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Abstract
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by Nicolino Lo Gullo

In this thesis I present the work done during my PhD. The Thesis is divided into two

parts; in the first one I present the study of mesoscopic quantum systems whereas in

the second one I address the problem of the definition of Markov regime for quantum

system dynamics. The first work presented is the study of vortex patterns in (quasi)

two dimensional rotating Bose Einstein condensates (BECs). I consider the case of an

anisotropy trapping potential and I shall show that the ground state of the system hosts

vortex patterns that are unstable. In a second work I designed an experimental scheme

to transfer entanglement from two entangled photons to two BECs. This work is meant

to propose a feasible experimental set up to bring entanglement from microscopic to

macroscopic systems for both the study of fundamental questions (quantum to classical

transition) and technological applications. In the last work of the first part another

experimental scheme is presented in order to detect coherences of a mechanical oscillator

which is assumed to have been previously cooled down to the quantum regime. In this

regime in fact the system can rapidly undergo decoherence so that new techniques have

to be employed in order to detect and manipulate their states. In the scheme I propose

a micro-mechanical oscillator is coupled to a BEC and the detection is performed by

monitoring the BEC with a negligible back-action on the cantilever. In the second

part of the thesis I give a definition of Markov regime for open quantum dynamics.

The importance of such definition comes from both the mathematical description of the

system dynamics and from the understanding of the role played by the environment in

the evolution of an open system. In the Markov regime the mathematical description

can be simplified and the role of the environment is a passive one.
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Introduction

Since its first formulation quantum mechanics has received great attention both from

the scientific community and lay people. With no doubt the reason has to be sought in

its predictions, which are often in contrast with our everyday experiences. The idea that

an object can be in an undefined state until a measurement is performed is something

that even the founders of quantum mechanics themselves were not comfortable with.

The power of quantum mechanics and its predictions were, however, immediately rec-

ognized due to the excellent agreement between theory and experiments. The quantum

formalism was able to explain phenomena that would otherwise be inexplicable such

as the wave-like behavior of electron and atoms [1], the magnetic properties of certain

materials [2], the structure of proteins [3]. Nevertheless the more we used (and abused)

quantum mechanics the more uncomfortable we were: the quantum world is something

far away from our classical existence. Then fundamental questions arise. Is there a

border between the classical and the quantum realm? We do not know what would

happen when we cross this border or in which way this border can be crossed. The first

attempts to shed light on this problem were done by trying to explain measurement in

the quantum framework. The main problem was to explain the reading out process.

Since the quantum world is not equipped with a reader it has to be provided by the

classical world. Here, again, the same question arises: how does this reading process,

which involves the interfacing between classical and quantum realms, occur? What al-

lows us to perform such a reading out process has been readily identified (or introduced

ad hoc) to be “decoherence”. We are not really used to such effects in our classical

world; nevertheless in the quantum realm coherences are exactly what makes a system

“quantum”. “The system is affected by decoherence” means that it is losing its quantum

properties. Decoherence is the carrier which drives a system across this quantum to clas-

sical border in an irreversible way: a one way journey. In the explanation of the (real)

measurement process the picture is more or less like this: the (quantum) system to be

measured and the (quantum) apparatus first interact and then decoherence drives both

across the border. We needed this process because the very last measurement (reading

process) has to be classical: we, the ultimate apparatus, are classical objects. On the

1



Introduction 2

other hand this very useful “tool” turns out to be the greatest enemy for any quantum

device. If we want to develop quantum technologies we have to learn more about the

process of decoherence to counteract it. We then are asked for a better understanding

of the mechanism responsible for this “crossover” from quantum to classical. To further

complicate the problem there is the old misconception that quantum is synonymous

with small whereas a classical object is large. Now we know that this is not the case; a

superfluid is a macroscopic object made up of millions of particles, very well organized

though, and which shows “quantum behavior”. A gravity-wave detector whose mass

might be a ton can behave as a quantum oscillator. But we already knew that there

are no classical or quantum systems per se. Roughly speaking a system involved in a

particular process follows classical or quantum laws depending on the ratio of its de

Broglie wavelength to the characteristic length scale for that process. It is the essence of

the particle-wave duality, there are no particles or waves, it depends upon the physical

process. The border between quantum and classical world is then not as easy as the

division between “small” and “large”. How can we investigate such a crossover? Nature

offers plenty of systems that change their behavior from classical to quantum, sometimes

showing even both features at the same time. Natural systems are often to complex to

be controlled and for this reason in the last decade we have been trying to simulate or

emulate them with ad hoc designed experiments. In particular we need to have systems

that by construction are really close to the border and we require an unprecedent degree

of control over them.

The end of the XX century has been the era of technology based on the application of

the scientific discoveries made during the end of the XIX / beginning of the XX century

itself. The current century holds the potential to be that of quantum based technology.

On one hand we dream of this technology because of its intrinsic potential predicted by

the quantum mechanical laws. On the other hand we are pushing our current technology

to very small scales and to regimes where quantum effects play an important role. That

is why in the last couple of decades the so-called hybrid systems received much interest.

They are the first attempt to join up different, and well developed, techniques coming

from different fields in order to build quantum devices. These techniques come from

quantum optics, (ultra) cold gases, condensed matter, soft-matter, biological physics,

thermodynamics, etc. [4] These hybrid systems are a very nice playground even for the

study of the transition from quantum to classical case.

In this thesis I give my contribution to the study of mesoscopic quantum systems. We

borrow the term “mesoscopic” from studies on charge transport in solid state devices [5]

where the hallmark of mesoscopic systems is the presence of coherent motion of the

charges over the transport process. Mesoscopic systems can have sizes ranging from few

elementary components, such as atoms or molecules, up several millions of them. A
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mesoscopic system is usually a macroscopic systems whose dynamics occur in presence

of a certain degree of quantum coherences. It can be divided into two parts.

We start with a study of vortex patterns in two dimensional Bose-Einstein condensates

(BECs) held in anisotropic rotating traps. BECs are ultra-cold gases showing quantum

properties; even though they are made up of about thousands to millions of atoms they

show interference patterns if two of them collide. It is similar to what happens when

two waves on the surface interfere, hence the name matter wave interference for this

phenomenon. Nevertheless in this case the phenomenon is even richer because of non

linearities in the interaction between atoms. Another remarkable property is super-

fluidity whose signature are vortices with quantized circulation. This phenomenon is

similar to the occurrence of magnetic vortices in type-II superconductors of the [18];

the microscopic mechanism behind this type of super-fluidity is not clear yet. This

makes the study of vortex system particularly interesting and BECs offer a very clean

and fully tunable system giving us access to a broad set of configurations. In our work

we study the geometry of vortex patterns as a function of the anisotropy of the trapping

potential. In particular we address the case of few vortices in the trap finding that, as

the anisotropy changes, the ground state of the BEC accommodates vortices in different

geometries going from the hexagonal one, reminiscent of the Abrikosov lattice in the

case of a large number of vortices, to the linear one in which vortices align. Nevertheless

a study of the stability of these patterns shows that they are all unstable. This can be

explained by the fact that the anisotropic trap acts as a forcing potential that excite

quadrupole modes. Since the number of vortices allowed in the system is fixed by the

value of the angular velocity of the trapping potential itself, the system reacts to the

external perturbation by setting the vortices in rotation. This allows to store an extra

amount of orbital angular momentum without introducing new vortices into the system.

We resort again to the superfluid properties of a BEC to design an experimental scheme

aiming at transferring entanglement from micro to the macro world. The transfer can

be achieved by means of two photons, initially entangled in orbital angular momentum

degree of freedom, that interact with two spatially separated BECs, transferring their

angular momentum to them through a Raman-like scattering scheme. The pair of en-

tangled photons are produced via spontaneous parametric down conversion, which has

been shown to conserve the total angular momentum. The atoms that acquired the an-

gular momentum are thus set in a frictionless motion through the BEC. This allows for

a long-lived entangled mesoscopic system, which can be exploited for quantum repeaters

or for more fundamental studies on the quantum behavior of large systems.

We then propose a second scheme in order to investigate quantum properties of micro/-

nano objects. Mechanical oscillators are currently used for different purposes such as
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monitoring of chemical reactions or biological processes, as thermostats or else to mea-

sure small displacements as in the atomic force microscope. These objects turned out to

be very good candidates for the study of quantum to classical transition, or as a build-

ing block for future quantum technologies. Many efforts are focused on cooling these

objects to very low temperatures in order for them to end up in the quantum regime.

Nevertheless particular schemes are required to extract information about their state in

order not to induce decoherence and thus lose their quantum properties. We assume

that a cantilever supplied with a magnetic tip has been cooled down to the quantum

regime. Because of the magnetic tip it can interact with a BEC of atoms in a hyperfine

level with spin s = 1. Because of the mutual interaction the total spin of the BEC

undergoes a precession motion and it will carry information about the cantilever state.

This precession motion can be continuously monitored with a negligible back-action by

means of the Faraday rotation effect, i.e. the polarization of light traveling through

an active medium rotates by an amount that is proportional to the average magnetic

field in the medium. We then have way for monitoring the state of a micro mechanical

oscillator in its quantum regime with a negligible perturbation.

In the second part of this thesis a definition for the Markov regime for quantum systems

is presented in analogy with the Markov assumption for classical stochastic processes.

Every time we neglect part of our system, as it happens when we have no experimental

control on it or we are simply not interested in its dynamics, we unavoidably add extra

uncertainty to its description. In complex systems this is often the case since one part

of the total system, called environment, makes our system open. In the past decade an

extensive amount of work has been dedicated to the study of both new mathematical

tools to describe such situation and different and diverse experiments have been proposed

and realized to better understand these systems. The Markov assumption allows for a

really simple mathematical description of these systems. Nevertheless there has been no

clear definition of the Markov regime in the quantum case and we detail our attempts

to rectify this here.



Chapter 1

Bose Einstein condensates

In this chapter we will give a brief theoretical overview of the Bose Einstein condensation

phenomenon and the related cooling and trapping techniques exploited to create and

manipulate these systems. Bose Einstein condensates are a perfect example of meso-

scopic quantum systems for instance they are are used to produce atomic beams [8] or

for matter waves interference. They are controlled by mean of optical lasers and/or

magnetic fields and due to the high levels of precision reached with these techniques

BECs offer a very clean and fully tunable setup to study many-body problems [6] and

quantum simulations [7].

1.1 Introduction

It is commonly taught in school that the matter surrounding us can appear in three

different phases: solid, liquid and gaseous. The simplest example is given by water.

It appears in our everyday life in all these phases and we can “switch” from one to

another by changing its temperature. From a microscopic point of view the temperature

is associated to the mean kinetic energy of the molecules so we can imagine that the

higher their temperature the less confined they are; this is why we can drive phase

transitions by varying the temperature. Of course things are not as easy as this but this

kind of picture matches pretty well our experience. On the other hand during the last two

centuries we have developed a better and more sophisticated view of the world around

us and in particular of what matter is made of and how its components interact. We

have two new phases of matter to the above list, namely the Bose-Einstein condensate

(BEC) and the plasma. Roughly speaking we can say that the BEC corresponds to

really low temperature whereas the plasma to really high ones, so high that electrons

are no longer bounded to their nuclei due to scattering energy. That is why we do not

5
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see plasmas in our daily life (except when looking at the Sun or lighting a match). The

BEC phase was first predicted by A. Einstein [9] (1924) who used a previous work by

S. N. Bose [10] (1924) on the statistical description of photons. A. Einstein predicted

a phase transition for a gas of non-interacting bosons whose effect is “condensation” of

particles in the lowest energy state of the system. These particles, named after Bose,

are characterized by the fact that their spin is an integer in contrast to fermions, named

after E. Fermi, which have half integer spin.

The following decades gave an abundant production of works on this subject. First

there was the mathematical formulation of super-fluids by L.D. Landau [11] with the

definition of an order parameter; from there Bogoliubov [12] developed a mathematical

framework to describe excitation in an interacting Bose-Einstein gas. Historically the

first super-fluid has been the achieved with 4He, but it does not show the BEC transition

due to strong interaction between atom. First attempts to reach the BEC phase were

made using dilute atomic clouds, but cooling techniques did not allow reaching low

enough temperatures. Nevertheless in 1995 [13] by employing new laser cooling and

trapping techniques (Magneto-Optical Trap (MOT)), 70 years after its prediction and

in a different physical system, Bose-Einstein condensation of a gas of Rubidium atoms

was achieved. More recently the condensation of photons, exactly as predicted in the

original works, has been achieved as well [14] by means of a dye which is able to create an

effective chemical potential and thus allowing for the conservation of the mean number of

photons. In the reminder of the chapter we shall first give a brief theoretical description

of Bose Einstein condensation and focus on the equations for a multimode BEC that will

be useful throughout the thesis. We will briefly talk about the experimental techniques

that allow the achievement of alkali BECs.

1.2 Theoretical background

1.2.1 Gross-Pitaevskii equation

We start from a microscopic description of Bose Einstein condensation and show how

the BEC “emerges” from a theoretical point of view. Let us consider a gas of N atoms

of mass m trapped in a potential Vλ(x, t) where x is the position of the atom and λ

is a multi-index that labels the internal degrees of freedom. It is in fact possible to

“tailor” potential for atoms depending on their hyperfine state as shown in Sec. 1.3.

This technique is used for instance in the so-called optical super-lattices where atoms

can be displaced according to their internal states. We assume atoms have integer spin

so that, by the spin-statistic theorem, they are bosons.
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Let us introduce an important quantity: the two point spatial correlation function, also

called the single particle density matrix,

nλ(x,y) = 〈Ψ̂†λ(x)Ψ̂λ(y)〉, (1.1)

and where the average is meant to be taken with the help of the many-body density

operator. The single particle operator Ψ̂λ(x) is such that Ψ̂λ(x)|0〉 = 0 where |0〉 is the

vacuum state, i.e. no atoms. We can diagonalize the correlation function such that

nλ(x,y) =
∑
i

nλi (φλi (x))∗φλi (y), (1.2)

where the {φi(λ)(x)} are given such that

∫
V
dy nλ(x,y)φλi (y) = nλi φ

λ
i (x), (1.3)

where the integral is over the volume V occupied by the gas of bosons. Since the

relation nλ(x,y) = (nλ(y,x))∗ holds the eigenvalues ni are real. Moreover, as we will

see below, they are the eigenvalues of the number operator in second quantization and

their value is thus bounded from below by zero. We then interpret these eigenvalues as

the population of the corresponding modes. The correlation function plays an important

role from a theoretical point of view since through it we can properly define the BEC

phase as we shall see. The transition to the Bose Einstein condensate phase occurs when

a macroscopic number of particles (bosons) are in the same quantum state. Assuming

the bosons are at equilibrium, they follow the Bose-Einstein distribution

f(ε) =
1

eβ(ε−µ) − 1
, (1.4)

where β−1 = kBT , kB is the Boltzman constant and µ is the chemical potential that fixes

the average number of particles at equilibrium. The function f(ε) gives the number of

particles having energy ε at equilibrium at temperature T . The total number of particles

can then be written as

N = N0 + ∆N = f(ε0) +
∑
ε>ε0

f(ε), (1.5)

where ε0 is the lowest energy of the system. At low temperature there is a non vanishing

probability of finding particles only at energies such that β(ε − µ) � 1, in the limit
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T → 0 all the particles end up in the ground state at energy ε0. In order to give a

precise mathematical definition we would need deeper thermodynamical arguments that

we shall skip here but a complete discussion can be found in ref. [17]. Here we are

interested in the fact that there exist a critical temperature (Tc) such that (for T < Tc)

N0

N
= 1−

(
T

Tc

) 3
2

. (1.6)

Whenever a macroscopic number of particles Nλ
0 occupy the same single particle state

φλ0(x) then we speak about Bose Einstein condensation in the 0-th “mode”. The function

φλ0(x) is often called an “order parameter” having in mind that the appearance of BEC

is a phase transition in the sense of Landau’s theory. It is worth noticing that with

the above definition we allow for the so called multimode BECs. A multimode BEC

is a system of different, and possibly mutually interacting, BECs which will be labeled

with different multi-indices λ. Since the index λ often runs over the spin degrees of

freedom of particles the collection of field operators Ψ̂(x) = {Ψ̂λ(x)} is often referred

to as “spinor”. We shall use such a system in Chapter 3 and Chapter 4.

The basis of the mathematical description of BEC phenomenon is the following. Let us

assume that there exist a set of multi-indices {λi} for which we have condensation of

particles in those modes as the temperature of the systems drops below a certain critical

temperature Tc. We expand the field operator with multi-index λ ∈ {λi} as

Ψ̂λ(x) = φ0,λ(x)â0,λ +
∑
i 6=0

φi,λ(x)âi,λ. (1.7)

The operators {âi,λ} are bosonic operators obeying the commutation relations [âi,µ, â
†
j,ν ] =

δi,jδν,µ. As the phase transition to BEC phase occurs (T = Tc) a macroscopic number of

atoms ends up in mode φ0,λ(x) i.e. O(N0,λ/N) ≈ 1, as it can be seen from equation 1.6.

We have

[â0,λ, â
†
0,λ]|GS〉 = (

√
N0,λ

√
(N0,λ + 1)−N0,λ)|GS〉, (1.8)

where |GS〉 is the ground state of the system. Since N0,λ � 1 we have N0,λ + 1 ≈ N0,λ.

Physically this approximation means that it makes no difference if one boson is removed

from the condensed part because there is a macroscopic number of them in mode φλ0(x).

Most importantly it implies that the operators for the condensate modes can be treated

as c-numbers and since â†0,λâ0,λ = N0,λ we set â†0,λ ≈ â0,λ =
√
N0,λ. This is known as

Bogoliubov approximation.

Let us now assume that particles mutually interact and that this interaction can be

expressed through the potential Uλ,λ′(|x− y|). The fact that the potential does depend
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on the relative position of the two particles matches the requirement that their center of

mass motion is constant if no external forces are applied. It is worth noticing that the

potential has been labeled by the internal degrees of freedom of the two atoms. This

is not at all surprising; for instance the interaction between two atoms does depend on

their spin and/or on their electron configuration.

The total Hamiltonian of the system can then be written as:

Ĥ =
∑
i,λ

∫
Vλ
dx Ψ̂†i,λ(x)

p̂2

2m
Ψ̂i,λ(x) +

∑
i,λ

∫
Vλ
dx Vλ(x, t)Ψ̂†i,λ(x)Ψ̂i,λ(x)

+
∑
i,j>i

∑
λ,λ′

∫
Vλ

∫
Vλ′

dxdy Ψ̂†i,λ(x)Ψ̂†j,λ′(y)Uλ,λ′(|x− y|)Ψ̂i,λ(x)Ψ̂j,λ′(y).

(1.9)

The first term is the kinetic energy operator, the second the potential one and the third

is the atom-atom interaction energy operator. Let us now focus on the inter-atomic

scattering potential Uλ,λ′(|x−y|). Regardless of its details it can be thought of as to be

made up of two contributions: a short range and a long range one. The first one is usually

a strong repulsive potential whereas the second one is a smooth attractive potential that

vanishes at infinity. The prototype for such potentials is the Lennard-Jones potential

which describes the interaction between neutral atoms or molecules well.

This term in the Hamiltonian can be very difficult to deal with and a partial waves

expansion is commonly used to simplify it. First the center of mass motion is separated

from the relative motion of the two atoms since the potential only depends upon the

relative distance. We are thus left facing the problem of one body moving in a potential

U(r), where r = |x− y| is the modulus of the relative distance. Since the potential is a

central one the total angular momentum is conserved and thus it is convenient to write

wave function for the relative motion near the contact point (r → 0) as:

ψ(z, r, θ) = eıkz + f(θ)
eıkr

r
. (1.10)

The function f(θ) =
∑

l flPl(cos(θ)) can be written in terms of Legendre polynomials.

It is further assumed that scattering off this potential has no effect at large distances

apart from a phase shift. The two solutions then have to match. By assuming that the

de Broglie-wavelength of the incoming particle is small compared to the typical length

scale over which the trapping varies it is possible to retain only terms with l = 0 and this

approximation is then called s-wave approximation because of the spherical symmetry

of the l=0 terms.
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In this approximation the interaction energy can be written as Uλ,λ′(|x−y|) = gλ,λ′δ(|x−
y|) where gλ,λ′ = 4π~2aλ,λ′/m. The coefficient aλ,λ′ is the so-called scattering length

and contains all the information about the (short range) scattering process between two

particles in the state λ and λ′ respectively.

In what follows we assume that even in the presence of multiple components the BEC

phase exist [15]. Moreover we restrict our discussions to the case of complete Bose

Einstein condensation, which means that no particles are found in any of the modes

φλi (x) with i 6= 0 and which corresponds to T � Tc. In this case the treatment is

simplified since everything is reduced to the dynamics of classical fields. With the above

assumptions and by means of the Bogoliubov approximation the Hamiltonian becomes:

Ĥ = H[φ, φ∗] =
∑
λ

N0,λ

∫
V
dx (φ0,λ(x))∗

p̂2

2m
φ0,λ(x)

+
∑
λ

N0,λ

∫
V
dx |φ0,λ(x)|2Vα(x, t)

+
∑
λ,λ′

NλNλ′gλ,λ′

∫
V
dx |φ0,λ(x)|2|φ0,λ′(x)|2.

(1.11)

The fields φ0,λ(x) and their complex conjugates can be regarded as pairs of canonically

conjugate variables. In this spirit one can define the action

S[Φ,Φ∗] =

∫
dt

∫
ΠλD[Φλ]D[Φ∗λ]

∑
λ

(Φ0,λ(x))∗ı
∂

∂t
Φ0,λ(x)−H[Φ,Φ∗], (1.12)

where Φ0,λ(x) =
√
N0,λφ0,λ(x). In this way it is possible to derive the equation of

motion for the fields by means of the least action principle δS = 0:

∂S[Φ,Φ∗]

∂Φ0,λ(x)
= 0,

∂S[Φ,Φ∗]

∂(Φ0,λ(x))∗
= 0. (1.13)

We thus obtain a set of the so-called Gross-Pitaevskii equations:

∂

∂t
Φ0,λ(x) =

p̂2

2m
Φ0,λ(x) + Vλ(x, t) Φ0,λ(x)

+ 2gλ,λ |Φ0,λ(x)|2Φ0,λ(x) +
∑
λ 6=λ′

gλ,λ′ |Φ0,λ′(x)|2Φ0,λ(x).
(1.14)

These are also often called non-linear Schhödinger equations because of the presence

of an atom-atom interaction term that is cubic in the field variables. The solution of

this equation is a quite difficult task and numerical simulations are the most common
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tools used to tackle this problem in both the static (ground state) and the dynamical

case [16]. Nevertheless a very useful approximation is the Thomas-Fermi one, which

allows for an analytical treatment of strongly interacting BEC. This approximation

amounts to neglect the kinetic term in the GP equation in favor of the trapping and the

atom-atom interaction energies [17].

1.2.2 Quantum vortices

An interesting feature of BEC is super-fluidity: frictionless motion of an impurity (i.e.

any particle that does not belong to the BEC) through the fluid as long as its velocity is

smaller than a threshold value. It was first discovered and studied in 4He. Although the

description of the super-fluid part of liquid 4He was satisfactorily achieved by means of

the GP equation, the latter was not enough to give a good description of the full system.

The description of super-fluid Helium required special attention because together with

super-fluid part there always is a normal component (i.e. non super-fluid) and thus so

called two-fluids model was recognized to be more appropriate. On the other hand BEC

of ultra-cold alkali gas is a purer system: the non-condensate fraction can be kept small

for the whole duration of the experiment. In this sense the GP equation describes BEC

of alkali gas better than super-fluid 4He.

A clear signature of super-fluidity in liquids BECs is the occurrence of vortex-like exci-

tations. A vortex is a collective motion of particles of a liquid that undergo a rotation

around a common center.

It is advantageous talking about vortices to make use of the Madelung representation [17]

for the order parameter (in what follows we consider a one component BEC so we drop

the label λ): φ0(x) =
√
n(x, t)eıS(x,t) where n(x) is the density of the gas and S(x, t)

its phase.

