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 

Abstract— The concept of a community grid is presented here. 

It involves the distribution grid and an increased use of 

renewable energy coming from distributed resources along with 

the consumers/prosumers engagement in energy trading 

mechanism. The possible operation and management with energy 

trading flexibility are briefly outlined. Under such scenario, the 

classical operation of the distribution grid is challenged by the 

issues brought by the large penetration level of the new energy 

resources. This paper presents a status review of the technical 

issues that may appear under the community grid scenario. 

Building upon those surveyed issues, this work also reviews and 

discusses approaches to solutions, which are required in order to 

make the community grid highly renewable and sustainable. 

 
Index Terms— Community grid; microgrid; power systems; 

power converter; resonance; stability; harmonics; islanding 

 

I. INTRODUCTION 

raditionally the distribution grid was a radial system 

handling a unidirectional power flow from the power 

plants to the consumers. It is now-a-days changing with the 

consolidation of technologies that enables massive use of 

distributed energy resources (DER) like renewable generation 

and storage. The scenario brings new challenges to the grid 

that is now required to connect a variety of generation-

consumption points by means of two-way power flow 

branches. In this grid, consumers can also produce energy 

becoming prosumers, with the possibility to interact among 

themselves and with the grid in new ways. 

Driven by economic incentives, regulations, or by an 

increased citizen awareness, combined with equipment price 

dropping, residential consumers are connecting with increased 

number of renewable energy generators. The type of 

generation with the largest impact on the distribution grid is 

the photovoltaic (PV), which generates DC and injects AC 

into the network through some power electronics converters. 

With the introduction of early PV generators started the 

investigation of their effects on the grid. Some initial analysis 

on possible effects are found in [1, 2] that already covered 
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aspects like harmonic distortion and resonances. Although 

those works did not detect major problems, later on, with 

increased use of PV, some installations were showing the 

effects related to the operational issues [3]. Around that time, 

regulation authorities and utilities carried out investigation on 

the possible effects of PV and other renewables on the 

distribution grid [4, 5]. According to those reports, the 

negative impact was mostly related to power quality (PQ) 

disturbances such as voltage regulation, islanding detection, 

anti-islanding protection failure, and some possible, though 

unlikely, resonance cases.  

In recent times, with increased penetration of renewables, 

renovated concerns on possible negative effects were raised 

[6]. Some of the reported issues were related to the voltage 

level and regulations [7, 8]; increased harmonics distortion 

which could derived from resonances [3] or not [9, 10]. The 

reports [11, 12] show that small-signal instabilities can also 

manifest large harmonic distortion. Transient stability could 

also be impacted, sometimes by action of anti-islanding relays 

[5]. Therefore, nowadays efficient and intelligent operation 

and management of multiple renewables in distribution grid 

without lessen the stability is a major concern. 

Development of microgrid in different forms and its 

operation in on/off-grid condition are also playing an 

important role in expanding the DER integration in the 

distribution network [13]. Though the interconnection between 

the microgrid and the utility/smart grid network also exposes 

their respective inner PQ disturbances, such as harmonics, 

unbalances, it is better to isolate the grid through a power 

quality conditioner [14]. Hence, to improve the PQ in 

microgrid and distribution network, the custom power devices 

such as STATCOM and UPQC are getting importance as well 

[15, 16]. 

Now-a-days, the idea of community based microgrid 

systems are also being well-accepted by the community 

consumers/prosumers. This is acting as a powerful tool to 

empower the energy active citizens. Researchers are proposing 

different structural solutions for the benefits (more focus on 

the economic sustainability) of community users [17, 18]. 

With all of these improvement in DER based integrated 

energy system development and integration, maintaining the 

grid stability, improved power quality and efficient energy 

management with high penetration of renewables from a large 

number of micro-generation systems in the distribution 

network are still a matter of great concern. Therefore, a 

concept of community grid structure in the form of virtual 
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microgrid embedded in the distribution network is presented 

in this paper. A major goal of the proposed community grid 

structure is to increase renewable energy usage by facilitating 

the consumer transition to active prosumers, and giving them a 

scenario to develop the solution using their existing setup. 

