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Abstract 

Objective: Evaluate the effects of serum 25-hydroxyvitamin D (25(OH)D) levels, vitamin D 

binding protein (DBP) and genetic factors on C3-epimerization of 25(OH)D and follow the 

tracking of the epimer during one year.  

Design: Cross-sectional and longitudinal study. 

Methods: Data from eight previously conducted, Tromsø based studies (3 observational, 5 

randomized controlled trials) were combined. 25(OH)D serum samples were re-analyzed with 

a LC-MS/MS method that also resolves and measures the metabolite C3-epi-25(OH)D3. Data 

on vitamin D binding protein (DBP) phenotype (based on single nucleotide polymorphisms 

(SNPs) rs4588 and rs7041) and genetic determinants for serum 25(OH)D (SNPs rs2282679, 

rs10741657, rs3829251 and rs6013897) were collected where available.  

Results: 2219 subjects were included. Median (5th, 95th percentiles) baseline serum values of 

25(OH)D3, C3-epi-25(OH)D3, and %-C3-epi-25(OH)D3 were 49.1 (22.1, 92.8) nmol/L, 2.3 

(0.9, 6.0) nmol/L and 4.4 (2.7, 8.4) %, respectively. The highest baseline values were 230.5 

nmol/L for 25(OH)D3, 79.7 nmol/L for C3-epi-25(OH)D3 and 48.2 % for %-C3-epi-

25(OH)D3. There was a strong correlation between serum 25(OH)D3 and C3-epi-25(OH)D3. 

The %-C3-epi-25(OH)D3 value increased with increasing serum 25(OH)D3, but leveled off at 

~7 % at a 25(OH)D3 concentration of ~120-140 nmol/L. There was a significant degree of 

tracking for %-C3-epi-25(OH)D3 (correlation coefficient rho between baseline and 1-year 

values 0.39, P < 0.001). The %-C3-epi-25(OH)D3 level was not related to serum DBP level, 

DBP phenotype nor to SNPs related to serum 25OH)D3 level. The serum 25(OH)D3 level 

could explain less than 3 % of  %-C3-epi-25(OH)D3 variation.  

Conclusions: There are considerable individual and reproducible differences in percent C3-

epimerization of uncertain clinical importance.   
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Introduction 

The structure of nutritional forms of vitamin D became known in the 1930s and vitamin D`s 

role in calcium metabolism and musculoskeletal disease was thereafter established. In the 

1960s it was determined that vitamin D had to be converted to become active, and nearly 10 

years later the main circulating form 25-hydroxyvitamin D (25(OH)D) and the final active 

hormone 1,25-dihydroxyvitamin D (1,25(OH)2D) were isolated and identified (1). 

Today, the serum levels of 25(OH)D are used to evaluate a subject’s vitamin D status, 

and depending on the assay used, may include both 25(OH)D3 derived from vitamin D3 

(cholecalciferol) and 25(OH)D2 derived from vitamin D2 (ergocalciferol). As cholecalciferol 

is produced in the skin stimulated by sun exposure and also is the main nutritional and 

supplemental form, serum 25(OH)D3 levels are much higher than 25(OH)D2, the latter often 

being undetectable (1). 

Recently it was discovered that vitamin D metabolites could be further metabolized 

through a C3-epimerization pathway (2, 3) that is found in many cell types (3, 4), and that the 

amount of C3-epi-25(OH)D3 in infants could constitute up to 60 % of the total 25(OH)D3 

concentration (5). However, the C3-epi-25(OH)D3 form is not detected by immunoassays, 

only partly detected by competitive protein binding assays, and not separated from the non-

epimeric form by most LC-MS/MS methods (6). 

C3-epi-25(OH)D3 and C3-epi-1,25(OH)2D3 bind, albeit relatively weak, to both the 

vitamin D binding protein (DBP) and the vitamin D receptor (VDR). At least in in-vitro 

experiments, the epimers appear to have calcemic, as well as non-calcemic effects, although 

to a much lesser extent than their non-epimeric counterparts (7). Because of this limited 

biological effect of C3-epi-25(OH)D3 and the variability of the percent of 25(OH)D3 it 

constitutes in individuals (7-10), the clinical importance of distinguishing this variant from 

25(OH)D3 is uncertain (9).  
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Epidemiological studies on adults have shown serum levels of C3-epi-25(OH)D3 to be 

strongly correlated to serum 25(OH)D3 levels (9, 10), increase during summer months, be 

higher in males than in females, and decrease with expanding waist circumference (10). 

