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Abstract

Purpose: Radiomics have become invaluable for non-invasive cancer patient risk prediction, and
the community now turns to exogenous assessment, e.g., from genomics, for interpretability of
these agnostic analyses. Yet, some opportunities for clinically interpretable modeling of positron
emission tomography (PET) imaging data remain unexplored, that could facilitate insightful
characterization at voxel level.

Approach: Here, we present a novel deformable tubular representation of the distribution of
tracer uptake within a volume of interest, and derive interpretable prognostic summaries from
it. This data-adaptive strategy yields a 3D-coherent and smooth model fit, and a profile curve
describing tracer uptake as a function of voxel location within the volume. Local trends in uptake
rates are assessed at each voxel via the calculation of gradients derived from this curve.
Intratumoral heterogeneity can also be assessed directly from it.

Results: We illustrate the added value of this approach over previous strategies, in terms of
volume rendering and coherence of the structural representation of the data. We further dem-
onstrate consistency of the implementation via simulations, and prognostic potential of hetero-
geneity and statistical summaries of the uptake gradients derived from the model on a clinical
cohort of 158 sarcoma patients imaged with 18F-fluorodeoxyglucose–PET, in multivariate prog-
nostic models of patient survival.

Conclusions: The proposed approach captures uptake characteristics consistently at any loca-
tion, and yields a description of variations in uptake that holds prognostic value complementarily
to structural heterogeneity. This creates opportunities for monitoring of local areas of greater
interest within a tumor, e.g., to assess therapeutic response in avid locations.
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1 Introduction

The standard of cancer care has become increasingly reliant on positron emission tomography
(PET) imaging with 18F-fluorodeoxyglucose (FDG). This has stimulated development of image-
derived patient-adaptive quantitation of prognostic factors into therapy planning and manage-
ment. Prognostic utility of semi-quantitative summaries of FDG-PET information and in par-
ticular variables derived from standardized uptake value (SUV) information in current
clinical routine was demonstrated for a range of diseases.1–5 In addition to these, measures
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of intratumoral uptake heterogeneity in FDG-PET that exploit the whole volumetric uptake infor-
mation have been associated with patient treatment outcomes in several cancer types.4,6–10

The development of radiomics now offers a more elaborate framework for such quantitative
characterization, for many diseases.10–19 These multivariate predictive models, comprising of
large, heterogeneous sets of features, are trained and validated via machine learning frameworks
to achieve promising prognostic performance. Although some radiomic features [such as volume
of interest (VOI) morphology or histogram intensity] have a clear practical meaning, these high-
throughput methodologies tend to have inherently limited clinical interpretability. A growing
number of studies now explore associations of radiomics models with exogenous assays,
e.g., from genomics, with the aim to facilitate model interpretation in terms of the underlying
tumor biology.20–23

Alternative quantitative methodologies can also be considered to facilitate clinical interpre-
tation directly from modeling. Earlier works from our group presented a strategy based on a
conceptual definition of intratumoral heterogeneity as a measured degree of conformity of the
spatial PET tracer uptake distribution to an idealized ellipsoidal pattern. The approach thus con-
sisted in comparing the volumetric uptake distribution against a rigid ellipsoidal reference,24 a
lower degree of conformity indicating more scattered uptake at the core, as could be observed,
e.g., in necrotic or more developed tumor masses. This strategy may be seen as a form of point
pattern analysis; we are aware of only one other example of a spatial point process approach in
the literature for cancer characterization25—although applied to analyze the distribution of cell
nuclei locations in colon cancer from immunofluorescence imaging, a much different applica-
tion. Our group later demonstrated that tumor characterization based on the ellipsoidal conform-
ity approach offered additional prognostic opportunities complementary to commonly used
radiomic features in sarcoma and lung cancer.26,27 However, tumor characterization from this
approach remained restricted to an evaluation of lack of conformity to a rigid pattern, and could
only produce a crude representation of local uptake characteristics. An alternative, data-adaptive
strategy could also more appropriately capture complex tumor topologies, e.g., where a tumor
grows along a bone.

A second model developed by the group6 was designed with the aim to adapt to spatial var-
iations of the volumetric uptake data, based on a tubular representation of the data. An appli-
cation of this strategy to a set of FDG-PET sarcoma studies showed that structural heterogeneity
and other interpretable variables derived from this model at voxel level, such as median core
phase of development, could bear prognostic value. This ad hoc model, however, had technical
limitations. It required that smoothing of individual parametric components of the model be
carried out separately, and it is not clear how this could impact volume rendering.
Depending on data sampling and preprocessing choices, this approach may also not guarantee
smoothness of the output volume in both axial and angular directions. This difficulty may be
reinforced by the fact that variations along the sampling directions were not represented using
continuous functionals of the volumetric coordinates, but were rather captured parametrically
only. Another drawback of the scheme was that the fitted volumes may have inadequately large
tail-ends. Although such large extreme slices did not appear to hinder significance of the overall
metabolic assessment, they suggested that a better representation of the VOI could be achieved,
and with it a more appropriate assessment of local activity.

These two former models of the spatial structure of PET tracer uptake in solid masses encour-
aged elaboration of refined techniques for assessment at voxel level. In this paper, we propose an
alternative representation that provides a smooth, continuous evaluation of the volumetric uptake
distribution and a 3D-coherent measure of uptake trends at any location. The approach involves a
tubular representation of the tumor mass with a radial analysis of uptake, transverse to the tubular
axis. A regularization formulation is used in this implementation to facilitate computation and
provide simplified control over the implicit smoothness of multiple functions involved in the 3D
representation of tumor uptake. A range of prognostic markers can be derived from the model fit,
and we demonstrate their clinical potential via retrospective analysis of a clinical cohort. In par-
ticular, we derive uptake gradients to quantify the variation in uptake at voxel level. This variable
enables mapping areas of fast and slow changes in tracer uptake, including information on the
direction of change. Integration of this principle into a radiomics framework will be the scope of
future work.

Wolsztynski, O’Sullivan, and Eary: Spatially coherent modeling of 3D FDG-PET data for assessment. . .

Journal of Medical Imaging 045003-2 Jul∕Aug 2022 • Vol. 9(4)



The proposed model and prognostic summaries derived from it are described in Sec. 2.
Details on computational aspects are provided in Sec. 3, and complementary numerical analyses
presented in Appendices. Section 4 explains an application of the methodology to clinical stud-
ies, including a comparison of quantitative analyses with previous models, and a demonstration
of its prognostic potential. We discuss a number of technical and conceptual limitations and
further directions in Sec. 5.

