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ABSTRACT 

1-Acetamido-1-deoxy-(4-O-β-D-glucopyranosyl-β-D-glucopyranose) (5) and 1-deoxy-1-(4-

phenyl-1,2,3-triazolyl)-(4-O-β-D-glucopyranosyl-β-D-glucopyranose) (7) were synthesised 

from 1-azido-1-deoxy-(4-O-β-D-glucopyranosyl-β-D-glucopyranose) (2) and crystallised as 

dihydrates.  Crystal structural analysis of 5.2H2O displayed an acetamide C(4) chain and 

stacked cellobiose residues.  The structure of 7.2H2O featured π−π stacking and stacking of 

the cellobiose residues. 
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Cellobiose derivatives have been extensively studied as small-molecule models for cellulose 

because the crystal chemistry of these compounds can be more readily investigated then that 

of cellulose itself.1  Key features that are examined include the pyranose ring puckering, 

torsional angles for the primary hydroxyl groups and acetal linkages2 and supramolecular 

features such as hydrogen bonding motifs.3  Examples of cellobiose derivatives designed to 

act as cellulose fragments include methyl 4-O-methyl-β-D-glucopyranosyl(1-4)-β-D-

glucopyranoside4 and cyclohexyl 4'-O-cyclohexyl β-D-cellobioside.5   

One approach to designing such compounds would be to couple cellobiose to groups which 

provide well established supramolecular motifs for crystal engineering.  Crystal engineering 

exploits structural units known as supramolecular synthons which assemble by known 

intermolecular interactions or motifs.6  Amides, which form well known hydrogen bonded 

networks in the solid state, are good examples of such synthons.7  For example, secondary 

amides often form hydrogen bonded chains in crystal structures between the amide N-H and 

carbonyl groups.8  As these chains consist of a repeating unit containing four atoms linked by 

N-H∙∙∙O=C hydrogen bonds, they can be labelled as C(4) chains using Etter's notation for 

describing hydrogen bonding motifs.9  Such hydrogen bonding motifs occur in many amido-

sugars including acetamido-lactoses,10 and N-glycoprotein models.11  Another group, 1,2,3-

triazoles, have been exploited in the crystal engineering of metal-organic frameworks 

(MOFs),12 in particular, and as supramolecular hydrogen bonding acceptors.13  Both groups 

can be obtained readily from azides. 

In addition to providing small-molecule cellulose analogues, cellobioses functionalised with 

groups with strong propensities for forming supramolecular motifs will also further 

investigation of the crystal engineering of sugars.  For sugars, crystal state properties affect 

issues such as hygroscopicity, flow, blending and compression into tablets.14  An ability to 



control the molecular assembly of sugar molecules in crystalline solids in a rational manner 

would have applications in areas such as pharmaceutical formulation.  In the work described 

here, acetamido and 4-phenyl-1,2,3-triazolyl derivatives of cellobiose have been synthesised 

and the crystal chemistry of these compounds examined.  Both groups give rise to 

supramolecular stacking motifs with potential for exploitation in crystal engineering.   

 

1-Acetamido-1-deoxy-(4-O-β-D-glucopyranosyl-β-D-glucopyranose) (5) and 1-deoxy-1-(4-

phenyl-1,2,3-triazolyl)-(4-O-β-D-glucopyranosyl-β-D-glucopyranose) (7) were prepared from 

the corresponding azide (2)15 which was in turn obtained from the bromide (1) as outlined in 

Scheme 1.  Hydrogenation of azide (2) over Pd/C at 200 psi gave the amine (3) as a single 

epimer.  N-Acetylation followed by O-deacetylation gave the target acetamido-cellobiose (5).  

Triazole (6) was obtained by Cu(I) catalysed azide 1,3-dipolar cycloaddition to 

phenylacetylene with microwave assistance.16  Deacetylation of (6) gave the second target 

compound, triazolyl-cellobiose (7). 
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Scheme 1.  (a) NaN3, DMSO, 1 h; (b) H2, 10% Pd/C, 9:1 MeOH:THF, 200 psi, 16 h; (c) 

Ac2O, pyridine, THF, reflux, 24 h; (d) KOMe, MeOH, 4 h; (e) phenylacetylene, 

CuSO4.5H2O (10 mol%), sodium ascorbate (15 mol%), DMF, MW (300 W), 80 oC, 30 min. 

