brown seaweed Ascophyllum 
nodosum. Bioresour. Technol. (in press). 

Thamsiriroj, T., Murphy, J.D. 2009. Is it better to import palm oil from Thailand to 
produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape 
seed? Appl. Energ., 86(5), 595-604. 

Vanegas, C.H., Bartlett, J. 2013. Green energy from marine algae: biogas production 
and composition from the anaerobic digestion of Irish seaweed species. Environ. 
Technol., 34(13-16), 2277-83. 

Wall, D.M., Allen, E., Straccialini, B., O’Kiely, P., Murphy, J.D. 2014. Optimisation of 
digester performance with increasing organic loading rate for mono- and co-
digestion of grass silage and dairy slurry. Bioresour. Technol., 173, 422-428. 

Wall, D.M., O’Kiely, P., Murphy, J.D. 2013. The potential for biomethane from grass 
and slurry to satisfy renewable energy targets. Bioresour. Technol., 149, 425-
431. 

Watson, L., Matthew D,. 2013. Business Plan for the Establishment of a Seaweed 
Hatchery and Grow-out Farm. Available at 
http://www.bim.ie/media/bim/content/publications/Business%20Plan%20fot%20
the%20Establishment%20of%20a%20Seaweed%20Hatchery%20and%20Grow-
out%20Farm.pdf. 

Yangin-Gomec, C., Ozturk, I. 2013. Effect of maize silage addition on biomethane 
recovery from mesophilic co-digestion of chicken and cattle manure to suppress 
ammonia inhibition. Energy Conv. Manag., 71, 92-100. 

 

 

 

 

 

 

 

 

 



144 

 

6. Comparison of pre-treatments to enhance the biomethane 

yield from Laminaria digitata 
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Abstract 

Pre-treatment may enhance the anaerobic digestion of seaweed for biomethane 

production. However, seasonal variation in the biochemical composition of seaweed has 

a significant impact on the pre-treatment choice. In this study, various pre-treatments 

were employed for brown seaweed Laminaria digitata harvested in March (with high 

ash content and low C:N ratio) and September (with low ash content and high C:N ratio) 

to suggest the optimal pre-treatment. Washing of L. digitata harvested in March with hot 

water at 40 ⁰C removed 54% ash and improved the VS content by 31%, enhancing 

biomethane yield to 282 L CH4 kg VS-1. This pre-treatment effected a 16% increasing in 

biodegradability with 54% less salt accumulation in the digestate as compared to an 

untreated sample. This effect was not noted for seaweed harvested in September. 

 

Keywords: Laminaria digitata; Seaweed; Pre-treatment; Anaerobic digestion; Biogas 
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6.1 Introduction 

Brown seaweed is an attractive feedstock for gaseous biofuel production through 

anaerobic digestion due to availability of the technology (Gebrezgabher et al., 2010), 

high gross energy yield per hectare compared with land-based biomass (Tabassum et al., 

2016a) and lack of competition with food for arable land (Tenenbaum, 2008). Brown 

seaweed is reported as an abundant marine bioresource in Irish waters (Smale et al., 

2013). The feedstock received more attention after the European Parliament 

communication that advanced biofuels (such as from seaweed) should represent at least 

1.25% of RES-T (renewable energy supply in transport) (European Parliment, 2015). 

Studies suggest that brown seaweed (L. digitata) has significant seasonal variation in 

chemical composition (Adams et al., 2011a; Tabassum et al., 2016a; Tabassum et al., 

2016d; Tabassum, 2016b). Biodegradability of L. digitata is lower in winter and spring; 

this can be attributed to lower levels of readily digestible carbohydrates (laminarin and 

mannitol), higher ash contents (mostly salts) and a higher level of process inhibitors 

(Adams et al., 2011b).  