However, it is not known what regulates epimerization, nor what enzymes are involved. 

It is unknown if DBP and genetic variants related to serum 25(OH)D levels likewise 

impact on the C3-epimer and, additionally, there is little data on the epimer’s response to 

supplementation and tracking of its levels over time. We have recently performed several 

epidemiological, as well as randomized controlled trials (RCTs) with vitamin D 

supplementation and therefore had the opportunity to address these questions. 

Materials and methods 

In the present study, we have included data from eight Tromsø-based studies; three 

epidemiological studies and five RCTs. As part of the ODIN project (ODIN; www.odin-

vitd.eu), - an EC sponsored project where individual participant data from observational and 

interventional data are meta-analyzed - serum samples from these studies were re-analyzed 

using a LC-MS/MS method at the Cork Centre for Vitamin D and Nutrition Research at 

University College Cork, Ireland.  Full details of this LC-MS/MS method have been 

published elsewhere (10), but of note, in addition to 25(OH)D3 and 25(OH)D2 the method 

also resolves and measures the metabolite C3-epi-25(OH)D3. The method’s limit of detection 

(LOD) and limit of quantification (LOQ) for C3-epi-25(OH)D3 in serum was 0.20 and 0.66 

nmol/L, respectively.  The Centre's LC-MS/MS method is certified by the CDC's Vitamin D 

Standardization Certification Program, which reports total 25(OH)D, 25(OH)D3 and 3-epi-

25(OH)D3 

(https://www.cdc.gov/labstandards/pdf/hs/CDC_Certified_Vitamin_D_Procedures.pdf).   

The eight studies have been described in detail before, and are summarized in short: 
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- The Tromsø study 4th survey (“Tromsø 4”) performed in 1994/1995 included 27 158 

subjects (11), 7168 had serum 25(OH)D measured (12), and for standardization 

purposes 316 selected subjects had 25(OH)D re-analyzed at Cork (13). 

- The Tromsø study 6th survey (“Tromsø 6”) performed in 2007/2008 included 12 984 

subjects (11), 12 817 had serum 25(OH)D measured, and for standardization purposes 

340 selected subjects had 25(OH)D re-analyzed at Cork (14). 

- Fit futures ("Fit Futures"), an adolescent population study and expansion of the 

Tromsø study, included 1038 subjects aged 15-18 years (15). 890 had serum 25(OH)D 

measured and for standardization purposes 171 selected subjects had 25(OH)D re-

analyzed at Cork (14). 

- The vitamin D and obesity study (“Obesity study”) where 438 subjects with BMI   

28.0 – 47.0 kg/m2 were included and randomized to 40 000 IU vitamin D per week, 20 

000 IU vitamin D per week or placebo for one year with weight loss as main endpoint 

(16). In the present study those given 40 000 and 20 000 IU were combined to one 

vitamin D group. Serum 25(OH)D was re-analyzed at Cork in 317 subjects who 

completed the study and had available serum samples. 

- The vitamin D and insulin sensitivity study (“Clamp study”) where 108 subjects with 

serum 25(OH)D < 40 nmol/L in Tromsø 6 were included and randomized to 40 000 IU 

vitamin D per week versus placebo for six months (17). Serum 25(OH)D was re-

analyzed at Cork in 94 subjects who completed the study and had available serum 

samples. 

- The vitamin D and bone density study (“Osteoporosis study”) where 297 

postmenopausal women aged 50 – 80 years and with a T-score in total hip or lumbar 

spine (L2-4) < -2.0 were included and randomized to vitamin D 40 000 IU per week 
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versus placebo for one year, with change in bone mass density (BMD) as primary 

endpoint. In addition, all subjects were given daily supplements with 1 g calcium and 

800 IU vitamin D (18). Serum 25(OH)D was re-analyzed at Cork in 272 subjects who 

completed the study and had available serum samples. 

- The vitamin D and depression study (“Depression study”) where 243 subjects with 

serum 25(OH)D < 50 nmol/L in Tromsø 6 were randomized to vitamin D 40 000 IU 

per week versus placebo for six months with change in depression score as endpoint 

(19). Serum 25(OH)D was re-analyzed at Cork in 229 subjects who completed the 

study and had available serum samples. 

- The vitamin D and prevention of diabetes study (“Diabetes study”) where 511 subjects 

with impaired fasting glucose and/or impaired glucose tolerance were randomized to 

vitamin D 20 000 per week versus placebo for five years, and where development of 

type 2 diabetes (T2DM) was primary endpoint (20). Serum 25(OH)D was re-analyzed 

at Cork in 480 subjects who completed the first year of the study and had available 

serum samples. 