 

 

Crystals of compounds (5) and (7) suitable for single-crystal X-ray diffraction were grown by 

slow evaporation from aqueous methanol.  Both compounds were found to be dihydrates and 



their crystallographic data are given in Table 1.  Endotherms corresponding to loss of water 

molecules were observed in the DSC of both materials with corresponding mass loss in TGA 

(Supplementary Material).  Features common to both structures includes donation by the 3-

OH of the reducing glucopyranose to the oxygen of the non-reducing glucopyranose, forming 

a 7 atom hydrogen bonded ring [an S(7) motif in Etter's notation9] (Figures 1 and 2), a 

common feature reported in a number of cellulose polymorphs17 and models.18, 19  The 

conformation of the both rings in both structures is the 4C1 chair conformation typical of 

glucopyranoses.19, 20   The angle and surrounding torsional angles at the acetal oxygens 

linking the two glucopyranose rings in both structures are typical for small molecules 

cellulose analogues.19, 20   There are close packing contacts of 2.1 Å between H-1' and H-4 in 

both structures with both C-H bonds axial and approximately parallel, consistent with the 

geometry of the acetal linkage.  These bonds would correspond to a twofold screw axis if 

present in an extended cellulose-like polymer, i.e. glucopyranose residues in alternating 

orientations.19  In both structures, the conformation of the primary hydroxyl in the non-

reducing glucopyranose is gauche-trans and that in the reducing glucopyranose is gauche-

gauche, these being typical conformations for small molecules cellulose analogues.19, 20   

 



Table 1. Crystallographic data for compounds 5 and 7 

Compound reference 5.2H2O 7.2H2O 
Chemical formula C14H25NO11.2H2O C20H27N3O10.2H2O 
Formula Mass 419.38 505.48 
Crystal system Triclinic Monoclinic 

a/Å 5.0161(8) 10.813(2) 
b/Å 7.6405(11) 4.9094(9) 
c/Å 12.965(2) 21.507(4) 
α/° 89.437(5) 90 
β/° 86.681(5) 97.769(8) 
γ/° 74.033(5) 90 
Unit cell volume/Å3 476.91(13) 1131.2(4) 
Temperature/K 300(2) 100(2) 
Space group P1 P21 
No. of formula units per unit cell, Z 1 2 
Radiation type MoKα MoKα 
Absorption coefficient, μ/mm-1 0.130 0.123 
No. of reflections measured 4647 11924 
No. of independent reflections 1661 2884 
Rint 0.0224 0.0640 
Final R1 values (I > 2σ(I)) 0.0273 0.0489 
Final wR(F2) values (I > 2σ(I)) 0.0769 0.0897 
Final R1 values (all data) 0.0313 0.0567 
Final wR(F2) values (all data) 0.0928 0.0925 
Goodness of fit on F2 1.176 1.139 
 



 

Figure 1 View of the crystal structure of compound (5) dihydrate showing S(7) 

intramolecular hydrogen bonding [O12H12∙∙∙O22], and C(7) and C(8) intermolecular 

hydrogen bonding motifs [O24H24∙∙∙O27 and O15H15∙∙∙O11 respectively]. 

 



 

Figure 2 Intramolecular S(7) and intermolecular hydrogen bonds between 6-OH groups in 

the structure of compound (7). 

 

Compound (5) crystallised with one acetamidocellobiose molecule and two unique water 

molecules per unit cell.  The acetamidocellobiose molecules are stacked upon each other with 

an amide C(4) hydrogen bonding motif (Figure 3).  Hence, the amide C(4) provides a 

supramolecular stacking motif which guides the packing of the modified cellobiose 

molecules.  The amide bond torsional angles ΦN and ΨN (defined by Loganathan and co-

workers 11) are −101.63º and 174.73º respectively. The ΨN value is in the range observed for 

amidodeoxyglucose models of glycoamide linkages, while the ΦN value is marginally higher 

than those reported.11 



 

 

Figure 3. Hydogen bonded amide C(4) chain motif [N7H7∙∙∙O9] in the crystal structure of 

compound (5) dihydrate. 

 

The 6-OH of the reducing glucopyranose donates a hydrogen bond to the 2-OH of the 

reducing glucopyranose of an adjacent molecule, forming a C(8) hydrogen bonded chain 

motif (Figure 1).  Similarly, the 3-OH of the non-reducing end donates a hydrogen bond to 

the 6-OH of the non-reducing glucopyranose of the same adjacent molecules, forming a C(7) 

chain (Figure 1).  Hence, each acetamidocellobiose has one intramolecular hydrogen bond, 

intermolecular amide hydrogen bonds to the molecules 'above and below' (the supramolecular 



stacking motif), and intermolecular hydrogen bonds to the molecules on either side.  The 

intermolecular hydrogen bond from 3-OH to 6-OH is typical of cellulose forms,18 while the 

6-OH to 2-OH bonding is observed in some model compounds.19  The amidocellobiose 

molecules pack in a parallel arrangement which is slightly tilted, consistent with the 6-OH to 

2-OH bonding.  The two water molecules are involved in a one-dimensional chain of 

hydrogen bonding running through the structure. 

