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Nonsmooth Bifurcations in a Piecewise-Linear Model
of the Colpitts Oscillator

Gian Mario Maggio Member IEEE Mario di Bernardo Associate Member, IEEENd

Michael Peter Ken

Abstract—This paper deals with the implications of considering
a first-order approximation of the circuit nonlinearities in circuit
simulation and design. The Colpitts oscillator is taken as a case
study and the occurrence of discontinuous bifurcations, namely,
border-collision bifurcations, in a piecewise-linear model of the os-
cillator is discussed. In particular, we explain the mechanism re-
sponsible for the dramatic changes of dynamical behavior exhib-
ited by this model when one or more of the circuit parameters are
varied. Moreover, itis shown how an approximate one-dimensional
(1-D) map for the Colpitts oscillator can be exploited for predicting
border-collision bifurcations. It turns out that at a border-colli-
sion bifurcation, a 1-D return map of the Colpitts oscillator ex-
hibits a square-root-like singularity. Finally, through the 1-D map,
a two-parameter bifurcation analysis is carried out and the re-
lationships are pointed out between border-collision bifurcations
and the conventional bifurcations occurring in smooth systems.

Index Terms—Border-collision bifurcations, Colpitts oscillator,
grazing, nonsmooth systems, one-dimensional map, sliding mode.

I. INTRODUCTION

HE AIM of this paper is to highlight the occurrence

of nonsmooth bifurcations in piecewise-linear (PWL
circuits and to provide the designer with some practical to

to deal with these phenomena. By nonsmooth bifurcation
we mean here the characteristic bifurcations taking place In

nonsmooth systems (that is, characterized by at least
discontinuity in the vector field or its derivatives) that cann
occur in smooth systems. The motivation for this paper com
from the common engineering practice of using a first-ord
approximation of the circuit nonlinearities for circuit simulatio
and design purposes [1], [2].

A great research effort has been devoted in the last f
years to investigate the dynamics of PWL circuits [3]-[7]. Th

main advantage of considering PWL models is that analytic

methods can be applied for a bifurcation analysis of the syst
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Namely, we will use techniques developed for the analysis of
generic piecewise-smooth (PWS) systems [8]. These analytical
tools have also been shown to be particularly effective in
explaining the dynamics exhibited by electronic circuits such
as power electronic dc/dc converters [9]-[12].

In this paper we consider the Colpitts oscillator as a case study
foritsrelevance in applications and for the richness of its dynam-
ical behavior. The Colpitts oscillator is one of the most widely
used single-transistor circuits to produce sinusoidal oscillations
at radio frequencies. Recently, both numerical and experimental
evidence has been reported of the occurrence of nonlinear phe-
nomena such as bifurcations and chaos in this circuit [13]-[17].

We will attempt to explain the complex dynamics exhibited
by the Colpitts oscillator by studying the nonsmooth bifurca-
tions of a PWL model of the circuit. This novel approach can
be easily integrated with the analysis of the smooth model of
the Colpitts oscillator presented in [17]. The goal is to point out
differences and similarities in the behavior when considering a
nonsmooth model versus a smooth one.

The PWL model that we will consider is an instance of a wider
sIass of PWS systems characterized by a change of configura-
jonwhenever alinear combination of the system states satisfies a

jven constraint. The state space of these systems can then be di-

t

vided into different regions associated with the different smooth-

one

ﬁystem configurations. We will assume that, on the boundaries

Yetween different regions, the flow of the system is continuous,

Biit has a discontinuous first derivative (nonsmooth). In this case,

The so-callecborder-collisionor C-bifurcation [18], [19], has
'been shown to occur when a system solution becomes tangent to

one of the state-space boundaries, as the system parameters are
W . o

varied. We remark that this definition is rather general and can
Ea? applied to both continuous-time and discrete-time systems of
%bitrary dimension [8], [20]. In particular, the “singular bifurca-
tion into instant chaos” first described in [5] can be considered as
a particular case of border-collision bifurcation.

rehin what follows, we will outline the important role played by
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S

CE‘[Q,W to carry out a classification of the possible border-collision

bifurcations exhibited by the circuit. Also, we will outline the
use of a one-dimensional (1-D) approximate map to further an-
alyze the occurrence of these nonsmooth phenomena.

r- The rest of the paper is organized as follows. After intro-
i(_Jlucing the system model in Section Il and illustrating its dy-
namical behavior in Section Ill, an overview of nonsmooth bi-

furcations in PWS systems is presented in Section IV. The an-

1057-7122/00$10.00 © 2000 IEEE
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Voo characteristic can be expressed in the fdin= f(Vgg) =
R f(=Ve2), which we model by a PWL relation, namely
Vee — Vin _
- Ip = Io <%) , Ve 2 Vi, (forward active)
- 0, Vee < Vi  (cutoff)

whereV;, = Vr[ln(arlo/Is)—1]isthe threshold voltagds is
the saturation current of the base-emitter junction, d@nd- 26
mV at room temperature.

From (1), it follows also that the operating poi6ét of the
oscillator can be defined by

I,
Vey, = Vee — apRIg+ Vrln <aFI—0>
S

O: (2

1
VCzo = —VT In <OéFI—O>

S
(a) ILO ICYFI().

B. Normalization and Parameters

We now introduce a set of dimensionless state variables
(z1, z2, xz3) by choosing the operating poifit of (1) to be the
origin of the new coordinate system and by normalizing volt-
ages, currents, and time with respecter = Vr, Lot = 1o,
andt..r = 1/wo, respectively, where

(b)

1
. L ) . . . Wwp = —F/—————
Fig. 1. Circuit model. (a) Schematic of the Colpitts oscillator. (b) Transistor 0 C.C,
model in common-base configuration. L——
Ci+ G

alytical and numerical study of border-collision bifurcations it the resonant frequency of the unloaded tank circuit. In partic-
the Colpitts oscillator is then presented in Section V. Finally, ifl@r, the following relations hold

Section VI, an approximate 1-D map for the Colpitts oscillator 1

is introduced and employed to carry out a bifurcation analysis z1(t) = v Ve (wot) — Ve, ]

of the system under investigation.