Laboratory analyses 

Serum DBP was analyzed as previously described by immunoassay using a polyclonal 

antibody (21). Genotyping was performed for selected SNPs previously shown to be related to 

serum 25(OH)D level: rs2282679, rs7041 and rs4588 at the DBP/GCgene; rs10741657 at the 

25-hydroxylase gene (CYP2R1) involved in the conversion of vitamin D into 25(OH)D; 

rs3829251 at the 7-dehydrocholesterol (7-DHC) reductase/NAD synthetase 1 gene 

(DHCR7/NADSYN1) responsible for the availability of 7-DHC in the skin; and rs6013897 in 

the 24-hydroxylase gene (CYP24A1) involved in the degradation of 25(OH)D (22). 

Genotyping of rs4588 and rs7041 was used to determine DBP phenotype (23). The 
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genotyping was peformed by KBioscience (http://www.kbioscience.co.uk) using KASP 

(KBioSience Allele-Specific Polymorphism) SNP genotyping system, a competitive allele-

specific polymerase chain reaction, which has been described in detail before (22). 

Statistical analyses 

Normal distribution was evaluated with visual inspection of histograms, and by assessing 

kurtosis and skewness. Only BMI and DBP were normally distributed; serum 25(OH)D3, C3-

epi-25(OH)D3 and %-C3-epi-25(OH)D3 attained normal distribution after Lg transformation 

and were used as such where appropriate.   

For SNP analyses, genotype frequencies were analyzed with Hardy-Weinberg 

equilibrium calculator (24) with no bias detected. Correlations were performed with 

Spearman’s rho and comparisons between groups were made on Lg-transformed data using 

ANOVA with Bonferroni correction for DBP phenotypes and linear trend across genotypes for 

SNPs. Mann-Whitney U test was used for comparing median %-C3-epi-25(OH)D3 between 

25(OH)D3 groups. In the Diabetes study, a linear regression model was used for determining 

predictors of serum 25(OH)D3, C3-epi-25(OH)D3 and %-C3-epi-25(OH)D3, with covariates 

as described in the text. %-C3-epi-25(OH)D3 was calculated as (serum C3-epi-25(OH)D3 

concentration x 100)/(serum C3-epi-25(OH)D3 concentration + serum 25(OH)D3 

concentration). Delta values were achieved as (endpoint values) - (baseline values).  

P < 0.05 (two-tailed) was considered statically significant. Data are presented as mean 

± SD for normally distributed values and as median (5th, 95th percentiles) for non-normally 

distributed values. All statistical analyses were performed using IBM SPSS version 24 

software.  

Ethics 

All eight studies were approved by the Regional committee for Medical Research Ethics and 

the five intervention studies by the Norwegian Medicines Agency. 
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Results 

A total of 2219 subjects (1055 males) were included; their baseline and endpoint 

characteristics in relation to the original studies shown in Table 1. Where ethnicity could be 

determined 98.1 % of the participants were shown to be of Norwegian descent, the second 

largest ethnic group being Sami at 1.1 %. For all studies taken together, the median (5%, 

95%) baseline values were: serum 25(OH)D3 49.1 (22.1, 98.8) nmol/L,  C3-epi-25(OH)D3 2.3 

(0.9, 6.0) nmol/L, %-C3-epi-25(OH)D3 4.4 (2.7, 8.4) %. The highest baseline values were 

230.5 nmol/L for 25(OH)D3, 79.7 nmol/L for C3-epi-25(OH)D3 and 48.2 % for %- C3-epi-

25(OH)D3. For subjects with serum 25(OH)D3 < 50 nmol/L (the ones where misclassification 

due to epimer form could be of clinical importance), only 2.4 % had %-C3-epi-25(OH)D3 > 

10 % and only 0.4 % had %-C3-epi-25(OH)D3 > 15 %, the highest being 19.5 %. There was 

no correlation between 25(OH)D2 and %-C3-epi-25(OH)D3 and thus, as vitamin D2 does not 

seem to be related to the process of vitamin D3 epimerization it is not discussed further in the 

article. 

Correlations 

As expected, there were strong correlations between 25(OH)D3, C3-epi-25(OH)D3 and %-C3-

epi-25(OH)D3 at baseline when all 8 studies were pooled together (Table 2), which also 

remained when analyzed separately (data not shown). Similarly, there was a strong correlation 

between delta values when the five RCTs were pooled together (Supplemental Table 1), as 

well as when analyzed separately (data not shown). 

