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OPEN

REVIEW

Stress and adolescent hippocampal neurogenesis: diet and
exercise as cognitive modulators
CM Hueston1, JF Cryan1,2 and YM Nolan1,2

Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect
structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis
occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is
important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the
hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time
particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of
life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function.
Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which
interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention
at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and
cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis
and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which
may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time
for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-
induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent
hippocampus to stress, exercise and diet and the consequent effect on cognition may provide insight into why adolescence may be
a vital period for correct conditioning of future hippocampal function.
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INTRODUCTION
Adolescence represents a time of transition to independence
during which significant lifestyle changes occur,1,2 and it is
believed to be a critical period for the programming of future
adult behaviours.3 Although there are no definite markers for the
adolescent period, in mice and rats adolescence is generally
considered to be from post-natal day (PND) 21–60, and in humans
from ages 12 to 18.4 Puberty, the maturation of the hypothalamic–
pituitary–gonadal (HPG) axis occurs during the early adolescent
period. In rodents, puberty typically occurs between PND28–42 in
females and PND42–49 in males and is characterised by vaginal
opening and preputial separation, respectively.5 In humans,
puberty spans from ages 10 to 16 in girls and 11 to 17 in boys,
and is characterised by the development of secondary sexual
characteristics, and the onset of menses in girls5,6 (please see
Holder et al.5 for a pictorial representation of the relative
adolescent period in rodents and humans). Significant changes
in neuroendocrine, neurodevelopmental and behavioural systems
occur during adolescence.4,7–10 For instance, there are changes in
reward circuitry that render both rodent and human adolescents
less sensitive to the aversive effects of drugs of abuse.11

Behaviourally, both rodents7,12,13 and humans7,14–16 show
increased risk-taking,16 social activity14,17 and impulsivity12,15

across the adolescent period. Cognitive changes have also been

demonstrated at this time of the lifespan,18 especially in relation
to executive function19 and cognitive control.20 This corresponds
to neurodevelopmental changes in terms of maturation of the
circuits related to learning and memory, including the
hippocampus,21,22 amygdala9 and prefrontal cortex.18,22

The hippocampus is particularly altered during adolescent
development, as an increased number of granule cells and overall
increased volume of the hippocampal layers has been demon-
strated in rodents during the adolescent period.23,24 Notably,
levels of hippocampal neurogenesis (the production, differentia-
tion and integration of new neurons within the subgranular zone
of the granular cell layer of the dentate gyrus (DG)),25 is up to four
times higher during adolescence than during adulthood in
rodents.21,26–30 While the exact purpose of these newly born
hippocampal cells is still controversial,31,32 several lines of
evidence from rodent studies have suggested that adult hippo-
campal neurogenesis is mandatory for stress susceptibility33 and
optimal cognitive function,34,35 at least during adulthood.
Neurogenesis has been linked to cognitive behaviours that are
hippocampal-dependent, and while some discrepancies are
evident, overall it has been shown that tasks that require spatial
memory, contextual memory or pattern separation are predomi-
nantly reliant on hippocampal neurogenesis.36,37 More research
is needed, however, to decipher the relative contribution of
neurogenesis during adolescence to cognitive function, and
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especially to determine whether the types of behavioural tests
that are reliant on hippocampal neurogenesis differ during this
time period. While most studies that have examined the role of
hippocampal neurogenesis in cognitive function have focused on
the adult, it is important to consider that across the lifespan there
may be differential effects. Likewise, most rodent studies
examining the role of hippocampal neurogenesis in cognitive
function have employed male rats; however, puberty may lead to
the onset of sex differences in hippocampal neurogenesis.38,39

Thus, there is still much to be explored in regards to possible sex
differences in neurogenesis-associated behaviours, especially
during the adolescent period.
Only a limited number of studies have examined the effects of

blunted neurogenesis during adolescence on cognitive perfor-
mance in later life. The results to date indicate that adolescent
male rats and mice exposed to radiation, which ablates
hippocampus neurogenesis, at PND21 or PND50 show a reduction
in both the proliferation and survival of new neurons within the
DG in adulthood,40,41 as well as lasting deficits in performance in
cognitive tasks such as the Morris water maze40 and fear-
conditioning.41 This corresponds to findings in humans, which
show that brain radiation for cancer treatment in children and
adolescents produces long-term decreases in IQ scores along with
other cognitive and behavioural changes.42 Thus, these data
suggest that any changes to hippocampal neurogenesis during
adolescence may have long-lasting effects on memory and
learning. Altered hippocampal neurogenesis has also been linked
to disorders that often emerge during adolescence or early
adulthood, including depression,43–46 schizophrenia,46–48 drug
abuse49,50 and impulse control disorders such as attention-
deficit hyperactivity disorder,51,52 all of which have significant
cognitive as well as emotional symptoms. As such, alterations in
neurogenesis during adolescence may be important in initiating
the onset or development of disease.53

It is also important to consider other lifestyle and physiological
changes that occur during the adolescent period, and how these
could influence both neurogenesis and cognition. The transitional
period of adolescence is a particularly stressful one,4,54 with a
majority of human adolescents reporting mood disturbances and
anxiety.55 Stress has been shown to have a predominantly
negative impact on hippocampal neurogenesis.56,57 In particular,

chronic exposure to stressful situations including psychosocial or
physical stressors has been demonstrated to be detrimental to
adult neurogenesis in the DG in several species including mice,
rats, marmoset monkeys and tree shrews, in that it decreases cell
proliferation, neuronal differentiation and cell survival.58–60

Related to this, chronic stress has been shown to impair hippo-
campal-dependent behaviours including learning and memory in
rodents.61 As such, the stress associated with the adolescent
period may produce alterations in hippocampal neurogenesis and
cognitive function. Other extrinsic signals, such as physical
exercise and diet, have also been identified as regulators of adult
hippocampal neurogenesis in rodents.62 As adolescence is a
vulnerable period for lifestyle influences, positive alterations in
diet and exercise at this time could help to attenuate the negative
impact of stressor exposure on neurogenesis and cognition.63–67

Not only are there basal differences in hippocampal neurogen-
esis during adolescence, but it is also a time period during which
hormonal changes and alterations in lifestyle can affect neuronal
proliferation and survival within the DG. Moreover, this period of
the lifespan may be important in the programming of future
hippocampal connectivity; thus, it is essential to better understand
how potential modulators such as stress, diet and exercise could
affect adolescent hippocampal neurogenesis, and subsequently
have an impact upon cognitive function throughout the rest of
the lifespan. This review will address the adolescent period as a
critical window for the profound and lasting negative effects of
stress, with a focus on how activation of the hypothalamic-
pituitary-adrenal (HPA) axis and neuroinflammation may contri-
bute to these effects. The role of puberty in producing differences
between adolescent males and females in response to stress will
also be discussed. Lastly, the review will consider the possible
alleviation of chronic alterations to hippocampal neurogenesis
and cognitive function through interventions with modifiable
lifestyle factors such as exercise and diet (Figure 1).