2a(t) = - Weaont) ~ Ve

1
Ta(t) = — I/ wot _Il
A. State Equations 2(t) Iy Fr{wot) = I,

Il. CIRCUIT MODEL

We consider the classical schematic for the Colpitts oscillatehereV,,, Ve,,, andiy, are defined in (2).
containing a bipolar junction transistor (BJT) as the gain ele- By settingar = 1 (which corresponds to neglecting the cur-
ment and a resonant network consisting of an inductor andemt flowing into the base of the BJT) the state equations (1) of
pair of capacitors, as illustrated in Fig. 1(a). The transitdn the Colpitts oscillator can be rewritten in the form
common-base configuration, is modeled as shown in Fig. 1(b), g

i.e., by a (voltage-controlled) nonlinear resisky and a linear oa-1 [—n(z2) + @3]
current-controlled current source, namély = ar g, where T 7"
ap is the common-base forward short-circuit current gain. Zp | = Ok T3 3)
The state equations for the schematic in Fig. 1(a) are as fol- T3 Qk(1 — k) 1
lows: ] LI 2
g Q
dv
o dfl =—apf(—=Ve,) + 1, where
dVe | —z2, x2 <1 (forward active)
C dt2 =1 —-ap)f(-Ve,)+ 1, — Iy 7’L($2)—{_17 22> 1 (cutoff)
dl
L d—tL =-Ve, = Ve, — RIp + Vee (1) andk = Cy/(Cy + Cy). It follows that the PWL model of the

Colpitts oscillator is discontinuoug() on the planer, = 1,
where(V¢,, Vi, I1) are the circuit-state variables afi¢t) is  corresponding to the boundary between the forward active and
the driving-point characteristic of the nonlinear resistor. Thisutoff regions of operation of the BJT.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 27,2010 at 15:41:23 UTC from IEEE Xplore. Restrictions apply.
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(b)

log g*

Fig. 2. Dynamical behavior of the Colpitts oscillator. (a) Two-parameter bifurcation diagram (by simulation); the characteristic “fish-hotkéstare visible.
(b) One-parameter bifurcation diagram fog, 2 ~ 0.4, corresponding to the vertical line in (a); note that-« is the value of the coordinate; at the points of
intersection of the system trajectory with the Poincaré seatioa- 1, for i3 > 0, i.e., corresponding to the transition from the forward acti¥¢ to the cutoff
(C) region of operation of th&8 JT'.

Finally, it should be noted that (3) depends only on the twaystem’s bifurcation diagram. In particular, Fig. 2(a) shows a

parameters: two-parameter bifurcation diagram (by simulation) illustrating
« Q = ((woL)/R), the quality factor of the (unloaded) tankthe dependence of the dynamical behavior of the PWL model
circuit; of the Colpitts oscillator on the two parameté}sandg*. This
« ¢*, the “loop gain” of the oscillator bifurcation diagram has been obtained by numerical integration

while k has only a scaling effect on the state variables. of the system (3) throughout the parameter spagey(). The
esulting trajectories are analyZed order to establish whether

Also, note thatg* represents the value of the loop gain ag ¢ t steady stat tles t ibri int. alimit
which the phase condition of the Barkhausen criterion [21] ¥ € system, at steady state, settes foan equilirium point, alimi

satisfied (forar = 1). In particular, the oscillator will start gycclj?f’fgrreanft]?;gfs?titrr]atﬂ:%ilia)lfffearrintlr? i?av;o(;si 223 rfipr)]rdefented
oscillating only if the start-up conditiogi* > 1 ( < log g* > y - gram. 9. cl@)Ln
0) is fulfilled cates that the original system settles to a penddnl_t cycle.. _

' For example 7.C1” denotes the fundamental period-1 limit

cycle, which corresponds to nearly sinusoidal oscillation of the
[ll. OBSERVEDDYNAMICAL BEHAVIOR

. . . . 1The algorithm to determine the dynamical behavior of the system was im-
The plethora of different dynam'cal behaviors exhibited emented using thé’'-library CHAoSLIB by Abel and Wegener (e-mail: we-

the Colpitts oscillator can be best summarized by looking at thener@vdp.ucd.ie).

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 27,2010 at 15:41:23 UTC from IEEE Xplore. Restrictions apply.
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W the system solution undergoes several bifurcations as the value
of the “loop gain”¢* is increased. The observed bifurcation sce-
nario, though, cannot be explained just as a sequence of smooth
local bifurcations since several nonsmooth phenomena can be
E e identified. For instance, in the zoom of the bifurcation diagram
for @ = 2.5, reported in Fig. 3(a), we can observe a “jump”
2 L T ] from a period-2 orbit onto a period-1 solution fgt ~ 16.5.
) The resulting orbit then undergoes a few period doublings until

the sudden occurrence of chaotic evolutiogi‘at: 32, as visible
with more details in Fig. 3(b).

The explanation of these discontinuous phenomena will be
the subject of the rest of this paper.

X3FC

IV. BORDERCOLLISION AND GRAZING BIFURCATIONS

A. Overview

° 2 p As briefly detailed in Section I, an important class of bifurca-
tions for PWS systems are the so-called grazingtarder-col-
lision bifurcations(also termed”-bifurcations in the Russian
literature) [18], [20], [23], [24]. Namely, consider a system of
the form

&= Fl,t, ) @)

with x € R™ being the state vector; € RP the parameter
vector, and: R**1*P — R™ a PWS function. The state space
of such a system can be divided into countably many regions; in
each region, the system has a different smooth functional form.
At the boundaries of these regiors,can be either continuous
or have a discontinuous first derivative (nonsmooth).