 

Compound (7) crystallised with two triazole and four water molecules per unit cell and the 

two triazole molecules are related by a 21 screw axis.  The 4-phenyltriazolyl groups exhibit 

π−π stacking along the b axis with the distance between the centre of the phenyl rings being 

4.9Å.  This gives rise to anti-parallel π-stacked columns related by the 21 axis (Figure 4), 

constituting a supramolecular stacking motif which guides the intermolecular assembly of the 

modified cellobiose molecules.  For the non-reducing end of the cellobiose residue the 

primary hydroxyl acts as both a hydrogen bond donor and acceptor to the primary hydroxyl 

on the non-reducing end of an adjacent cellobiose residue (Figure 2).  The 2-OH of the 

reducing end of the cellobiose residue donates an intermolecular hydrogen bond to 3-OH of 

the non-reducing end of an adjacent molecule, while 4-OH of the non-reducing end donates a 

hydrogen bond to the 3-OH of the non-reducing end of an adjacent residue (Supplementary 

Material, Figure 7).  The water molecules are filling voids in the lattice without hydrogen 

bonding between them. 

 



 
 
Figure 4 View of the unit cell of compound (7) showing the 21 screw axis between the two 

molecules in the unit cell and π-π stacking extending along the crystallographic b axis. 

 

In summary, acetamidocellobiose derivative (5) and phenyltriazolylcellobiose derivative (7) 

were prepared from azide (2) and crystallised as dihydrates.  In the crystal structure of 

compound (5), the cellobiose molecules are stacked upon each other with an amide C(4) 

hydrogen bonding chain.  In the phenyltriazolyl derivative (7), the two molecules in the unit 

cell are related by a 21 screw axis and the 4-phenyltriazolyl groups exhibit π−π stacking.  

Hence in both structures, stacking of both the modifying group, i.e. the amide in (5) and the 

phenyltriazolyl group in (7), and the cellobiose residues are observed.  The intermolecular 

bonding between these groups provides supramolecular stacking motifs which assist the 



coordination and packing of the modified cellobiose molecules in their crystalline forms.    

Both structures display hydrogen bonding motifs typical of cellodextrins, such as 

intramolecular S(7) rings involving the reducing end 3-OH and the non-reducing 

glucopyranose.  However, the intermolecular hydrogen bonding between cellobiose residue 

in the two structures are different.  The success of the acetamido and phenyltriazolyl groups 

in promoting stacking of the glucopyranose unit could be further exploited by extension to 

cellotriose and larger cellodextrins, although there are likely to be increased difficulty in 

growing crystals suitable for crystal structure analysis as the molecular size increases.   

 

 
1. Experimental 

1.1. General methods 

All commercial reagents were purchased from Sigma-Aldrich and were used without further 

purification.  All solvents were either of a HPLC grade or distilled prior to use.  Column 

chromatography was conducted using Merck silica gel 60, typically with a 30:1 ratio of silica 

to sample.  Infrared spectra were recorded on a Perkin-Elmer Paragon 1000 FT-IR 

spectrometer.  The NMR spectra were recorded on a Bruker AVANCE 300 spectrometer at 

300 MHz for 1H NMR and 75 MHz for 13C NMR.  Chemical shift values (δH and δC) are 

expressed as parts per million (ppm).  Two dimensional heteronuclear HETCOR and COSY 

experiments were employed for spectral assignments.  High resolution mass spectra (HRMS) 

were recorded on a Waters LCT Premier LC-MS instrument in electrospray ionisation (ESI) 

positive mode using 50 % MeCN-H2O containing 0.1 % HCO2H as eluant; samples were 

made up in MeCN.  Microwave assisted synthesis was conducted on a CEM Discover S-

Class synthesiser in conjunction with Synergy software. 