Ash is the significant component of brown seaweed that changes greatly through the 

whole year and can be up to 35% of dry weight (Adams et al., 2011a; Moen et al., 1997; 

Schiener et al., 2015). Due to the seasonal variation, accumulation of salts in long-term 

digestion can be a problem when the seaweed is harvested (for digestion) in winter or 

early spring (Tabassum et al., 2016a) (Allen et al., 2014). To increase the digestibility 

and degradability of brown seaweed, some pre-treatment may aid biogas production; 

however due to the absence of cellulose and lignin, harsh pre-treatment may not be 

required (Tabassum, 2016b). The literature outlines pre-treatments employed on 
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biomass such as physical (washing) (Oliveira et al., 2014), mechanical (size reduction 

by cutting, chopping, maceration) (Nielsen, 2011), chemical (Borines et al., 2013), 

hydrothermal (heating) (Schultz-Jensen et al., 2013) and thermochemical processes 

(Oliveira et al., 2014). According to the literature, mechanical pre-treatment is most 

suitable for biogas production (Tedesco et al., 2013; Tedesco et al., 2014), whereas 

chemical pre-treatment was found inhibitory (Oliveira et al., 2014). However, none of 

the above considered salt accumulation.  

The objectives of the current study was to: 

• Examine the effect of pre-treatments on seasonal harvests; 

•  Assess the seaweed biochemical composition before and after pre-treatment; 

• Study the improvement in the process dynamics of pre-treatment;  

• Investigate the effect of pretreatment on salt accumulation in the batch reactor. 

6.2 Materials and Methods 

6.2.1 Collection and processing of L. digitata for pre-treatments 

L. digitata was collected from Roaring Water Bay, Co. Cork, in the south of Ireland 

(51°N, -9°E) during March and September. Combinations of various pre-treatments 

were applied (Figure 6.1) to investigate the effects on the biogas yields based on 

seasonal variation in chemical composition (March and September). Washing with tap 

water at room temperature was a basic physical pre-treatment to remove any foreign 

particles. After washing, two mechanical pre-treatments (cutting and maceration) were 

applied to reduce the particle size. The washed samples were cut by scissors to a size of 

approximately 4 cm (CC: cold cut). Subsequently, the samples were macerated in a 

Buffalo macerator to further reduce the size less than 4 mm (CM: cold macerated). 
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The seaweed samples were washed with hot water (40 ± 1 ⁰C) for 3 minutes and then 

cut with a scissor (HC: Hot cut) to compare it with CC. The samples washed with hot 

water were macerated (HM: hot macerated) to the same size (4mm) to compare it with 

CM. 

 

 

Figure 6.1 Schematic diagram of various pre-treatments 

6.2.2 Analytical methods 

Total solid (TS), volatile solid (VS) and ash were analysed by using the standard method 

of drying of the seaweed for 24 hours at 105 °C and then was combusted for 2 hours at 

550 ⁰C (APHA, 2011; Xia et al., 2016b). Carbon, hydrogen, nitrogen were measured by 

preparing the seaweed samples by drying at 105 ⁰C for 24 hours and then grinding to 

pass through a 500 µm sieve. Dried samples were analysed for C, H, N, and O (O 

calculated by difference) using a CE 440 elemental analyser.  
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6.2.3 Anaerobic digestion of the seaweed 

The theoretical methane potential was calculated by putting the values of C, H, and N 

into the Buswell equation (Eq. (1)). The output from this equation provides a maximum 

potential methane yield by converting VS to methane and carbon dioxide (Buswell AM, 

1932). The molar volume of the gases was taken as 22.14 L at 0 ⁰C and 1 atm. 

��	���� + 
� −	� − �
�����	 → 	 
�� +	�� − �

� �� 	+ 	
�� −	�� + �
� ��� Eq. (1) 

The biomethane potential (BMP) tests of the seaweed were conducted in a bioprocess 

system (Bioprocess AMPTS II® system). The Bioprocess AMPTS II® system is an 

automated methane potential test system with output to a software package. The 

inoculum was sourced from lab-scale continuous stirred-tank reactors (operated at 37 

⁰C), processing various substrates such as grass, dairy slurry, and seaweed. The system 

was operated as described by (Allen et al., 2015; Tabassum et al., 2016a). The substrate 

to inoculum ratio (I:S) on a VS basis, of 2:1 was used (Angelidaki et al., 2009; 

Chynoweth et al., 1993). To calculate the specific biomethane production, the total 

average biomethane produced by the inoculum was subtracted from the average 

biomethane produced by each sample (Allen et al., 2015). Salinity (g/L) and pH of the 

batch digestion processes were also recorded before and after each BMP assay to 

investigate the effect of pre-treatment on the reaction performance and the gas yield. 