A border-collision bifurcationis said to occur when, by
varying the system parameters, a system trajectory becomes
tangent to one of these boundaries and the system flow is
continuous, but nonsmooth, across them. If, instead, the flow is
discontinuous, grazingbifurcation takes place. In both cases,
a consistent change in the dynamical evolution of the system
. is often detected [5], [6], [18], [19], [25]. Namely, after a

9 border-collision, the following scenarios are usually observed.
(b) 1) A continuous transition from the orbit involved in the bi-
furcation to an orbit of a similar or different periodicity,
Fig. 3. (a) Detail of the bifurcation diagram f@ = 2.5(log Q@ ~ 0.4) which contains one or more trajectory sections in another
in¢ Fig. 2(b). Notice the sudden disappearance of one branch of the diagram at region of the state space (i.e., the transition from a periodic
g* « 16.57 and the occurrence of chaos ¢t ~ 31.5, as better visible in . . . . .
orbit to one of a similar type having an additional section

the zoom (b) of the boxed region in (a). Both of these phenomena are due to i A h ’
border-collision bifurcations and these correspond to the appearance of points  lying on the other side of the boundary or period doubling).

iiliii’ig’ﬁgﬁ"
i !

X3FC

0 e
31.25 315

close toxs = 0 on the bifurcation diagram. 2) The merging of two different solutions (existing on both
sides of a state space boundary), followed by their disap-
Colpitts oscillator. Conversely/¥ P” indicates that no periodic pearance.

behavior was detected, and so we associate nonperiodic behavi®) The sudden transition from a periodic orbit to chaotic evo-
with the corresponding region. We note the presence of a large lution (see for example [5]).
region of complex behavior in the parameter space in which theAlso, it has been shown [10], [11], [26] that when an orbit
system undergoes several bifurcations when varying eitheradfthe system becomes tangent to one of the state-space bound-
the parameter§ or g*. Also, it should be noted in Fig. 2(a) thearies, the Jacobian of the corresponding Poincaré map (from the
presence of the characteristic “fish-hook” structures describgditching plane to itself) has a singularity. In particular, one of
for example in [22]. the eigenvalues of the Jacobian diverges to infinity, while the
Fig. 2(b) shows the one-parameter bifurcation diagram cormther approaches zero. Henadinite local stretchings intro-
sponding to the vertical line &g @@ ~ 0.4 in Fig. 2(a). This duced along one direction in the state space. This phenomenon
diagram s obtained by plotting the coordinateon the Poincaré has been shown to be the cause of many other interesting fea-
sectionze = 1 (with z2 > 0) when the parameter is varied, tures induced by border-collision bifurcations such as, for in-
for a fixed value of}(= 2.5). From Fig. 2(b), we can see thatstance, chaotic attractors characterized by fingered structures,

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 27,2010 at 15:41:23 UTC from IEEE Xplore. Restrictions apply.
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Fig. 4. Local analysis of a border-collision bifurcation. See the text for a detailed explanation.

period-adding cascades, hysteretic phenomena (due to switching X3
between coexisting attractors), and sudden jumps to chaos. Forward active
Finally, it can be shown that while border collisions are char- ~ égion (;<1)
acterized by PWL normal forms, grazing bifurcations are in con- .
trast described by normal forms containing a square-root singu- ?/
«

larity. Nevertheless, we will show that, under certain conditions,

border-collision bifurcations in the Colpitts oscillator are asso-
ciated with square-root singularities of the appropriately derived &<
1-D map. This is an interesting result that seems to suggest an

unexpected link between these two classes of bifurcation. More Vs

work in this direction will be published elsewhere.

EU

Cut-off region
(x> 1)

B. Classification of Border-Collisions Xy

An effective method to classify and predict the dynamic@hg 5 state-space interpretation of a border-collision bifurcation. The stable
scenario following a border-collision bifurcation was intro¢£5) and unstableE") eigenspaces associated with the equilibrium point at

duced by the Russian scientist M. 1. Feigin in the late 1970s.!#¢ origin are also shown.
desription of the method can be found in [19].

This method is based on the definition of an appropriate lod&at crosses the boundary). Notice that the Poincaré sextion
map describing the system dynamics in a neighborhood of@nnot be chosen to be the switching surface itself, since before
border-collision bifurcation. The characterization of the bifutthe occurrence of the tangenpy< p* the system orbit does
cation is then obtained by studying the eigenvalues of this lod¥@t cross and hence no fixed poim¥/ ~ can be isolated.
map. Namely, suppose that for a given parameter valug;say Now, let ./, be the Jacobian matrix of the fixed poifnf~
a periodic orbitP, of the system under investigation become@n * for 1 < p*. Similarly, denote byJ,, the Jacobian of the
tangent to one of the state-space bounddtiasd letd, denote fixed pointA/*+ on ¥ corresponding to the system orbit which
the corresponding fixed point on some appropriately chosefPsses the boundary for> 1*. If we sayof,, o the number
Poincaré sectioft (see Fig. 4). Assume also, without loss off eigenvalues greater than 1 8f, and J,,, respectively, and
generality, that by perturbing the system parameter in a neighn, ¢, the number of eigenvalues less tham, we have, ac-
borhood of.*, the system orbif, does not touch the boundarycording to Feigin’s method that, after a border-collision, an orbit
if 1 < u*, but crosses it ifs > u*. As the parameter varies,of a given type:
the fixed pointM, associated withP, will move accordingly 1) smoothly changes into one containing an additional sec-
on X from the pointd/ — (associated with the orbit that does not tion in the other region of the state spacejif + a;f is
cross the boundary) to the poimf = (associated with the orbit even;

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 27,2010 at 15:41:23 UTC from IEEE Xplore. Restrictions apply.
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Fig. 6. Periodic orbit ay* = 16.8. Asg* is decreased, the inner lobe approaches the switching surfaeel tangentially, ate; = 0.