By inserting this expression into the GP equation it is possible to obtain the so-called

hydrodynamic equations for the BEC:

∂

∂t
n(x, t) +∇ (n(x, t) v(x, t)) = 0

m
∂

∂t
n(x, t) +∇

(
− ~2

2m
√
n(x, t)

∇2
√
n(x, t) +m

|v(x, t)|2
2

+ V (x, t) + g n(x, t)

)
= 0,

(1.15)

where we have defined the velocity of the fluid as



Chapter 1. Bose Einstein condensates 12

v(x, t) =
~
m
∇S(x, t). (1.16)

The first of the above equations is simply the continuity equation and it is equivalent

to the conservation of probability density of the single particle wave-function φ0(x).

The second is similar to the Navier-Stokes (NS) equation with the exception of the term

containing ~. This term is called “quantum pressure” since it vanishes in the limit ~→ 0

and it would play the role of a non homogeneous pressure term in the NS equation.

In this representation it is easier to see that the motion of a BEC has to be irrotational,

i.e. ∇ × v(x, t) = 0, since the velocity is the gradient of a scalar function. Vortices

in super-fluids then should not exist because of irrotationality. The only way to save

irrotationality of motion and have a vortex at a point xv, is to have n(xv, t) → 0 as

x→ xv. The vortex will then be outside the system but there will still be clear signature

of it that can be translated in mathematical formalism as

∫
C(xv)

v(x, t) · d̂l = n
2π~
m

, (1.17)

where C(xv) is any closed path around the point xv, d̂l is the infinitesimal tangent vector

at the contour at point x and n is the so called winding number. A vortex is then a

singularity in the order parameter, i.e. a “tunnel” through the density of the BEC. A

similar phenomenon is observed in superconductors of the second type whose properties

rely on super-fluidity even though the exact microscopic mechanism is not clear yet.

There the system tries to “expel” the magnetic field from the bulk but in some cases

(above a threshold value for the external magnetic field) this would require too much

energy and hence it prefers to create holes of normal electrons in the bulk of the super-

fluid [18]. This similarity offers another good reason to study vortices in ultra-cold gases

setups.

We said that vortices are excitations of the BEC; actually they are particular excita-

tions often called topological or homomorphic excitations. These terms comes from the

particular shape of the BEC containing vortices: a BEC without vortices cannot be

continuously deformed into a BEC with one vortex as a sphere can not be continuously

deformed into a torus: they have different topology. We have to introduce a “cut”, a

shocking event in order to create or destroy a vortex in a BEC and there is an energy

gap we have to overcome.

The production of vortices is also interesting from an experimental point of view where an

atomic cloud must be set in rotation. The first experiments on liquid 4He resembled the
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idea for producing vortices in a normal liquid: the rotating bucket. The experimentalists

did actually set the bucket in rotation until the vortices appeared. In the classical

case the explanation relies on the laminar flow of the liquid and this is what gives

rise to the typical r−2 dependence of the velocity field. By rotating the bucket we

are transferring angular momentum to the whole system through the rotating walls.

In the case of liquid 4He the situation is a bit different. By rotating the container

the experimentalists transferred (through friction) angular momentum to the normal

component of the fluid. This normal fluid, interacting with the super-fluid component,

transferred angular momentum to it by exciting particular modes. For a super-fluid at

this point there are two possible scenarios: either it disappears because of perturbations

coming from normal components or it has to “store” this excess of angular momentum

somewhere. In the latter case vortices start appearing to store this angular momentum

exactly as in the case of a superconductor where in order to deal with the extra flux

coming from the external magnetic field the superconducting fluids creates vortices to

store it; from here the term fluxons originates.

States with vortices are thus states with non-vanishing angular momentum that in the

stationary case has to be conserved on average. We have thus to add this constraint

in the minimization of the action [19] exactly as we would do for the average number

of particles. This addition is possible by means of a set of three Lagrange multipliers

which we will write in vector form as Ω and we have to add a term

Ω· < L̂ > (1.18)

to the action.

With this constraint the GP equation for a one mode BEC reads:

∂

∂t
Φ0(x) =

p̂2

2m
Φ0(x) + V (x, t)Φ0(x) + 2g |Φ0(x)|2Φ0(x)−Ω · L̂Φ0(x). (1.19)

For the case of harmonic trapping potential with cylindrical symmetry the stationary

states of the above equation for high values of the “angular velocity” Ω include vortex

lattices. They have been first observed in an experiment at MIT [20] with over 100

vortices. This shows another feature of vortices in super-fluids; vortex lattices formed by

many vortices with winding number n = 1 are energetically more stable than few vortices

with large winding numbers. This comes from the study of local minima of the energy

functional in Eq. (1.11). Numerical solutions [21] show that even though a wave function

with a vortex with winding number n > 1 is a local minimum of the energy functional
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it is not a global one. It means that this particular solution is (thermodynamically)

unstable and that it would rapidly decay into n vortices with winding number one.

1.3 Atom Cooling and Trapping

In this section we briefly review some experimental techniques used to trap and cool

alkali atoms. We shall not go deep into details since this overview is only meant to give

few notions as a support for the remainder of the thesis. For the interested reader, a

more complete exposition on this subject can be found in ref. [22].

Both trapping and cooling are achieved by exploiting the scattering force exerted by a

laser beam scattering off the atoms. Cooling of an atomic cloud is achieved combining

different techniques, each of which has some limitations. Trapping techniques can be

categorized as optical or magnetic. Optical techniques induce a dipole moment on atoms

to create a non zero force. Magnetic ones exploit the Zeeman splitting of energy levels

to create an inhomogeneous potential for specific hyperfine levels. By combining these

two techniques is possible to create a so called Magneto-Optical Trap (MOT) that is

nowadays the most used setup in the first stages of the trapping and cooling process

towards the realization of BECs.

1.3.1 Cooling techniques

There are different cooling techniques, each one with its own advantages and disadvan-

tage, but all of them are based on the same physical effect: momentum recoil. The idea

is to use the scattering of photons off atoms to apply a force that slows them down.

Even though this process is observable in a classical setting (e.g. force exerted on small

dielectric spheres) in the case of atoms quantum mechanics plays a fundamental role.

The underlying idea is to illuminate an atomic beam with a laser field which is counter

propagating with respect to the atoms’ average velocity. By properly adjusting the

detuning of the laser field to account for the Doppler shift, the atoms will absorb the

photons in the laser beam. Due to the conservation of momentum the atoms will also

receive a recoil in the opposite direction with respects to their motion which slows them

down.

Nevertheless the atom will spontaneously emit a photon in a time interval approximately

equal to the lifetime of the excited level it was scattered into by the laser beam. Since

spontaneous emission is equally probable for all spatial directions the net recoil for the

second emission averages to zero. Moreover, unlike in the classical case, the cross section



Chapter 1. Bose Einstein condensates 15

of an atom is not its physical cross section, i.e. the area of the object exposed to the

laser beam, which would be really small for an atom. It is actually the absorption cross

section at the resonant frequency of the atom, which is bigger than the physical one.

The absorption cross section at resonance is given by taking into account absorption

and stimulated emission of atoms interacting with a monochromatic wave at frequency

ω0 and can be shown to be [22]:

σ(ω0) =
3

2π
λ2

0, (1.20)

where λ2
0 = 2πc/ω0 and c is the speed of light in vacuum. Considering the transition

at λ0 = 589nm for a sodium atom one finds σ(ω0) ≈ 2 × 10−13m2 which is orders of

magnitude bigger than the kinetic cross section given by the area of the atom πd2 =

3× 10−18m2 where d is the sodium radius.

In this approach as the velocity of the atoms changes the laser beam goes off resonant

with the atomic transition and thus the absorption cross section diminishes. To overcome

this problem different solutions have been proposed and they led to the Nobel Prize that

has been award in 1997 to Steven Chu [23], William Phillips [24] and Claude Cohen-

Tannoudji [25]. The first two proposed solutions that required an adjustment of the set-

up parameters to follow the velocity change. Cohen-Tannoudji proposed a new method

to “select” the coldest atoms by transferring them into a dark state. This is the so-called

velocity selective coherent population transfer.

Moreover an intrinsic problem of Doppler shift based techniques is that there exist a

lower limit to the final momentum of the atoms given by the recoil momentum. Because

of the spontaneous emission the atom will always have at least a momentum equal (in

modulus) to that of the emitted photon.

1.3.2 Zeeman slowing and chirping

The change of the absorption cross section of the atoms as the velocity, and thus the

detuning due to Doppler shift changes, can be compensated for by properly adjusting

the system parameters. One method is to let the atoms go through a region with

a inhomogeous magnetic field. The magnetic field profile is such that the condition

~ω0 +µBB(z) = ~ω+~kv holds true. Here ~ω0 is the energy difference between the two

chosen levels, ω and k are the laser frequency and wavenumber and v is the atom velocity.

Here we have assumed cooling of the atoms along the z direction. This technique exploits

the Zeeman shift of atoms in magnetic field to compensate for the change in their velocity

due to cooling.



Chapter 1. Bose Einstein condensates 16

A different technique is the so-called “chirping” method. It amounts to a time variation

of the frequency of the cooling laser in order to keep it on resonance with the atomic

transition. Since the frequency range to be spanned is usually quite large and the time

interval quite short it reminds of the bird-song; from here the name of chirp cooling.

Both these techniques are limited in the lowest velocity achievable by the Doppler limit.

This is due to fluctuations in the force of photons on the atoms. This is a purely

statistical effect and comes form the mismatch of absorption and spontaneous emission

times. The velocity of atoms undergoes a random walk due to the average of these

fluctuations and this results in the impossibility of cooling down atoms below a certain

threshold temperature: the Doppler temperature TD. The latter is calculated by means

of the equipartition theorem as (in one direction):

1

2
kBTD =

1

2
m〈v2

z〉, (1.21)

where 〈v2
z〉 is the average of the square of the recoil velocity in the z− direction as given

from the absorption and spontaneous emission of photons. In the case of two level atom

the velocity recoil can be expressed in terms of the decay rate from the excited level

such that the Doppler temperature reads:

1

2
kBTD =

~
2

Γ. (1.22)

This is intuitively what we would expect from quantum mechanics using the relation

∆E∆t ≥ ~
2 . The typical time scale error is given by the uncertainty on when the atom

will decay and it is given by τ = Γ−1, which sets the uncertainty on the energy of the

system, i.e. ∆E ≥ ~
2Γ.

Special techniques are needed to obtain sub-Doppler cooling. One of this techniques, the

so called Sisyphus cooling, relies on the creation of atomic angular momentum dependent

energy landscapes to convert kinetic energy into potential energy which is then dissipated

by means of spontaneous decay.

1.3.3 Optical trapping

An atom under the influence of an external electric field acquires (if it does not al-

ready have one) an electric dipole that in turn allows the atom to interact with the

electromagnetic field.
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This interaction gives rise to a change in energy that in the semiclassical case is given

by:

V (r, t) = −d̂ ·E(r, t), (1.23)

where d̂ is dipole moment operator of the atom and E(r, t) is the external electric field.

Here we are assuming an intense laser beam so that it is well described by the classical

field E(r, t) whereas the atom has to be considered a quantum system.

It is also assumed that the time variation of the electric field is much faster than the

typical (unperturbed) time scale of the atom’s internal dynamics as given by ~ω0,1 =

ε1 − ε0 where ε0 < ε1 are the energies of the two states involved. In the case of an off-

resonant laser beam the above interaction produces a shift in the energy, the Stark shift.

By means of time independent perturbation theory this contribution can be evaluated

to be [17]

U(r) = −1

2
α(ω)|E(r, t)|2, (1.24)

which is an effective potential acting on the atoms. Here we have assumed that the

laser is monochromatic with frequency ω and α(ω) is the second order contribution to

the dipole moment. The time average is performed in the spirit that the field dynamics

occurs on time scales much shorter than the atomic ones.

Because of the spatial dependence of the electric field the effective potential U(r) gen-

erates a force

F (r) =
1

2
α(ω)∇|E(r, t)|2, (1.25)

This force is at the basis of the so called optical tweezers. The type of force depends

upon the sign of the coefficient α(ω): when positive the force is repulsive (with respect to

the maximum of the field), whereas when negative the force is attractive. The coefficient

α(ω) can be evaluated from perturbation theory and it reads

α(ω) =
|D|2
~

1

ω − ω0,1
, (1.26)

where D = 〈1|d̂ · ε|0〉 with d̂ and ε being the dipole moment of the atom and the

polarization vector of the light field respectively. In this case the sign of α(ω) depends
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upon the detuning detuning δ = ωL − ω0,1 of the laser fields with respect to the atomic

transition and the two cases are also referred to as blue (δ > 0) and red detuned (δ < 0),

respectively.

This technique is nowadays exploited for the creation of optical lattices and super-

lattices that allow for the creation of a clean and controllable setup for the simulation

of many-body physics with ultra-cold atoms [26]. These techniques use the possibil-

ity of addressing different internal transition of the atoms therefore creating different

potentials.

Optical trapping potentials are advantageous in being spin independent; in such a way

all atoms of a particular species are trapped regardless of their spin. Electric fields are

easier to be “tailored” due to the high level of precision available when manipulating laser

fields so that different shapes of traps can be created. In recent years the improvement

of the so called spacial light modulators (SLM) promises that in the near future it will

be possible to create optical field with any kind of shape and time dependence [27].

Moreover since the trapping does not depend on the spin, and therfore is “magneti-

cally independent”, the optical trapping offers the possibility of the addition of external

magnetic fields that are used to tune the atom-atom interaction potential via so called

Fano-Feshbach resonances [28].

1.3.4 Magnetic trapping

A different way of trapping atoms is the possibility of exploiting their magnetic prop-

erties. Alkali atoms in particular posses a non-zero spin angular momentum which is

given by the sum of the nuclear and electronic spin angular momenta.

As an atom is placed in a region with non-vanishing magnetic field its energy level

structure changes due to the Zeeman effect. The energy levels become spin-dependent

and they can be grouped in high and low field “seekers” depending on their attitude to

minimize their energies in high or low magnetic field regions respectively.

In particular for not too strong fields it can be shown that the energy of an atom in a

hyperfine state with total spin F is given by [29]

E(B) = ±
(
E0 +

1

2
|µB|mFB

)
, (1.27)

where E0 is the energy in the vanishing field µB is the Bohr magneton and mF is the

component of the spin along the magnetic field.
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Trapping of the atoms is then achieved by means of a bias field responsible for the

Zeeman effect and an inhomogeneous magnetic field B(r). Since the energy depends on

the magnetic field the low(high)-field-seeking states will be driven towards regions with

low (high) magnetic field. By properly tailoring the inhomogeneous magnetic field is thus

possible to trap the atoms in a localised region. Moreover because of the dependence of

the energy on the internal spin it is possible to separate atoms with different spins.

There is another issue to take into account: the Majorana losses. In his seminal pa-

per [30] Majorana showed how the interaction of an atom with an inhomogeneous mag-

netic field leads to a sudden flip of the atomic spin. This is due to the fact that an

inhomogeneous static field as seen from the center of mass of the atom (which is the

carrier of the spin) turns out to be a time dependent field. The effect is particularly

important if the magnetic field vanishes; in this case the quantization axis is “lost” and

as soon as the field goes back to non-zero values the spin direction can be arbitrary. This

phenomenon is responsible for losses from the (trapped) low field seekers which undergo

a transition to become (untrapped) high field seekers.

There are mainly two setups which avoid Majorana losses: “time-orbiting potentials”

and the Ioffe-Pritchard traps. The first method employs a time dependent magnetic

field that compensates the change in the magnetic field as seen from the reference frame

of the atom. The Ioffe-Pitchard trap solves the problem at the origin: it creates a region

where the magnetic field is never zero and it has a harmonic shape.

The Magnetic traps have been used from the early stages of the ultra cold quantum gas

era and they have been employed for the realization of the first BEC.

Ioffe-Pitchard traps have some disadvantages: the coils needed to create the magnetic

field have to be placed outside the vacuum chamber because of their dimension and this

makes the whole apparatus not scalable. Moreover, since the trapping is magnetic in

nature, atoms with different component of the spin along the quantization axis will be

spatially separated.

On the other hand in recent years a new technology is at our disposal: the atom chips.

This are silicon wafers on which it is possible to draw gold wires using lithographic

techniques. Current passing to the wires creates a magnetic field right above the chip

surface and by adding an external applied bias field it is possible to trap atoms. Dif-

ferent patterns give different magnetic field configurations and thus different trapping

potentials. It is possible to have time dependent potential as well in order to be able

to transport the atoms. These chips are promising tools, since they make it possible to

have a pocket sized lab for ultra-cold atoms and a more stable and controllable setup.
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Moreover smaller scales need only smaller currents in order to create the desired trapping

thus giving a clear experimental advantage.



Chapter 2

Structural change of vortex

patterns in 2D BEC

In this chapter we present an analysis of the stability of vortex patterns in 2D BECs

as the anisotropy of the trapping potential varies. We shall first show that for a fixed

number of vortices there are different geometries of vortex patterns. This result is in

agreement with analytical [31] and numerical [32] findings. Nevertheless the patterns are

not stable as shown by the analysis of the patterns’ modes based on an hydrodynamical

approach. This analysis also reveals that the change from different vortex patterns

geometries occurs in a discontinuous fashion as the anisotropy varies.

2.1 Introduction

Creation of vortices in alkali BECs can be achieved via different methods such as optical

phase imprinting techniques [33] or stirring laser fields that allow to excite quadrupole-

mode resonances [34]. The study of quantum vortices can also help in understanding

related physical phenomena such as the quantum Hall effect [35] and high Tc supercon-

ductivity [18]. For this reason from the very beginning the problem of a large number of

vortices has been considered. Works on this subject gave us fundamental contribution

for the understanding of the properties of vortex lattices. We know that in the limit of a

large number of vortices they tend to occupy the sites of the so-called Abrikosov lattice,

i.e. an hexagonal lattice.

Moreover a seminal work by Tkachenkco[48] shed light on the collective excitation of

this lattice. Although these works have been done with superfluid 4He in mind, it is

useful to recall that their results hold for any superfluid and thus they are applicable to

21
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superconductors as well as to the most recent BECs of excitons [36]. It is thus useful to

extend these studies to the case of a small number of vortices to better understand the

dynamical properties as well as the possibility to control the dynamics. In the case of

ultra-cold atoms it is possible to perturb (and possibly to control) vortex dynamics by

acting on the trapping potential, on the scattering properties or adding other species to

pin the vortices and drive them.

Here we are interested in the study of the equilibrium properties of vortex patterns in

(quasi-) 2D BECs. Numerical evidence has been provided that the vortex pattern of

a 2D BEC in an in-plane anisotropic rotating trap can undergo structural changes as

a function of the trap anisotropy, i.e. the ratio between the trapping frequencies in the

two directions. Specifically, in Ref. [32] it has been shown that, for modest changes in

the anisotropy, an off-line configuration (typical for an Abrikosov lattice) can change

into a linear one. While this bears analogies with the case of ionic crystals [37], the

characterization of structural changes in anisotropic and rotating BECs remains largely

unexplored. Most of the existing literature focuses on the limit of large numbers of

vortices for either a symmetric trap [38, 39] or very high angular frequencies, which

leads to stripe-shaped vortex patterns [40]. Although the case of medium vorticity has

been addressed, the role of external forcing on the dynamics of the vortex structures still

awaits a systematic approach [41, 42]. Yet, understanding how vortices behave under

external perturbations is a pre-requisite for harnessing the quantum properties of vortex

patterns. Yet, in light of the surge of a very broad interest in low-dimensional interacting

quantum systems, the study of such structural changes is key both under a statistical

mechanics viewpoint and for tasks of understanding coherent many particle quantum

dynamics.

Here we present a significant contribution to advance these aims by studying the behavior

of finite-sized vortex patterns in 2D BECs confined within a rotating anisotropic trap. In

particular we investigate in detail the effects of the eccentricity on the spatial distribution

of the vortices. By minimizing the eccentricity-dependent interaction potential between

vortices, we show that the vortex configuration undergoes structural changes as the

eccentricity parameter is varied. A hydrodynamical approach to the description of the

superfluid motion allows us to identify the eigenmodes of the vortex-patterns and connect

the appearance of discontinuities with the transition points between different structures.

In fact, the modes suggest that the change in the equilibrium positions of the vortices

is due to the re-arrangement of the superfluid velocity field.
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Figure 2.1: Distance ∆x of the vortices from the soft trapping axis (units of√
2Ng2DΩ/~ωx) against the eccentricity λ. We show the cases of Nv = 7 and 8

(panel (a) and (b) respectively) and plot only the changes in positions of four vortices
in the lattice (the association with the curves is irrelevant). At λ = λL the vortices
suddenly align along the y-axis (∆x = 0). We have used a BEC of 106 87Rb atoms with
a = 5.23× 10−9m in a trap with ωz/2π = 100Hz and

√
ωxωy/2π = 50Hz (regardless of

λ).

2.2 Vortex gas

We consider pattern of vortices in the ground state of a BEC held in a rotating trapping

potential. The ground state is found by minimizing the energy functional [31]

H[φ, φ∗]=

∫
dx

[
p̂2

2m
φ(x)+V (x)|φ(x)|2+g|φ(x)|4−φ∗(x)(Ω·L̂)φ(x)

]
, (2.1)

where φ is the normalized order parameter of the condensate, V (x) = 1
2m(ω2

xx
2 +

ω2
yy

2 + ω2
zz

2) is the trapping potential, m is the atomic mass, N is the number of

atoms, g = 4π~2a/m is the inter-atomic interaction energy volume determined by the

s-wave scattering length a, Ω is the rotation frequency vector of the condensate and

L̂ is the angular momentum operator. The function Φ minimizing H has been stud-

ied both numerically and analytically under different working assumptions such as the

Thomas-Fermi (TF) and the lowest-Landau-level (LLL) approximation [43]. The first

corresponds to the requirement of a very large number of particles, so that the kinetic

energy associated with ∇|ΦNS | (with ΦNS representing the non-singular part of the or-

der parameter) can be neglected compared to the boson-boson interaction energy. In

the LLL approximation, on the other hand, the main contribution to the energy is the

centrifugal term and φ is well described by a product of single-particle wave-functions.

Here we consider a BEC in a harmonic trap rotating about its z-axis, which is also the

direction of tight-confinement, i.e. ωx, ωy � ωz. The order parameter φ can then be

factorized into an axial part, which we assume to be the ground state of a harmonic

potential, and an in-plane one, ψ(x, y). Moreover we assume that we have control over

the trap frequency along the y-axis and we define the eccentricity parameter λ = ωy/ωx.

In what follows λ will play the role of a control parameter in our study.
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Figure 2.2: Phase distribution (arg(ψ(x))) of a vortex-lattice in the x− y plane with
Nv=7, 8 (upper and lower row respectively)for different values of λ. Black dots mark

the positions of the vortices (in units of
√

2Ng2DΩ/~ωx).

This allows us to reduce the above problem to a 2D problem by integrating out the axial

dimension. The above energy functional reads now

H2D[ψ,ψ∗]=

∫
dx

[
p̂2

2m
ψ(x)+V2D(x)|ψ(x)|2+g2D|ψ(x)|4−ψ∗(x)(ΩL̂z)ψ(x)

]
, (2.2)

where V2D(x) = 1
2mω

2(x2 + λ2y2) and g2D = g/
√

2πaz. Here az =
√
~/mωz is the

harmonic oscillator length in the z-direction. We are now in a position to minimize H in

the TF limit. At a set value of 0<λ≤1, we call ΩNv(λ) the minimum angular frequency

of the trap which allows for Nv vortices in the state that minimizes H[φ, φ∗], while ri is

the position of the ith vortex in the frame rotating with the condensate. By introducing

|ri|2λ = x2
i +λ2y2

i , the energy of the vortex pattern can be written as U=UT +UI with [44]

UT =
πρ0(λ)

(1 + λ2)

Nv∑
i=1

|ri|2λ,

UI = −πρ0(λ)

Nv∑
i=1

Nv∑
j 6=i=1

log(|ri−rj |).
(2.3)
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Figure 2.3: Phase distribution (arg(ψ(x))) of a vortex-lattice in the x− y plane with
Nv=18 for different values of λ. Black dots mark the positions of the vortices (in units

of
√

2Ng2DΩ/~ωx).