This implies large amount of distributed renewables being 

injected into the distribution grid whose effects have to be 

addressed [19].  

This work then compiles and discusses previous studies and 

findings about the technical issues and challenges appearing 

when injecting increasing amounts of renewable energy in the 

distribution grid. Many articles have been published on the 

broad topic covered by this survey. It is not the goal of this 

work to be exhaustive on the review. It is rather preferred to 

record the type of possible issues, while also giving special 

attention to those backed by measurements on grid similar in 

structure and operation to the community grid. This is an 

extension of the paper [20] which was partly presented in the 

IEEE IAS conference. 

II. COMMUNITY GRID 

The proposed community grid is a type of virtual microgrid 

system that can be developed within the existing distribution 

grid network. It involves the operation and management of a 

virtual microgrid system through a central community grid 

controller (CGC). Fig.1 shows the simplified diagram of a 

community grid structure, proposed in a low-voltage (LV) 

distribution network (residential). One of the key objectives of 

the development of community grid is to minimise the costs of 

electricity consumption from the transmission/distribution grid 

by prioritizing self-sufficiency. The solution is more focused 

on high penetration of renewable energy from distributed and 

micro-generation systems (µGen) without lessening the grid 

stability as well as to achieve the µGen sustainability through 

the empowerment of energy active citizens. This community 

grid approach will be highly appreciated where µGens or 

distributed RE based solutions are not popular due to the 

absence of or limited renewable energy fed-in-tariff (REFIT) 

policy. 

A. Operation and Management 

Operation deals with the physical control of the proposed 

network such as power & energy matching, power quality 

improvement and grid stabilization issues. Whereas, 

management deals with the energy balance (within the supply, 

demand and storage) and energy trading (to empower energy 

citizen) within the residential neighborhoods as well as with 

the utility operator. 

B. Operational Flexibility  

The novelty of the proposed community grid structure is 

that it will not physically change the existing national grid 

structure/distribution network. Rather, the central/distributed 

controller (CGC) for this virtual structure will be developed in 

such a way so that the existing physical grid network can be 

separated and operated as a real community microgrid system, 

if needed in future. Thus the flexible operation can be 

achieved. This requires the self-healing capability of the real 

microgrid. At this stage, the proposed virtual microgrid system 

will have its self-healing capability and disturbance neutrality 

in the eyes of distribution system operator. This disturbance 

neutrality can be achieved by the community grid controller 

by developing the proper power and energy matching, supply 

and demand energy balancing, reactive and harmonic power 

compensation, microgrid network stabilization and anti-

islanding facilities.  

C. Energy Trading Flexibility 

To increase the active participation of consumers and 

prosumers, a community energy trading platform can be 

introduced in a flexible energy trading mechanism so that 

prosumers can trade excess energy with other 

consumers/prosumers in the same community grid network as 

well as with the utility operator. In future, this trading can be 

extended to other community grids in the same or different 

distribution network. Thus community grids would achieve 

operational and energy trading flexibility in an 

organized/structured way within the smart grid network.  

D. Sustainability 

A brief techno-economical sustainability analysis of this 

proposed community grid system is presented by the authors 

in [21]. The grid model baseline as shown in Fig.1 

corresponding to a typical urban residential distribution in 

Ireland is simulated in Matlab. Considering the Irish grid code 

and condition for µGen integration and penetration limit, 

analysis shows that penetration of 100% renewable energy 

from PV based µGen system is possible with some degree of 

control for stabilization. A simple economics for the 

development of CGC for 50 prosumers based community grid 

system with a stabilization unit (storage capacity - 

300kW/300kWh capacity), suggest that energy trading cost 

will vary from 12-19 cents (euro) per unit, as shown in Table1. 