In the Diabetes study, using a linear regression model with age, BMI, gender and 

25(OH)D3 as covariates, only 25(OH)D3 significantly predicted Lg serum C3-epi-25(OH)D3 

(R2 = 0.56, standardized beta coefficient = 0.75, P < 0.001) and Lg %-C3-epi-25(OH)D3 (R2 = 

0.03, standardized beta coefficient = 0.17, P < 0.001). 
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The increase in C3-epi-25(OH)D3 and %-C3-epi-25(OH)D3 with rising serum 

25(OH)D3 concentration was most apparent when all studies were merged together, including 

both baseline and post-intervention values. The epimer level showed a nearly linear increase 

with rising 25(OH)D3 levels, with no sign of being affected by extreme 25(OH)D3 values on 

either side of the scale. %-C3-epi-25(OH)D3 levels on the other hand displayed a more S-

shaped pattern in relation to 25(OH)D3, as shown in Figure 1 and Supplemental Table 2. Thus, 

the %-C3-epi-25(OH)D3 remained low (~4 %) in the vitamin D insufficient/deficient groups 

(< 50 nmol/L), subsequently increasing before leveling off at ~7 % at a serum 25(OH)D3 

concentration of ~120-140 nmol/L. Accordingly, in subjects with serum 25(OH)D3 > 140 

nmol/L (n = 20), there was no significant correlation between %-C3-epi-25(OH)D3 and 

25(OH)D3 (rho = 0.14, P = 0.83). Subjects with serum 25(OH)D3 > 120 nmol/L had 

significantly higher serum %-C3-epi-25(OH)D3 than to those with a 25(OH)D3 level <50 

nmol/L, as well as those with serum 25(OH)D3 <100 nmol/L (P < 0.05).  

Tracking 

To evaluate tracking of serum 25(OH)D3, C3-epi-25(OH)D3 and %-C3-epi-25(OH)D3, 

subjects randomized to placebo in the Obesity and Diabetes studies (where blood samples 

were drawn at baseline and after 1 year) (n=345), were analyzed. The respective correlation 

coefficients between baseline and 1 year values for serum 25(OH)D3, C3-epi-25(OH)D3 and 

%-C3-epi-25(OH)D3 were all highly significant, with rho-values at 0.76, 0.47, 0.39,  

respectively (P < 0.001). 

Since both C3-epi-25(OH)D3 and %-C3-epi-25(OH)D3 strongly correlate with the 

25(OH)D3 level, we examined if their tracking could simply be the result of co-variation with 

the latter. A subgroup analysis was therefor made, selecting subjects within a narrow range of 

baseline serum 25(OH)D3 (45 - 55 nmol/L) and with minimal change in serum 25(OH)D3 

from baseline to 1 year (delta 25(OH)D3 > -5nmol/L and < 5nmol/L, n=32 (5 subjects in the 
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Obesity and 27 in the Diabetes study)). Although these subjects had relatively similar 

25(OH)D3 levels at baseline, there was a wide distribution of baseline serum C3-epi-

25(OH)D3 concentrations and %-C3-epi-25(OH)D3 levels, with a high degree of tracking in 

the 1 year values (Figures 2 and Supplemental Figure 1).  In this subgroup the correlation 

coefficients rho for baseline and 1 year values were 0.70 for C3-epi-25(OH)D3 and 0.75 for 

%-C3-epi-25(OH)D3.  

DBP 

DBP was measured at baseline in the Diabetes study (n = 471) and correlated significantly 

with 25(OH)D3 (rho 0.20, P < 0.001) and C3-epi-25(OH)D3 (rho 0.10, P = 0.029). For %-C3-

epi-25(OH)D3 there was no significant correlation with DBP (rho -0.04, P = 0.33). In linear 

regression models with age, BMI and gender as covariates, only the relation between DBP 

and 25(OH)D3 remained significant. Similarly, there were significant differences in serum 

25(OH)D3 and C3-epi-25(OH)D3 between DBP phenotypes, whereas %-C3-epi-25(OH)D3 

was unrelated (Table 3). To evaluate if the association between C3-epi-25(OH)D3 and DBP 

phenotype was due to co-variation with 25(OH)D3, we used a general linear model with C3-

epi-25(OH)D3 as dependent variable, DBP phenotypes Gc-1S/Gc-1S and Gc-2/Gc-2 as fixed 

factors and serum 25(OH)D3 as covariate, finding the relation between these DBP phenotypes 

and C3-epi-25(OH)D3 no longer significant (data not shown). 