2) suddenly disappears after touching the boundari;if- and the conditions for a border-collision are then satisfied along

0;' is odd; the line A (see Fig. 5) defined by
3) undergoes a period doublingdf,, + o, is odd. 2y = 1
Notice that, as shown in [11] and [19], these three elemen- Al {373 - o (5)

tary conditions can be used to build bifurcation scenarios of in-
creasing complexity which include the sudden jump to cha%s
outlined in the previous section. '

An application of this method in the case of the Colpitts os- For the sake of clarity, in this section we will refer to non-
cillator will be presented in Section V-B. smooth bifurcations occurring along the one-parameter bifurca-

tion diagram depicted in Fig. 3(a), far = 2.5.
In what follows, we will investigate the occurrence of the fol-

V. BORDERCOLLISION BIFURCATIONS IN THE COLPITTS lowing nonsmooth bifurcations (see Fig. 3):
OSCILLATOR « The abrupt interruption of one of the bifurcation diagram

) i branches fog* ~ 16.57;
The state spacer;, =2, x3) associated with the PWL model The sudden “jump” to a chaotic evolution observed at
of the Colpitts oscillator can be splitinto two regions, depending g ~ 31.5:

on the mode of operation of thleJT". In particular, forzs < 1 « The enlargement of a chaotic attractor observed;for:
the transistor works in the forward active region, whilefgr> 31.75

Litis cutoff. Thus, as shown in Fig. 5, the surface= 1 can  gjmjjar phenomena can also be found for other values of the
be seen as the boundary between the two different regions i} meter) in the two-parameter bifurcation diagram depicted
state space associated with the two possible system configyfariq (). Detailed numerical simulations clearly show that
tions. Notice that this surface is defining a boundary betwecaqese phenomena are due to the occurrence of tangencies be-

the two different regions in the state space corresponding o fit.en one of the periodic solutions and the switching surface

two possible system configurations. Hence, we conjecture thg%, — 1 (border-collisions)

for the system under investigation, a border-collision bifurcation The dynamical evolution of the system aroufid 16.578 is

will take place whenever a part of the system trajectory becorrgq?bwn in Figs. 6 and 7. Starting frogh = 16.8 and decreasing
tangent to tf;}e plzn@ = 1,d|.e.,x2 =1 fo :h 0]; Notice from o harameter value, we see that the inner lobe of the periodic
system (3) that the second equation is of the form orbit shown in Fig. 6 becomes tangent to the switching surface
(ie.,xz2 =1, &2 = 3 = 0) atg* = 16.578 (border-collision).

Numerical Evidence

% X 3. Then a smooth transition is observed to a new periodic orbit,

shown in Fig. 7(a). This orbit is similar to the one involved in the

Therefore, we can deduce that border collision but is characterized by a new section lying on
the other side of the state-space boundary; see Fig. 7(b). On the

To=0 <= 23=0 bifurcation diagram shown in Fig. 3(a), this dynamical transition

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 27,2010 at 15:41:23 UTC from IEEE Xplore. Restrictions apply.
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asg* increases, the period-2 orbit exhibited by the system for
g* € (25.8, 30.5) [see Fig. 8(a)] undergoes a period-doubling
bifurcation atg* = 30.5. Then, the new period-4 orbit becomes
tangent to the switching surface fgt ~ 31.5 [see Fig. 8(b)]
2r and the system starts evolving along the chaotic attractor shown
in Fig. 8(c). This chaotic attractor is then suddenly enlarged for
g* > 32.0, as shown in Fig. 8(d), when a further border-colli-
9. m sion of one of its inner lobes takes place.
0 These results confirm that, as conjectured, many of the ob-
k—‘ served dynamical oddities exhibited by the PWL model of the
Colpitts oscillator, such as the sudden jump to chaos, are the di-
rect consequence of border-collision bifurcations.

—2F
B. Using Feigin's Method
o0 The phenomena reported in the previous section can be
M analyzed by using the classification method due to Feigin
described in Section IV-B. In order to clarify the application of
this strategy to the model of the Colpitts we are studying, we
will detail, without loss of generality, the case of the border-col-
lision bifurcation occurring fo = 2.5 andg* ~ 16.578 for
decreasing values gf, as illustrated in Fig. 7.

As already mentioned, the first step consists of choosing an
appropriate Poincaré section. This cannot be the switching sur-
facez, = 1, hence we choose the hyperplane= 0 instead as
our Poincaré surface. We now perturb the system parameter in
a sufficiently small neighborhood of the border-collision bifur-
cation, i.e.g* € (16.5, 16.6), and compute the eigenvalubs
and L, of the Jacobian matrices of the fixed points associated

(a)
- with the system orbit on each side of the border-collision. The
x //'é\ following values were found:
0
g Ly Ly

16.5000 —0.0126 —0.7454
16.6000 0.0718 0.1311.

|
N
o
e
n
o
Bl
o
]
o
o]
o

We can now compute the quantities required by Feigin’s

-2 - . . method. Namely, we have} = 0,0, = 0,0 = 0,
% 1 5 10 ' ando; = 0. Therefore, sincer;, + o, = 0 is even and
2 o, +o;f = 0is even, we can conclude that at the border-colli-
(b) sion, the grazing orbit will undergo a smooth transition into an

orbit of a similar type having a section lying in the other region.
Fig.7. (a)Periodicorbitay* = 16.45,immediately after the border-collision ThisS is precisely what is observed numerically and reported in
bifurcation. Note that the orbit is very similar to the one depicted in Fig. 6, biigs. 6 and 7.
now its inner lobe (b) does not lie entirely within one of the state space regions.The same theoretical framework can be applied to classify
other border-collision bifurcations occurring in the PWL model

corresponds to the sudden appearance of an additional bifur@gthe Colpitts considered here.

tion branchfor ¢* < 16.578. A further numerical investigation

indicates that ag* = 16.425 the orbit generated at the bordefC. Infinite Local Stretching

collision undergoes a classical period-doubling bifurcation.  \We now investigate the occurrence of infinite local stretching,
From the bifurcation diagrams reported in Fig. 3(a) and (bjescribed in Section IV and [10], in our PWL model of the Col-

it is also evident that fog™ = 31.5 a classical period-doubling pitts oscillator. In so doing, we consider the Poincaré map (also

cascade is abruptly interrupted by a sudden transition frontalled switchingor impactmap in [10]) obtained by sampling

periodic orbit to a chaotic evolution. The system state-spagfe system states whenever the system trajectory crosses the

trajectories for these values of the parameters are reportedsiitching surface:; = 1. This 2-D mappind] takes the form:
Fig. 8, where the situation immediately “before” and “after”

the occurrence of the jump to chaos is shown. We can see that II = (rq, 72): (371(3)’ a:z(f;)) — (a:z(ff“), a:](f;“))

2This also means that the Poincaré section= 1 is not a global one, i.e., it WNerez, = x1, zp2 = x3, and the indexesn( n + 1) refer
is not transversal to all the parts of the system solution. to two successive intersections of the system trajectory with the

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 27,2010 at 15:41:23 UTC from IEEE Xplore. Restrictions apply.