6.2.4 Process dynamics and statistical analysis  

The study of the process dynamics is beneficial for the understanding the changes in the 

biodegradability and the rate of biodegradability of the substrate before and after pre-

treatment. The kinetic parameters such as change in decay constant (days-1), maximum 
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yield (Ymax) and half-life (days) were obtained by taking data from the cumulative 

methane production curves (after 30 days) and analysing in MATLAB software using a 

first order differential equation as described previously (Nopharatana et al., 2007; 

Tabassum et al., 2016a). The biodegradability index (BI) was defined as the ratio of the 

BMP yield to the theoretical value as expressed by the TMP. Statistical significance of 

each pre-treatment was determined by using a statistical software (SPS, IBM NY, USA). 

Analysis of variance (ANOVA) was performed to examine the effect of various pre-

treatments on different parameters (such as ash removal, improvement in gas yields and 

enhancement in bio-degradability of the substrate). The significance level was 

determined by multiple comparisons (Post Hoc test). 

6.3 Results and Discussion 

6.3.1 Effect of pre-treatment on the seaweed chemistry  

L. digitata was characterised for compositional and elemental analysis. March and 

September harvest of the seaweed were compared before and after each pre-treatment 

(Table 6.1). After pre-treatment, it was revealed that washing with cold water did not 

remove a substantial amount of salts and hence did not improved the VS composition of 

the substrate. However, the VS content of the seaweed harvested in March was 

improved from 6.49% to 7.02% on pre-treatment with hot water washing and macerated 

(HM) to a particle size of less than 4 mm (Table 6.1). For samples harvested in March, 

HM pre-treatment succeeded in reducing ash content from 33.33% to 15.62%, resulting 

in increasing organic matter content from 66.66% to 84.33% and decreasing A:V ratio 

from 0.51 to 0.19. The substantial removal of ash (salt) content should make the 

seaweed more easily degradable (Adams et al., 2011b; Tabassum et al., 2016a). 
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Removal of ash and improvement of VS content for the March harvest can be 

advantageous for long-term continuous digestion as salt accumulation was reported as 

high in batch and continuous digestion processes (Allen et al., 2014; Tabassum et al., 

2016c; Tabassum et al., 2016a). 

The C:N ratio and the ash to volatile solids (A:V) ratio were described as the key factors 

for digestion of seaweed (Tabassum et al., 2016a). Washing with cold water did not 

show any improvements in the C:N ratio as compared to hot water pre-treatment. It may 

be explained that low temperature was not enough to disrupt the seaweed structure as 

compared to higher temperatures (40⁰C). On the other hand, hot water pre-treatment 

may cause the removal of nitrogenous compounds (proteins, lectins, and alkaloids) 

(Pérez et al., 2016) and ultimately lead to an improvement in the C:N ratio (from 8.22 to 

13.83 in this study). It also facilitated the reduction in the A:V ratio from 0.51 to 0.20 

due to substantial removal of ash (Table 6.1). Improvement of the C:N ratio was greater 

in the March harvest than the September harvest due to the higher protein content in 

March seaweed than September (Tabassum et al., 2016a). Removal of ash, improvement 

of VS content and the C:N ratio for the March harvest can be advantageous for long-

term digestion as salt accumulation was reported as significant in batch and continuous 

digestion processes (Allen et al., 2014; Tabassum et al., 2016a). 
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Table 6.1 Change in the chemistry of L. digitata on different pre-treatments 

Harvest Compositional Analysis  Elemental Analysis 

 TS (%) VS (%) 
OMC 
(%) 

Ash (%) A:V  C % H % N % O % 
C:N 

March (U)  9.74 (0.02) 6.49 (0.14) 66.67 33.33 (1.37) 0.51  30.41 (0.90) 3.97 (0.11) 3.70 (0.06) 28.58 8.22 