Effects of genotypes related to serum 25(OH)D levels 

Serum 25(OH)D3 was found significantly related to SNPs rs10741657 (CYP2R1 gene) and 

rs2282679 (DBP/GC gene) at both baseline and endpoint. Serum 25(OH)D3 correlated 

additionally to rs6013897 (CYP24A1 gene) at baseline value, whereas the relation to 

rs3829251 (DHCR7/NADSYN1 gene) was not significant (Table 4). C3-epi-25(OH)D3 had 

significant association to rs2282679, with a statistically significant linear trend across the 

phenotypes. No significant relations were found between %-C3-epi-25(OH)D3 and any of 
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these SNPs. The significant linear trend for C3-epi-25(OH)D3 across the rs2282679 genotypes  

became non-significant when including 25(OH)D3 as a covariate in the regression model, 

indicating that similar to DBP the correlation between C3-epi-25(OH)D3 and the SNP was a 

result of co-variation with 25(OH)D3. 

Discussion 

In the present study we have found low median serum C3-epi-25(OH)D3 levels, strong 

correlations between serum 25(OH)D3, C3-epi-25(OH)D3 and %-C3-epi-25(OH)D3, a high 

degree of tracking for %-C3-epi-25(OH)D3, and no influence on %-C3-epi-25(OH)D3 by 

serum DBP level, DBP phenotype nor SNPs related to serum 25(OH)D3  levels. 

So far, most studies on vitamin D epimerization in adults have reported the mean C3-

epi-25(OH)D3 percentage to be low (10, 25), but also that a few subjects have remarkably 

high C3-epimer concentrations (7, 9, 10). Similarly, we found the median %-C3-epi-

25(OH)D3 at baseline to be 4.3%, but with a wide range from 0 to 48 %. Furthermore, when 

selecting vitamin D deficient subjects (serum 25(OH)D3 levels < 50 nmol/L)(26), who would 

be the ones with highest risk of vitamin D status misclassification, only 2.4 % had %-C3-epi-

25(OH)D3 levels above 10 %. Accordingly, regardless of whether the assay used detects 

and/or differentiates these vitamin D metabolites, and of whether the C3-epi-25(OH)D3 is 

biologically active or not (2, 7), very few adults risk misclassification because of the epimer 

form. These results are in agreement with the findnings of Cashman et al. (10). It should be 

noted that this may not be true for infants, as the percentage epimer in the very young has 

been reported as overall higher than in adults (5, 7). 

There was a strong and positive correlation between 25(OH)D3 and C3-epi-25(OH)D3, 

with rising percentage of the epimer the higher the 25(OH)D3, as also reported by Cashman et 

al. (10). However, as shown in Figure 1, the increase in %-C3-epi-25(OH)D3 appeared to start 

first at a median serum 25(OH)D3 concentration of ~50-60 nmol/L and leveled off at a median 
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25(OH)D3 concentration of ~120-140 nmol/L. To our knowledge this has not been described 

before, as both Cashman et al. and Engelman et al. found a more linear realtionship in their 

data, possibly due to fewer subjects with high serum 25(OH)D3 levels (10, 25). Our findings 

could indicate that the putative epimerization enzyme is switched on or activated by 

increasing serum 25(OH)D3 concentrations, and becomes saturated at a point corresponding 

to an upper or maximum physiological 25(OH)D3 level. If the epimeric form is less active 

than the non-epimeric form, this could be considered a protective mechanism against too high 

levels and possibly unwanted effects of vitamin D (in addition to the catabolism of 

25(OH)D3-induced by 24-hydroxylation); a process that could be parallel to the conversion of 

thyoxine (T4) to inactive reverse triiodothyronine (rT3) when there is a need to reduce the 

metabolic rate (27). This is of course highly speculative and needs both in-vitro and in-vivo 

confirmation, in addition to being difficult to demonstrate before the enzyme responsible for 

epimerization is discovered. Furthermore, it has been shown that a substantial part of C3-epi-

25(OH)D3 must have endogenous origin (10). Since epimerization may occur before 25-

hydroxylation, and may also differ in various tissues (4), it would in view of our hypothesis 

be highly interesting to study the degree of epimerization of vitamin D in epidermal cells in 

relation to sun exposure.  