MAGGIO et al. NONSMOOTH BIFURCATIONS IN A PWL MODEL

2

-}

_—%0 1 50 100 150 200 250

=2F

_-%0 1 50 100 150 200 250 300

%,

(c)

1167

_—450 1 50 100 150 200 250

Fig. 8. Sudden jump to chaos and enlargement of the chaotic attractgr£o.5: (a) Period-2 orbit ay* = 30.0, undergoing period-doubling gt ~ 30.5.
(b) Period-4 orbitimmediately before the border-collision bifurcation pointat 31.5. (c) Chaotic attractor at* = 31.75, generated after the border-collision;
notice that some of its inner lobes are getting closer to the switching plane. (d) Chaotic evolytioa &2.25 after the enlargement (due to a border-collision)

of the chaotic attractor depicted in (c).

Poincaré section, = 1 (for instance withs; > 0). We empha- by denoting with® = (¢4, ¢2, ¢3) the system solution and

size that

II= H(-Tpla Lp23 Q7 g*)

and that the “flight time,"r,, between two successive inter-

sections with the switching surface is also a functionzgf

starting from the initial conditionst{ o, z20, x30) we have
-Tl(T) :(/)l(xlOa Z20, T30, T; Q, 9*)
x2(7) = pa2(x10, T20, T30, T3 Q, g¥)

$3(T) =</)3($107 Z20, T30, T; Q, 9*)

andz,»; hence i = 77(z™, 2. The Jacobian of the By imposing the switching condition at = 1 we get that

X . . p\"pl 7 Tp2
Poincaré map is then defined as
axé’{“) 8x§f{+l)
(n) (n)
J = <,]11 ']12> _ 8a:p1 8a:p2
Jar Ja2 ax](gﬂ) axigﬂ)
aa:;j{) 8&7;}2)
where, by using implicit differentiation
ozt ‘ ‘
Jy = O O O e ()
83:;?) Oxpj 0Ty Oz

In order to derive the elements of the Jacobiaaxplicitly,

¢2($10, 17 30, Tp; Q? g*) -1=0
and by implicit differentiation, we can derive the terms
oty

() ()
Oy o 0% p; oty ’
that can be used to obtain the elements of the Jacobian (6).
Notice that the tern{(d¢2)/(d7,)) is the derivative of the
coordinaters at the switching instant. Hence, at a border colli-
sion (2 = 0), the term((d¢2)/(d7,)) "t — oo. Consequently,
at a border-collision bifurcation, one eigenvalue of the Jacobian
tends to infinity (the other eigenvalue tending toward zero) and,
as expected, infinite local stretching is introduced on the state

j=1,2

7

we can now exploit the analytical solution of (3) in each lineapace. This has been confirmed numerically for the Colpitts os-

region and use the switching constraint = 1. In particular,

cillator, as shown in Fig. 9.
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Fig. 9. Plots of eigenvalue$,;, L2, of the Poincaré mafl, defined with respect to; — 1, versusy”, for Q = 2.5: (a) L, versusy*; note thatL; — oo when
g* approaches the valug*( — 16.578) for which a border-collision bifurcation occurs. (b). versusg*; at the border collisio; — 0.

D. Other Nonsmooth Phenomena correspond to trajectories lying on the plane= 1. The fol-
lowing theorem shows that this is not possible for the Colpitts

In [11], it has been shown that other nonsmooth phenomegécillator.

can play an important role in organizing the dynamics of a PWL Theorem 1: The PWL model (3) for the Colpitts oscillator

system. For instance, it was shown tistitling orbits can be does not admit a sliding mode, i.e, a trajectory of (3) cannot

particularly relevant. These are periodic solutions that lie partiyolve indefinitely along the surface of discontinuity = 1.

within the discontinuity set of the system of ODE’s considered. Proof: A sliding mode can occur for the model (3) only
Here, we show that such solutions cannot occur in the caséfathe conditionz, = 0 is satisfied all along the sliding tra-

our model of the Colpitts oscillator. In fact, these orbits woulgectory, i.e., forzo = 1. But 2o = 0 <= 23 = 0. It
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Fig. 10. Approximate 1-D map: s(n) — s(n 4+ 1) for @ = 1.35 andg* = 10.

follows that sliding mode should necessarily occur on the liredgenplane) along that direction. A (unit speed) parameter
X: {z2 = 1, z3 = 0}. This in turn requires that; = 0 to is then defined along the lina. In this way, it is possible to
prevent a (potential) sliding trajectory from escaping from theonstruct a 1-D, single-valued, noninvertible niapy plotting

line \. Referring to the third equation of system (3) and by(n + 1) versuss(n), where the index refers to the order in
substitutingzzo = 1 andzz = 0, it follows that, on the line\,  which the trajectory of the dynamical system associated with
&3 =0 <= = = —1. Now, let's suppose we set the systenge Colpitts oscillator intersects the Poincaré plape- 1. An
initial conditions asvy, = —1, #2, = 1, w3, = 0. From the jnstance of this map fo€ = 1.35 andg* = 10 is given in
first equation of (3) we observe that > 0. Hence, initially Fig. 10.

the sliding trajectory will evolve along the linkin the direc-
tion of increasinge;, but immediately it will start to deviate
from z> = 1, becausers > 0 andz, > 0. We conclude then
that no trajectory can lie on the plang = 1 and thus no
sliding mode is possible for our PWL model of the Colpitt
oscillator.

The 1-D map derived above gives a good approximation of
the dynamics of the PWL model of the Colpitts oscillator under
investigation. This can be seen clearly from Fig. 11 where a
comparison of the two-parameter bifurcation diagrams obtained
%y considering the PWL model for the Colpitts oscillator and the
approximate 1-D map, respectively, is reported.