 

1.2. Synthesis 



1.2.1. 1-Azido-1-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2,3,6-tri-O-

acetyl-β-D-glucopyranose (2) 

1-Bromo-1-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2,3,6-tri-O-acetyl-α-D-

glucopyranose15 1 (5.0 g, 7.16 mmol) was dissolved in DMSO (35 mL) and NaN3 (1.39 g, 

21.48 mmol) was added.  The resulting solution was stirred at room temperature for 1 h after 

which the solution was poured into water (150 mL). The resulting cloudy solution was stirred 

at room temperature for 20 min and the precipitate collected by filtration.  Recrystallisation 

from hot MeOH yielded the azide as a white solid (3.07 g, 65%).  Mp 170-175 oC (Lit15= 

182-182.5 oC); IR (KBr): ν  2970 (C-H), 2119 (N3), 1755 (C=O), 1374 (C-H), 1241 (O-C=O) 

and 1059 (O-C-O) cm-1.  1H NMR (CDCl3): δ 1.91 (3H, s, OAc), 1.94 (3H, s, OAc), 1.95 

(3H, OAc), 1.96 (3H, s, OAc), 2.00 (3H, s, OAc), 2.02 (3H, s, OAc), 2.08 (3H, s, OAc), 3.56-

3.64 (2H, m, H-5, H-5’), 3.72 (1H, t, 3J = 9.3 Hz, H-4), 3.96 (1H, dd, 3J = 12.0, 3.0 Hz), 4.04 

(1H, dd, 3J = 12.0, 3.0 Hz), 4.31 (1H, dd, 3J = 12.0, 3.0 Hz), 4.42-4.49 (2H, m), 4.56 (1H, d, 

3J = 8.7 Hz, H-1), 4.77-4.89 (2H, m), 5.00 (1H, t, 3J = 9.3 Hz), 5.05 (1H, t, 3J = 9.3 Hz, H-

4’), 5.12 (1H, t, 3J = 9.3 Hz, H-3).  

 

1.2.2. 1-Amino-1-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2,3,6-tri-O-

acetyl-β-D-glucopyranose (3) 

1-Azido-1-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2,3,6-tri-O-acetyl-β-D-

glucopyranose 2 (10.0 g, 15.12 mmol) was dissolved in a 9:1 mixture of MeOH: THF (200 

mL) and Pd/C (0.32 g, 0.30 mmol of active palladium) was added.  The resulting suspension 

was placed in a Parr pressure reactor APP 600, combined with a Texol HYG 600 H2 

generator and a Watlow series 945 overhead stirrer under a positive atmosphere of H2 at 200 

psi.  The H2 atmosphere was maintained at 200 psi and the mixture was agitated for 16 h. The 

catalyst was removed by filtration on a bed of Celite® and the solvent removed under reduced 



pressure to yield an off white solid in quantitative yield.  Mp 195-187 oC; IR (KBr): ν 3411, 

3500 (NH2), 2955 (CH), 1746 (CO), 1379 (CH), 1228 (O-C=O) and 1035 (C-O-C) cm-1; 1H 

NMR (CDCl3): δ 1.91 (3H, s, OAc), 1.94 (3H, s, OAc), 1.95 (3H, OAc), 1.96 (6H, 2 × OAc), 

2.01 (3H, s, OAc), 2.07 (3H, s, OAc), 3.61-3.76 (2H, m), 3.92-4.04 (3H, m), 4.21-4.32 (3H, 

m), 4.53 (1H, t, 3J = 9.3 Hz), 4.63 (1H, t, 3J = 9.6 Hz), 4.81 (1H, d, 3J = 8.1 Hz, H-1), 4.87 

(1H, t, 3J = 9.1 Hz), 5.10 (1H, t, 3J = 9.3 Hz), 5.24 (1H, t, 3J = 9.3 Hz). 

 

 

 

1.2.3. 1-Acetamido-1-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2,3,6-tri-O-

acetyl-β-D-glucopyranose (4) 

1-Amino-1-deoxy- 4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2,3,6-tri-O-acetyl-β-D-

glucopyranose 3 (0.69 g, 1.086 mmol) and pyridine (0.04 mL, 0.543 mmol) were added to a 

round bottom flask containing acetic anhydride (0.113 mL, 1.195 mmol) and THF (15 mL).  