There is a known high degree of tracking of serum 25(OH)D3 over time (12). This has 

also been described for the epimeric form (9, 28), and is confirmed in our study. In addition, 

we show for the first time, that there is a considerable degree of tracking for %-C3-epi-

25(OH)D3 that cannot be attributed to simple co-variation with serum 25(OH)D3. This was 

clearly shown when subjects with baseline serum 25(OH)D3 within a narrow range and only a 

small change in serum 25(OH)D3 at the one-year follow-up were analyzed separately. In this 

group of 32 subjects, there was a high degree of tracking in spite of a wide range of %-C3-

epi-25(OH)D3 values at baseline. Accordingly, the percent epimer truly differs between 
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individuals and cannot be ascribed to inaccurate measurements magnified by the use of a ratio 

for its determination. One might therefore assume that the percentage of epimerization also is 

regulated by other factors than the serum 25(OH)D3 level. This was confirmed in the Diabetes 

study where a linear regression model including age, gender, BMI and serum 25(OH)D3 could 

explain 56 % of the variation in serum C3-epi-25(OH)D3, but only 3 % of the variability of 

%-C3-epi-25(OH)D3. Therefore, more influential variables that determine an individual’s 

epimer percentage remain to be discovered, and DBP and genetic factors appeared as likely 

candidates. 

The binding coefficient between 25(OH)D and DBP varies with DBP phenotype, and 

if the same is the case for the epimer form, this would influence how much epimer circulates 

in free, unbound form. As it is likely that the free form is more prone to degradation than the 

bound form, DBP phenotype could in theory influence %-C3-epi-25(OH)D3 levels. In the 

Diabetes study where DBP was measured, we found the expected relations between DBP 

phenotype and serum 25(OH)D3 (23), which due to co-variation was also seen for C3-epi-

25(OH)D3. However, we found no significant relation between DBP phenotype and %-C3-

epi-25(OH)D3. 

 It has been shown that ethic background influences both DBP and 25(OH)D3 levels, 

and up to 79.4 % of the variation in DBP level may be explained by genetic factors (29). Race 

is therefore important to consider when drawing conclusions on 25(OH)D3 and DBP levels. 

Subjects enrolled in our data were ethnically homogenous, with 98,1 % of the subjects with 

measured DBP phenotype (Diabetes study) being of Norwegian ethnicity, followed by the 

indigenous Sami population at 1.1 %. We therefore did not do subgroups analysis based on 

ethnicity. However, it can be noted that the most predominant phenotype in our cohort (Gc-

1S/Gc-1S) is consistent with Powe’s findings for their Caucasian population. 

In search of genetic factors, we analysed SNPs known to affect levels of serum 
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25(OH)D3. We found the expected relations between serum 25(OH)D3 and the selected SNPs 

(except for rs3829251, probably due to lack of power), and a similar pattern was seen for 

serum C3-epi-25(OH)D3 in relation to SNP rs2282679. Analogous to that seen for DBP, this 

relation between C3-epi-25(OH)D3 and rs2282679 was due to co-variation with 25(OH)D3. 

And similarly, there was no relation between the analyzed SNPs and %-C3-epi-25(OH)D3, the 

genetic factors influencing the epimerization remaining to be found. 

The main weakness of our study is that we analyzed pooled data from eight separate 

studies. Our results should therefore be viewed with caution. The studies were neither 

separately, nor when pooled together, representative for the general population, and we 

therefore did not focus on epimerization effects of gender, age, BMI and similar variables, 

that we believed could be influenced by this. On the other hand, pooling the data and 

including both baseline and post-interventional values, gave us power to detect relations 

between vitamin D metabolites not described before.  

In conclusion, we have found great and reproducible individual differences in percent 

C3-epimerization. These differences can only to a minor degree be explained by the 

corresponding serum 25(OH)D3 levels. The main regulators and clinical importance (if any) 

of this epimerization process are still to be determined.   
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Table 1. General characteristics of the individual studies. 
 

 Study 

___________________________________________________________________

___________________________ 

 

 Tromsø 4 Troms

ø 6 

Fit 

Futures 

Obesity Clamp Osteoporo

sis 

Depressio

n 

Diabet

es 

 n = 316 n = 

340 

n = 171 n = 317  n = 94 n = 273 n = 229 n = 

480 

Interven

tion in 

Vitamin 

D group 

(IU/wee

k) 

- - - 40 000 

- 20  

000 

40 000 40 000 40 000 40 000 

Vitamin 

D 

group/pl

acebo 

group 

(n/n) 

- - - 212/10

5 

49/45 135/138 120/109 240/24

0 

Males 

(%) 

66.1 56.5 52.6 37.5 52.1 0 44.1 61.5 

Age 

(years) 