THE IMPACT OF STRESS DURING ADOLESCENCE ON
HIPPOCAMPAL NEUROGENESIS
Immediate effects of adolescent stress on neurogenesis
While it is well established that stress has a detrimental effect on
neurogenesis in adulthood, the effect is relatively short-lived, as

Figure 1. A schematic illustration of the impact of both negative and positive lifestyle factors on stress-induced alterations to neurogenesis in
the dentate gyrus of the adolescent hippocampus. BDNF, brain-derived neurotrophic factor; GCL, granular cell layer; SGZ, subgranular zone.
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recovery can occur in as little as 10 days.68 The effects of stress
during adolescence on hippocampal neurogenesis in rodent
models remain relatively unexplored; however, what data there
are indicate that stress during this time can produce much longer-
lasting effects on neurogenesis and related cognitive function.
Indeed, perhaps for pragmatic, logistical and timing reasons most
experiments investigating the effects of stress in adolescence
have utilised paradigms in which the final readout is during
adulthood (see Table 1 for hippocampal cellular measures). The
few studies in which neurogenesis measures were tested
immediately while animals were still in the adolescent period
have shown differing effects depending on the parameters used
and examined. For example, male rats that had been exposed to
social instability stress (PND30–45) had increased hippocampal
cell proliferation and numbers of new neurons when examined at
PND46,69 while female rats exposed to the same stress challenge
had decreased hippocampal cell survival and no change in
proliferation when examined at PND49.70 Male mice exposed to
chronic isolation stress (5 weeks starting at PND24) exhibited a
decrease in the survival of newly born cells, as well as a reduction
in the proportion of newly born neurons in the cellular population

when examined at PND53.71 Unlike the effects of social isolation in
rats, no change in cell proliferation within the DG was observed.71

This could suggest that a longer stress challenge produces a
differential response, or that the short-term effect of stress in
adolescence is opposite to the effect at a later time point. In a
non-human primate model, 8–10-month-old male and female
marmoset monkeys showed a decrease in cell proliferation and in
the number of new neurons within the DG immediately after
either 1 or 3 weeks of social isolation stress.72 Chronic social or
physical stress in male rats (4 weeks starting at PND28) did not
result in changes to DG volume or neuronal density at PND56,73

while male rats at PND28 showed a reduced induction of long-
term potentiation following elevated platform stress, suggesting
impaired hippocampal function.74 However, DG volume, neuronal
density and long-term potentiation are all indirect measures of
neurogenesis, and as such may not be reflective of changes in
hippocampal neurogenesis levels per se. Thus, from the few
studies there are, it appears that the effect of stress in adolescence
on neurogenesis can be either positive or negative depending on
the timing of tissue collection in relation to the stress challenge
and the sex of the animals tested.

Table 1. Summary of the effects of adolescent stress on hippocampal neurogenesis and neuroplasticity measures in rodent models

Stressor Species Sex Age (PND) at Effect on hippocampal neurogenesis and neural plasticity References

Stress BrdU
(i.p.)

Tissue
collection

Elevated platform Wistar rat M 28 N/A 28 ↓ LTP in CA1 Xiong et al.74

28 ↑ LTD in CA1
Chronic restraint SD rat M 30–52 70 91 ↔ Cell proliferation (Ki67) Barha et al.75

91 ↑ Cell survival (BrdU)
91 ↔ Neuronal differentiation (Brdu/NeuN); DG volume

Chronic restraint SD rat F 30–52 70 91 ↓ Cell proliferation (Ki67)
91 ↓ Cell survival (BrdU)
91 ↔ Neuronal differentiation (Brdu/NeuN); DG volume

Chronic mild SD rat M 30–58 72 77 ↑ Number new cells (BrdU) Toth et al.76

77 ↔ Number of new neurons (BrdU/DCX)
77 ↑ BDNF protein in DG

Chronic physical SD rat M 28–55 N/A 56 ↑ Volume of CA1 Isgor et al.73

56 ↔ Volume; neuron number; neuronal soma size
in CA3, DG

76 ↓ Volume of CA1, CA3, DG
76 ↑ Neuronal soma size in CA1, DG
76 ↔ Neuron number

Chronic social SD rat M 28–55 N/A 56 ↑ Volume of CA1
56 ↔ Volume; neuron number; neuronal soma size

in CA3, DG
76 ↑ Neuronal soma size in CA1, DG
76 ↔ Volume; neuron number in CA1, CA3, DG

Chronic social CD1 mouse M ~32–80 N/A ~ 450 ↓ BDNF in CA1, CA3, DG Sterlemann et al.77

~ 450 ↓ DG synaptic density (synaptophysin protein)
~ 450 ↓ LTP in CA1

Social instability LE rat M 30–45 N/A 33 ↑ Cell proliferation (Ki67) McCormick et al.69

46 ↔ Cell proliferation (Ki67)
46 ↑ Number of new neurons (DCX)

74/75 ↔ Cell proliferation (Ki67)
74/75 ↑ Number of new neurons (DCX)

Social instability LE rat F 30–45 43–45 49 ↔ Cell proliferation (Ki67) McCormick et al.70

49 ↓ Number of new cells (BrdU)
Social isolation ICR mouse M 24–52 23 53 ↓ Cell survival (BrdU); neuronal differentiation

(BrdU/NeuN)
Ibi et al.71

52 53 ↔ Cell proliferation (BrdU)

Abbreviations: BrdU, bromodeoxyuridine; BDNF, brain-derived neurotrophic factor; CA1, Cornus ammonis region 1 of the hippocampus; CA3, Cornus ammonis
region 3 of the hippocampus; DCX, doublecortin; DG, dentate gyrus; F, female; ICR, Institute for Cancer Research; i.p., intraperitoneal; LE, long-Evans; LH, Lister
Hooded; LTD, long-term depression; LTP, long-term potentiation; M, male; N/A, not applicable; NeuN, neuronal nuclei; PND, post-natal day; SD, Sprague–
Dawley.
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Lasting effects of adolescent stress on adult neurogenesis
The effect of stress during adolescence also appears to produce
changes to hippocampal neurogenesis that last into adulthood.
Male rats exposed to chronic variable physical stress for 4 weeks
during adolescence (starting at PND28) showed a decrease in DG
volume and an increase in DG neuronal density and DG granule
cell soma size when measured 3 weeks following stressor
cessation.73 Conversely, 4 weeks of social stress during the same
period only increased DG soma size without affecting volume or
neuronal density.73 When neurogenesis itself was measured in a
similar experimental paradigm, social instability stress in male rats
(PND30–45) resulted in increased numbers of immature neurons
within the DG at PND74–75.69 In support, 4 weeks of chronic mild
stress in adolescence (starting at PND30) resulted in an increase in
hippocampal cell proliferation along with an increase in DG brain-
derived neurotrophic factor (BDNF; a strong correlate of neuro-
genesis) in male rats.76 Interestingly, when the same stressor was
applied for 4 weeks to adult male rats (starting at PND60), the
opposite effect was found, with stress resulting in a decrease in
cell proliferation and decreased BDNF expression.76 Similarly,
7 weeks of social stress starting during adolescence (PND31–33)
and continuing into adulthood in male mice resulted in decreased
mRNA expression of BDNF within the DG 12 months following
stressor exposure.77 This suggests that stressor duration can have
a differentially impact on neurogenesis, with the negative impact
of adulthood stress potentially over-riding any pro-neurogenic
effects of stress during adolescence. There also appears to be a sex
difference in the impact of chronic stress on neurogenesis during
adolescence, as chronic restraint stress (PND30–52) decreased
hippocampal cell proliferation and survival in female rats, but
increased cell survival in male rats.75 Thus, an overall trend for an
increase in hippocampal neurogenesis in early adulthood is
reported after adolescent stress exposure in males, while the
opposite effect is observed in females and in males later in life.
This highlights that factors such as stressor duration, the age at
which it occurs, the sex of the species and the timing of tissue
collection all warrant particular attention in the experimental
design. As such, the factors influencing this differential response
to stress-induced changes to neurogenesis across the lifespan
deserves greater investigation.