The reaction mixture was heated to reflux for 24 h and the solvent was removed under 

vacuum.  The reaction mixture was then diluted with dichloromethane (30 mL), washed with 

sat. aq. NaHCO3 (2 × 20 mL), aq. CuSO4.5H2O (2 × 20 mL), water (30 mL), brine (30 mL) 

and dried over MgSO4.  The solvent was removed under vacuum and the crude solid was 

recrystallised from a minimum of hot MeOH to yield a white solid (0.61 g, 83%). IR (KBr): ν 

3377 (N-H), 2959 (C-H), 1755 (CO), 1629 (NHC=O), 1371 (CH), 1234 (O-C=O) and 1042 

(C-O-C) cm-1; 1H NMR (CDCl3): δ 1.98 (3H, s, NHAc), 1.99 (3H, s, OAc), 2.01 (3H, s, 

OAc), 2.03 (3H, s, OAc), 2.05 (3H, s, OAc), 2.10 (3H, s, OAc), 2.13 (3H, s, OAc), 2.23 (3H, 

OAc), 3.66 (1H, m), 3.75 (2H, m), 4.04 (1H, dd, 3J = 12.5, 2.2 Hz), 4.13 (1H, m), 4.38 (1H, 

dd, 3J = 12.7, 4.4Hz,), 4.49 (2H, m), 4.83 (1H, t, 3J = 9.6 Hz), 4.93 (1H, t, 3J = 8.7 Hz), 5.12 

(2H, m), 5.26 (1H, m), 6.20 (1H, d, 3J = 9.4 Hz, H-1); 13C NMR (CDCl3): δ 19.55-19.71 (1 x 



NHAc, 7 x OAc), 60.58 (CH2), 60.87 (CH2), 66.76 (CH), 69.81 (CH), 70.48 (CH), 70.93 

(CH), 71.10 (CH), 71.87 (CH), 73.42 (CH), 75.21 (CH), 77.07 (CH), 99.60 (C-1), 168.01 

(NHAc), 168.31 (OAc), 168.39 (OAc), 169.24 (OAc), 169.22 (2 × OAc), 169.51 (OAc), 

170.32 (OAc). 

 

1.2.4. 1-Acetamido-1-deoxy-(4-O-β-D-glucopyranosyl)-β-D-glucopyranose (5) 

To a solution of 1-acetamido-1-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-

2,3,6-tri-O-acetyl-β-D-glucopyranose 4 (2.0 g, 2.95 mmol)  in dry MeOH (50 mL) was added 

MeOK (41 mg, 0.59 mmol) and the solution stirred for 4 h.  The solution was neutralized 

with Amberlyst® ion exchange resin (to pH 7) and was stirred for 30 min.  The resin was 

removed by gravity filtration and the solvent removed under vacuum.  The crude solid was 

recrystallised from a minimum of hot MeOH to yield a white crystalline solid (0.84 g, 74%). 

Mp 155 oC; IR (KBr): ν 3414 (O-H), 2952 (C-H) and 1667 (C=O) cm-1; 1H NMR (D2O): δ 

2.06 (3H, s, NHAc), 3.28-3.31 (1H, m), 3.37-3.53 (4H, m), 3.66-3.97 (7H, m), 4.50 (1H, d, 3J 

= 8.1 Hz), 4.96 (1H, d, 3J = 9.0 Hz, H-1); 13C NMR (D2O): δ 21.99 (NHAc), 59.68 (CH2), 

60.49 (CH2), 69.36 (CH), 71.45 (CH), 73.05 (CH), 74.88 (CH), 75.37 (CH), 75.90 (CH), 

76.26 (CH), 77.87 (CH), 78.98 (CH), 102.42 (C-1), 175.42 (NHAc). MS-ESI: Found m/z, 

406.1316; calcd for C14H25NO11Na [M+Na+], 406.1325. 

 

1.2.5. 1-Deoxy-1-(4-phenyl-1,2,3-triazolyl)-4-O-(2,3,4,6-tetra-O-acetyl-β-D-

glucopyranosyl)-2,3,6-tetra-O-acetyl-β-D-glucopyranose (6) 

1-Azido-1-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2,3,6-tri-O-acetyl-β-D-

glucopyranose (2) (1.5 g, 2.27 mmol), CuSO4.5H2O (56.7 mg, 0.27 mmol), and sodium 

ascorbate (67.3 mg, 0.34 mmol) was dissolved in DMF (20 mL) along with phenylacetylene 

(0.27 mL, 2.49 mmol) and 4 of drops of water.  The mixture was then subjected to 



microwave radiation (300 W, 30 min) at 80 oC.  The resulting cloudy yellow suspension was 

diluted with CHCl3 (50 mL) and filtered through a bed of Celite®.  The organic layer was 

thoroughly washed with water (2 × 20 mL), brine (2 × 20 mL) and dried over MgSO4.  The 

solvent was removed under vacuum to yield a pale yellow solid.  Recrystallisation from hot 

MeOH yielded a white solid (1.59 g, 92%). Mp 266.78 oC; IR (KBr): ν 2874-3126 (C-H), 