VI. BIFURCATION ANALYSIS THROUGH A 1-D MAP B. Discontinuities of the 1-D Map

A. An Approximate 1-D Map We now discuss the occurrence of discontinuities in the graph
In [15], an approximate 1-D discrete-time model was derive®f the 1-D maph described in the previous section and relate

from the PWL model for the Colpitts oscillator. The derivatiorihese to the corresponding tangencies with the switching surface

of this map can be briefly summarized as follows. First, @order-collisions) of the trajectories of the PWL model for the

Poincaré section is fixed ab = 1. The Poincaré intersectionsColpitts oscillator.

with &» > 0 are then approximated by means of the line  Let's consider the graph df for @ = 2 andg* = 10, shown

the intersection of the unstable eigenpldi€ in the forward in Fig. 12. We note that the approximate 1-D miapresents a

active region with the Poincaré plane = 1 (see Fig. 5). discontinuity when the coordinate along the lifidas a value

Namely, the points of intersection are projected ofttalong s = sq = 80.668. We now follow the evolution in state space of

the direction £°) of the stable eigenvector in the forwarda trajectory starting from the initial poidt, in state space, cor-

active region. In so doing, we exploit the fact that trajectoriggsponding to the coordinate= s,, alongA. We remark that

in the forward active region are flattened (onto the unstabéecording to the mapping procedure described in Section VI-A,
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Fig. 11. Two-parameter bifurcation diagram (by simulation). (a) Piecewise-linear model. (b) Approximate 1-D map. The 1-D map of the Colptits oscill
preserves the qualitative dynamical behavior of the PWL model. The bifurcations occurring in the boxed region are illustrated in Fig. 15.

there is a unique poinP; on the lineA in state space, corre- PWL systenonlywhen the discontinuity occurs at a fixed point
sponding tos,. As depicted in Fig. 13(a) and (b), it is clear thafof some order) of the 1-D map itselt.

the system trajectory starting frof(n) = P, (corresponding  In conclusion, the jump in the value &fn + 1) exhibited

to s = sy) is a trajectory that just grazes the switching planky the 1-D map is caused by the phase shift characterizing tra-
xo = 1 tangentially. It follows that the discontinuity observed ijectories starting from points close to the coordinatebut on

the 1-D map fos = s, can be seen as the result of a border-cobpposite sides with respect to it. Again, this reflects the fact
lision of the trajectory originating at poi#;. However, in gen- that the Poincaré section chosen to construct the 1-D map is not
eral this doesot correspond to a border-collision bifurcationglobal. Nevertheless, the resulting 1-D map is useful for ana-
of the original PWL system, but it is related to the way the 1-yzing the dynamics of the Colpitts oscillator. Namely, by ex-

map is constructed. We emphasize that a discontinuity in thery. i , direct consequence of the fact that orbits of the PWL model corre-
1-D map indicates the occurrence of a border-collision in tRgond to (stable) fixed points, of some orgerfor the approximate 1-D map.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 27,2010 at 15:41:23 UTC from IEEE Xplore. Restrictions apply.



MAGGIO et al. NONSMOOTH BIFURCATIONS IN A PWL MODEL 1171

100 T . .

0 Sd 100 200 250
s(n)

Fig. 12. 1-D maph with discontinuity forQ = 2 andg* = 10.
ploiting the sensitivity of the 1-D map to border-collision bifurcays linearly withz 3, that is following a scaling law of the type:

cations, we will show in Section VI-D how it can be exploitedcs(n + 1) ~ (z34 — z3(n)). As we get closer tasq4, though,
for performing an analysis of the nonsmooth bifurcations of thtee scaling follows more and more closely a square-root-like be-

PWL model (3). havior, i.e.,z3(n 4 1) ~ (z34 — 23(n))*/2.
This yields the interesting conclusion that even border-colli-
C. Analysis of Singularities sion bifurcations (occurring in systems which eoatinuous but

p_onsmoottacross the border) can be characterized under certain
onditions by normal forms containing a square root singularity
sinthe case of grazing bifurcations (occurring in system whose
W is discontinuousacross the border).
We conjecture here that the appearance of the square-root sin-
gularity is related to the gradient of the piecewise-linear term
acting on the system on each side of the border. Namely, by
oking at the PWL model (3) of the Colpitts, we see that the
WL termn(z2) is equal to—z5 in one region while it is con-
stant on the other region. Hence, when the system flow crosses
the border, the reciprocal of the gradient of the piecewise lin-
earity n(z2) goes from—1 to —oo. We conjecture that it is

Fig. 14(a) shows the graph éf; for @ = 2.5 andg* = . = . .
: - this nonfinite value of the reciprocal gradient that causes the
16.578. W te th fad tinuit
° e note the presence of a discontinuity whefn + quare-root-like singularity exhibited by the 1-D map at the

1) = 0. This is consistent with the hypothesis that the discon@- . . . . . .
nuity is due to a border-collision bifurcation. In fact, when suc ord_er—coII|S|on b|furca_1t|on. _The_detalled e_maly5|s o_f this situa-
a bifurcation occurs, the state space trajectory becomes tani'(\?oﬁ} is currently under investigation and will be published else-
to the switching surface, i.exp = 1 andi> = x3 = 0; hence
the discontinuity observed far;(n+ 1) = 0. Further investiga-
tions reveal that locally, near the bifurcation point, the map
exhibits a square-root-like singularity, as illustrated in Fig. 14(b) We will now show how the 1-D map described above can
and (c). In particular, in Fig. 14(b), we observe that relatively fdre used to carry out a bifurcation analysis of the model under
from the point of discontinuitytz, = 2.5029853, the map de- investigation. We will focus our attention on the boxed region of

We now focus our attention on analyzing the kind of discont
nuities of the 1-D map described in Section VI-B. In particuIaF,
we will analyze the situation when a border-collision bifurcatio
occurs in the PWL system. For instance, this is the case that i
be discussed in Section VI-D [see Fig. 17(d), éor= 2.5 and
g* = 16.578], for which a discontinuity occurs at a fixed point
of the 1-D maph.

For this study, we will consider for convenience the retu
map,hs: x3(n) — xs(n + 1), obtained by plotting the iterates
of the coordinate:z(n) of the pointP(n), in state space, corre-
sponding to the poing(n) on the lineA.