 
Fig. 1.  Community grid concept. 
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This cost is lower than the present utility electricity cost in 

Ireland. At present, Ireland also does not allow REFIT cost for 

µGen system. Thus this community grid solution could open a 

door for consumers/prosumers to become energy active 

citizen. Interestingly, a cost of DSO CARE is introduced here, 

which we are proposing to pay the DSO/utility operator as a 

service charge to allow the community users to use the 

existing network infrastructure. 

Based on the community grid concept, a research and 

demonstration project is being developed in Dublin, Ireland 

[22] where the consumers/prosumers will have a better choice 

of supply, access to reliable energy price, possibility to 

produce and sell their own electricity, increased transparency 

and better regulation as proposed in [23]. 

Details of operation and management, operational flexibility 

and sustainability study are out of the scope of this paper. As 

the concept of developing community grid is new, from the 

operational perspective, the following section discusses more 

on the technical issues that the community grid could face to 

turn into a zero emission community. 

III. REVIEW OF TECHNICAL ISSUES 

A summary of the technical issues appearing when 
distributed generation (DG) is added to the distribution grid is 
presented in this section. Special focus is given on the high 
penetration of DGs including renewables that are interfaced 
through the power electronics converters and mostly connected 
to the low voltage distribution network.  

A. Voltage level and generation variability 

The power injection at the load points directly impacts the 

active power flowing through the distribution network in 

magnitude and eventually direction. The operation of DG also 

alters the reactive power flowing through the network. In a 

typical radial distribution grid, the change of both active and 

reactive power will directly impact the voltage profile along 

the distribution feeders. Voltages at the point of 

load/generation coupling will rise when generation becomes 

greater than the consumption. This issue has been studied for 

three-phase [8] and mostly single-phase systems [7]. 

Because voltage deviations could exceed tolerance bands, it 

becomes necessary to compensate those variations. Use of on-

load tap changers could help, but they are rarely used in the 

distribution grid [24], and have slow response. More effective 

would be to use reactive compensation devices, like statcoms, 

to keep the distribution voltage under limits [25]. Other 

possibilities include using the power converters, like the PV 

inverters, to inject reactive power for voltage support [8],[26]. 

Nevertheless, this last option requires increasing the rating of 

those inverters. Energy storage devices connected to the grid, 

could also be used to support the voltage profile. One of the 

possibilities is that the storage comes from EV batteries [27].  

When single phase equipment is used in three-phase 

systems, there is the risk of creating unbalance. This could 

affect some of the three-phase loads. In some cases, a solution 

to improve voltage balance could be implemented using 4-leg 

inverters, as shown in Fig.2. However, in many cases such a 

solution is costly [28].  

B. Harmonic Distortion 

Power converters used for DG interface introduce 
harmonics into the grid, as shown in Fig. 3, where it is found 
that the performance of PV inverter degrades due to weather 
and unbalanced load conditions [29]. Hence, the current 
harmonics also cross the standard limit. However, well 
designed equipment that follows established standards, 
introduces only a limited harmonic distortion. Possibilities of 
increased intolerable harmonic levels could come from an 
aggregation of distortion making the local network highly 
polluted [30], negatively impacting the converter behavior. In 
addition, such inverters can also introduce inter-harmonics with 
possible flicker impact [31]. Other possible undesirable 
contribution of some network nonlinear elements, or resonance 
excitation, could rise voltage and/or current harmonic 
components [32].  

 
Fig. 3.  Performance of a 3-ph PV inverter - unbalanced load condition 
  

Table 1: Economic Sustainability of Community Grid System 

  

50 Prosumers based Community Grid 

Prosumer's Energy Production Cost 
from (6-3)kW µGen System 

0.09 - 0.15 €/kWh 

CGC (O & M) Cost 0.02 - 0.03 €/kWh 

DSO CARE* (service charge) 0.01 €/kWh 

Energy Trading Cost 0.12 - 0.19 €/kWh 

* Clean And Renewable energy Exchange 

 
Fig. 2.  Example of the three-phase system with 4-leg inverters. 
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Solutions for increased levels of harmonics would usually 
consist of controlling the source of distortion or adding filters, 
either passive or active. Although filtering is a viable 
alternative, it has costs implications. On the other side, the 
reduction of the distortion source would require involving the 
power converter; possibly modifying designs that already 
comply with established standards. A possibility, not yet 
included in the standards, that involves the interfacing 
converter making use of its filtering capacity is proposed in 
[33].  