Here, ρ0(λ)=
√

2λ/π is the density of the condensate at the center of the trapping

potential. We note that, beside the well-known logarithmic vortex-vortex interaction,

a system with only a finite number of vortices experiences a potential depending on

the inhomogeneity of the background environment. Eq. (2.3) is our starting point and

minimizing this energy with respect to the position of the vortices will determine the

vortex pattern’s shape as a function of the anisotropy λ. In doing this, we will assume

that the variations of λ are accompanied by an adiabatic change of the angular frequency

so that ΩNv(λ) ≤ Ω� ΩNv+1(λ). This ensures that the wave-function minimizing the

energy functional allows for exactly Nv vortices and prevents the formation of additional

vortices. In order to quantitatively assess the deviations of the vortex pattern from the

Abrikosov-like lattice [32], we first show how the distances of the vortices from the tight

trapping direction vary against the eccentricity λ. Fig. 2.1 shows two representative

cases (Nv=7, 8) of the general trend: the pattern of non-axial vortices corresponding to

values of λ larger than a critical threshold λL (in general a function of Nv) abruptly

collapses to an all-aligned configuration. The transition is continuous, thus hinting at

a second-order structural change, although the confirmation can only come from an

investigation in the thermodynamic limit. In Fig. 2.2 we show the phase S(x) of the

BEC where the black dots indicates the presence of vortices as it can be seen from the
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discontinuous jump along the lines.

Moreover, as shown in Fig. 2.2, for 1≥λ>λL one can identify two more structurally

distinct configurations. Let us first consider the case of an even number of vortices

(bottom row in Fig. 2.2): starting from an Abrikosov-like pattern at zero eccentricity,

the first structural change at λ = λC witnesses the central vortex being displaced so as

to join the ring formed by the outer ones. A further reduction of λ leads to a second

threshold value, λZ , at which the axial symmetry is broken and a zig-zag pattern is

formed. The situation is different for an odd number of vortices, where a parity effect

becomes evident: at odd Nv the Abrikosov-to-ring and ring-to-zig-zag transitions are

degenerate and from full isotropy the lattice re-arranges directly into a zig-zag pattern

at λ = λZ , [see Fig. 2.2 (upper row)]. Regardless of the parity of Nv, a further reduction

in λ makes the vortices align along the weak trapping direction, as already observed

in Fig. 2.1. For a larger (but finite) number of vortices the situation is even richer as

shown in Fig. 2.3. Let us consider, for instance, a system carrying 18 vortices. At

λ = 1 they arrange in a pattern with a single vortex at the centre of the trap and two

concentric rings surrounding it. By decreasing λ we first observe an Abrikosov-to-ring

change involving the inner ring and the central vortex, similar to the one described

above. By further decreasing λ, the vortices in the newly formed inner ring start joining

the outer one. Finally, the ring-to-zig-zag and zig-zag-to-linear transitions occurs.

2.3 Hydrodynamic description

We now explore the structural changes in detail by looking at the change in the superfluid

motion of the condensate. It is important to stress that, due to the perturbations

introduced into the system by the eccentricity, the vortex-lattice configuration found by

minimizing Eq. (2.3) does not represent, in general, a rigid pattern. By recasting the

trapping potential as

Vλ(x)≡Vs(x)+VQ(λ, y)=
1

2
mω2

x(x2+y2)+
1

2
mω2

x(λ2−1)y2, (2.4)

one immediately recognizes in VQ(λ, y) a term exciting quadrupole modes i.e. non-

rotational symmetric modes whose spatial dependence is of the form f(ax2b + xy +

cy2). This shows that the background condensate (and thus the vortex pattern) is not

stationary. The free energy of the rotating BEC is given by

FNv=ENv(Ω, λ)+UT + UI , (2.5)
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where UT,I are given by Eq. ((2.3)) and ENv(Ω, λ) is an energy term that does not depend

on the vortex configuration. It represents the energy in the absence of vortices [31]. By

calling {r0
i } (i = 1, .., Nv) the vortex positions which minimize Eq. (2.3) for a set number

of vortices, we have that

∇jFNv |{r0i }=0, (2.6)

where ∇j≡(∂xj , ∂yj ) and where we use the subscript j to represent the coordinates of

the jth vortex. In the rotating frame, a vortex has a velocity vj such that

∇jFNv |rj ·vrj=0, (2.7)

which implies the absence of dissipation, as expected from particles moving in a super-

fluid. A solution to this equation is given by

vrj=α(∇⊥j FNv |rj ), (2.8)

with ∇⊥j ≡(∂yj ,−∂xj ) and α being the amplitude of the velocity field.

Its value α = aho
√

Ωωx/(πρ0(λ)) [with aho=
√

~/mωx] is found by comparing it with the

velocity field (~/m)∇S−Ω×rj in the rotating frame. In this expression

S(x)=S0(x)+

Nv∑
i 6=j

θi(x), (2.9)

is the phase of the order parameter as seen by the jth vortex,

S0(x)=− mΩ(1−λ2)

~(1+λ2)
xy (2.10)

is the vortex-free phase of the BEC at position (x, y) and tan θj(x)=(y−yj)/(x−xj)
specifies the polar angle of a reference frame centered on the jth vortex core [31].

In Fig. 2.4 we show the magnitude of the velocity field for Nv = 8 in a frame which

rotates rigidly with the trap. The value of λ decreases from panel (a) to (d) and the

arrows show the flow directions with the magnitude being encoded in the color. In

the dark (dark purple) regions the velocity field vanishes, i.e. the superfluid moves at

the trap angular velocity. For no eccentricity [panel (a)] the vortex pattern rotates

rigidly with the trap potential since the velocity field at the vortex positions (when the
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Figure 2.4: Superfluid velocity field in the rotating frame for Nv=8 (other parameters
as in Fig. 2.1). From (a) to (d) we have λ=1, 0.76, 0.56, 0.36. Dark purple regions
correspond to zero velocity. The velocities close to the cores are not shown on the

chosen colourmap.

vortex itself is not present) vanishes in the rotating frame. It is worth noticing that

outside the vortex pattern particles flow with a different velocity. This is at the origin

of the imperfect rigid-body rotation of finite-sized vortex patterns in isotropic traps. By

increasing the eccentricity [panel (b)-(d)] the rigid body behavior is lost and the vortex

pattern is no longer a steady solution [32]. The continuous rotation of the trap would

increase the angular momentum of the system. However, the condition Ω∈[ΩNv ,ΩNv+1[

on the angular velocity fixes the number of vortices in the condensate Nv. The only

possibility for the system to react is to move the vortex cores to accommodate the

angular momentum. In a real system, heating and dissipation would eventually lead to

the crystallization of the vortex pattern or the transition to a turbulent regime [45].
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Figure 2.5: Spectrum of a BEC with Nv = 7 vortices against the eccentricity λ. The
points λC,L where the vortex pattern undergoes a structural change are visible.

2.4 Patterns modes

A quantitative confirmation of the abrupt nature of the structural changes can be found

by studying the eigenmodes of the vortex pattern [42]. We take a set of small displace-

ments {δri} from the equilibrium configuration {r0
i } and write

δv = (δvxr1 , δv
y
r1 , .., δv

x
rNv

, δvyrNv ), so that the vortex cores velocities in the rotating frame

become δv ' A · δr. Here A is a 2Nv×2Nv matrix whose jth row is found by expanding

the velocity field vrj=α∇⊥j FNv |rj around each r0
i . This gives

Aj=α
∑
i

[
∂xi(∇⊥j FNv) x̂i + ∂yi(∇⊥j FNv) ŷi

]
{r0i }

, (2.11)

where α is determined as before. We now numerically diagonalize A for a set number

of vortices. The eigenvalues αl (1≤l≤2Nv) of A represent the rate at which vortices

start moving from {r0
i } once they are displaced by the corresponding eigenvector δrl.

We note that the eigenmodes are related by αn(λ)+α2Nv−n(λ)=C(λ) (0<n≤Nv) and

the corresponding eigenvectors are mutually orthogonal. The constant C(λ) depends

on the system parameters but, remarkably, is independent of the pair of eigenvectors

considered. A typical spectrum for Nv=7 is shown in Fig. 2.5. At two specific values

of λ the eigenmodes show non-continuous behavior, beside the appearance of a null

eigenvalue. The appearance of a vanishing eigenvalue can be explained with a physical

argument as follows. The number of vortices is set by the value of the angular velocity Ω.
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As we change the anisotropy we effectively change the total angular momentum of the

system. Since we are below the threshold for the creation of a new vortex the system has

to “store” this extra amount of angular momentum somewhere else by setting vortices

into rotation. Nevertheless there are values of λ and configurations of vortices for which

all the angular momentum can be stored into a static vortex pattern of the vortices.

Thus the appearance of a null eigenvalue as in the symmetric case (λ = 1) where the

eigenvalue corresponding to a rotation around the z-axis vanishes because of the circular

symmetry of the vortex pattern.

These points can be connected to the structural transition points: λC signaling the

Abrikosov-to-ring transition and λL the zig-zag-to-linear one. At any other value of λ the

eigenmodes are positive confirming our previous point on the non-steady nature of the

vortex patterns in the rotating frame. However, the exact value of λ at which the lowest

eigenvalue first deviates from zero is found to grow with the number of vortices. The

corresponding eigenvector corresponds to displacements of the vortex positions along the

tangent to the vortex ring, i.e. a rotation of the vortex pattern produces no effect. In

fact, it is not possible to clearly discriminate the eigenmodes of a finite-size lattice with a

small number of vortices from the phonon modes of the background condensate: rotating

an anisotropic trap excites Bogoliubov modes in the BEC, which have a strong influence

on the vortex pattern [46]. The link between Bogoliubov modes and changes in the

properties of the vortex matter has already been explored in relation to vortex-pattern

formation and instability [47].

2.5 Conclusions and Outlooks

We have studied the structural transitions induced in a finite vortex-lattice by an increas-

ing degree of eccentricity of a rotating BEC. An Abrikosov-like arrangement undergoes

a sequence of symmetry-breaking processes that push it towards a linear arrangement of

vortices. Such modifications, witnessed and understood in terms of background super-

fluid motion, are well signaled by the eigenmodes of the vortex-lattice. By addressing

the case of a finite lattice, our work complements and extends the existing literature on

vortex instabilities and arrangements in rotating BECs and provides interesting insight

into the many-body properties of a mesoscopic quantum system.

Our analysis is not limited to BECs: vortex-like excitations exist in superconducting

films, Josephson-junction arrays and dislocation pairs in the theory of 2D melting [49].

Inter-vortex potentials depending logarithmically on the distance between two vortices,

similar to Eq. (2.3), have been observed in thin superconducting films [50]. Vortex

lattices in thin films under magnetic fields have been shown to take the form of discrete
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rows [51]. Strong analogies between the dynamics of vortex lattices and Josephson-

junction arrays hold due to the charge-vortex duality [52], thus giving our results a

generality and interest that goes beyond the cases addressed here.

Moreover it would be interesting to extend this study to the tree dimensional case

and link the instability of the patterns to the generation of Kelvin waves and thus to

dissipation of energy. A good model to investigate is a two component BEC because in

this way it would be possible to pin vortices generated in one species by means of the

second component. Furthermore the presence of the second component would allow for

driving of vortices.

The work presented in this chapter has been done in collaboration with Th. Busch and

M. Paternostro and it has been published in Phys. Rev. A 83, 053612 (2011).



Chapter 3

Mesoscopic entanglement in BEC

In this chapter we give a very brief overview of the theory of phase space representation

for quantum systems. We will focus particularly on the definition of the Wigner function

for systems described by the angle and angular momentum variables. The presentation

is by no means meant to be complete but it is a useful reference to help the reader in

the discussion of the entanglement detection given in sec. 3.7. The interested reader

can find a very good and complete treatment of phase space methods in the book by

C.W. Gardiner and P. Zoller [53] whereas a good review about the problem of quanti-

zation of angular momentum and phase variables can be found in refs. [54]. Next we

propose an experimental feasible scheme in order to transfer entanglement from photons

to BECs. Experimental assessment of entanglement between the BECs makes use of

Wigner function reconstruction.

3.1 Introduction

The rich variety of coherently exploitable degrees of freedom with which a photonic

system is endowed has been extensively used in recent years in order to demonstrate the

building blocks of quantum technology protocols including quantum cryptography [55],

quantum repeaters [56], teleportation and quantum computing [57]. In this context,

the exploitation of orbital angular momentum (OAM) carried by light is settling as a

new and exciting opportunity for coherent manipulation at the classical and quantum

level [58]. High density data transmission [59], activation of micro-machines and optical

tweezers [60] are among the most prominent applications of optical OAM so far. In

addition, the field of quantum information processing has now started exploiting the

additional opportunities offered by this photonic degree of freedom for communication

32
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and manipulation purposes. It has been shown that it is possible to create OAM-

entangled photons by means of a routinely used setup such as spontaneous parametric

down conversion (SPDC) [61].

This has triggered a plethora of studies on how to generate, manipulate and detect

non-classical states of OAM [64], culminating in the demonstration of Bell’s inequality

violation by OAM-entangled two-photon states [62], the introduction of so-called hyper-

entangled states [65], the design of quantum cryptographic schemes based on higher-

dimensional systems [66] and the transfer of OAM states from light to matter-wave

systems [67]. In particular, the latter scenario holds the potential for the realization of

experimentally feasible long-time quantum memories embodied by superfluid rotational

states of Bose-Einstein condensates (BECs) [67–71].

The spatial coherence intrinsic in a BEC allows for a superfluid vortex state in which the

bosons in the condensate have a well defined and quantized OAM, which offers a perfect

match with rotating photon carriers. Along the seminal lines traced by the experiments

in Refs. [67], a few theoretical proposals for the light-to-vortex state transfer have been

presented [68–71]. Here we close the circle of these proposals and show that it is possible

to create entanglement between two spatially separated BECs by transferring OAM from

entangled photon resources to the condensates. We propose a simple and efficient scheme

to achieve this goal using experimentally achievable parameters and routinely produced

OAM-entangled light resources. On a different level, our study proposes a scheme that

is able to transfer (with in principle 100% efficiency) higher-dimensional entanglement

between two independent system by means of bilocal interactions, thus contributing to

an area that is witnessing theoretical and experimental interest (see Choi et al. in [56]

and Ref. [72]).

3.2 Phase space representation

Phase space representation for classical systems is naturally introduced with the La-

grangian and/or Hamiltonian description. It amounts describing the system, whose

degrees of freedom can be labeled as qi, by means of a probability distribution which is

a function of qi. Moreover the elegant and very powerful formalism which comes from

the least action principle turned out to be very flexible due to the possibility of canon-

ical transformation of variables. The right choice of the set of variables can simplify

the problem up to the point at which its solution becomes a trivial task. In classical

statistical mechanics phase space methods are a natural choice because of their intrinsic

probabilistic description for the degrees of freedom are so many that the “equations of

motion” loose their meaning. Moreover a description through the probability density
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function in phase space greatly simplifies the treatment of noisy systems [53]. In the last

thirty years the very same apparatus has been built for quantum system with very good

success. Historically the reason why these methods have been introduced and applied

to quantum systems is due to the quest for understanding the quantum to classical (and

vice-versa) transition. This led to the search for links and anchor points between the

two “worlds”, something that could create a first bridge to start the investigation across

this border. Quantum mechanics introduced the concept of an intrinsic uncertainty in

any system. An uncertainty related to the system properties and to its interaction with

the rest of the universe. This is translated into the Heisenberg uncertainty relations for

pairs of conjugate variables. They state that the product of the root mean squares for

two observables X̂ and Ŷ is

∆x2∆y2 ≥ 1

4
〈[X̂ , Ŷ ]〉2, (3.1)

where ∆x2 = 〈X̂ − 〈X̂ 〉〉2 ∆y2 = 〈Ŷ − 〈Ŷ 〉〉2 are the square of the variance for the two

observables and [X̂ , Ŷ ] = X̂ Ŷ − Ŷ X̂ is their commutator. This uncertainty is at the

core of the modern formulation of quantum mechanics; the uncertainty relations are a

limit to the knowledge we can get about a quantum system. The best possible scenario is

when these inequalities saturate, i.e. when ∆x2∆y2 = 1
4〈[X̂ , Ŷ ]〉2. States of a quantum

system for which the above equality holds are the so-called coherent states.

The coherent state for the harmonic oscillator turns out to be an eigenstate of the anni-

hilation operator â. Moreover a harmonic oscillator which is initially in a coherent state

will evolve following the classical trajectory for the classical harmonic oscillator. This is

the reason why the coherent states are often referred to as the most classical quantum

states and which is one of the reasons why they are good choices as starting points

to build phase space methods for quantum systems. There are then two approaches

for constructing something that can have a connection with the classical theory: either

we use the coherent states as a reference or else we start from the “standard” classical

description where the important variables are positions and momenta. In the first case

one can get the Husimi (or Q) and Glauber-Sudarshan (or P ) functions whereas in the

second case one obtains the so called Wigner (or W ) function.

All of them are the counterpart of the density operator in phase space and all have some

advantages and some problems that we shall not discuss in detail since this is far from

our purposes. We will only introduce the Wigner function and some of its properties.

The Wigner function is probably the most intuitive to approach since it is built on the

analogy with the classical case. The Wigner function W (x, p) is built in analogy to the

classical probability distribution function in phase space, but it turns out that it lacks
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of a very important property: positivity. Nevertheless it is still very useful and helpful

in many ways. For the case of a particle moving in one dimension the Wigner function

is defined as:

W (x, p) =
1

2π

∫ ∞
−∞

dξ e−ıpx/~〈x+ ξ/2|ρ̂|x− ξ/2〉, (3.2)

where ρ̂ is the density matrix operator describing the system and x and p are the position

and the momentum respectively. The Wigner function has some important properties.

By integrating out either q or p the resulting function is a proper probability distribution,

i.e. non-negative with its integral being one. In particular for a pure state |Ψ(t)〉 it is

the square modulus of the wave-function:

∫ ∞
−∞

dp W (x, p, t) = |〈x|Ψ(t)〉|2,∫ ∞
−∞

dx W (x, p, t) = |〈p|Ψ(t)〉|2.
(3.3)

It is easy to see from its definition that the Wigner function is invariant under any

transformation of the Galilean group (translation, position inversion, time reversal and

boost at constant velocity). Moreover the transition probability from a state |Ψ(t)〉 to

|Φ(t)〉 is given by

|〈Φ(t)|Ψ(t)〉|2 = 2π~
∫ ∞
−∞

dx

∫ ∞
−∞

dp WΨ(x, p, t)WΦ(x, p, t), (3.4)

where WΨ(x, p, t) and WΦ(x, p, t) are the Wigner functions associated with the states

|Ψ(t)〉 and |Φ(t)〉 respectively. The knowledge of the Wigner function allows the evalu-

ation of the mean value of any bounded operator Â acting on the Hilbert space of the

system. In particular

Tr(Âρ̂(t)) =

∫ ∞
−∞

dx

∫ ∞
−∞

dp A(x, p)W (x, p, t), (3.5)

where A(x, p) is the function associated to the operator Â in phase space. For the above

equality to hold we have to choose

A(x, p) =

∫ ∞
−∞

dξ e−ıpx/~〈x+ ξ/2|Â|x− ξ/2〉. (3.6)
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The above definition of the Wigner function does not really say much about its physical

meaning, nevertheless there is an instructive way of interpreting it [73]. We start by

noticing that 〈x′ |ρ̂|x′′〉 is the coherence between the particle being at position x
′

and

x
′′
. In ref. [73] the author talks about a “jump” (Chap. 3) giving to the above term

a dynamical interpretation, but here we prefer to talk about the coherence between

states. Let us now make a change of variables going from x
′

and x
′′

to the “center

of mass” and “relative position” of the two points defined as usual as ξ = x
′ − x

′′

and 2x = x
′

+ x
′′
. Thus we obtain 〈x + ξ/2|ρ̂|x − ξ/2〉, which can be reinterpreted

as follows: given a point x in space, the coherence between two points equally distant

from it is given by the above matrix element. Let us assume that the state we want to

represent in phase space is a “homogeneous state”, where the coherence between two

spatial points depends upon their relative distance only. In this case then the Fourier

transform of 〈ξ/2|ρ̂|− ξ/2〉 will give us information on the distribution of the coherences

between states with relative momentum p. The Wigner function is exactly this: it is a

quantification of how spread the correlations between states equally distant from a point

x in the momentum representation are.

3.3 Wigner function and non-classicality

A very interesting property of the Wigner function is that it can be used to “detect”

the (non-)classicality of the state of a system. This property has been exploited to

construct different measures of (non-)classicality. One of them, namely the non-classical

depth [74], makes uses of the generalized distribution (or Cahill) function Rτ for pure

states. The Cahill function is the convolution of a gaussian with variance proportional to

the parameter τ with the P function of the state. The basic idea of the above criterion is

based on the fact that for τ = 1 one gets the always positive (by definition) Q function.

Moreover in the limiting case τ → 0 the Rτ function obviously tends to the P function,

because of the convolution with a delta function. Hence by changing τ in the interval

[0, 1] the Rτ goes form the P to the Q function. The greatest lower bound τm for which

the Rτ becomes positive, and thus is acceptable as a proper distribution function, is a

measure of the depth of the non-classicality of a state. The range of tm goes from [0, 1]

as can be seen as follows. The Q function is always positive so that in the worst case

starting from τ = 0 and slowly increasing it we will eventually obtain it for τ = 1 and

that is our greatest lower bound. On the other hand a coherent state has a P function

which is a delta function and thus it is already a well defined distribution function.

Nevertheless the P function is obtained in the limiting case τ → 0 so that in this case

τm = 0.
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Another measure of non-classicality has been introduced in ref. [75]. The basic idea here

is to measure the “volume” of the negative part of the Wigner function.

3.4 Angle and angular momentum variables

The first approach to quantum mechanics is probably the quantization of the pair of con-

jugate variables position and momentum x and p by imposing the commutation relation

[x̂, p̂] = ı~ on the two Hermitian operators. Nevertheless depending upon the symmetry

of the system sometimes it is more convenient to use another set of variables like the

angle and the angular momentum. This happens anytime there is a rotational invari-

ance in the problem for instance. In this section we introduce the quantum mechanical

theory for the pair of variables angle and angular momentum. We will then define the

phase space and the Wigner function in these variables. We follow the treatment given

in refs. [54, 76].

Let us consider a system whose mathematical description is given through the pair of

variables azimuthal angle θ and angular momentum along the z-axis L̂z. The angle θ

being defined up to an integer multiple of 2π: θ = tan−1(x/y). By analogy with the

standard treatment for quantization of position and momentum we can immediately

impose the commutation relation [θ̂, L̂z] = ı~. Nevertheless it turns out that this is

not a good choice. The reason can be easily seen as follows. First we note that the

commutator implies that L̂z = −ı∂/∂θ. This is obvious if we think about the case of

the operators x̂ and p̂ = −ı∂/∂x and the fact that the algebra (commutation relations)

we are imposing is the same. From here we can then see that

〈Ψ1(θ)|L̂zΨ2(θ)〉 =

∫ 2π

0
dθΨ∗1(θ)

(
−ı ∂
∂θ

Ψ2(θ)

)
,

= −ıΨ∗1(θ)Ψ2(θ)

∣∣∣∣2π
0

+

∫ 2π

0
dθ

(
−ı ∂
∂θ

Ψ1(θ)

)∗
Ψ2(θ),

= −ıΨ∗1(θ)Ψ2(θ)

∣∣∣∣2π
0

+ 〈L̂zΨ1(θ)|Ψ2(θ)〉.