2 Modeling and Characterization of Intratumoral Tracer Uptake

This section presents the proposed modeling strategy. The key feature of this approach is the
representation of the tracer uptake profile as a function of voxel (tubular) radius. We describe
how to derive tracer uptake gradients for each voxel from this profile curve for local assessment
of uptake trends, and summarize said curve into measures of intratumoral structural
heterogeneity.

2.1 Tubular Modeling of Volumetric Tracer Uptake

The original imaging data ðz; xÞ ∈ ðR × ΩÞ ⊂ R4, which consist of a collection of N voxels
defined by their uptake z and 3D coordinates x ¼ ðx1; x2; x3ÞT in the voxel coordinate domain
Ω, are first projected onto ðz; x 0Þ in the principal components basis, so as to align the
tumor volume according to its direction of maximum spread. The 3D covariance matrix for
principal components analysis is obtained from the distribution of xi ’s weighted by the uptake
values, i.e.,

EQ-TARGET;temp:intralink-;sec2.1;116;450Ξ ¼
XN
i¼1

ziðxi − μÞðxi − μÞTP
N
i¼1 zi

;

where μ is the uptake-weighted mean of the xi’s. The projected data are resampled along the
principle axis (i.e., along h ¼ x3 0 ) so as to obtain transverse slices of the reoriented volume.
Transverse tumor spine coordinates ðμ1; μ2Þh are then obtained for each transverse slice using
a form of uptake-weighted average smoothed along the principle axis.6 There is flexibility in the
choice of sampling strategy here; we advise choosing a number of bins (or slices) so that it is
proportional to the ratio between axial range of height values and within-plane resolution of the
transverse image.6

Tubular coordinates x 0 ↦ ðr;ϕ; hÞ are then obtained where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 0

1 − μ1;hÞ2 þ ðx 0
2 − μ2;hÞ2

q
, ϕ ¼ tan−1ðx 0

2
−μ2;h

x 0
1
−μ1;h

Þ and h ¼ x 0
3. These coordinates become

useful in defining the following nonlinear radial uptake profile:

EQ-TARGET;temp:intralink-;e001;116;272z ≈ λðx 0; θÞ ¼ ah;ϕg

�
τh þ

r
bh;ϕ

�
; (1)

with infinite-dimensional parametrization θ ¼ ðah;ϕ; τh; bh;ϕÞ corresponding respectively to
voxel amplitude, core phase and radial deformation of the initial voxel tubular radius r in the
axial and angular directions. We call voxel phase of development the argument of this overall
uptake profile function (i.e., the spatially uptake-adaptive radii), which provides an indication of
local uptake trends at that voxel, in the context of the profile function gðÞ.

A non-symmetric choice for gðÞ may be appropriate given the asymmetric, heavy-tailed
nature of radial uptake distributions observed from FDG-PET imaging data. A gamma distri-
bution with shape parameter α ¼ 3, and unit rate was used in this work. This allows for a rea-
sonable, right-skewed output profile curve evaluated on a known scale.

The functional components of parameter θ are evaluated in terms of B-splines in the
h-coordinate, periodic B-splines in the ϕ-coordinate, and their tensor products,28 such that at
any voxel x 0,
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EQ-TARGET;temp:intralink-;sec2.1;116;735ahϕ ¼
XJϕ
j¼1

XJh
k¼1

a½jk�B̃jðϕÞBkðhÞ; bhϕ ¼
XJϕ
j¼1

XJh
k¼1

b½jk�B̃jðϕÞBkðhÞ; τh ¼
XJh
k¼1

τ½k�BkðhÞ;

where a½:�; b½:�, and τ½:� denote finite projections of functionals a; b, and τ on these B-spline bases.
This spline-based evaluation confers continuous support to the proposed parametric uptake
model Eq. (1). Parametrization θ ¼ ða½::�; b½::�; τ½:�Þ becomes a P-dimensional term in this imple-
mentation, with P ¼ Jh þ 2JhJϕ. Further details on the computational techniques used for
model fitting and evaluation are provided in Sec. 3.

2.2 Uptake Profiling

Fitting model Eq. (1) yields a one-dimensional (1D) uptake profile curve g as a function of voxel
location (in the model referential), which is scaled by a voxel-varying amplitude term ah;ϕ at
each voxel. This allows for an assessment of phase of development at the voxel level, via its
argument

EQ-TARGET;temp:intralink-;e002;116;543uðh;ϕÞ ¼ τh þ r∕bh;ϕ: (2)

In this expression, τh quantifies uptake development near the tumor core, at transverse slice h.
Its interpretation depends on the choice of profile function g, which influences the dynamic range
of phase values. Typically, larger phase values correspond to early tumor areas, whereas small
values indicate an ageing (e.g., necrotic or metabolically slower) core, i.e., to a locally more
developed tumor subvolume.

Figure 1 shows this concept, using a scaled gamma(3,1) profile function g. Since the phase
variable u defined by Eq. (2) corresponds to an adjusted radius, in this plot, the LHS of the x axis
corresponds to phases values at the tumor volume core (the smallest value in the range being τh),
and the RHS to values found at the boundary of the volume. Phase values lying around the profile
mode [which in the gamma(3,1) case is uðh;ϕÞ ¼ 2] correspond to highly active tumor voxels.
Phase values u < 2 correspond to a region in a more advanced phase of development, with a

Fig. 1 Uptake model fits for two typical homogeneous (top) and heterogeneous (bottom) FDG
uptake patterns in sarcoma, with mid-volume transverse slices shown in left-most images, profiles
derived from the regularized tubular model of volumetric uptake (second from left), and corre-
sponding uptake gradient curves derived from the uptake profile curve (third from left). The histo-
grams provide a comparison of the corresponding distributions of gradients, negative values
announcing decreasing uptake or even necrosis at that location.
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decreasing uptake trend. Larger values of u correspond to marginal tissue or early tumor areas.
As the fitted intratumoral uptake profile is a function of phase u, typical tumor characteristics
yield different uptake profile and uptake gradient signatures. A distribution of uptake gradients
containing a large proportion of negative values is indicative of a tumor with a decelerating core,
whereas the value of lower quantiles of that distribution would typically be greater for young
tumors with an active core.