C. Resonances 

Experience shows that in many cases increased harmonic 

distortion is related to the resonances. This is found for both 

mostly single phase [3], and three-phase [34], distribution 

grids. Resonances could also contribute to overvoltage 

creation [35]. Series or parallel resonances, as shown in Fig. 4, 

can be created by the combination of purely physical reactive 

elements [36]; but in most systems employing equipment with 

feedback controls, resonances are created by a combination of 

control action with reactive elements [10],[37].  

The capacitive component of the resonant circuit could 

come from actual capacitors, or from parasitic parameters of 

other elements, e.g. cables. In many cases the presence of 

shunt connected capacitors in the grid plays a crucial role in 

establishing the resonance [34],[36]. The shunt capacitors can 

be part of reactive banks for power factor compensation, or of 

power converter line filters, like the LCL filters. For those 

filters, the practice to increase the capacitor size in detriment 

of the inductance has the risk of placing the resonances at 

frequencies where they could become excited by the harmonic 

components of the converter PWM waveforms [3],[38]. Fig. 5 

shows an equivalent circuit for resonance studies where it is 

possible to observe the possibility of both series and parallel 

resonance. Lf and Cf are the line filter components, Vs and Zs 

are the grid Thevenin equivalent; and Ih and Zh are the DG 

interface inverter Norton equivalent. Pcc is the point of 

common coupling. 

D. Stability 

Stability of electrical systems can be broadly classified in 

small- and large-signal with the last implying sudden changes 

in the operating conditions created by events while the first 

type mostly driven by interactions among equipment in a 

slowly changing scenario [39].  

In distribution grid, the unstable behavior could be 

responsible for serious disturbances and equipment 

disconnection. It could also happens that the instability does 

not disengage equipment, but is responsible for large 

perturbations which affects the power quality [11]. Small-

signal instability could be determined by using the impedance 

criterion [12]. In this type of analysis, the stability is related to 

the source-load impedance ratio providing insight into the 

aspects that could determine the allowable level of DG 

penetration [10]. The presence of some specific equipment, 

like induction motors, could negatively impact the grid 

stability [40].  

In terms of large signal stability two major aspects have 

been taken into account: rapid variations in the primary 

source, e.g. clouding effect on PV, and the behavior following 

a sudden grid loss [5]. The source variability, though relatively 

slow in electrical terms, creates a generation-load unbalance 

that must be covered by energy from other sources available, 

and whose impact also depends on the PV penetration level 

[41].  

In case of microgrid system with high penetration of 

renewables, the stability issues are divided into three 

categories; (i) small signal, (ii) transient and (iii) voltage 

stability, as show in Fig 6 [42]. In addition to the small signal 

stability, a fault with loss of power and subsequent island 

operation poses a transient stability problem. Voltage stability 

problems occurs due to the reactive power limits, load 

dynamics, under voltage load shading and tap changers 

voltage regulation. When it comes to the development of 

community grid as a virtual microgrid, it should consider 

mostly the stability issues related to campus and utility 

microgrid, as shown within the dotted circle in Fig.6. 

 
Fig. 4.  Mechanisms of (a) parallel and (b) series resonance 
  

 
Fig. 6. Stability issues in different types of microgrid 

  

IhZhVs

Lf

Zs

Cf

Grid equivalent DER equivalent

Pcc

 
Fig. 5. Equiv. circuit of grid-connected converter & possible resonance paths 
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E. Network Protection 

The possibility of feeding the network from the load 

connection point certainly affects the operation of protection 

relays and the selectivity of the protection scheme. The 

changes in the distribution network operation, produced by the 

introduction of DG has drawn a good amount of attention 

driving both research work and standardization [43],[44].  

Effects of DG in the distribution grid include different 

possibilities of protection miss-operation and relay 

malfunctioning that are related to the power injection at the 

user point of connection modifying the fault current patterns. 