Reconciling across-studies differences in stress-induced alterations
in adolescent neurogenesis
When examining the results across these studies, there are many
important confounds to keep in mind, which may underlie the
discrepancies observed. First, not all measurements of hippocam-
pal function may be reflective of neurogenesis. For instance, as
stated earlier, non-direct measures such as hippocampal volume
and BDNF levels do not always correlate with direct cell-counting
measures. An example of this is that male rats had no alterations
in BDNF mRNA expression within the dorsal hippocampus, but
displayed increased numbers of newly born and immature
neurons within the DG 2 weeks following chronic mild stress
through mid to late adolescence (PND30–58).76 In addition, it has
recently been suggested that the marker doublecortin, which is
often used as a measurement of newly born neurons, may not be
a necessary mediator of neurogenesis.78 Thus it is important to
consider the type of measurement being made when interpreting
data on neurogenesis.
In addition to the types of neurogenic measurements being

used, the measurement of dividing cells with the thymidine
analogue 5-bromo-2’-deoxyuridine (BrdU) can vary in terms of
dosage, timing of injection and timing of tissue collection post
injection. For instance, lower doses of BrdU (50–100 mg kg− 1)
result in fractional labelling of mitotic cells,79 which could explain
some of the differential results between experiments. Varied
lengths of time between BrdU injection and tissue collection to

assess cell proliferation have also been employed in these
adolescent neurogenesis studies. While some experiments have
used a 24-h interval,71 others used a delay of ~ 5 days between
BrdU injection and tissue collection.70 In adult neurogenesis
studies in which BrdU is used to label cellular proliferation, the
timing between injection and cull is usually 24 h or less,80–83 with
a number of studies using a 2-h interval,84,85 as this has been
demonstrated to represent the timing of one labelling cycle.86,87

Thus, the longer delays used in the adolescent studies discussed
here may more accurately represent short-term cell survival rather
than proliferation.87 In addition, the timing of BrdU injection in
relation to the stressor onset should be considered. In some
studies BrdU was administered after the stress challenge to
determine the levels of cell proliferation and survival in the post-
stress environment,75,76 while in others the BrdU injection was
done during the stressor exposure in order to examine the direct
effect of stress on neurogenesis.9,71 As the effects of stress can
sometimes be short-lived, it is thus important to bear in mind that
these differences in BrdU injection schedules could result in
differential outcomes in terms of cell proliferation or survival rates.
Furthermore, there is some evidence that the blood–brain barrier
permeability to BrdU may vary with age. For example, it appears
that the foetal brain is more susceptible to BrdU permeability,79

which again would make comparisons of neurogenesis difficult
across the lifespan, including between adolescence and adult-
hood. Ideally, a dose- and time-response curve at multiple ages of
BrdU labelling would be helpful in determining the optimal
dosage regime of BrdU across post-natal life.
Consideration should also be given to the duration and timing

of the stress challenge itself when measuring hippocampal
neurogenesis responses. One of the main factors that may
influence stressor effects on neurogenesis is the length of the
stress challenge. Although both acute and chronic stress have a
detrimental effect on hippocampal neurogenesis, in adulthood
the effects of acute stress are shorter-lived.60 However, in
adolescence shorter stress challenges may be able to produce
longer effects, as evidenced by a study in which adolescent male
rats were subjected to a relatively short chronic stress paradigm
(15 days) altered hippocampal neurogenesis up to 30 days later.69

THE IMPACT OF STRESS DURING ADOLESCENCE ON
HIPPOCAMPAL-DEPENDENT COGNITIVE FUNCTION
Immediate effects of adolescent stress on cognitive function
Stress in adulthood results in deficits in cognitive behaviours such
as spatial learning88,89 and novel object recognition,90,91 which
have been shown to be dependent on hippocampal
neurogenesis.92,93 During adolescence, stress produces varied
changes to cognition (see Table 2 for cognitive behavioural
measures in rodent models) depending on the type of stressor,
the cognitive test employed and the timing of the stressor. For
instance, eyeblink conditioning was increased following tailshock
stress during mid-adolescence (PND35–40), but not early adoles-
cence (PND25–29) in both male and female rats.94 A mixed stress
challenge composed of daily exposure to predator odour and
elevated platform stress (PND28–30) produced increased freezing
in male rats exposed to auditory fear-conditioning (PND42), but
reduced freezing in a contextual fear paradigm in females at the
same time point,95 suggesting a decrease in hippocampal-related
behavioural performance. Chronic stress challenges have also
been found to produce a change in cognitive function when
tested in adolescence. Social isolation in male rats (30 days
starting at PND25–28) resulted in impaired object recognition
memory on the last day of stressor exposure.96 Similarly, social
isolation through adolescence (5 weeks starting at PND24)
resulted in impaired spatial memory in the Morris water maze
(PND53–59) in male mice.71 Neither chronic variable physical
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stress nor chronic variable social stress during adolescence
(4 weeks starting PND28) affected spatial memory in the Morris
water maze at the end of adolescence (PND56) in male rats.73

Together, these studies indicate that chronic stress during
adolescence may produce a negative impact on cognitive
function depending on the type of stressor imposed and the
cognitive test employed.
While there is evidence from human studies that indicates that

stress during adolescence affects behavioural outcomes such as
risk-taking,104,105 there is limited evidence reporting an effect of
adolescent stress on cognition in humans. However, one study has
suggested that adolescents may be more vulnerable to stress-
induced cognitive impairment, as adolescents exhibited an
increased deficit in response inhibition under stressful conditions
when compared to adults in the same paradigm.106 Critically,
many studies of adolescent human cognition have focused on
cognitive behaviours associated with cortical function such as
response inhibition106 and cognitive control107 as opposed to

hippocampal-dependent behaviours, and thus cannot be directly
used as a measure of hippocampal function. In addition, most
studies of human adolescent cognitive function have focused on
the impact of early-life stress, examples of which include neglect,
maltreatment and placement into foster-care, rather than the
effect of stress during adolescence itself, which limits the
conclusions that can be drawn. For example, adolescents with a
history of caregiver deprivation who had been put into adoptive
placement (starting between ages 1 and 6) had decreased
cognitive control in a ‘stop-signal’ task when compared to
controls.107 While studies like this one can inform future research
into the effect of stress during the adolescent period on
hippocampal-based cognitive function, caution should still be
taken in the interpretation of how stress during adolescence may
affect cognitive function. Overall, the immediate effect of stress
during adolescence on cognitive function in humans (and rodent
models) remains ripe for exploration.

Table 2. Summary of the effects of adolescent stress on hippocampal-related cognitive behaviours in rodent models

Stressor Species Sex Age (PND) at Cognitive test Cognitive effect Reference

Stress Testing

Elevated platform Wistar rat M 26–28 60 MWM ↓ Learning Avital et al.97

28 90 MWM ↑ Reversal
Tailshock SD rat M ~27 ~ 27–28 TEC ↔ Responses Hodes et al.94

~ 37 ~ 37–38 TEC ↑ Responses
Tailshock SD rat F ~ 27 ~ 27–28 TEC ↔ Responses

~ 37 ~ 37–38 TEC ↑ Responses
Chronic mild SD rat M 30–70 ~385 RAM ↔ Latency Chaby et al.98

Chronic mild SD rat M ~43–63 ~ 64–67 TFC ↑ Freezing Reich et al.99

~ 64–67 DFC ↔ Freezing
Chronic physical SD rat M 28–55 56 MWM ↔ Learning Isgor et al.73

28–55 76 MWM ↓ Learning
Chronic social SD rat M 28–55 56 MWM ↔ Learning

28–55 76 MWM ↔ Learning
Chronic social CD1 mouse M ~32–80 ~270 MWM ↔ Learning Sterlemann et al.77

~ 440 MWM ↓ Learning
~440 Y-Maze ↓ Learning
~440 NOR ↔ Recognition
~ 440 SDL ↔ Recognition

Social instability LE rat F 30–45 46–48 SLR ↔ Memory McCormick et al.70

70–72 SLR ↓ Memory
Social instability LE rat M 30–45 46–49 SLR ↔ Memory McCormick et al.69

46–49 NOR ↔ Recognition
70–73 SLR ↓ Memory
70–73 NOR ↔ Recognition

Social isolation ICR mouse M 24–59 53–59 MWM ↓ Learning Ibi et al.71

Social isolation LH rat M ~28–58 ~ 58 NOR ↓ Recognition Bianchi et al.96

Social isolation LH rat F 28–70 ~ 70 NOR ↓ Recognition McLean et al.100

~70 AS ↓ Learning
Variable SD rat M 27–29 59–60 TWS ↓ Avoidance Tsoory et al.101

33–35 59–60 TWS ↓ Avoidance
Variable SD rat M 27–29 60–61 TWS ↓ Avoidance Ilin et al.102