(3.7)

Since the angular momentum is a real variable we have to demand that L̂z = L̂†z or else

〈Ψ1(θ)|L̂zΨ2(θ)〉 = 〈L̂zΨ1(θ)|Ψ2(θ)〉. This implies that

Ψ∗1(θ)Ψ2(θ)

∣∣∣∣2π
0

= Ψ∗1(2π)Ψ2(2π)−Ψ∗1(0)Ψ2(0) = 0. (3.8)
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Since it has to hold for any pair of wave-functions Ψ1(θ) and Ψ2(θ), then among the

square integrable functions we have to chose the periodic ones such that Ψ(2π) = Ψ(0).

Nevertheless this choice has a problem. Let |l,m〉 be the the eigenstate of both the total

angular momentum operator L̂2 = L̂2
x + L̂2

y + L̂2
z and L̂z with eigenvalue ~l(l + 1) and

~m respectively. On one hand we have

〈lm|[θ̂, L̂z]|lm′〉 = 〈lm|θ̂L̂z|lm′〉 − 〈lm|L̂z θ̂|lm′〉 = (m′ −m)〈lm|θ̂|lm′〉, (3.9)

but on the other hand, because of the imposed commutation relation, 〈lm|[θ̂, L̂z]|lm′〉 =

ı~δm,m′ so that

(m′ −m)〈lm|θ̂|lm′〉 = ı~δm,m′ , (3.10)

which implies 0 = 1 when m = m′.

This inconvenience comes up because in evaluating L̂z θ̂|l,m′〉 we are assuming that the

wave-function associated to θ̂|l,m′〉 is periodic, so that the “boundary” term vanishes.

This is of course not true and we end up with the above paradox. It is therefore not

possible to use the pair of operators θ̂ and L̂z together with the commutation relation

[θ̂, L̂z] = ı~.

This problem can be overcome by making a different choice for the quantization rules.

The use of the functions cos θ and sin θ has the advantage that they are automatically

periodic. The commutation relations then are

[cos θ̂, L̂z] = −ı~ sin θ̂,

[sin θ̂, L̂z] = ı~ cos θ̂

or

[eıθ̂ , L̂z] = −~eıθ̂ .

(3.11)

These commutation relations are analogous to the ones involving the operator θ̂ but

because of the trigonometric functions they do not suffer from the periodicity problem.

Moreover any periodic function can be written in a “Fourier series” using the above

functions as basis.

We are now in a position to introduce the Wigner function in a phase space “spanned” by

the angular variables. We shall focus on a two dimensional phase space; the extension to



Chapter 3. Mesoscopic entanglement in BEC 39

more dimensions is then straightforward. By following the treatment given in ref. [76] we

define the Wigner function in an axiomatic way rather than by starting from the position-

momentum representation and applying a change of variables. This has the advantage

of being completely self-consistent and independent from the particular transformation.

We define the Wigner function as a bilinear form that associates to every density matrix

operator ρ̂ the function Wm(θ, t) = Tr(K̂m(θ)ρ̂). The kernel operator K̂m(θ) has the

the properties:

• it is real: 〈m′′|K̂m(θ)|m′〉 =
(
〈m′|K̂m(θ)|m′′〉

)∗
;

• invariance under rotation: 〈m′|K̂m(θ + φ)|m′′〉 = e−ı(m
′−m′′)φ〈m′|K̂m(θ)|m′′〉;

• invariance under “boost”: 〈m′ + n|K̂m+n(θ)|m′′ + n〉 = 〈m′|K̂m(θ)|m′′〉;

• invariance under angle inversion: 〈−m′|K̂−m(θ)| −m′′〉 = 〈m′|K̂m(−θ)|m′′〉;

• invariant under “time reversal”: 〈−m′|K̂−m(θ)| −m′′〉 =
(
〈m′|K̂m(θ)|m′′〉

)∗
.

These properties are the natural extension of those of the Wigner function W (x, p, t) in

the position and linear momentum variables. All together they define in a unique way

the Wigner function in the angle and angular momentum variable. The actual form of

the kernel operator K̂m(θ) is determined [76] by means of the above properties and the

relation 〈θ|m〉 = eımθ/
√

2π.

3.5 The model

Let us start by presenting the model used in order to describe the light-to-BEC transfer

of entanglement. We shall see that a key point in this mechanism resides in the collective

coupling of the atoms belonging to one of the BECs to the respective light field. Together

with the indistinguishability of the resource photons, this permits us to entangle the two

BECs. We consider two spatially separated and trapped BECs, each with N I
0 (I = A,B)

87Rb atoms and let each of them interact with one of the field modes of an OAM-

entangled two-photon state (see the sketch in Fig. 3.1). Such a photonic resource can be

produced, for instance, by type-I parametric down conversion of a Gaussian laser beam

which is an OAM-preserving process: the sum of the OAM carried by the entangled

signal and idler mode produced by a laser-pumped non-linear crystal equals the OAM

initially carried by the pump [61, 62]. In this paper we shall consider a two-photon state

produced by SPDC of a laser beam with no-OAM (i.e. prepared in a Gaussian spatial

mode). This implies that the output modes, here labeled as α and β, carry opposite

OAM and enter the state
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Figure 3.1: Sketch of the proposed setup. An OAM-entangled two-photon state
is produced by spontaneus parametric down conversion (SPDC) of a Gaussian pump.
Each output mode interacts with a respective trapped Bose-Einstein condensate (BEC),
which is also pumped by an intense field with no OAM. The local matter-light interac-
tion transfers the OAM entanglement from the field modes to the condensates rotational

degree of freedom.

|Φ〉αβ = C|0〉α|0〉β +

∞∑
l=−∞

Cl,−l|1l〉α|1−l〉β. (3.12)

Here, |nk〉α indicates an n-photon state populating mode α and carrying OAM equal

to ~k and |C|2 +
∑∞

l=−∞ |Cl,−l|2 = 1. The main idea behind our proposal is that the

arrangement of a locally-assisted OAM-transfer from a light mode to the respective

BEC would also allow for the transfer of quantum correlations, therefore constructing

an effective entangled channel involving remote matter systems.

The basic building block for the transfer is an off-resonant double Raman scattering

process. We consider each individual atom as a six-level system, shown in Fig. 3.2. The

energy scheme comprises a ground-state triplet made out of a non-rotating state |0〉 and

two other states, indicated as | ± 1〉, having angular momentum ±~. The elements of

excited-state triplet |e〉 and |e′〉 are linked to |±1〉 by two classical pumps, while the field

modes in |Φ〉αβ drive the |0〉 ↔ |E, e, e′〉 transitions. In what follows, ∆ and ∆0 indicate

the one-photon Raman detunings which are set by appropriate chosing the frequencies
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Figure 3.2: Six-level configuration for OAM transfer. We show a schematic repre-
sentation of the relevant energy levels of a single 87Rb atom interacting with Laguerre-
Gauss (LG) driving fields and classical Gaussian pumps with frequency ωp. The ground-
state triplet comprises states having angular momentum 0 and ±~l. The excited-state
triplet is adiabatically eliminated from the dynamics by a double off-resonant Raman
transition with the one-photon detunings ∆ and ∆0. Two-photon detunings δ±l are also
introduced for the stabilization of the entanglement-transfer process. The component
in Eq. 3.12 carrying zero OAM [being in a Hermite-Gauss (HG) spatial mode] drives

off-resonantly the |0〉 ↔ |E〉 transition.

of the driving fields. The classical pumps are taken to have a Gaussian spatial profile

so that photons scattered in the |e〉 ↔ |1〉 and |e′〉 ↔ | − 1〉 transitions carry no OAM.

Together with the conditions on the OAM properties of Eq. (3.12), this ensures that an

atom undergoing the two-photon Raman transition from state |0〉 to | ± 1〉 (as shown in

Fig. 3.2) acquires an OAM exactly equal to ±~. We now introduce the second-quantized

matter field operators ψ̂I,j(r) obeying the bosonic commutation rules

[ψ̂I,i(r), ψ̂†J,j(r
′
)] = δI,Jδi,jδ(r− r

′
), (3.13)

where I, J = A,B are labels for the BECs while i, j = 0,±l, E, e, e′ refer to the atomic

states. As for the photonic part of our system, standard commutation relations

[ĉnI ,k, ĉ
†
nJ ,k

′ ] = δnI ,nJ δk,k′ , (3.14)

involving the creation (annihilation) operator ĉ†nI ,k ( ĉnI ,k) hold. Here nA = α (nB = β)

refers to the photonic mode α (β) that interacts with condensate A (B). Finally, k, k′ =

±l, 0 refers to the OAM degree of freedom of the photon. Besides the term describing

the energy of the free photonic fields, the Hamiltonian of the system consists of the
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following four terms

Ĥ = Ĥa + Ĥaa + Ĥad + Ĥap, (3.15)

which we now address in detail.

The first two terms describe the properties of the trapped BECs and are given by

Ĥa =
∑
I,j

∫
VI
dr ψ̂†I,j(r)

(
− ~2

2m
∇2
I + VI,j(r)

)
ψ̂I,j(r), (3.16)

Ĥaa =
1

2

∑
I,j,j′

ηI
j,j′

∫
VI
dr ψ̂†I,j(r) ψ̂†

I,j
′ (r) ψ̂I,j′ (r) ψ̂I,j(r). (3.17)

In all the above, VI is the quantization volume for the light-matter interaction involving

condensate I. The VI,j(r)s are the state-dependent atomic trapping potentials, ηI
j,j
′ =

(4π~2/m)aI
j,j
′ accounts for the collisional energy between two atoms (of mass m) in

states j and j
′

and aI
j,j
′ is the corresponding s-wave scattering length. As it will be

clarified later on, the excited triplet {E, e, e′} can be adiabatically eliminated from the

dynamics of the atomic system. Therefore, by assuming no initial population of these

states, we can simplify our treatment and take aIj,E = aIj,e = aI
j,e
′ = 0 for j = 0,±l. The

third term in Eq. (3.15) describes the interaction between BEC I and the quantized field

mode nI and can be written as

Ĥad =
∑
I=A,B

(
χI,0 ĉnI ,0

∫
VI
dr ψ̂†I,E(r)ψ̂I,0(r)AnI ,0(r)

+ χI,l ĉnI ,l

∫
VI
dr ψ̂†I,e(r)ψ̂I,0(r)AI,l(r)

+χI,−l ĉnI ,−l

∫
VI
dr ψ̂†

I,e′
(r)ψ̂I,0(r)AI,−l(r)

)
+ h.c. .

(3.18)

The coefficients χI,k (k = 0,±l) are the effective dipole moments associated with the

transitions depicted in Fig. 3.2. The functions AnI ,k(r) describe the spatial shape of the

states entering |Φ〉αβ and we choose them to be

AnI ,0(r) = i

√
~ω0

2ε0VI
eikzze−

r2

W2 ,

AnI ,±l(r) = i

√
~ω±l
2ε0VI

(√
2r

W

)|l|
e±ilφeikzze−

r2

W2 ,

(3.19)

where ε0 is the vacuum permeability. While the first of these equations refers to a field

mode having a Gaussian spatial profile, the second describes OAM-carrying Laguerre-

Gauss beams. We assume that the beam-waist W is larger than any linear dimension
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of the BECs so that the Gaussian part of the function reduces to a constant. This

approximation also ensures the collective nature of the interaction between the fields

and the atoms belonging to a given BEC. The last term in Ĥ describes the coupling

between the classical pumps and the BECs

Ĥap =
∑
I=A,B

(
~ΩIe

−iωI t
∫
VI
dr ψ̂†I,e(r)ψ̂I,l(r)eikI ·r

+~ΩIe
−iωI t

∫
VI
dr ψ̂†

I,e′
(r)ψ̂I,−l(r)eikI ·r

)
+ h.c. .

(3.20)

The coefficients ΩI are the Rabi frequencies for the matter-pump interactions. Moreover,

we initially prepare each condensate in the atomic state |0〉 by means of optical pumping

techniques, for instance, in such a way that the excited triplet can be considered as

empty.

We now proceed with the adiabatic elimination of the excited states under the assump-

tion of large single-photon detunings ∆ and ∆0 (with respect to the typical coupling

rates entering Ĥaa, Ĥad and Ĥap). We take the time evolution due to the fields as faster

than the center of mass motion of the atom when in one of the excited levels, so that

we can neglect the free atomic Hamiltonian for these states. We move to a proper ro-

tating frame where we redefine the excited-state (ground-state) matter field operators

as ψ̂I,e =
ˆ̃
ψI,ee

−iωlt, ψ̂I,e′ =
ˆ̃
ψI,e′e

−iω−lt and ψ̂I,E =
ˆ̃
ψI,Ee

−iω0t (
ˆ̃
ψI,k = e−iωI tψ̂I,k) and

the photonic operators as ˆ̃cI,k(t) = eiωI tĉI,k (with k = 0,±l). Following the works by

Marzlin et al. [68] and Kapale and Dowling [70], we explicitly allow for two-photon Ra-

man detunings δ±l(t) = ωl − ωp(t) − ω̃±l (see Fig. 3.2), which help in the stabilization

of the transfer process (see also Ref. [69]). Here ~ω̃±l are the actual energies of the

rotating atomic states. In fact, one can intuitively understand the necessity for a time-

dependent two-photon detuning as a result of the adiabatic elimination of the excited

triplet and the existence of inter-atomic collisions, which change the energies of the atom

in time. Therefore, in order to achieve efficient transfer of OAM entanglement, we need

a “chirped” frequency of the pump fields that allows to track and compensate the change

of the energy levels. The field operators are given by:

ˆ̃
ψI,E(r) =

χI,0AnI ,0(r)

~∆I,0
eiω0t ĉnI ,0 ψ̂I,0(r),

ˆ̃
ψI,e(r) =

ΩI

∆I
eikI ·re−i(ωI−ωl)t ψ̂I,l(r) +

χI,lAnI ,l(r)

~∆I
eiωlt ĉnI ,l ψ̂I,0(r),

ˆ̃
ψI,e′ (r) =

ΩI

∆I
eikI ·r e−i(ωI−ω−l)t ψ̂I,−l(r) +

χI,−lAnI ,−l(r)

~∆I
eiω−lt ĉnI ,−l ψ̂I,0(r),

(3.21)
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where we have defined the single photon detunings ∆I,0 = ω0−ωI,E , ∆I = ωl−ωI,e. In

order to explicitly include the chirped two-photon Raman detunings, which are crucial

in the stabilization of the transfer process, we define new field operators in a rotating

frame defined by the Hermitian operator Ô=
∑

I,k ωI

(
ψ̂†I,k(r, t)ψ̂I,k(r, t)− ĉ

†
nI ,k

ĉnI ,k

)
.

Explicitly
ˆ̃
ψI,k(r, t) = eiÔtψ̂I,k(r, t)e

−iÔt = e−iωI tψ̂I,k(r, t), while the photonic operators

become ˆ̃cnI ,k = eiÔtĉnI ,ke
−iÔt = eiωI tĉnI ,k.

Defining the free Hamiltonians HI,k
0 = −~2∇2

I/(2m) + VI,k(r) and with the help of Eqs.

(3.21) we finally get

i~
d

dt
ˆ̃
ψI,0(r) =

[
ĤI,0

0 + ~ωI +
∑
j

ηIj,0
ˆ̃
ψ†I,j(r)

ˆ̃
ψI,j(r) +

χ2
I,0|AnI ,0(r)|2

~∆I,0

ˆ̃c†nI ,0
ˆ̃cnI ,0

+
χ2
I,l|AnI ,l(r)|2

~∆I

ˆ̃c†nI ,l
ˆ̃cnI ,l +

χ2
I,−l|AnI ,−l(r)|2

~∆I

ˆ̃c†nI ,−l
ˆ̃cnI ,−l

]
ˆ̃
ψI,0(r)

+
ΩI,lχ

∗
I,0

∆I
A ∗nI ,l(r)eikI ·rˆ̃c†nI ,l

ˆ̃
ψI,l(r) +

ΩIχ
∗
I,−l

∆I
A ∗nI ,−l(r)eikI ·rˆ̃c†nI ,−l

ˆ̃
ψI,−l(r),

i~
d

dt
ˆ̃
ψI,l(r) =

[
ĤI,l

0 + ~(ωl − δl − ω̃l) +
~|ΩI |2

∆I
+
∑
j

ηIj,l
ˆ̃
ψ†I,j(r)

ˆ̃
ψI,j(r)

]
ˆ̃
ψI,l(r)

+
Ω∗IχI,l

∆I
AnI ,l(r)e−ikI ·rˆ̃cnI ,l

ˆ̃
ψI,0(r)

(3.22)

and

i~
d

dt
ˆ̃cnI ,0 =

[
− ~ωI+

∫
VI
dr
χ2
I,0|AnI ,0(r)|2

~∆I,0

ˆ̃
ψ†I,0(r)

ˆ̃
ψI,0(r)

]
ˆ̃cnI ,0,

i~
d

dt
ˆ̃cnI ,l =

[
− ~ωI+

∫
VI
dr
χ2
I,l|AnI ,l(r)|2

~∆I
ψ̂†I,0(r)ψ̂I,0(r)

]
ˆ̃cnI ,l

+

∫
VI
dr

ΩIχ
∗
I,l

∆I
A ∗nI ,l(r)eikI ·r

ˆ̃
ψ†I,0(r)

ˆ̃
ψI,l(r).

(3.23)

From these expressions it is straightforward to define the effective interaction Hamilto-

nian

Ĥeff = ˆ̃Ha + Ĥaa + ˆ̃Hint (3.24)

for the description of the adiabatic interaction between light and BECs, where

ˆ̃Ha=
∑
I,j

∫
VI
dr

ˆ̃
ψ†I,j(r)

(
− ~2

2m
∇2
I + VI,j(r) + εj(t)

)
ˆ̃
ψI,j(r), (3.25)
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ˆ̃Hint=
∑
I,k

[
ˆ̃cnI ,k

∫
VI
drCnI ,k(r)

ˆ̃
ψ†I,k(r)

ˆ̃
ψI,0(r) + h.c.

+ˆ̃c†nI ,k
ˆ̃cnI ,k

∫
VI
dr
χ2
I,l|AnI ,k(r)|2

∆I

ˆ̃
ψ†I,0(r)

ˆ̃
ψI,0(r)

]

+
∑
I

ĉ†nI ,0
ˆ̃cnI ,0

∫
VI
dr
χ2
I,0|AnI ,0(r)|2

∆I,0

ˆ̃
ψ†I,0(r)

ˆ̃
ψI,0(r).

(3.26)

In Eq. (3.25) j = 0,±l should be taken, while in Eq. (3.26) it is k = ±l. Moreover,

we have introduced the coupling coefficient CnI ,k(r) = (~Ω∗IχI,k/∆I)AnI ,k(r)e−ikI ·r and

the energies εj(t) such that ε0(t) = ~ωI and ε±l(t) = ~(ω±l − δ±l(t) − ω̃±l). The term

describing inter-particle collisions Ĥaa remains identical to Eq. (3.17). The interpretation

of the form taken by Ĥeff is straightforward. While Eq. (3.25) describes the energy of

non-interacting matter part of the system, modified by the introduction of δ±-related

terms, Eq. (3.26) accounts for the light-matter interaction and includes the dynamical

a.c. Stark shift effect arising from the adiabatic elimination. In particular, the first

term in ˆ̃Hint describes a three-mode interaction where photonic excitations are used in

order to perform an atomic transition between ground-triplet states. This is the key to

our analysis on OAM entanglement transfer and the starting point of our quantitative

study.

3.6 Three-mode expansion and light-induced transfer of

OAM entanglement

3.6.1 Bosonic-mode expansion

In order to detail the ideas and discuss an experimentally relevant case, we consider the

anisotropic harmonic trap potential VI(r, z) = (m/2)(ω2
rr

2 +ω2
zz

2) for each of the BECs

used in our proposal. Here ωz (ωr) is the frequency of the trap along the longitudinal

(radial) direction. In order to be able to neglect any longitudinal excitations, we assume

ωz � ωr, so that each BEC is confined in a pancake-like structure. In the limit where the

inter-atomic collisions are very small, the cylindrical symmetry of the problem allows us

to describe the centre-of-mass of one atom in a BEC by means of the set of eigenstates

(θ is the angular coordinate of a cylindrical reference frame)

φI,0(r, z) =
1

π
3
4ar
√
az
e
− 1

2

(
r2

a2t
+ z2

a2z

)
,

φI,±l(r, z, θ) =
1√
|l|!a|l|r

r|l|e±ilθφI,0(r, z),

(3.27)
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with associated eigenvalues El = ~ωz/2 + ~(|l| + 1)ωr. Here az,r are the characteristic

lengths of the harmonic ground state motion along the longitudinal and radial direc-

tion. The description provided by the eigenfunctions (3.27) remains valid under the

assumption of dilute BECs, so that their ground states result from the simple tensor

product of the single-particle states φI,0(r, z). This is a good approximation as long as

N IaI
j,j′
� az [17], implying that the scattered part of the single-particle wavefunction

contributes with only a small correction to the wave-function of the non-interacting case.

In order to provide a better picture of the anticipated three-mode interaction depicted

in Eq. (3.26), we now define new bosonic operators b̂I,j and b̂†I,j for the matter-like part

of our system as (omitting the tilde on the field operators for readability) ψ̂I,j(r) =

φI,j(r)b̂I,j . By using the orthogonality of the φI,j(r) and the commutation relations

valid for the ψ̂(r)’s, it is straightforward to find that [b̂I,i, b̂
†
I,j ] = δi,j . Inserting these

definitions into the effective Hamiltonian we obtain a much simplified and self-evident

picture of the process through

Ĥa =
∑
I,k

(EI,0 + |k|~ωr + εk(t))b̂
†
I,k b̂I,k,

Ĥaa =
1

2

∑
I,j,j′

ξI
j,j′
b̂†I,j b̂

†
I,j′
b̂I,j′ b̂I,j ,

Ĥint =
∑

I,k=l,−l

(
gI,k b̂

†
I,k b̂I,0ĉnI ,k + h.c.

)
+ b̂†I,0b̂I,0

∑
I,k

ρI,k ĉ
†
nI ,k

ĉnI ,k,

(3.28)

where each coefficient can be expressed in terms of the non-interacting wave-functions as

shown in Table 3.1. The effect of the light-matter coupling is now manifest: besides the

a.c. Stark shifts proportional to ρI,j , Ĥint consists of a scattering process at a rate gI,k

where the annihilation (creation) of a photon of angular momentum k is accompanied

by the Raman transition |0〉I → |k〉I (|k〉I → |0〉I). Such a mechanism, which would

determine a perfect transfer of OAM from the light resource to the BECs, is disturbed

Table 3.1: Coupling rates in the effective Hamiltonian after the introduction of the
effective matter-like bosonic operators [see Eqs. (3.28)] and their expressions in terms

of the non-interacting atomic wave-function for a pancake-like potential.

Coefficients Corresponding expression

EI,0
∫
VI drφ

∗
I,0(r)(− ~2

2m∇2
I + VI,j(r))φI,0(r)

gI,k
∫
VI drCnI ,k(r)φ∗I,k(r)φI,0(r)

ρI,0
∫
VI dr

χ2
I,0|AnI ,0(r)|2

∆I,0
|φI,0(r)|2

ρI,l
∫
VI dr

χ2
I,l|AnI ,l(r)|2

∆I
|φI,0(r)|2

ξI
j,j′

ηI
j,j′
∫
VI dr|φI,j(r)|2|φI,j′ (r)|2
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by the inter-atomic collisions in Ĥaa and should also take into account the modifications

induced by the dynamical shifts in Ĥa,int. The creation of inter-BEC OAM entanglement

is thus a trade-off between these various processes. The task of the next Subsection is

precisely the quantitative assessment of such a trade-off. It is worth remarking here that,

in virtue of the definitions of εk(t) the term |k|~ωr + εk(t) appearing in the energy of the

rotating states with j = ±l is explicitly dependent on the two-photon Raman detunings

δk(t) and takes the form ~(ωk − δk − ω̃k + |k|ωr). When the interactions considered in

our scheme are included, the energy levels are shifted so that the shift ω̃k − |k|ωr 6= 0

is in general non-zero and, possibly, time-dependent. In what follows, we shall assume

that such shift occurs linearly in time.