2.3 Extracting Uptake Gradient Information from the Model

The voxel phase quantitation uðh;ϕÞ of Sec. 2.2 provides an assessment of uptake trends current
to the time of imaging, much like the actual tracer uptake information. But inspired by the con-
cept of the diffusion process of an evolving cancer cell, we can further utilize model Eq. (1) to
derive a localized assessment of these trends. Works such as that of Roose et al.29 proposed
mathematical models of spherical cancer cell diffusion processes in a free-growth environment.
However, here, we do not evaluate differential equations to capture such dynamics. Given a fitted
profile gðuÞ (Fig. 1), the profile derivative dfgðuÞg∕du can be seen to quantify the instantaneous
rate of change in uptake with respect to a standard change in phase at any voxel. For interpre-
tation it seems easier to use the negative derivative

EQ-TARGET;temp:intralink-;sec2.3;116;519−_gðuÞ ¼ −dfgðuÞg∕du;

so as to obtain a quantity that is positive when the measured uptake trend corresponds to an
increase in activity, i.e., on the RHS of the profile mode, and negative when this rate is found
to decrease, i.e., on the LHS of the profile mode.

Raw model gradient quantitation can be enhanced by weighting the gradient variable by the
fitted voxel amplitude, with the fitted voxel phases fuh;ϕg, to obtain a quantitative measure of
rate of uptake at the voxel level

EQ-TARGET;temp:intralink-;e003;116;415vðh;ϕÞ ¼ −ah;ϕ _gðuðh;ϕÞÞ: (3)

With this, the gradient information is adjusted for localized uptake patterns, which puts the
emphasis on areas that combine higher activity and sharp changes in tracer uptake. This is useful
to further separate active tumor areas from less active tissue. The right-hand-side half of Fig. 1
shows uptake gradient profiles and distributions for two typical sarcoma studies. Gradient values
below the zero-line correspond to local areas of deceleration in tracer uptake. This evaluation
helps to capture the typical radial positions where the highest rates of uptake change, as under-
stood from model Eq. (1), can be found within the overall tumor volume.

Another practical advantage of Eq. (3) is that it produces an output variable that is expressed
in the same units as the original observation, in our case SUVunits, since the scale of profile gðÞ
is fixed by our choice of a distribution [e.g., a gamma(3,1)]; the ah;ϕ term serves to adapt this
profile to the observation scale. This feature makes the proposed variable v comparable across
patients with the same disease, i.e., it is interpretable in a clinical setting for a given type of
cancer. This measure assesses local intratumoral development, rather than of global propagation
of the disease.

Voxel-specific quantitation Eq. (3) can be mapped to the 3D voxel coordinates to produce an
image of uptake gradients. The left panel of Fig. 2 shows a transverse view of uptake gradients
vðh;ϕÞ Eq. (3) over a liposarcoma tumor imaged with FDG-PET, color-coded according to
classes of percentiles of the distribution of gradients. This iso-quantile map highlights a cluster
of voxels located toward the metabolic core of the tumor with decreasing metabolic activity.
Voxels of high uptake gradient are also picked up on this map, with a distinctive pattern of higher
gradients outward from the metabolic core, and toward the bottom of the transverse uptake slice.
The corresponding smooth 3D output metabolic volume delineation is also shown on Fig. 2
(bottom). It demonstrates how end-slices close in at the extremities, a feature provided by the
regularization scheme of Eq. (5). Figure 2 shows a similar analysis for another FDG-PET study
of a nerve sheath (soft tissue) sarcoma in the pelvic area.
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The sample of voxel uptake gradients vðh;ϕÞ may also be summarized into a selected
percentile so as to produce a single-value quantitation of overall uptake trends. This approach
provides the opportunity to define novel PET-derived biomarkers for tumor risk characterization.
We recently introduced and demonstrated the prognostic utility of similar uptake gradients
derived from the rigid ellipsoidal model for sarcoma26 and non-small cell lung cancer.27

Their derivation from the present smooth tubular model of the volumetric tracer uptake distri-
bution allows for finer local definition of these uptake gradients. The potential of such statistical
summaries for improved characterization of patient survival and disease progression is demon-
strated in Sec. 4 on a set of FDG-PET sarcoma studies.

2.4 Intratumoral Heterogeneity

A measure of intratumoral heterogeneity can also be derived from the fitted values as a measure
of goodness-of-fit of model Eq. (1) to the overall 3D uptake data. A slice-by-slice approach was
required to compute the overall intratumoral heterogeneity with the initial modeling approach,6

as the fitting procedure was not 3D-coherent. Transverse heterogeneities were computed as a
model lack-of-fit for each slice separately, yielding slice-specific heterogeneity scores
Hh ¼ ð1 − R2

hÞ × 100 for each slice h, where R2
h denotes the R

2-statistic for slice h. An overall
heterogeneity score is obtained by averaging these spinal assessments. Figure 3 shows this
approach. Using the regularized approach Eq. (5), intratumoral heterogeneity is also defined
as a lack of fit based on the R2 statistic; however, it is computed at once across the 3D volume
as

EQ-TARGET;temp:intralink-;e004;116;174H ¼
1
N

P
N
i¼1 ðz − λðx; θ̂ÞÞ2

VarðzÞ : (4)

The regularized fit confers more robustness to this assessment. In particular, the transverse
slices located at the volume extremities, which typically contain less active points, are subject to
lower signal-to-noise ratios. This hinders the former procedure;6 the regularized fit is more
coherent at the extremities by integrating the whole volume in the optimization process.
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Fig. 2 Two FDG-PET case studies (left and right) correspond respectively to an inner thigh
sarcoma) and a soft tissue sarcoma in the pelvis. Top row: transverse slice (mid-section)
of the imaging data (left) and corresponding color mapping of quantile levels of uptake gradients
v (right), showing successive masks for quantile levels in f0.00; 0.10; 0.20; 0.45; 0.60; 0.65; 0.70;
0.75; 0.80; 0.85; 0.90; 0.95; 1.00g, as per the pie chart. This visualization emphasizes areas of
higher uptake gradient in the VOI. Bottom row: 3D rendering of the overall tumor volume.
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3 Model Fitting and Numerical Evaluation

This section discusses computational aspects of the proposed model and its implementation,
including numerical evaluation of the regularized Levenberg–Marquardt process used for its
optimization, and an initialization scheme. A numerical illustration of the modeling approach,
and the effect of regularization using simulated data are provided in Appendix A.

3.1 Model Optimization

We propose to fit this radial uptake model using a discretized Laplacian-penalized objective
function

EQ-TARGET;temp:intralink-;e005;116;374LγðθÞ ¼ kz − λðx; θÞk22 þ γkΔλðx; θÞk22 ¼
X
xi∈Ω

½ðzi − λðxi; θÞÞ2 þ γðΔλðxi; θÞÞ2�; (5)

where Δλ is the 3D discretized Laplacian of λ. This penalty is introduced so as to reduce second-
order variations of the spatial structure, to achieve a smoother volume. The discretization is
based on the central difference formula. In the above formulation γ is a regularization parameter
that controls overall smoothness of the combination of functions. Thus, for γ → 0, the resulting
estimate would tend toward the rougher weighted least squares solution, whereas a large value of
γ would entail stronger penalty and, in turn, oversmoothing of the initial model.