Some of those possible effects are: relay not seeing the fault, 

either primary or backup; loss of coordination and/or 

selectivity; fuse improper operation; unsynchronized or 

unavailability of reclosing [45],[46]. In case the operation is 

islanded, microgrid operation issues can appear. Use of power 

conversion interfaces, like the ones used for PV or batteries, 

has some advantages against other type of equipment because 

of their faster controls and protections enabling quick and 

accurate responses. However, full use of these capabilities 

may still require developing adequate algorithms [47]. Use of 

fast communications could be useful for providing effective 

protection as well [48].  

F. Islanding Operation 

At the distribution level, it is a common practice that DG is 

required to disconnect from the grid in case a fault is detected. 

If that disconnection is done fast enough then utilities would 

need to do little adjustment on their protection settings 

because after a few milliseconds the DGs get disconnected 

from the grid and this would be back operating under the well-

known radial unidirectional power flow condition [45]. 

Although this situation may have the benefit of not altering a 

setting that has proven operational for decades, it also allows 

little space for improvement and may impact the cost of 

increasing DG penetration. Moreover, when penetration levels 

become large it could have negative effects on the grid, as 

pointed in [5]. The problem worsens if anti-islanding 

protections create unnecessary disconnections [49].  

The requirements for anti-islanding protection in DG 

connected to distribution grids have given place to a good 

amount of research. The work in [50] offers a summary of 

algorithms for islanding detection. It also classifies them into 

four categories that are passive, which are only based on 

measurement of electrical magnitudes; active, which inject an 

electrical magnitude and analyses the system response; hybrid, 

which try to combine the benefits of the active and passive; 

and communication based, which make use of fast 

communications between the DG and the grid protection. In 

general, anti-islanding detection and protection algorithms are 

integrated into the power converter controllers [51]. 

Having these network protection and islanding operation 

issues in mind, community grid controller needs to develop 

appropriate control strategy to operate the community grid in 

future as a real microgrid, if needed. Therefore, the 

community grid also needs to select its physical node point at 

the distribution grid as its virtual entity.   

IV. OVERCOMING THE CHALLENGES 

Reaching high levels of renewable energy penetration in 
community grid requires properly addressing the described 
issues. An integral approach to them would enable reaching 
high level of clean energy penetration in an efficient and cost 
effective manner. A large amount of research has been done, 
but improvements are still possible, desirable, and in several 
cases necessary. The next paragraphs briefly discuss on the 
possible solutions, their development status, and some of the 
items that require more attention. 

A. Power Interface - Converter Technology 

Improvements in the power converters interfacing the DGs 
involve better control functionalities and an enhanced 
reliability with larger medium time between failures (MTBF). 
Beyond those basic characteristics, the converters could 
contribute enhancing the grid behavior in the following items.  

1) Increased capacity to inject reactive power without 

detriment of active power  

As forced commutated converters have the capability to 

quickly inject power with any power factor, they can be used 

to inject reactive power supporting voltage regulation. This 

has already been proposed [4],[52]. The expense is that the 

converter rating must be adequate to the increased currents 

along the desired power factor operation range. Therefore, the 

cost of the converters with this capability will be larger than 

for a converter that injects only active power. In case of 

parallel operation of multiple inverters in distribution network, 

the implementation of droop controller, as shown in Fig 7, 

could take the advantage of coordinated control without the 

communication among the inverters [16]. 

2) Reduction of harmonic current injection  

Power converters must not contribute to creating or 

amplifying harmonics due to resonance or instabilities [10]. 

Moreover, control algorithms implemented in the digital 

controllers of the power converters connecting the DERs to 

the grid have improved considerably in recent years enabling 

for low distortion current and compensation of specific 

harmonic orders at reasonably computation expense [53],[54]. 

In addition, the raising capacity of power converters 

associated to fast and accurate controls could bring the 

possibility of using the same converter that interfaces the DGs 

for harmonic compensation. This has been analyzed in low 

power and for residential PV inverters [33],[55].  