58 60 16 50 51 62 51 63 

 (38, 69) (40, 

78) 

(16, 19) (31, 66) (42, 69) (52, 75) (38, 70) (46, 

76) 

Smokers 

(%) 

51.3 49.1 25.1 19.2 3.2 23.4 38.9 19.8 

BMI 

(kg/m2) 

25.5 26.4 21.3 33.9 26.8 24.2 27.8 29.6 

 (20.3, 32.4) (19.8, 

33.8) 

(17.6, 

30.7) 

(29.3, 

41.7) 

(22.2, 

31.9) 

(20.2, 

30.7) 

(21.6, 

35.1) 

(23.3, 

37.7) 

Serum 

25(OH)

D3 

baseline 

50.6 62.1 32.8 45.7 35.8 63.7 39.0 52.6 

(nmol/L

) 

(24.1, 93.4) (24.5, 

141.2) 

(9.6, 

89.1) 

(21.0, 

83.3) 

(17.3, 

56.2) 

(29.8, 

96.7) 

(22.7, 

67.8) 

(28.8, 

85.2) 

Serum 

25(OH)

- - - 89.9 89.1 107.1 89.0 73.8 
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 Study 

___________________________________________________________________

___________________________ 

 

 Tromsø 4 Troms

ø 6 

Fit 

Futures 

Obesity Clamp Osteoporo

sis 

Depressio

n 

Diabet

es 

D3 

endpoint 

(nmol/L

) 

   (29.9, 

155.2) 

(23.4, 

161.1) 

(60.1, 

212.9) 

(28.0, 

163.9) 

(34.0, 

121.7) 

Serum 

C3-epi-

25(OH)

D3 

baseline 

2.0 2.3 1.7 2.7 1.4 2.6 1.7 2.6 

(nmol/L

) 

(0.7, 5.9) (0.8, 

12.4) 

(0.4, 6.2) (1.1, 

5.0) 

(0.4, 3.1) (1.3, 5.5) (0.9, 3.3) (1.2, 

6.1) 

Serum 

C3-epi-

25(OH)

D3 

endpoint 

- - - 5.2 6.8 6.9 6.4 4.7 

(nmol/L

) 

   (1.1, 

12.0) 

(0.7, 13.4) (2.6, 18.8) (1.3, 14.2) (1.5, 

10.9) 

Serum 

%-C3-

epi-

25(OH)

D3 

baseline 

3.8 3.7 5.0 5.1 3.7 4.2 4.2 4.6 

(%) (2.3, 7.0) (2.0, 

8.6) 

(3.5, 7.8) (3.2, 

11.3) 

(1.8, 6.9) (2.98, 6.5) (2.8, 6.6) (3.1, 

8.6) 

Serum 

%-C3-

epi-

25(OH)

D3 

endpoint 

- - - 5.4 6.0 5.8 6.1 5.6 

(%)    (3.2, 

8.2) 

(2.7, 10.0) (3.6, 10.0) (3.3, 10.7) (3.3, 

10.8) 

The data are shown as % or median (5th, 95th percentile) 
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Table 2. Correlations between baseline serum values for all studies pooled together (n = 
2219). 

 25(OH)D3 25(OH)D2 C3-epi-25(OH)D3 %-C3-epi-25(OH)D3 

25(OH)D3  -0.19**      0.77**         0.05* 

25(OH)D2  -0.19**      -0.15**        -0.02 

C3-epi-25(OH)D3   0.77** -0.15**          0.63** 

%-C3-epi-25(OH)D3   0.05* -0.02      0.63**  

The data show Spearman`s correlation coefficient rho. 
* P < 0.05; ** P < 0.001 
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Table 3: Serum 25(OH)D3, C3-epi-25(OH)D3 and %-C3-epi-25(OH)D3 at baseline in relation 
to vitamin D binding protein phenotypes in the diabetes study (n=471). 
 