1757 (C=O), 1371 (C-H), 1231 (O-C=O) and 1070 (C-O-C) cm-1; 1H NMR (CDCl3): δ 1.88 

(3H, s, OAc), 1.92 (3H, s, OAc), 1.95 (3H, s, OAc), 1.98 (6H, s, 2 × OAc), 2.04 (3H, s, 

OAc), 2.05 (3H, s, OAc), 3.63 (1H, ddd, 3J = 9.0, 4.8, 2.4 Hz), 3.82-3.91 (2H, m), 4.01 (1H, 

dd, 3J = 12.3, 2.4 Hz), 4.10 (1H, dd, 3J = 12.3, 4.8 Hz), 4.32 (1H, dd, 3J = 12.3, 4.2 Hz), 4.45 

(1H, d, 3J = 11.7 Hz), 4.51 (1H, d, 3J = 7.8 Hz), 4.89 (1H, t 3J = 9.3 Hz), 5.02 (1H, t, 3J = 9.3 

Hz), 5.10 (1H, t, 3J = 9.3 Hz), 5.34 (1H, t, 3J = 9.3 Hz), 5.49 (1H, t, 3J = 9.3 Hz), 5.86 (1H, d, 

3J = 9.0 Hz), 7.35-7.45 (3H, m), 7.82 (2H, d, 3J = 7.5 Hz), 7.92 (1H, s). 13C NMR (CDCl3): δ 

20.22 (OAc), 20.45 (2 × OAc), 20.52 (OAc), 20.67 (2 × OAc), 20.77 (OAc), 61.58 (CH2), 

61.70 (CH2), 67.76 (CH), 70.36 (CH), 71.59 (CH), 72.14 (CH), 72.43 (CH), 72.84 (CH), 

75.91 (CH), 75.99 (CH), 85.61 (CH), 100.81 (C-1), 117.80 (CH=Cq), 125.88 (2 × ArCH), 

128.57 (ArCq), 128.87 (ArCH), 129.9 (2 × ArCH), 148.34 (CH=Cq), 169.05 (OAc), 169.21 

(OAc), 169.29 (OAc), 169.52 (OAc), 170.16 (OAc), 170.18 (OAc), 170.45 (OAc). 

 

1.2.6. 1-Deoxy-1-(4-phenyl-1,2,3-triazolyl)-(4-O-β-D-glucopyranosyl)-β-D-glucopyranose 

(7) 

To a solution of 1-deoxy-1-(4-phenyl-1,2,3-triazolyl)-4-O-(2,3,4,6-tetra-O-acetyl-β-D-

glucopyranosyl)-2,3,6-tetra-O-acetyl-β-D-glucopyranose (6) (1.0 g, 1.31 mmol) in dry MeOH 

(25 mL) was added MeOK (18 mg, 0.26 mmol) and the solution stirred for 4 h.  The solution 

was neutralized with Amberlyst® ion exchange resin (to pH 7) and was allowed to stir for 30 

min.  The resin was removed by gravity filtration and the solvent removed under vacuum.  



The crude solid was recrystallised from a minimum of hot MeOH to yield an off white 

crystalline solid (0.58 g; 95%) Mp 266 oC; IR (KBr): ν 3385 (OH), 2961 (CH), 1672 (C=C), 

1231 (O-C=O) and 1045 (C-O-C) cm-1; 1H NMR (D2O): δ 3.35-3.58 (5H, m), 3.78 (1H, dd, 

3J = 12.0, 6.0 Hz), 3.91-4.13 (6H, m), 4.59 (1H, d, 3J = 7.8 Hz), 5.80 (1H, d, 3J = 9.3 Hz), 

7.44-7.53 (3H, m, Ar-H), 7.78 (2H, d, 3J = 7.1 Hz, Ar-H), 8.48 (1H, s, C=CH); 13C NMR 

(D2O): δ 59.80 (CH2), 60.64 (CH2), 69.50 (CH), 72.15 (CH), 73.19 (CH), 74.51 (CH), 75.53 

(CH), 76.07 (CH), 77.73 (2 × CH), 87.38 (CH), 102.54 (C-1), 121.24 (CH=Cq), 125.75 (2 × 

ArCH), 129.02 (ArCH), 129.06 (ArCq), 129.21 (2 × ArCH), 142.48 (CH=Cq). MS-ESI: 

Found m/z, 470.1752; calcd for C20H28N3O10 [M+H+], 470.1775. 