Due to the non-linearity of the tubular model, both the data-fit and penalty components of
regularization model Eq. (5) are non-quadratic. A Gauss−Newton approach is used for
optimization.28,30 The requisite gradients for sensitivity matrices are based on divided differences
of λ and of Δλ. Linearization gives

EQ-TARGET;temp:intralink-;sec3.1;116;210

λðxi; θÞ ¼ λðxi; θ0Þ þ ∇θλðxi; θ0Þðθ − θ0Þ;
Δλðxi; θÞ ¼ Δλðxi; θ0Þ þ Δ∇θλðxi; θ0Þðθ − θ0Þ;

for xi ∈ Ω. Let χi ¼ ∇θλðxi; θÞ and Δχi ¼ Δ∇θλðxi; θÞ be the divided difference gradients with
respect to θ-components of λ and Δλ. The overall linearized uptake model λðx; θÞ at θ0 for
ðz; xÞ ∈ ðRN × R3Þ yields objective function

EQ-TARGET;temp:intralink-;e006;116;123lγðθÞ ¼ kz − λðx; θ0Þ − ∇θλðx; θ0Þðθ − θ0Þk2 þ γkΔλðx; θ0Þ þ Δ∇θλðx; θ0Þðθ − θ0Þk2; (6)

with N × P Jacobian
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Fig. 3 (a) Views of a thigh liposarcoma VOI, with input user-specified ellipsoidal VOI (yellow lines).
(b) Transverse heterogeneities can be calculated on a slice-per-slice analysis fo the VOI, along the
tumor spine (y axis). In this plot the black curve (dots) depicts the transverse heterogeneity sum-
maries obtained from our initial, non-regularized model,6 and the red curve (rectangles) those
obtained from the regularized approach, which are more coherent overall. (c) The effect of regu-
larization Eq. (5) is visible when comparing renderings of the output delineated 3D volume using
our previous non-regularized approach6 (left) to the tumor volume output from the regularized
scheme (right).
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EQ-TARGET;temp:intralink-;sec3.1;116;735χ ¼ ∇θλðx; θ0Þ ¼

2
6664

∂λðx1;θÞ
∂θ1

: : : ∂λðx1;θÞ
∂θP

..

. . .
. ..

.

∂λðxN ;θÞ
∂θ1

: : : ∂λðxN ;θÞ
∂θP

3
7775
θ¼θ0

;

and its N × P Laplacian

EQ-TARGET;temp:intralink-;sec3.1;116;658χΔ ¼ Δ∇θλðx; θ0Þ:

Letting λ0 ¼ λðx; θ0Þ, and given the vectorized form of linearized objective function

EQ-TARGET;temp:intralink-;e007;116;613

lγðθÞ ¼ ½z − λ0 − χðθ − θ0Þ�T ½z − λ0 − χðθ − θ0Þ�
þ γ½Δλ0 þ χΔðθ − θ0Þ�T ½Δλ0 þ χΔðθ − θ0Þ�: (7)

The optimal solution is

EQ-TARGET;temp:intralink-;e008;116;550θ̂ ¼ ½χTχ þ γχTΔχΔ�−1½χTðz − λ0 þ χθ0Þ − γχTΔðΔλ0 − χΔθ
0Þ�; (8)

which can be re-expressed as

EQ-TARGET;temp:intralink-;sec3.1;116;504θ̂ ¼ θ0 þ ½χTχ þ γχTΔχΔ�−1½χTðz − λ0Þ − γχTΔΔλ0�:

3.2 Control on Regularization

We expect that the choice of a selection scheme for γ should be data-driven, and would have only
a minor impact on overall performance. The regularization parameter in Eq. (8) may be set by
generalized cross-validation,28,31 whereby this parameter would be defined as

EQ-TARGET;temp:intralink-;sec3.2;116;397γ̂ ¼ arg min
γ

RSSðθ̂γÞ
ð1 − TrðHγÞÞ2

;

using Hat matrix Hγ ¼ χðχTχ þ γχTΔχΔÞ−1χT . Other strategies are possible, such as controlling
the level of sensitivity of the fitted values with respect to the observations. In this line we chose to
set γ such that the regression effective degrees of freedom (the trace of Hγ) should approximate
P∕4,28,32 yielding satisfactory results for our data. This choice is arbitrary and may need adapting
from one dataset to another.

3.3 Numerical Stability

A regularized Levenberg–Marquardt optimization with a penalty on second-order spatial var-
iations was first considered33 to minimize Eq. (5), where smoothing parameter γ was controlled
via generalized cross-validation. However, this approach proved sensitive to potential sampling
disparities that may arise when dealing with spatially irregular volumes of interest, which could
lead to the model Hessian being ill-conditioned. For this reason, we introduced the use of
thin-plate splines28 for the evaluation of Eq. (5) so as to obtain increased numerical stability
in ill-conditioned cases.

3.4 Positivity Constraints

To enforce positivity constraints on ah;ϕ, bh;ϕ, and τh, linearized solution Eq. (8) of the opti-
mization scheme may be further updated to satisfy positivity constraints via an order-restricted
linear model (a quadratic programming approach),34 i.e., Eq. (7) is minimized with respect to θ
subject to positivity.
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3.5 Initialization

The implementation of solution Eq. (8) requires initialization ða0½::�; b0½::�; τ0½:�Þ for the spline bases
Eq. (7), and corresponding initial fit

EQ-TARGET;temp:intralink-;sec3.5;116;692z0 ¼ λ0ðx; θ0Þ ¼ a0h;ϕg

�
τ0h þ

r
b0h;ϕ

�
:

This initialization can be set using θ� ¼ ða�; τ�; σ�Þ from the output phases

EQ-TARGET;temp:intralink-;sec3.5;116;633u�h;ϕ ¼ τ�h þ
r

σ�hðϕÞ
;

and corresponding output fit from our former, simpler tubular representation6 of uptake

EQ-TARGET;temp:intralink-;e009;116;579z� ¼ a�hg
�ðu�h;ϕÞ: (9)

This simpler scheme uses a Gaussian profile function g�ðÞ, which can be converted into an
approximate gamma profile function g for use in the regularized construction Eq. (1).