Cold cut  9.04 (0.20) 5.72 (0.20) 63.26 36.73 (0.50) 0.58  28.09 (0.38) 3.46 (0.07) 3.55 (0.34) 28.16 7.91 

Hot cut  6.47 (0.06) 5.37 (0.09) 83.09 16.91 (0.06) 0.20  39.29 (0.12) 4.83 (0.05) 2.84 (0.05) 36.12 13.83 

Cold macerated  9.76 (0.12) 6.56 (0.07) 67.19 32.81 (0.05) 0.49  30.41 (0.90) 3.97 (0.11) 3.70 (0.57) 29.10 8.22 

Hot macerated  8.32 (0.10) 7.02 (0.02) 84.38 15.62 (0.7) 0.19  39.53 (0.01) 4.88 (0.12) 2.91 (0.29) 37.06 13.58 

September(U)   19.46 (0.26) 15.67 (0.25) 80.51 19.49 (0.44) 0.24  36.62 (0.17) 5.30 (0.05) 0.93 (0.03) 39.37 39.38 

Cold cut  19.44 (0.34) 15.60 (0.35) 80.27 19.43 (0.43) 0.24  36.74 (0.17) 5.03 (0.11) 1.18 (0.08) 37.32 31.14 

Hot cut  15.51 (0.36) 13.42 (0.32) 86.56 13.44 (0.30) 0.16  38.98 (0.17) 5.21 (0.11) 0.97 (0.25) 41.39 40.19 

Cold macerated  19.46 (0.26) 15.67 (0.25) 80.51 19.49 (0.44) 0.24  36.62 (0.17) 5.30 (0.05) 0.93 (0.03) 37.66 39.38 

Hot macerated  16.82 (0.10) 14.42 (0.10) 85.75 14.25 (0.14) 0.17  38.20 (0.07) 5.39 (0.02) 0.93 (0.10) 41.23 41.08 

             
U is untreated sample; TS is total solids; VS is volatile solids; OMC is organic matter content obtained dividing VS/TS; A:V is ash to volatile solid ratio; while 

C, H, N, O and C:N are carbon, hydrogen, nitrogen, oxygen and carbon to nitrogen ratio, respectively; Standard deviation is in parentheses
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6.3.2 Impact of pre-treatment on the biogas yield  

Seaweed harvested in spring (March) displayed a higher ash content and lower organic 

matter content, which would adversely affect anaerobic digestion (Tabassum et al., 

2016a). To investigate the effect of pre-treatment on the gas yield, various pre-

treatments were designed and compared (Figure 6.1). The BMP results revealed that size 

reduction (4cm and 4mm) after washing with tap water had a little effect on the gas 

yield as compared to same size reduction after hot washing (Table 6.2). 

It was observed (Table 6.2) that the effect of hot washing was more significant on the 

March harvest (from 245 L CH4 kg VS-1 to 283 L CH4 kg VS-1) than the September 

harvest (from 280 L CH4 kg VS-1 to 326 L CH4 kg VS-1). The rationale for this 

difference can be explained by the difference in seasonal chemical composition. 

Seaweed harvested in March had high ash content as compared to September (Table 

6.1), hence there is more significant potential for ash removal (Tabassum et al., 2016a).  

Size reduction (from a particle size of 1mm to 4mm) of dried seaweed was reported as a 

significant pre-treatment for biogas production from brown seaweeds (Vanegas et al., 

2015), however, drying is considered to be an energy intensive process on an industrial 

scale. In the current trials maceration to a particle size of 4 mm is deemed unnecessary 

as compared to size reduction by scissors to 4 cm particle size (Table 6.2). The gas yield 

was almost the same for both particle sizes for the March harvest (282 L CH4 kg VS-1 

and 283 L CH4 kg VS-1). However, the gross energy calculations calculated based on 

specific methane yield based on wet weight highlights that maceration is an essential 

step (Table 6.2).
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Table 6.2 Effect of pre-treatments on the gas yield and gross energy production 