3.6.2 Entanglement transfer process

As discussed in Sec. 3.5, we assume an initial preparation where the atomic excited triplet

is empty and all atoms in each BEC populate |0〉I . We indicate such a collective atomic

state as |N I
0 〉I , which condenses information on the population of level |0〉I and | ± 1〉I .

On the other hand, the OAM-entangled photonic resource is assumed to be prepared in

the state |ΦZ〉αβ = (1/
√

3)(|10, 10〉αβ + |11, 1−1〉αβ + |1−1, 11〉αβ). In Refs. [61, 62] it was

shown that two-photon multidimensional OAM-entangled states generated by means

of SPDC can be effectively distilled into states very close to |ΦZ〉αβ, thus making the

contributions coming from states having higher OAM negligible. Moreover in ref. [63] it

has been shown that entangled photon pairs can be produced in an heralded way. By

means of continuously pumped cavity-enhanced SPDC, which is a customary method

for the generation of photonic resources for atomic memories and quantum repeaters,

one can have highly-monochromatic twin-beam states in spatially distinct single-photon

wave-packets carrying the desired value of angular momentum. Such states can be

treated, for all practical purposes, as plane waves in our calculations. However, it is

straightforward to adapt our formalism to the case of pulsed SPDC by making the

Rabi frequencies appearing in Ĥeff explicitly time dependent, so as to incorporate the

form of the photonic wave-packet. This effectively makes the Hilbert space spanned by

photonic OAM states isomorphic to that of a spin−1 particle, or qutrit, so that |ΦZ〉αβ
describes a maximally entangled two-qutrit state. The initial state is thus taken to be

|Ψ(0)〉ABαβ = |NA
0 , N

B
0 〉AB|ΦZ〉αβ, whose dynamics under Eqs. (3.28) is now evaluated

in a rotating frame defined according to Eqs. (3.22),(3.23). It is straightforward to

verify that, when starting from |Ψ(0)〉ABαβ as given above, the evolved state |Ψ(t)〉ABαβ
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obtained upon use of the effective Hamiltonian in Eq. (3.28) lies entirely in a nine-

dimensional sector of the Hilbert space spanned by the states

|Ψ0〉 = |NA
0 〉A|NB

0 〉B|10〉α|10〉β,
|Ψ1〉 = |NA

0 〉A|NB
0 〉B|11〉α|1−1〉β,

|Ψ2〉 = |NA
0 〉A|NB

0 〉B|1−1〉α|11〉β,
|Ψ3〉 = |NA

0 − 1, 11〉A|NB
0 〉B|0〉α|1−1〉β,

|Ψ4〉 = |NA
0 − 1, 1−1〉A|NB

0 〉B|0〉α|11〉β,
|Ψ5〉 = |NA

0 〉A|NB
0 − 1, 11〉B|1−1〉α|0〉β,

|Ψ6〉 = |NA
0 〉A|NB

0 − 1, 1−1〉B|11〉α|0〉β,
|Ψ7〉 = |NA

0 − 1, 11〉A|NB
0 − 1, 1−1〉B|0〉α|0〉β,

|Ψ8〉 = |NA
0 − 1, 1−1〉A|NB

0 − 1, 11〉B|0〉α|0〉β.

(3.29)

The notation used here is such that |N I
0 − s, sk〉I indicates a state where s atoms pop-

ulate an atomic eigenstate of the angular momentum with eigenvalue k~ while N I
0 − s

atoms populate the state |0〉I having zero OAM. It is worth stressing that the number

and structure of the states involved in the evolution of a given initial state strongly

depends on the total initial angular momentum carried by the latter. In fact, our effec-

tive Hamiltonian preserves the total light-matter OAM. This property implies that the

dynamically evolved state of the system should be written as

|Ψ(t)〉ABαβ =
8∑
i=0

fi(t)|Ψi〉 (3.30)

with numerical coefficients fi(t) such that
∑

i |fi(t)|2 =1.

The analytic solution of such a dynamics is a formidable problem and we thus resort to

a numerical investigation in order to infer the behavior of fi(t)’s. To find the coefficients

{fi(t)}, we have numerically solved the Schrödinger equation using the Hamiltonian in

Eqs. (3.28). We have explored a wide range of parameters, including the case where the

system is symmetric under the exchange of the two BECs, finding qualitatively similar

results. In the following, we concentrate on the symmetric case and use the parameters

listed in the caption of Fig. (3.3), which shows that a complete transfer of OAM from the

photonic state to the BECs is possible, in analogy with the semiclassical case approached

in Refs. [68–70].

The (dashed) green curve shows the temporal dynamics of the probabilities |f1,2(t)|2

whereas the (solid) yellow ones depict |f7,8(t)|2 for a given set of the relevant physical
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Figure 3.3: Evolution of the state probabilities |fi(t)|2 against the interaction time
t (in µs) for N I

0 = 105 atoms per condensate. Here f I
j,j′

= 5nm, ΩI = 27.5kHz,

χI,±l = 1.18kHz, ∆ = 90kHz and the two-photon detunings having the functional form
δ±l(t) = 2ΩI(1 − ΩIt/2) − ωt. The trap frequencies are ωt = 70Hz and ωz = 500Hz.
The photonic resource is tailored at a wavelength of 702nm at an angle of 4o off the

initial pumping gaussian beam’s axis

parameters and a specific choice for the functional form of the chirped two-photon detun-

ings. These two sets of probabilities are almost mutually mirror symmetric. Damped

oscillations are superimposed to a monotonic behavior induced by the compensation

arising from the chirped detunings (in our case δ±l(t) = 2ΩI(1 − ΩIt/2) − ωt). The

low-lying (dotted) red curve is for |f3,4,5,6|2, whose corresponding states only marginally

contribute to the evolution of the system. Finally, the (dot-dashed) horizontal blue line

shows the probability |f0(t)|2, which does not change in time as |Ψ0〉 is an eigenstate

of the effective Hamiltonian. As we shall see this gives a lower limit for the population

of the ground state of the reduced density matrix for the two BECs. In fact a plot of

the populations of the BECs reduced density matrix, ρAB(t) = Trαβ(|Ψ(t)〉ABαβ〈Ψ(t)|)
shows that the state |NA

0 〉A|NB
0 〉B has always a finite occupation probability. This is

due to the unavoidable presence of photons carrying no OAM that continuously project

the two BECs onto their ground states. The (solid) yellow curve in Fig. 3.4 shows the

population of the state |B〉=(|NA
0 −1, 11〉|NB

0 −1, 1−1〉+|NA
0 −1, 1−1〉|NB

0 −1, 11〉)/
√

2 (we

have omitted the BEC label as no ambiguity exists) which shows OAM entanglement

between the BECs. Clearly, the OAM entanglement transfer generates quite a large

component of |B〉 in the reduced two-BEC state. This arises from the OAM-carrying

components in the photonic resource and the efficiency of the population-transfer pro-

cess. The introduction of this state allows us to draw a clear and compact picture of

the asymptotic form of the map M̂t transforming photonic OAM entanglement into
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Figure 3.4: Time behavior of the populations of the atomic states in ρAB(t) = Trαβ
(|Ψ(t)〉ABαβ〈Ψ(t)|). The same parameters as in Fig. 3.3 have been used here. The
(dashed) green curve is for |NA

0 , N
B
0 〉AB , the (solid) yellow one is for state |B〉. The low-

lying (dotted) red curves represent the probability that the remaining two-BEC basis
states are excited. The incomplete population transfer from |0〉I to | ± l〉I (I = A,B)

is due to the zero-OAM terms in |ΦZ〉αβ .

matter-like one via bi-local far off-resonant double Raman coupling. By neglecting the

very small components associated with the remaining excited two BEC states ((dotted)

red line in Fig. 3.4) and collecting the remaining terms into a diagonal density matrix,

this is approximately given by

lim
t→∞
M̂t(|NA

0 , N
B
0 〉AB〈NA

0 , N
B
0 |)

' 1

3
(2|B〉AB〈B|+ |NA

0 , N
B
0 〉AB〈NA

0 , N
B
0 |),

(3.31)

Such a formal asymptotic map also explains that we can formally infer the properties

of the reduced two-vortex density matrix by treating it as the state of two (in general

entangled) qutrits.

3.6.3 Assessment of entanglement

We are now in a position to quantitatively estimate the amount of vortex entanglement

set between the BECs. In order to tackle this point, our approach will be twofold. First,

we study the time evolution of the linearized entropy [77]

SL(ρAB(t)) = (9/8)[1− Tr(ρAB(t))], (3.32)
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Figure 3.5: Linear entropy SL(ρAB) against time t (units of µs). The same parameters
as in Fig. 3.3 have been used here.

of the BEC density matrix. As SL is a good measure of the purity of a state (it achieves

0 for perfectly pure states and 1 for statistical mixtures), this will give us an indication of

the residual entanglement set between the photonic and matter-like part of the system:

as the dynamics set by Ĥeff is unitary, the entanglement initially present in the photonic

state has to be conserved when the whole state of the matter-light system is considered.

Needless to say, such entanglement can be transferred from the photonic subsystem

to the atomic one and/or vice versa and a transient can well exist where the two are

almost separable. Such a situation would be witnessed by a small value of SL and

correspond to either large or small values of BEC entanglement, with minimal photon-

atom quantum correlations. We have determined the form of SL as a function of time,

which is shown in Fig. 3.5. As expected, at exactly the time when the populations of the

OAM carrying atomic system become non-zero, the linear entropy changes its behavior,

signaling a maximum of mixedness of the light-matter state. This simply implies that

for t ∈ [400, 500]µs the two subsystems are correlated in a nonclassical sense. If time

increases further, SL evidently decreases, witnessing a reduction in the light-matter

entanglement. Because of the conservation of entanglement discussed above, this is the

region we are interested in, as it could well be the case that in this long-time window

significant inter-vortex entanglement is set at the expenses of the initial all-optical one

and the transient matter-light correlations highlighted here.

We quantitatively confirm our expectations by studying the negativity [78, 79], an en-

tanglement measure based on the violation of the “positivity of partial transposition”
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Figure 3.6: Negativity N(ρAB) against the interaction time t (units of µs). The same
parameters as in Fig. 3.3 have been used here. We obtain a maximum of entanglement
in correspondence of the range of decreasing trend of SL(ρAB(t)), which witnesses a
larger purity of the two-vortex state and smaller quantum correlations between light
and matter. Inset: Negativity against t for NA

0 = 10NB
0 = 104 and ΩB = 10 ΩA = 27.5

kHz. Other parameters as in Fig. 3.3.

(PPT) criterion for separability of a state. Negativity is defined as [79]

N(ρAB(t)) = −2
∑
k

λ−k , (3.33)

where λ−k are the negative eigenvalues of the partially transposed density matrix with

respect to one of the BEC systems. The results are shown in Fig. 3.6. As expected, the

region of large inter-vortex entanglement corresponds to the range of interaction times

where the linearized entropy decreases towards a steady-state value.

We point out that the wavy behaviour of the curve in Fig. 3.6, as well as in the other plots

of the paper, is due to the inter-atomic scattering. This is confirmed by the plot shown

in the inset of the figure, where an asymmetric case has been studied. The comparison

between symmetric and asymmetric case shows that a mismatched number of atoms in

the two BECs results in a change in the oscillatory behavior of the curve describing the

time evolution of the transferred entanglement. On the other hand, mismatched Rabi

frequencies only determine a change in the temporal scale of the entanglement dynamics.

The degree of transferred entanglement is only mildly affected, which demonstrates the

robustness of our protocol to such effects. The efficiency of our protocol does not depend
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on the assumption of symmetry under the exchange of the condensates and is retained

in a wide range of the relevant parameters. Therefore, for the sake of convenience and

without affecting the generality of our results, in what follows we restrict our attention

to the symmetric case. As discussed above, quite a large value of entanglement is set

between the vortex states of the two condensates, although a maximally entangled state

[achieving N(ρAB) = 1] is not reached. We stress that this is not a limitation of our

scheme but, on the contrary, an effect of the zero-OAM component in the photonic re-

source |ΦZ〉αβ. Such a detrimental contribution can be removed from the BECs reduced

state (and its properties) by resorting to an “active” approach where, instead of discard-

ing the state of light after the interaction with the condensates, we properly post-select

its state. Upon inspection of |Ψ7,8〉 in Eqs. (3.29), it is straightforward to see that state

|B〉AB is associated with modes 1 and 2 in the vacuum state. On the other hand, the

entanglement-spoiling component |nA0 , nB0 〉AB would bring about photons in both the

modes. It is therefore sufficient to use a standard Geiger-like avalanche photo-detector

per mode, which discriminate the vacuum from the presence of any non-zero number

of photons in a field, in order to operate the optimal post-selection of the BECs state:

by registering no click at both the photo-detectors, we project the state of A and B

onto the maximally entangled state |B〉. It is in fact worth stressing that, by effectively

excluding the possibility that the atoms occupy state |0〉I , the post-selection procedure

further reduces the dimension of the relevant Hilbert space spanned by each vortex state

to a bidimensional one, thus leaving us with two effective qubits.

3.7 Detection of vortex entanglement

In this Section we describe a method for the detection of the vortex entanglement cre-

ated by the process above. Given the low-excitation level of our protocol, the usual

matter-wave interference is not helpful and we instead propose an approach based on

the inversion of the process addressed here for light-to-BEC entanglement transfer. Af-

ter generation of a two-vortex entangled state (as described in Sec. 3.6), the OAM-

transferring interaction should be stopped. We thus assume that the pump fields have

been turned off (or set far off-resonant with respect to the frequency of the transitions

they guide) so as not to perturb the entangled states of the vortices. The time-reversal

nature of our protocol makes it intuitive to understand that, if we now reinstate such

pumps, photons will be scattered into two Laguerre-Gauss modes at the frequency of the

|0〉I ↔ |e, e′〉 transition, thus writing back the two-vortex state onto light fields. One can

then apply state-property reconstruction techniques, including testing Bell’s inequality

violation for bipartite states of effective three-level particles [81].
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Figure 3.7: Analysis of the Wigner function for ρAB(t). (a): The blue circle shows
a projection the Wigner function on the unit circle for t = 0, while the red butterfly
structure is associated with t ' 800µs, where OAM entanglement has been transferred.
(b) and (c): We plot W0,0(θA, θB) at the two instants of time considered for panel (a).
Notice the different vertical-axis scales in the two plots. The visibility of the fringes of

interference in the Wigner function is an indication of quantum correlations.

However, the success of such tests is usually very sensitive to the form of the state under

scrutiny and the level of non-ideality affecting it. We thus resort to a specific and quite

promising way to infer the properties of the state we have generated based on Wigner

function reconstruction, which is possible by using computer generated holograms [61]

and homodyne-like measurements [82]. Theoretically, the Wigner function for the OAM

state of a photon has been defined in the discrete cylinder Z × C1 (C1 is the unitary

circle) representing the phase space for the OAM operator and its canonically conjugate

operator θ̂. In Ref. [80] it has been shown that the study of the Wigner function for

an OAM state gives information both on the various OAM eigenstates involved in the

description of the state and on their relative phase. We define the two-mode Wigner

function as

WlA,lB (θA, θB) = Tr[K̂lA(θA)⊗ K̂lB (θB)ρAB], (3.34)

where we have introduced the kernel K̂lI (θI) (I = A,B) mapping quantum states in

phase space [80] in a way completely analogous to the continuous position-momentum

phase space. In Fig. 3.7 a) we compare the Wigner function W0,0(θ, 0) associated with

ρAB(t) when the entanglement transfer has not occurred [wide blue circle] to what

is achieved at long-enough t, where the map M̂t has been implemented [inner (red)

butterfly-like structure]. The difference due to the coherence established between two-

mode orthogonal eigenstates of the OAM operator in the entangled state ρAB is striking.
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Moreover, from Fig. 3.7 b) and c), we find that W0,0(θA, θB) exhibits oscillations whose

amplitude depends on the relative phase between the states |B〉 and |D〉. The curves

shown in panels b) and c) are associated with the same interaction time as in the circular

and burtterfly-like structures shown in panel a), respectively, which demonstrates that

the oscillation amplitudes depend on the populations of these states. Remarkably, the

analysis of WlA,lB (θA, θB) for incoherent superpositions of OAM eigenstates results in

a flat distribution. Therefore, by experimentally reconstructing the Wigner function,

one can determine the inference of entanglement in the associated OAM state. Any

deviation from flat distributions typical of incoherent superpositions implies coherence

in the bipartite state, although not entanglement. Methods based on the inverse Radon

transform [83] could then be used in order to achieve full information on the state and,

eventually, the entanglement set by the transfer mechanism. It is thus possible to know

if the two BECs are entangled by comparing their Wigner function with the one of an

inchoerent states which turn out to be a simple flat distribution.

3.8 Conclusions and outlook

We have shown that vortex states of spatially remote, non-isotropically trapped BECs

can be entangled by means of bilocal OAM-transfer processes and quantum correlated

photonic resources. The amount of vortex entanglement set by our scheme can be quite

considerable and appears to be limited only by the zero-OAM carrying component in

the photonic resource. While such a bottleneck can be actively bypassed by means of

post-selection, as described in Sec. 3.6, we are currently working on a modification of

our protocol based on the use of other forms of the entangled photon-pair [84]. The dif-

ference between the two-vortex state achieved by our scheme and a classical admixture

of OAM eigenstates (without coherence and, thus, entanglement) can be revealed by a

straigthforward state-retrieval process and the reconstruction of the OAM-state Wigner

function. We believe that the superfluid phase of a BEC, together with virtually fric-

tionless rotational states of light-induced vortices, can be reliably exploited in order to

set a promising scenario for the storage of quantum information and the distribution of

quantum correlated channels for communication.

The work presented in this chapter has been done in collaboration with S. McEndoo,

Th. Busch and M. Paternostro and it has been published in Phys. Rev. A 81, 053625

(2010).



Chapter 4

Detection of quantum coherence

by means of a BEC

In this chapter we address the problem of revealing quantum coherences in the dynamics

of a (micro/nano) mechanical oscillator. The motivation behind this work are to be found

in the recent efforts of reaching the quantum regime for mechanical oscillators in both

the opto-mechanical and electromechanical framework. It is then of great importance

to be able to detect quantum coherence in the state of the oscillator in order to assess

whether the quantum regime has been reached. We start by giving a brief overview

of the physics of mechanical oscillators. As the topic is quite wide and since it is not

the purpose of this chapter to cover it all, we shall focus on the aspects relevant for

our discussion. In particular we focus on the fabrication methods and discuss the basic

concepts behind techniques to “cool down” a micro/nano oscillator. We then present our

contribution to the topic of coherence detection by considering a particular experimental

set up. We propose a scheme which exploits all available and well tested techniques,

therefore making our proposal a feasible one.

4.1 Introduction

The start of the era of miniaturization can be traced back to the invention of the tran-

sistor. From then on we pushed our technology to smaller and smaller scales; we went

from room-sized computers to current notebooks that are smaller in dimension and many

times faster in computation. Nevertheless there are physical impediments to a further

reduction of the dimensions of the components. The most important comes from quan-

tum effects becoming manifest at those scales. On the other hand the need for micro

and nano devices helps us in understanding the “small” world and in particular about its

56
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counter intuitive behavior as described by quantum mechanics. We also want to know

how our classical world emerges from the quantum realm. One way of doing it is to

increase the size of current quantum objects and investigate them to the border of the

classical realm.

The two approaches, top-bottom and bottom-up, have an intersection: the micro/nano

mechanical oscillators. Mechanical oscillators play a key role in science having a broad

range of applicability: from detection and analysis of molecular dynamics [85] to elements

of atom chips for ultra cold gases trapping [86], from the imaging of surface [87] to being

part of “quantum circuits” [88]. The geometry of these objects is quite wide; there are

cantilevers, single and double clamped [89], drums [90], membranes [91], pianos [92].

Each of them is designed to accomplish a particular task.

Recently, a considerable research effort has been put in achieving quantum control of

micro and nano-scale mechanical systems [93, 114, 115]. The role played by such objects

in the current quest for demonstrating quantum behavior at the mesoscopic scale has

changed in time, and these systems are now at the center of an extensive experimental

and theoretical research effort.

Being three dimensional objects, mechanical oscillators support different “modes” ex-

actly as their macroscopic counterparts. So that a (micro/nano) mechanical oscillator

can bend, twist, breath or perform any other movement its design allows it. Address-

ing and controlling these modes is the first step towards making these systems useful

for quantum technologies. New techniques have been developed and the old ones have

been improved such as electron beam lithography, chemical etching, optical lithography,

vapor deposition, and many more.

To manipulate, control and extract information out of these mechanical oscillators elec-

trical and optical means are usually used. In the first case the oscillators are part of an

electric circuit through which it is possible to control or read out its state. They are

called micro/nano electro mechanical systems (MEMS/NEMS). In the case of optical

interfaces the control and the read out are accomplished via exerting radiation pressure

and measuring the phase shift of scattered light. They are referred to as opto-mechanical

systems. A beautiful example of an opto-mechanical system is the atomic force micro-

scope (AFM) [94] which is able to “take pictures” of single atoms on surfaces. A light

beam scatters off the free standing edge of a cantilever which is displaced by the repul-

sion of the scanned surface. The displacement turns into a phase shift of the reflected

light; the amount of the shift is related to the strength of the repulsion and thus to the

distance from the surface. In this way it is possible to reconstruct the surface profile

and get an image of it. Nevertheless as interesting and promising as they could be, such

systems are in general very difficult to probe and measure directly. The reason is that
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in the quantum regime there is a dynamical back action of the controlling device onto

the system we want to probe. As we will see this effect has been used for the cooling

process of a mechanical mode.

The necessity of isolating their fragile dynamics from the influences of the outside world

and the need for low operating temperatures that allow for the magnification of the

quantum mechanical features of their motion often imply that no direct access to such

devices is possible. By today several schemes exist that use the interaction with light

to extract information from the mechanical structures [95]. However, such methods

are certainly not exhaustive and a more systematic approach to measure the quantum

features of micro/nano mechanical devices is highly desirable.

In this sense, a considerable step forward has been the design of interfaces between me-

chanical systems and ancillae such as superconducting systems and (ultra-)cold atomic

ensembles [96, 97], which can be used to efficiently monitor, measure, and prepare the

inaccessible mechanical counterparts. Most interestingly, some of these hybridization

strategies are already mature enough to have found interesting preliminary implemen-

tations [89]. In this chapter we present a new strategy by demonstrating that the

interaction between an ultra-cold atomic system and a mechanical oscillator can be ex-

ploited for effective diagnostics of mechanical quantum coherences. A similar approach

has been used in a recent work [98] for different purposes. Along the lines of Ref. [96],

where it was shown that a similar system can mimic the strong coupling regime of cav-

ity quantum electrodynamics, we consider a setup composed of a mechanical oscillator

placed on an atom chip and coupled to a spinor BEC through a magnetic tip. In our

scheme, the magnetic tip acts as a transducer turning the mechanical oscillations into a

magnetic field experienced by the atomic spins. The motion of the latter in turn results

in a driving force for the mechanical oscillator. A physically transparent description of

the mechanism underlying our proposal is provided by the formal mapping of the spinor

BEC onto a three dimensional rotor: the magnetic-like coupling between the atoms of

the BEC and the mechanical system results in the interaction between a harmonic os-

cillator and one of the components of the rotor. This allows one to “write” signatures of

the coherences present in the cantilever state onto the state of the rotor, which can then

be read out using a technique based on the optical Faraday effect. Our work provides a

fully analytical framework for the proposed protocol and discusses a number of relevant

cases showing the effectiveness of the scheme. The complexity of the problem requires

the management of a very large sector of the Hilbert space of the cantilever-BEC system

and demands the development of appropriate methods to include the relevant sources

of noise affecting the device. One way of extending this work including noise is by

exploiting phase space methods.
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4.2 “Cooling” of a mechanical oscillator

The mechanical oscillators dynamics is fully characterized by the knowledge of the me-

chanical modes dynamics which in turn depend upon the oscillator’s geometry. The

oscillators have to be designed in such a way that it is possible to address each of these

modes independently so to make their control easier. The information on how easy it

is to distinguish one mode from another is given by the so called quality factor Q. The

Q factor is actually a measure of the motion damping of an harmonic oscillator. The

higher the Q factor the lower is the damping thus giving a very sharp response of the

oscillator at the resonance frequency of the mode. For a free oscillator, each resonance

corresponds to one of its natural modes and a high Q factor implies a good resolution

of each of this modes. This is of fundamental importance since coupling one of these

mode to another system we can assume that the dynamics involves only the addressed

mode whereas the others can be neglected or treated as noise.