Initial vectors ða0½::�; b0½::�; τ0½:�Þ for Eq. (7) are set based on a linear transformation of the pre-

liminary set of u� values, so as to preserve the overall arrangement of voxel phases from the
initial, unregularized tubular model fit. This ensures the overall uptake profile signatures derived
from each model are coherent voxel-wise. Standardizing u�h;ϕ along the spinal direction yields
initial phases ~u�h;ϕ ¼ ðu�h;ϕ − τ�hÞψ�

h which are used when deriving the initial (Gaussian) uptake

profile Eq. (9).6 Final initial phase values for the regularized approach can then be u0h;ϕ¼Δ τ0h þ
r∕b0h;ϕ ¼ ũ�h;ϕsþ d for some s; d ∈ Rwith s > 0. Since each choice of profile distribution g has
a different range, the change in amplitude scale is also controlled by overall adjustment α, for
which an initial guess may be a� maxðg�ðu�ÞÞ∕maxðgðu0ÞÞ. The rigid transformation from
original fit to regularization input fit using ðα; d; sÞ is adjusted by minimizing the nonlinear least

squares difference kαgðdþ sũ�Þ − g�ðũ�Þk2 between the two fits, yielding ðα̂; d̂; ŝÞ. Finally, this
implies

EQ-TARGET;temp:intralink-;sec3.5;116;359τ0h ¼ d̂ − ŝψ�
hτ

�
h; b0h;ϕ ¼ σ�hðϕÞ

ŝψ�
h

; a0h;: ¼ α̂a�h;

where the final starting amplitude values a0h;ϕ are set equal along the ϕ-direction at each (pro-
jected) transverse slice h, since the previous model did not include angular variation of the voxel
amplitude parametrization. In the above expressions, we assume the same (user-specified) Jϕ ×
Jh tubular sampling dimensions are used in both models, but if these were different, the original
parametric vectors θ� may be interpolated to the new Jϕ × Jh parametric sampling space used for
regularization.

3.6 Software Implementation

An open-source implementation of the original modelization6 in R35 is available online.36 Our
implementation of Eq. (8) was mainly developed in R, with a number of computation modules
written in Fortran, C and C++. This implementation is also available on GitHub.37

4 Results on Patient Data

This section presents a numerical comparison of tumor characterization derived from the pro-
posed model over previous strategies on a sarcoma cohort, and results of analyses of overall
survival (OS) and disease-free survival (DFS) assessing the potential prognostic benefit of
statistical summaries of the distribution of uptake gradients v, defined in Eq. (3).
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4.1 Sarcoma Dataset

Analyses were carried out on a cohort of 158 sarcoma patients (73 deaths, 71 disease progres-
sions) with over 10 years follow-up information, whose FDG-PET studies were acquired at the
University of Washington School of Medicine using a GE Advance scanner.6,24 The dataset
included routine information on patient age (mean 45 years, sd 16 years) and sex (66 female,
92 male) at baseline, metabolic tumor volume, grade (77 high, 56 intermediate, and 25 low
grade), sarcoma type (41 bone, 12 cartilage, and 105 soft tissue), and quantitation of
SUVmax (mean 8.2, sd 5.6), 1cc-SUVpeak (mean 6.2, sd 4.6), SUVmean (mean 2, sd 1), and total
lesion glycolysis (TLG) at baseline. Two heterogeneity measures H0 and H1 derived from each
of the ellipsoidal and regularized tubular models, along with first, second and third gradient
quartiles derived from each of these two models also, were further included for analysis. In
addition to these 19 routine and structural variables, an additional 64 radiomic features com-
prising of 16 shape features, 23 histogram-based features and 25 gray-level co-occurrence matrix
(GLCM) features were included in the dataset, given their predominance in the recent literature.
These were calculated in line with the Image Biomarker Standardisation Initiative guidelines,16

using an open-source implementation calibrated to these.36 Where required the input VOIs were
linearly interpolated to cubic voxels of dimension 4.30 mm3 and discretized to 64 gray levels
using a fixed bin number for extraction of these radiomics features. When fitting the volumetric
uptake models, most volumes of interest were resampled onto a grid of 26 transverse slices (h)
and 25 angular sectors (ϕ) in the projected space. A number of smaller input volumes required
fewer bins in either direction, down to an 8 × 8 ðh;ϕÞ-grid. A total of 83 variables were con-
sidered for analysis of OS and DFS via Cox proportional hazard models.

4.2 Comparison of Uptake Summaries

The proposed smooth tubular representation of volumetric tracer uptake yields some differences
in uptake summaries, relative to previous modeling strategies proposed by this group, although
preserving overall assessment of structural heterogeneity of the volumetric tracer uptake distri-
bution. We illustrate this by comparing the distributions of corresponding metabolic summaries
obtained for the set of 158 clinical sarcoma FDG-PET studies described in Sec. 4.1.

Figure 4 shows how the smooth tubular representation provides a reasonable alternative
evaluation of volumetric heterogeneity, H. Figure 4(a) shows a comparison of model fits
achieved by the two models for two typical sarcoma uptake patterns, with a tighter description
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Fig. 4 (a) Fits obtained from the ellipsoidal (left) and regularized tubular (right) models, for the two
studies of Fig. 1 (resp., top and bottom). (b) Comparisons of heterogeneity quantitations H of 158
primary sarcoma tumors, derived from the ellipsoidal and regularized tubular models of volumetric
uptake. Dot size is proportional to tumor volume. Spline regressions (thick lines) characterize the
difference in distributions, with bootstrapped 95% confidence bands indicated in a yellow shade.
(c) Same comparison of heterogeneities values, but obtained from the ad hoc and regularized
tubular models.
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of voxel radial location, and therefore higher spatial resolution, achieved by the tubular
approach. Heterogeneity quantitation obtained from the latter aligns strongly with that derived
from the rigid-shape ellipsoidal representation [Fig. 4(b)], whose prognostic potential has been
demonstrated for various cancers.26 Figure 4(c) further shows that the proposed tubular model
offers finer differentiation of heterogeneity levels, compared to the earlier ad-hoc tubular
modeling approach which does not span the [0, 100] range as effectively. Figure 5 shows differ-
ence in summaries of uptake gradients v, over those derived from the rigid-shape ellipsoidal
representation.26