D. Bifurcation Analysis
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Fig. 13. Two-dimensional state-space projection at the discontinuity fer2 andg* = 10: (a) Trajectory fors = s,; the starting poinf’, is the point in state
space corresponding to the coordinagealong the line\. (b) Detail of the grazing trajectory.

the two-parameter bifurcation diagram in Fig. 11(b), and shovinifurcations of the PWL system. We remark that a stable fixed

in detail in Fig. 15. Note that the bifurcation results presentgmbint for the 1-D map corresponds to a (stable) periodic orbit for

in this section have been obtained by brute force simulationthie PWL model. The notation that we will adopt henceforth for

the 1-D maph throughout the parameter region in Fig. 15.  the fixed pointss s, will be to indicate their stability properties,
Furthermore, it should be noted that the analysis reportedthe kind of bifurcation that the fixed point undergoes, and the

here, which is based on the two-parameter bifurcation diagrarresponding slop&’(s ,,) of the 1-D map at the fixed point.

of the approximate 1-D map holds, without substantial modifi¥e recall that a fixed point of is stable (S) if|4/'(s¢,)| < 1

cations, also for the PWL model of the Colpitts (from which thand unstable (U) ifh’(sf,)| > 1.

map has been derived). Hence, in the sequel we will refer generin describing the smooth and nonsmooth bifurcations that

ically to bifurcations of the 1-D map and to the corresponding system orbit undergoes when the paramefg@nd ¢* are
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moving the parameters along the pati-c-d-e-findicated in
Fig. 15. The corresponding graphs of the 1-D rhape reported
in Fig. 17.

Starting from the poina that corresponds to a chaotic evo-
lution we observe the “birth” of a periodic orbit when the value
of g* is increased up to the poibt This corresponds to than-
gent (or fold) bifurcation occurring along the curve indicated
by 7" in Fig. 15. This smooth bifurcation is characterized by
the creation of a new stable (plus an unstable) periodic orbit,
as shown in Fig. 18(a) and (b), where the state-space trajec-
tories corresponding to the poingsand b, respectively, are
reported. The same phenomenon can be analyzed in terms of
the 1-D map, as reported in Fig. 17(a) and (b), where we show
that the 1-D map undergoes a tangent bifurcation when the
parameters are moved from poato b. The creation of a new
stable fixed point corresponds to the period-1 orbit observed
in state space. Also, note that in the case of chaotic evolution
the corresponding 1-D map reported in Fig. 17(a) admits only
an unstable fixed point.

We now vary the paramete¢sandg* in order to move from
pointb to pointc along the path depicted in Fig. 15. This point
is located at the intersection of the cuf¥eof tangent bifurca-
tion with the curveBC+. The latter curve represents the locus
in parameter space of border-collision bifurcations associated
with the creation of a stable period-1 solution (corresponding to
a stable fixed point of the 1-D map). Conversdly, — indicates
the locus of border-collision bifurcations associated with an un-
stable fixed point of the 1-D map. The graph/oft pointc is
reported in Fig. 17(c). As we can see at this point, the 1-D map
presents a discontinuity coinciding with a fixed point. This con-
firms that a border-collision bifurcation is taking place. More-
over, notice that/(ss,) = -+1 at the discontinuity, which is
reminiscent of a tangent bifurcation.

We then move to poird in Fig. 15. This point is lying on the
curve BC'+ and is a typical example of a border-collision bi-
furcation generating a stable periodic orbit. The corresponding
graph ofh is reported in Fig. 17(d) from which the creation of
a stable fixed point|(/(s,)| < 1) is clearly visible.

A detailed analysis of the border-collisions occurring at point
d (for @ = 2.5 andg* ~ 16.578) has already been presented in
Section V.

By increasing the value agf*, for fixed @ = 2.5 (log @ =~
0.4), we now move on to the period-1 orbit at poidt shown
in Fig. 16 and we discuss tiperiod-doublingor flip bifurcation
that this orbit undergoes at poiatThe graph of. at pointeis
reported in Fig. 17(e), where a fixed point with(s ;,) = —1
is visible. This clearly indicates the occurrence of a flip bifur-

Fig. 14. Singularity in the return map,: x5(n) — z5(n + 1). (a) Graph of Cation. Moreover, this smooth bifurcation is illustrated in Fig.
hs for Q = 2.5 andg* = 16.578. (b) Zoom close to the singularity point. (c) 18(c) and (d), where the orbits of the PWL systems for values

Detail of the square-root-like singularity.

of g* slightly smaller and larger than the one corresponding to
eare shown. From the latter, the period-doubling of the orbit is

varied, we will refer to the generic period-1 orbit existing in thevident.

central white area of the region represented in Fig. 15. A typical The curve denoted b¥ in Fig. 15 corresponds to the locus in
instance of this type of orbit is the one shown in Fig. 16, coparameter space where the generic period-1 orbit (of the same
responding to poin® in Fig. 15. In order to analyze the bifur-kind as the one at poin®) existing in the region under con-
cations associated with this one-periodic orbit, we will imagingideration undergoes a flip bifurcation. In particular, at point
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=2}

Fig. 15. Bifurcation diagram of the 1-D map for the boxed region of Fig. 11(b’

The bifurcation curves have been obtained by extensive simulation of the 1
maph. The curved” andF correspond to tangent and flip (smooth) bifurcations —4_20 1 50 160 150
of the period-1 orbit at poir®, respectively. The (nonsmooth) bifurcation curve

BC denotes the locus in the parameter space where a border-collision ta 2
place, either of a stablet-) or of an unstabl¢—) orbit.

f the curveF intersects the locu®8C+ corresponding to a
border-collision of the (stable) period-1 orbit. The graphhof
at pointf is reported in Fig. 17(f) where the 1-D map exhibits ¢ 2001 ]
discontinuity at a fixed point characterized by a slépe ;,) = :
—1; this is reminiscent of a flip bifurcation.

E. Smooth versus Nonsmooth Bifurcations

To conclude our analysis we now discuss the transition fro ¢
smooth to nonsmooth bifurcations, referring to Feigin’s theor » 100
presented in Section IV-B. In order to apply Feigin’s criteriol
to analyze the bifurcations of the 1-D map we remark that |
this case the eigenvalues of the mapping describing the lo
dynamics in the neighborhood of a fixed point coincide witl
the slope of the 1-D map at the fixed point itself.