In this picture “cooling of a mechanical oscillator” means to reduce the amplitude of

the oscillation of a particular mode at frequency ωh and thus its energy. Many efforts

have been devoted to introducing efficient schemes to cool down a mechanical oscillator.

Most of them involve the coupling of the oscillator to a laser beam in analogy with the

cooling of atoms and molecules. The idea behind all these schemes is to create a “viscous

medium” that damps the motion.

4.2.1 Resolved sideband cooling

This technique is borrowed from cooling of ions in harmonic traps. In the ions’ case the

cooling mechanism relies on the presence of side-bands in the spectrum of the ion. The

latter has both internal (electronic energy levels) and external (center of mass motion)

degrees of freedom. Hence if ω0 is the resonance frequency between two internal energy

levels and ωh is the frequency of the harmonic potential the ion has resonances at

ωn = ω0 +nωh where n ∈ Z. This can be seen as a modulation of emitted light resulting

from the ion’s motion. By making use of a laser with frequency ω−1 = ωn = ω0 − ωh it

is possible to excite the atom to a higher electronic level but a lower vibrational motion.

The most probable channel of decay is the one for which the vibrational state does not

change and the final internal state is the electronic ground state. The difference between

the final and initial vibrational state will be −~ωh giving us the cooling of the ion. By

repeating this process further it is possible to transfer more and more ions in the lowest

vibrational state thus achieving the cooling.
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In the case of a micro/nano mechanical oscillator the process is exactly the same. In

the opto-mechanical setting light with frequency ω0 is reflected off the surface of the

oscillator that has an oscillation frequency ωh. The reflected light it is thus modulated

and peaks at all sidebands with frequencies ωn = ω0 + nωh appear. Again, light at

ω−1 = ω0 − ωh is used to cool down the oscillator. The detuning ∆ ensures that the

number of photons N−1 and N1 scattered at frequency ω−1 = ω0−ωh and ω1 = ω0 +ωh

respectively are such that N−1 < N1. The conservation of energy thus implies that the

oscillator loses energy at any cycle and cooling is achieved.

4.3 The set up and the Hamiltonian

We consider the setup sketched in Fig. 4.1, which consists of an on-chip single-clamped

cantilever and a spinor BEC trapped in close proximity to the chip and the cantilever.

The latter is assumed to be manufactured so as to accommodate at its free-standing end

a magnetic molecule (or tip). Technical details on the fabrication methods of similar de-

vices can be found in Refs. [89, 96], which have also been found to have very large quality

factors, which guarantee a good resolution of the rich variety of modes in the cantilever’s

spectrum. At room temperature, thermal fluctuations are able to (incoherently) excite

all flexural and torsional modes and in the following we assume that a filtering process

is put in place, restricting our observation to a narrow frequency window, so as to select

only a single mechanical mode.

The second key element of our setup is a BEC of 87Rb atoms held in a (tight) optical

trap and prepared in the hyperfine level |F = 1〉. As we assume the trapping to be

optical, there is no distinction between atoms with different quantum numbers mF =

0,±1 of the projections of the total spin along the quantization axis. Moreover, for a

moderate number of atoms in the condensate and a tight trap, we can invoke the so-

called single-mode approximation (SMA) [99], which amounts to considering the same

spatial distribution for all spin states. These approximations will be made rigorous and

formal in the next Subsections.
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Single-clamped
nano-cantilever

Magnetic tip

Figure 4.1: Sketch of the set-up for BEC-based probing of mechanical coherences.
A BEC is placed in close proximity to a nano-mechanical cantilever endowed with a
magnetic tip. The coupling between the magnetic field generated by the mechanical
quantum antenna and the ultra-cold atoms embodies a mechanism for the effective

probing of coherences in the state of the mechanical system.

4.3.1 Hamiltonian of the system

In the following we will briefly review the mapping of a spinor BEC into a rotor [100].

The Hamiltonian of a BEC in second quantization reads [101]

Ĥ =
∑
α

∫
dxΨ̂†α(x)Ĥ0

αΨ̂α(x)

+
∑

α,β,µ,ν

Gα,β,µ,ν

∫
dxΨ̂†α(x)Ψ̂†β(x)Ψ̂µ(x)Ψ̂ν(x),

(4.1)

where the second line of equation describes the particle-particle scattering mechanism

and Ĥ0
α=− (~2/2m)∇2 +m(ω2(x2 + y2) + ω2

zz
2)/2, m is the mass of the Rb atoms and

ω and ωz are the in-plane and axial trapping frequencies respectively. The subscripts

α, β, µ, ν refer to different z-components of the single-atom spin states. As the scattering

between two particles does neither change the total spin nor its z-component, we can

link the coefficients Gα,β,µ,ν to the scattering lengths for the channels with total angular

momentum FT = 0, 2. The absence of the channel with FT = 1 is due to the fact that in

this case the spinor component of the wave function is anti-symmetric. Since the total

wave-function has to be symmetric it turns out that the spatial wave-function of the two

bosons has to be anti-symmetric too. This gives us a vanishing s-wave scattering length.
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Thus, by making use of the Clebsch-Gordan coefficients, the full BEC Hamiltonian can

be re-written as

Ĥ =
∑
α

∫
dx Ψ̂†α(x)Ĥ0

αΨ̂α(x)

+
cs
2

∑
α,β

∫
dx Ψ̂†α(x)Ψ̂†β(x)Ψ̂α(x)Ψ̂β(x)

+
ca
2

∑
α,β,α′,β′

∫
dx Ψ̂†α(x)Ψ̂†β(x)(Fα,β·Fα′,β)Ψ̂α′(x)Ψ̂β′(x)

(4.2)

where cs=(g0+2g2)/3 and ca=(g2−g0)/3 with g2j=4π~2a2j/m (j=0, 1) and a2j being

the scattering length for the FT = 2j channel [102]. Here F is the vector of the spin-

1 matrices obeying the commutation relation [Fi,Fj ] = i εijkF
k with εijk being the

Levi-Civita tensor.

As one can see from Eq. (4.2), if ca ≈ 0 (i.e. if g0 ≈ g2) and/or the number of atoms

is not too large, the total Hamiltonian is symmetric in the three spin components. By

assuming a strong enough optical confinement and a BEC of a few thousand atoms,

one can therefore think of the order parameter as having a constant spatial distribution

for all the three species mF = 0,±1 and write Ψ̂α(x)=φ(x)âα. This is the so called

single-mode approximation (SMA) [99, 103] which leaves the Hamiltonian in the form

Ĥ =
∑
α

â†αâα +
c′s
2

∑
α,β

â†αâ
†
β âαâβ

+
c′a
2

∑
α,β,α′,β′

(Fα,β · Fα′,β′) â
†
αâ
†
α′ âβ âβ′ ,

(4.3)

where we have defined c′i=ci
∫
dx |φ(x)|4. As the distance z0 between the BEC and the

magnetic tip can be in the range of a few µm (we take z0 = 1.5µm in what follows)

and the spatial dimensions of the BEC are typically between tenths and hundredths

of µm (we considered az = 0.25µm and ar = 0.09µm), the relative correction to the

magnetic field across the sample is small enough to justify the SMA (of the order of 0.2)

Moreover, in the configuration assumed here, the system will be mounted on an atomic

chip, where the static magnetic field can be tuned by adding magnets and/or flowing

currents passing through side wires. Such a design can compensate any distortions to

the trapping potential induced by the tip.

By introducing N̂=
∑

α â
†
αâα and the angular momentum operators L̂+=

√
2(â†0â−1 +

â†1â0) and L̂z=(â†1â
−
1 â
†
−1â−1), we can rewrite Eq. (4.3) as Ĥ=ĤA + ĤS , where we have

explicitly identified a symmetric part ĤS = µN̂ −c′sN̂(N̂ −1) and an antisymmetric one

ĤA = c′a(L̂
2 − 2N̂).
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It is important to remember that such a mapping is possible due to the assumption of

a common spatial wave function for the three spin components. As long as the anti-

symmetric term is small enough, this is not a strict constraint. By exploiting Feshbach

resonances [104], it is possible to adjust the couplings g0 and g2 in such a way that

g0≈g2, which allows for the possibility to increase the number of atoms in the BEC, still

remaining within the validity of the SMA.

We now consider the BEC interaction Hamiltonian when an external magnetic field

is present. Due to its magnetic tip, the cantilever produces a magnetic field and the

cantilever can be modeled as a single quantum harmonic oscillator whose annihilation

(creation) operator we call b̂c (b̂†c). By allowing the tip to have an intrinsic magnetization,

we can split the magnetic field into a static contribution B0 and an oscillating one

δB̂ that arises from the oscillatory behavior of the mechanical mode. The physical

mechanism of interaction is Zeeman-like, i.e. each atom experiences a torque which tends

to align its total magnetic moment to the external magnetic field. The Hamiltonian for

a single atom can be written as

Ĥ
(1)
Z = −µ·B = (gµB/~)Ŝ(1)·B, (4.4)

where µB is the Bohr magneton, Ŝ(1) is the spin operator vector for a single atom and

g is the gyromagnetic ratio. In line with Ref. [105], we adopt the convention that g and

µ have opposite signs. The total interaction Hamiltonian is then given by the sum over

all the atoms. By taking the direction of B0 as the quantization axis (z-axis) and the

x-axis in the direction of 〈δB̂〉, the magnetic Zeeman-like Hamiltonian is

ĤZ = gµBB
0
z L̂z + gµBGcac(b̂

†
c + b̂c)L̂x, (4.5)

where we have used δB̂ = Gcac(b̂
†
c + b̂c)x with Gc = 3µ0|µc|/(4πz4

0) being the gradient

of the magnetic field produced by the tip at a distance z0, x the unit vector along the

x-axis, ac =
√
~/(2meωc) and me the effective mass of the cantilever, which represents

the mass involved in the oscillation of the mode considered and it might be different

from the total mass of the cantilever.

The full Hamiltonian of the BEC-cantilever system is thus Ĥ = Ĥ0
BEC + Ĥ0

c + ĤI with

Ĥ0
BEC = µN̂−c′sN̂(N̂ − 1)+c′a(L̂

2 − 2N̂)+gµBB
0
z L̂z,

Ĥ0
c = ~ωcb̂†cb̂c,

ĤI = gµBGcac(b̂
†
c + b̂c)L̂x.

(4.6)

It has been shown in Refs. [101, 103] that Ĥ0
BEC with B0

z = 0 allows for interesting

dynamics of the populations of the three spin states, which undergo Rabi-like oscillations,



Chapter 4. Detection of quantum coherence by means of a BEC 64

thus witnessing the coherence properties of the BEC.

4.3.2 Mapping into a rotor

While the Hamiltonian above is rather appealing, it is not yet in a form that is of use

for our application. In fact, let us consider the natural basis to describe the system,

i.e. the one spanned by |L,Lz〉, which are the common eigenstates of L̂ and L̂z. Due to

the coherence in the state of the BEC, we cannot fix the quantum number L, since, for

instance, if the BEC is in an eigenstate of L̂z with Lz = 0, then the state has the form∑N
L=0 cL|L, 0〉. Tracking the evolution induced by Eq. (4.6) on such a superposition is a

non trivial problem since for N � 1 the accessible region of the Hilbert space becomes

quite large. Nevertheless, the problem can be tackled by the formal mapping of the BEC

into a quantum rotor. In the following, we briefly discuss the basic ideas of this mapping

as given in Ref. [100]. Since we work with a fixed number of particles, the state of the

BEC can be decomposed as

∑
n′0,±1

Cn′0,±1
(â†1)n

′
1(â†0)n

′
0(â†−1)n

′
−1 |0〉, (4.7)

where the sum is performed over all sets of labels {n′0,±1} such that n′0+n′−1+n′1=N . Let

us now introduce the Schwinger-like operators b̂x=(â−1−â1)/
√

2, b̂y=(â1+â−1)/(i
√

2),

b̂z=â0 such that [b̂α, b̂β]=0, [b̂α, b̂
†
β]=δα,β [100]. The generic BEC state in Eq. (4.7)

can now be written as |ΩN 〉= 1√
N !

(Ω·b̂†)N |0〉 with Ω=(cosφ sin θ, sinφ sin θ, cos θ). By

varying (θ, φ) and thus the position vector |Ω〉 on the unit sphere, it is possible to recover

any superposition for the state of a single atom among the states with mz = 0,±1. A

state with a fixed number of particles with same spin in the bosonic Hilbert space can

then be written as |Ψ〉 =
∫
dΩ |ΩN 〉ψ(Ω) where ψ(Ω) is the wave function of the rotor

we are looking for to complete the mapping. The next step is to find the form of the

Hamiltonian in this space. According to Ref. [100], a sufficient criterion for the two

dynamics to be equivalent is the existence of a Hamiltonian operator Ĥ in the Hilbert

space of the rotor such that Ĥ |Ψ〉 =
∫
dΩ|ΩN 〉Ĥψ(Ω). The explicit form of Ĥ can in

fact be found by a straightforward calculation that leads to the expressions of the z and

x components of the angular momentum operator of the form

L̂z = −i(b̂†xb̂y − b̂†y b̂x) = −iz · (Ω×∇) =
1

~
z · L̂ = −i∂φ,

L̂x =
1

2
(b̂†z b̂x − b̂†xb̂z) +

i

2
(b̂†z b̂y − b̂†y b̂z) = −ix · (Ω×∇)

=
1

~
x · L̂ = i(sinφ ∂θ+ cot θ cosφ∂φ).

(4.8)
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After discarding an inessential constant term, the Hamiltonian that we are looking for

reads Ĥ = Ĥ0
R + Ĥ0

c + ĤI with

Ĥ0
R = c′aL̂2 + (gµB/~)B0

z L̂z,
Ĥ0
c = p̂2

c/2me +meω
2
c q̂

2
c/2,

ĤI = (gµB/~)Gcq̂cL̂x.

(4.9)

In Eq. (4.9) we have introduced, for convenience, the cantilever’s position and momentum

operators q̂c =
√
~/(2mωc)(b̂c + b̂†c) and p̂c = i

√
~mωc/2(b̂†c − b̂c). We are now in a

position to look at BEC-cantilever joint dynamics. In particular we will focus on the

detection of the cantilever properties by looking at the BEC spin dynamics.

4.4 Probing quantum coherences

4.4.1 Dynamics

The form of the interaction Hamiltonian ĤI allows for the measurement of any observable

whose corresponding operator on the Hilbert space can be expressed as a function of q̂c

and p̂c with, as we shall see, negligible back action on the cantilever dynamics. Moreover,

when there is no magnetic field, the ground state of a “ferromagnetic” (i.e. c2 < 0)

spinor BEC is such that all the atomic spins are aligned along a direction resulting

from a spontaneous symmetry breaking process [101]. Under the effects of the cantilever

antenna, two preferred directions are introduced in the system: the z-direction along

which we have the static magnetic field and the x-direction defined by the oscillatory

component. The interplay between these two competing magnetic fields is responsible

for a “gyroscopic” motion of the rotor about the z-axis, exactly as in a classical spinning

top. By looking at the way the rotor undergoes such a gyromagnetic motion, we can

gather information about the properties of the cantilever state. We notice that a similar

approach has been used to show the resonant coupling of an atomic sample of 87Rb

atoms with a magnetic tip similar to the one considered here [106].

In order to understand the mechanism, let us look at the time evolution of the operator

L̂x(t). We take an initial state of the form

|Ψ(0)〉 =
∑
n

Cn|En〉
∫

Σ1

dΩ ψ(Ω)|ΩN 〉, (4.10)

where Σ1 is the unit sphere and |En〉 are the energy eigenvalues for the harmonic os-

cillator such that Ĥ0
c |En〉=En|En〉. In the Heisenberg picture, the mean value of the

x-component of the angular momentum is
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〈L̂x(t)〉 = 〈Ψ(0)|ei
Ĥ
~ tL̂x(0)e−i

Ĥ
~ t|Ψ(0)〉

=

∫
Σ1,q,q′

dΩdqdq′

(∑
n,m

C∗mCne
−iωn,mtφ∗m(q′)φn(q)〈q′|q〉

)

× ψ∗(Ω)

(
ei
ĤI+Ĥ

0
R

~ tL̂x(0)e−i
ĤI+Ĥ

0
R

~ t

)
ψ(Ω)

=

∫
q
dq
∑
n,m

C∗mCne
−iωn,mtφ∗m(q)φn(q)

×
∫

Σ1

dΩ ψ∗(Ω)

(
ei
ĤI+Ĥ

0
R

~ tL̂x(0)e−i
ĤI+Ĥ

0
R

~ t

)
[ψ(Ω)]

(4.11)

where we have used the closure relation
∫
q |q〉〈q| = 1̂ twice and introduced φn(q)=〈q|En〉

and ωn,m=ωc(n − m). By setting Ωq=
√

(gµB/~)2[(B0
z )2 +G2

cq
2], the time-evolved x-

component of the angular momentum operator is

L̂x(t) =
g2µ2

B

~2Ω2(q)

[
(B0

z )2 cos(Ωqt) +G2
cq

2
]
L̂x(0)

+
gµBB

0
z

~Ωq
sin(Ωqt)L̂y(0)

+
g2µ2

BB
0
zGcq

~2Ω2(q)
[1− cos(Ωqt)] L̂z(0)

= a1(q, t)L̂x(0) + a2(q, t)L̂y(0) + a3(q, t)L̂z(0).

(4.12)

Comparing Eqs. (4.11) and (4.12) we find 〈L̂x(t)〉=∑j=x,y,z Aj(t)L
0
j , where

L0
j =

∫
Σ1

dΩ ψ∗(Ω)L̂j(0)[ψ(Ω)],

Aj(t) =
∑
n,m

C∗mCne
−iωn,mt

∫
q
dqφ∗m(q)φn(q)aj(q, t).

(4.13)

If the cantilever is initially prepared in the general mixed state ρc(0) =
∑

nCn,m|En〉〈Em|,
a similar expression for the mean value of L̂x(t) is found, where now

Aj =
∑
n,m

e−iωn,mtCn,m

∫
q
dq φ∗m(q)φn(q)aj(q, t). (4.14)

As the qualitative conclusions of our analysis do not depend upon the initial value of the

angular momentum component of the spinor, in what follows we shall concentrate on

an illustrative example that allows us to clearly display our results. We thus consider,
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×

Figure 4.2: Mean value of L̂x(t) for a cantilever in the initial state as given by
Eq. (4.10) with C0=C1/α=1/

√
1 + α2and Cn = 0 otherwise. The BEC consists of

N=103 87Rb atoms and 〈L̂x,y(0)〉 = 0, 〈L̂z(0)〉 = 100. We have used B0
z=3× 10−6µT

and Gc ≈ 1.8× 103µT/µm.

without affecting the generality of our discussions, 〈L̂x,y(0)〉 = 0 and 〈L̂z(0)〉 = 100.

When the cantilever and the BEC are uncoupled, we should expect 〈L̂x(t)〉 to oscillate

at the Larmor frequency ωL = gµBB
0
z and with an amplitude independent of 〈L̂x(0)〉.

The BEC-cantilever coupling introduces a modulation of such oscillations and in the

following we will demonstrate that the analysis of such oscillatory behavior is indeed

useful to extract information on the state of the cantilever.

We first consider the case of a cantilever initially prepared in a superposition of a few

eigenstates of the free Hamiltonian Ĥ0
c , as in Eq. (4.10). In Fig. 4.2 we show the mean

value of L̂x(t) as a function of the coherence between the states with quantum number

n = 0 and n = 1, i.e. a state having C0 = C1/α = 1/
√

1 + α2 and Cn = 0 otherwise.

One can see a clear modulation of the behavior of 〈L̂x(t)〉: a close inspection reveals

that the carrier frequency ωL is modulated by the frequency ω0,1. In reality, the Larmor

frequency is renormalized as can be seen by the expression for Ωq. However, as we have

taken Gcac � B0
z , one can safely assume that the carrier frequency is very close to ωL.

Moreover, the maximum of the function is found at C0,1 = 1/
√

2, which maximizes the

coherence between the two states and thus the effect of the modulation. For symmetry

reasons, the modulation described is not visible if the cantilever is prepared in a super-

position of phonon eigenstates whose quantum numbers are all of the the same parity
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(such as a single-mode squeezed state). In this case, in fact, the function entering the

integral over q in A3 is antisymmetric, thus making it vanish. In Fig. 4.3, 〈L̂x(t)〉 is

shown for an initial state of the cantilever having C0,1 = C2/α = 1/
√

2 + α2 and Cn = 0

otherwise. It is worth noticing that one can identify two regions of oscillations separated

by the line of nodes at α = 1 where C0 = C1 = C2. We can understand this behavior

by studying the amplitudes of oscillation in three α-dependent regions. For α < 1, the

main modulation frequency is given by ω0,1 and the role of the third state is to modify

the amplitude of the oscillations [see Fig. (4.3)]. At α = 1 a destructive interference

takes place and the amplitude drops down. For α > 1 the frequency ω1,2 enters into the

evolution of 〈L̂x(t)〉 (for parity reasons, the term with frequency ω0,2 has no role) and

determines a phase shift of the oscillation fringes. It is interesting to observe that if the

initial state of the cantilever is purely thermal, 〈L̂x(t)〉 does not oscillate: only quan-

tum coherence in the state of the mechanical system give rise to oscillatory behaviors

and their presence is well signaled by the pattern followed by the angular momentum

of the spinor-BEC. Although the examples considered so far have been instrumental in

explaining the connections between the properties of the cantilever and the dynamics of

the spinor’s degrees of freedom, they are unfortunately currently far from being realistic.

We will therefore now consider a closer-to-reality example of a pure state that is likely

to be achieved soon. Given the impressive advances in the control and state-engineering

of micro and nano-mechanical systems, we will consider the cantilever to be prepared

in a coherent state with an average phonon number nph. Such a coherent state can

be generated by displacing, with an intense laser field, the ground state of a cantilever.

This is a realistic expectation: current state of the art experiments are only a few quanta

away from such an achievement [115]. In Fig. 4.4 we show the time evolution of L̂x(t)

for |α|2 = 1 [panel (a)], 5 [panel (b)], 15 [panel (c)], and 20 [panel (d)]. One can

see that, depending on the mean number of phonons initially present in the mechanical

state, new frequencies are introduced in the dynamics of the device: the larger |α|2, the

larger the number of frequencies involved due to the Poissonian nature of the occupation

probability distribution of a coherent state. In Fig. 4.4 (e), which addresses the case

of |α|2 = 20, the study of the dynamics at long evolution times reveals that the carrier

frequency is unaffected, for all practical purposes, while the large number of frequencies

entering in the evolution gives rise to series of beats occurring at different time scales.

4.4.2 Detection scheme

To read out the information imprinted on the rotor, one can make use of the Faraday-

rotation effect, which allows one to measure one component of the the angular mo-

mentum of the BEC with only a negligible back action on the condensate itself. It is
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Figure 4.3: Mean value of L̂x(t) for a cantilever in the initial state as given by
Eq. (4.10) with C0 = C1 = C2/α = 1/

√
2 + α2 and Cn = 0 otherwise. The BEC

parameters are the same as in Fig. 4.2. The inset shows that the change in |α| amounts
to a shift of the oscillations [we have taken = eiπ/6(0.5, 1, 2)].

well-known from classical optics that the linear polarization of an electromagnetic field

propagating across an active medium rotates with respect to the direction it had when

entering the medium itself. This is the essence of the Faraday-rotation effect, which

can be understood by decomposing the initial polarization in terms of two opposite

circularly-polarized components experiencing different refractive indices [107]: by go-

ing through the medium, the two components acquire different phases, thus tilting the

resulting polarization.