4.3 Univariate Relationships and Significance

Associations were considered where any two of the 83 variables had Pearson correlation ρ above
0.70 in absolute value, or a significant association in the sense of a two-sided Mann–Whitney or
chi-square test, or an analysis of variance, whichever was appropriate with respect to the nature
of these variables. All test p-values were corrected for false discovery rate (FDR).35,38 Variables
SUVmax, SUVmean, and SUVpeak were found to be significantly associated with tumor grade
(p < 0.005). It was also the case for the third quartile of rigid-shape ellipsoidal gradients
(p < 0.02), and for 21 of the radiomic features. Variables age (p < 10−6) and eight GLCM fea-
tures (p < 0.025) were found to be significantly associated with tumor type. No significant asso-
ciations were found with patient sex. High correlation jρj was found in 259 unique pairs of
variables. In particular, this analysis indicated substantial alignment between SUVmean and
SUVmax (ρ ¼ 0.81), SUVmean and SUVpeak (0.81), and SUVmax and SUVpeak (0.98), as well
as between H0;ell and H0;reg (0.71), H0;reg, and H1;reg (0.79), vQ1 and vQ2 (0.76), and vQ2 and
vQ3 (0.94). Variables SUVmax, SUVpeak, vQ2, and vQ3 also all aligned strongly with CoVHIST

(histogram coefficient of variation; 0.74, 0.73, 0.84, and 0.83 resp.), and vQ2 with medianHIST
(0.71). All other strong correlations were amongst radiomic features. Figure 6 shows the corre-
lation matrix for the subset of numerical features with respect to the 0.70 correlation threshold.
This analysis shows rather limited associations between variables derived from the proposed 3D
spatial modeling and classic radiomic features. As expected, strong correlations can be observed
in particular among the subset of radiomic features.

Two variables were found to be significant univariate predictors of OS (structural hetero-
geneity H0;ell and maximum histogram gradient (ih.max.grad, a radiomic feature), both with
p < 0.00001). Variable H0 was also found to be a significant univariate predictor of DFS after
Bonferroni correction (p < 0.001) but not after FDR correction. No other univariate associations
with either OS or DFS were found.
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Fig. 5 Comparisons of gradient summaries from the clinical cohort of Fig. 4, derived from the
ellipsoidal and regularized tubular models of volumetric uptake. The plots provide scaled compar-
isons of the distributions of the first, second, and third quartiles of the collections of gradients
obtained from each study, respectively from left to right. Dot size is proportional to tumor volume.
Spline regressions (thick lines) characterize the difference in distributions, with bootstrapped 95%
confidence bands indicated in a yellow shade.
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4.4 Prognostic Significance

4.4.1 Variable selection

Unsupervised pre-filtering of the dataset of 83 features was performed to remove redundant
variables on the basis of an absolute correlation>0.90.39 Tumor type was also removed to reduce
confounding, on the basis of the analyses reported in Sec. 4.3. Following this process, a total of
41 features were removed, including SUVpeak, TLG, and vQ2, the rest being radiomic features.
The resulting filtered subset of features was considered for prognostic analysis. A final set of
features was selected after bootstrap analysis of regularized Cox proportional hazards models40

for both OS and DFS, to evaluate selection stability.41 A total of 100 bootstrapped fits were
obtained with a lasso-like penalty, and another 100 bootstrapped fits with an elastic net penalty.
The hyper-parameter for these models were tuned using 10-fold cross-validation nested within
the bootstrapping framework. Five patients with incomplete data were removed from the multi-
variate survival analyses. Variables tumor grade, patient sex, SUVmax,H0;ell, the third quartile of
uptake gradients vQ3 derived from the regularized tubular approach, were selected for at least two
thirds of the bootstrapped samples, for both elastic net and lasso-like regularizations. These fea-
tures were also all selected frequently (i.e., at least 60% of the time) by a similar framework for
DFS, as well as in similar bootstrap analyses of both forward and backward stepwise selections
of Cox models for both OS and DFS. Following this combined assessment, this set of five
variables was used in a final Cox model for further evaluation of prognostic performance.
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Fig. 6 Correlation matrix of the numerical features in the sarcoma dataset. Correlations within
ð−0.7;þ0.7Þ have been blanked out to highlight strong associations among the feature set, using
a 4-color palette (shown on right-hand side).
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4.4.2 Prognostic performance

On the basis of the feature selection described above, predictive performance of the multivariate
prognostic model comprising of these five predictors was subsequently evaluated, also via boot-
strapping. The multivariate Cox model was fitted to 100 bootstrap resamples and the median haz-
ard ratios and associated p-values were calculated from these fits for each covariate. linear (Cox)
score predictions and corresponding concordance indices were derived for the out-of-bag (OOB)
sample points from each fit. The median and nonparametric 95% confidence interval (CI) of OOB
concordance indices were calculated to evaluate prediction performance. The same framework was
used for OS and DFS. Results from these analyses are given in Table 1. For OS, all covariates were
statistically significant at the 5% level in this model, with bootstrapped concordance index C ¼
0.70 (CI: 0.61–0.78). For DFS, tumor grade, H0;ell and vQ3 were also statistically significant,
yielding a model with bootstrapped concordance index C ¼ 0.64 (CI: 0.54–0.71).

A Kaplan–Meier analysis was carried out on the medians of OOB linear score predictors for
each sample point, to obtain a set of bootstrapped survival curves for low- and high-risk groups.
The log-rank test p-value from these Kaplan–Meier curve estimates indicated a statistically sig-
nificant separation between the two risk groups (p < 0.000001 for both OS and DFS).

We note that the resampling framework described in this section may have induced some
selection bias, since the whole dataset was used for both feature selection (yielding the final five
variable predictive model) and OOB prediction performance assessment. It nonetheless provides
a reasonable compromise given the sample size available, and (unlike other schemes) yields a
unique model to more conveniently illustrate the prognostic potential of the proposed method-
ology for tumor characterization, allowing for output such as those of Table 1 and Fig. 7. This
bias was evaluated by comparison with an alternative resampling framework, further described
in Appendix D. This analysis suggests that the reported results are not substantially compro-
mised by potential feature selection bias.

5 Discussion

We proposed a novel modeling approach to analyze the spatial distribution of PET tracer uptake
within the volume of interest of a solid tumor, and derived novel prognostic summaries from this
representation. The modeling strategy consists in fitting a deformable tubular structure to the
volumetric uptake distribution via 3D-coherent optimization and spatial regularization, penal-
izing high second-order variations of the model fit. This technique yields a profile curve that
describes tracer uptake intensity as a function of voxel radii in the model’s own coordinate refer-
ence system. This approach offers a novel opportunity to assess local trends in the uptake pattern
via the derivation of uptake gradients directly from the profile curve. A unique advantage of this

Table 1 Output from bootstrapped multivariate Cox analyses for OS and DFS for the sarcoma
cohort (N ¼ 153 for OS; N ¼ 137 for DFS). C denotes model concordance, which measures the
proportion of accurate outcome predictions in the cohort based on the model. P-values below the
5% significance threshold are highlighted in bold.