Variable SD rat M 27–29 63 TWS ↓ Avoidance Tsoory et al.103

Variable WH rat M 28–30 41–42 CFC ↔ Freezing Toledo-Rodriguez et al.95

41–42 AFC ↑ Freezing
83–87 CFC ↔ Freezing
83–87 AFC ↑ Freezing

Variable WH rat F 28–30 41–42 CFC ↓ Freezing
41–42 AFC ↔ Freezing
83–87 CFC ↔ Freezing
83–87 AFC ↔ Freezing

Abbreviations: AFC, auditory fear-conditioning; AS, attentional set-shifting; CFC, contextual fear-conditioning; DFC, delay fear-conditioning; F, female; ICR,
Institute for Cancer Research; LE, long-Evans; LH, lister hooded; M, male; MWM, Morris water maze; NOR, novel object recognition; PND, post-natal day; RAM,
radial arm maze; SD, Sprague–Dawley; SDL, social discrimination learning; SLR, spatial location recognition; TEC, trace eyeblink conditioning; TFC, trace fear-
conditioning; TWS, two-way shuttlebox; WH, Wistar Han.
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Lasting effects of adolescent stress on adult cognitive function
Acute stressor exposure during adolescence can also have lasting
effects on cognitive function, at least in rodent models. For
example, 3 days of predator odour stress and elevated platform
stress (PND28–30) increased freezing in an auditory fear-
conditioning paradigm in male rats in adulthood, but produced
no effects in females.95 This suggests that, like neurogenesis, there
may be a sex difference in the cognitive response to stressor
exposure during adolescence. There are also differences in the
adult response depending on the timing of stressor exposure
during adolescence, as variable stressor exposure in early
adolescence (PND27–29) had a more pronounced negative effect
in the two-way avoidance shuttle task in adulthood than did
stressor exposure in mid-adolescence (PND33–35) in male
rats.101,103 In addition, it appears that adolescents may be more
likely to develop long-term changes in cognitive function in
response to stress, as adolescent male rats exposed to elevated
platform stress (PND26–28) showed an increased impairment in
spatial learning in the Morris water maze in adulthood when
compared to rats exposed to the same stressor in adulthood.97

Furthermore, stressor exposure during the adolescent period may
result in organisational changes that alter future responses to
stress. This is evidenced by a study demonstrating that male rats
exposed to elevated platform stress during adolescence, that were
subsequently exposed to acute swim stress in adulthood, showed
improved performance in the Morris water maze compared to
either stress challenge alone.97 However, evidence of changes in
neurogenesis in these studies has not been examined, and so to
date we can only speculate on the role of acute stressor exposure
during adolescence on neurogenesis and associated changes in
cognition.
A larger number of studies have examined the effect of chronic

stress during adolescence on adult cognitive behaviours. In
contrast to acute stressor exposure, chronic mild stress for 3 weeks
in mid-adolescence (starting between PND40 and 45) resulted in
enhanced trace fear-conditioning in male rats, but had no effect
on contextual conditioning when tested immediately following
the end of stressor cessation in adulthood.99 Social isolation of
female rats for 6 weeks (starting at PND28) impaired both object
recognition and attentional set-shifting when tested at the
beginning of adulthood.100 Similarly, chronic social instability
stress during adolescence (PND30–45) resulted in impaired object
location memory in both adult female70 and male69 rats. In
contrast, no changes were observed when rats were tested in
adolescence, suggesting that stress during adolescence may not
affect behavioural outputs immediately. However, in a similar
study, chronic variable physical stress, but not variable social
stress, imposed for 4 weeks during adolescence (starting PND28)
in male rats resulted in reduced spatial memory performance in
the Morris water maze in adulthood.73 The reasons behind the
discrepancy in these findings remains unclear, as all used social
stress paradigms starting at a similar age, and utilised forms of
spatial memory as the behavioural output. However, it may be
that location recognition memory and spatial memory in the
Morris water maze are differentially influenced upon by stress-
induced deficits in hippocampal neurogenesis. The effect of
chronic stress during adolescence on behaviour in aged animals
has also been examined. While in one study male rats exposed to
5 weeks of chronic unpredictable stress during adolescence (from
PND30 to 70) showed no changes in learning in the radial arm
maze when tested 10 months later,98 in another, male mice
exposed to 7 weeks of chronic social stress (starting approximately
PND31–33) showed deficits in spatial memory in the Y-Maze and
Morris water maze 12 months after the last stress exposure.77

Thus, the effect of stress during adolescence may not be apparent
immediately, but may produce deficits throughout the lifespan,

although future experiments are needed to better clarify these
findings, and provide more conclusive support.
Collectively, these studies suggest that both acute and chronic

stress exposure during adolescence results in long-term changes
to performance in hippocampal-dependent cognitive behavioural
tasks, potentially mediated through hippocampal neurogenesis.
Unlike the recovery from stress observed in adulthood, which can
occur in as little as 10 days,68 stress during adolescence can
produce effects up to 12 months later. In addition, the adolescent
period appears to be particularly vulnerable to certain types of
stressors such as social isolation due to the evidence demonstrat-
ing that decreases in neurogenesis occurs during adolescence but
not adulthood in response to this stressor.72,108 However, more
studies are needed to address the timing, stressor specificity and
duration of these responses.

Reconciling differences across studies into the effects of
adolescent stress on cognition
As with the measurement of neurogenesis, the divergent results
obtained from adolescent stress and cognition studies most likely
reflect differences in experimental design across experiments.
Likewise, the stressors employed in these experiments are varied
in terms of both duration and severity, and as such could produce
differential outcomes. For instance, as stated above, in male rats a
short-term variable stressor (3 days) did not affect contextual fear-
conditioning in adulthood,95 while a longer-term variable stressor
(3 weeks) produced an increase in freezing behaviour.99 It is hard
to pinpoint whether in this case it was the difference in the
duration of stress alone that was the significant factor, as the
difference in behavioural performance could also be due to
the types of varied stressor used, or due to the timing of stressor
exposure.
The timing of the cognitive testing following stressor exposure

could have an important role in mediating the effect on
behavioural outcome. It has been shown that performance in
cognitive tasks changes during developmental periods.9 For
instance, chronic variable physical stress during adolescence
produced deficits in spatial memory in the Morris water maze in
late adolescence but not in adulthood in male rats,73 whereas
social instability stress impaired object location recognition only in
adulthood.69 In addition, the same stress challenge during
adolescence resulted in disparate outcomes at different adult
ages. Specifically, chronic social stress during adolescence in male
mice produced no change in spatial memory in the Morris water
maze 6 months post stress; however, at 12 months post-stress
deficits in performance were observed.77 Therefore, it is important
to test the effects of adolescent stress on cognitive performance at
a range of ages later in life in order to get a greater understanding
of the lasting cognitive deficits produced in response to stressor
exposure.
The tests used to measure cognitive ability in response to

adolescent stress differ across reports, and could contribute to
some of the diverse findings. As the adolescent period is
characterised by increased impulsivity109 and enhanced reward
sensitivity,110 it is important to consider potential differences in
responses in cognitive tests at this time compared to adulthood.
For instance, adolescent rodents are more susceptible to fear-
conditioning than adults,109 and both adolescent rodents and
humans demonstrate impaired fear extinction,111 which could
indicate that direct comparisons between adolescents and adults
on fear-motivated tasks are not appropriate. It is also imperative to
note that stressor exposure has been shown to impact locomotor
activity,112 pain susceptibility113 and anxiety behaviours,114 and as
such caution should be used when interpreting the results of
behavioural studies for which these changes may be confounding.
The brain circuitry required to complete various cognitive tasks

differs, and this may explain some of the discrepancies in the
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reports on cognitive function from the literature not just in studies
using adolescent rodents but in adult rodent studies also. For
instance, in adult rodents, spatial memory tasks such as the Morris
water maze and radial arm maze, as well as tests requiring
contextual memory such as contextual fear-conditioning, have
been repeatedly demonstrated to require an intact hippocampus
for successful completion.115–121 Similarly, humans with hippo-
campal damage show impairments in in a virtual Morris water
maze task.122 In tests such as novel object recognition69,77,96,100

and cued fear-conditioning,95,99 hippocampal lesion studies in
adult rodents have shown mixed results, with some indicating
direct hippocampal involvement,93,120 and others indicating that
regions such as the peri-postrhinal cortex (novel object)118,123 and
amygdala (cued fear-conditioning)121 may have a role in correct
completion of the task. In the studies examining the effect of
adolescent stress on cognition, the majority of those indicating a
stress-induced deficit in performance utilised hippocampal-
dependent spatial navigation tasks like the Morris water
maze,71,73,77,97 spatial location recognition69,70 or Y-maze.77