 
Fig. 7. Droop characteristics of P–ɷ and Q–E 
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It is to be noted that the current equipment certification does 

not properly address the testing of equipment under grid 

distortion conditions where a large amount of power 

converters are connected. As the equipment behavior is 

impacted by the grid distortion, this issue requires to be 

properly addressed. Some of the grid-connected PV inverter 

manufacturers, such as SMA, are developing inverters these 

days with advanced control to take care of injecting active and 

reactive power to maintain the grid stability, when needed 

[56]. 

3) Advanced management of grid loss/islanding condition  

Current standards and regular practices by utilities require 
the implementation of anti-islanding protection schemes for 
inverters connected to the LV distribution grid. However, the 
negative effects of that requirement have already been pointed 
out in [5]. Anti-islanding algorithms require improvement in 
order to reduce unnecessary trips which lowering the network 
performance [49]. In addition, increasing amounts of 
renewable generation is affecting the network stability pointing 
to the necessity to re-evaluate the impact of anti-islanding 
requirements in current standards. The recent version of the 
IEEE 1547-2018 standard has updated the required criteria for 
interconnection of DGs related to voltage regulation, voltage 
and frequency responses at abnormal conditions to overcome 
the anti-islanding issues, improved converter performances to 
maintain the grid stability with high penetration of renewables 
[57]. 

B. Reaching High Levels of Renewable Penetration  

One of the features of the community grid is to meet the full 

load demand from renewable energy supply. Achieving large 

penetration of renewable energy sources has always been a 

concern [1]-[8]. The next paragraphs discuss on some of the 

possible actions that could be adopted in order to reach higher 

levels of renewable energy penetration.  

1) Microgrid Paradigm 

The microgrid concept has been proposed in the past and 

represents a grid that can operate in stand-alone mode feeding 

a diversity of loads from one or more generation sources. They 

can also be connected to a larger network [58]. This means 

that the equipment used in the microgrid must be able to 

operate in both scenarios; additionally, the change of 

conditions must be properly handled by the microgrid as a 

system [51]. Although the community grid is intended 

primarily for grid connected operation but in virtual microgrid 

structure with a real physical node of entity; the mentioned 

microgrid features are relevant as the prosumers may be 

interested in having the capability to continue operating in 

case of network loss [59]. Thus, the microgrid/community grid 

involves the connection of DGs like renewable generation, 

energy storage, and EV chargers. Additionally, power 

conditioning like statcom or stabilizer devices and the grid 

connection point. The operation is under the control and 

supervision of the microgrid/community grid controller (CGC) 

that also allows connection to other entities. 

The other important feature of the community grid (virtual 

microgrid) is to operate and control in such a way so that the 

disturbance neutrality from the distribution network 

perspective is exist. Hence, the communication between CGC 

and DSO/DNO (distribution system/network operator) for a 

coordinated control is very important. 

2) Energy Storage 

Energy storage becomes relevant when the majority of the 

supply comes from intermittent energy generators like 

renewables. If most of the energy comes from PV generation 

then the amount of storage necessary to support for night long 

operation becomes considerably large. This fact challenges 

traditional energy storage technology, especially batteries. To 

assume larger amounts of energy storage flow batteries 

provide a possible solution. However, this has to be fully 

validated. Distributed energy storage systems also playing 

important role in microgrid operation and control, as it helps 

to improve the local reliability and resilience, also mitigate 

challenges caused by high penetration renewable generation. 

As it incurs additional cost, to get the best outcome, optimal 

sizing and placement in very important [60]. 

Hybrid and electric cars also have embedded energy storage 

capacity; their possible usage for the benefit of the grid have 

already been studied [27]. However, they have an 

unpredictable component because their primary use is not to 

support the electric grid.  

3) Grid Protection and Enhanced Communications 

Use of communications for protection of the grid with 

renewable resources and the microgrid has already been 

studied and new protection schemes for them have been 

proposed [48],[61]. Some of these methods require reliable 

broadband communication channels. As these become 

available enhanced control and protection of grid connected 

elements become a reality. In any case, it is foreseeable that 

development in better communication will enhance the 

protection by enabling new functionalities or enhancing 

existing ones, like selectivity, coordination, and detection of 

grid conditions.  