Variable

OS (C ¼ 0.70, CI: 0.61–0.78) DFS (C ¼ 0.64, CI: 0.54–0.71)

Hazard ratio 95% C.I. p-value Hazard Ratio 95% C.I. p-value

Grade (intermediate) 0.60 [0.34; 1.05] 0.0746 0.78 [0.45; 1.35] 0.3739

Grade (low) 0.23 [0.07; 0.77] 0.0157 0.32 [0.13; 0.80] 0.0170

Sex 1.78 [1.06; 2.97] 0.0298 1.47 [0.89; 2.40] 0.1359

SUVmax 1.72 [1.25; 2.31] 0.0010 1.30 [0.94; 1.78] 0.1201

H0;ell 1.56 [1.19; 2.04] 0.0011 1.41 [1.09; 1.82] 0.0107

Gradient vQ3 1.63 [1.10; 2.41] 0.0144 1.58 [1.03; 2.43] 0.0347
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flexible model is that this gradient information is locally coherent with the spatial uptake char-
acteristics within the tumor volume. Intratumoral heterogeneity can also be assessed directly as a
measure of lack-of-fit of this profile curve.

This smooth tubular representation of volumetric tracer uptake has some similarities with
previous modeling strategies proposed by our group, namely an ad-hoc tubular model,6 and
a former rigid-shape ellipsoidal description24 of the 3D uptake data. The gain offered by regu-
larization and a more volumetrically coherent optimization of the novel tubular model over the
previous ad-hoc approach was illustrated on patient data, with a more appropriate volume ren-
dering and more consistent heterogeneity evaluation. This paper also demonstrated that hetero-
geneity obtained from the proposed model aligned strongly with that derived from the former
rigid ellipsoidal representation (whose prognostic value was demonstrated for various cancers),
but that it could achieve a tighter fit, thus yielding a locally more accurate representation of
uptake data at the voxel level.

Analyses of simulated data demonstrated numerical stability and consistency of the proposed
approach at varying noise levels. The model was also assessed on a clinical cohort of 158 sar-
coma patients imaged with FDG-PET. The heterogeneity and uptake gradient summaries derived
from the model were found to be statistically significant prognostic variables in both univariate
and multivariate Cox proportional hazards analyses of patient survival. In particular, the third
quartile of uptake gradients was retained as a significant prognostic indicator in multivariate
prognostic models of both overall and DFS following a feature elimination process, and con-
troling for tumor heterogeneity.

The scope of this paper is the conceptual presentation of the regularized tubular model, and
the demonstration of the prognostic potential of structural heterogeneity and uptake gradient
summaries derived from it, although this assessment included radiomics features. Follow-on
work will be pursued to better understand the place for statistical modeling within the context
of radiomics analyses. Our group previously demonstrated that tumor characterization based on
the rigid ellipsoidal model offered additional prognostic opportunities complementary to
common morphology-, intensity-, and texture-based radiomic features,26 which encourages
investigations in this direction for the tubular representation.

The present contribution has a number of limitations and may be further extended in various
ways. In the case of very large tumors, the optimization process can become taxing, with hun-
dreds of model parameters to estimate via an iterative process that requires evaluation of second-
order quantities; this was indeed a limitation in our study. (This issue is compounded by the fact
that many of the core modules of the software are currently implemented in R.)35 Subsampling
schemes and stochastic optimization strategies could be considered in future updates to reduce
this cost and render this numerical process more feasible on mainstream computational

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall survival

Time (months)

F
ra

ct
io

n
 s

u
rv

iv
in

g

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Disease-free survival

Time (months)

F
ra

ct
io

n
 s

u
rv

iv
in

g

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 7 Nonparametric Kaplan–Meier estimates of the survival functions following bootstrapping of
the multivariate model of Table 1 (solid lines). Dashed lines indicate 95% confidence bands
around the low-risk (blue) and high-risk (red) groups obtained from this analysis, showing a sta-
tistically significant risk group separation (log-rank test: p < 0.000001 for both OS and DFS).
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platforms. Generalization of the approach could also be facilitated by a different choice for the
uptake profile function gðÞ, and a fully non-parametric alternative to the gamma distribution will
be explored in future work. Whatever the choice of profile, however, the output prognostic var-
iables extracted from the unimodal uptake profile fit will provide a locally detailed description of
uptake activity.

In terms of clinical interpretation, it may be thought that given they assess local uptake trends,
the collection of uptake gradients derived from the proposed model could offer a mechanism for
projection of future uptake characteristics based on a single scan. Localized assessment of the
intratumoral tracer uptake structure and the identification of subvolumes of higher rate of change
in the uptake distribution derived from the model could create an opportunity both for improved
patient prognosis and for advanced image-guided treatment, e.g., by guiding biopsy or radio-
therapy. This will be explored in future work with follow-up imaging data at various treatment
timepoints.

6 Conclusion

This paper described a smooth, data-adaptive spatial model of 3D PET uptake that represents the
tumor activity in terms of a deformable tubular structure. The approach provides novel opportu-
nities for detailed visualization and description of volumetric tracer uptake, thanks to a more coher-
ent and accurate representation of its distribution at the voxel level over previous 3D modeling
strategies. Consistency of this approach was illustrated via analyses on simulated volumetric data.
A 1D uptake profile curve is obtained from this model fit as a function of radial voxel location
(in the model referential), that can be summarized into prognostic descriptors of structural features
of the PET data. Analysis of a clinical cohort of sarcoma patients showed strong alignment of
intratumoral heterogeneity quantitation derived from this model, with that obtained from a
well-established rigid-shape ellipsoidal modeling approach. This further demonstrates relevance
of the proposed model for prognostic evaluation. Uptake gradients can also be obtained from the
model fit at each voxel, to measure local uptake trends. These gradients can be summarized into
additional pseudo-biomarkers, whose prognostic potential was demonstrated on the sarcoma
cohort using multivariate prognostic models controled for intratumoral heterogeneity.

7 Appendix A: Simulation Framework

We describe numerical simulation output that illustrates the behavior of proposed model Eq. (1)
and the considered regularization scheme. The simulated dataset consists of a smooth regular
volumetric structure consisting of N ¼ 3072 voxels arranged in 12 transverse slices, each slice
containing 16 × 16 ¼ 256 voxels. This volume is consistent with a small-to-medium sarcoma
volume of interest. In the example the simulated uptake distribution is tubular with a less active
core. The spline bases are defined by a Jϕ × Jh ¼ 12 × 12 grid.