Following adolescent stress animals showed either no change69,77

or a decrease96,100 in performance in novel object recognition, a
task that may be less reliant on the hippocampus. However, other
tests that are believed to be dependent on hippocampal function
such as context based fear-conditioning,95 and radial arm maze98

do not result in clear cut deficits following stressor exposure
during adolescence.
One explanation for this discrepancy in performance in

hippocampal-dependent tasks in response to adolescent stress
is that even though these tasks require hippocampal-dependent
types of memory, they may not be definitively associated with
changes in hippocampal neurogenesis. Tasks that require spatial
memory, contextual memory and pattern separation have been
shown to be dependent on hippocampal neurogenesis, at least in
adult rodents.124–126 For example, both drug- and ablation-
induced reductions in adult hippocampal neurogenesis have
been shown to impair performance in trace fear-conditioning,127

contextual fear-conditioning,119 spatial memory in both the Morris
water maze37,40 and Barnes maze,128 spatial pattern separation
using a radial arm maze,36 place learning using the Morris water
maze129 and long-term memory in a non-matching to sample
task.130 Lentiviral-mediated inhibition of the WNT signalling
pathways (which are necessary for neurogenesis) within the DG
of rats resulted in impaired spatial memory and novel object
recognition,131 and deficits in a modified spontaneous location
recognition pattern separation task.132 However, it has also been
demonstrated that drug-induced reduction in hippocampal
neurogenesis did not affect spatial learning in the Morris water
maze, elevated plus maze or contextual fear-conditioning.127

These discrepant findings may reflect recent research, which has
indicated that hippocampal neurogenesis may be involved in the
forgetting of old information rather than the addition of new
memories.133 In support, stress in early life can decrease extinction
in fear-conditioning,95 indicative of a decline in the ability to
forget a previously learned connection. Thus, the involvement of
neurogenesis in cognitive tasks may be reflective of which
component of memory or learning is being tested, and the type
of test being used. Because of the uncertainty still surrounding the
association between hippocampal neurogenesis and different
types of cognitive tasks, as well as the potential for this association
to change throughout the lifespan, the best course of action to
assess the effect of stress on adolescent neurogenesis
and cognitive function would be to correlate cognitive
performance in multiple tasks carried out at various times
throughout the adolescent period with measures of hippocampal
neurogenesis.

FACTORS THAT MAY CONTRIBUTE TO STRESS-INDUCED
ALTERNATIONS IN HIPPOCAMPAL NEUROGENESIS AND
ASSOCIATED COGNITION DURING ADOLESCENCE
HPA axis response to stress during adolescence
In response to stressor exposure, the HPA axis is activated,
resulting in the release of adrenocorticotropic hormone (ACTH)
from the anterior pituitary gland, which in turn stimulates the
release of corticosterone (CORT) from the adrenal cortex into the
bloodstream. In addition, ACTH and CORT production is also
stimulated by increased central release of pro-inflammatory
cytokines in response to stress, especially interleukin (IL)-1β.134

CORT in turn signals through glucocorticoid receptors (GR) and
mineralocorticoid receptors (MR) within the hippocampus to
activate a negative feedback loop and clamp the HPA response.135

Chronically elevated CORT has long been shown to suppress
neurogenesis in the adult rat DG,136 although both acute and
chronic stress-induced increases in CORT levels by stress have also
been associated with enhanced cell proliferation and survival,
respectively, in male mice.137,138 Moreover, the rate of hippocam-
pal neurogenesis in the adult male rat is dependent upon
circulating levels of CORT,139 suggesting a complex interplay
between the type and duration of stressor exposure that induces
CORT, as well as the critical period during the lifespan at which it
occurs.61

Evidence suggests that during the adolescent period hippo-
campal negative feedback onto the HPA axis may be diminished.
The HPA axis showed a longer latency to recover to baseline levels
of circulating ACTH and CORT in response to acute restraint stress
in adolescent (PND28) compared to adult male rats.140 Similarly, at
PND25 male rats had a prolonged ACTH and CORT response to an
ether exposure stress challenge, along with a slower rise to peak
CORT concentrations compared to adult rats.141 Further evidence
of this age difference in HPA activation comes from a study
showing that adolescent male rats (PND28) did not habituate to
7 days of restraint stress, as indicated by an increased circulating
CORT response, whereas adult male rats did habituate to this
stress challenge.142 In adolescent male rats (PND31–33) exposed
to the bacterial mimetic lipopolysaccharide, a blunted circulating
CORT response was observed after 3 h.143 However, this may be
reflective of a slower rise to peak concentrations of CORT similar to
that which has been reported following ether stress.141 Interest-
ingly, human male and female adolescents (age 13–17) also show
increased HPA activation (as indicated by an increased cortisol
response) in response to performance stressor exposure com-
pared to male and female children (age 7–12) and adults.144–146

One of the mechanisms through which a differential HPA axis
response is observed during adolescence may be a change in the
corticosteroid receptor balance during this developmental period.
For example, adolescent male rats exposed to variable physical
stress or social stress throughout adolescence (4 weeks starting at
PND28) showed reductions in GR mRNA expression within the
DG.73 The effect of physical stress appeared more long-lasting
however, as the reduction in GR mRNA within the DG was still
evident in adulthood, 3 weeks after stressor cessation.73 As the
beneficial effects of CORT on neurogenesis and cognition are
believed to occur with low occupation of GR receptors and high
occupation of MR,147,148 alterations in the MR to GR ratio across
adolescence may regulate the potential effects of CORT at this
time. Indeed, both male and female rats show an increase in MR
and GR gene expression within the hippocampus during the
adolescent period; mRNA levels of both receptors increase between
PND15 and PND35 and again from PND60.149 In marmoset
monkeys the trend is reversed, with mRNA levels of MR and GR
declining from infancy through adolescence to adulthood.150

While there are reported increases in GR mRNA expression in
the prefrontal cortex in humans during adolescence (age 14–18),
no changes have been reported in the hippocampus.151
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Thus, although GR expression is also decreased by stress in
adulthood,152 the altered basal MR/GR expression during adoles-
cence could result in differential changes to the glucocorticoid
system within the hippocampus following stress at this time. In
addition, the alterations in MR and GR ratios may affect the
negative feedback imposed by the hippocampus on the HPA axis
in response to stress. Thus, the increased HPA and CORT response
to stress in adolescence may be a mechanism through which
stressor exposure at this time of life may exert long-lasting effects
on both hippocampal neurogenesis and cognition.