C. Specific Equipment  

There are some specific equipment for microgrid already 

exist that can support the community grid development, 

providing solutions to the challenges previously mentioned.  

1) Microgrid controller 

The community grid controller has the functionality to 

enable the community grid operation under the defined 

objectives. In addition, it has to overview the operation of the 

grid, verifying that electric magnitudes remain inside 

allowable ranges, and enable the interaction among prosumers 

 
Fig. 8. Microgrid and community grid control functions  
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and with the grid operator [62]. The functionality that such 

controller must have is closely related to the microgrid safe 

and reliable operation as discussed in [63],[64]. In addition, 

the controller must include the community grid functionality. 

Fig.8 summarizes the microgrid controller functions with the 

addition of the community grid requirements.  

2) Statcom  

Due to the intermittency of the renewable generation and 

the voltage regulation issues previously mentioned, fast 

response voltage control is required. This capacity can be 

provided by dedicated equipment like a statcom, as shown in 

Fig. 9 [65]. 

Nevertheless, DG interfacing power converters can also 

contribute to voltage control. If the amount of inverters with 

voltage regulation capacity is enough, they can also serve as a 

statcom. Use of PV inverters to regulate the voltage has 

already been proposed [25]. Moreover, issues on how the 

converters will take part in the voltage regulation and share 

the duty of injecting reactive power are still a matter of study. 

Some schemes for that in a microgrid have been proposed in 

[66].  

3) Microgrid Stabilizer 

The balance between load/demand may be affected by the 

different events in the grid. The microgrid stabilizer is 

conceived as a device that contributes to restore that balance 

by using energy storage, as shown in Fig. 10 [42]. In isolated 

microgrids, mostly fed from renewable energy, such stabilizer 

is seen as a critical piece of equipment that allows achieving a 

reliable operation with good service quality [67] while 

minimizing the need of non-renewable reserve like diesel 

groups. Microgrid stabilizers with flywheel or battery energy 

storage have been developed and are currently being 

commercially offered by some of the manufacturers [68],[69].  

In grid connected microgrids, like community grids, the 

stabilizer can provide a stabilizing resource to the grid. 

Custom power devices can also provide stabilizer 

functionalities in addition to the harmonic voltage and current 

compensation capabilities [70],[71]. Having all of those 

capabilities, stabilizers can strongly help in increasing the 

penetration level of renewable energy in community grids.  

4) Transfer Switch and Seamless Transition 

Community grids are conceived primarily as a virtual 

microgrids. However, islanding operation may be required in 

future. In such a case, the transfer switch allowing operation in 

grid connected or islanded modes becomes necessary. 

Therefore, such devices can be used in the grid connection and 

the operation of the microgrid in order to reach a seamless 

transition between operation modes [71],[72]. 

V. CONCLUSION 

To achieve the de-carbonization of grid network and 
empowering energy citizens, a way of penetrating high 
renewables in the low voltage distribution network through the 
development of community grid is presented here. This will 
allow multiple integration of µGens and other DGs in a 
sustainable way. 

The path to future community grid using mostly renewable 
energy requires reaching penetration levels of DG from 
renewables consistently higher than the current established 
practices. This generation will be connected at the distribution 
level with a vast majority of the generators interfaced through 
power electronics converters. An overview of the technical 
challenges that would arise under such circumstances, the 
reasons, and possible ways to overcome them have been 
discussed in this paper.  

 All the technical issues discussed in the previous sections 

limit the DG penetration level. However, solutions that 

mitigate the undesirable effects could be developed and 

implemented. Overall, in order to achieve an energy supply 

coming mostly from renewable sources the solutions must 

address all the issues previously discussed. Good system 

engineering will be the one that allows reaching those desired 

goals while employing the smaller amount of resources; 

becoming therefore, most cost effective.  
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