True simulated uptake values z⋆ from model Eq. (1) were generated for fixed true values
θ⋆ ¼ ða⋆; b⋆; τ⋆Þ, setting a⋆ and b⋆ to be constant with respect to voxel angular position ϕ
at each transverse slice, varying with successive voxel elevations h respectively as follows:

EQ-TARGET;temp:intralink-;sec7;116;216a⋆h: ∈ f8.0; 8.8; 9.6; 10.4; 11.2; 12.0; 12.0; 11.2; 10.4; 9.6; 8.8; 8.0g;

and

EQ-TARGET;temp:intralink-;sec7;116;173b⋆h: ∈ f4.00; 4.36; 4.72; 5.08; 5.44; 5.80; 5.70; 5.36; 5.02; 4.68; 4.34; 4.00g:

τ⋆ also varied only with h as τ⋆h ∈ f2.20; 1.92; 1.64; 1.36; 1.08; 0.80; 0.80; 1.08;
1.36; 1.64; 1.92; 2.20g. Figure 8 shows the noiseless simulated structure and its histogram is
given in Fig. 9. The simulated uptake volume is also shown in Fig. 10. Initial values θ0 were
set using a0hϕ ¼ a⋆hϕ∕4, b0hϕ ¼ minhϕðb⋆hϕÞ þ ðmaxhϕðb⋆hϕÞ − b⋆hϕÞ − 2 (which yields a mirrored

b-structure), and τ0j ¼ 1.5, ∀ j ¼ 1; : : : ; Jh.
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In “noisy” scenarios, randomness was incorporated in the form of an additive perturbation term
with a normal distribution, i.e., zi ¼ z⋆i þ εi; i ¼ 1; : : : ; N; for independent and identically dis-
tributed realizations εi ∼N ð0; s2εÞ, where sε controls the volumetric coefficient of variation. In
these numerical experiments we used noise levels sε ∈ f1; 0.75; 0.50; 0.25g. Figure 9 shows the
effect of noise level.

8 Appendix B: Illustration on a Single Experiment

Figure 10 shows the behavior of the proposed fitting procedure for the same typical experiment
where sε ¼ 0.25 and γ ¼ 0.1, demonstrating algorithmic convergence of the iterative nonlinear
optimization scheme for regularized model Eq. (1), and a tight distribution of model fit residuals.
This figure also underlines the large initial errors in model fit corresponding to the chosen
initialization scheme.

Transverse Sagittal Coronal

Fig. 8 From left to right: mid-volume transverse, sagittal and coronal slices of the simulated data-
set, showing the smooth ellipsoidal structure and its decreasing core activity, using a common
grayscale. Both coronal and sagittal views are presented with the transverse axis going along
the vertical direction.
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Fig. 9 (a) Distribution of the noiseless simulated uptake structure (gray), and overlaid noisy uptake
(sε ¼ 0.5); values below 2 correspond either to background voxels or cold volume core. (b) Mid-
volume transverse slice of the synthetic image with sε ¼ 0.5, using the colorscale of Fig. 8.
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9 Appendix C: Monte Carlo Analysis

M ¼ 100 Monte Carlo experiments were performed for each of four noise levels

EQ-TARGET;temp:intralink-;sec9;116;480sε ∈ f1; 0.75; 0.50; 0.25g;

Initial volume Output volumeTrue volume
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Final
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00
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Iteration

0

Fig. 10 Illustration of convergence and goodness-of-fit for one experiment with γ ¼ 0.1 and
sε ¼ 0.25. Left: 3D wireframe views of the true, initial, and final volumes, respectively. The volume
boundaries correspond to isocontours defined by the first quartile (zQ1

¼ 2.7) of themodel evaluated
at the corresponding values of parameters θ, i.e., respectively, θ⋆; θ0, and θ̂. Right: distributions of
model fit residuals for initial and final parameter estimates. Inset: RSS as a function of iteration step,
demonstrating convergence of the nonlinear optimization of regularized model Eq. (1).
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Fig. 11 Monte Carlo distributions of the MSE in model fit for decreasing image coefficient of varia-
tion, with sε varying from 1 to 0, for various regularization magnitudes (γ ¼ 0; 0∶1; 0∶2 for bottom
gray, middle red, and top blue boxplots in each grouping, respectively). Inset: same MSE distri-
butions for the four noisy scenarios, but where both axes are presented on the log-scale to illus-
trate the rate of convergence of the MSE to the noise level. The slope of the fitted line (for γ ¼ 0) is
−2, indicating the expected parametric rate of MSE convergence (solid black line).

Wolsztynski, O’Sullivan, and Eary: Spatially coherent modeling of 3D FDG-PET data for assessment. . .

Journal of Medical Imaging 045003-17 Jul∕Aug 2022 • Vol. 9(4)



and compared to the noiseless case. The value of regularization parameter γ was fixed for any
simulated experiment, with reasonable values within ½0;1�. The Monte Carlo distributions of
mean square errors (MSE) in model fit shown in Fig. 11 were obtained respectively without
(γ ¼ 0) and with (γ ¼ 0.1 and 0.2) regularization. The figure indicates a decrease in MSE with
a decreasing image coefficient of variation. A comparison between these distributions highlights
how regularization increases residual sum of squares (RSS), compared to the γ ¼ 0 case, by
increasing the bias in model fit to achieve smoother output volumes.

10 Appendix D: Alternative Analysis of the Clinical Cohort

An alternative framework was considered to assess selection bias of the analysis of Sec. 4.4 using
repeated 70% to 30% splits of the entire dataset. For each such split, bootstrapping was per-
formed on the 70% sub-sample to train regularized Cox models and select features on the basis
of stability, using a 60% selection rate cutoff, similarly to the framework described in Sec. 4.4. In
this setting, feature selection was thus nested within model training, and the corresponding final
model was evaluated on hold-out data. This process was repeated on 100 different splits of the
dataset to measure average hold-out prediction performance, each time using both elastic net and
lasso regularizations. It is noteworthy that this alternative framework allowed the feature subset
constituting the model to differ with each split. The mean hold-out accuracy under this frame-
work was 0.67 (CI: 0.54–0.80). Increased variability was due to the variation in models used on
the hold-out sets, and the framework itself. [The five-variable model of Sec. 4.4 yielded a mean
accuracy of 0.70 (CI: 0.60–0.83) in this new framework.] From this analysis we suggest that
selection bias inherent to the results reported on the five-variable model remains reasonable.
Features selected over 50% of the time in this second framework included tumor grade, patient
sex, SUVmax,H0;ell, the third quartile of uptake gradients vQ3, and two radiomic features, namely
PCA elongation and min gradHIST.
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