Neuroinflammatory response to stress during adolescence
Stressor exposure also results in increased expression of pro-
inflammatory cytokines such as IL-1β,153,154 IL-6,155–157 and
tumour necrosis factor α,158–160 which have detrimental effects
on hippocampal neurogenesis.161 Specifically, exposure to these
cytokines has been shown to decrease the proliferation,154,155,160

survival157,159 and neuronal differentiation153,156,158 of new cells
in the embryonic and adult hippocampus. In addition to the HPA
axis regulation, CORT also signals through GR and MR in the
hippocampus to negatively feedback on the inflammatory
response, reducing IL-1β expression.162–164 Under conditions of
severe and chronic stressor exposure however, not only does the
HPA axis remain activated, but a neuroinflammatory milieu ensues
within many brain structures including the hypothalamus and
hippocampus.165–172

There is some evidence to suggest that there may be
differences in inflammatory signalling pathways responsible for
regulating neurogenesis across the lifespan, especially during the
adolescent period.173 For example, in vitro studies have shown
that in neural progenitor cells (NPC) cultured from adolescent
mouse hippocampus (PND21), administration of IL-1α promoted
an increase in cell proliferation, while NPC cultured from adult
murine hippocampus did not.155 However, cell proliferation was
inhibited by IL-6 administration in NPCs prepared from both
adolescent and adult hippocampi.174 Likewise, another report has
indicated that, in vivo, the cellular response to IL-1β may change
across the lifespan. Adult male mice (5 months) overexpressing
the IL-1 receptor antagonist showed decreased hippocampal cell
proliferation compared to wild types, yet this difference dis-
appeared with ageing (22 months).175 However, it remains to be
determined whether there are differential cytokine signalling
pathways that have an impact upon neurogenesis during
adolescence compared to adulthood, and indeed whether there
are sex differences in the response to inflammatory-induced
changes in neurogenesis and associated cognition.

Sex differences in the response to stress during adolescence
Sex is an important contributor to differences in basal levels of
adult hippocampal neurogenesis,85,176–178 for example, at PND35
male rats exhibit higher levels of cellular proliferation in the DG
than females,179 while adult female rats have higher levels of
proliferation than males.176 Moreover, as there are bi-directional
interactions between the HPA and HPG axes starting during
puberty, which allow for sex-dependent stress responses,180–183 it
is important to consider sex differences in the response to stress
during adolescence in rodents, and that these responses may
differ from those seen in adulthood. For example, in two reports
from the same group, similar experimental design and tissue
collection points were employed for both male and female rats. In
one experiment, adolescent female rats showed decreased cell
proliferation in the DG following social instability stress (PND30–
45),70 while in another, male rats showed an increase in cell
proliferation and numbers of new neurons within the DG at the
same time point.69 This also corresponds with the finding that
following chronic restraint stress in adolescents (PND30–52),
female rats had decreased cell survival, whereas male rats showed

increased cellular survival within the DG.75 Interestingly, these
changes are opposite to those observed in adulthood, as adult
male rats show a decrease in neuronal proliferation following
acute stress184 as well as a decrease in survival of new neurons
after chronic stress.185 In adult female rats, however, an increase in
the survival of new neurons, and no change in proliferation, was
observed following chronic stress.185 These results suggest that
adolescent females may have an inherent vulnerability to chronic
stress compared to adolescent males, while adult females appear
to be resistant to the detrimental effects of chronic stress on
hippocampal neurogenesis. The differences between males and
females in the neurogenic response to stress may be due to
alterations in circulating hormone levels,39,186 as adult female rats
show an increase in the number of proliferating cells during the
pro-oestrus phase of the oestrus cycle,176 a time characterised by
high oestrogen levels. In support, it has been reported that
gonadectomised adult female rats treated with oestrogen show
increased cell proliferation,85,177 but decreased neuronal survival
within the DG,177 while castrated adult male rats show decreased
survival of newly born cells, an effect that is reversed with
testosterone replacement as well as with the testosterone
metabolite dihydrotestosterone.178 The mechanism underlying
the effects of steroid hormones on neurogenesis is due to the
prevalence of oestrogen,187 androgen188 and progesterone189

receptors on neural stem cells in the hippocampus.39,186 Steroid
hormones and their interaction with cognate receptors on neural
stem cells are critical for the organisational programming of the
brain during the pubertal period of adolescence.38,190,191 Thus, the
impact of stress on the HPA axis during adolescence, particularly
during the pubertal period in females, may produce lasting
changes to the HPG system and consequently organisational
changes to hippocampal structures.
Although there is limited evidence to show that HPG axis

hormones can cause differences in cognitive function in
adolescent rodents,192–196 the literature includes reports from
studies using adult rodents. For example, gonadectomy in adult
male rats resulted in impaired performance in an inhibitory-
avoidance task, suggesting a role for testosterone in increasing
hippocampal-dependent cognition.197 In female rodents, treat-
ment with either progesterone or oestrogen following ovariect-
omy resulted in increased performance on a novel object task.198

Moreover, it has been demonstrated that hippocampal-dependent
cognition, especially spatial learning and memory, can vary across
the oestrus cycle, with performance waning during the oestrus
phase in mice following the peak of oestrogen levels.199 Similarly,
in human females, spatial cognitive ability was decreased during
the follicular and luteal phases when oestrogen levels were
low.200,201 McCormick et al.69,70 have attempted to explain the
potential differences in neurogenesis-associated cognitive func-
tion between adolescent males and females in response to social
instability stress. In their experiments, they showed that mid-
adolescent male rats (PND46) had an increase in the number of
new neurons within the DG in response to social instability
stress,69 whereas females (PND49) had a reduction in the number
of new cells at a similar time point,70 and neither sex had a change
in cell proliferation.69,70 However, both male and female
adolescent rats showed no change in spatial location memory
when tested during the adolescent period, but a decrease in
memory performance when tested in adulthood.69,70 While there
were some discrepancies in the measures of neurogenesis used
and the timing of tissue collection between these two studies,
overall they suggest that, while males and females may have
differences in the immediate response to stress, the lasting
negative impact on cognitive function is not discrepant across
sexes. In support, both male and female adolescent rats show an
increase in trace eyeblink conditioning following footshock,94

indicating that the cognitive response to stress during adoles-
cence may not differ between males and females. However, there
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is some evidence that suggests that females may be the more
susceptible sex to the negative effects of stress on hippocampal-
dependant cognition. Adolescent male rats showed an increase in
auditory fear-conditioning following chronic variable stress, while
females were impaired in a contextual fear-conditioning task,95 a
task that is more reliant on hippocampal neurogenesis. Thus, it will
be important in future studies of adolescent hippocampal
neurogenesis and cognitive function to note the pubertal state
of the animals and the phase of the oestrus cycle not only at the
time of cognitive testing, but also at the time of stress challenge
and tissue collection.

POTENTIAL INTERVENTIONS DURING ADOLESCENCE THAT
COULD AMELIORATE STRESS-INDUCED IMPAIRMENTS IN
HIPPOCAMPAL NEUROGENESIS AND COGNITION
Epidemiological studies have revealed that human adolescence is
often associated with altered meal intake patterns and changes in
physical activity levels.202 Studies have indicated that less than
50% of teens receive the daily-recommended intake of fruit,
vegetable, dairy or protein, while intake of fats and sugars during
adolescence is well above the recommended levels.203,204 In
addition, adolescents are more likely to engage in unhealthy
behaviours such as dieting and weight-control behaviours,205 as
well as increased alcohol and drug use.206–208 Along with the
reduction in healthy eating behaviours during this period,
adolescence has also been shown to be a time of reduced physical
activity,209 especially moderate-to-vigorous activity.210 This is in
parallel to an increase in sedentary behaviours, such as TV
viewing, video game and computer activity, and increased
homework and reading time.211 In addition, unhealthy diet,
increased alcohol intake and decreased exercise levels have been
associated with decreased hippocampal neurogenesis and cogni-
tive performance in rodent models;66,212–215 thus, it is possible
that the lifestyle changes often associated with adolescence may
have a negative impact on hippocampal function. Adolescence is
also a critical time for the programming of patterns of behaviour,
such as diet intake and exercise, which will carry over to
adulthood,3 and as such dietary and exercise interventions during
this period have the potential to alter hippocampal function and
cognition throughout the lifespan, not just in adolescence itself. It
should be noted, however, that due to the current scarcity of
evidence from human cohorts, data from rodent studies should be
viewed as informative rather than strictly translational.