Harvest 
BMP yield 

(L CH4 kg VS-1) 
TMP 

(L CH4 kg VS-1) 
B. Index 

(BMP/TMP) 
Specific yield 
(m3 CH4 t

-1
wwt) 

Gross energy 
(GJ ha-1 yr-1) 

March (U) 245 (10.86) 469 0.52 16 60 

Cold cut 258 (12.42) 469 0.55 15 56 

Hot cut 283 (6.24) 468 0.60 15 57 

Cold macerated 265 (3.56) 469 0.57 17 66 

Hot macerated 282 (2.33) 462 0.61 20 75 

September (U)  280 (28.76) 450 0.62 44 165 

Cold cut 303 (22.55) 450 0.67 47 179 

Hot cut 326 (26.25) 424 0.76 44 165 

Cold macerated 307 (18.98) 450 0.68 48 182 

Hot macerated 308 (5.63) 403 0.76 44 168 

U is untreated sample; BMP is biomethane potential; TMP is theoretical methane potential; BI is biodegradability; wwt is wet weight; the standard deviation is in 

parentheses. 

Sample calculation for specific methane yields and gross energy calculations. 

Specific methane yield = 0.245 m3 CH4/ tVS * 64.94 (kgvs/t wwt) = 16 m3 CH4 t-1
wwt 

Biomethane Yield, m3 ha-1 yr-1 = 245 m3 CH4/ tVS * 100 twwt * 6.49% VS = 1590 m3 ha-1 yr-1;  

Gross energy (GJ ha-1 yr-1) = Biomethane yield * 37.8 MJ/m3*0.001 (MJ to GJ) = 60 GJ ha-1 yr-1 
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The gross energy yield, improved by 25% (75 GJ ha-1 yr-1) for maceration after hot 

washing as compared to the untreated sample (untreated yielded 60 GJ ha-1 yr-1) (Table 

6.2). The same trend was observed in term of specific methane yield (Table 6.2). On the 

other hand, size reduction by scissors (4cm) after hot washing decreased the yield both 

in terms of gross energy (60-57 GJ ha-1 yr-1) and specific methane yield (16-15 m3 CH4 

t-1 wet weight). This may be attributed to material loss during manual cutting with 

scissors and can be avoided on an industrial level using mechanical instruments.  

6.3.3 Effect of pre-treatment on the key process parameters  

Ash content, organic matter content and C:N ratio is key process parameters, which 

affect biodegradability and the gas yield. Washing with hot water is a low energy 

intensive pre-treatment. Seaweed with lower ash content, higher organic matter content, 

and C:N ratio in the optimum range are advantageous for biogas production (Adams et 

al., 2011a; Tabassum et al., 2016a).  

Ash content in marine biomass can be an issue in long-term anaerobic digestion through 

the accumulation of salts in the digester. The salt build-up was higher in winter and 

spring samples of seaweed as compared to summer and autumn samples (Tabassum et 

al., 2016a). Hot water washing reduced the ash content by 54% (March) and 31% 

(September) when cut to a particle size of 4 cm by scissors; values of were 47% and 

27% when achieved when macerated (Figure 6.2). Ash removal resulted in increased 

organic matter content of 31% and 8% in March and September, respectively when the 

seaweed was cut by scissors (Figure 6.2).  
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Figure 6.2 Impact of various pre-treatment on the process parameters of L. digitata 

The biodegradability index (defined as the ratio of the BMP yield to the theoretical 

yield) explains the process efficiency in terms of degradability of the substrate in the 

reactor. The index was improved from 0.52 to 0.61 of the seaweed harvest in March 

while it was increased from 0.62 to 0.76 for the September harvest (Table 6.2). The 

substrate was 16% and 23% more biodegradable as compared to untreated seaweed for 

March and September harvest, respectively (Figure 6.2). The higher biodegradability 

index in September as compared to the March harvest may be due to higher 

concentrations of easily degradable organic matter content in the substrate (Adams et al., 

2011a; Adams et al., 2011b). 