 

1.3. Solid state characterisation 

Crystals of compounds (5) and (7) suitable for single-crystal X-ray diffraction were grown by 

slow evaporation of aqueous methanol solutions.  Single-crystal X-ray diffraction 

measurements for compound (5) were collected on a Bruker SMART X2S diffractometer as 

previously described.21  A Rigaku FR-E+ diffractometer fitted with VariMax HF optics to 

give monochromatized Mo Kα radiation was used for compound (7) following previously 

described procedures.22  Calculations for (5) were made using the APEX2 v2009.3-0 

software23 incorporating the SHELX suite of programs for structure solution and 

refinement.24 Calculations for (7) were made using CrystalClear-SM Expert 2.0 r13 

software.25 The structure was solved by Superflip26 and refined using SHELXL-97.24 All 

diagrams were prepared using Mercury.27   

 

Supplementary data 

The crystallographic data on compounds (5) and (7) (dihydrates) have been deposited with 

the Cambridge Crystallographic Data Centre, CCDC numbers 976571 and 976572. These 



data can be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif .  Full data on all hydrogen bonds are given in the 

Supplementary data.  Thermal analysis data and PXRD patterns for compounds (5) and (7) 

are provided as Supplementary data. 
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Supplementary Figure 1: DSC (blue) and TGA (green) overlay of 1-acetamido-1-deoxy-(4-
O-β-D-glucopyranosyl-β-D-glucopyranose (5) dihydrate 
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Supplementary Figure 2: DSC of 1-deoxy-1-(4-phenyl-1,2,3-triazolyl)-(4-O-β-D-
glucopyranosyl-β-D-glucopyranose) (7) dihydrate 

 
Supplementary Figure 3: Experimental PXRD pattern (purple) of 1-acetamido-1-deoxy-(4-
O-β-D-glucopyranosyl-β-D-glucopyranose (5) dihydrate with overlay of calculated pattern 
(blue) from solved crystal structure. 
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Supplementary Figure 4: Experimental (blue) and theoretical (purple) PXRD pattern for the 
1-deoxy-1-(4-phenyl-1,2,3-triazolyl)-(4-O-β-D-glucopyranosyl-β-D-glucopyranose) (7) 
dehydrate.  The diffraction peaks seen in the experimental pattern not corresponding to the 
calculated pattern are taken to arise from a phase impurity in the bulk sample. 
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Supplementary Figure 5: Numbered Ortep diagram for compound (5) dihydrate. Ellipsoids 
are drawn at the 50% probability level. [PLATON: Spek, A. Acta Crystallographica Section 
D 2009, 65, 148.] 

 



Supplementary Figure 6: Numbered Ortep diagram for compound (7) dihydrate. 
[PLATON: Spek, A. Acta Crystallographica Section D 2009, 65, 148.] 
 

 
 
Supplementary Figure 7: Intermolecular hydrogen bonding observed for compound (7), 
between the 2-OH of the reducing glucopyranose and the 3-OH of the non-reducing end of an 
adjacent molecule, and between the 4-OH of the non-reducing end of the first molecule and 
the 3-OH of the non-reducing end of a third molecule. 
 

Supplementary Table 1 Cremer-Pople parameters for both glucopyranose molecules of 
compounds 5 and 7. 
 Q θ ϕ 

(5) Reducing End 0.557(2) Å 5.74 (12)o 23.24 (3)o 

(5) Non-Reducing End 0.575(2) Å 11.35 (11)o 73.40 (11)o 

(7) Reducing End 0.574(2) Å 8.9 (3)o 197.0 (2)o 

(7) Non-Reducing End 0.579(3) Å 10.3 (3)o 184.2 (17)o 

 
Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 1354-1358. 
 
 



Table of Hydrogen Bonding Data 
Compound 5 

Nr    Type Res 
Donor --- 
H....Acceptor    [ ARU ]       D - H      H...A   D...A 

   D- 
H...A 

1         1 
 N(7)  --H(7)   
..O(9) 

   [  
1655.01]     0.86(4)     2.05(4) 

   
2.890(3) 

     
165(3) 

2         1 
 O(11) --H(11)  
..O(23) 

  [  
1465.01] 0.82 1.86 

   
2.675(3) 174 

3  Intra  1 
 O(12) --H(12)  
..O(22)   [         ] 0.82 2.02 

   
2.754(2) 149 

4  Intra  1 
 O(12) --H(12)  
..O(27)   [         ] 0.82 2.49 

   
3.091(3) 131 

5         1 
 O(15) --H(15)  
..O(11) 