In the case of an ultra-cold gas, an analogous rotation of the polarization of a laser field

propagating across the BEC is due to the interaction of light with the atomic spins.

If the spins are randomly oriented the net effect is null, while for spins organized in

clusters, the effect can indeed be measured. It has been shown in Refs. [108, 109] that

the back-action on the BEC induced by these sorts of measurements is rather negligible.

In recent experiments non-destructive measurements on a single BEC of 23Na atoms
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Figure 4.4: Time evolution of L̂x for a coherent initial state of the cantilever with
|α|2 = 1 (a), 5 (b), 15 (c), 20 (d). For the same parameter as in (d), the plot (e)

shows that the carrier frequency ωL is not significantly affected.

have been used to show the dynamical transition between two different regions of the

stability diagram of the system [110]. This method can thus be effectively used to

determine the dynamics of the angular momentum components of the rotor BEC and

thus indirectly witness the presence of coherences in the state of the cantilever. The

measurement can be performed by means of homodyne detection schemes. Moreover, as

shown in Ref. [109], the signal to noise ratio (SNR) is proportional to
√
τpd/τs where τpd

is the characteristic time for the response of the photo-detector and τs is the average time

between consecutive photon-scattering events. In order to be able to detect two distinct

events on a time scale τ we thus need τpd < τ < τs to hold. This condition states that

the number of scattered photons has to be small enough during the time τ over which the

dynamics we want to resolve occurs. On the other hand the detector “dead time” should

be smaller than the typical evolution time. While τs can be easily tuned by adjusting

the experimental working point, ultrafast photo-detectors of the latest generation have

response time τpd of a few ps. As in our scheme we have τ ∈ [10−8, 10−5]s, the proposed

coherence-probing method appears to be within reach.
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4.5 Conclusions

We have considered a mechanical cantilever equipped with a magnetic tip interacting

with a spinor Bose-Einstein condensate (BEC) held in an optical trap. The tip produces

a magnetic field made up of two components, namely a static one along the tip’s natural

anisotropic axes and one perpendicular to it due to the cantilever’s oscillations. By

exploiting the mapping of a spinor BEC into a rotor model [100] it is possible to take

into account its quantum properties, which would have been missed in a mean field

theory approach. The BEC is thus mapped onto a quantum gyroscope undergoing a

precession about the direction of the magnetic tip’s static field. We have assumed that

the cantilever has been cooled down [114, 115] to a quantum regime and described it as

a quantum harmonic oscillator. We have shown that it is possible to detect the presence

of quantumness in the cantilever state in the form of superposition of different eigenstate

of the harmonic oscillator. The way to do this is to look at the gyroscopic precession by

using Faraday spectroscopy, which in turn only minimally disturbs the BEC dynamics,

thus allowing for a continuous probing of the system. Even though we have restricted

our analysis to a cantilever equipped with a magnetic molecule it is possible to generalize

this scheme to other sorts of mesoscopic magnetic system such as nanotubes.

The work presented in this chapter has been done in collaboration with Th. Busch, G.

M. Palma and M. Paternostro and it has been published in Phys. Rev. A 84, 063815

(2011).



Chapter 5

Markov regime for open quantum

dynamics

In this chapter we address a recently very debated problem: definition of Markov regime

for quantum systems. We will first review the basics for mathematical treatment of

stochastic classical variables’ dynamics. We then discuss the standard mathematical

description for open quantum system dynamics. Once we have the basic ingredients we

shall turn to give a different definition of Markov regime in analogy with the classical

case.

5.1 Introduction

The quest for the mathematical description of open quantum system dynamics has lately

intensified. A milestone in this field is the theory developed in the 70s, which is based on

the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation [116, 117]. This equation

is often associated to the Markov assumption for classical systems for it reduces to the

Pauli equation in the case of a diagonal density matrix in an orthonormal basis [118].

The solution to the Pauli equation respects the Markov assumption and this is assumed

to be enough to justify the notion Markov process in the quantum realm. Nevertheless

the GKSL equation is derived under two assumptions: a) boundness of the operators and

b) complete positivity for the dynamical map. The first one is a strong assumption as

Lindblad himself states in his original paper [117] and could not hold for many systems,

whereas the second one is not necessary [119]. A review of certain concepts in quantum

open system theory is desirable if we want it to follow the most recent studies in different

fields; it has applications in problems such as thermalization [120], transport in non-

equilibrium settings [121], dynamics of quantum systems in noisy environments [122] and

72
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emerging irreversibility from a microscopic description as first spotted by Lindblad[123].

The description of classical stochastic systems has a large number of applications ranging

from motion of particles under stochastic forcing [124], to financial markets [125] and

models of biological evolution [126]. They all share the fact that the system under study

is in contact with an external “environment” which is replaced by stochastic “forces”

acting on it. In this framework a special class of systems are those for which the Markov

assumption holds true. Its power comes from the simplicity of the resulting mathematical

description for these systems.

Such a simplicity is even more desirable in the case of quantum open systems and in

fact the GKSL equation is an example of such a simple but very powerful description.

Nevertheless in dealing with real systems the role of the external environment has to be

taken into account properly and the GKSL does not encompass a realistic treatment.

For this reason the study of the so called non-Markovian (meaning not of the GKSL

form) master equations is an hot topic nowadays. At the same time characterization of

Markov (and consequently non-Markov) regimes in the dynamics of a quantum system

has recently received an increasing attention [127–132]. In contrast to the classical theory

of open quantum systems, however, there is apparently no clear definition of Markov

processes. In the quantum case the Markov property is often linked with the the quantum

regression theorem [133, 134]. In this chapter we first review the Markov assumption and

its implications for classical stochastic processes. We then move to analyze the quantum

case and define the Markov regime for a quantum system’s dynamics in analogy with

the original Markov assumption for classical stochastic processes. We shall show that

by using the “physical” implications of the classical Markov assumption it is possible to

define the Markov regime for a quantum system regardless of the differences between

the classical and quantum mathematical objects used to describe the system (i.e. the

probability density and the density operator).

5.2 Classical stochastic systems

There are phenomena such as turbulent motion at the bottom of a waterfall, city traffic,

diffusion of a perfume in air, electric conduction through a copper wire and many others

whose mathematical description is made by means of random variables. It sounds amaz-

ing as soon as we realize that at the microscopic level all the equations are deterministic.

In the case of water flow for instance it is possible to write Newton equations for each

molecule. Nevertheless this is not at all a reasonable idea because of the number of

variables we will end up dealing with. It is thus often better to replace the microscopic

variables with macroscopic ones obtained from coarse graining over some characteristic
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temporal and/or spatial scales. The details of the coarse graining process however are

important since these complex systems can show multi-scale behavior; a good example

is fully developed and homogeneous turbulence where one can identify the injection and

dissipation scales, i.e. scales on which the energy is injected into the system and then

is dissipated through friction respectively. These coarse grained variables turn out to

be random and their time evolution is given by stochastic dynamics. Given a random

variable X that takes on values x ∈ K where K = N,Z,R or C (for the sake of simplicity

we assume that our system is characterized by one variable only; the extension to more

than one variable is then straightforward) a stochastic process can be regarded as a set

of maps (for different n′s)

R
n
+ → Dn : (tn, · · · , t1)→ p(n)(xn, · · · , x1), (5.1)

where Dn is the space of distributions defined on Kn and R+ ≡ [0,∞).

These distributions allow to calculate different quantities to characterize the system. Let

us consider a generic function f(X) of the stochastic variable X (energy, temperature,

etc.); its average at time t is then

〈f(X)〉(t) =

∫
dx f(x) p(x, t), (5.2)

where we have defined p(1)(x, t) ≡ p(x, t) and included the time dependence in the

function; p(x, t)dx is the probability that the random variable X takes on value x at

time t. This shows the importance of the time dependent probability density: it allows

the evaluation of the mean value of any function of the stochastic variable. Neverthe-

less the mean values of the observables do not fully characterize the system; taken any

two functions f1(X) and f2(X) one could be interested in correlation functions such

as 〈f2(X)f1(X)〉(t2, t1) =
∫
dx2dx1 f2(x2) f1(x1) p(2)(x2, t2;x1, t1) (t2 ≥ t1). The mean

value is the integral of the product of the two functions at X = x1 and X = x2 respec-

tively multiplied by the probability that the stochastic variableX takes on the value x2 at

t2 and the value x1 at time t1. This introduces a new quantity, namely p(2)(x2, t2;x1, t1)

which in general cannot be derived from p(x, t). In the special case p(2)(x2, t2;x1, t1) =

p(x2, t2)p(x1, t1) then 〈f2(X)f1(X)〉(t2, t1) = 〈f2(X)〉(t2) 〈f1(X)〉(t1) which amount to

say that the two quantities are not correlated. Note here that the above property holds

for any pair of functions and it only depends on whether or not the two-point probability

density is factorized. Similarly one can define the n-point (in time) correlation functions

as
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〈fn(X) · · · f1(X)〉(tn, · · · , t1) =

∫
dxn · · · dx1 p

(n)(xn, tn; · · · ; x1, t1) fn(xn) · · · f1(x1),

(5.3)

where (tn ≥ · · · ≥ t1).

Again in this case the n-point probability density p(n)(xn, tn; · · · ; x1, t1) cannot, in

general, be recast in terms of p(1)(x, t) only. It is useful at this point to introduce the

relative probabilities

p(n)(xk,1) pn|k(xn+k,k+1 | xk,1) = p(n+k)(xn+k,1), (5.4)

where xi,j = {xj , tj ; · · · ; xi, ti}. The pn|k are the probability densities for the stochastic

variable X to take on the values xn+k at tn+k and xn+k−1 at tn+k−1 and · · · and xk+1

at tk+1 whenever it took the values xk at tk and xk−1 at tk−1 and · · · and x1 at t1.

In particular we have p(2)(x2, t2;x1, t1) = p1|1(x2, t2|x1, t1) p(1)(x1, t1). Let now consider

a set of time steps {tk} such that tn > tm ∀n > m.

The equation governing the time evolution of the above probability distribution can be

quite difficult to solve due to the dependence of lower order probability densities on

higher order ones and vice versa. We do not discuss this problem here since it is not our

aim.

There is a particular case in which the dynamics is greatly simplified and that is whenever

the Markov assumption holds. This assumption is expressed as

pn|k(xn+k,k+1 | xk,1) = pn|1(xn+k,k+1|xk,k). (5.5)

It means that the probability at later times do not depend on the past history of the

system. This has different consequences with one of them being a change in the regime

of the validity of the Chapman-Kolmogorov equation for the probability distribution

density:

p1|1(x, t | x1, t1) =

∫
dy p1|1(x, t | y, s)p1|1(y, s | x1, t1), (5.6)

where t1 ≤ s ≤ t and t1 ≥ t0 in general. The Chapman-Kolmogorov equation shows that

the relative probability densities form a semi-group with t as parameter. This property

is important because it guarantees the existence of an infinitesimal generator from which

the semi-group can be derived [136]. The physical implication of the Markov assumption
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is that once p1|1(x2, t2|x1, t1) and the initial distribution p0(x0, t0) are known we have

access to any quantity of the system. The system then is fully described by these two

objects only.

For a generic system the following relation holds

p1|1(x, t | x1, t1) =

∫
dy p1|1(x, t |y, s;x1, t1)p1|1(y, s | x1, t1), (5.7)

where t1 ≤ s ≤ t. This relation can be proven by means of the definition of relative

probability densities. It is easy to see that when the Markov assumption is valid Eq. (5.7)

reduces to the Chapman-Kolmogorov equation.

Moreover this equation shows that the two-point relative probability density p1|1(x, t | x1, t1)

is related to higher order probability densities making the problem highly non trivial.

Let us now call p0(x0, t0) the initial probability density. We can then formally write [137]

p(n)(xn,1) =

∫
dx̃ G(n)(xn,1|x̃, t̃) p(x̃, t̃), (5.8)

where the G(n)(xn,1|x̃, t̃) are the Green’s functions that solve the initial problem.

Hänggi showed [137, 138] that it is always possible (Markov and non-Markov case), to

find a class of propagators G(n)(xn,1|x̃, t̃) (for each n) with the semi-group property and

which are independent of the initial conditions by construction.

These Green’s functions have nevertheless a different meaning than the relative proba-

bility distribution densities. In this respect Hänggi says [137]: “The propagators G(t|t1)

of each semi-group are the conditional probabilities of a Markov process which has the

same single-event probabilities p(t) (but different multivariate probabilities p(n)) as the

non-Markov process under consideration”. This again is to stress that the mean values

alone do not fully characterize the system as two processes can have same mean values

but different correlation functions.

5.3 Open quantum systems’ dynamics

The dynamics of a closed and isolated quantum system is given by a unitary evolution

operator Û (t, t0) = e−ıĤ (t−t0) where Ĥ is the Hamiltonian operator. Let us assume

that the total system is made up of two parts whose temporal scales differ by several

order of magnitudes and we are only interested in the dynamics of the “slower” one: the



Chapter 5. Markov regime for open quantum dynamics 77

system. The reduced density operator of the subsystem we are interested in is given by

ρ̂S = TrE
[
Û (t, t0)ρ̂(t0)Û †(t, t0)

]
where ρ̂(t0) is the initial density operator of the total

system and the labels S and E refer to the system and to the “environment” (i.e. the

collection of fast degrees of freedom) respectively. It is common to consider the weak

system-environment coupling limit for which it is possible to find an effective master

equation for the reduced density matrix of the system only [135]. Let us call ĤI the

system - environment interaction Hamiltonian; in the interaction picture the evolution

equation for the density matrix operator is given by

d

dt
ρ̂(t) = −ı[ĤI(t), ρ̂(t)]. (5.9)

By assuming weak coupling and the fact that the environment has usually a larger

Hilbert space than the system we are interested in we can make the replacement

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂E(0). (5.10)

This comes from perturbation theory in analogy with the Born-Oppenheimer approx-

imation made in atomic physics when the motion of electrons is separated from the

motion of the nuclei. It simply states that on the time scale of the system’s dynam-

ics the state of the environment does not appreciably change. By formally integrating

Eq. (5.9) and reinserting it into Eq. (5.9) with the above assumption we obtain:

d

dt
ρ̂(t) = −

∫ t

0
ds [ĤI(t), [ĤI(s), ρ̂S(s)⊗ ρ̂E(0)]]. (5.11)

By tracing over the environment’s degrees of freedom the equation governing the evolu-

tion of ρ̂S(t) is obtained

d

dt
ρ̂S(t) = −

∫ t

0
ds TrE([ĤI(t), [ĤI(s), ρ̂S(s)⊗ ρ̂E(0)]]), (5.12)

which is known as the Redfield equation. Nevertheless it is usually difficult to solve

it because it is an integro-differential equation for the reduced density matrix operator

ρ̂S(t); it is possible to further simplify it by assuming locality in time for the effect of

the system - environment interaction. It means that the effects of the environment on

the system only depends on the state of the system at that time and not on its previous

states. This amounts to replace ρ̂S(s) with ρ̂S(t) in the above equation. But this is

still not enough because of the integral ranging from the initial time up to t. To further

simplify the resulting equation separation of time scales enters the discussion. Because of



Chapter 5. Markov regime for open quantum dynamics 78

the difference in time scales we assume correlations between environment’s observables

go to zero on any time scale of the system, i.e. environment’s dynamics is faster than

system’s one. This means that we can extend the integral from zero up to infinity after

a change of variables:

d

dt
ρ̂S(t) = −

∫ ∞
0

ds TrE([ĤI(t), [ĤI(t− s), ρ̂S(t)⊗ ρ̂E(0)]]). (5.13)

This is what is usually referred to as the Markov approximation because of the local

character of the equation and thus the so called absence of memory. Nevertheless it can

be noticed that this has nothing to do with classical Markov assumption as introduced

above. The link it is not clear apart for the memoryless character of both, which has

not been justified mathematically in the quantum case.

Starting from Eq. (5.13) it is possible to show that the equation of motion is given

by [135]

d

dt
ρ̂S(t) = −ı[ĤLS , ρ̂S(t)] +D(ρ̂S(t))),

D(•) =
∑
ω

∑
α

γα(ω)

(
Âα(ω) • Â†α(ω)− 1

2

{
Â†α(ω)Âα(ω), •

})
,

(5.14)

where ĤLS is a residual unitary dynamics that is often called the Lamb shift contri-

bution in analogy with the Lamb shift of the energy levels of an atom resulting from

the interaction with the electromagnetic vacuum. The so called super-operator D is

responsible for the non-unitary dynamics of the reduced density matrix of the system.

5.4 The dynamical map

At this point it is useful to define the dynamical map Φt,t0 as:

Φt,t0 : ρ̂S(t0) = TrE
[
ρ̂(t0)

]
→ ρ̂S(t) = TrE

[
Û (t, t0)ρ̂(t0)Û †(t, t0)

]
. (5.15)

In the following it will be useful to consider expressions such as

TrE
[
Û (t, t0) ô ⊗ ρ̂E Û †(t, t0)

]
, (5.16)

where ô is an operator acting only on the Hilbert space HS of the system whereas ρE

is the density operator of the environment. It is possible to show that the algebra of
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operators acting on a Hilbert space H can always be written as a linear combination

of the identity operator plus a set of N2 − 1 (N = dim(H)) operators
{
F̂j
}

such that

Tr
[
F̂j
]

= 0 and Tr
[
F̌ iF̂j

]
= δi,j where the last identity defines the dual operators{

F̌ i
}

. Furthermore these operators are characterized by the relations
[
F̂i, F̂j

]
= dkij F̂k

and
{
F̂i, F̂j

}
= 2δi,j/N+skij F̂k where the structure factors dkij and skij have been defined.

It is then possible to write any operator acting on the whole Hilbert space H = HS⊗HE
as a linear superposition of the operators {f̂i⊗F̂j ; 0 ≤ i ≤ N2

S−1, 0 ≤ j ≤ N2
E−1} where

{f̂i} and {F̂j} act on the Hilbert spaces HS and HE respectively and f̂0 = 1̂S/NS , F̂0 =

1̂E/NE .

By writing both Û (t, 0) and ô⊗ ρ̂E in the basis {f̂i⊗F̂j ; 0 ≤ i ≤ N2
S−1, 0 ≤ j ≤ N2

E−1}
with the help of the dual operators and by making use of the commutation and anti-

commutation relations one can prove that the time evolution of the operator ô is given

by

Φt,t0 :

N2
S−1∑
i=0

ci(t0) f̂i →
N2
S−1∑
i,j=0

Dj
i (t)c

i(t0) f̂j , (5.17)

where ci(t0) = Tr
[
f̌ iô
]

and the Dj
i (t) are coefficient which depend upon the evolution

operator Û (t, 0) and the environmental state ρ̂E .

As it can be noted we used the same symbol for the density operator and the above

functional that maps the operator ô into its evolved. This is true whenever the initial

operator is separable such as ô ⊗ ρ̂E because the resulting operator Φt,t0 depends only

on the state ρ̂E and not on system and environment correlations. This property is very

important for the definition of Markov regimes as we shall see in the following.

5.5 Multivariate time correlation functions

Let us now consider a system interacting with its environment. We assume that the

interaction does not change significantly the state of the bath, i.e. TrS [ρ̂(t)] ≈ ρ̂E

where ρ̂(t) is the total density matrix at time t. The validity assumption relies on the

physical problem under study and if the state of the environment sensibly changes during

the time interval we are considering it will not be possible to separate the two dynamics

but they will have to be considered as a joint one. We then define two functionals P
and Q acting on the algebra of operators of the total system such that

P[Ô] = TrE [Ô]⊗ ρ̂E , (5.18)
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and

Q = I − P, (5.19)

where Ô is an operator acting on the total Hilbert space and I[Ô] = Ô is the identity

functional. Let us first consider the expression 〈ô1(t+τ)ô2(t)〉 where the operators ôi only

act on the system’s Hilbert space. By means of the definition T (τ1, τ0)[•] = e−ıĤ (τ1−τ0) •
eıĤ (τ1−τ0) where Ĥ is the (total) Hamiltonian of the system and ôi(t) = eıĤ tôie

−ıĤ t it

is possible to show that

〈ô1(t+ τ)ô2(t)〉 = TrS

[
ô1TrE

[
T (τ, t0)

[
ô2T (t, t0)[ρ(t0)

] ] ]]
. (5.20)

By making use of identity functionals I = P +Q the above expression reads:

TrS

[
ô1 TrE

[
T (τ, 0) ô2 T (t, t0) ρ(t0)

]]
=

2∑
i,j,k=1

TrS

[
ô1 TrE

[
Kk T (τ, t0) ô2Kj T (t, t0)Ki ρ(t0)

]]
,

(5.21)

where K1 = P and K2 = Q (for readability we dropped square brackets and we assume

that every functional does act on everything on its right side). The relation derived in

the previous section allows us to prove that

TrS [ô1 TrE [P T (τ, 0) ô2 P T (t, t0)Pρ(t0)]]

= TrS [ô1 Φτ,0 ô2 Φt,t0 ρS(t0)] .
(5.22)

This expression can be easily obtained by assuming that the infinitesimal generator of

the system’s dynamics is of the Lindbland form [53, 135]. In fact in this case the relation

〈ô1(t + τ)ô2(t)〉 = TrS

[
ô1 Φτ,0 ô2 Φt,0 ρS(0)

]
holds because other terms in the sum on

the right hand side of Eq. (5.21) vanish. It is easy to see that expressions analogous to

Eq. (5.21) hold for generic n-point (in time) correlation functions.

Thus if the infinitesimal generator of the dynamics of a system is of the Lindbland

form the knowledge of the propagator Φt,t0 and the initial state of the system is enough

to fully characterize the system dynamics. This is a crucial point for our discussion

and we will therefore discuss it in more detail. The fact that the knowledge of both the

propagator and the initial condition is, in general, not enough is related to the generation

of correlations between the system and the environment. This has recently been used
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as an argument for the comparison of the two main witnesses of the degree of non-

Markovianity available, namely the divisibility of the map and the so called information

back-flow [142]. The same holds in classical stochastic processes [137, 138] where for

non Markov maps the n-point relative probability density’s evolution does depend on a

hierarchy of relative density probabilities.

Since the effect of P is to factorize whatever it acts on then in Q[Ô] we find the corre-

lations between system and environment. A term such as

TrS

[
ô1 TrE

[
P T (τ, 0) ô2QT (t, t0)Pρ(t0)

]]
(5.23)

propagates the correlations generated by the joint system-environment evolution during

the time interval [t0, t] from time t up to time t + τ . So we can define the Markov

regime as the one in which these correlations are negligible recovering a nice and compact

expression for the multivariate correlation functions. Moreover we maintain the physical

implication of classical Markov approximation, i.e. we can calculate any quantity from

the knowledge of the initial probability condition and the relative probability distribution

density which in the quantum case is replaced by the functional Φt2,t1 . This fact was

already pointed out by Grishanin [139, 140] in the study of an atom interacting with

a strong electromagnetic field more than 30 years ago. Moreover we found the same

definition of a Markov process proposed by Lindblad himself in an appendix of his

book [123]. Now we can give to that proposal an explanation in terms of correlations

generated in the joint system-environment dynamics.

In what follow we will apply this idea to two exemplary models: the decay of a two level

atom in vacuum and the decoherence induced by a bosonic bath on a two level system.

The choice of the two systems is motivated by the possibility to evaluate exactly the

two point correlation functions 〈ô1(t + τ)ô2(t)〉 and find the dynamical map Φ for the

density operator. Our aim is to compare the exact value of the correlation functions

〈ô1(t + τ)ô2(t)〉exp = TrS [TrE [ô1(t+ τ)ô2(t)ρ(t0)]] with those calculated by means of

expression (5.22) 〈ô1(t+τ)ô2(t)〉M . The suffixes “exp” and “M” stand for “experimental”

and “Markov” since the first ones are correlation function that would be measured in a

real experiment whereas the second ones are those calculated from the knowledge of the

dynamical map Φ only and they would be exact in the Markov regime. Any difference

between the two will be a signature of transition from the Markov to the non-Markov

regime.