Accumulation of salts was recorded before and after pre-treatments to examine the 

reduction of salts in the reactor. Salinity and the A:V ratio were reported as key factors 

affecting the gas yield during different harvesting seasons (Tabassum et al., 2016a). 

According to Tabassum et al., higher values of salinity and A:V led to lower values of 

biomethane production (Tabassum et al., 2016a). The salinity of seaweed was subtracted 

from the salinity of inoculum (6.85 ± 0.46 g/L) to calculate the salinity increase in the 
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batch digestion due to the seaweed only. During current studies, it was observed that hot 

water pre-treatment successfully resulted in lowering the A:V ratio and salinity (Figure 

6.3). However, reduction in % salinity was comparatively higher for the March harvest 

(Figure 6.3). A low biomethane yield was expected at a high salinity level (Chen et al., 

2008; Fang et al., 2011; Xia et al., 2016a). Application of hot water washing (Hot cut) as 

a pre-treatment technology before anaerobic digestion of the seaweed may result in 54% 

less salt accumulation in the reactor as compared to the untreated March harvest. 

 

 

Figure 6.3 Effect of pre-treatment on salts accumulation in the batch process. 
U is untreated seaweed; CC is cold cut. HC is hot cut; CM, cold macerated; HM is hot macerated 

 

After the process parameter studies, it was revealed that the March harvest has the 

greater impact on the process. While, for the September harvest, the impact is lower due 

to the already higher organic matter content, lower ash content and lower levels of 

inhibitory compounds in the substrate as compared to the March harvest. For both 
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harvests, further research is required in the calibration of the specific temperature of the 

hot water treatment and the duration of the treatment time. 

6.3.4 Process dynamics and statistical analysis   

The changes in the process dynamics after each pre-treatment are listed in Table 6.3.  

Maceration after hot water washing (HM) indicated significant kinetic decay (k value 

doubled 0.10 to 0.20) for the March harvest and the biomass was degraded efficiently 

(half-life was shortened from 6.8 to 3.4 days). This may be attributed to the removal of a 

substantial amount of inhibitory compounds (such as furfural, hydroxyl methyl furfural, 

polyphenols) from the substrate that may be responsible for slower degradation of the 

seaweed in the untreated sample (Monlau et al., 2014).  

The decay values as the result of other pre-treatments for the same harvest remained 

close to the untreated sample (Table 6.3). The decay constant for perennial ryegrass 

(Wall et al., 2013), food waste (Browne et al., 2014) and brown seaweed (Allen et al., 

2015) were reported to be 0.11, 0.17 and 0.19, respectively. After employing the current 

pre-treatment method, (Hot Maceration of March Harvest) the degradability of the 

substrate was 100% improved both in terms of the decay constant and half-life.  

The half-life of the methane production (T50) was reported as 4-5 days in summer and 6 

– 9 days in winter (Gurung et al., 2012) probably due to the higher concentration of 

easily degradable laminarin and mannitol in summer (Adams et al., 2011a). 

Improvement in kinetic parameters for the March harvest (after pre-treatments) 

delimited the utilization of the substrate for biogas production and may reduce the 

retention time for digestion of the substrate to less than 20 days, which is suggested 
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sufficient for long-term continuous digestion (Allen et al., 2015; Tabassum et al., 

2016c).  

Table 6.3 The process dynamics of L. digitata based on different pre-treatments 

Pre-treatments 
k decay constant 

(days-1) 
R2 Ymax 

 
T50  

(half-life, days) 

March (U) 
0.10 0.98 245 6.81 

Cold cut 
0.08 0.97 258 8.89 

Hot cut 
0.08 0.96 283 8.43 

Cold macerated 
0.10 0.97 265 6.81 

Hot macerated 
0.20 0.99 282 3.46 

September (U)  
0.13 0.95 282 5.24 

Cold cut 
0.15 0.99 338 4.68 

Hot cut 
0.08 0.95 326 8.20 

Cold macerated 
0.13 0.96 307 5.24 

Hot macerated 
0.09 0.93 308 7.49 

Cellulose  0.17 0.99 356 4.09 
U is untreated sample; k is the decay constant; R2 is a measure that how the kinetic model fits the 

biomethane potential curve (%); Ymax is the maximum methane potential; T50 is the half-life (days) 