Exercise
In adult rodents, aerobic exercise increases synaptic strength and
plasticity, learning and growth factors within the
hippocampus,67,216 and also increases neurogenesis within the
DG.66,80,217 It has previously been shown that 1 week of forced
low-intensity running during adolescence in male rats (starting
approximately PND35) resulted in increased survival of BrdU-
labelled cells, an increased percentage of new cells differentiating
into neurons and increased hippocampal BDNF mRNA
expression218 compared to sedentary rats. Similarly, male and
female rats trained on a rotarod from PND35 to 38 showed
increased cell survival at PND49 as measured by the number of
BrdU-labelled cells.219 In support, 8 weeks of forced running in
male rats (starting at PND22) resulted in increased performance in
the Morris water maze and increased neuronal numbers measured
with cresyl-violet staining throughout the hippocampus and DG,
which may suggest increased neurogenesis.220 Male rats sub-
jected to forced running for 5 weeks (from PND21 to PND60) also
showed increased mossy fibre density and BDNF protein levels
within the hippocampus, along with increased spatial memory in
the Morris water maze.221 Voluntary exercise can also have an
impact upon neurogenesis; 13 days of voluntary running during

adolescence (PND30–42) by male rats produced increases in both
cell proliferation and survival within the DG.222 Moreover, 4 weeks
of voluntary access to a running wheel during adolescence
(starting PND31) increased performance in the novel object
recognition task in male rats, an effect that was still observed
4 weeks after the exposure to exercise ended.223 In the same
paradigm during adulthood, the immediate positive impact of
voluntary running on object recognition in male rats had
diminished within 2 weeks of post-running wheel exposure.223

In humans, physical fitness during adolescence (~14 years of age)
is positively correlated to cognitive performance, while an acute
bout of exercise (20 min of graded cycling) produced no
changes.224 It should be noted that both acute and chronic
exercise have been linked to increased executive function,225,226

although this most likely indicates prefrontal cortex rather than
hippocampal changes. However, a positive correlation has also
been observed between aerobic activity and both hippocampal
size and cognitive performance on a virtual Morris water maze,
indicating that the link between exercise and hippocampal-
dependent tasks is also evident in human adolescents (~16 years
of age).227

There is some evidence that exercise during adolescence
ameliorates the deleterious effects of early-life stress on cognitive
behaviours and neurogenesis. Voluntary running in adolescent
male mice (PND21–52) reversed the negative cognitive effects of
prenatal stress in the Morris water maze, and also increased
granular cell dendritic length and intersections within the DG,
which suggests a recovery of cell maturation.228 Environmental
enrichment studies in adult rodents (in which they are housed in
larger cages, in larger groups, with access to toys, tunnels, besting
material and with opportunity to exercise on running wheels229

have demonstrated that exercise is the critical element of
environmental enrichment-induced enhancement of hippocampal
neurogenesis and cognitive performance.230,231 While the effect of
exposure to an enriched environment during adolescence on
hippocampal neurogenesis has not been yet reported in the
literature, it has been shown that environmental enrichment,
including free access to a running wheel (starting at PND22),
attenuated the increase in body weight gain and deficit in social
behaviours observed following prenatal stress in male rats.232 In
addition, enrichment with access to running wheels (starting
PND30) immediately following stressor exposure during adoles-
cence (PND27–29) attenuated the stress-induced anxiety-like
behaviours, altered HPA axis tone and impaired avoidance
learning in male rats.102 Although the beneficial effects of
environmental enrichment in adulthood on hippocampal neuro-
genesis has been shown to be largely due to increased physical
activity,230,231 it remains to be determined whether the same
holds true during the adolescent period. Taken together, despite
the heterogeneity of types of exercise employed, these studies
indicate a positive effect of exercise, especially aerobic exercise,
on hippocampal neurogenesis and cognitive function in adoles-
cence. This suggests that exercise could act to reverse the
negative impact of adolescent stress. However, there is a lack of
direct evidence for the benefit of exercise in modulating stress-
induced effects in adolescence compared to adulthood, and as
such future studies should investigate whether there is an age-
dependent response, and through which mechanisms these
changes are occurring.

Mechanisms underlying exercise-induced changes to
hippocampal neurogenesis and cognition
Many mechanisms underlying the effects of exercise on hippo-
campal function, including its potent effect on hippocampal
neurogenesis in adulthood, have been explored using rodent
models; however, the mechanism in adolescence may be
different. For example, it has been found that, in male rats, forced
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treadmill running during adolescence (PND21–60) decreases
cannabinoid receptor expression throughout the brain, including
within the hippocampus.233 This is opposite to the effect in
adulthood, where voluntary running increased cannabinoid
receptor expression within the hippocampus of male rats.234 As
the endocannabinoid system has been demonstrated to modulate
hippocampal neurogenesis,235 especially the proliferation and
migration of neurons,235–237 it may be that alterations to this
system during a period of brain remodelling such as adolescence
can produce long-lasting alterations to hippocampal structure and
function that are different than those seen in adulthood.
Moreover, the endocannabinoid system has been linked to HPA
axis function, in that it helps to maintain homeostasis and
habituation of the HPA axis.238 Thus, the endocannabinoid system
may be one mechanism through which exercise can alter the
effects of stress on neurogenesis, especially during adolescence.
The BDNF system has also been shown to be a major

mechanism underlying the positive effects of exercise on
neurogenesis.239 Moreover, BDNF has been shown to be
protective against the negative effects of stress on neurogenesis
and cognition.240 Forced running during the late adolescent
period (PND 41–50) in male rats produces heightened levels of
BDNF in the hippocampus in response to high-intensity
exercise.241 Because expression of the BDNF receptor TrkB
decreases during the course of the lifespan,242 it could be that
increased levels of this growth factor could have a greater effect
during adolescence than in adulthood. Adolescence may thus
represent a time during which exercise and the subsequent
elevation of BDNF expression within the hippocampus could
produce a more potent and longer-lasting attenuation of stress-
induced decreases in neurogenesis and cognition compared to
adulthood. In addition, there could be sex differences in the effect
of exercise on BDNF levels, as the BDNF gene contains an
oestrogen-response element243 and increased concentrations of
oestrogen result in heightened levels of BDNF expression.244,245 In
support of this, a reduction in the exercise-induced increase in
hippocampal BDNF expression in ovariectomised adult rats has
previously been reported.246 As such, the changes in circulating
oestrogens after puberty could contribute to a differential effect of
exercise on BDNF levels, and consequently on hippocampal
neurogenesis and associated cognition in adolescent males and
females. However, more experiments are necessary to better
elucidate the mechanisms underlying the amelioration of stress-
induced effects by exercise, to further examine the differences
between these mechanisms in adolescence in comparison to
adulthood, and to determine whether there are sex differences in
their actions.
Voluntary running has also been shown to alter the microbiota

of adult male rats,247,248 increasing the diversity of bacteria
present. Recently, studies have begun to emerge that suggest a
role for the microbiota in regulating both hippocampal
neurogenesis249 and cognitive function.250 Interestingly, changes
to the microbiota in adult female mice resulted in impaired
hippocampal neurogenesis and decreased cognitive performance
in a novel object recognition task, an effect that was rescued by
10 days of voluntary running.251 Thus, it appears that there is a
relationship between exercise, the microbiota and neurogenesis,
and as such microbiota changes may be one mechanism through
which exercise can exert effects on hippocampal function and
cognition in adolescence. In addition, it has also been demon-
strated that adolescent humans have a differing microbiota
diversity, with higher abundance of some genera, such as
Bifidobacterium and Clostridium compared to adults.252 While in
rodents early-life maternal separation stress results in changes to
both the microbiota113 and deficits in cognitive performance,253

the effects during adolescence remain unclear. Interestingly,
alterations of the microbiota during adolescence modifies
hippocampal BDNF levels and decreases cognitive performance

in the novel object recognition task in male mice.254 However, the
role of the microbiota in mediating the effects of adolescent
stress, as well as the potential role of exercise as a positive
modulator during this critical window, is an exciting new
mechanism to explore.