In particular, we focus our attention on the pointandf in ol .
Fig. 15. As already pointed out, at these points the smooth bift ~ ° 100 s 200 800 350
cation curved’ andF intersect the border-collision bifurcation
curve BC+. The behavior at point is qualitatively similar to (b)
the one observed when the system undergoes a smooth tangent
bifurcation. In fact, from Fig. 17(c) we can see tlhé([sfp) — Fig. 16. Period-1 orbit at poir® (log @ = 0.398 andlog ¢* = 1.3). (a)

. L Two-dimensional state space view. (b) Corresponding graph of the 1-Dvmap
+1. Hence, accordlng to Feigin's theory the sudden aPPERfsie that the periodic orbit (a) corresponds to the stable fixed gaint

ance (or disappearance) of a periodic orbit is expected. This can
be verified by looking at the map slopes—eigenvalues—at tB‘arder-collision poinf, o, + o, is an odd quantity. Hence,

stable+fixed Eolints in Fig. 17(b) and (c), from which it follows, it can be considered as the point at which a flip bifurcation,
thatoy;, + o, is an odd numbet. Therefore, point can be o4 racterized by/(s;,) = —1, and a border-collision bifurca-

seen as the point at which a tangent bifurcation, characteriztﬁg1 become qualitatively similar

by h'(ss,) = 1, and a border-collision bifurcation are quali-  rpjg analysis confirms that border-collision bifurcations are

tatively similar. Similarly, we observe that at poinin Fig. 15 an important class of bifurcations in organizing the dynamics of

t_h(_e 1'D, maph., depictgd in F.ig. ,17(f)_’ qndergoe; a -border-colthe PWL model of the Colpitts oscillator which we have con-
lision bifurcation that is qualitative similar to a flip bifurcation

S . C : 'sidered. Also, the 1-D map has been shown to be a particularly
for which h'(s,) = —1. Again, this is in agreement with what e o ivie tool in carrying out a bifurcation analysis of the system.
is predicted by Feigin's theory since, by looking at the slopes Finally, our numerical observations suggest that border-colli-

of the 1-D map at the fixed points, we can deduce that at thgy, yifyrcations are in some sense the result of the degeneration

(due to the nonsmoothness of the system) of conventional tan-
gent and flip bifurcations, as conjectured in [27].

4Referring to Section 1V-B, from Fig. 17(b), it follows;: = 0 and, from SIn fact, from Fig. 17(b) it followsr . = 0 while, from Fig. 17(e), it follows
Fig. 17(c), it followso ;' = 1;thuso |, +of = 1. o, =1;thuse, +o, = 1.
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Fig. 17. Bifurcation analysis through the 1-D map, illustrating the (smooth and nonsmooth) bifurcations occurring alongethe @ate-fin Fig. 15. (a) 1-D
map at point (log @ = 0.302, log ¢* = 1.373) before the tangent bifurcation occurring on the cufugb) 1-D map at poinb (log ¢ = 0.302, log ¢* =
1.447)just after the tangent bifurcation. (c) 1-D map at paifibg (2 = 0.368, log g* = 1.248) corresponding to the transition from tangent to border-collision
bifurcation. (d) 1-D map at poird (log @ = 0.398, log g* = 1.21) on the curveBC+. (e) 1-D map at poing (log 2 = 0.398, log ¢g* = 1.3968) at the flip
bifurcation, on the curvé’. (f) 1-D map at poinf (log Q@ = 0.472, log ¢* = 1.251) corresponding to the transition from flip to border-collision bifurcation.

VII. CONCLUSION Numerical evidence for the occurrence of several nonsmooth
phenomena has been reported for different values of the system
In this paper the occurrence of border-collision bifurcationsarameters and motivated as a direct consequence of this class
in a PWL model of the Colpitts oscillator has been investigatedf nonsmooth bifurcations. Moreover, a local analysis of the
Conditions for border collisions in the Colpitts have been d&order collision has revealed that, also for the Colpitts oscillator,
rived and a method to classify their occurrence has been pberder collisions correspond to the occurrence of a singularity
sented and applied to the model under investigation. in the Jacobian of the system.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 27,2010 at 15:41:23 UTC from IEEE Xplore. Restrictions apply.



1176

-2t

()

Fig. 18.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 8, AUGUST 2000

s 1 50 100 150

=2}

K’

i
8
g

(d)

lllustration of the smooth bifurcations of the PWL system occurring along the cliraesl F'. (a) Chaotic attractor, before the tangent bifurcation, at

pointa (log @ = 0.302, log ¢g* = 1.373). (b) Period-1 orbit born after the tangent bifurcation, at pbifibg ) = 0.302, log g* = 1.447). (c) Period-1 orbit
before the flip bifurcation, below poiet(log ¢ = 0.398, log g* = 1.389). (d) Period-2 orbit after the flip bifurcation, above paértog Q = 0.398, log ¢g* =

1.41).

Furthermore, we have shown that the occurrence of border{é] T. Saito and S. Nakagawa, “Chaos from a hysteresis and switched cir-

collision bifurcations can be detected by an approximate 1-D
map of the Colpitts oscillator. In particular, this map exhibits

(71

square-root-like singularities reminiscent of those which are ob-

served for grazing bifurcations of discontinuous systems.

Finally, the 1-D map has proven to be particularly useful for

(8]

cuit,” Phil. Trans. R. Soc. London, &ol. 353, pp. 47-57, Nov. 1995.

E. Freire, E. Ponce, F. Rodrigo, and F. Torres, “Bifurcations sets of con-
tinuous piecewise linear systems with two zonést’ J. Bifurc. Chaos

vol. 8, pp. 2073-2098, Nov. 1998.

S. Banerjee and C. Grebogi, “Border collision bifurcations in two-di-
mensional piecewise smooth mapBhys. Rev. Evol. 59, no. 4, pp.
4052-4061, 1999.

investigating the bifurcation phenomena, especially for pointing[9] A. Champneys, M. di Bernardo, L. Glielmo, F. Garofalo, and F. Vasca,
out the relationship between smooth and nonsmooth bifurca-

tions in the system.
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