 

The experimental results were supported by statistical significance by conducting an 

ANOVA analysis. Multiple comparisons results from one-way ANOVA indicated that 

pretreatment applied to the March harvest were significant (F=8.39, P < 0.001) as 

compared to the September harvest (F=1.68, P < 0.23).  The samples harvested in March 

were analysed further in comparison with different factors affecting the gas yield. These 

factors were particle size (4mm and 4cm) and washing method (hot water and cold 



 

 

160 

 

 

water) in comparison with the removal of salts (ash), biodegradability and ultimately the 

BMP enhancement. After comparison, it was revealed that the most significant factor for 

the process was A:V ratio (F=11.97 and P < 0.001)  ash removal (F=14.09 and P < 

0.001). Particle size and washing method comparison indicated that the most significant 

pretreatment was maceration to a particle size of 4mm after hot washing (P < 0.002).  

After comparison of statistical results, it can be concluded that maceration after hot 

washing was the most efficient pretreatment method to enhance the gas yield by 

substantial removal of salts (ash) from the substrate. However, it requires further 

optimization of pre-treatment time and temperature.       

6.4 Conclusions 

Size reduction after cold washing has little impact on the gas yield as compared to 

washing with hot water. Higher ash content removal occurred in the March harvest than 

the September harvest. Scissor cutting after hot washing of the March harvest removed 

54% ash, improved the VS content by 31% and increased biomethane yield by16% with 

a 68% enhancement in the C:N ratio. However, maceration after hot washing yielded a 

25% higher specific methane and gross energy yield as compared to the untreated 

sample. Hot washing requires optimization of pre-treatment time and temperature to 

facilitate the continuous supply of the seaweed even in March for biogas production.  
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7. Conclusions and recommendations 
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7.1 Conclusions 

• Brown seaweeds are an abundant resource that exhibits great seasonal variation but 

have the potential to satisfy the targets for advanced biofuels in Ireland.  

• Seasonal variation studies of brown seaweed indicated that peak month for 

harvesting brown seaweeds to get optimum biomethane yield varies. In August, the 

specific methane yield (327 L CH4 kg VS-1) of L. digitata is 40% higher than 

harvested in December. Gross energy yields from the seaweed can yield up to 200 

GJ ha-1 yr-1, assuming 100 tons wet weight per hectare per year. At these cultivation 

levels 11,800 ha of cultivation would satisfy 1.25% of renewable energy in transport 

in Ireland (RES-T).  

• Seasonal variation studies of A. nodosum indicated that polyphenolic content has a 

significant impact on biomethane production. The optimal biomethane yield of 217 

L CH4 kg VS-1 is achieved in April but is lower than L. digitata in August (327 L 

CH4 kg VS-1). The two optimum harvesting months based on SMY (March and 

October) of A. nodosum were different from L. digitata (August) due to high 

polyphenol in summer months. Gross energy yields from A. nodosum in the 

optimum harvesting month was 116 GJ ha-1 yr-1 and a relatively greater cultivation 

area (20,260 ha) is required as compared to L. digitata (11,800 ha) to satisfy the 

renewable transport energy target in Ireland. 

• Variation in peak harvesting months of L. digitata and A. nodosum are advantageous 

for the biogas industry as it would potentially ensure a continuous supply of seaweed 

feedstock to produce biomethane.    
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• Long-term anaerobic digestion of natural harvest and farm cultivated brown seaweed 

shows that both mono- and co-digestion strategies are feasible to establish offshore 

and onshore digesters near coastal areas.    

• Long-term mono-digestion of farm cultivated S. latissima and naturally harvested L. 

digitata) generated similar methane yields (330-338 L CH4 kg-1 VS) but the 

digestion of S. latissima could achieve the yields at a higher OLR of 4 kg VS m-3 d-1.  