  [  
1645.01] 0.82 1.94 

   
2.736(2) 162 

6         1 
 O(23) --H(23)  
..O(12) 

  [  
1545.01] 0.82 1.96 

   
2.752(3) 161 

7         1 
 O(24) --H(24)  
..O(27) 

  [  
1645.01] 0.82 2.08 

   
2.859(3) 159 

8         1 
 O(25) --H(25)  
..O(29) 

  [  
1654.03] 0.82 1.87 

   
2.685(4) 172 

9         1 
 O(27) --H(27)  
..O(24) 

  [  
1565.01] 0.82 1.93 

   
2.748(3) 173 

10         2 
 O(28) --H(28A) 
..O(9) 

   [  
1655.01] 

  
0.823(18) 

  
2.122(19) 

   
2.888(3) 

     
155(4) 

11         2 
 O(28) --H(28B) 
..O(15)   [         ]     0.82(3)     1.94(3) 

   
2.754(3) 

     
175(3) 

12         3 
 O(29) --H(29A) 
..O(28) 

  [  
1455.02]     0.82(4)     1.98(4) 

   
2.776(4) 

     
164(4) 

13         3 
 O(29) --H(29B) 
..O(28)   [         ]     0.81(3)     2.04(3) 

   
2.849(4) 

     
171(3) 

14  Intra  1 
 C(1)  --H(1)   
..O(9)    [         ] 0.98 2.4 

   
2.783(3) 102 

15  Intra  1 
 C(4)  --H(4)   
..O(15)   [         ] 0.98 2.55 

   
2.931(3) 103 

 
 
Compound 7 

Nr    Type Res 
Donor --- 
H....Acceptor    [ ARU ]       D - H 

     
H...A   D...A 

   D- 
H...A 

1         1  O1    --H1     ..O1 
     [  
2556.01] 0.84 1.96 

   
2.748(3) 156 

2         2 
 O1W   --H1WA   
..O9      [         ]     0.84(2) 

    
2.02(3) 

   
2.802(3) 

     
154(2) 

3         2 
 O1W   --H1WB   
..O10 

    [  
1545.01]     0.84(3) 

    
1.98(3) 

   
2.811(3) 

     
173(3) 

4         3 
 O2W   --H2WA   
..N3      [         ]     0.85(2) 

    
2.00(3) 

   
2.779(3) 

     
152(3) 



5         1 
 O3    --H3A    
..O4 

     [  
2446.01] 0.84 2.27 

   
3.035(3) 152 

6         3 
 O2W   --H2WB   
..O5 

     [  
1645.01] 

  
0.834(18) 

    
1.95(2) 

   
2.770(3) 

     
168(3) 

7         1 
 O4    --H4A    
..O1W 

    [  
1455.02] 0.84 1.83 

   
2.659(3) 168 

8         1 
 O5    --H5A    
..O2W 

    [  
1455.03] 0.84 2.03 

   
2.836(3) 160 

9         1 
 O7    --H7     
..O2W 

    [  
1455.03] 0.84 1.97 

   
2.801(3) 173 

10  Intra  1 
 O9    --H9A    
..O2      [         ] 0.84 2 

   
2.812(3) 162 

11         1 
  O10   --H10A   
..O4 

     [  
1655.01] 0.84 2.06 

   
2.831(3) 151 

12         1 
 C1    --H1A    
..O1W 

    [  
2546.02] 0.99 2.58 

   
3.532(4) 161 

13         1 
 C1    --H1B    
..O1W 

    [  
2556.02] 0.99 2.47 

   
3.403(4) 157 

14         1  C3    --H3     ..O3 
     [  
2456.01] 1 2.53 

   
3.164(4) 121 

15         1  C8    --H8     ..O7 
     [  
1565.01] 1 2.35 

   
3.236(4) 148 

16  Intra  1  C9    --H9     ..O7      [         ] 1 2.55 
   
2.902(4) 100 

17         1 
 C17   --H17    
..O8 

     [  
2657.01] 0.95 2.5 

   
3.340(4) 148 

18         1 
 C18   --H18    
..O7 

     [  
2657.01] 0.95 2.52 

   
3.439(4) 162 

19  Intra  1 
 C20   --H20    
..N3      [         ] 0.95 2.6 

   
2.909(4) 100 

 
 
 
 


	Crystals of compounds (5) and (7) suitable for single-crystal X-ray diffraction were grown by slow evaporation of aqueous methanol solutions.  Single-crystal X-ray diffraction measurements for compound (5) were collected on a Bruker SMART X2S diffract...