DBP 

phenotype 

 Count 25(OH)D3 C3-epi-

25(OH)D3 

%-C3-epi-

25(OH)D3 

  (n) (nmol/L) (nmol/L) (%) 

Gc-1S/Gc-
1S 

(GC/GC) 146 54.2 (28.9, 86.9) 2.7 (1.3, 5.6) 4.6 (3.3, 7.9) 

Gc-1S/Gc-

1F 

(GC/TC) 124 55.2 (32.6, 88.7) 2.7 (1.3, 6.2) 4.6 (3.2, 8.4) 

Gc-1S/Gc-2 (GC/TA) 119 53.2 (30.2, 83.8) 2.6 (1.1, 6.3) 4.9 (2.9, 10.0) 

Gc-1F/Gc-
1F 

(TC/TC) 19 47.8 (24.7, 77.1) 2.1 (1.0, 6.4) 4.3 (2.9, 7.9) 

Gc-1F/Gc-2 (TC/TA) 39 50.3 (21.1, 77.0) 2.3 (1.0, 7.1) 4.5 (2.4, 9.2) 

Gc-2/Gc-2 (TA/TA) 24 43.0 (20.4, 66.4)* 1.8 (0.9, 4.9)* 4.8 (3.2, 7.4) 

Data are shown as median (5th, 95th percentile) 
*P < 0.01 vs Gc-1S/Gc-1S, ANOVA using Lg transformed values  
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Table 4: Serum levels of  25(OH)D3 and %-C3-epi-25(OH)D3 at baseline and endpoint in 
relation to SNPs related to serum 25(OH)D3 levels in genotyped subjects  

 

 Count 25(OH)D3 

baseline 

25(OH)D3 

endpoint 

%-C3-epi-

25(OH)D3 

baseline 

%-C3-epi-

25(OH)D3 

endpoint 

 (n) (nmol/L) (nmol/L) (%) (%) 

rs3829251 

(DHCR7/NADSYN1) 

     

Homozygous major  

(GG) 

555 50.8 (24.6, 

87.8) 

86.5 (32.8, 

179.8) 

4.4 (2.9, 7.9) 5.8 (3.3, 

10.5) 

Heterozygous            

(CA) 

412 48.3 (24.0, 

83.4) 

83.1 (30.9, 

172.3) 

4.3 (2.9, 7.4) 5.6 (3.3, 

10.7) 

Homozygous minor  

(AA) 

82 50.4 (28.8, 

91.9) 

82.5 (34.3, 

160.7) 

4.1 (2.9, 7.9) 5.2 (3.3, 

10.6) 

rs10741657 (CYP2R1 

gene) 

     

Homozygous major    

(GG) 

458 48.6 (24.2, 

85.6) 

79.1 (34.3, 

170.4) 

4.2 (2.7, 8.0) 5.8 (3.2, 

11.4) 

Heterozygous              

(GA) 

645 51.1 (23.6, 

86,7) 

84.2 (31.1, 

163.6) 

4.2 (2.8, 7.3) 5.7 (3.2, 

10.2) 

Homozygous minor    

(AA) 

259 51.2 (25.5, 

97.3) ** 

92.4 (32.2, 

191.1) * 

4.2 (2.7, 7.3) 5.8 (3.5, 9.8) 

rs2282679 (GC/DBP 

gene) 

     

Homozygous major   

(AA) 

745 53.7 (26.9, 

93.4) 

96.0 (34.0, 

185.6) 

4.2 (2.8, 7.3) 5.6 (3.3, 

10.6) 

Heterozygous             

(CA) 

535 47.5 (23.6, 

82.3) 

86.4 (32.0, 

164.1) 

4.2 (2.7, 8.0) 5.8 (3.2, 

10.9) 

Homozygous minor   

(CC) 

83 40.1 (21.9, 

72.9) ** 

72.3 (26.9, 

147.7) ** 

4.2 (3.0, 7.3) 5.7 (3.2, 9.6) 

rs6013897 (CYP24A1 

gene) 

     

Homozygous major    

(TT) 

760 50.6 (26.6, 

91.3) 

96.0 (32.8, 

178.7) 

4.2 (2.7, 7.3) 5.7 (3.4, 

10.2) 

Heterozygous             

(TA) 

516 49.6 (22.8, 

84.9) 

86.4 (32.0, 

168.8) 

4.2 (2.7, 7.7) 5.8 (3.1, 

10.8) 

Homozygous minor    

(AA) 

79 49.0 (21.9, 

88.4) * 

72.3 (27.6, 

176.0) 

4.4 (2.6, 9.9) 6.2 (3.2, 

10.6) 
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Data shown as median (5th, 95th) 
*P <0.05; ** P <0.01 for linear trend across genotypes using Lg transformed values 
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Highlights 

 There is a significant degree of tracking for %-C3-epi-25(OH)D3 

 %-C3- epi-25(OH)D3 level is unrelated to serum DBP level and DBP phenotype  

 %-C3- epi-25(OH)D3 level is unrelated to SNPs related to serum 25OH)D3 

 Serum 25(OH)D3 level explains less than 3 % of  %-C3-epi-25(OH)D3 variation  
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