Chapter 5. Markov regime for open quantum dynamics 82

5.6 Decay of a two-level atom

In this section we consider the free decay of a two level atom coupled to a bosonic bath

in its vacuum state. The Hamiltonian operator is given by

Ĥ = Ĥ0 + ĤI ,

Ĥ0 =
ω0

2
σ̂z +

∑
k

ωk b̂
†
kb̂k,

ĤI = σ̂+

∑
k

gk b̂k + σ̂−
∑
k

g∗k b̂
†
k.

(5.24)

5.6.1 Exact solution

In order to calculate the multivariate correlation functions between n operators ô acting

on the system’s Hilbert space we need to obtain ô(t) = eıĤ tôe−ıĤ t. It is in general not

possible to find a closed formula for it, but in the single excitation case as the evolution

operator can be written as:

Û (t) = e−ıĤ t = c0(t)|0, 0〉〈0, 0|+ c1(t)|1, 0〉〈1, 0|+
∑
q

cq|0, 1q〉〈0, 1q|

+
∑
q

∑
p 6=q

cqp|0, 1q〉〈0, 1p|

+
∑
q

λq|0, 1q〉〈1, 0|+
∑
q

µq|1, 0〉〈0, 1q|.

(5.25)

Since [Û (t), Ĥ ] = 0 the following equalities hold to be true:

µq(t) =
gq
g∗q
λq(t)

cq(t) = c1(t) +

ωq − ω0

g∗q
−
∑
p6=q

g∗p
g∗q

gp − gq
ωq − ωp

λq(t),

cqp(t) =
gp − gq
ωq − ωp

λq(t),

(5.26)

so that one has to solve only for the independent variables, namely c1(t) and λ∗q(t).

By using the equation dÛ (t)/dt = −ıĤ Û (t) and by mean of a change of variables

c̃1(t) = c1(t)eı
ω0
2
t and λ̃q(t) = λq(t)eı

ω0
2
t one is led to the following equations:
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d

dt
c0(t) = ı ω0 c0(t),

d

dt
c̃1(t) = −ı

∑
q

gq λ̃q(t),

d

dt
λ̃q(t) = −ı (ωq − ω0) λ̃q(t)− ı g∗q c̃1(t),

(5.27)

which are to be solved with the initial conditions c0(0) = 1, c̃1(0) = 1, λ̃q(0) = 0. The

solution to the first equation are given by c0(t) = eı
ω0
2
t. The solution for the last two is

obtained by means of the Laplace transform as:

s L[c̃1(t)](s)− c̃1(0) = −ı
∑
q

gq(t)L[λ̃q(t)](s),

s L[λ̃q(t)](s)− λ̃q(0) = −ı(ωq − ω0)L[λ̃q(t)](s)− ıgq(t)∗L[c̃1(t)](s),

(5.28)

hence we obtain:

L[c̃1(t)](s) =

(
s+

∑
q

|gq|2
s+ ı(ωq − ω0)

)−1

,

L[λ̃q(t)](s) = −ı gq(t)∗

s+ ı(ωq − ω0)
L[c̃1(t)](s).

(5.29)

By taking the limit to the continuous we have

∑
q

|gq|2
s+ ı(ωq − ω0)

→
∫ ∞

0
dω

J(ω)

s+ ı(ω − ω0)
, (5.30)

where we introduced the “spectral density” of the bath J(ω). We next note that

∫ ∞
0

dω
J(ω)

s+ ı(ω − ω0)
= L [f(t)] (s), (5.31)

where f(t) =
∫∞

0 dωJ(ω)e−ı(ω−ω0)t. The above equation then become:

L[c̃1(t)](s) =
1

(s+ L[f(t)](s))
,

L[λ̃q(t)](s) = −ı gq(t)∗

s+ ı(ωq − ω0)
L[c̃1(t)](s).

(5.32)

Thus we have the exact time evolution of any operator in the zero and one excitation

sector of the Hilbert space.
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5.6.2 Density matrix propagator

For the case of one excitation the total state of the system can be written as a0(t)|0, 0〉+
a1(t)|1, 0〉+∑q aq(t)|0, 1q〉 It is possible to show [135] that in this limit and for the bath

in the vacuum state the master equation governing the dynamics of the system is given

by:

d

dt
ρ̂S(t) =W(t)(ρ̂S(t))

W(t)(•) = − ı
2

(
ω0 +

S(t)

2

)
[σ̂z, •] + γ(t)

(
σ̂− • σ̂+ −

1

2

{
σ̂+σ̂−, •

})
,

(5.33)

where γ(t) + ıS(t) = 2
∫ t

0 dτ f(t − τ)G(τ, 0)/G(t, 0), f(t) =
∫∞

0 dωJ(ω)e−ı(ω−ω0)t and

G(t, 0) such that dG(t, 0)/dt = −
∫ t

0 dτ f(t− τ)G(τ, 0).

The “propagator” is then given by V (t, 0) = Te
∫ t
0 dτ W(τ) where T is the time-ordering

operator. Since the coefficient γ(t) can take on negative values the super-operator W(t)

does not need to be of Lindblad form at all times. In what follow we will have to calculate

the action of the super-operator on operators acting on the Hilbert space of the system.

In order to simplify these calculations we will use the damping basis, i.e. the basis made

up of operators Λ̂i(t) such that W(t)[Λ̂i] = λi(t) Λ̂i(t). In fact the “eigen-operators” Λ̂i

are time independent:

Λ̂0 = 1
2(1̂ − σ̂z) λ0(t) = 0,

Λ̂1 = σ̂+ λ1(t) = −ı
(
ω0 + S(t)

2

)
− γ(t)

2 ,

Λ̂2 = σ̂− λ2(t) = ı
(
ω0 + S(t)

2

)
− γ(t)

2 ,

Λ̂3 = σ̂z λ3(t) = −γ(t),

We can thus write any operator as ô =
∑

i c
i Λ̂i with ci = Tr(Λ̌iô) where the dual of the

damping basis’s elements are such that Tr(Λ̌iΛ̂j) = δij .

Let now define the matrices (Aα)ji = Tr
[
Λ̌j σ̂αΛ̂i

]
in order to simplify the calculation of

the multivariate correlation functions. The two-point ones are

〈 σ̂α(t+ τ)σ̂β(t) 〉P = Tr

[
σ̂α(0)Φτ,0σ̂β(0)Φt,t0 ρ̂S(0)

]
=
∑
i,j

(Aα)0
j (Aβ)jie

Lj(τ)eLi(t)ci,

(5.34)

where Li(t) =
∫ t

0 ds λi(s)



Chapter 5. Markov regime for open quantum dynamics 85

Figure 5.1: Plots of the relative errors for the correlation function 〈σ̂+(0.1+τ)σ̂−(0.1)〉
for the case of the decay of a two level atom initially in its excited state interacting
with a bosonic bath with spectral density in Eq. (5.35) initially in the vacuum state.

The parameter used are ω0 = 10, λ = 2.1, ∆ = 0.2

Here we consider the case of a spectral density of the form

J(ω) =
1

(2π)

γ0λ
2

((ω − ω0 + ∆)2 + λ2)
. (5.35)

This is the spectral density of an atom interacting with the vacuum of an electromagnetic

cavity whose frequency is ω0.

We can see in Fig. 5.1 that for short times, regardless of the coupling constant γ0 one

gets 〈ô1(t+ τ)ô2(t)〉exp ≈ 〈ô1(t+ τ)ô2(t)〉M which is what is expected since in this limit

one can determine the higher order correlation function from the one- and two-point

ones. As time and coupling strength increase the deviation of the Markovian correlation

functions from the real ones increase as well. It is interesting to note that both measures

of non-Markovianity [127–129] so far defined give zero in the particular case considered

in Fig. 5.1. We numerically checked Breuer’s measure and we found that it is zero for



Chapter 5. Markov regime for open quantum dynamics 86

any value of the coupling strength γ0 ∈ [0, 1]. To check for the divisibility criterion we

have to check that

Φt+τ,t0 = Φt+τ,tΦt,t0 (5.36)

with Φt+τ,t being a complete positive map. We stress that the complete positivity is a

requirement for the definition of Markovianity according to the work in [129] and this is

one of the working assumption in Lindblad’s original work [116, 117].

This is trivially true since in our case, which can be see by looking at

Φτ2,τ1 [•] = exp

(
− ı

2
Ω(τ2, τ1)[σ̂z, •] + Γ(τ2, τ1)

(
σ̂− • σ̂+ −

1

2

{
σ̂+σ̂−, •

}))
, (5.37)

where
∫ τ2
τ1
dτ
(
ω0 + S(τ)

2

)
and Γ(τ2, τ1) =

∫ τ2
τ1
dτ γ(τ)

The super-operator appearing in the exponential in Eq. (5.37) admits a diagonal de-

composition whose base elements are time independent. From this it is easy to see that

relation (5.36) holds true and that the complete positivity of Φt+τ,t in our case comes

from the complete positivity of γ(t) in the time interval considered.

5.7 Decoherence of a two-level atom

As a second example we consider in this section the decoherence of a qubit in vacuum.

The Hamiltonian operator is given by

Ĥ = Ĥ0 + ĤI ,

Ĥ0 =
ω0

2
σ̂z +

∑
k

ωk b̂
†
kb̂k,

ĤI = σ̂z
∑
k

(
gk b̂k + g∗k b̂

†
k

)
.

(5.38)

5.7.1 Exact solution

In the interaction picture the (total) time evolution operator is Û (t) = 1̂S⊗cosh(P̂ (t))+

σ̂z ⊗ sinh(P̂ (t)) where P̂ (t) =
∑

k

(
α∗k(t) b̂†k − αk(t) b̂k

)
and αk(t) = gk(1 − eıωkt)/ωk.

In order to evaluate the exact two-point correlation function of any two operators ô1
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and ô2 acting only on the system’s Hilbert space we have to calculate ô1(t1)ô2(t2) =

Û †(t1 − t0)ô1(t0)Û (t1 − t0)Û †(t2 − t0)ô2(t0)Û (t2 − t0). Assuming the electromagnetic

field to be initially in a thermal state we find after lengthy calculations (we do not

present them here because the expressions are cumbersome and the intermediate steps

have been performed by using the software Mathematica):

TrE
[
ô1(t1)ô2(t2) ρ̂E

]
= f1(t1, t2) ô1(t0) ô2(t0) + f2(t1, t2) σ̂z ô1(t0) ô2(t0) σ̂z

+ f3(t1, t2) ô1(t0) σ̂z ô2(t0) σ̂z + f4(t1, t2) σ̂z ô1(t0) σ̂z ô2(t0),

(5.39)

with

f1(t1, t2) =
1

4

(
1 + e−g(t1) + e−g(t2) + e−h(t1,t2)

)
,

f2(t1, t2) =
1

4

(
1− e−g(t1) − e−g(t2) + e−h(t1,t2)

)
,

f3(t1, t2) =
1

4

(
1 + e−g(t1) − e−g(t2) − e−h(t1,t2)

)
,

f4(t1, t2) =
1

4

(
1− e−g(t1) + e−g(t2) − e−h(t1,t2)

)
,

(5.40)

where the continuous limit has been taken and we have defined the functions

g(t) = 4

∫ ∞
0

dω
J(ω)

ω2
(1− cos(ωt)) coth

(
βω

2

)
, (5.41)

and

h(t1, t2) = 4

∫ ∞
0

dω
J(ω)

ω2

[
(1− cos(ω(t1 − t2))) coth

(
βω

2

)
+ ı(sin(ωt1)− sin(ω(t1 − t2))− sin(ωt2))

]
,

(5.42)

where β is the inverse temperature of the environment.

5.7.2 Density matrix propagator

In this case we find that calculating the density matrix map is an easier task since the

interaction Hamiltonian commutes with the free Hamiltonian of the two level atom. By

definition we have

Φt,t0 [ρ̂S(t0)] = TrE

[
Û (t− t0)ρ̂(t0)Û †(t− t0)

]
, (5.43)
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where as usual ρ̂S(t0) = TrE

[
ρ̂(t0)

]
.

For the dynamical map we have

Φt,t0 [ρ̂S(t0)] = ρ̂S(t0) TrE

[
cosh(P̂ )ρ̂E(t0) cosh(P̂ )

]
− σ̂z ρ̂S(t0) σ̂z TrE

[
sinh(P̂ )ρ̂E(t0) sinh(P̂ )

]
− ρ̂S(t0) σ̂z TrE

[
cosh(P̂ )ρ̂E(t0) sinh(P̂ )

]
+ σ̂z ρ̂S(t0) TrE

[
sinh(P̂ )ρ̂E(t0) cosh(P̂ )

]
,

(5.44)

where we have defined cosh(P̂ ) = (eP̂ +e−P̂ )/2 and analogously for sinh(P̂ ). It is useful

to note that eP̂ = ⊗ke
(α∗k b̂

†
k−αk b̂k) = ⊗kD(α∗k) where D(•) is the displacement operator.

The numerical values are easily calculated as shown below. The propagator is then given

by:

Φt,t0 [ρ̂S(t0)] =
1

2

(
ρ̂S(t0)

(
1 + e−g(t−t0)

)
+ σ̂z ρ̂S(t0) σ̂z

(
1− e−g(t−t0)

))
(5.45)

where again g(t− t0) = 4
∫∞

0 dω J(ω)ω−2(1− cos(ω(t− t0))) coth(βω/2) .

5.7.3 Trace over the environment

In this section we show how to calculate the traces over the environment’s degrees

of freedom by means of phase space methods. We are interested in the case of an

environment initially in equilibrium at a temperature T . The state can then be written

as ρ̂E(t0) = ⊗kρ̂k with ρ̂k = (1− e−βωk)
∑∞

nk=0 |nk〉〈nk|e−βnkωk .

The traces over the environmental degrees of freedom appearing in the density matrix

propagator involve the evaluations of terms such as Trk(D(α∗k)ρ̂kD(α∗k)) which traces

can be easily calculated by noting the following:

• D(α)D(β) = e(αβ∗−α∗β)/2D(α+ β);

• D(α) = e−|α|
2/2eαb̂

†
e−α

∗b̂ ;

• By definition χ(α, α∗) = Tr(ρ̂eαb̂
†
e−α

∗b̂) is the characteristic function which gen-

erates the Q-function corresponding to the state ρ̂ in phase space;

• For the harmonic oscillator in a thermal state at temperature β = (TkB)−1:

χ(α, α∗) = e−|α|
2/(eβω−1) .
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Therefore we have:

Trk(D(α∗k)ρ̂kD(α∗k)) = Trk(ρ̂kD(α∗k)D(α∗k))

= Trk(ρ̂kD(2α∗k))

= e−2|αk|2Trk(ρ̂ke
2α∗kb̂

†
e−2αkb̂)

= e−2|αk|2χ(2α∗k, 2αk)

= e−2|αk|2e−4|αk|2/(eβωk−1),

(5.46)

Trk(D(−α∗k)ρ̂kD(−α∗k)) = Trk(ρ̂kD(−α∗k)D(−α∗k))

= Trk(ρ̂kD(−2α∗k))

= e−2|αk|2Trk(ρ̂ke
−2α∗kb̂

†
e2αkb̂)

= e−2|αk|2χ(−2α∗k,−2αk)

= e−2|αk|2e−4|αk|2/(eβωk−1),

(5.47)

Trk(D(α∗k)ρ̂kD(−α∗k)) = Trk(ρ̂kD(−α∗k)D(α∗k))

= Trk(ρ̂kD(0)) = 1,
(5.48)

Trk(D(−α∗k)ρ̂kD(α∗k)) = Trk(ρ̂kD(α∗k)D(−α∗k))

= Trk(ρ̂kD(0)) = 1.
(5.49)

By considering a spectral density of the form

J(ω) =
1

2π
ω

γ0λ
2

ω2 + λ2
, (5.50)

we can easily calculate the above expression for g(t). The linear term ω that multiplies

the otherwise Lorentzian spectral density guarantees that the function vanishes as ω → 0

avoiding unwanted singularities in the calculations. Surprisingly we find that in this case

the system is always Markovian regardless of the coupling constant γ0. We are not able

to give an explanation for this behavior yet and we are currently working to better

understand it.

5.8 Conclusions

We have shown that it is possible to define the Markov regime for quantum dynamics in

analogy with the Markov assumption for classical stochastic processes. The idea behind
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this definition is that the knowledge of both the density operator’s propagator and the

initial state of the system only is enough to fully characterize the system dynamics, i.e.

be able to calculate any of the n-point (in time) correlation functions. We saw that in

the quantum case the non Markov regime is due to the build up of correlations between

system and environment that are propagated during the joint evolution. This implies,

as in the classical case, that the n-point correlation functions need to be calculated by

means of ad hoc n-point propagators Φ
(n)
tn, ··· ,t1,t0 which are in general not related to Φ.

Moreover we stress that our definition of the Markov regime is not related to any of

the two measures (or witnesses) previously proposed [130, 131]. The reason is that both

these measures rely only on the “two points propagator” Φt,t0 and nothing is said about

the correlation functions which nevertheless have a clear physical meaning. For instance

the distinguishability criterion on which the measure of Markovianity by Breuer [127] is

based deals with the mean value of the observables only. Given two state it describes

how likely it is that one can distinguish them by performing a measurement of some ob-

servables. It is a static definition whereas (non-)Markovianity is based on the dynamical

properties. One could think for instance of a process for which the mean values of the

observables are the same ones but nevertheless their correlation functions are different.

A similar argument holds for the comparison with the divisibility criterion [128, 129].

As already noticed by Lindblad our criterion is a natural generalization of the classical

Markov assumption. Moreover we explicitly showed that the non-Markovian behavior

arises as a consequence of the building up of coherences between system and environ-

ment. In real systems this is an important issue because it tells us that the environment

plays an active role in the system’s dynamics.

The work presented in this chapter has been done in collaboration with I. Sinaynskiy,

Th. Busch and F. Petruccione.
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In this thesis I have addressed different topics of quantum behavior at different scales.

It can be divided into two parts that complement each other. In the first part I have

analyzed quantum behavior in hybrid systems and Bose-Einstein condensates whereas

in the second one I addressed the problem of the definition of Markov regimes for open

quantum systems.

“Hybrid systems” refers to all those physical systems made up of different components

such as photons, mechanical oscillators, (ultra-)cold gases, etc. They accomplish dif-

ferent tasks such as metrology in biological systems as well as in new generations of

detectors, quantum computation, collectors of energy while at the same time offering a

playground for fundamental questions. They have to be properly designed and built in

order to be useful and I have suggested and investigated suitable setups. I particularly

focused on their role as systems to test for quantum coherences on mesoscopic scales.

In the first work I studied the stability of vortex patterns in a two dimensional BEC held

in a rotating anisotropic trapping potential. The study of vortex systems is useful to

understand phenomena such as the properties of high Tc superconductors or dissipation

in super-fluids. BECs of alkali atoms offer a very clean and fully tunable setup to observe

the behavior of vortex-like systems. In particular I studied how the spatial configuration

of vortex patterns changes with the anisotropy of the trapping potential. For a small

number of vortices I observed that the geometries of the possible vortex patterns are

finite. Moreover there are critical values of the anisotropy at which changes between

the spatial patterns suddenly occur. I then studied the stability of these patterns and

found that they are all unstable. Nevertheless I found that there is a clear signature of

the change of patterns’ geometries in the eigenvalues of the pattern modes. This work

has been published in Phys. Rev. A 81, 053625 (2010).

It is interesting to look at a three dimensional BECs where the vortex patterns become

vortex filaments and their motion is described Kelvin waves. This is the ultra-cold gases

version of the II-type superconductors in an external magnetic field. In this case in fact

the current flowing through the superconductor would dissipate energy due to vortex
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filaments motion. Moreover the inclusion of dissipation balancing the external forcing

could result in stable oscillations of the vortex patterns and thereby stabilize the system.

I then addressed the problem of scaling entanglement up from microscopic to mesoscopic

scales. I proposed an experimental scheme in order to transfer entanglement from pho-

tons to BECs. An entangled photon pair was obtained from parametric down conversion

and interacted with a BEC. The two photons are entangled in the orbital angular mo-

mentum degree of freedom and the scheme is designed such that during the interaction

with a BEC each photon transfers a quantum of angular momentum to the BEC it is

interacting with. The two BECs are spatially separated and they do not interact with

each other. I showed that in a finite transition time it is possible to transfer the angular

momentum initially distributed between the two photons to the two BECs. The net

effect is that the two BECs become entangled at the end of the protocol. The entan-

glement is due to the indistinguishability of particles belonging to the BEC phase. This

work has been published in Phys. Rev. A 83, 053612 (2011).

It would be interesting to extend this work by looking at the BECs as part of a quantum

repeater and study the advantages of it with respect to non-rotating ultra-cold quantum

gases.

In the last work of the first part I addressed the problem of revealing quantum behavior

in the state of a mechanical oscillator. In recent years significant efforts have been put in

reaching the quantum regime for such objects. Nevertheless we know that such a regime

would be fragile due to decoherence processes that would rapidly drive the system back

to a classical regime. The detection of quantum coherences in the state of the mechanical

oscillator has therefore to be performed in a non invasive way. In particular I considered

the case of a single clamped cantilever equipped with a magnetic molecule. I then

proposed to use a BEC as an ancillary system that couples to the cantilever to monitor

the cantilever state. The interaction between the cantilever and the BEC is mediated

by the magnetic molecule whose magnetic moment does interact with the spin of the

atoms in the BEC. The spin of the BEC then undergoes a precession motion which can

be related to coherent superposition of different states of the cantilever. In order to

detect the presence of these coherences I proposed the use of Faraday rotation of the

polarization of a laser beam traveling through the atomic cloud. This work has been

published in Phys. Rev. A 84, 063815 (2011).

In order to make this study more applicable to a real system dissipation effects have to be

taken into account. Moreover the scheme presented does not allow for the reconstruction

of the state of the cantilever, which is an important requirement. A next step would be

to modify the experimental scheme in order to reconstruct the cantilever state.
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In the second part of the thesis I addressed a more fundamental problem. The evolution

of a closed system in quantum mechanics is given by a unitary evolution, however most

systems we encounter are “open” systems. It means that they interact with an external

environment and this interaction has to be take into account for a proper description of

the system’s dynamics. The resulting equation of motion for the system can be quite

complicated except in one case where the master equation is of a special form: the

Gorini-Sudarshan-Kossakowski-Lindblad form. This equation has always been associ-

ated with Markov behavior for the system dynamics. The concept of a Markov process

is borrowed from the theory of classical stochastic processes where, in order to simplify

the mathematical description of the system dynamics, the so-called Markov assumption

is made. The main implication of Markov assumption for classical systems is that the

system is fully characterized by the initial condition and the Green’s function for the

two point probability distribution. Hence I used this physical implication to extend the

definition of Markov regime for quantum open system dynamics. Nowadays it is impor-

tant to know whether a system undergoes a Markov or non-Markov dynamics for at least

two reasons. The first is that the mathematical description of the dynamics in a Markov

regime is greatly simplified. Most importantly the deviation from Markovian behavior

tells us the importance of the system-environment correlations in the system’s dynamics.

This is important in facing problems such as charge transport in macromolecules where

the environment is a complex one (ions in solution, molecular vibrations, etc.) and it is

not simple to identify the single contribution. By means of state tomography I proposed

a feasible way of determining whether the Markov assumption is valid or not.

As a future work it would be useful to extend this formalism to the space of the oper-

ators (rather than focusing only on the density matrix operator) and look for effective

description of the operator’s dynamics.
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J. Phys. 8, 107 (2006); M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner,

J. Eisert, and M. Aspelmeyer, Phys. Rev. Lett. 99, 250401 (2007); Donner Nature

(London) (2011); Painter Nature (London) (2011);

[96] P. Treutlein, D. Hunger, S. Camerer, T.W. Hänsch, and J. Reichel, Phys. Rev. Lett.
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