Dietary changes
Diet is one of the most easily modifiable lifestyle factors that is
known to alter cognitive and behavioural performance, as well as
neurogenesis.63–65 A growing body of evidence now points to the
importance of adolescent diet for general well-being, including
brain health.255,256 Moreover, changes in the human diet over the
past 50 years are potentially putting the adolescent brain in a
more vulnerable state. ‘Western’ diets high in processed foods,
fats and sugars result in many problems including obesity,257,258

diabetes259 and cognitive and emotional disorders.260,261 On the
other hand, healthy diets, such as a Mediterranean diet high in
vegetables, fish, fruits and nuts provide many macronutrients such
as omega-3 fatty acids, omega-6 polyunsaturated fatty acids and
flavonoids,262 which promote both brain263,264 and body
health.265 Thus, the evidence to date suggests that not only is
the nutritional status important for adolescent brain health, but so
is the overall diet composition including macronutrients, fatty
acids and vitamin levels.
To date, most studies examining the effect of diet during

adolescence on cognition and neurogenesis have focused on the
detrimental effect of high-fat diets (HFD) or high-sugar diets,
rather than any beneficial effect of lower calorie or nutrient-
supplemented diet. For example, in rodent models, male mice fed
a HFD for 11 weeks throughout adolescence (starting at PND21)
exhibited decreased cognitive performance in the radial arm
maze, and decreased numbers of new neurons in the DG, while
neither of these changes were observed when the diet was
administered during adulthood.213 Similarly, a HFD fed to male
rats during adolescence (for 11 weeks starting at PND21)
decreased long-term memory performance in the Morris water
maze, while a HFD during adulthood did not result in any of these
changes.266 In addition, human adolescents consuming ‘Western’
diets have decreased performance in visual-spatial learning and
memory tasks, both of which are associated with hippocampal
function.267 In support of the link between nutritional state and
hippocampal function, consumption of diets lacking in Vitamin A
and E resulted in decreased proliferation of new neurons in the
DG268,269 and reductions in spatial learning and memory268,270 in
adult male rats.
Some studies have examined the positive impact of nutrition on

hippocampal neurogenesis and cognition in adulthood.63,64 Low-
calorie diets have been shown to increase memory performance
in aged human subjects.271 Findings from studies using adult male
and female rodents suggest that low-calorie diets272–276 or diets
with increased flavonoids,277–279 omega-3 fatty acids,280–282

polyphenols,283 magnesium284 or zinc285 can increase proliferation
and survival of newly born neurons in the DG,274–276,278,279,281–283,285

as well as performance on hippocampal-related learning and
memory tasks.272,273,277,280,284 There is also some evidence to
suggest that nutritionally beneficial diets can protect against
stress-induced impairment in hippocampal neurogenesis as well
as cognitive deficits. For example, treatment of neuronal cultures
with an omega-3 fatty acid reversed the CORT-induced prevention
of neuronal differentiation.286 In addition, flavonoid-rich diets
administered to rats (sex unspecified) that were subjected to
chronic unpredictable stress reversed the stress-induced decrease
in proliferating new neurons within the DG.287 Similarly, male and
female mice subjected to 10 days of calorie restriction show
attenuation of chronic social stress-induced depressive-like
behaviours.288 Together, these results indicate that healthier
diet interventions may have an important role in regulating
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hippocampal function. However, as with exercise, whether there
is a differential effect of diet on stress-induced changes in
hippocampal neurogenesis and cognition during adolescence
compared to adulthood remains to be seen.

Mechanisms underlying diet-induced changes to hippocampal
neurogenesis
BDNF also appears to be a critical mediator for the beneficial
effects of diet on neurogenesis and cognitive function. For
example, diets high in zinc have been shown to result in increased
BDNF mRNA and protein expression within the hippocampus of
adult male rats.289 In addition, the dietary restriction-related
increase in the survival of newly born neurons within the DG in
wild-type mice was attenuated in BDNF+/- adult male mice,
suggesting a role for BDNF in mediating this effect.274 While there
is no evidence in the literature to date on the potential role of
BDNF in dietary-induced protection against changes to neurogen-
esis and cognition evoked by stress, there is some evidence to
suggest that dietary changes may protect against brain damage
through BDNF pathways. For instance, in adult male rats a diet
high in omega-3 fatty acids or curcumin were protective against
an injury-induced deficit in both hippocampal BDNF expression
and performance in the Morris water maze.290,291 While in these
studies a physical brain injury stressor was used, the findings hint
at a potential protective role of dietary-induced BDNF increases in
response to other stress challenges, at least in adulthood. As
BDNF-induced pro-neurogenic and pro-cognitive effects may be
more pronounced during adolescence than adulthood,242 this
suggests that a healthy diet, like exercise, may be especially
beneficial for hippocampal development and function during this
period of the lifespan than in later years. It may thus be the case
that changes to diet during adolescence may produce longer-
lasting effects than when a nutritional diet commences during
adulthood.
It should also be noted that diet is the leading factor that

induces changes in gut microbiota composition,292–295 and the
negative effect of stress on the microbiome in early life113,296 and
adulthood297 can be reversed by dietary changes. As with
exercise, the effect of stress and diet on the microbiome has
not yet been studied in adolescence, although it is known that
there are changes to the gut microbiota structure and balance
during the adolescent period.298 However, the influence of many
of the lifestyle changes that begin during the adolescent period
including stress, diet, alcohol and drug consumption has an
impact on the microbiome, and thus it could be an important
mechanism underlying hippocampal neurogenesis regulation
and associated cognitive function during this time of the
lifespan.299,300

These findings suggest that, while adolescence may represent a
period during which stress may have a more profound and long-
lasting effect on hippocampal neurogenesis and cognitive
function, it could also be a time during which positive changes
such as healthier diet and increased exercise could not only
combat these detrimental effects, but produce positive effects in
their own right. Thus, future research into the potential synergistic
effects of diet, exercise and stress are needed, and will help to
determine which interventions during adolescence produce
significant effects on cognition in later life.

CONCLUSIONS
Adolescence represents a unique period of the lifespan in which
there is considerable re-organisation and growth of many brain
structures, including the hippocampus. During this time there is
increased hippocampal neurogenesis, and an altered HPA and
inflammatory response to stress. As such, stress during this time of
life may produce differential and long-lasting detrimental changes

in the hippocampus that could last throughout adulthood.
Specifically, stress-induced changes in hippocampal neurogenesis
could lead to long-lasting deficits in cognitive function, especially
in spatial and context related tasks. The pubertal onset of
circulating HPG axis hormones leads to the onset of sex
differences in the response to stress-induced impairments in
hippocampal neurogenesis and cognition, with the scant data to
date indicating that females are more vulnerable to stress. With
growing evidence that the hippocampus is particularly responsive
to environmental and lifestyle influences during adolescence, we
hypothesise that intervention with positive factors such as a
healthy diet and exercise may prevent the negative impact of
stress during adolescence on hippocampal neurogenesis and
cognitive function not only during the adolescent period itself, but
throughout the rest of the lifespan. Moreover, maintaining a
healthy diet and regular exercise during adolescence may help to
programme these positive behaviours for the rest of the
individual’s lifespan.
However, much work is still needed to fully elucidate both the

immediate and lasting impact of stress during adolescence on
hippocampal neurogenesis and associated cognitive function, as
well as the potential role for diet and exercise in attenuating these
effects. Future research should address the adolescent period as a
key window during which programming of hippocampal neuro-
genesis occurs, and focus on better understanding the mechan-
isms, such as the endocannabinoid system, BDNF and the gut
microbiota, underlying stress-induced changes at this time. In
addition, the effect of the onset of sex differences in the
neurogenic and cognitive response to stress challenges should
be examined, as well as the role of diet and exercise in modulating
these changes. To better capture the effects of stress, diet and
exercise, multiple measures of hippocampal neurogenesis and
hippocampal-dependent cognitive behaviours should be investi-
gated. Finally, it is important to clarify the translational impact of
these findings through further study of hippocampal-dependent
cognitive processes in the human adolescent in response to these
modifiable lifestyle factors.
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