• The digester performance was found stable at short hydraulic retention times for 

both species. The retention time at OLR of 4 kg VS m-3 d-1 was just 11 days for 

mono-digestion of S. latissima and L. digitata. While, there was a 13 and 14 day (at 

OLR of 4 and 5 kg VS m-3 d-1, respectively) retention time for co-digestion of S. 

latissima and L. digitata with dairy slurry, respectively.  

• The optimum blend for co-digestion is 66.6% seaweed and 33.3% dairy slurry for S. 

latissima and L. digitata with maximum biomethane efficiency in continuous 

digestion up to an OLR of 4 and 5 kg VS m-3 d-1, respectively.  

• Accumulation of salts in the digester is the key concern at higher loading rates. 

However, the tolerance of salts may be higher in the case of farm cultivated young 

plants as compared to natural harvest.  

• Pretreatment studies indicated that seasonal variation in the biochemical 

composition of brown seaweed has a significant impact on the choice of suitable 

pre-treatment.  

• Size reduction after cold washing has little impact on the biomethane yield as 

compared to washing with hot water.  
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• Higher ash content was removed from L. digitata harvested in March as compared to 

September harvest. Size reduction (particle size of 4cm) with scissors after hot water 

washing for March harvest successfully removed 54% of ash content, improved the 

VS content by 31% and increased the gas yield by 16% with an improvement in the 

C:N ratio as compared to untreated sample. However, hot water washing and 

subsequent maceration yielded a 25% higher gross energy yield (75 GJ ha-1 yr-1) as 

compared to the untreated sample (60 GJ ha-1 yr-1). 

7.2 Recommendations 

The research undertaken in this study demonstrates that high specific methane yields can 

be generated from mono- and co-digestion of brown seaweeds. However, some further 

research recommendations are suggested below for the potential initiation of a seaweed-

based biogas industry in Ireland. 

1. Characterization of other potential brown seaweeds (such as S. latissima) with 

reference to seasonal variation should be carried out to select the optimal 

harvesting month. This would further facilitate the makeup of different seaweeds 

for harvest in supplying feedstock to the digesters year-round.  

2. A comparison in the characterization of natural harvest and farm cultivated 

seaweeds in biomethane potential tests would be beneficial to select the best 

species and peak harvesting times.  

3. Biomethane potential assessments of polyphenol-rich brown seaweeds (such as 

Ascophyllum nodosum) after polyphenol extraction should be investigated for its 

potential as a digestion feedstock.  
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4. For the continuous digestion of seaweed, monitoring of trace elements (through 

analysis of the digestate) would help to understand the role of trace elements in 

the digestion process. Analysis of trace element concentrations at different 

organic loading rates may indicate deficiency levels of some trace elements, 

which furthermore if added to the reactors may help to increase performance.  

5. Continuous monitoring of salts (chloride) is required for the long-term operation 

of brown seaweed at a high OLR (greater than 3 kg VS m-3 d-1). Alternatively, 

digesters with elevated salt levels (in excess of 15g L-1) may be investigated for 

co-digestion with other substrates (such as with various types of slurries, grass, 

straw, food waste) to potentially dilute salts so that the digesters can maintain 

steady operation.  

6. Hot washing pretreatment (for salt removal) prior to continuous digestion may 

also be applicable to achieve better process stability. Hot water pretreatment was 

performed at a single temperature point (40⁰C) in this study and was applied to 

only one species (L. digitata). Such a pre-treatment needs to be investigated for 

other potential brown seaweeds (S. latissima) with the calibration of pre-

treatment time and temperature. This again may result in higher specific methane 

yields due to salt removal.  

7. Seaweed storage technologies may be required at industrial scale after bulk 

natural harvesting or farm cultivation. The brown seaweeds of interest may be 

investigated for suitable storage methods such as anaerobic storage at lower 

temperatures. This would facilitate the continuous supply of the seaweed 
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feedstock year-round. It may also be investigated as a potential pre-treatment 

technology.    

8. The cost of seaweed may be a challenge in employing digestion technologies. 

The potential for an integrated multi-trophic aquaculture (IMTA) system should 

be investigated to potentially reduce the cultivation costs. Support from 

Government in policy and legislation is required for expansion of research that 

focuses on such innovative cultivation techniques.  


